
http://www.diva-portal.org

Preprint

This is the submitted version of a paper published in Data mining and knowledge discovery.

Citation for the original published paper (version of record):

Bouguelia, M-R., Nowaczyk, S., Payberah, A H. (2018)
An adaptive algorithm for anomaly and novelty detection in evolving data streams
Data mining and knowledge discovery, 32(6): 1597-1633
https://doi.org/10.1007/s10618-018-0571-0

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-36752



Data Min Knowl Disc
https://doi.org/10.1007/s10618-018-0571-0

An adaptive algorithm for anomaly and novelty
detection in evolving data streams

Mohamed-Rafik Bouguelia1 ·
Slawomir Nowaczyk1 · Amir H. Payberah2

Received: 19 May 2017 / Accepted: 2 May 2018
© The Author(s) 2018

Abstract In the era of big data, considerable research focus is being put on design-
ing efficient algorithms capable of learning and extracting high-level knowledge from
ubiquitous data streams in an online fashion. While, most existing algorithms assume
that data samples are drawn from a stationary distribution, several complex environ-
ments deal with data streams that are subject to change over time. Taking this aspect
into consideration is an important step towards building truly aware and intelligent
systems. In this paper, we propose GNG-A, an adaptive method for incremental unsu-
pervised learning from evolving data streams experiencing various types of change.
The proposedmethodmaintains a continuously updated network (graph) of neurons by
extending theGrowing Neural Gas algorithmwith three complementary mechanisms,
allowing it to closely track both gradual and sudden changes in the data distribution.
First, an adaptation mechanism handles local changes where the distribution is only
non-stationary in some regions of the feature space. Second, an adaptive forgetting
mechanism identifies and removes neurons that become irrelevant due to the evolving
nature of the stream. Finally, a probabilistic evolution mechanism creates new neu-
rons when there is a need to represent data in new regions of the feature space. The
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proposed method is demonstrated for anomaly and novelty detection in non-stationary
environments. Results show that the method handles different data distributions and
efficiently reacts to various types of change.

Keywords Data stream · Growing neural gas · Change detection · Non-stationary
environments · Anomaly and novelty detection

1 Introduction

Usual machine learning and data mining methods learn a model by performing several
passes over a static dataset. Suchmethods are not suitable when the data is massive and
continuously arriving as a stream. With the big data phenomenon, designing efficient
algorithms for incremental learning from data streams is attracting more and more
research attention. Several domains require an online processing where each data
point is visited only once and processed as soon as it is available, e.g., due to real-
time or limitedmemory constraints. Applications in dynamic environments experience
the so-called concept drift (Gama et al. 2014) where the target concepts or the data
characteristics change over time. Such change in streaming data can happen at different
speed, being sudden (Nishida et al. 2008; Gama et al. 2004) or progressive (Ditzler and
Polikar 2013; GonçAlves and Barros 2013). Change in streaming data also includes
the so called concept evolution (Masud et al. 2010) where new concepts (e.g., classes
or clusters) can emerge and disappear at any point in time.Most existingmethods, such
as those reviewed inGama et al. (2014) and Žliobaitė et al. (2016), address the problem
of concept drift and evolution with a focus on supervised learning tasks. In this paper,
we focus on online unsupervised learning from an evolving data stream. Specifically,
we address the question of how to incrementally adapt to changes in a non-stationary
distribution without requiring sensitive hyper-parameters to be manually tuned.

The problem is both interesting and important as evolving data streams are present
in a large number of dynamic processes (Žliobaitė et al. 2016). For example, on-board
vehicle signals (e.g., air pressure or engine temperature), often used to detect anomalies
and deviations (Byttner et al. 2011; Fan et al. 2015b, a), are subject to changes due
to external factors such as seasons. Other examples include decision support systems
in the healthcare domain (Middleton et al. 2016) where advances in medicine lead to
gradual changes in diagnoses and treatments, modeling of the human behavior which
naturally change over time (Webb et al. 2001; Pentland and Liu 1999), or the tracking
ofmoving objects on a video (Santosh et al. 2013; Patel and Thakore 2013), tomention
but a few.

A naive approach to address the problem of evolving data streams would be to
periodically retrain the machine learning model of interest. However, such retraining
being triggered without detecting whether it is currently needed or not, often leads to
wasted computations. The most widely used approach to deal with changes in data
steams consists of training the model based on a sliding window (Zhang et al. 2017;
Hong andVatsavai 2016;Ahmed et al. 2008;Bifet andGavalda 2007; Jiang et al. 2011).
However, choosing a correctwindow size is not straightforward, since it depends on the
speed and type of changes, which are usually unknown.Moreover, existing approaches
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are specialized for a particular type of change (e.g., sudden, progressive, cyclic). There
exist few methods which can handle different types of concept drift, such as (Losing
et al. 2016; Dongre and Malik 2014; Webb et al. 2016; Brzezinski and Stefanowski
2014), however,most of thosemethods are dedicated for supervised learning problems,
where the change is primarily detected by estimating a degradation in the classification
performance. Other approaches such as (Kifer et al. 2004; Bifet 2010) are designed
to explicitly detect, in an unsupervised way, when a change happens. Unfortunately,
such approaches require hyper-parameters which are hard to set manually when no
prior knowledge is available.

Unsupervised neural learning methods such as Fritzke (1995), Prudent and Ennaji
(2005) and Shen et al. (2013) are good candidates for modeling dynamic environments
as they are trained incrementally and take into account relations of neighborhood
between neurons (data representatives). Specifically, the Growing Neural Gas (GNG)
algorithm (Fritzke 1995) creates neurons and edges between them during learning by
continuously updating a graph of neurons using a competitive Hebbian learning strat-
egy (Martinetz et al. 1993), allowing it to represent any data topology. This provides
an important feature in the context of unsupervised learning from data streams where
no prior knowledge about the data is available. However, GNG does not explicitly
handle changes in the data distribution.

Some adaptations of GNG such as Frezza-Buet (2014), Shen et al. (2013),Marsland
et al. (2002) and Fritzke (1997) try to address some of the problems related to either
concept evolution (Shen et al. 2013; Marsland et al. 2002) or drift (Frezza-Buet 2014;
Fritzke 1997). However, these methods require an expert to specify some sensitive
parameters that directly affect the evolution or the forgetting rate of the neural network.
Setting such global parameters prior to the learning does not address the more general
case where the speed of changes can vary over time, or when the distribution becomes
non-stationary only in some specific regions of the feature space.

We propose in this paper an extension of the GNG algorithm named GNG-A (for
Adaptive) and we show how it is used for novelty and anomaly detection in evolv-
ing data streams. The contributions of this paper are summarized as follows. First,
an adaptive learning rate which depends on local characteristics of each neuron is
proposed. Such learning rate allows for a better adaptation of the neurons in station-
ary and non-stationary distributions. Second, a criterion characterizing the relevance
of neurons is proposed and used to remove neurons that become irrelevant due to a
change in the data distribution. An adaptive threshold for removing irrelevant neurons
while ensuring consistency when no change occurs is also proposed. Third, a proba-
bilistic criterion is defined to create new neurons in the network when there is a need
to represent new regions of the feature space. The probabilistic criterion depends on
the competitiveness between neurons and ensures stabilization of the network’s size if
the distribution is stationary. The proposed method is adaptive, highly dynamic, and
does not depend on critical parameters. It is fully online as it visits each data point
only once, and can adapt to various types of change in the data distribution.

