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Abstract

In this thesis, we investigate supersymmetric quantum mechanics (SUSYQM) and its relation to
index theorems and equivariant cohomology. We define some basic constructions on super vector spaces
in order to set the language for the rest of the thesis. The path integral in quantum mechanics is reviewed
together with some related calculational methods and we give a path integral expression for the Witten
index. Thereafter, we discuss the structure of SUSYQM in general. One shows that the Witten index
can be taken to be the difference in dimension of the bosonic and fermionic zero energy eigenspaces.
In the subsequent section, we derive index theorems. The models investigated are the supersymmetric
non-linear sigma models with one or two supercharges. The former produces the index theorem for the
spin-complex and the latter the Chern-Gauss-Bonnet Theorem. We then generalise to the case when a
group action (by a compact connected Lie group) is included and want to consider the orbit space as the
underlying space, in which case equivariant cohomology is introduced. In particular, the Weil and Cartan
models are investigated and SUSYQM Lagrangians are derived using the obtained differentials. The goal
was to relate this to gauge quantum mechanics, which was unfortunately not successful. However, what
was shown was that the Euler characteristics of a closed oriented manifold and its homotopy quotient by
U(1)"™ coincide.



Popularvetenskaplig sammanfattning

I naturen finns tva sortes partiklar: bosoner och fermioner. Supersymmetri ar en formodad symmetri som
relaterar dessa. En symmetri i en fysikalisk teori kan ses som en transformation som lamnar det fysikaliska
innehallet i teorin oférandrat och supersymmetri &4r en symmetri som inbegriper ett utbyte av bosoner och
fermioner. Det finns djupa relationer mellan supersymmetri och geometri. Ett av de centrala begreppen i
denna uppsats dr det sa kallade Witten-indezxet (dven kint som det supersymmetriska indezet), som raknar
skillnaden mellan antalet bosoniska tillstand och fermioniska tillstand. Samtidigt ar det ocksa en sa kallad
topologisk invariant av teorin, det vill siga att Witten-indexet dr detsamma oberoende av hur vi kontinuerligt
deformerar rummet som var teori ar definierad &ver, sa lange vi kan kontinuerligt deformera tillbaka den. I
detta arbete undersoker vi Witten-indexet genom supersymmetrisk kvantmekanik. Genom att starta med
en klassisk teori kan man Overga till en kvantmekanisk teori via en process som kallas kvantisering. Héar
anvander vi oss av tva metoder: kanonisk kvantisering och vdgintegralkvantisering.

I en supersymmetrisk kvantteori delas tillstandsrummet, Hilbertrummet, in i tva delar: en bosonisk del
och en fermionisk del. Nar man utfér kanonisk kvantisering hittas Hilbertrummets struktur och de operatorer
som agerar pa tillstanden. Framforallt ar vi intresserade av superladdningarna. Dessa operatorer omvandlar
ett bosoniskt tillstand till ett fermioniskt och vice versa. De uppstar fran supersymmetrin i sig sjalvt; enligt
Noethers sats finns for varje (kontinuerlig) symmetri en kvantitet som ar bevarad, vilket i detta fall motsvarar
just superladdingen. Fran dessa objekt kan vi sedan finna Hamiltonianen, operatorn som berdknar energin
hos sina egentillstand vilka ar de tillstand som lamnas oférandrade upp till en faktor av operatorn. Det visar
sig att i alla energinivaer utom i just fallet nér energin &ar noll, & bosonerna lika manga som fermionerna. Pa
sa sitt berdknar Witten-indexet differensen mellan antalet bosoner och antalet fermioner med noll energi.

Vid vigintegralkvantisering anvinds sa kallade wvdgintegraler, vilka kan ses som ett sitt att berikna
sannolikheten for att en partikel i ett tillstand ska hamna i ett annat. Det man i princip gor ar att lagga
ihop bidrag fran alla mdjliga vagar som en partikel skulle kunna ta och vikta varje vig med en faktor som
talar om hur sannolik végen i fraga dr. Wittenindexet visar sig kunna skrivas som en végintegral.

Det finns alltsa tva olika sétt att berdkna Witten-indexet pa och genom att da relatera de tva uttrycken
som erhalls, far man en indexzsats. Dessa matematiska satser relaterar, kort beskrivet, global topologisk
data med lokal geometrisk information. De fysikaliska system som undersoks i detta fall &r sa kallade
supersymmetriska ickelinjara sigmamodeller som ursprungligen bestar av en bosonisk partikel som ror sig
i ett rum med krokning. Denna modell kan sedan goras supersymmetrisk. Vi undersoker fallen da vi har
en och tva superladdningar. Fallet med en superladdning resulterar i indexsatsen for det sa kallade spin-
komplexet. 1 fallet med tva superladdningar far vi den vélkinda Chern-Gauss-Bonnets sats, en sats som
grovt uttryckt relaterar antal hal i rummet (global data) med rummets kurvatur (lokal data).

Inspirerad av processen for harledningen av dessa indexsatser, vill vi generalisera fallet till nar vi &ven har
en slags véldefinierad omflyttning av punkterna i rummet (nyckelordet &r gruppverkan). Till exempel kan
rummet vara en sfar och omflyttningen av punkter skulle da kunna vara rotation kring axeln genom nord- och
sydpol. Vi vill underséka vad som hiénder om man definierar kvantmekanik 6ver det rum som aterstar nér
vi betraktar alla punkter som kan flyttas till varandra som en enda punkt. I fallet med sfaren och rotation
skulle alla punkter pa samma breddgrad betraktas som samma punkt eftersom de kan roteras till varandra.
Detta exempel ar dock ett av manga som medfor vissa svarigheter - de resulterande objekten &r inte alltid
"bra” rum. For att kringga dessa effekter och darmed kunna anvénda de tekniker vi lart oss, infor vi nagot
som kallas ekvivariant kohomologi. Det finns olika modeller av ekvivariant kohomologi - har underscks Weil-
modellen och Cartan-modellen. Inom dessa definieras objekt som kan tolkas som superladdningar och via
dem kan man skapa kvantmekaniska modeller. Malet var att relatera respektive modell till kvantmekanik
med gaugesymmetri, vilket tyvarr inte lyckades. Vad som dock visades var att Witten-indexet i ett specialfall
ar detsamma som for den supersymmetriska ickelinjara sigmamodellen med tva superladdningar.

Vi avslutar sammanfattningen med nagra ord om varfor det ar vérdefullt att studera indexsatser. I
naturen observerar vi inte bosoner och fermioner med samma massa. Detta innebér att supersymmetri ska
vara en bruten symmetri. Detta dr dock ofta svart att bestimma, men i vissa modeller kan Witten-indexet
tala om nér symmetrin ar obruten. Vi far saledes ett verktyg for att utesluta modeller som inte &r mojliga
kandidater till att beskriva verkligheten.
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1 Introduction

Supersymmetry, a symmetry which relates bosonic degrees of freedom with fermionic ones, has been shown
to have deep connections with global questions in geometry [1, 2, 3, 4]. Given a supersymmetric quantum
field theory, one may define a quantity Tr(—1)" which counts the difference in the number of bosonic and
fermionic states of the Hilbert space. This number, known as the supersymmetric index or Witten indez, is
in fact a topological invariant of the theory. One can study this quantity using two different approaches -
one in the canonical quantization picture and the other using path integral quantization. In the setting of
supersymmetric quantum mechanics, by relating the two perspectives of the Witten index, one ends up with
a mathematical expression recognized as the Atiyah-Singer index theorem for the complex that corresponds
to the supersymmetric quantum mechanical system in question.

If supersymmetry turns out to be an actual property of nature, we need it to be spontaneously broken
since we do not observe bosons or fermions of equal masses in nature [1, 2]. This happens if and only
if the energy of the vacuum is non-vanishing. It is however difficult in many cases to determine whether
supersymmetry is spontaneously broken or not. In certain classes of theories, namely non-linear sigma
models [3], it turns out that the Witten index can tell if supersymmetry is unbroken (the converse is not true
though). What makes the index an attractive quantity is due to the fact that it can be reliably calculated[1].

This thesis is structured as follows. We begin in Section 2 by reviewing some definitions of concepts we
need to be able to discuss supersymmetry, mainly consisting of constructions on super vector spaces. In
Section 3, we review both the bosonic and fermionic path integral. For both cases, we go through the path
integral expression for the transition amplitude and how it is related to the partition function. In the part
dealing with fermions, we furthermore introduce the supertrace, which will be one of the main objects of study
in this thesis. The respective subsections end with a thorough calculation of a number of examples, some of
which are used later in the thesis. Afterwards, the saddle point method is briefly considered in its simplest
form. The next section, Section 4, deals with the general structure of supersymmetric quantum mechanics
(SUSYQM abbreviated). We first give an axiomatic definition of SUSYQM, following up by displaying some
basic features of this class of theories, for instance that all states of non-zero energy are paired up. We then
define the ever so important Witten index which equals the supertrace. In the subsequent subsection, we
consider some properties of N' = 2 SUSYQM. In particular, when the Zs-grading refines to a Z-grading, we
find that the Witten index is actually the Euler characteristic of the complex defined by the supercharges
acting on the graded Hilbert space. From the material covered in the preceding sections we get the necessary
tools to derive the index theorems in Section 5. The first to be considered is the index of the spin complex.
The corresponding quantum mechanical model is the SUSY N = 1 non-linear sigma model on a compact
spin manifold of even dimension given by the Lagrangian

1 i 7 5
L= ig/w(b#(b + §g/Lu1/}”Dt¢ . (11)

This is done by first canonically quantizing the theory and finding the structure of the Hilbert space which
in this setting will be the set of spinor fields. The supercharge takes the form of the Dirac operator. The
Witten index can thus be computed. Afterwards, the same quantity is found by evaluating the path integral
expression for it. Thus the index theorem for the spin complex is proven. By going through an analogous
process using the A/ = 2 non-linear sigma model with Lagrangian

T .. _ _ 1 o
L= §guu¢u¢y + %gyu(qutwy - DW“W’) + §Ruupowu¢y¢pwo (12)

we derive the index theorem for the de Rham complex, also known as the Chern-Gauss-Bonnet theorem.
The last main section of the thesis, Section 6, deals with the case when there is a (compact and connected)
Lie group acting on the manifold. In this case, we want to consider the resulting orbit space as the space
the model is defined on. However the action is not always free which means the quotient space might not
be a manifold. Instead one considers the homotopy quotient which is roughly speaking the orbit space of
the manifold times a contractible space with respect to the diagonal action (which will always be free) of
the group. For this we need the notion of equivariant cohomology, which we elaborate upon in the first part



of the section. In particular, we will investigate two models of equivariant cohomology known as the Weil
model and the Cartan model. Mimicking the process in section 5.2, i.e. for the N’ = 2 non-linear sigma
model, we use the underlying spaces of equivariant differential forms as Hilbert space. The corresponding
obtained differentials and co-differentials are then the supercharges to construct the quantum mechanical
models. The goal is to relate these to a gauging of the N' = 2 non-linear sigma model. By identifying
the the group acting on the manifold (via smooth local isometries) as the gauge group, this seems plausible.
Unfortunately, the attempt was not successful. We did however manage to show that the Euler characteristic
of a closed oriented manifold and its homotopy quotient coincide in the abelian case.

Let us conclude the introduction by setting some conventions. We will use natural units A =c = 1. The
set of natural numbers N includes 0. We will use the summation convention, meaning we sum over repeated

indices unless stated otherwise. If A = @ Al is a Z-graded vector space, we define

€L
Aodd — @A21’+1 (13)
i€Z
Avven .= A% (1.4)
€L

We will use [,] do denote commutators and {, } for anticommutators.

2 Super Vector Spaces and Superalgebras

In this section we will review some general mathematical structures governing supersymmetry by gathering

some definitions in order to set the language for the rest of the thesis. We will unfortunately only scratch

on the surface of this subject. For a more thorough coverage, check e.g. [5], which will be the one we will be

following. A brief account is also given in the first parts of [6], which we also will take some elements from.
Let V be a vector space over a field K. If V' can be decomposed as a direct sum of subspaces V;

V=V (2.1)
il
for some index set I, V is said to be a I-graded (or just graded) vector space.

Definition 2.1. A super vector space V is a Zs-graded vector space,
V=WeW. (2.2)
The subspace V is referred to as even and Vi as odd.

We will mostly be concerned with super vector spaces. In the following, all vector spaces are super vector
spaces unless stated otherwise.

Definition 2.2. Let v € V such that v € V or v € V; (such elements are called homogeneous). The parity
of v € V, denoted by |v] is defined by
0 ifve Vo
o] = { (2.3)

1 if v e Vy.

As any element in V' can be written as a linear combination of even and odd elements, it is sufficient to
give the definitions in terms of homogeneous elements.

Definition 2.3. Let dimVy = p and dimV; = q. The superdimension sdimV of V is the pair (p, q), denoted
by sdimV = p|q.

Definition 2.4. A morphism between super vector spaces is a linear map which preserves the Zs-grading.
The vector space of morphisms from V' to W is denoted by Hom(V, W).



The set of supervector spaces together with Hom(V, W) forms a category denoted by (smod). There is a
specific functor naturally defined on this category known as the parity reversing functor 11 : (smod) — (smod)
whose action on objects is specified by

[V)o=Vi, (IIV); = Vh. (2.4)

The usual constructions, such as dual spaces and direct sums, carries over from regular linear algebra to
this case. For instance, the tensor product of two super vector spaces V and W is again a super vector space
by

(VeaW)=VeWy)oe(VieW), (VeW) = (VyeW)o (Ve W). (2.5)

Definition 2.5. A superalgebra is a super vector space A together with a bilinear multiplication A x A — A,
(a,b) — ab such that |ab] = |a| +]b| (mod 2).

We say that A is associative if a(bc) = (ab)c, unital if there exists an element 1 € A such that la =al =a
and (super)commutative if de = (fl)ld”e‘ed for all a,b,c € A and all homogeneous e, d € A.
An important example of a superalgebra arises when we consider Grassmann coordinates.

Example 2.1. Let

A=K[t1,...,tp,61,...,04] (2.6)
be the algebra of polynomials over K with even (commuting) indeterminates ¢1,...,%¢, and odd (anticom-
muting) indeterminates 61, ... ,0, known as Grassmann numbers, i.e.

0:0; = —0;0; (2.7)
for all 7, j. Hence, another way to describe A is

A=K[t1,...,tp)] @ A(01,...,60y) (2.8)
where A(61,...,0,) is the exterior algebra generated by 61, ...,0,. The algebra A is actually an associative,
supercommutative superalgebra with unit. Employing multiindex notation, 8; = 6;, ...6; , |I| = r and

fo, fr € K[t1,...,tp], the even and odd subspaces are
Ao={fo+ Y. fibill ={ir<-- <i}} (2.9)

|I| even
Ay ={ Y fs0,1T={ih <--- <j}} (2.10)
|7] odd

We will need the notion of a derivative on superalgebras in the future. We give the algebraic definition.

Definition 2.6. Let A be a superalgebra and D : A — A be a K-linear map. D is a (super)derivation of
degree |D| if it satisfies
D(ab) = D(a)b+ (—1)PllelaD(b) (2.11)

with a,b € A and D : A; = A;{|p| (mod 2)- If |D| is odd, we say that |D| is an anti-derivation.

Definition 2.7. A Lie superalgebra (or super Lie algebra) of degree € is a super vector space L together with

a bilinear map [,] : L X L — L called the super (Lie) bracket which for homogeneous elements z,y,z € L
satisfies
[z, yll = || + [y| + € (mod 2) (2.12)
together with
[7,9] + (-1 4] — 0 (213)
which we refer to as antisymmetry and
(_1)(|x|+e)(|2|+e) [z, [y, 2] + (_1)(|y\+e)(\x\+s) [y, [z, z]] + (_1)(IZI+6)(\y|+e) [z, [z,9]] = 0 (2.14)

called the Jacobi identity. We say that L is even if ¢ = 0 and odd if e = 1.



Note that any associative superalgebra A can be given an (even) Lie superalgebra structure by defining
the bracket (called the super commutator)

[a,b] = ab — (—1)!2/l’lpg (2.15)
with a,b € A.

Definition 2.8. Let A be an associative and supercommutative algebra equipped with a super Lie bracket
[,]: Ax A— A of degree € such that ad, = [a,] : A — A is a derivation of degree |a| + ¢, i.e.

[a,bc] = [a, ble + (=1)UalF9)llp[g ¢, (2.16)

For e = 0, A is called an (even) Poisson (super)algebra and the bracket [,] is referred to as a super Poisson
bracket. If e =1, A is known as a Gerstenhaber algebra (or odd Poisson algebra) and [,] an antibracket.

Further into the thesis, we will encounter the case when we also have a Z-grading. Let us quickly extend
some of the above definitions to include that case.

Definition 2.9. A Z-graded algebra A = @ A; is a Z-graded vector space (over a field K of characteristic
€T

0) together with a bilinear multiplication A x A — A, (a,b) — ab such that |ab| = |a| + |b| where |a| = i if

a € A; is the degree of a.