This paper is organized as follows. In Sect. 2 we give a background related to the
growing neural gas based methods. In Sect. 3 we propose a mechanism that allows to
continuously adapt neurons in order to closely follow a shift in the data distribution. In
Sect. 4 we present an adaptive forgetting mechanism that allows to detect and remove
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neurons that become irrelevant as a consequence of a change in the data distribution.
In Sect. 5 we present an evolution mechanism that allows to create new neurons when
necessary. In Sect. 6 we summarize the proposed algorithm and we show how it is
used for novelty and anomaly detection. In Sect. 7 we justify the contribution using
experimental evaluation. Finally, we conclude and present future work in Sect. 8.

2 Preliminaries and related work

In this section, we describe the self-organizing unsupervised learning methods that
are at the origin of the algorithm proposed in this paper.

The neural gas (NG) (Martinetz et al. 1993) is a simple algorithm based on the
self-organizing maps (Kohonen 1998), which seeks an optimal representation of an
input data by a set of representatives called neurons, where each neuron is represented
as a feature vector. In this algorithm, the number of neurons is finite and set manually.
This constitutes a major drawback, because the number of representatives needed to
approximate any given distribution, is usually unknown.

The growing neural gas algorithm (GNG) (Fritzke 1995) solves the previous prob-
lem by allowing the number of neurons to increase. It maintains a graphG which takes
into account the neighborhood relations between neurons (vertices of the graph). As
shown in Algorithm 1, a minimum number of neurons is initially created (line 3), then,
new neurons and new neighborhood connections (edges) are added between them dur-
ing learning, according to the input instances. For each new instance x from the stream
(line 4), the two nearest neurons n∗

x and n∗∗
x are found (line 6) as follows

n∗
x = argmin

n∈G
‖x − n‖; n∗∗

x = argmin
n∈G,n �=n∗

x

‖x − n‖.,

where ‖a−b‖ is the Euclidean distance between vectors a and b. A local representation
error errn∗

x
is increased for the wining neuron n∗

x (line 7) and the age of the edges
connected to this neuron is updated (line 8). The wining neuron (i.e., n∗

x ) is adapted
to get closer to x , according to a learning rate ε1 ∈ [0, 1]. The neighboring neurons
(linked to n∗

x by an edge) are also adapted according to a learning rate ε2 < ε1 (line
9). Furthermore, the two neurons n∗

x and n∗∗
x are linked by a new edge (of age 0).

The edges that reached a maximum age amax without being reset, are deleted. If, as
a consequence, any neuron becomes isolated, it is also deleted (lines 10–13). The
creation of a new neuron is done periodically (i.e., after each λ iterations) between the
two neighboring neurons that have accumulated the largest representation error (lines
14–20). Finally, the representation error of all neurons is subject to an exponential
decay (line 21) in order to emphasize the importance of the most recently measured
errors.

The preservation of neighborhood relations in GNG allows it to represent data of
any shape (as shown on Fig. 1), which makes it particularly interesting for a wide
range of applications. However, in a non-stationary environment, the GNG algorithm
suffers from several drawbacks.

First, it organizes neurons to represent the input distribution by continuously adapt-
ing the feature vectors of neurons based on two learning rates ε1, ε2 (see Algorithm 1,
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Algorithm 1 Growing Neural Gas (GNG)
1: Input: ε1, ε2, amax , λ

2: t ← 0
3: Initialize graph G with at least 2 neurons
4: for each new instance x from the stream do
5: t ← t + 1
6: Let n∗

x , n
∗∗
x be the two neurons closest to x

7: errn∗
x

← errn∗
x

+ ‖x − n∗
x‖2

8: Increment the age of n∗
x ’s edges

9: Adapt n∗
x and its neighbors (linked to n∗

x )

n∗
x ← n∗

x + ε1 × (x − n∗
x )

∀nv ∈ Neighbours(n∗
x ) : nv ← nv + ε2 × (x − nv)

10: if n∗
x is linked to n∗∗

x , reset the edge’s age to 0
11: else Link n∗

x to n∗∗
x with an edge of age 0

12: Remove old edges, i.e., with age > amax
13: Remove neurons that become isolated
14: if t is multiple of λ then
15: Let nq = argmaxn∈G errn
16: Let n f = argmaxn∈Neighbours(nq ) errn
17: Create a new neuron nnew between nq and n f
18: nnew = 0.5 × (nq + n f )

19: errnnew = 0.5 × errnq
20: end if
21: Exponentially decrease the representation error of all neurons:

∀n ∈ G : errn ← 0.9 × errn

22: end for

Fig. 1 GNG is able to learn the topology of data in a stationary environment

line 9), whose values are set manually. If those values are not chosen appropriately,
the neural network will not be able to closely follow changes in the data distribution.

Second, when the distribution changes fast, many neurons will not be updated
anymore, and will consequently not be able to follow the change. As such neurons
do not become isolated, they will never be removed by GNG. Figure 2 shows a data
distribution which initially forms one cluster and then splits into two clusters. The
first cluster, in the bottom left region of Fig. 2(1), is stationary. The other cluster is
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Fig. 2 In GNG, with a non-stationary distribution, some irrelevant neurons are not updated anymore and
are never removed

moving and getting farther from the first cluster, as shown by the sequence of Fig. 2a–
d. Neurons that are not able to follow the moving cluster are kept as part of the graph
even if they not relevant anymore.

Third, the GNG algorithm suffers from the need to choose the parameter λ (see
Algorithm 1, line 14), used to periodically create a new neuron. The periodic evolution
of the neural network is clearly not convenient for handling sudden changes where
new neurons need to be created immediately. Some adaptations of GNG, like those
proposed in Prudent and Ennaji (2005), Shen et al. (2013) and Marsland et al. (2002),
try to overcome the problem of periodic evolution by replacing the parameter λ by a
distance threshold which can be defined globally or according to local characteristics
of each neuron. For each new instance x , if ‖x − n∗

x‖ is higher than some threshold,
then a new neuron is created at the position of x . However, although this overcomes
the problem of periodic evolution, setting an appropriate value for the threshold is not
straightforward as it highly depends on the unknown distribution of the input data.
Moreover, such methods are more prone to representing noise because they create a
new neuron directly at the position of x instead of regions where the accumulated
representation error is highest (as in the original GNG).

There exist several variants ofGNGfor non-stationary environments such asFrezza-
Buet (2014), Fritzke (1997) and Frezza-Buet (2008). Perhaps the most known variant
is GNG-U (Fritzke 1997) which is proposed by the original authors of GNG. It defines
a utility measure that removes neurons located in low density regions and inserts
them in regions of high density. The utility measure is defined as follows. Let nr
be the neuron with the lowest estimated density unr . Let nq be the neuron which
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accumulated the highest representation error errnq (as in line 15 of Algorithm 1). If

the ratio
errnq
unr

is higher than some threshold θ , then the neuron nr is removed from
its current location and inserted close to nq . However, the threshold θ is yet another
user defined parameter which is hard to set because the ratio

errnq
unr

is unbounded and
highly depend on the input data. Moreover, removing nr and immediately inserting
it close to nq assumes that the distribution is shifting (i.e., the removal and insertion
operations are synchronized). Yet, in many cases, we may need to create new neurons
without necessarily removing others (e.g., the appearance of a new cluster). Moreover,
the evolution of the neural network is still periodic, as in GNG. The only way to limit
the network’s size is to set a user-specified limit on the number of neurons, which
otherwise leads to a permanent increase in the size of the network.

A state of the art method called GNG-T (Frezza-Buet 2014), which is an improved
version of themethod proposed in Frezza-Buet (2008), allows to follow non-stationary
distributions by controlling the representation error of the neural network. During an
epoch of N successive iterations (i.e., successive inputs to the algorithm), let {xij }1≤ j≤li
denote the set of li input data for which ni is the winning neuron. Then the representa-

tion error of the neuron ni is defined as Eni = 1
N

li∑

j=1
‖xij −ni‖. Themethod determines

the σ -shortest confidence interval (Guenther 1969) (Emin, Emax ) based on the errors
of all neurons {Eni }ni∈G . Let T be a target representation error specified by the user.
GNG-T seeks to keep the representation error of the neural network close to T by
maintaining T ∈ [Emin, Emax ]. More specifically, after each period, if Emax becomes
less than T , then a neuron is removed. Similarly, if Emin becomes higher than T ,
then a new neuron is inserted. After each epoch, the neurons that have not won are
simply considered as irrelevant, and are removed. GNG-T is the closest work to what
we propose in this paper. Unfortunately, it depends on critical parameters (mainly, the
epoch N , the target error T and the confidence σ ) which directly guide the insertion
and removal of neurons. Moreover, splitting the stream into epochs of N successive
input data means that GNG-T is only partially online.

In order to relax the constraints related to GNG and its derivatives in non-stationary
environments we propose, in the following sections, new mechanisms for: (1) a better
adaptation of the neurons in stationary and non-stationary distributions (Sect. 3); (2)
an adaptive removal of irrelevant neurons, while ensuring consistency when no change
occurs (Sect. 4); (3) creating new neuronswhen necessary, while ensuring stabilization
of the network’s size if the distribution is stationary (Sect. 5).

3 Adaptation of existing neurons

GNG, and the self-organizing neural gas based methods in general, can intrinsically
adapt to the slowly changing distributions by continuously updating the feature vector
of neurons. As shown in Algorithm 1 (line 9), this adaptation depends on two constant
learning rates ε1 (for adapting the closest neuron n∗

x to the input) and ε2 (for adapting
the topological neighbors of n∗

x ) such that 0 < ε2 < ε1 	 1. If the learning rates ε1
and ε2 are too small, then neurons learn very little from their assigned data points. This
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causes the neural network to adapt very slowly to the data distribution. In contrast, too
high learning rates can cause the neural network to oscillate too much.

Many existing methods try to address this problem by decreasing the learning
rate over time (also referred to as “annealing” the learning rate), so that the network
converges, the same way as it is done for the stochastic gradient descent (Zeiler 2012).
However, in a streaming setting, as time goes, this may cause neurons to adapt very
slowly to changes in data distribution that happen far in the future (as the learning rate
will be very small).Moreover, such a global learning rate is not convenient for handling
local changeswhere the distribution is only stationary in some regions of feature space.
Some methods like (Shen et al. 2013) define the learning rate for the winning neuron
n∗
x as being inversely proportional to the number of instances associated with that

neuron (i.e., the more it learns, the more it becomes stable). However, such learning
rate is constantly decreasing over time, thus still causes neurons to adapt slowly to
changes in data distribution as time goes.

In order to closely follow the changing distribution and properly handle local
changes, we propose to use an adaptive local learning rate εn for each neuron n.
Intuitively, a local change is likely to increase the local error of nearby neurons with-
out affecting the ones far away. Therefore, we define the learning rate of a neuron n
as being related to its local error errn . By doing so, at each point in time, the learning
rate of each neuron can increase or decrease, depending on the locally accumulated
error.

Let E be the set of local errors for all neurons in the graphG, sorted in the descending
order (i.e., from high error to low error). The learning rate for each neuron n ∈ G is
then defined as follows

εn = 1

2 + Index(errn, E)
, (1)

where Index(errn, E) is the index (or rank) of errn in E . Therefore, we define the
learning rate used for adapting the winning neuron as ε1 = εn∗

x
, and the learning rate

for adapting each neighboring neuron nv ∈ Neighbors(n∗
x ) as ε2 = min(ε1, εnv ).

By adapting the wining neurons with a learning rate which depends on the ordering
of their local errors, the algorithm manages to better adapt to local changes. However,
it should be noted that when the number of neurons is static and the concepts are
stationary, the learning rates will still be different for different neurons in the network.
An alternative solution consists in adapting the learning rates by magnitude instead of
ordering. However, this solution is prone to outliers and the local errors are constantly
subject to an exponential decay, making their values significantly different from each
other. Therefore, we prefer to use the solution which is based on ordering.

4 Forgetting by removing irrelevant neurons

Dealing with concept drifting data implies not only adapting to the new data but also
forgetting the information that is no longer relevant. GNG is able to remove neurons
that become isolated after removing old edges (lines 12–13 of Algorithm 1). However,
as shown previously on Fig. 2, when the data distribution changes sufficiently fast,
some neurons will not be adapted anymore and they will still be kept, representing

123



An adaptive algorithm for anomaly and novelty detection

old data points that are no longer relevant. The forgetting mechanism proposed in this
section allows us to eliminate such irrelevant neurons in an adaptive way.

4.1 Estimating the relevance of a neuron

In order to estimate the “relevance” of neurons, we introduce a local variable Cn

for each neuron n. This local variable allows to ensure that removing neurons will
not negatively affect the currently represented data when no change occurs. For this
purpose,Cn captures the cost of removing the neuron n. This cost represents howmuch
the total error of the neighboring neurons of n would increase, if n is removed. In order
to define Cn , let us consider Xn = {xi | n = n∗

xi } as the set of instances (data points)
associated with a given neuron n (instances closest to n, i.e., for which n was winner).
If n is removed, instances in Xn would be associated to their nearest neurons in the
neighborhood of n. Associating an instance xi ∈ Xn to its (newly) nearest neuron n∗∗

xi
would increase the local error of that neuron by ‖x − n∗∗

xi ‖. Therefore, we define Cn

for a neuron n according to the distance from its associated instances to their second
nearest neurons, as follows

Cn =
t∑

i=0

1(n = n∗
xi ) × ‖xi − n∗∗

xi ‖,

where t is the current time step (i.e., t’th instance from the stream), and 1(Cond) is
the 0-1 indicator function of condition Cond, defined as

1(Cond) =
{
1 if Cond is true

0 otherwise.

In order to compute an approximation of Cn for each neuron n in an online fashion,
each time a new instance x is received from the stream, the local variable Cn∗

x
of its

closest neuron n∗
x (i.e., the winning neuron) is increased by ‖x − n∗∗

x ‖ (i.e., by the
distance to the second closest neuron)

Cn∗
x

← Cn∗
x
+ ‖x − n∗∗

x ‖. (2)

The local variable Cn is then an estimation for the cost of removing the neuron
n. At each iteration, this local variable is exponentially decreased for all the existing
neurons (the same way as it is done for the local representation error in line 21 of
Algorithm 1):

∀n ∈ G, Cn ← 0.9 × Cn . (3)

It follows that a very small value Cn for a neuron n, may indicate two things. First,
when the distribution is stationary, it indicates that n is competing with other neurons
in its neighborhood (i.e., the cost of removing n is low), which suggests that the data
points associated with n can be safely represented by its neighboring neurons instead.
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Second, when the distribution is not stationary, a low value of Cn indicates that n is
no longer often selected as the closest neuron to the input data point, which suggests
that it is no longer relevant. In both of those cases, n can be safely removed for a
sufficiently small value of Cn .

Note that if n is the closest neuron to some input data points but is far away from
these points (i.e. all the neurons are far from these data points, since n is the closest),
then Cn is high because n needs to be adapted to represent these data points instead
of being removed.

Let us denote by n̂ the neuron which is most likely to be removed (i.e. with the
smallest Cn):

n̂ = argmin
n∈G

Cn .