As before, A is associative if a(bc) = (ab)c and unital if there is an element 1 € A such that la = al = a.
It is (graded-)commutative if ed = (—1)°ll9lde. The definition of a graded derivation extends to this case
using degree in place of parity!. Let us now merge some structures together (the following definition can be
found in e.g. [7]).

Definition 2.10. A unital associative graded-commutative algebra A = @ A; such that A;, =0fori <0is
=4

a differential graded algebra (abbreviated DG-algebra) if there is an anti-derivation D : A; — A; such that

DoD=0.

Example 2.2. The de Rham complex with the exterior derivative is an example of a DG-algebra.

Note that by gathering all odd summands as one vector space and all even as one, we retrieve the Zo-
graded case. The extended definitions are compatible with this reconsideration, for instance the notion of
being graded-commutative would be the same as being supercommutative in this context.

3 Path Integral Techniques

We will in this section cover the path integral formulation of quantum mechanics and compute a couple of
useful examples. The treatment of this subject can be found in several places in the literature, for instance
[8, 9, 10, 11, 12, 13]. We will also use some ideas from the lecture notes of Blau [14].

3.1 Bosonic Path Integration

Roughly speaking, one can compute the transition amplitude of going from a state |g;, ;) to a state |¢¢,t¢) by
integrating over all possible paths initiating at position g; at a time ¢; and ending up in ¢y at a final time ¢y,
weighting each path with some quantity which describes how probable each of them are. One way to derive

. . . . . . . . . ty — 1
the expression for the transition amplitude is to divide the time interval into N time slices dt := % and

LOf course, degrees are not added modulo 2.



then inserting complete set of position and momentum states. One finds that the amplitude, with arbitrary
initial and final value of the momentum, is given by

N-1 N ¢
. dp; T k. VI YRINY = g ~ Zf T p(t)q(t)—H (p(t),q(t))]
N =1 Py ip; St ot—iH (pj;,q;)0t —. DaD ¢
(qr,trlgists) 5t1m0/ (k”l d%) U o | € = qDpe

(3.1)

G 79 a0g H (p,q) is the Hamiltonian describing the system.

_ 1
where g; := 2(qj + gj+1) and ¢; = 51151310

Observe that the limit §¢ — 0 is the same as taking the limit N — oco; making the time slices smaller is

the same as dividing the interval into more and more pieces. As we already are aware of, the measures

Dq and Dp are not well defined by themselves but the path integral in whole can be given meaning. If the

Hamiltonian is no more than quadratic in the momenta, the integral over p is a product of Gaussian integrals
with a linear term in the exponent and can be integrated out. For Hamiltonians of the form

»?
H(p,q)=—+V 3.2
(p.a) =5~ + V() (3.2)

the expression for the transition amplitude is simplified to

m (9441795 )%y (g o
<Qf’tf‘%,ti>:6121_{10(27m§t) /(H ko> = &[2( ) V(qj)} zr/qulS (3.3)

23
where S = / dtL(q(t),q(t)) is the action and L is the Lagrangian of the system, obtained from the

Hamiltonian ttflrough a Legendre transform in usual order. Here, we have absorbed the constant from
integrating out the momentum in the measure @q (which means ﬁq differs from Dq with a constant). Note
that a general feature of path integrals is that they are invariant under redefinition of the integration variables
since we are integrating over all possible paths.

Switching to Euclidean time, 7 = it, the transition amplitude takes the form

: Yo or| B (M) *V(qf s
(as,trlgists) = lim (27T57> /(H d%) [ /qu " (3.4)

where
Sp = / drLp = / dr l (df_> +V(q) (3.5)
Let us now define the partition function Z, for g > 0,
Z(B) =Tr e PH (3.6)

where the trace is taken over the Hilbert space on which H acts. Using the energy eigenbasis {E, }, which
satisfies H |E,,) = E, |Ey,) and (Ep|En) = Omn,

200) = Y (Bul e 1 ) = 3" e 50, (37)

n

The partition function can also be expressed using the position eigenstates |q),

2() = [ datale ™ 1g). (38)
The integrand of (3.8) can be written as

(ale "7 |q) = (qle” T |q) = (gl e e |q) = (q,7¢lq,7:) - (3.9)



By identifying 8 with the Euclidean time interval, 8 = 7; —7;, the partition function takes the form of a path
integral with paths defined over the circle with circumference 8 or rephrased, periodic paths with period .
Note that integrating over periodic paths between 7; and 77 is the same as integrating between 0 and 5. The
partition function is therefore given by

Z(p) = / dr (r,7ylr, 7) = / ar / © Dge o o= [ pge i te (3.10)
q

=q(B)=r PBC

where PBC signifies the fact that we are integrating over paths with periodic boundary conditions (i.e.
loops) and taking dgo := dr (we chose 0 for notational convenience),

2(8) = Jim (57 )IQV/PBC (NHlqu A (3.11)
k=0

N—oo \270T

Observe that we now have equally many coordinate integrals as momentum integrals. It will turn out to be
useful to compute the path integral as

PBC N—roo

N—-1
Z(B) = Dge™ 5% = lim C/ < qu> e or (3.12)
PBC k=0

where C' is a normalisation constant we will determine in the following. We would like to again stress that
this is not completely well-defined.

Example 3.1. In this thesis, we are mostly interested in partition functions. Let us compute the next
simplest example: the one dimensional harmonic oscillator. The Lagrangian is given by

1 1
L= §mq2 — imw2q2. (3.13)

We will compute the partition function in two ways and then compare the results in order to determine C.
We can do this since C is universal; C does not depend on the potential. Recall that the eigenvalues of the
Hamiltonian are given by

E, = (n + ;) w. (3.14)

so in the canonical picture, the partition function (3.7) is (for w > 0)

> > 1 1 2 1
Z(B) = E efB(nJr%)w = eféﬂw g efﬂ“‘m = eiéﬁw — = — = . (315)
n=0 L—emfv 2e3bw —em28v  ognp (%w)

n=0

Let us now do it using the path integral. The Euclidean action is
11 (dg\? 1 A 1?1
4q 2 2 2 2
Sg = dr | = — - = dr |—-mg—=q+ =
E /0 T[2m<d7> +2qu /0 7'|: qudT2q+2qu}

1 [P d? )
zim/o qu(—de—Hu)q

where we integrated the first term by parts at the third equality while remembering that we are integrating

over periodic paths. We next expand ¢ in orthonormal eigenfunctions (which satisfy the boundary conditions)
2

d
of the operator —— + w?,
dr?

(3.16)

q(r) = Zanfn (3.17)

nez

10



where

fin| = %sin (22”7) (3.18)
foin] = %COS <2gnT> (3.19)
Jo= % (3.20)

satisfying )
/O 07 o (7) f(7) = B (3.21)

with eigenvalues
Ap = (sz>2 + w?. (3.22)
B

Plugging this into the action,

1 A d? 2 1 7 1 2
Sg = im/o dr Z alfl (_d’7'2 +w ) (anfn) = im/o dr Z alfl/\nanfn = Z im/\nan (323)

l,n€Z l,n€Z nez

Observe now that in the path integral, integrating over all paths ¢ is equivalent to integrating over every

N-1
possible a,,. Note that the sum runs over all integers, while H dgy starts from zero®. By splitting the
k=0
action as
1 o0 oo
S =5Nad+ Y Anah + DA na?,) (3.24)
n=1 n=1

we see that we can make the substitution® gy < ag, gan < a|p| and q2p41 <> a_j,|. The Jacobian determinant

from this change of variables is 41 since the transformation to the eigenbasis is orthogonal®. Under these
considerations,

Z(B) = Dge
PBC
N. _
[e%e) [e%e} + [e%e}
1 2 1 oo 2 1 oo 2
— lim C/ daoe_EAoao/ Hdak e szn=l>\nan/ Hda—k e 2m2"=1>\_na,n
N—
o —o0 —° \k=1 X \k=1
N+ [e’e]
= lim C dane”2MAn %
N—o0
n=—N_"7 ">

(3.25)

2This is fine since |N| = |Z|.
31In order for the change of variables to be well-defined, the number of aj must equal the number of g;. This is solved by
setting ax = 0 for k > N — 1. This issue disappears in the N — oo limit.
4If one attempts to compute the Jacobian in this setting, one would get something divergent. What one actually needs to
do in order to show this [13] is to use the discrete version of the path integral (3.11) and expand the fields using the discrete
n—1
Fourier transform g = % Z e/ In the future, we will just assume this is what has been done and ignore computing
=0

the Jacobian for this particular change of variables.
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where

N —1-0(N)
2
N-1-0(N+1)
2

Ny = (3.26)

N_ = (3.27)

where we have defined o(n) = 0 if n is even and o(n) = 1 is n is odd. We have thus ended up with a product
of Gaussian integrals

M o Y WA
Z(B)= lim C = lim —
N—o0 e N m)‘n N—oo =];[N7 m n=1;[N, ‘/)\n
(3.28)
Ny

Mmoo T 1

- Ngnoo m d2 9 ’
n=—N_ Det (_P 4+ w )

The functional determinant® consists of an infinite product of the eigenvalues and so needs to be regularized.
We will make use of the so called zeta-function regularization following [11]. We define the spectral zeta-

function
1
_ .2
2% .

This function is convergent for large enough Re(s) and analytic with respect to s in that region. The function
can be analytically continued to the whole s-plane (except for a finite number of points). Now, note that

dCO Z 75111 n)
ds©

o =2 —In(A) (3.30)

n

SO
d¢o (s)

H)\n:e ds

Note that in our case, since A\, = A_,,, we may rewrite

Det < dd22 +w ) H An = Ao <H >\n> (3.32)

n=—oo

i—o. (3.31)

oo 2 2 2sinh (82) o
2mn Bw ( 2 ) 2mn
_ 1 3.33
H(ﬂ)l*(m)] H( ) (33
n=1 n=1
where we have used the well-known identity

sinh(z f:[( ( )2> (3.34)

so the product we need to regularize is

E (22”>2. (3.35)

5We will use capital D for functional determinants and lower case d for the finite dimensional case.
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The spectral zeta-function is

w09 =3 (52) =(2) S = () cen =) (330

n>1 n>1

where ((s) is the Riemann-zeta function. The values at s = 0 are known and are given by

¢(0) = _%; ¢(0) = _%mm). (3.37)
Hence
5(0) = 2In <257r> ¢(0) +2¢'(0) = —In(B) (3.38)
so by (3.31),
I (2”">2 -5 (3.39)
n=1 B - .
The functional determinant thus takes the form
Det <dd; + w2> = 4sinh? (ﬂ;’) (3.40)

and the partition function becomes

28) = | 1m ¢ m A ! (3.41)
= 1m —_— —_—. .
N0 m | 2sinn ()

n=—N_

By comparing with (3.15), we finally deduce that
lim C Tl =1 (3.42)

In the end, we have learnt from this example that we may compute the partition function as

N—-1
_ —Se _ 13 E —SE
Z6) = /qu N 1\}5%0 PBC (H V 277ko> ¢ (343)
k=0

and in this particular example,

Z2(6) = Dge 5% = ! - :
PBC \/Det (-4 + w?)

We can now compute the partition function for the free particle by following the same procedure as in the
case of the harmonic oscillator but using (3.43), resulting in

(3.44)

1 1
Z(B) = Dge %7 = = (3.45)
PBC Det/ (—&)  Det’ (i)
with )
1 dq
_1 (da 4

where the ’ in Det’ symbolises the fact that we are taking the product of the non-zero eigenvalues. That

the third equality in (3.45) is true can be seen by using the orthogonal eigenfunctions consisting of complex
s27Tn

exponentials €' # 7 and investigating the functional determinant as a product of the corresponding eigen-

values. Note the independence of the mass parameter m in the final results. We may hence set it to 1 in the

future when we compute partition functions.

13



Example 3.2. Let us add a source term to our considerations. Suppose we can write our Lagrangian (which
at least contains the free Lagrangian) in the form

Lp = %qu + Jq, (3.47)

where O is a differential operator with orthonormal eigenfunctions f, satisfying the periodic boundary
conditions

/ﬁ dtfm(t)fn (t) = dmn (348)
0

d2
with corresponding eigenvalues A,. For instance, O could be the operator ——— + w? as in the case of the

harmonic oscillator in Example 3.1. To be able to compute the path integral, we make a change of variables

1
q(t) = r(t) — —O~'J where O™ is the inverse operator to O. In such case,
m

1 1
Lg = 5(mror +Jr—0"'JOr — EJO*J). (3.49)

Note that this change in the path integral makes no difference - the measure in the path integral is transla-
tional invariant. Expanding r and J in terms of eigenfunctions r = Z anfn and J = Z by, fr, respectively,

n n

S /Bdtlz(mafO(a £a) = bifianfa — O (b f1)O(a f))/ﬂdtlJOIJ
E*O 21n LJ1 nJn LJ1UnJn L)1 nJn m

0

o o
= Z/ dt*(malfl)\nanfn - blflanfn - Aflblfl)\nanfn) - / dt*JO_lJ
— Jo 2 o 2m
n (3.50)

1 ) » oo

m
1 § Ana? /BdtlJO‘lJ
P T

where we used the orthonormality of f,. Note that if J is zero, we would have gotten an integral in this
form without the change of variables. The path integral for the partition function takes the form

N-1
B 1 e’}
Z(B) = /DreSE = eJo Wm0 ‘]Nli_{nOo <H \/Zdak> emEm Y, Anal,
% \ k=0

_ eff dtsLJO~1J 1
Det’(O)

(3.51)

Again, if J = 0, we would have lost the m-dependence. Note that “Det” is the same as “Det’” in the absence
of zero eigenvalues. We will henceforth use “Det’” when it is not clear if we are in that situation or not®.

Example 3.3. Let us also investigate the complex case. Like before, suppose we can rewrite our Lagrangian
Lg =qOq (3.52)

where O is a differential operator with orthonormal eigenfunctions f, satisfying the periodic boundary
conditions

/ D A Fn ) fat) = G (3.53)

0

SHowever, one might have other quantities in the Lagrangian which may depend on the zero modes. In such cases, one needs
to integrate over them as well.
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with corresponding eigenvalues \,,. Here, the  means taking complex conjugate. Expanding q¢ = Z an fn

n

and ¢ = Z G, fr, the action takes the form
n

B _ B _
SE - / dtzalflO(anfn) - Z/ dtalfl)\na'nfn = Z A’rL|a"rL|2 (354)
0 In I,n 0 n

1 1
By defining Re(a,) = ﬁcn and Im(a,) = Edn and changing integration variables from ¢ and ¢ to ¢ and

d. The absolute value of the Jacobian determinant for this change is just 1 (the matrix is built up by 2 x 2
blocks on the diagonal with determinant 1 each),

29) = [ Dapgee = im. ﬁ do ddy \ 13 a4, 55)
L or Var -

Note that this is equivalent to having two independent real variables. This can also be seen by defining ¢;

1
and g9 satisfying ¢ = —2((]1 +ig2) and § = —2((]1 —ig2). The absolute value of the Jacobian determinant

is again just 1. The Lagrangian takes the form
1 1
Lg= 56110(]1 + §Q2O(J2 (3.56)

and the partition function is

B 1 1 B 1 B o1
Z(B) _ /Dq1’Dq2€7 fo dt(53910q1+5q20q2) _ /'Dqlei fo dt5q10q1 /quefﬁ dt5q20q2

lim (H dey ddk) SIS S W (3.57)

N—o0 \ 2 m Det'(O)

Example 3.4. Let us investigate a couple of simple cases in the setting of a d-dimensional manifold M. Let
¢: T — M, with T = [0, 5], be a curve on M with coordinates ¢*. Let O, be a differential operator with
orthonormal eigenfunctions f,, satisfying the PBC,

/ﬁcﬁﬁnu)ﬂxﬂzzémn (3.58)

0

and corresponding eigenvalues A, ,. Suppose we can, yet again, write our Lagrangian (which at least
contains the free Lagrangian) in the form

E:%woww. (3.59)

2
An example of such an operator is —d,,—— 2 in flat space (which would correspond to Lg = f¢“¢“). In the

case when O,, is diagonal, the path integral splits as

Detez? Onnd” = (3.60)
/Ll_[1/ H \/Det )

We will later also encounter a case where d = 2n and O,,,,, viewed as a matrix (O, ), is block diagonal with
2 x 2 blocks where each block is of the form

(0%y) = (_ i% 12) (3.61)

12 11
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where (O, ) is the ith block of (Opv). We will also assume that the operators in ( i) share the same set of
orthonormal eigenbasis { f,}. We will treat the computation of the path integral here as not to clog up the
section in which this appears. In this setting, the path integral splits into (summing over a and b)

Z(IB) — H/D¢2'L71D¢2ie* foﬁ dt%¢“03§,b¢b (362)
i=1

Consider one such block, e.g. the first one. Note that (Oib) is normal, which is equivalent to it being
unitarily diagonalisable. A unitary matrix doing the job is given by

U= \% G _ZZ) (3.63)

~ 0O}, —io! 0
1y — It = 11 12
Ok =vomut = (M D) (360

(€)= (g) = % (zi +§i§> (3.65)

Since the transformation to this basis is unitary, the absolute value of the Jacobian determinant for changing
to these coordinates is 1. We get

for which

In this basis, the new coordinates are

Lg = §(CQ)T(Oab)(CG) = %5(0%1 —i0L) ¢ + %g(oh +i0L,)C (3.66)

so expanding in the eigenbasis of O}, (O1y),

B 1 _ _ _
Sp = / dtz §[alfl()\11,k —iX2,k)ak fro + arfi(A1 e + ih2k)ark fr)
0
Ik ' (3.67)
Z —
= Z[/\ng + §(>\12,k - )\12,k)]|ak|2
%

This is basically in the form as in the complex case. The partition function related to the first block is then

B 1 a _ Bo1F ; 1 ; a
Z1(B) = /D¢1D¢26* fo dt3¢%05,0" _ /DCIDCB* fo dt${(01,—i015)¢+5¢(01,+1015)¢

o0

. 3.68)
1, 1 (
= [ Parsk+ 52k — Azp)] ' = — .

Are 5 (i = hize)] = poms (012 — O12)]

k=—o0

and as usual, skipping over the zero eigenvalue if it exists. The total partition function will just be the
product of the partition functions related to each separate block,

n n 1
28) =TT 2;(8) = _ .
) Jljl i) JEII Det/[02j71,2j71 + 5(025-1,2j — O2j-1,25)]

(3.69)

3.2 Fermionic Path Integration

In order to describe fermionic variables we need Grassmann numbers which we introduced in 2.1. We will
begin this subsection by briefly going through some basic Grassmann calculus. Firstly, a function f of
Grassmann numbers 6; is given by the Taylor expansion of the said function. Note that the expansion will
be finite since the product of two of the same Grassmann numbers is zero.
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Definition 3.1. Let the Grassmann generators of the Grassmann algebra be {01, ...,60,}. The differentiation

with respect to 6, 88t9j’ is the anti-derivation satisfying
gz; = 045 (3.70)
The derivative satisfies
and is thus nilpotent. Furthermore
{;gi,ej} =% (3.72)

0
which is proven by using that 20 is an anti-derivation. Let p(6) be a polynomial of the Grassmann algebra.
i
Then

0 09, 0 0 0 0 09, y
%9“’(9) = 893'1)(9)—0]»%17(0) — %ejp(e)wj%p(a) = {%,Hj}p(ﬁ) = 897 p(0) =6p(0) (3.73)

and the statement is thus proven.

Now that we have a notion of derivatives, we want to be able to integrate as well. As in Nakahara [11],
let us temporarily denote derivation with respect to Grassmann variable by D and integration by I. Let
A and B b two arbitrary functions of Grassmann variables. We would like the Grassmann integration to
capture the following properties from ordinary integration:

1. The definite integral of a derivative yields zero: ID = 0.
2. The derivative of a definite integral is zero: DI = 0.

3. The integral is linear with respect to constants, i.e. numbers whose Grassmann derivative vanishes:
D(A)=0 = I(BA)=1(B)A.

It turns out that the correct result is reached if the integration is proportional to the differentiation. One
chooses them to be equal.

Definition 3.2. The integral of a function f(61,...6,) with respect to 6;,,60;, ,,...,0;, is defined to be

90 0
= 00, 00,,_, " 00;,

/dGi"inn,l . df;, f(6h,...0,) fliy,...00) (3.74)

fn—1

Note that the order of the df;, and

is important. From the definition we find that

)
a9,

/d09 _ 1, /de 0. (3.75)

A consequence of the equivalence of the integration and differentiation of Grassmann numbers is that
the scaling from changing variables is different from the case of ordinary numbers. Consider the change of
variables 0, = a;,;,0;,. Then after a direct calculation, one shows that the measure transforms as

d6;,d6;, , ...do;, = det a d6) do] _...do), (3.76)

1

which is the opposite of what one has for normal numbers.
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Let us also define complex Grassmann numbers. Denote two sets of Grassmann generators by {61,...,0,}
and {67,...,0;} such that taking the complex conjugate (6;)" = 0; and (6;)* = 6;. We require

(0,0,)* = 0:6;. (3.77)

We have thus given the necessary definitions for our purposes. In the following, we will start building the
fermionic path integral.

In order to define the transition amplitude as a path integral between two fermionic states, it is useful to
introduce what is known as coherent states. Assume we have fermionic creation operators ¢; and annihilation
operators cz such that the anticommutation relation

{ci,ch} =0y (3.78)

is satisfied. The number operators is as usual defined by CICZ' and has eigenstates |ni,...,nq) with each n;
ranging between 0 and 1. For simplicity, let us consider the case when we only have one degree of freedom.

Definition 3.3. The fermonic coherent states are the eigenstates of the annihilation operator ¢ such that

cly) =) v (3.79)

for some Grassmann valued .

Explicitly, these states can be written as (no summation)

) =10) + (1) ¥ (3.80)
with the adjoint state given by (we will use both * and ~to denote complex conjugate)
(¥ = (0] + (1 (3.81)
so from this - - - ,
(@'lv) = (01 + 9" (1N(I0) + [1) ) = L+ 'y = e V. (3.82)

We also have the following completeness relation

/ dipip ) (| e~ = T (3.83)

which can be verified by a direct calculation.
By the coherent state construction, for a normal ordered Hamiltonian H = H (cT, c),

(WIH(c 0) [v) = (0| H(w, %) W) . (3.84)

Let us now investigate the transition amplitude (17, ¢[1;,t;) where ¥y = (t;) and ¥; = 9(t;). Going to
the Schrodinger picture,

" " —iH(ctc
(Wr el te) = (p| e HEOT ) (3.85)
where T := ¢y — t;. The procedure to find the path integral expression for the transition amplitude starts

T
as the one for the bosonic case. Slicing the time in N equal sized pieces, 0t = N and inserting N — 1

completeness relations,

N-1 — .
(g trlpist) = / (;:[l dwkd¢k> (gl e by 1) (| 7PN 1N 1T O gy o) (3.86)

S X (i e~ i1 gmiHO [1s) .
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Note that di,di, always come in pairs. Note that e %? is Grassmann even. Hence, defining ¢y := sz and
1o := 1; to ease the notation,

) N-1 N1 N o
<¢f7tf|wutz> = / (H dipkdlﬁk) ei ijl b H <7/1l| e*ZH(C ,c)ot |¢l—1>
b=t = (3.87)

gy n N-1 ~ N ~ . )
- / <H dwkdwk) e_ Zj:l e H <¢l|¢171> e_ZH(wlvwl—ﬂ(St
k=1

=1

where we have used (3.84) together with the assumption that the Hamiltonian is Grassmann even. Now, from
(3.82) and again using that our quantities in the exponent are Grassmann even, the transition amplitude
takes the form

—_ N71 —_ N-1 7v - N m . -
(D el ti) = / (H d¢kd¢k> e 2imr Vit Hew””“l_lH(ww”*l)‘”
k=1

=1

N-—1 ~ N - N B B
— / H d&kdwk eVNYN T ijl pith; HeibziblA—iH(Mﬂbzfl)&
k=1

o e (3.88)
-/ (H diz)kdwk) v i (8 5 6,0
k=1
N-1 _ . N Lo Y=y -
B / H dipdipy, | e¥V¥N e’ ijl(wa_H(w"’wj“»&.
k=1
Finally, taking the N — oo limit we see that the sum is just a Riemann sum and % — w so formally,
_ et 7 iSO (6 S H (P05 1)) 8t
<wf7 tfwju tz> = ngnoo/ ]cli[l dwkddjk e’PNwNe j=1 j 5t s Wi—
_ / DIDY e¥rise ST b= @) (3.89)

= /ﬁ@ﬁw ePrvs oSl )

where S is the classical action. Note that unlike the bosonic expression (3.1), the indices in arguments in
the Hamiltonian are slightly shifted, H(1;,1¢;-1). Depending on the form of the Hamiltonian, one might
need to take this into consideration. In Euclidean time, the transition amplitude becomes

Vi

_ N-1 _ _ N - Yi—1 T
(g, i, i) = th / <H d¢kd1/)k> e¥NIN g ZJ=1(w~"‘7*J+HE(wJ’%‘1))‘ST
— 00
k=1

_ /Du‘mw sy S 7 dr (bt He () (3.90)

= /f)@ﬁd) elrvs o= SElbY]

where as before, the subscript E denotes the corresponding Euclidean quantity. As before, the partition

function is defined as )

Z(B):=Tr e P =" (n| e |n) (3.91)

n=0
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On the other hand, one may also compute the partition function via’

Trent = / dijodibo (—tol ="M ubo) e~V (3.92)

The minus sign in the bra-vector indicates that the ¢ should satisfy antiperiodic boundary conditions. In
other words, the following path integral expression for the partition function will be taken over antiperiodic
paths over the circle with circumference 8. The proof of this statement can be found in e.g. Nakahara [11].
Since (Y5, 7¢[ti, i) = (1| =TT |4, (also, we may again shift the integration between 0 and ),

Tr e—BH — /diodwo/ '[),lzjfjw Vs o= SE[b Y] g —hotho
Y(0)=—(8)=20o

— [ ddutva [ DyDyeSeo
P(0)=—v(B)=v0
(3.93)

N-1 — _
lim dl/;kdl/% e Zj'vzl (wj %*'HE (3 ’1/’9'*1)) oT
ABC 0

N—o0
k=

'D?/_JDil) e—SE[u?,w]
ABC

where we on the second equality recalled that 1y = ¥(8) = —¢o and 1y = (B8) = —1bg. ABC stands
for “antiperiodic boundary conditions”. However in this thesis, the quantity we are interested in is the
supertrace on fermions defined by

sTr e 1 = /dﬂ;odl/)o (tho| e PH |3hg) e~ Yoto
= /di&od@/]o/ 'ZNDQZ’f)w elszfe—SE[‘/;ﬂ/)]e—lzfowo
P(0)=2(B8)=v0
— [ dbodve [ DIDipeSel0)
/ $(0)=2(B)=wo (3.94)

N-1 N [ wi—wiq _
lim dippdipy | € ZJ:I (wj ~r B ’wjfl))‘ST
PBC

N —oc0
k=0

—. DiﬁD’l/) e—SEWﬂZJ]
PBC

where now, the boundary conditions are periodic. On bosonic variables, the supertrace is defined to coincide
with the trace. Define the operator (—1)F where F' = ¢f¢ is the fermion number operator, and note that
(—)F ) = (=DF10) + (=1)F [1) ¢ = |0) 4 1) (=2)) = |—¢). We may thus in total write

sTr = Tr (—1)Fe PH, (3.95)

This is a central piece in what will follow in the thesis. We will return to discuss more about this quantity
in the next section.

Example 3.5. Let us as a check investigate the one dimensional fermionic harmonic oscillator described by
the Hamiltonian

H = (cfc - ;) w. (3.96)

"The 1)y here is unrelated to 1; from the derivation of the path integral for the transition amplitude earlier. Instead, one
should view them in analogy to the position eigenstates in (3.8). We have simply chosen this name to match with our notation

later. The extra e~ %¥0%0 factor in the path integral expression for the fermionic partition function as compared to (3.8) comes
from the fact that the completeness relation in this case look a bit different.
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w
The energy eigenvalues are :I:E. The partition function is then given by

1

Z(B)="Tre" Z PHp) =e % 1+ e % = 2cosh (ﬁ;) . (3.97)

Let us now compute the same quantity via the path integral. We commented before that we needed to take
care when dealing with certain Hamiltoninans so starting form the the second row of (3.93),

A O e et Do s
25) = gim (H i) Tl 5 )

— tpi—_q
= lim H dwkdwk Zil(%gﬂwgw] 1— 2) )57’
N—oc0 ABC
i Z ((1 STw); %er@j%‘*ﬂ)&r (3.98)
= Jim H dipriy ? :
N—oo Japco
$+w.¢jj,¢j)57

fw . Z ((=srw)d;
ez Ngnoo se (H dwkdwk>
—eF / DyYDy e~ Jdrd((-brw)frw)y
ABC

As commented in Nakahara [11], it might seem strange to carry around the d7-term but it will turn out to
give a finite contribution to the final result. Since we have antiperiodic boundary conditions, the orthonormal

d
eigenfunctions to the (1 — 57'w)d— + w operator takes the form
T

1 im(@n=1)
e (3.99)

with corresponding eigenvalues

im(2n — 1
An = (1— 57w)% Ty (3.100)
Expanding the fermionic variables in these eigenfunctions
k
where ay is Grassmann, the action then takes the form
S :Z)\ aja _ b (3.102)
E l 1a; a 5 .
Proceeding as in the bosonic case and noting that the Grassmann numbers all come in pairs,
N N
Bw . : * —Z /\la*al Bw : Akaya
Z(B)=e2 lim dajday | e~ 21N =e2 lim daypdaye "Frr
N —o0 N N —oc0
k=—X k-:—T
T T
Bu . Bo (3.103)
= | daidar(1 — Agay, = | A
o o  TL [ttt =z ) = i T
=—7 =7

Bw d
= eTDetABC ((1 — 57’&))5 +w> .
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Observe that since the variables were complex, each one contained two degrees of freedom. As a result, the

N N
product is truncated at —— < k < T Continuing with the computation and recalling the formula for the

exponential
xT 1 o N
e = fim_ (1+N) (3.104)
and that d7 = 5 we get
N
%
e iT(2k — 1)
2@ =e Jim ] ((1 ST “’)
b=
N XN
o B\ ¥ in(2k — 1) w (3.105)
=e J\}E}noc(l N) kHN( 8 +1—57’w)
T
o () (50 o)

Rewriting the product and using the formula

cosh() fj[( %2_1)> (3.106)

we end up with

1"-"[ ( 7(2k — 1) +w> (m(—z(kﬁ— 1)—1) +w)

k=1

R ) B )] e
- Q“Hw%(i“)

The infinite product needs to be regularized. This can be done using the Hurwitz {-function

ad 1
:Z(k—i—a)

k=0

(3.108)

in a similar way as previously done. We will not do it here though, the interested reader can e.g. check

Nakahara [11]. One finds that
oo 2% — 1 2
II (”(’f)) =9 (3.100)
k=1 B

which finally gives us the desired result

Z(f) = 2cosh <B2°J) : (3.110)

Let us now take a slightly different more heuristic approach by interpreting directly that in the path integral
expression,

SEZ/dTLE (3111)
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where L is the classical Euclidean Lagrangian, in this example given by®

:w 1/1+ 1/1 ¢+ [1/1 ¢ (3.112)

The classical (Euclidean) action, integrating the second term by parts and applying antiperiodic boundary
conditions, is then given by

B B
e [alees) - [0 o

As a matter of fact we again obtain

Z(B) = DYDY e foﬂ at(d(dr+w)v) _ Detapc (Z_ + w) = 2cosh (%) . (3.114)

ABC

Example 3.6. Let us from now on focus on the supertrace. As a first example, consider the free Dirac
fermion

1 -d 1 d -
Lg=—-ayp— —a)—1). A1
B QMZJqu/)JrQawdTw (3.115)
d
for some constant a. The orthonormal eigenfunctions to ad— with periodic boundary conditions are
T
fa(T) = —ze 7 7 (3.116)

with eigenvalues

12
Ap = a2 (3.117)
5
Expanding the variables as
=Y anfa (3.118)
the action, integrating the second term by parts and applying the periodic boundary conditions, can then
be written as
b d
Sp = /0 dripa——i) = Zn: An @y, (3.119)
Relabelling v; — ;11 and changing variables as ajy| — ¥ax and a_ x| — 2r—1, k # 0 and defining
N-1 N
N, = %() (3.120)
N N+1
N_ = # (3.121)
where as before a(n) =0 for n even and o(n) =1 for odd n, we get
sTr e PH = DYDyp e 55l 9] = lim H /dakdake Ak
PBC N—o00 b N
h7 (3.122)
— J\}gnoo H /dakdak (1 = Mpajag) = hm H A = Det’ (adT) .
k=—N_ F k=—N_
k#0 k0

8What appears here is a different ordered system.
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The functional determinant is evaluated over periodic boundary conditions and as before, the ' means we are
d
skipping the zero eigenvalue. Note that this procedure is quite general; «— could be swapped with another

dr

operator O with orthonormal eigenfunctions fr? and corresponding eigenvalues /\2 to obtain

_ B, -
sTre PH = . DDy = Jo IO _ pet(0) (3.123)

and again skipping over the zero eigenvalue if it exists.