Naturally, the forgetting can be triggered by removing n̂ if the value of its local variable
Cn̂ falls below a given threshold. However, such value may quickly become small
(approaching 0) as it is constantly subject to an exponential decay, whichmakes it hard
to directly set a threshold on this value. Instead of removing n̂ when Cn̂ is sufficiently
small, a more convenient strategy is to remove it when − logCn̂ is sufficiently high,
that is, when

− logCn̂ > τ,

where τ is an upper survival threshold. The smaller τ , the faster the forgetting. Larger
values of τ would imply a longer termmemory (i.e. forgetting less quickly). The exact
value of the threshold τ depends, among other factors, on the data distribution and
how fast it is changing. This is clearly an unknown information. Therefore, a problem
that still remains is: when do we trigger the forgetting mechanism? In other words,
how do we decide that Cn is sufficiently small, without requiring the user to directly
specify such a sensitive threshold? To define a convenient value for τ , we propose in
the following subsection an adaptive threshold.

In order to analyze the proposed removal process for a given neuron n, remem-
ber that Cn is exponentially decreased at each iteration according to Eq. 3 and only
increased when n is a winning neuron according to Eq. 2. Since ‖x − n∗∗

x ‖ can be
assumed to be bounded and to simplify the analysis, let us assume that when n wins,
Cn is simply increased by a constant value, e.g. 1. If the input data follow a station-
ary uniform distribution and the number of neurons at some iteration is g, then n is
expected to win once after g iterations. Therefore, Cn decreases g times according
Eq. 3 before it is increased by 1. In this case, Cn at time t can be expressed as:

C (t)
n = (((1 × 0.9g1 + 1) × 0.9g2 + 1) × 0.9g3 + · · · + 1) ∗ 0.9gv , (4)
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Fig. 3 The value − logCn̂ for the neuron n̂ (which is most likely to be removed at each iteration) in two
cases: a stationary distribution (blue) and a non-stationary distribution (red) (Color figure online)

where v is the winning count1 of n, and gi is the number of neurons at the i’th time
where n was winner. If the number of neurons is fixed, i.e., g1 = g2 = · · · = g, then

v =
⌊
t
g

⌋
and Cn becomes the sum of a geometric series:

C (t)
n = 0.9g + 0.92g + 0.93g + · · · + 0.9vg = 0.9g

1 − 0.9g
(1 − 0.9t ).

In this case,Cn represents a stationary process because lim
t→∞C (t)

n = 0.9g
1−0.9g andneurons

will not be removed (i.e. the network stays stable). However, if the distribution changes
and n is not winning anymore, then it is obvious that Cn will keep decreasing and n
get’s removed as soon as Cn falls below τ . In this case, if c0 is the last value of Cn

when n was winner, then n is removed when c0 × 0.9α ≤ τ . In order words, n is
removed after α = 1

log 0.9 log
τ
c0

iterations.

4.2 Adaptive removal of neurons

In order to motivate the adaptive threshold we propose, let us consider Fig. 3, which
shows the value of − logCn̂ for a stationary (blue curve) and a non-stationary (red
curve) distributions. On the one hand, if the neuron n̂ has not been selected as winner
during some short period of time, then − logCn̂ may temporarily be high, but would
decrease again as soon as n̂ is updated (see the blue curve on Fig. 3). In this case, if the
threshold τ is chosen too low, then it wrongly causes n̂ to be immediately removed. On
the other hand, if n̂ is not anymore selected as winner (in the case of a non-stationary
distribution), then− logCn̂ keeps increasing (see the red curve on Fig. 3). In this case,

1 This is the number of times where n was winner, from time 0 to time t
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if the threshold τ is chosen too high, then it causes long delay in removing neurons
that are not relevant anymore (leading to results similar to those previously shown on
Fig. 2), which is not in favor of a real-time tracking of the non-stationary distribution.
In order to automatically adapt the threshold τ , we consider the two following cases:

1. Increasing τ :

If − logCn̂ > τ (i.e., n̂ should be removed) but n̂ would still be winning in the
future, then the threshold τ should be increased (to remove less neurons in the
future). The reason for increasing τ in this case is that a neuron which should be
removed is expected to not be winner anymore (or very rarely) in the future.

2. Decreasing τ :

If − logCn̂ ≤ τ (i.e., n̂ is not removed) but n̂ is not winning anymore, then the
threshold τ should be decreased (to removemore neurons in the future). The reason
for decreasing τ in this case is that a neuron which is not removed is expected to
be a winner sufficiently frequently.

To address the first case, when a neuron n̂ is removed fromG because− logCn̂ > τ ,
we do not discard it completely; instead, we keep it temporarily, in order to use it for
a possible adaptation of the threshold τ . Let R be a buffer (a Queue with FIFO order)
where the removed neurons are temporarily kept2. Let x be a new instance from the
stream, and n∗

x be the nearest neuron to x in G. Let r∗
x ∈ R be the nearest neuron to x

in R. If x is closer to r∗
x than to n∗

x (i.e., ‖x − r∗
x ‖ < ‖x − n∗

x‖), then r∗
x would have

been the winner instead of n∗
x . In this case, we increase τ as follows:

τ ← τ + ε × [(− logCr∗
x
) − τ ], (5)

where ε ∈ [0, 1] is a small learning rate (discussed thereafter in this section).
Finally, we need to design a strategy to maintain the R buffer. LetWn be the number

of times where a neuron n has been winner during the W last time steps (iterations).
Let R′ = {r ∈ R|Wr = 0} be the subset of neurons from R that has never been a
winner during the W last time steps. If |R′| > k (i.e., a sufficient number of neurons
are not updated anymore), then we definitively remove the oldest neuron from R.

For the second case, let |{n ∈ G|Wn = 0}| be the number of neurons from G that
has never been a winner during the W last time steps. If this number is higher than k
and − logCn̂ ≤ τ , then we decrease τ as follows:

τ ← τ − ε × [τ − (− logCn̂)] (6)

The learning rate ε ∈ [0, 1] used in Eqs. 5 and 6 for updating τ can be decreased
over time, as shown in Eq. 7, so that τ converges more quickly.

ε = 1

1 + Nτ

, (7)

2 Note that the local variables of the neurons that we keep in R (except for their feature vectors) are updated
at each iteration the same way as the neurons in G.
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where Nτ is the number of times where τ has been updated (increased or decreased).
Alternatively, ε can be kept constant if the speed of the changing distribution is
expected to change over time (i.e., acceleration is not constant), depending on the
application domain.

In order to give a chance for each neuron inG to be selected as winner at least once,
W needs to be at least equal to the number of neurons. Therefore, instead of having a
manually fixed value for W , this latter is simply increased if the number of neurons
reaches W (i.e. if |G| ≥ W ). Note that in all our experiments W is simply increased
by 10 each time |G| ≥ W .

Besides, the parameter k plays a role in the adaptation of the threshold τ used to
remove neurons. If more than k neurons are not updated anymore (i.e. their Wn =
0), then τ is adapted to increase the chance of removing such neurons in future.
Consequently, higher values of k lead to a less frequent adaptation of τ (i.e. promoting
more stability). Note that setting k to a too high value can introduce some delay in
removing irrelevant neurons.On the opposite side, by setting k too low (e.g. k = 1), it is
possible (evenwhen the distribution is stationary) that anyneuronnwould occasionally
have Wn = 0 and causes the adaptation of τ .

5 Dynamic creation of new neurons

As explained in Sect. 2, GNG creates a new neuron periodically. If there is a sudden
change in the distribution and data points starts to come in new regions of the feature
space, the algorithm cannot immediately adapt to represent those regions. This is
mainly due to the fact that a new neuron is created only every λ iterations. In many
real-time applications, new neurons need to be created immediately without affecting
the existing ones (i.e., concept evolution). In order to handle such changes faster,
we propose a dynamic strategy that allows creation of new neurons when necessary.
The proposed strategy ensures that less neurons are created when the distribution is
stationary, while being able to create more neurons if necessary, i.e. when there is a
change in the data distribution.