Example 3.7. Let us next consider the free Majorana fermion

1 d

However, in this case there is a slight complication since we only have one variable. A trick is to compute
the square of the supertrace

($Tre )2 = [ DyyDpe Jo revadzvatioviizi, (3.125)
PBC
By changing variables
1 .
Y= —2(7,!11 + i1)2) (3.126)
_ 1 )
Y= —2(1!11 L) (3.127)

the action is written as
L | 1 . d 1 d - 1 _d d -
Se= [ drga|-50 =D -+ @) = [Cdrja@ v v
b d
:/0 dripa——i

yet again remembering that we are integrating over periodic paths. Note now that for each j (referring to
the time slicing),

(3.128)

1 .
Y= ﬁ(wlj + o) (3.129)
_ 1 .
Y= ﬁ(wlj — 11)9;) (3.130)
S0
N-1 N-1 )
[T dvardvne = J] (—i)dindun (3.131)
k=0 k=0
the factors of —¢ coming from the Jacobian
_ RS
O %5) | gt vz oov2 = ()M, (3.132)

011, 125) _
V2 V2

The eigenfunctions and corresponding eigenvalues are the same as in previous example so we get

Ny Ny N_
(sTr e*ﬁH)2:]}gnw 11 (—ide) = lim_ T | T ix (3.133)

k=—N_ Jj=1 k=1

k40
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We need to regularize the infinite products. Let us do it for the slightly more general case

1M (3.134)
k=1

where a is some integer. Following the same procedure as in Example 3.1, the spectral zeta function is

Co(s) = i (ZwiWJ = (ZQHBO[%) ¢(s) = e (a3 ) ¢ (s) (3.135)

k=1
SO 8 . 8
C/O(O) =In <Za+10[2ﬂ_) C(O) + CI(O) = _511'1 (M) (3136)
Hence
e 1 B ﬂ
[T = et™(rs) = e (3.137)
k=1
which means
- N* 5[5 _.8
(sTr e~ P2 = Jim [T | T ix = o\ =i (3.138)
j=1 k=1
Comparing with the regularized determinant
Ny Ny N_
d _ . g /B _B
! _ — — . — R —_— = —
Det (ad7> _J\}gnook——zv Ak _J\}gnoo 1;[1( Ai) kI:[l)\k BaVila « (3:139)
k£0
we end up with the expression
s
sTr e PH = Dy e Jo aryende _ iDet’ (add). (3.140)
PBC T

3.3 A Short Note on The Saddle Point Method

Before we move on with the next part of the thesis, we will briefly illustrate the so called saddle point method
(also known as the method of steepest descent) in its simplest setting. The discussion carries over to the path
integral case, but for simplicity, we keep to this example. Consider an integral of the form

* dz f(=)
I = e TR 3.141
oo V2T ( )

Assume that the function only has exactly one minimum at 2 = xq such that f”(2¢) > 0. Let us expand the
integral asymptotically around its minimum in the limit & — 0. Let x = g + \/ﬁy Then Taylor expanding
f around xg

f(x) = f(xo) + %hy2f”(aso) + %h%gﬁf@ (z0) + %h2y4f(4)(xo) +.... (3.142)

Plugging this back into I,

I = Ve 5 /Oo il?/,e’%@ff”m)’(%ﬁ%yaf“)wo)%hy“f“)“”0”“'), (3.143)

—oo V2T
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We now define the moment of y by

oo dy . n _yZ ' (zg)
I -~ T >
<y >: oo dy _y2f”(10) ' (3144)
S e

. . . 2 =0 . .
Note that for odd n, the moment is zero since 3" is odd and e™¥ —2  is even. In the denominator we have
an Gaussian integral

 d e 1
/ et 7 S (3.145)
—00 ™ o
so we may rewrite I as
0
Vhe 5 1.4 1
0 ! !

Expanding the exponential in the moment, we note that (...) = 14 O(h) since (y*) = 0. Later in the thesis,
we will replace i with 8 and f with the action. The quantity we compute will in fact be independent of
and so the terms of O(3) will vanish which means we only need to care about the extrema of the action and
the second order fluctuations.

4 Supersymmetric Quantum Mechanics

We begin this section by defining supersymmetric quantum mechanics (abbreviated SUSYQM) using the
approach of Witten [2], following up with a discussion about some general properties of SUSYQM. The
material covered here can be found in [1, 2, 11, 15, 16].

4.1 Definition and General Properties

Definition 4.1. A quantum system with Hilbert space H and Hamiltonian H is N' = n supersymmetric if
the following is satisfied:

e The Hilbert space is Zy-graded, H = HP®HE. The states in HP are called bosonic and the states in H*
are called fermionic. Define an operator (—1)¥ by (=1)¥" |¢) = |¢) for |¢) € HP and (—1)F [1p) = — |4)

for ) € HE.
e There is a set of Hermitian operators {Q1,...,Q,} called supercharges, each mapping HP into HE
and vice versa, such that
{(-D",Qi} =0 (4.1)
{Qi,Q;} =20;;H (4.2)

for all 4, j.

_ We would like to stress that SUSYQM is sometimes defined differently using non-Hermitian supercharges
{Q1, QI, ... Qm, Q! } such that {Q;, Q;} =26;;H and {Q;,Q;} = 0. For instance, if n is even, one may take
~ 1 1
Qi = ﬁ \ﬁ

We will see this later in the thesis. In fact, given an operator A such that the adjoint A exists, one may
always decompose it as a sum of a Hermitian operator Ay and a skew-Hermitian operator Ag: just take Ay =

(Q2i +iQ2i41);  Qf = —=(Q2i — 1Qais1). (4.3)

1 1
i(A + AT) and Ag = §(A — AT). This decomposition is also unique; assume there is another decomposition
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A= Aly+Als. Then Ay —Ay+Ag—Alg = 0and AL, — AN+ AL - AT = Ay — Al —(Ag—Aly) = 0. This implies
that Ay = A%y and Ag = A’. Furthermore, a Hermitian operator can always be made skew-Hermitian and
vice versa by multiplying it with the imaginary unit . Hence the definition using non-Hermitian operators
is contained in the one using Hermitian supercharges since any A described above can be written as in (4.3):

1
A= 5[(14 + A" +i(—i)(A — AT)]. The reason we give definition 4.1 is that it provides a nice way to include
the instances with odd number of supercharges, in particular the A" = 1 case. Otherwise, one may speak of
1
‘N = 3 SUSYQM” as in e.g. [3].
1 1<
The relation (4.2) immediately implies that H = 5@? =5 Z Q3. From this we may deduce two facts.
n
k=1

Firstly, all supercharges commute with the Hamiltonian

[Qi, H] =0 (4.4)

Secondly, taking into account the Hermiticity of the @;, we see that the eigenvalues of the Hamiltonian
(which we call the energy of a given eigenstate) are non-negative. Using (4.1), we also have

(D7 H =[(-1)", Q] = (-D)"Q} - @} (-1)"

={(-1)7,Q:}Qi — Q:i(-1)"Q; — Q7 (-1 (4.5)
={(-D"Qi}Qi — Q{(-1)", Q:} + QI (-1)" = Qi (-1)"
—0
i.e. the operator (—1)¥" commutes with the Hamiltonian,
(—1)F H] =0, (4.6)

We may decompose the Hilbert space in terms of eigenspaces of the Hamiltonian,
n

where the states in H,) has energy F,, and with Fy = 0. States in Ho are known as supersymmetric ground
states (a minor note, the non-existence of such states is equivalent to the statement Hg = {0}). We use the
convention that F,, increases as n increases. The supercharges and (—1)F preserve the energy levels since
they commute with the Hamiltonian so

Qi, (—1)F : H(n) — H(n). (4.8)
In particular, this means that the Zs-grading of H is carried over to each subspace

B F
Hiny =Hin) O Hin (4.9)

with the supercharges mapping ”Ha) into "H@) and the other way around.
A particular feature of SUSYQM is that the states of non-zero energy are paired up.

Proposition 4.1. The subspaces Hf;) and Hf;) are isomorphic for n # 0.

Proof. Let |b) € ’an) be any state with non-zero energy E,. Choose one @); and consider the fermionic state

1
defined by |f) := —=@Q; |b) (this definition is just to ensure that |f) is normalised if |b) is). This gives us

VEn
Qi) =VE.|f);  Qilf)=VEa|b). (4.10)
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1
Hence @Q); is invertible (with inverse E—QZ) and defines an isomorphism
n

B ~ qF
as long as E, # 0. O

What this means is that all states of non-zero energy are paired up with a unique state in the other
subspace. This is however not generically true for the zero energy states (should there exist any). A state is
annihilated by the Hamiltonian H if and only if it is annihilated by all Q;,

0= Hla) = %Qf Q) <= Qila) =0. (4.12)

If Q;|a) = 0, it follows immediately that H |a) = 0. Assume the converse, H |a) = 0. Taking the inner
product

0= (a|Hl|a) = % (] QiQ; |or) = %(Qi la))TQi|a) (4.13)

where we on the last equality used that @; is Hermitian. Positive-definiteness implies that Q; |a) = 0 (Q; is
thus not generally invertible on H(Eé) and 7—[{8)).

We now want to consider a continuous deformation of our theory such that supersymmetry is preserved
(i.e. our theory still has the properties of definition 4.1). By continuous deformation, we mean that the
energy spectrum is continuously deformed. When this happens, the states may move around between energy
levels. However, the isomorphism (4.11) constrains how the states can move around; the states can only
move in pairs of one boson and one fermion. This implies that the difference between the number of bosonic
states and fermionic states at each energy level is conserved under this deformation. From this, we define a
quantity known as the Witten index or the supersymmetric index

Tr(—1)Fe PH (4.14)

which is a central object of study in this thesis. What the Witten index actually computes is the number of
supersymmetric bosonic ground states minus the number of supersymmetric fermionic ground states. This
can be seen as

Te(=1)F e = 37 (dim#f e Fr — dimH e 5 )

= dimHﬁ))e**BEO — dim?—lfg)e*’BEO (4.15)

where we in the second equality have used the fact that dim?—[a) = dim’Ha for n # 0 (which is a direct
consequence of (4.11)) and in the third equality that Ey = 0. Note that the Witten index is actually
independent of 8. The factor e ? is introduced as a way to regularize the otherwise ill-defined Tr(-1)%,
obtained in the 8 — 0 limit.

On the other hand, one can compute the the Witten index via path integration

Tr(—l)Fe*ﬁHZ/ (HD@) [[ Dy | e Srlowwd, (4.16)
J

PBC \7;
where Sg is the (Euclidean) action corresponding to the Hamiltonian H. The Witten index is nothing but
the supertrace defined in (3.95). This lies in the heart of the thesis; by equating the Witten index obtained
from the canonical quantization picture (4.15) with the path integral formula in (4.16), one obtains a non-
trivial relation. This relation is a so called index theorem and is a special case of the celebrated Atiyah-Singer
index theorem [17, 18, 19].
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4.2 Properties of N/ = 2 Supersymmetric Quantum Mechanics

A case which we can deduce more useful properties is when we have two supercharges {Q1,Q2}. We will
follow [15] closely in our discussions here. It is convenient to define

1 1

o ; . . ;
=— +1Q2); = — -1 4.17
Q ﬂ(Ql Q2) Q ﬂ(Ql Q2) (4.17)

We get the following anticommutation relations, proved by calculation and the usage of (4.1) and (4.2),

{(-D7,Q) =0 (1.18)
Q*=Q"” =0 (4.19)
{Q,Q1} = 2H. (4.20)

From this, we deduce that the newly defined supercharges are conserved,
[Q.H]=[Q", H] =0. (4.21)

Since the Q and Q' are just linear combinations of Q; and Qs, they still preserve energy levels and map
bosonic states to fermionic, and fermionic states to bosonic. Note also that the Hamiltonian H annihilates
a state (i.e. the state has zero energy) if and only if @) and Q' annihilates it

Hla)=0 < Qla)=Q"|a)=0. (4.22)

This is proved in a similar fashion to (4.13). The left implication is immediate. Assume hence that H |a) = 0.
Taking the inner product, we get

0= {alHla) = (o] (QQ" + Q'Q)|a) = (o] QQ"|a) + (a| Q'Q |o) (4.23)

which implies that
(@] QQ"|a) = — (| QTQ o). (4.24)

From the positive definiteness of inner products, we may conclude that indeed, Q |a) = QT |a) = 0.
Since @ is nilpotent (4.19), we may consider the following complex® of vector spaces

HE @ - HE @ - HE @ - HE. (4.25)

Since @ preserves each energy level, the complex above will decompose accordingly and we will get a collection
of complexes
Q s @ Q

F
— Hn) = Hin

F
Hin)

- M (4.26)
for each n. We now would like to investigate the cohomology of (4.25)
HP(Q) = Ker(Q : H” — H")/Im(Q : H" — H”)
HF(Q) = Ker(Q : HF — HP)/Im(Q : H® — HF)

(4.27)

by first considering the cohomology of the decomposed complex (4.26). The cohomologies (4.27) will be a
direct sum of the corresponding cohomologies of (4.26).

Proposition 4.2. Forn # 0, (4.26) is an exact sequence.

9Credit to Paul Taylor, the author to the package “diagrams” which was used to draw the (co)chain complex diagrams in
this thesis.
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Proof. Let |a) be a Q-closed state, @ |a) = 0. Since F,, # 0, we my write the identity operator as

2H _ QQ'+Q'Q
1= = . 4.2
28, 2F, (4.28)
Hence ; ; ;
QAT+ Q'Q QR
— = 4.2
o) = H T o) = O o) (4.29)
which means |a) is exact. Since |a) was arbitrarily chosen, this means that all closed states are exact and
we have trivial cohomology. This proves our claim. O

In the case when n = 0, (4.22) tells us that all states in H ) are closed and no exact states can exist!?.

We have thus determined the cohomology (4.27), and we get a canonical isomorphism

HP(Q) = HE,)

(4.30)
H"(Q) = H ).

Sometimes, the Hilbert space may have a Z-grading which reduces modulo 2 to a Zy-grading. One case
when this might happen is if we have a Hermitian operator F' with eigenvalues in Z and ™" = (—l)F. We
will encounter such an example so it is worthwhile to spend some time discussing this matter. If we are in
this situation, the Hilbert space H will split into eigenspaces of F'

H=En (4.31)

PEZ
and the bosonic and fermionic spaces will just be
HE = 3(even, HF — 340dd (4.32)
since for |a,) € HP,
e o) = { laep) %fp ?s even (4.33)
—|ap) if pis odd.

A natural question to ask now is when @ will respect the Z-grading due to F', i.e when @ will be a map

Q:HP — HPTL.
Proposition 4.3. Q is a map Q : HP — HPT' if and only if [F, Q] = Q.
Proof. Assume that @ : HP — HP**. Then for |a,) € H?,
[F,Q]lop) = FQlap) — QF |oy) = (p+ 1)Q |ap) — pQ o) = Qley) = [F,Q] = Q. (4.34)
Assume conversely that [F, Q] = Q. Then

[F, Q] ‘O‘p> =Q |04p> — FQ |0‘p> - QF |O4p> =Q ‘ap> — FQ ‘O‘p> —nQ |ap> =Q |0‘p>

= FQlap) = (n+1)Q|ay) (4.35)

and our claim is thus proven. O

Remark. Similarly, one may prove that Qf : #P — HP~! if and only if [F, Q'] = —QT.

10Gince all states are closed, Im(Q : HE)) — ’Hg)) =Im(Q : Hg)) — Hg)) =0.
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Hence, if we have that

[F,Ql = Q, (4.36)
the complex (4.25) decomposes into a Z-graded (cochain) complex
Qg @ g Qg @ (4.37)

with the nth cohomology group given by
H™(Q) = Ker(Q : HP — HPT) /Im(Q : HP ™' — HP). (4.38)
From (4.30), we thus have

Hip) = HP(Q) = H™"(Q)

o (4.39)
Hipy = H'(Q) = H*(Q).
The Witten index then takes the form
Tr(—1) e " =3 " (~1)PdimH?(Q) (4.40)

PEL

which is recognized to be the Euler characteristic (denoted by x) of the complex (4.37)''.

5 Derivations of Index Theorems

We are now ready to demonstrate the proofs of a couple of index theorems using supersymmetric quantum
mechanics. Let M be a compact manifold with metric g and ¢ : 7 — M be a path on M, locally represented
by ¢* = x* o ¢. Our focus will be on so called supersymmetric non-linear sigma models which are models

1 ..
constructed from the Lagrangian L = igu,,gb“gb”, i.e. a particle moving on M [3].

5.1 The N =1 Non-linear Sigma Model

In this part, we will follow the exposition of Nakahara [11] and Alvarez [20], together with the process in
[15]. Let M be a d = 2n even dimensional compact spin manifold (see Appendix A). The Lagrangian is
given by

1 o )
L= §guu¢#¢y + §guv¢ﬂthy (51)
where Dyy* = Dwa ’ Y = GrONpH + (;.5”1"’;0 T = pH 4 (;5”1"‘;0@/1” is just the covariant derivative along the
A t
0

m ’ $ where ¥" are Grassmann valued. The
2z

path ¢(t). The fermions v are locally represented by i = 3

action is invariant under the supersymmetry transformation

Sedt = iet (5.2)
Spt = —et (5.3)

where € is a Grassmann valued infinitesimal constant. Furthermore, the transformations are diffeomorphism

covariant. Consider the coordinate transformation x* — 2* = 2/#(x), which means that ¢ — ¢'* = 2" o ¢

un
and P — 't = giw”. Then
:I;V

ozx'* ozx'*
0" =
oxv ¢ oxv

1 An analogous analysis can be repeated for QJr to yield the same result but with @ replaced with QT.

deg't = iept = jep’™ (5.4)
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and

i

ieprp’ — a— €V = —ed'" (5.5)

ox't o 8x’“5 = O%x'm oz
dxv Oz Oxv dx*Oxv
where we on the fourth equality used that the antisymmetrisation of the fermions and the fact that partial

derivatives commute to eliminate the first term. So the supersymmetry transformations are indeed covariant
under coordinate transformations. By varying the Lagrangian (5.1) with J., one can show that

)™ = e A 0 + 54#” =

0L =€ th(g;ww ¢V) (56)

To find the supercharges, we go through Noether’s procedure. By treating € as a time-dependent object'?,
e — e =€(t),

8 ; . . ; .
3.8 = / dt [Zgwé(w“df’ +HY) + %gww“é(—as” +iPT),07) +5§£(9W¢H¢V)

:/O dt|: €guuw#¢ +6§£(guuw#¢y) (5.7)

B d
=~ [ dtic(gd)

where we in the first equality used that the terms without é simplfy to (5.6). On the second equality, we
used the antisymmetric properties of the fermionic variables and on the third we integrated the first term
by parts. Now, we remember that e is actually constant. Then note that the requirement of the vanishing
of an arbitrary variation of the action 65 is equivalent to the fields satisfying the equations of motion. In
particular, this means that

0.5=0 (5.8)

whenever the equations of motions are satisfied'®. In such case, we get from (5.7) that

d .
(g " ") =0 5.9
(g ) (59)
for arbitrary e. The conserved supercharge is hence given by
Q = guu"/’“éyj~ (510)

Let us now quantize the system. We will follow the prescription of [21, 22, 16]. We will only go through
the process quickly, the interested reader is recommended to check the aforementioned references. Since the
system is linear in the fermionic velocities, we need to use the Dirac bracket

{F,G}pp = {F,G}pp —{F, 0} peC*"{21, G} P (5.11)
when determining the (anti-)commutators. Here, {, } pp is the super Poisson bracket (cf. (2.8))

OF 96 OF 0G|\ (0F 0'G | 0LF 9'G
(eloly 8p,u apu aqw oY+ OWW 87%“ oY

with p, and 7y, being the conjugate momenta to ¢ and 9" respectively and ep is the Grassman parity
of F. The matrix C® is the inverse of Cly := {¢a, vb} PB, Where @, are the second class constraints of the
system. The canonical conjugate momenta for ¢* are

oL

v i o
Pu = @ = g;u/gb + irp,u,a'wpw (513)

2Constants are also time-dependent in the sense that they take the same value everywhere.
13T his works since € is actually constant.

{F,G}pp = ( (5.12)

32



and for y*
_OL i
Tapp = 81/.)# = 29#1’ .

We see that the conjugate momenta 7y, are proportional to 1" which leads to the constraints

7
Pp i= Ty + ig;w'lpy =0.
They are second class; the (super) Poisson bracket of the constraints is given by
CI—“’ = {SO;MSOV}PB — _igP«V = (O = iguu.

From (5.11), after some calculation, we hence get

{¢M7pV}DB - 55

7/ lo «
{Pw P} DB = 59" 0490000 9osY PP

174 1 v (e}
{pua'@[] }DB = 59 pa,ugpoﬂp

7

{p/u Tafpv }DB = Zauguoﬂ;[}a

{" Y pp = —igh”

1
{Y*, myv}pB = —50

)
{ﬂw“ » Tpv }DB = Zg;w

(5.14)

(5.23)

with the rest of the brackets vanishing. Not all of the brackets will be used but we have written all of them

down for completeness sake. The (anti-)commutators are discovered to be

[¢yapz/] = 265
1
[p#apu] = _igpgaﬂgpaaugaﬂwawﬁ
)
[p;u'(/Jy] = §gupaugpo/(/)a
1 «
[p;uﬂ'w”] = _Zaugua¢
{pr =g
. m) = 50,
1

{ﬂ'w“ , 7"1/)”} = _Zg/w

We define the kinetic momenta P, = gm,q'S”, under which the the supercharge takes the form

Q=Y"P,.

(5.24)
(5.25)

(5.26)

(5.31)

We would now like to find a representation of the Hilbert space. We will use the notion of Clifford algebras
and spin structures in the following discussions. For a brief review, the reader is referred to Appendix A.
We start by making a change of basis. Using orthonormal frame fields {e,}, i.e. a frame constituting a
non-coordinate basis on each tangent space T, M such that locally, e *e,” gu, = dap, (5.28) can be cast into

the form

{1[}&7 1;6} =5
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with ¢ = e®,¥". Noting that this is nothing but the Clifford algebra (with a slight rescaling), we find a
matrix representation for the ¢/ using the 2" x 2" gamma matrices {y*} which satisfy

{y*,7%} = 257, (5.33)

~ 1
meaning that ¢ is represented by —~*. From the gamma matrices, we may define the chirality operator

V2

Yag1 ="y (5.34)
The chirality operator satisfies
Yap1 =1 (5.35)
which means it has eigenvalues +1. Furthermore, it anticommutes with the gamma matrices
{va+1,7"} =0. (5.36)

We find that a good candidate as our Hilbert space is the set of spinor fields I'(M, &), i.e. the set of sections
on the spinor bundle & . Tt is equipped with an L?-inner product (specified in Appendix A)

(00) = [ (0.0 ) (5.37)

where 0,0’ € T'(M, &) are spinor fields and x(1) is the invariant volume form (x is the Hodge star), so it is
indeed a Hilbert space. Furthermore, it splits under the eigenvalues of the chirality operator into

(M, &,) =T(M,&)® (M, &) (5.38)

S0 it is Zo-graded as we need it to be. We hence identify (—1)F with v441. The bosonic and fermionic
subspaces are therefore concluded to be I'(M, &) and I'(M, &) respectively. What is left is to see if the
supercharge maps the bosonic part into the fermionic one and vice versa. Given a coordinate patch U on M
(switching back to coordinate basis), the observables are represented by

P = atx (5.39)
P, =—iV, (5.40)
P = iv“ (5.41)

V2

where z* x is multiplication by z*, 6# is the spin connection and v* = e *~v“. The supercharge then takes
the form

Q=g - Ly (5.42)

which is nothing but the Dirac operator - this operator maps I'(M, Gdi) into I'(M,&). We hence get the
spin complex
iV

L(M,&)) I'(M,6;). (5.43)

iy
IfQ:I'(M, 6;) — I'(M,&), we denote it by Q. Similarly, we use the notation Q_ for @ : I'(M, &) —
I'(M,&}). The Hamiltonian now takes the form

1 12
H=5{Q.Q}=—35Y". (5.44)
The fact that the Dirac operator is Hermitian implies that

Qo =0 < Ho=0. (5.45)
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The Witten index is then given by
ind(Q) = Tr(~1)Fe ™ = dim(kerQ,) — dim(kerQ_) (5.46)

where ker@, and ker()_ are the sets of harmonic spinor fields with eigenvalue +1 and —1 with respect to
(—1)¥ = 7441, respectively. Note that numerical factors in @ are of no significance for the index.

5.1.1 Computing the path integral

EW

We want to compute the path integral for the index of the Dirac operator @ = —

ind(Q) = Tr(—1)Fe=PH = DpDipe™°F (5.47)
PBC
B
where the action in Euclidean time is Sg = drLg with Lg given by (with now denoting derivative with
0
respect to 7)
1 o 1

LE = §guu¢u¢y + §9uu¢“Drwy (548)

When computing this integral, we will utilize the fact that it is independent of 8 to make the calculations
doable; in the 5 — 0 limit, the integral localises around constant paths ¢.
Rescaling the time parameter as 7 = (s, the action becomes

! 1 o, 1 .
S = /O ds (wgwfb“fb +2gw¢"Drw) (5.49)

In the limit 8 — 0 we see that for the non-constant paths q.Sl‘ = 0, the action blows up, giving an exponential
suppression in the actual path integral. Thus the only paths having an actual contribution in this limit are
the constant paths q5“ = 0 (which of course satisfy the periodic boundary conditions).

We would like to use the saddle point method around the constant paths to compute the path integral.
In order to do that, we need to first verify that the constant paths are actually part of the set of extrema of
the action. The extrema are well-known to be solutions to the classical equations of motions given by the
Euler-Lagrange equations. For ¢ we have

_ oL _ i oL
o> dr aq/}/\
1 , 1 [ 1d
= ig/\Vth - §gw¢“¢prpx + QE(QMMW)
1 . . . 5.50
= 5 |:g)\VDTwV - ¢“¢prup)\ + 6pgu/\¢p¢# + guxib”} ( )
1 . .
= 5 |:g)\/JDT77[}# + g/\;ﬂ/}“ + (prAp/ﬂ//#
= QA/LDﬂ/J“

1
where we on the fourth equality used that 0,g,x — I'upx = 9pgur — §(apgu>\ + Ongup — Ougpr) = Tapp. We
hence obtain the equations

Dot = 4 GPTH 47 = 0. (5.51)
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Next, let us tackle the ¢* case
oL d 0L

T 00 dT 9

1 - 1 1 . d 1
= §a>\gul/¢u¢u + iakg/wquﬂ/)V + iglwq/ﬁ‘(bp@)\l_‘ o7 — (QAV¢V + guﬂ/’ Iy 1/’0)
(5.52)

. . 1 Lo
= 79)\V¢V - apgAu¢p¢V + 58)\gpu¢“¢y
1 . 1 .
+ 5(3,\g#urzg + g#Va)\FZU = Opgu sy — guvapFKUW’t/f“w” + i(aAgw + Lo — Fuku)wuwy

o . 1
Using the fact that the factor ¢”¢" is symmetric in its indices, we may rewrite 0,gx,¢"¢" = é(apg)\l/ +
8,,gkp)¢.>” ¢”. Plugging this into our expression,

0= —9xp Td)p + 5 (6)\9“1,1_\ + guva)\]:w - 8;09;41/1_&0 - guuapria)épwﬂdjg + Fu)\;ﬂ/)“zzjy ( )
5.53

= "9 T¢ +5 (aAQ/wFpo + 9wy = Opgul'ss — guuapria)fl;p1/’“¢a - FMM/’“Q.SPFZH/’J

where we on the second equality used the equations of motions (5.51) to get rid of the ¢”. Now, observe

1 .
that T'y,. I, qﬁpw“w" = ( vl po = Luppl'3,)#79H97 due to the antisymmetrization of 1/*¢)?. Finally,

. 1
0= —gxpDr0" + i[gwaAFZa = 9u0pISo + (Orgur — Lonp)Ie = (Opgpn — Tupu)TX ]¢>”w”w”
.1 )
= _g)\P‘DTQSp + 59}“’(8)\1—‘;7 - 8PF + F)\a po FZ& lj\ta)¢pwu¢o’ (554)
) 1 )
= _g/\pD‘r(bp + gR;m')\p(bpqpuwa

The equations of motion can hence be written as

Dt — SR,y = 0 (5.55)

We can now see that the constant paths ¢y are indeed solutions to the equations of motion, provided ¥ = g
are also constant. Note that the set of ¢ is none other than M itself.

When we use the saddle point method (see subsection 3.3), recall that the path integral will be exact at
second order expansion of the action; we need only to take care of the extrema of the action and the second
order fluctuations. To simplify computations, we now choose to work in Riemann normal coordinates around
T = ¢p in an orthonormal frame. With these conditions, the metric is subject to

g;w(¢0) = 5;”/ (556)
G (do) =0 (5.57)
1
aaaﬁgl“/<¢0) = _g(Ruch + Ruﬁua)
1 (5.58)
= _g(RaMﬂy + Ra,,/gu) = 8H8,,gaﬁ

Details can be found in e.g. [23]. In these coordinates, we see that det(g,,) = 1. Let us now perturb ¢ and
1 around ¢y and g

(1) = ¢ +£"(7) (5.59)
P (T) =g + (1) (5.60)
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where £* and n* are infinitesimal. We expand the Lagrangian (5.48)
1 Lo 1 ) .
L= Sgud"d" + 50ut" (0 + $Teu?) (5.48)

to second order in these (while remembering that the first order terms vanish since we expand round an
extremum). Since every term comes with a derivative, there will be no zeroth order terms. The first term
expand as

1 o L

S P" ~ S (5.61)
and the second term L )

S I~ S, (5.62)

The third term requires a bit of work to simplify,
%wugﬁprwawa ~ %W’g + 77“)5 #p0‘¢ + a)\F#PU’d) )(Wg +n7)
~ %aurpvo‘%?/’gd’gfuéy
- %%wuavgpo’ + 0106 gpv — 8M8pgyg)z/10pz/zg§“£”

11 '
- §§(auaogpu + 8uapglw)1/}0pwgfu€’/

where we on the last equality used that 151§ is antisymmetric in conjunction to (5.58). However, again
using the antisymmetry of 141§ and the fact that we are working in normal coordinates,

Ryvpo 51/18 = (apruw - aUFlll)V) 51/18 = Qapr/mv 5‘/’8 = (apar/g;w + aaaung) 51/18 (5.64)

so we end up with

(5.63)

1 . 1 1
iwud)prﬂpawg ~ 5 ,ul/pa' OwO 5”5” (565)

~ 1
Defining R, := ipr,,z[;gi/zg and piecing everything together,

1., 1 1~ .
L~ &R + —nt'n" + R, E1E7. (5.66)
2 2 2
The index can now be computed in the § — 0 limit as
ind(Q) = DEDne~ 52 (5.67)
PBC
where
s 1o, 1, 1= »
Sy = [ dr (€Y + St + SRy €4E (5.68)
0 2 2 2

is the second order action. We have used the translational invariance of the measure D¢pDy = DEDr. We
may integrate the first term in Sy by parts and use the periodic boundary conditions to obtain

A 1 d2 d d
522/0 dr [2gﬂ (_6’“’d72 + Ry )5 + 51" O ] (5.69)

Since the paths we are integrating over are subject to periodic boundary conditions, we may Fourier expand
the £ and 7 as

Z e — \F e2mikT/B (5.70)

k=—o00
27rzkr7'/6
Z M= (5.71)
k=—o00 f
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Note that the operators

d? - d
— S ——= y— .72
”drz—'—R“ dr (5.72)
acting on £ and
d
5“”% (5.73)

acting on 7 kill the zero modes. This means we have to consider them separately since le depends on the
zero modes. The integral splits into

ind(Q) = /Dﬁopno DE'e IOB dT%gu(fé“”f;%+é“”%)§U Dn'e” foﬂ a7 3" S " (5.74)
PBC PBC
where D¢’ and Dr means integrating over the non-constant modes of (5.70) and (5.71). Now, since Ry, =
_Rw due to the antisymmetry of the Riemann tensor together with the fact that M is even dimensional,
we may block diagonalise R,“, in the form (the change of basis is orthogonal so the corresponding Jacobi
determinant will have modulus 1),

Taking one block at the time, we can now use (3.68)

1

= — 3.68
Det'[O11 + 5(012 — O12)] (3.68)

_ B Tl a1l ¢b Z - _
2:3) = [ Depge IO T s+ 4 (Rua = haa))
k0

to compute the middle part of the above path integral. The corresponding eigenvalues are

2
A1,k = (M> (5.76)

B
A2k = Rlzﬂgk (5.77)
SO
P [ ok \? - onk
Det'[O +3(O —012)] = () +R ]
11 2 12 12 kl;[o - ﬁ 12 5
< [ ronk\? - onk|[/27k\? - 2nk
-1 (*5) ”%] l(ﬂ) : %]
> [ 27k 4 ~ 127k 2
= R
E_(ﬁ)*(”ﬂ)]
) (5.78)




The infinite product in the middle is regularized to 8 in (3.39) and

ﬁ 1_ <R12B>2 _ 2Sin~<¥) (579)
=1

2rk Rz
Hence }
[ d 251n<R122[3)
Det'[011 + = (012 — O Det <>~ 5.80
[O11 ( 12 12)] = ar Rio ( )
which means'*
pge i arte (et t)e 7L Raia
PBC iy Det! () 2gin (sz—21,2jﬁ)
n - (5.82)
1 Raj_1,2;

= 3 .
[Det’ ()] -+ 26in (Rz%waﬁ)
Using (3.140), we may compute the other path integral in the expression for the index

(P grlpns Ay d\1"
Dr'e Jo amantonin” _n | peyt (L : (5.83)
PBC dr

The index now takes the intermediate form, recalling that we defined y; := R2j—172j

R dgy By;/2
lnd _Z /DSODWOH (21;271 12]27 ) /<H O d ) ﬂn H bln BJZ/J/Z (584)

1 2sin

By treating the factors in the j product as elements of a matrix, we note that they constitute a 2n x 2n
antisymmetric matrix with 2 x 2-blocks. Namely, we get a matrix

L/? (5.85)
sin (5R/2)
with elements
sin (51%/2) . sin (51-?/2) - sin (By;/2)
and all else 0. We may hence write
H bl Byj/2 — det BR/2 (5.87)

i sin (By;/2) ‘ m

Note that any Taylor expansion with respect to R is finite since R? = 0 for p > n.