Remember thatWn is the number of times where a neuron n has been winner during
the W last time steps (iterations). Let us define the ratio Wn

W ∈ [0, 1] as the winning
frequency of a neuron n. When the number of neurons in G is low, their winning
frequency is high. This is essentially due to a low competition between neurons,
which gives a higher chance for each neuron to be selected as winner. An extreme
case example is when G contains only one neuron which is always winning (i.e. its
winning frequency is 1). In contrast, as the number of neurons in G increases, their
winning frequency decreases due to a higher competitiveness between neurons. We
propose a strategy for creating new neurons in a probabilistic way, based on the current
winning frequency of neurons in G.

Let fq ∈ [0, 1] be the overall winning frequency in the graph G defined as

fq = 1

k
×

∑

n∈S

Wn

W
, (8)
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Fig. 4 The value of fq with synthetic data, in two cases: a stationary distribution (blue) and a non-stationary
distribution (red) (Color figure online)

where S is a set of k neurons with the highest winning frequencies3 among all neurons
inG. The higher the overall winning frequency fq, the higher the probability of creating
a new neuron, and vice-versa.

Let S′ be a set of k′ neurons with the highest winning frequencies. It is easy to prove
that for any k′ > k (i.e. S ⊂ S′), we have f ′q = 1

k′ ×∑
n∈S′ Wn

W ≤ fq. Therefore, higher
values of k lead to creating neurons less frequently (i.e. promoting more stability).

If the data distribution is stationary, then creating new neurons is likely to decrease
fq, which implies a smaller probability to create more neurons in the future. However,
if there is a change in the data distribution so that new neurons actually need to be
created, then fq will automatically increase (which leads to a higher probability of
creating more neurons). Indeed, let us assume that data points from a new cluster start
to appear. Some existing neurons that are the closest to those points will be selected as
winner, making their winning frequencies high, which consequently increases rm f q.
As fq increases, there is more chance for creating new neurons to represent the new
cluster. This is illustrated in Fig. 4 which shows fq for a stationary distribution (blue
curve) and for a non-stationary distribution (red curve) where a new cluster is suddenly
introduced after time step 1000 .

The insertion of a newneuron is donewith a probability proportional to fq. However,
in order to lower the chance of performing insertions too close in time and give time
for the newly inserted neuron to adapt, we introduce a retarder term rt defined as
follows:

rt = 1

t − t ′
,

3 S contains the first (top) k neurons from the list of all neurons sorted in the descending order according
to their winning frequencies.
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where t is the current time step and t ′ < t is the previous timewhen the last insertion of
a neuron occurred. Hence, a new neuron is created with a probability max(0, fq − rt).
In other words, a new neuron is created if rand < fq − rt, where rand ∈ [0, 1] is
randomly generated according to a uniform distribution.

For the purpose of analysis, let us assume that the input data follow a stationary
uniform distribution. If |G| = g is the number of neurons at some iteration t , then
all neurons are equally likely to win and the winning frequency of each neuron is
Wn
W = fq = 1

g . Since the insertion of a new neuron happens with a probability which is

essentially fq, then when |G| = 2, fq = 1
2 and a new neuron is added after 2 iterations;

when |G| = 3, fq = 1
3 and one more neuron is added after 3 more iterations, etc. Thus,

the expected number of neurons at time t (when no removal occurs) can be expressed
as:

1

1
+ 1

2
+ 1

2
+ 1

3
+ 1

3
+ 1

3
+ 1

4
+ 1

4
+ 1

4
+ 1

4︸ ︷︷ ︸
e.g. at t = 10 iterations, g = 4 neurons

+ · · · �
⌊√

1

4
+ 2t − 1

2

⌋

Therefore, if no removal occurs, the number of neurons increases continuously (but
slowly) over time. However, as the number of neurons increases, each neuron will win
less frequently. It follows that some neuronswould have theirCn decreasing andwould
eventually be removed, keeping the number of neurons stable. In order to show that
Cn decreases, let us consider again Eq. 4. If the initial number of neurons is g1 = 1,
then as explained previously, after two more iterations g2 = 2, and after three more
iterations g3 = 3, etc. Therefore Eq. 4 becomes:

C (t)
n = (((1 × 0.91 + 1) × 0.92 + 1) × 0.93 + · · · + 1) ∗ 0.9v =

v∑

i=1

0.9
1
2 (v−i+1)(i+v)

The sum above has no closed-form expression. However, it can be re-written recur-
sively as C (t)

n = 0.9t (C (t−1)
n + 1), and it is easy to show that ∀t ′ > t > 5, we

have C (t ′)
n ≤ C (t)

n . Therefore, n would eventually be removed as Cn is monotonically
decreasing.

6 Algorithm

GNG-A is summarized in Algorithm 2, which makes a call to Algorithm 3 to check
for the removal of neurons (see Sect. 4) and Algorithm 4 to check for the creation of
neurons (see Sect. 5).

First, Algorithm 2 initializes the graph G with two neurons (line 3). For each new
data point x , the two nearest neurons n∗

x and n∗∗
x are found (line 7). The local error

errn∗
x
is updated for the wining neuron n∗

x and the age of the edges emanating from
this neuron is incremented (lines 8–9). The local relevance variable Cn∗

x
is increased

in order to record the cost of removing this neuron (line 10), as described in Sect. 4.1.
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Algorithm 2 Proposed method (GNG-A)
1: Input: k (used in Algorithms 3 and 4), amax
2: Let t ← 0, t ′ ← 0, Nτ ← 1 // global variables
3: Initialize graph G with at least 2 neurons
4: Initialize τ > 0 randomly
5: for each new instance x from the stream do
6: t ← t + 1
7: Let n∗

x , n
∗∗
x be the two neurons closest to x

8: errn∗
x

← errn∗
x

+ ‖x − n∗
x‖2

9: Increment the age of n∗
x ’s edges

10: Cn∗
x

← Cn∗
x

+ ‖x − n∗∗
x ‖2

11: Update the local learning rates according to Eq. 1
12: Adapt n∗

x and its neighbors (linked to n∗
x )

n∗
x ← n∗

x + εn∗
x

× (x − n∗
x )

∀nv ∈ Neighbours(n∗
x ) : nv ← nv + εnv × (x − nv)

13: if n∗
x is linked to n∗∗

x , reset the edge’s age to 0
14: else Link n∗

x to n∗∗
x with an edge of age 0

15: Remove old edges, i.e., with age > amax
16: Remove the neurons that become isolated
17: CheckRemoval(k) // Algorithm 3
18: CheckCreation(k) // Algorithm 4
19: for each n ∈ G do
20: errn ← 0.9 × errn
21: Cn ← 0.9 × Cn
22: end for
23: end for

The neuron n∗
x and its neighbors (linked to n∗

x by an edge) are adapted to get closer
to x (lines 11–12), using the local learning rates that are computed according to Eq. 1
as described in Sect. 3. As in GNG, n∗

x and n∗∗
x are linked by an edge, old edges are

deleted, and neurons that becomes isolated are also deleted. Algorithm 3 is called (line
17) to adapt the forgetting threshold τ and to check if there is any irrelevant neuron
that needs to be removed, as described in Sect. 4. Then, Algorithm 4 is called (line
18) in order to insert a new neuron according to a probabilistic criterion described in
Sect. 5. Finally, the local errors and relevance variables of all neurons are subject to
an exponential decay (line 19).

Note that the parameter k used in Algorithms 3 and 4 serves different but related
purposes. Indeed, as higher values of k promote stability in both the removal and the
creation cases, it is reasonable andmore practical to collapse the value of the parameter
k for both cases into one.