MNote that one may write

[e’e} . 4 . 2
Det’ [011 + — (012 7012 — H |:(l2gk) I (Rm zZlgk)
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We have so far integrated the second order fluctuations around some fixed constant path (¢, ). We
now need to treat the integration over these. Constant paths are just points so let us write ¢ = z. We
may to first order expand
u

Lo \/Bfo

1
where the factor ﬁ comes from the Fourier expansion of the fluctuation. Since we are integrating over

ot =z

(5.88)

all (constant) configurations the integral is translational invariant. From the expansion we may therefore
dely

VB
V/Bdn}. Altogether, the index takes the form

dzt BR/2
ind(Q) / (H d%) e m : (5.89)

Let us now scale away the apparent S-dependence by making the change

conclude that = dzf. The same arguments apply for the Grassmann variables which means dyy =

[N

i
vh = % = dgl = \/2rBdx. (5.90)

In the integrand we then get
- 1 11
BR,, = B} pupowowo = QRMVPUXOXO (5.91)

so plugging everything into the integral we obtain

liip. pyo 3
ind(Q) /(H dz dxg> det< m2(2lj pvp (%)Xoi()oa > . (5.92)
22

%Rqua(xO)XOXO)

2n
Let us now switch to the language of differential forms. From the H dx{ integration, we see that only terms

p=1
2n

of order 2n in xo will give a non-zero contribution. Also H dzl) is a volume element and the integration is

p=1
over all points of the manifold. Let us therefore define the curvature two-form
1
Ruv = QRIWPUCZZE’O A dz?. (5.93)

Note now that since R/sin(R) is even in R (which means only even number of pairs dzf A dz” show up) n
must be even i.e. d has to be a multiple of four in order for the integral to not vanish. As a consequence, i"
is £1. Let us expand

sm Z a2k$ (594)

and recall that sinh(x) = —isin(iz). We may hence conclude that
T (4 >
— _ -1 k 2]@' .
sinh(xz)  sin(ix) kZ:O( ) aza (5.95)

Looking at the product in (5.84), we now want to compare

" H SIHB%;Q/Q =" H (Z a2ky32'k) (5.96)

Jj=1
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and

H smfyéif/Q H (Z GQky] > . (5.97)

As we discussed earlier, only the terms of order n in y will contribute to the index. We have two cases to
discuss: when n/2 is even and when it is odd. In the even case, i" = 1 and the order n terms of (5.96) and
(5.97) match. In the odd case, i = —1 but also the order n terms of (5.96) and (5.97) differ by a sign'® In
effect, this means we can make the replacement

Il
[N

BR/2 — det BR/2

et sin (5]:2/2) sinh (ﬁR/Q)

(5.98)

in the integral:

iiip B
ind(Q /(H dzlydx} >det< o hQ(QiTi po (Z0)X6X3 (5.99)
22

%Ruupa(z(J)XOXO )

or in terms of differential forms

11 2
ind(Q) = [ det 22 5.100
wd(@) = [ e (Smh@; )> (5.100)
Since R is skew-symmetric then just as before we may block diagonalise it
0 T
1 —T1 0
— R, = - . 101
7R . (5.101)
0 Ty
-z, 0
We now define the A-genus of M as the formal expansion
n
. x;/2
AM) = || —2L—— 5.102
(M) H sinh(z;/2) ( )

and summarize our results in the following theorem:

Theorem 5.1. (Index theorem for the spin complex) Let M be a d = 2n dimensional compact spin
manifold. Then the index of the Dirac operator @ defined on M is given by

ind(Q) = /M A(M). (5.103)

15Everything boils down to how we can split n into a sum of even numbers since we are comparing terms of (5.96) and
(5.97) of order n; we examine terms whose sum of the exponents of the y2k—factors equals n. Since n is even, we may write
n=2(a1+...a;+ajy1+---+a,) where we assume that a; is odd for ¢ = 1,...,j and the rest even. Hence if j is even, n/2 will
also be even and if j is odd, n/2 will be odd. By looking at (5.97), we see that j actually counts the number of signs appearing
in a order n term (every y% with k£ odd comes with a sign). We may conclude from our discussion that if n/2 is even, the order
n terms of (5.97) will have an even number of signs and if n/2 is odd, the order n terms will have an odd number of signs.
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5.2 The N =2 Non-linear Sigma Model

We will in this section utilize the results of section 4.2. The discussions in this subsection will largely be
based on the treatment in [15]. Let M be a closed, oriented d-dimensional Riemannian manifold equipped
with the metric g and let x be local coordinates on M. The Lagrangian under consideration is

1 _ ] _ _ 1 _ _
L= S0ud 0" + L0 (B Dt = Deb”) + 5 Ryurpo 01" 970 (5.104)

where 1" is the complex conjugate of 9. We may decompose " = 1} +irh% where ¥; and 1h5 are Hermitian.

1
Note that we recover the A" = 1 Lagrangian (5.1) if ' = 5 = Ew“ [3]. The term with the Riemann tensor

then vanishes due to the Bianchi identity. The action is invariant under the supersymmetry transformations

Seph = eph — et (5.105)
Sept = e(igh — T 4pPy7) (5.106)
et = E(—igh — Th pPyp°) (5.107)

where € and € are infinitesimal Grassmann constants. We have used d. to denote the (super)symmetry
transformation, reserving ¢ for a general one. One can show that

1 d 1d .
2 dt (QW¢ (b )_ 65%(9W¢”¢V) (5108)

so the action is indeed invariant. We now would like to find the corresponding supercharges. Just like before
we go through Noether’s procedure. Promote € — ¢ = €(t) and € — € = €(t). Then

0L =

A 1 - . . 1 R .
=) {gguxew“ — QMY+ Sgmd (@ — &)

Sl — Tl 0007) + G (e — )T, u
— E(—igH — Dl Py )Y — (&P — epP )T 7]

1d o 1d .
+ 62 dt(glww ¢ )_€§$(9#1ﬂ/}“¢ )} (5-109)

ﬁ B 1d I 1d .
O it <e o6 S5 )+ [t (e 500 56) 5 a0

d
dt g;uﬂ/J“Qb )+ Ei(g;w/wu(ﬁ ))

— /O dt ( (zg,“ﬂ/J P )—He d ( Zg,w¢#¢y)>

where we on the first equality used that the terms without é or € are just (5.108). To arrive to the second
equality we used antisymmetry of the fermionic variables and for the third we simply integrated the first
term by parts. Hence

d, .,
S ig,,0"3") =0

g (5.110)
a(fig/wwud)y) =0
for arbitrary € and €. We conclude that the conserved supercharges are given by
Q = igu "¢’ (5.111)
Qf = —igY"e”. (5.112)
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There is another symmetry of this model; the Lagrangian is invariant under

YH — e—i7¢u

i . (5.113)
P — e TPt
This symmetry is continuous so with infinitesimal ~,
B (1 —dy)y#
Vo (L—imy (5.114)
P = (1 +ay)yp*
with the corresponding variation given by
o0yt =0
Ot = —irygp? (5.115)
Oyt =yt

Going through the Noether procedure yet again, we get the following expression for the conserved charge

F = g p"y”. (5.116)

Note that F' is Hermitian. The reason for naming the charge F' will become evident as we proceed.
We now quantize the system through canonical quantization. The conjugate momenta for ¢* are given
by
oL

v i TP )T
Pu = ?w = g;uJ(b + i(rpua - Foup)wpw (5'117)
and for 1" and "
oL i -,
Topp = ({97’(#“ = _ig;w"/}
s ; (5.118)
T = 81;“ = —ig;uﬂ/)

which lead to the second class constraints

P
Oy = T + igwd)” =0

; (5.119)
Pp = Tgu + 59,“,1#” =0.
The Poisson brackets between the constraints are given by
Ly P =P 4 Pu =0
{busputre ={Pu, Gutre (5.120)

{@}Jm QOM}PB = {@ua @M}PB = _Z.g;u/-
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Using this, the Dirac brackets are computed,

{¢",p}pB =",

¢ e
{pM7pV}DB = 7gpg(8ugpaaugaﬁ - 8ygpaauga,6’)w '(/}B

4
v 1 vo B
V" pB = 597 Ougas
v 1 va 78
¥ ko = 59" 0ugastd

i e
{p,uy 7T1Z)"}DB = Za,ugvaw
i «
{puaﬂ'@V}DB = zauguaw
(", Y pp = —ig"”
1
Y Ty o = =50,

_ 1
Y Ty top = —50%,

(3
{Tr’lb“ ) Tqu)V }DB = Zguy

(5.121)

(5.122)
(5.123)
(5.124)
(5.125)

(5.126)
(5.127)

(5.128)
(5.129)

(5.130)

with all other brackets vanishing. As before, we will not use all of the relations but still write them down

for completeness. Following the procedure, impose the canonical (anti-)commutation relations

1 _
[p/,b7pl/] = _zgpa(ap«gpaaz/gaﬁ - 8Vgpaaugo,8)wa"/)ﬂ

(9", p] = id",
i _
[puadjy] = 591’&8#9&51/}6
- )
[Puﬂﬁy] = 7gyaaﬂga5,¢)/3
2
1
[p;uﬂ-w”] = _1 ugua"/)a
1 e
[Py T ] = _zaugvaw
{47} =g

7
{wﬂ’ 7T1/)"} = _56#1/

—- 2
(s} = 50",

1
{qu,’ﬂ',@u} = —Zgw

(5.131)

(5.132)
(5.133)
(5.134)
(5.135)

(5.136)
(5.137)

(5.138)
(5.139)

(5.140)

with the remaining (anti—)commutators equal to zero. We may write the supercharges in terms of the kinetic

momenta P, = g,,¢"”

Q = “ZJMP;L
Q = —ip P,

The quantum mechanical version of the Hamiltonian is computed via (4.20),

{Q.Q"y=2H
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which fixes the problem of operator ordering.

The v, 1 satisfy the harmonic oscillator algebra for fermions (5.137) with v as creation operator and v
as annihilation operator. Let |0) be the state annihilated by the 1*. A general state can be written as a
linear combination of states consisting of a function times a number of 1" and ¥* times |0). However, using
the anticommutation relation (5.137), we can always move all the ¥* next to |0) to annihilate it. In such a
way, one may rewrite the state into a linear combination of states without 1. Consider thus a state

7y = gL P |0) (5.143)

We might already see that the Hilbert space has a Z-grading, but for the sake of completeness, we wish to
show that F' indeed is the operator mentioned in section 4.2, bringing justice to its name. Acting with F' on
|r) and using the anticommutator (5.137),

Fr) = gu Pty g . i |0) = @ hr [0) + 9 gty he e |0) (5.144)
Doing this another » — 1 times, we thus end up with
Firy=r]r) (5.145)

so F has integer eigenvalues, counting the number of 1) acting on |0). This implies that we have an operator
™ = (=1)¥. We thus call F the fermion number operator. Furthermore, note that

[F.Ql=@Q
[F,Q" = -QT
which is nothing but (4.36), so by proposition 4.3, @ and Q' respect the grading (which could also be

detected directly from their structure). The above commutators furthermore imply that F' is a conserved
quantity also in the quantum theory,

(5.146)

[F,H] = 0. (5.147)

Since M is compact, L?(M,C) are all possible complex valued functions on M. After all the discussion,
a natural representation of the Hilbert space is the (complexified) algebra of differential forms

H=QM)c:=QM)aC (5.148)
equipped with the inner product
(w,m) = Z/ B A ¥k (5.149)
o M
for w = Zwk and n = Z Nk, where wy and 7y are k-forms. Given a coordinate patch U on M with local

k k
coordinates x*, the observables are represented by

O = ahx (5.150)
P, =—iv, (5.151)
P = g"ul = dat A = TP (5.152)
Pt = gy, =8 (5.153)

where V, is the covariant derivative associated to the Levi-Civita connection on M and ¢y is the interior
product!® with the vector field V/ (when we write ¢, we mean the interior product with respect to the

coordinate vector field d,,). Note that for « = —a,, . ,,.dz”* A--- ANda" € Q"(M)
r

!

1 o
Vi, Voo = —ﬁg (Roprpw@rps..pr + 7+ Rapruvapl-.-prﬂ)\)dxm Ao Ndzr (5.154)

= —Ropudaz’ A "M

60One can show that the interior product ¢4 is the adjoint to the wedge product aA under the given inner product (5.149),
where A = o9, and a = a dzt.
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SO
[V;M VV] = Ruupo”prLo (5155)

or

[Pua PI/] = _Rul/polzpwg- (5156)

Representing the state |0) by 1, the structure of the Hilbert space is manifest; a state f,, . ()" ...9"" |0)
corresponds to f,, .. (p)da** A - Adatr, where f,, . € Q°(M)c. By (5.145), we see that the fermion
number corresponding to an r-form is r. This means that the Hilbert space decomposes into a direct sum
with respect to the grading by F',

d
H=Eor)e (5.157)
p=0
as we would expect (of course if p < 0 or p > d, QP (M) is trivial). The supercharges now take the form
Q=."V,=dz" AV, =d (5.158)
Q= 'V, = —g",V, =d (5.159)

where d is the exterior derivative and d its adjoint. To see the second equality in (5.158), act with @:

dz" AV f = da* N Oufurp — Fﬁulf/\...w - Fﬁurfm.i./\)dx‘” Ao Adztr
= Opfyus o N dah™ Ao A dats (5.160)
= d(ful...urdx’“ A A dqu.))

where we have used the antisymmetrisation of the dz to obliterate the terms with Christoffel symbols. To

prove (5.159), recall the definition of the Hodge star operator'” % : Q"(M) — Q4~"(M). For an r-form
1

W= ﬁwmmmda:”l A dxhr,

v det(g/“’)w u gH1tr

W= (m — )yl H

dx"TT N A dxt (5.161)

Vpgq...V

The Hodge star is simpler if we use an orthonormal basis. Let {e,} be a non-coordinate basis on the tangent
space 1, M such that e, e,”gu, = dap. We use greek letters to denote the curved indices and latin ones for
the flat. Let e”, be the inverse of e,”. The dual basis is {#"} = {e”,dz"}. The Hodge star in this setting

takes the form )
*w = mwal“,aré‘almarl)”*lmbmobr'*'l VANEEIAN Gbm (5162)

Recall now that d' is given by
d' = (1) s d ok (5.163)

Acting with this on w and using (5.158),

()T s dxw = (=D& Vow € £ U A A G
- (’I" _ 1)'(d _ T)!’I"! cvar...a,r al...arbr_'_l...bd Cbr+1...bdd1...d7‘_1
(_1>d7‘+7‘+1 1) d—
— Ve a (=1 (r—1)(d—r) o a . 9t A ... A Q-1
=D =i ¥ eran (51 Cor-rrbrys-baCodi...drosbrta...ba (5.164)
1

d() d1 dr—l
———————1cVeWa,...ar€ar...arbrsr...bg€dodi...dp1bya1.. g0 NOT AN O
ri(d —r)lr! ! ! +1::0d= G0 1brt1--ba

1
= ——'chcwalmaﬁ‘“ A ANBOT.
r

TFor compact Riemannian manifolds.
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where we on the last equality used
€aroarbysr . baCdods . dp1bri1obg0™0 A O A NG = l(d — )10 A A GO (5.165)
Now, since all indices are contracted the expression is independent of choice of basis. Hence
d' = —1.Ve.= -3V, = —g"1,V,. (5.166)

The quantum mechanical version of the Hamiltonian is, as stated before, given by (4.20),
H= i{Q’Q } = i(dd +d'd) = §A (5.167)
which is none other than the Laplace operator on M. One can check that
1
H= 5(—g“”V“V,, — RWWLT“L”L”’L" — LJ”L[V,“ AV AV LTH]VM) (5.168)

using (5.155), (5.158) and (5.159). The corresponding classical Hamiltonian is given by

1 1 - -
H= iguVPHPV - §R;wpa¢”¢”¢pwa (5169)
which if Legendre transformed recovers the original Laplacian (5.104). Back to topic, the supersymmetric
ground states are the (complexified) harmonic forms on (M, g)

d
M) = Harm(M, g)c = €D Harm? (M, g)c (5.170)
p=0
or with respect to the grading,
H{yy = Harm” (M, g)c. (5.171)

However, recall also the arguments in section 4.2. With @ = d and H? = QP(M)c, the complex (4.37)
becomes the de Rham complex and

d
Hio) = Har(M)e = @ Hip(M)c (5.172)
p=0

where Hgr(M)c is the (complexified) de Rham cohomology algebra of M. Taking into account the grading,
i.e. the splitting in form degree of H ), we receive

7—[}(70) = Hip(M)c. (5.173)
We thus end up with
Harm? (M, g)c = HYp(M)c (5.174)

which is basically the statement of Hodge’s theorem. Note that the complexification does not change the
dimension of the space. Finally, the Witten index is given by

Tr(—1)"e " =3 "(~1)Pdim(Harm?(M, g)) = Y _(~1)Pdim(H? (M)) = x(M) (5.175)

where x (M) is the Euler characteristic of M. We again stress the fact that the Witten index is independent
of 3.
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5.2.1 Computing the path integral

Let us now compute the other part of the index. The path integral to be evaluated is given by

X(M) = Tr(=1)Fe P! = . DDYDype 57 (5.176)

with the Euclidean action
I v 1 NN 7SN o
5= [ dr [Jow + SoulFDY ~ DoG) ~ Lpgeiuriter | G
0

The procedure of evaluating the path integral for this case can be done in a similar way as for the previous
one. One can find computations of the Witten index in the works of DeWitt [24] and Alvarez-Gaumé [3].
Utilising the independence of 3 of the index, we will argue that the contributions to the integral will localise
around constant paths in the 5 — 0 limit. Then using Euler-Lagrange equations, we will verify that there are
solutions, i.e. extrema of the action, with constant ¢ = ¢9. Again, due to the independence of 3, the path
integral will actually be exact at second order around the extrema, which will be useful when we evaluate
the integration over non-constant configurations.

Just as before, to show that the integral localises around constant paths, change variables 7 = s in the
action

B

1 " v
SE :/0 ds [19 d¢* d¢” + 59 G (PP D" — D"y — SRy porth 0 P9 | (5.178)

237 ds ds
When § approaches zero, the non-constant paths ¢ will make the first term in the action grow towards
infinity, giving an exponential suppression in the path integral. Thus only the constant paths ng = 0 will
contribute to the final result in this limit.
We now would like to check that the constant paths are actually extrema of the action. The classical
equations of motion are given by the Euler-Lagrange equations. For the fermionic fields,

_ 0L d 0L
TN dr g
77le o 1 1 1 d (1 (5.179)
= _ing%PF;A + §guADT¢“ + iRuz\pﬂ/}#wp?ﬁo —+ §Ruupxw”¢”w” + ar (29;0\1/)”)
Following the same steps as in the A/ = 1 case, we arrive at
gHVDTQZV - R#upaiﬁylﬂ’iﬁa =0. (5180)
Similarly, with respect to 1, we get the equation of motion for the conjugate field
G D" — Ry po0” P17 = 0. (5.181)
For the bosonic field, we have
_oL dor
o>  dr 8¢§>\
1 ” 1 - . 1 . . _
= 509w " " + 507G (WHDry” — Drptyp”) + *guu(lﬁ%paﬂzg’tﬂ” — PO P7YY)
1 d 1
- 28 pupawqu l/}pqu - di(g)\u(yb + g;uﬂ/)“F wa guurﬁgwawy)
v_ 1 v 5.182
= _g)\u¢ - i(a/lg)\v + augyk - 8)\g;w)¢u¢ ( )
1 14 1% v v
+ i(guaapr)\# - gvaa/\]-—‘p# + apgvo]-—‘)\u - aAguan,_L

+ guVaAFZa - gxwa 5, + aAQWFpo pgzw )¢”w“w"

1 1 1 o
+ i(ra)\,u ;L)\J 5,\9#0)1/)“1/10 ( oap ,u/\a + 3,\9;m)1/1“1/10 - gaxRuupaﬁJ“i/)'/?/Jp?/)U
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o 1 1 S
where we on the first line of the third equality have used that 9,9\, ¢"¢" = (28;1,g>\1/ + 26,,9,“\) ot

utilising the symmetry of é“ é” and the metric tensor. Note also that the first row is just —gwD T(ﬁ”. Using
the equations of motion (5.180) and (5.181) for the fermions and the fact that T'yx, =T yuxe —Orgue = =2 ux0
and Fa)\u - Fu)\o + a/\guo = 2F0Aua

. 1 _ _
0=—gxDr¢" — §3Apro¢“¢"W¢”
1 1%
+ §(guoapr)\u Guo O
+ 9O e = 9uwOpl'ss + 009l o — Opgun {o) 77
+ Fﬂ)\a(gbprw g + Ruua,@dijadjﬁ)wg - a/\ud’”(QspFZu?/fu - ngaﬂdjyd_)aqpﬁ)

= _gAuDT¢V - iaARuupo'lZ}Mquz)pwa

o+ 0p9uo L5, = OGuol'y,

1 v 174 174 17
i(guo'apr)\# - gu(ra)\l—‘pu - (Fupa - apgua)l—‘/\u + (Fz/)\a - a/\gua)rpp,
+ gHV6>\FZU - g;wapria - (Fum\ - 6>\9MV)FZ0' + (Fupu - 8p9ul/) KUW’WW

+ (Fa)\cha#yp + Fa)\uRagyp)"/_}M'I/JV"/_}pwU
. 1 _ _
= —QAVDT¢V - §3ARWW¢“1/)VW1/)”

+

1 v v v o v pa v o N NN
+ 5[91/0 (aPFA/L a)\rpu + F Ap T A p,u) + g#”(a)\l—‘p -9, F)\a + F)\a po FpaFAa)]gbpq/}Hw

+ (Foz)\dRa#yp + Fa)\yRagyp)wud)V@/;pd}U
(5.183)

We thus end up with
v " v ] 1 o
— P Dr 8 + Ruwx ot y” " + (FWR“WP +TaruR%,, — 30 W,M) PP = (5.184)

By inspection, we confirm that (¢, ¢*,¢") = (¢f,0,0) with ¢ constant is a solution to the three sets of
equations and hence extremum to the action, which we want to expand around.

To simplify computations, again employ Riemann normal coordinates around ¢ = ¢o. Expanding around
the extrema (¢*, 9", yH") = (¢f,0,0), we have

¢'(7) = ¢ +£"(7) (5.185)
V(1) =n"(7) (5.186)
(1) = (7) (5.187)

where £#, n* and 7" are infinitesimal. Expanding one part at the time in the Lagrangian to second order
(as before, we ignore first order terms since we are expanding around an extremum),

1 Lo 1 .o
§gw¢“¢” ~ 5%5“5“ (5.188)
1 [y v YNTINRZ 1 SpeV Sl U
39y (P D" = Do) = 58 (77 — 7n") (5.189)
Ryuwpo b P97 = 0. (5.190)
Hence .
Lp =~ 75“5” + 5@ =) (5.191)
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up to second order. Note that the last term of the Lagrangian (5.104) does not contribute as seen in (5.190).
Also if the Lagrangian is evaluated for constant paths, it takes the form

_ 1 _ _
LEM)O’ ¢0, 1)bO] = _iRquo(¢0)¢g¢g¢g¢g- (5192)

The result is that the integral splits into an integration over non-constant paths and an integration over con-
stant paths. In the 8 — 0 limit, when the contribution of non-constant paths are exponentially suppressed,

(M) = Tr(fl)FefﬁH _ ’Dﬁf”D"‘/_JDw e foﬁ dr[LEHEr+ 5 (7' 0t —it )] eff dtL Ry po (o) 08 s DoYE (5.193)
PBC

As previously done, let us now Fourier expand the fields

Z gkf 27T’L]€T/ﬁ (5194)

k=—o0
277sz/[3
Z nt— (5.195)
k=—o00 \/>
= Z ﬁiif e2mik/8, (5.196)

k=—o0

By integrating out the non-constant fields, we note that their contribution is just 1 since from (3.45)

B Iy
pere Jy €€ _ 1 - (5.197)
PBC Det’ (—-&) Det’ (-£)
and from (3.122)
,fﬁdTl(—;wlL,w Y ,fﬂdT—u-u ' d
/ D/ Dnle” Jo VT T — Di'Dn'e” Jo T = Det () (5.198)
PBC PBC dr

where the ” signifies that we are integrating over non-constant configurations. We are left with
Tr(—1)FefH = / DéoDijoDipe 2 Fnvoa 6 vi0GwS (5.199)

Before, we integrated over fluctuations around ¢ = ¢ and we could rely on the flatness of the metric
under Riemann normal coordinates. Now however, we are integrating over ¢g, i.e. over the manifold itself.
In order to find the form of the measure in our curved space setting, we introduce an orthonormal frame
field in the spirit of general relativity. The idea is to use that we know what the measure looks like in flat
space to get the expression for the curved case. Let {e,} be a basis on the tangent space T,M such that
et ey’ guy = dap. As before, the greek letters denote the curved indices and the latin ones the flat. Let e”
be the inverse of e,*. Going from the flat description to the curved one

m

£ = ", e
n*=e" " (5.200)
nt = e, n"

the measures change as follows:

d d¢
D&y = y/det(guw) H 507 det(gw)(%iog

DD = H dig dngy

(5.201)
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where we used that det(e®,) = y/det(g,,). Henceforth, we will use the notation g = det(g,,). The above
argumentation is quite heuristic, but it gives us the desired result. For a more complete treatment of path
integrals in curved spaces, we suggest the interested reader to investigate e.g. [25]. Note that this step in
the N' = 1 case would just produce cancelling determinant factors, thus leaving the measure unchanged from
the flat case.

Now, through the same argument as around (5.88), we observe that d&) = \/deo, dnly =
1

1

\/de,/){)‘ and

dny = \/Bz/;g . Therefore
(Pt _ L dle 1 A N T T
r(—1)Fe =7 MW\/?/(Edde%)ez uroo Vo VG VoV (5.202)
Note that integrating over all constant paths ¢q is the same as integrating over the manifold. [Ii_;et us rescale
away the apparent 3 dependence. Making the change ' = 6%/}6‘ , which implies that H dgdg =
. a=1
B8 [T dvidu, we get
a=1
Tr(—1)F e PH = 1 ddxl/gi <ﬁ d¢’ad¢’a> 3 Ruvpa V0" 05" 03 ¥ (5.203)
FERACHERV A T |
Removing the primes on the integration variables, we thus have
Tr(—1)Fe PH = / dlz 1 / (ﬁ dwadw> e3 Buvpo (2)P5 050505 (5.204)
M (277)% V9 a=1 v . .

Observe that if the dimension d is odd, the integral will vanish since the expansion of the exponent yields
terms with fields coming in multiples of four. This is expected as it is a well-known fact that the Euler
number for odd-dimensional manifolds vanishes. Assume therefore that the dimension is d = 2n for some
positive integer n. To more directly get to the form we want, we make the change of variables

€
2
_ 1 )

vy = —= (W1 + i)

5

(5.205)

5

1 1
where ﬁd}l and ﬁ@bg are the real and imaginary parts of 1y respectively. The Jacobian for this change

of variables is

1 i
ZEZ?ZZi = ldet | V2 V2 || =(ii=it (5.206)
V22
Thus, the exponent in (5.204) takes the form
1 7 v, o 1 v o
§Ruvm 57/’0@/’57/’0 = ZRuupaMLl/’l 51/’2 (5-207)

where we again have used the antisymmetric properties of the Riemann tensor in conjunction with the
antisymmetrization due to the fermionic variables, together with the first Bianchi identity to simplify the
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expression. We end up with

_1\F . —BH _ i d'z I Ruvpo OV PEYS
Tr(—1)"e —(ﬂ_)g M\f Hdwzd% €

S /| d'a Hdwzdwl (Rupo 005040 8
4%( )( )% f Hvp 1 2

d

2
G LR R L
= it L s [ ettt

X RMIVIPIUI e RMnVnPnUn i”’(/}glwlylwgl e 1/’1”%" Tn 2
1 / d*e / d 13d 1

= == [ ayd. . dpldyd. .. dptx

4% (%)'(271_)% o \/g 2 ¢2 ’lr/)l ¢1

X R#1V1P101 e Rﬂn’/npngn : 1/}1" 1 gl T w2" 2
= 71 / d'x dpd du)ldwd diplx
= 5 - 5

4% (4)1em% Ju VI e

PV i Vn 1 d, ;p1,,01 Pn |, On
x € " anleﬂn'“Rununpnanwl-“d’ﬁ/}g SRR

@t Iy
= dl‘“dwu #11’1 ;U'nl’nRu v1p10 gl gl e RMnVnpno'n 5" ‘27"
S (H -

(5.208)

where we in equality three recalled the ordering of the measure (which came from how the coherent state
path integral was derived)

d
H dipSdp® = dyddy?d . .. dpidipt. (5.209)
a=1
The Levi-Civita symbol arises since the 1, antisymmetrise the 1 and v indices. Following the procedure of
the N' =1 case, we now switch to the language of differential forms,

1
Tr(=1)FePH — 7/ MLt R i N ARy
(=1)%e 2l 2m)" Jo e e 5.210
. (5.210)

= o P

1
where R, = §R;wn0dmp A dz? is the curvature 2-form and Pf((4),,) = 2"77,'6”1”1 Hnn A A
with (A),, being a 2n x 2n skew-symmetric matrix, is the Pfaffian of (A),,. We have denoted the Levi-Civita

tensor by gt1vi-Hntn — \76“1”1“'“"”". Our result is summarised in the following theorem:

g
Theorem 5.2. (Chern-Gauss-Bonnet) Let M be a closed, oriented d-dimensional Riemannian manifold,
equipped with the metric g,,,. Let R,, be the curvature 2-form of the Levi-Civita connection associated to

Guv- Then
1

- Pf((R)uw) ifd is even
NP b= R R

0 if d is odd

(5.211)

where x(M) is the Euler characteristic of M.
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Example 5.1. For d = 2, recall that the Riemann curvature tensor is given by
Ruupo = K(gupgm/ - gMO’ng) (5.212)

R
where K = ) is the Gaussian curvature and R the Ricci scalar. We get

1 1 1 1
M)=— | —e"R,,,odz’ Ndz® = — | ——=Rys12dz’ A da?
X 87r/M\/§6 et 2w/M¢§ et R

1 / 1 1 2 1 2
= — — K (911922 — 912921 dr* Ndx® = — K gdl‘ Adz 5.213
27 )y Vi ( ) V9 (5.213)

2 M
1

= — KdA
2 M

which is the famous Gauss-Bonnet formula for closed and compact surfaces.

6 Equivariant Cohomomlogy and Supersymmetric Quantum Me-
chanics

We have so far investigated a few examples of index theorems on closed oriented Riemannian manifolds.
However, in physics, there is often a group action on the manifold. A typical such case is when we are
dealing with a gauge theory. Recall that given a d-dimensional closed oriented Riemannian manifold M
and a nilpotent operator @) (represented by the exterior derivative d) acting on the associated Hilbert space
(represented by the complexified space of differential forms Q(M)¢ := Q(M) ® C), the Witten index for the
N = 2 non-linear sigma model is given by

d d
Tr(—1)FeP = "(~1)"dim(Harm" (M, g)) = > _(—1)"dim(Hj5(M)) (6.1)

r=1 r=1

1 1 1
where H = 5{@, Q') = i(ddT +d'd) = §A is the Hamiltonian of the system. We now would like to have

a notion of cohomology for the orbit space. That is when the notion of equivariant cohomology comes into
the picture.

6.1 Equivariant Cohomology

Let G be a topological group acting continuously on some topological space X (such a space X is referred
to as a G-space). In the following, all group actions will be continuous. The main idea of equivariant
cohomology is that if G acts freely on X (i.e. the stabilizer subgroups are all trivial, in other words, the
action of a an element of G not being the identity has no fixed points), then the equivariant cohomology of X
should be the regular singular cohomology for the orbit space X/G. The freeness of the action ensures that
the quotient space will still be nice, for instance when X is a manifold, then X/G will also be a manifold.
However, the action is not always free. Generically, quotients of non-free actions yield undesired results; the
space could for instance no longer be Hausdorff or lose smoothness. Luckily, there is a way to construct
a space X' homotopy equivalent to X such that the action on X’ is free (recall that the cohomology is
homotopy invariant). Such a space can be seen as the “correct” replacement for X/G.

Definition 6.1. Let G be a topological group and let 7 : EG — BG be a numerable'® principal G-bundle.
If for any G-bundle 7p : P — M, there is a map f : M — BG unique up to homotopy (known as the
classifying map of P — M) such that P is isomorphic to the the pullback bundle f*(EG), 7 : EG — BG is
called the universal G-bundle and BG is the classifying space of G.

8We will always assume that the principal bundles are numerable. For details and the definition of a numerable principal
bundle, check [26].
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The existence of universal bundles can be proved via the Milnor construction as was done in a paper
by Milnor from 1956 [27]. We review the construction following Huseméller [28] without proving it has all
the correct properties while also glancing over a few other details. We define the join A = Ay x---x A, of
topological spaces A;, i = 1,...n where a point in A is specified by

e non-negative real numbers tq,...,t, such that t; +---+1¢, =1 and

e for each t; # 0 a point a;, where a point in A is written as (z,t) = (t1a1,...,t,a,). In the cases when
t; = 0, the a; are arbitrarily chosen.