Let f be the size of x (i.e. the number of features), g be the number of neurons
(i.e. the size of the graph |G|), and r be the number of neurons in R, with r 	 g. The
most time consuming operation in Algorithm 2 is finding the neurons in G that are
closest from the input x (line 7 of Algorithm 2). For each input x , this operation takes
O( f × g). Additionally, the adaptation of the local variables of neurons (e.g. lines
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19–22 of Algorithm 2) hasO(g) time complexity. Algorithm 3 has a time complexity
of O( f × r) as it needs to find r∗

x , and Algorithm 4 has a time complexity of O(g).
Therefore, the overall complexity of the proposed method (GNG-A) for learning from
each instance x isO( f ×(g+r)), which is very similar to the original GNG algorithm.

Algorithm 3 CheckRemoval(k)

1: Let n̂ = argmin
n∈G

Cn ; r∗
x = argmin

r∈R
‖x − r‖; ε = 1

1+Nτ
(Eq. 7)

2:
3: // check if τ need to be increased
4: if ‖x − r∗

x ‖ < ‖x − n∗
x‖ and − logCr∗x > τ then

5: τ ← τ + ε × [(− logCr∗x ) − τ ]
6: Nτ ← Nτ + 1
7: end if
8: if |{r ∈ R|Wr = 0}| > k then
9: Remove (dequeue) the oldest neuron in R
10: end if
11:
12: // check if τ need to be decreased
13: if |{n ∈ G|Wn = 0}| > k and − logCn̂ ≤ τ then
14: τ ← τ − ε × [τ − (− logCn̂)]
15: Nτ ← Nτ + 1
16: end if
17:
18: // check if any neuron need to be removed from G
19: if − logCn̂ > τ then
20: Add (enqueue) n̂ to the buffer R
21: Remove n̂ and its edges from G
22: Remove previous neighbors of n̂ that become isolated
23: end if

Algorithm 4 CheckCreation(k)
1: Let S be a set of k neurons in G, with the highest winning frequencies.
2: fq = 1

|S| × ∑

n∈S
Wn
W (see definition of Eq. 8)

3: if random
uni f orm

([0, 1]) < fq − 1
t−t ′ then

4: t ′ ← t
5: Let nq = argmaxn∈G errn
6: Let n f = argmaxn∈Neighbours(nq ) errn
7: Create a new neuron nnew between nq and n f
8: nnew = 0.5 × (nq + n f )

9: errnnew = 0.5 × errnq
10: end if

Anomaly and novelty detection methods (Liu et al. 2008; Krawczyk and Woźniak
2015; Li et al. 2003; Schölkopf et al. 2000) learn a model from a reference set of
regular (or normal) data, and classify a new test data point as irregular (or abnormal) if
it deviates from that model. If the reference data comes as a stream and its distribution
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is subject to change over time, suchmethods are typically trained over a slidingwindow
as described in Ding and Fei (2013) and Krawczyk and Woźniak (2015).

Themethodwe proposed is able to adapt to various types of changewithout keeping
data points in a sliding window, and therefore it is straightforward to use it for the
task of anomaly and novelty detection where the distribution of the reference data is
non-stationary. More specifically, each neuron in G can be considered as the center of
a hyper-sphere of a given radius d (a distance threshold). Therefore, at any time t , the
graph G (i.e., all hyper-spheres) covers the area of space that represents regular data.
It follows that a test data point x whose distance to the nearest neuron is larger than
d, is not part of the area covered by G. More formally, x is considered as abnormal
(or novel) if

minn∈G‖x − n‖ > d

Manually choosing a convenient value for the decision parameter d is hard because
it not only depends on the dataset but also on the number of neurons in G, which
varies over time. Indeed, a higher number of neurons requires a smaller d. However,
it is also natural to expect that a higher number of neurons in G would cause the
distance between neighboring neurons to be smaller (and vise versa). Therefore, we
heuristically set d equal to the expected distance between neighboring neurons in G.
In order words, d at any time is defined as the average length of edges at that time:

d = 1

|E |
∑

(ni ,n j )∈E
‖ni − n j‖,

where E is the current set of edges in the graph, and (ni , n j ) is an edge linking two
neurons ni and n j .

7 Experiments

In this section, we evaluate the proposed method. First, we present the datasets used
for evaluation in Sect. 7.1. Then, we evaluate the general properties of the proposed
method in terms of the ability to follow a non-stationary distribution, in Sect. 7.2.
Finally, we present and discuss the results of the anomaly and novelty detection using
the proposed method, in comparison to other benchmarking methods in Sect. 7.3.

7.1 Datasets

We consider in our experimental evaluation several real-world and artificial datasets
covering a wide range of non-stationary distributions. Table 1 gives a brief summary
of all the considered datasets. The column Classes indicates the number of classes
or clusters in each dataset. The column Change indicates the interval, in number
of examples, between consecutive changes in the data distribution. For example, if
Change is 400, then there is a change in the data distribution after each (approximately)
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Table 1 Summary of the datasets characteristics

Dataset Classes Features Size Change Regular (%)

Covtype 7 54 581,012 Unknown 91.37

Elec2 2 8 45,312 Unknown 57.54

Outdoor 40 21 4000 40 50.0

Rialto 10 27 82,250 Unknown 50.0

Spamdata 2 499 9324 Unknown 74.39

Weather 2 8 18,159 Unknown 68.62

Keystroke 4 10 1600 200 50.0

Sea Concepts 2 3 60,000 12,500 62.69

Usenet 2 658 5931 Unknown 50.42

Optdigits 10 64 3823 NA 50.03

1CDT 2 2 16,000 400 50.0

2CDT 2 2 16,000 400 50.0

1CHT 2 2 16,000 400 50.0

2CHT 2 2 16,000 400 50.0

4CR 4 2 144,400 400 50.0

4CRE-V1 4 2 125,000 1000 50.0

4CRE-V2 4 2 183,000 1000 50.0

5CVT 5 2 40,000 1000 50.0

1CSurr 2 2 55,283 600 63.46

4CE1CF 5 2 173,250 750 60

UG-2C-2D 2 2 100,000 1000 50.0

MG-2C-2D 2 2 200,000 2000 50.0

FG-2C-2D 2 2 200,000 2000 75.0

UG-2C-3D 2 3 200,000 2000 50.0

UG-2C-5D 2 5 200,000 2000 50.0

GEARS-2C-2D 2 2 200,000 2000 50.0

2D-1 2 2 5000 NA 50.0

2D-2 2 2 5000 NA 50.0

2D-3 3 2 5000 NA 66.66

2D-4 3 2 5000 NA 66.64

400 examples from the stream. Note that NA refers to “no change”, and “unknown”
refers to an unknown rate of change (where changes can happen at any moment) with
variable or significantly different intervals between consecutive changes. The column
Regular reports the percentage of regular instances in each dataset.

The first group consists in various real world datasets: Covtype, Elec2, Outdoor,
Rialto, Weather, Spamdata, Keystroke and Opendigits; in addition to two commonly
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Fig. 5 Snapshots from the artificial non-stationary datasets

used artificial datasets: Usenet and Sea-Concepts. All the datasets are publicly avail-
able for download.4 Details of each dataset are given in “Appendix A”.

The other datasets are provided in Souza et al. (2015) and publicity available for
download.5 These datasets experience various levels of change over time, thus, are
ideal to showcase the performance of algorithms in non-stationary environments. All
these artificial non-stationary datasets are illustrated in Fig. 5. The last four artificial
datasets in Table 1 are stationary datasets with distributions corresponding to various
shapes, as illustrated in Fig. 5.

4 Datasets are publicly available for download at https://github.com/vlosing/driftDatasets/tree/master/
realWorld for Covtype, Elec2,Outdoor, Rialto,Weather, at http://www.liaad.up.pt/kdus/products/datasets-
for-concept-drift for Usenet and Sea-Concepts, at https://sites.google.com/site/nonstationaryarchive/ for
Keystroke, at http://mlkd.csd.auth.gr/concept_drift.html for Spamdata, and at Frank and Asuncion (2010)
for Opendigits.
5 The non-stationary artificial datasets are publicly available for download at https://sites.google.com/site/
nonstationaryarchive/, where animated visualization of the data over time are also available.
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Fig. 6 The location of neurons for a one-dimensional non-stationary distribution over time. |G| ≤ 10,
k = 10

7.2 General properties of GNG-A

The first set of experiments shows the general properties of the proposed method in
terms of the adaptability, the ability to represent stationary distributions, and to follow
non-stationary distributions.

As an initial step, Fig. 6 illustrates a simple proof of concept of the proposed
method for a simulated one-dimensional non-stationary data distribution, which is
initially shown by the grey box on the left. The location, over time, of the created
neurons is shown with red points. The size of the graph G is limited to 10 neurons
for better visualization purposes. At time 1000, the distribution is moderately shifted,
whichmakes half of the neurons to be reused, and others to be created. At time 3000 the
distribution suddenly changes, which makes only few neurons change their location,
and leads to the creation of many new neurons and the removal of existing ones. After
time 5000, the distribution splits into two parts (clusters), and the proposed method
follows the change.

Figure 7 shows an experiment performed on the 1CDT dataset (non-stationary)
with the goal to showcase the adaptive removal of neurons described in Sect. 4.2.
Remember that, for a given dataset, the forgetting rate depends on the value to which
the threshold τ is set. As τ is adaptive, we show in this experiment that it is not very
sensitive to the initial value to which it is set. Figure 7a shows the final values of τ

(i.e., after adaptation) according to the initial values of τ . Figure 7b shows the current
value of τ over time, based on different initial values. Despite the fact that there is
some influence from the initial value of τ , we can see from Fig. 7a, b that any initial
value of τ , leads to values of τ that are close to each other.

Moreover, a learning rate ε is used during the adaptation of τ (see Eqs. 6, 5). In the
experiment of Fig. 7a, b, this learning rate was set according to Eq. 7 as described in
Sect. 4.2. In order to illustrate the effect of ε on τ , Fig. 7c shows the value of τ over
time, based on different values of ε. It is natural that when ε is low (e.g. 0.005), τ

changes slowly at each adaptation step. For τ to eventually stabilize, ε needs only to be
sufficiently small. Nonetheless, for the reminder of this paper, ε is adapted according
to Eq. 7.
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Fig. 7 a, b The value of the adaptive threshold τ according to different initial values. c The effect of ε on
the adaptation of the threshold τ . Parameter k = 10

Fig. 8 The evolution of the overall winning frequency fq and the number of neurons over time, for a fixed
τ = 30, according to different values of the parameter k. a The winning frequency and b the number of
neurons. The non stationary dataset 1CDT is used. a The larger k, the smaller the winning frequency

In order to illustrate the influence of the parameter k on the creation of neurons and
how fast the network grows, Fig. 8 shows (for the non stationary dataset 1CDT ) the
evolution of the overall winning frequency fq (A) and the number of neurons (B) over
time, for a fixed threshold τ , according to different values of the parameter k. We can
see from Fig. 8 that higher values of k lead to a smaller overall winning frequency
fq, which consequently lead to a less frequent creation of neurons. Figure 9 shows
the same experiment with the adaptive threshold τ , in order to illustrate the influence
of the parameter k on both the adaptive creation and removal of neurons. We can see
from Fig. 9 that smaller values of k lead to a more frequent adaptation of τ . If more
than k neurons are not updated anymore, then τ is decreased in order to remove more
neurons in future. Specifically, by setting k to the lowest value k = 1, τ is decreased
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Fig. 9 The evolution of the adaptive threshold τ and the number of neurons over time, according to different
values of the parameter k. a The values of τ and b the number of neurons. The non stationary dataset 1CDT
is used

Fig. 10 The winning frequency fq over time for data generated by one cluster (a Gaussian). At time
t = 3000 an additional number of clusters are introduced

frequently causing the removal of many neurons and the insertion of others, which
leads to an unstable network. Besides the fact that higher values of k lead to less
frequent removals and insertions (and vice versa), Figs. 8 and 9 also show that for a
reasonable choice of k (e.g. k = 10), the number of neurons stabilizes over time.

The overall winning frequency fq defines the probability of creating new neurons.
This probability is especially important in the case of a sudden appearance of new
concepts. Figure 10 shows the values of fq over time where a variable number of
new clusters are introduced at time t = 3000. We can see that fq increases at time
t = 3000 allowing for the creation of new neurons to represent the new clusters.
Moreover, Fig. 10 shows that the probability of inserting new neurons is higher and
lasts longer when the number of newly introduced clusters is higher, which is a desired
behavior.
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Fig. 11 The period λ = 100 in GNG, GNG-U and GNG-T. The removal threshold θ = 109, 105 and
107 for the three respective datasets in GNG-U. The epoch N = 500, the confidence σ = 0.8, and target
error T = 0.3, 0.01 and 0.4, for the three respective datasets in GNG-T. k = 10 for the proposed method.
Note that in the first column the plot of GNG-T (blue) is thicker (appears to be black) because points in the
graph are very close. Also, the plot of GNG (thin black) in the first line is hidden behind the plot of GNG-U
(green) (Color figure online)

Figure 11 illustrates the behavior of proposed method in comparison to GNG
(Fritzke 1995) and two other variants for non-stationary distributions described in
Sect. 2, namely GNG-U (Fritzke 1997) and GNG-T (Frezza-Buet 2014). For each
method, we show the evolution of the number of neurons over time in first column of
figures, the overall representation error (i.e., average over all neurons) in the second
column of figures, and the percentage of irrelevant neurons (i.e., that have never been
updated during the last 100 steps) in the third column of figures. We show the results
in three situations: a stationary distribution using dataset 2D-1 (the three top figures),
a non-stationary distribution with a progressive change using dataset 1CDT (the three
middle figures), and a stationary distribution with a sudden change happening after
time 2500, using dataset 2D-4 (the three bottom figures). We can observe from Fig. 11
that the proposed method manages to create more neurons at early stages, which leads
to a lower representation error. The number of neurons automatically stabilizes over
time for the proposed method (unlike GNG and GNG-U). It also stabilizes for GNG-
T depending on the user specified target parameter T . Moreover, all three methods
(unlike GNG) efficiently remove irrelevant neurons. Nonetheless, it should be noted
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that the proposed method is adaptive, and unlike GNG-U and GNG-T, there is no need
to adapt any parameter across the three datasets.6

7.3 Anomaly and novelty detection

In the following, the proposedmethod (GNG-A) is compared against: One Class SVM
(OCSVM) (Schölkopf et al. 2000), Isolation Forest (Liu et al. 2008), and KNNPaw
(Bifet et al. 2013), in addition to GNG, GNG-U and GNG-T. The KNNPaw method
consists in a kNNwith dynamic sliding window size able to handle drift. The anomaly
detection with the KNNPaw method is done by checking whether the mean sample
distance to the k Neighbors is higher than the mean distance between samples in the
sliding window. The two anomaly detectionmethods OCSVM and Isolation Forest are
trained over a sliding window, allowing them to handle non-stationary distributions.
The Python implementations available on the scikit-learn machine learning library
(Pedregosa et al. 2011) have been used. A sliding window of 500 instances is chosen
for OCSVM and Isolation Forest, as it provides the best overall results across all
datasets.

For each dataset, instances from a subset of classes (roughly half of the number
of classes) are considered as normal (or regular) instances, and the instances from
the other half are considered as abnormal (or novel). The considered methods are
trained based on the stream of regular instances. As advocated by Gama et al. (2009), a
prequential accuracy is used for evaluating the performance of themethods in correctly
distinguishing the regular vs. novel instances. Thismeasure corresponds to the average
accuracy computed online, by predicting for every instance whether it is regular or
novel, prior to its learning. The average accuracy is estimated using a sliding window
of 500 instances.

Note that during predication, the anomaly detector classifies unlabeled examples
as normal or abnormal without having access to true labels. However, to asses and
evaluate its performance, true labels are needed. Labels information is not used during
prediction, it is only used to “evaluate” the performance of the system(s).Moreover, the
prequential evaluation is preconized for streaming algorithms. Our novelty detection
algorithm is a streaming algorithm in non-stationary environments, therefore, it makes
sense to use a prequential evaluation (over a sliding window) to report a performance
which reflect the current time (i.e. forget about previous predictions that happened
long in the past).

A search of some parameters of each algorithm is performed and the best results are
reported. Details about the parameters for each algorithm are provided in “Appendix
B”.

Tables 2 and 3 show the overall results by presenting the average accuracy over time,
as well as the p-value obtained based on the Student’s t-test. This p-value indicates
how much significantly the results of the proposed method differ from the results of
the best performingmethod. For each dataset, the result of the best performingmethod
is highlighted with bold text in Tables 2 and 3. If the result of the best performing

6 The parameter k of the proposed method is always fixed to k = 10 for all the experiments and datasets.
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method is not significantly different from the other methods (i.e. p value > 0.05) then
the result of those methods is also highlighted with bold text.

It can be seen fromTables 2 and 3 that the proposedmethod achieves a better overall
performance than the other methods. Moreover, as indicated by the p-values, in the
vast majority of cases, the results achieved by the proposed method are significantly
different from the results achieved by the other methods. This is especially true for
real datasets with a variable or unknown rate of drift. These results confirm that the
adaptive proposed method is generally more convenient for various types of non-
stationary environments, due to its dynamic adaptation over time.

8 Conclusion and future work

In this paper we have introduced a new method (GNG-A) for online learning from
evolving data streams for the task of anomaly and novelty detection. The method
extends GNG for a better adaptation, removal and creation of neurons. The usefulness
of the proposed method was demonstrated on various real-world and artificial datasets
covering a wide range of non-stationary distributions. The empirical and statistical
evaluation that we performed show that the proposed method achieved the best overall
performance compared to three other methods (two methods designed for stationary
data and one state of the art method in non-stationary data), while being much less
sensitive to initialization parameters. Results show that the proposed adaptive forget-
ting and evolution mechanisms allow the method to deal with various stationary and
non-stationary distributions without the need to manually fine-tune different sensi-
tive hyper-parameters. Hence, the proposed method is suitable for a wide range of
application domains varying from static environments to highly dynamic ones.

For future work, we plan to design a parallel version of the proposed method and
take advantage of data intensive computing platforms, such as Apache Spark, for
the implementation. In order to do this, one way is to parallelize independent parts
of the data and process them in parallel while sharing the same graph of neurons.
Another alternative is to design algorithms to adequately split and distribute the graph
of neurons on multiple machines running in parallel.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

A Details about datasets

TheWeather dataset is originally proposed and described in Elwell and Polikar (2011)
in order to predictwhether it is going to rain on a certain day or not. The dataset contains
18159 instances with an imbalance towards no rain (69%). Each sample is described
with eight weather-related features such as temperature, pressure, wind speed etc.
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The Elec2 dataset, described in Harries and Wales (1999), holds information of the
Australian New South Wales Electricity Market, whose prices are affected by supply
and demand. Each sample is described by attributes such as day of week, time-stamp,
market demand etc., and the relative change of the price (higher or lower) is identified
based on a moving average of the last 24h.

The Covtype dataset is introduced in Blackard and Dean (1999) and often used as
a benchmark for drift algorithms. It assigns cartographic variables such as elevation,
slope, soil type, etc. to different forest cover types. Only forests with minimal human-
caused disturbances were used, so that resulting forest cover types are more a result
of ecological processes.

The Outdoor dataset (Losing et al. 2015) is obtained from images recorded by a
mobile in a garden environment. Images contain 40 different objects, each approached
ten times under varying lighting conditions affecting the color based representation.
Each approach consists of 10 images and is represented in temporal order within the
dataset.

The Rialto dataset (Losing et al. 2016) consists of images of colorful buildings
next to the famous Rialto bridge in Venice, encoded in a normalized 27-dimensional
RGB histogram. Images are obtained from time-lapse videos captured by a webcam
with fixed position. The recordings cover 20 consecutive days. Continuously changing
weather and lighting conditions affect the representation.

The Spamdata dataset is introduced in Katakis et al. (2010) and consists of email
messages from the Apache SpamAssassin Collection http://spamassassin.apache.org.
A bag-of-words approachwas used for representing emails, resulting in 9324 instances
and 500 attributes. There are two classes, legitimate and spam. As observed in Katakis
et al. (2010), the characteristics of spam messages in this dataset gradually change as
time passes.

The SeaConcepts dataset is an artificial adapted for novelty detection and originally
proposed by Street andKim (2001). It consists of 60,000 instances with three attributes
of which only two are relevant. The two class decision boundary is given by f1+ f2 =
b, where f1, f2 are the two relevant features and b is a predefined threshold. Abrupt
drift is simulated with four different concepts by changing the value of b. The dataset
contains 10% of noise.

The Keystroke dataset (described in Souza et al. (2015)) is from a real-world appli-
cation related to keystroke dynamics for recognizing users by their typing rhythm,
where user profiles evolve incrementally over time.

The Usenet dataset is a text dataset inspired by Katakis et al. (2010) and processed
for novelty detection. It consists of a simulation of news filtering with concept drift
related to the change of interest of a user over time. A user can decide to unsubscribe
from news groups that he is not interested in and subscribe for new ones that he
becomes interested in, and the previously interesting topics become out of his main
interest.

The Optdigits dataset is a real-word stationary dataset of handwritten digits,
described in the UCI machine learning repository (Frank and Asuncion 2010). It is
introduced to test the performance of the proposedmethod in a stationary environment,
where the data is split across multiple clusters.
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B Details about parameters

Table 4 lists, for each dataset, the parameters selected for each method, which lead
to the best results. The parameter values which are not variable across the different
datasets are reported here (not in the table). For Isolation Forest, the ensemble size
is fixed to e = 50. The training set size used to train each isolation tree is fixed
to a default value of s = 256 provided by the scikit-learn library. The parameter
øof Isolation Forest refers to the amount of contamination of the dataset (i.e., the
proportion of outliers in the dataset). The respective parameters γ and ν of OCSVM
refer to the kernel coefficient for the radial basis function (RBF) and to the upper
bound on the fraction of training errors. The parameter w of KNNPaw represents the
expected window size as described in Bifet et al. (2013) (not the exact size, as it is
probabilistic), and k is the usual parameter of kNN. The parameters of GNG, GNG-U
and GNG-T in Table 4 are explained in Sect. 2. The parameters ε1 and ε2 for GNG,
GNG-U and GNG-T are set to 0.1 and 0.005 respectively. The parameter amax is set
to 10 for all the GNG-based algorithms (including the proposed one) on all datasets.
Finally, the parameter k of the proposed method is set to 10.
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