Next, we define an infinite join as the join of (countable) infinitely many topological spaces analogously, but
with the extra requirement that all but finitely many ¢; should vanish. Define now

EG=G+«Gx*... (6.2)

as the infinite join of topological groups G, together with the right action of G

(9. )h = (gh,t) = (t1g1h, t2g2h,...) (6.3)

for h € G. Note that this action is free; it is basically just the right action of the group on itself in each
entry. This makes 7 : EG — BG into a principal G-bundle with BG = EG/G and 7 the quotient map.
This is the Milnor construction.

As an application of a theorem by Dold [26] we also have that a principal G-bundle is universal if and
only if the total space EG is contractible. Define now the homotopy quotient X of a topological space X
by G as the orbit space (X x EG)/G where the action of G is the diagonal action. Since the action of G on
EG is free, it will automatically be free for X x EG regardless of the nature of the action on X. We have
thus kept our promise about finding a space homotopic to the initial one with a free G-acion. It is time to
define the concept of equivariant cohomology.

Definition 6.2. Let G be a topological group and 7 : EG — BG be a universal G-bundle. The equivariant
cohomology ring of a topological space X with a continuous group action of G is

He(X) = H(Xa) (6.4)
where X is the homotopy quotient of X by G and H(X¢) is the singular cohomology ring of X¢.

Remark. In the case when G acts freely on X, the equivariant cohomology H(X¢g) reduces to H*(X/G),
which agrees with the statement in the beginning of this section [29].

Example 6.1. In the case when X is a point,
HiH(X)=H"((X x EG)/G) = H*(EG/G) = H*(BG). (6.5)

So far we have worked quite generally. In the following, we will explore a couple of models which
construct equivariant cohomology in more specific settings. The models in consideration are the Cartan and
Weil model. It will turn out that the cohomology computed by each model are in fact equal.

6.2 The Models

Both of the models in consideration aim at constructing equivariant cohomology in the case when X = M is
a smooth manifold and G is a compact connected Lie group acting smoothly on M (we refer to such M as
a G-manifold). We start by recalling some terminology. Denoting the de Rham complex of M by Q(M), a
differential form w € Q(M) is right G-invariant if (Ry)*w = w for all g € G, where R, : M — M is the right
action of g on M. Furthermore, if txw = 0 for all X € g, where g is the Lie algebra of G and ¢x is the interior
product with X, we say that w is horizontal. When we write tx we actually mean the interior product with
respect to the fundamental vector field X# generated by X, i.e. tx := tx#. The fundamental vector field is
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d
defined by X7 f(p) := o

defined by Reypex)(p), which is a curve in the direction of the group action. Hence, if 7 : M — M/G is a

[f(Rexp(tX)(p))Ht:O. Note that X7 is just the directional derivative of the curve

principal fibration with fibres G}, [p] € M/G, the space of X # at a given point p € M is the tangent space
of the fibre G, at p, also known as the vertical subspace at p.

Remark. We discuss some technical details. The pullback (R4)* gives a representation on Q(M); the map
¢ : G — End(Q(M)) defined by ®(g) = (Ry)" is a group homomorphism:

P(g)®(h) = (Ry)"(Rn)" = (RhRy)" = (Rgn)" = ®(gh). (6.6)
Let o € Q(M). This induces a representation on the Lie algebra,

d . d "
Lxa:= %[(Rexp(tX)) O‘”,gzo = %[(Remp(tX#)) a]|t=0 =Lx#a (67)

which is nothing but the Lie derivative with respect to the fundamental vector field. If we would have chosen
the left action [, instead, the corresponding representation would have been given by ®(g) = (l;l) =g
instead since l4l, = lgp. This in turn would have resulted in that the interior product would have been
defined as tx = t_x#.

Let G act freely on a smooth manifold P. Then the projection = : P — P/G is a principal G-fibration.
Define
Q(P)pbas := 7 Q(P) C Q(P) (6.8)

as the basic differential forms. The pullback by the projection 7* is injective and as a consequence, 7*Q(P)
is isomorphic to Q(P/G). Furthermore, the subalgebra 7*Q(P) is closed under exterior derivation since the
exterior derivative commutes with the pullback by a map. From here we see that we can use this observation
as a starting point to the modelling of the equivariant cohomology of M; with the diagonal action, the
projection 7 : M x EG — Mg is a principal G-fibration. In other words,

Q(M X EG)bas = Q(Mg) (69)

The de Rham theorem asserts that the de Rham cohomology of M is isomorphic to the singular cohomology
of Mg, i.e.
Hjp(Mg) = H:(M). (6.10)

Proposition 6.1. A differential form w € Q(P) is basic if and only if it is G-invariant and horizontal.

Proof. We conduct the proof locally. If it is true for an arbitrary chart, it holds globally as well. Let
1 1

W= =Wy, . dx" A -Adz"" € Q7 (P). Assume first that w is basic, i.e. w = 7*n for some n = —'nm__urdx’“/\
7!

7!
-« Adzt € Q"(P/G). Then we can write

1
w=m'n= M O d(z* o) A+ Ad(a*" o). (6.11)

To check G-invariance, act with (Ry)*,

1
(Rg)"w = 1 ey 0O Ry d(z"* oo Rg) A--- Nd(zH oo Ry)

(6.12)
= g 0T d(@t o) A Ad(a o) = w.
r!

The second equality is true since R, just moves any u € P along the fibre which means if 7(u) = p, then
m(Rg(u)) = p. Horizontality is checked by acting with ¢x where X € g

1
IxWw = mnmmur o (X#)Uld(x“z o 7'(') ANRERWA d(m”r o 7T). (6.13)
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Note that 7, .., is zero in the fibre direction, which can be seen as follows. Let dim(P/G) = m and
dim(P) = n. Let U be a coordinate patch of P/G and V a coordinate patch of G. Then P can locally be
written as U x V. If the coordinates on U are z'...z™ and on V are 2™*! ... z", then Wy, ..., is zero for
v; > m+1if w= 7"y since the p; in n,, ,, only run between 1 < p; < m. By construction, (X#)”1 can
be non-zero only in the fibre direction, i.e. for m + 1 < v; < n. Hence txw = 0.

Assume conversely that w is both G-invariant and horizontal. For w to be a pullback projection, it needs
to at each point live only in the cotangent space of P/G. The horizontality condition guarantees that wy, . ..
is zero for m 41 < v; < n; just take the interior product with the fundamental coordinate basis vector fields
of V. Furthermore, G-invariance means w is constant in the fibre direction, hence w can be viewed as a
form on P/G. The pullback projection can now be constructed as w = 7*n where n,, ., = wy,.. ,, where
1< <m. O

The connectedness of G implies that G-invariance is equivalent to the vanishing of the Lie derivative,
Lxw =0 for all X € g [29]. Recall that the Lie derivative on differential forms satisfies

Lx =1xd+dix. (6.14)

Given a connection form w € g ® Q'(P) on P and its corresponding curvature form Q € g ® Q?(P), we
have the following relations:
txw=X tx2=0

Q=dw+ %[w,w] dQ = [Q,w] (6.15)

where [,] here denotes the Lie bracket of g. By modelling using these relations, we will get the desired result.

6.2.1 The Weil model

The Weil model is constructed over an object known as the Weil algebra
W(g) = A(g") ® S(g") (6.16)

where A(g*) is the exterior algebra over the dual g* of the Lie algebra g. S(g*) is the symmetric algebra
over g* which can be constructed via the tensor algebra by taking the quotient of the ideal generated by
w1 @ug —us ®uy for all uy and us in g*. In effect, this just means that all elements commute under the tensor
product so the symmetric algebra can be identified with the polynomial algebra generated by a chosen basis
{u®} of g7,

S(g") = Rlu). (6.17)

Next, we give W (g) a Z-grading by assigning to the generators C* € g* of the exterior algebra degree 1 and
generators of the symmetric algebra u® € g* degree 2. In this way, W(g) is a commutative graded algebra,
ie. with wPw? = (—1)Pwlw? for w? € WP(g) (we denote the subspace of elements of degree p with W?(g))
and w? € W9(g), freely generated by the generators C* of degree 1 and u® of degree 2:

W(g) = R[C;u]. (6.18)

In this way, the Weil algebra takes on the structure of a supercommutative superalgebra (see Definition 2.5)
with
W(g) = W4 (g) & W (g). (6.19)
We would like to encode the relations (6.15) in the Weil algebra. Let {e,} be a basis for g dual to
{C*} and {u®} with the corresponding structure constants f;.. We define a differential operator dy, on the
generators of W (g) as

1
dwC* = —3 fLCtCe +u®

dwu® = —f§.C%u’

(6.20)
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and extend it to all of W(g) as an anti-derivation
dw (wPw?) = dwwPw? 4+ (—1)PwPdww?. (6.21)

The newly defined differential operator dy is shown to be nilpotent via the Jacobi identity of the structure
constants f.. We now define the action of the interior product ¢, and the Lie derivative Lx on W(g) as
superderivations of degree —1 and 0 repectively, satisfying
Le,C? =60
Leaub =0 (6.22)
Lx =txdw +dwtx.
In the future, we will use the notation ¢, = te,, and L, := L,,. Just to to clarify, on Q(M) the operator

tg 18 g = V*i, where V#9, is the fundamental vector field corresponding to e® (this carries over to L,
similarly). The cohomology of W(g) with respect to dy yields [30, 31],

Hi,, (W(g)) =R (6.23)

which is as we want since W (g) is expected to be a de Rham model for the contractible space EG (Poincaré
Lemma).

What we wish to obtain is a de Rham model for Mg = (M x EG)/G. It turns out that we obtain the
correct results by using the basic subalgebra of W(g) ® Q(M). This is where (6.22) comes in.

Definition 6.3. The complex

Qg (M) := (W(g) @ QM ))bas

dim(G) dim(G) (6.24)
= ﬂ ker(ta @ 1+1®1tq) | N ﬂ ker(Ly ®14+1® Ly)
a=1 b=1

is the differential graded algebra (see Definition 2.10) of equivariant differential forms on M under d :=
dw ® 14+ 1® dps, where djy is the exterior derivative on Q(M).

In order to make our notation easier, define ¢, ;== 1, ® 1 +1® 1, and L, := L, ® 1+ 1® L,. Note that d, ¢4,
and L, act as graded derivations of degree 1, —1 and 0 respectively on Q¢ (M) in order to match with the
algebraic structure of the space. Also, importantly, d squares to 0. One can check that a general equivariant
differential form ¢ € Q¢ (M) can be written in the form [32, 33]

n

p=]]0-C"%)a (6.25)

a=1

where n is the number of generators in g and o € (S(g*) ® Q(M))€. Here, we have denoted the infinitesimal
G-invariant subalgebra of S(g*) ® Q(M) by an upper G.

It is on the space Q¢ (M) which the Weil model is defined. We will now sketch a motivation for why this
is sensible, more or less taken straight from [32]. From the connection and curvature forms of P and the C*
and u®, we get an induced homomorphism of differential algebras

W(g) — Q(P). (6.26)

From the way we have defined the exterior derivatives and interior products, this is indeed a homomorphism
of differential algebras. Together with the lifting of differential forms on M to forms on P x M, we receive
the homomorphism

w:W(g) @ QUM) — QP x M) (6.27)

57



which in turn induces a homomorphism of subalgebras
w: QM) = QP x M)/G). (6.28)

In the literature, w is known as the Chern- Weil homomorphism [32]. This in turn induces a homomorphism
on the level of cohomology
H;(Qa(M)) — Hijp((P x M)/G) (6.29)

which, if G is compact, can be shown to be an isomorphism. With P = EG, we have thus found that
Hi(Qa(M)) = Hyp(Mg) = He(M). (6.30)

Details can be found in [30, 32].

6.2.2 The Cartan model
The Cartan model is built on another subalgebra of W (g) ® Q(M), namely

(S(g") © QM) 2= (W(g) ® UM))bas = Qi (M). (6.31)

The algebra isomorphism is induced by the map € : W(g) ® Q(M) — S(g*) ® Q(M), defined by £(C*) = 0.
In fact, as stated in [33], the map (W (g) ® Q(M))pas — (S(g%) @ Q(M))€ given by

ﬁ(l = C%)a— a (6.32)

a=1

is an algebra isomorphism, known as the Mathai-Quillen isomorphism. We define the derivation D on
S(g*) @ Q(M), for a € Q(M), by

Du® =0

6.33
Da=da—u"tqa=(10dy —u* @)1 ® ) (6.33)

which is nilpotent on the subalgebra (S(g*) ® Q(M))®. In usual order, we extend it to the whole algebra as
an anti-derivation. This makes the isomorphism into an isomorphism of differential algebras, proven in two
different ways by Mathai and Quillen [32] and by Kalkman [31]. By defining dj; as an anti-derivation on
(S(g*) @ Q(M))© satisfying dpru® := 0, we are allowed to write

D =dy — u®t,. (6.34)
In this form, we check that indeed
D? = d3; + uulray — u{dps, ta} = —uL, = 0. (6.35)

6.2.3 An example: the abelian case

We investigate the case G = U(1), closely following the procedure of Atiyah and Bott [30] in the first part of
the example. In the second part, we add some structures to the models in the form of inner products. Let
us begin with the case when the Lie algebra is g = u(1) = R so we only have one generator which we will
call e. All structure constants vanish, which means that

Let C be the dual generator of u(1)*, (C' = 1. As before, let u be the generator of S(g*). Then W(g) =
R[C, u] so we have that ¢ € W(g) @ Q(M) decomposes as the finite sum

¢ = apu’ + Chpu (6.37)
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where a, b € Q(M). Furthermore, if ¢ is to be basic, we require that

Lo = (tear)u® + biu! — Crebyul =0

Lep = (Leag)u® + C(Le(b))u! =0 (6.38)

where we have used that L.C = L.u = 0 which is implied by the vanishing of the structure constants. We
get the equivalent conditions for ¢ to be basic

Leap =0
cih (6.39)
bk = —LleQ.
In other words, the elements in (W (g) ® Q(M))pas will be of the form
0 = apu® — Creaqu! = (1- CLe)akuk (6.40)

with the condition L.ar = 0, i.e. ai € Q(M)G

Consider the algebra of U(1)-invariant differential forms Q(M)% = ker(L.). Then let Q(M)[u] be the
polynomial ring generated by u with coefficients in Q(M )G. Note that the fact that L.u = 0 means that
S(g*) = S(g")“. In other words, L.a = 0 for all & € Q(M)%[u]. Hence Q(M)[u] = (S(g*) @ Q(M))¢ which
is nothing but the space for the Cartan model. Inspired by (6.40), define the algebra homomorphism

§ QM) u] — W(g) @ QM) (6.41)

given by
j=1—-Cl (6.42)

or equivalently, for a € Q(M)%,

jla)=a—Ctea

: (6.43)
i) = u.
By the conditions (6.39) for an element in W(g) ® Q(M) to be basic, the homomorphism
7+ QM) ul = (W (g) @ QM) )Jbas = Qc(M) (6.44)

is an algebra isomorphism. To make this into an isomorphism of differential algebras, we require j to be a
chain map, i.e.
jiD =dj (6.45)

where d is the differential operator on Q¢ (M) (given in definition 6.3 with dy satistying (6.36)) and D is
the differential operator on Q(M)[u], to be found. We now have
dj(a) = d(a — Ctea)

=dya—dwCrea + Cdprtea

=dya — utea — Credpra (6.46)

= j(dara) — j(utea)

= j(dpra — utea) = j(dpra — utea)
where we on the third equality used (6.14) and (6.39), and on the fourth the fact that the interior product

squares to zero. Hence we obtain
Da = dyra — utea. (6.47)

Since du = dwu = 0 (i.e. u is closed) we see that

Du = 0. (6.48)
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We have thus obtained the differential D on Q(M)%[u], which is nothing but the differential defined by (6.33).
This example is just a special case of the proof provided by Mathai and Quillen [32] for the equivalence of
the Weil model and the Cartan model for a general compact and connected Lie group.

The space Q(M)%[u]c = Q(M)E[u] can be endowed an L2-inner product in the case when M is compact
and oriented. Fix a X = se € u(1) with s € R\ {0}. Let 8,8 € Q(M)C[u]c with 8 = Bru” and g’ = Bju*
where Sy, 8), € Q(M)c. Note that we may define an inner product on R[u] which on homogeneous elements
is given by

(u®, uly = 116M (6.49)

and then extending it linearly to the whole algebra. This bilinear map is symmetric since 8" vanishes unless
k = 1. Under this inner product, the adjoint operation u' to multiplying with u, is found through

(uu® uly = MR = (1 — 1)16R L = (W ! (6.50)
thence 9
| 6.51
ut = o~ (6.51)
where 9
%uk = kutl (6.52)
Note that this works for the case when [ = 0 as well since k + 1 > 0 for which 6**1' = 0. We may extend
this to an Hermitian inner product on Q(M)&[u] as
(8,8") = (Bru®, Biu') := (Br, B) (u", u') (6.53)

where (,) is the regular inner product (5.149) on Q(M)¢

(w,) = Xk: /M @r A K- (5.149)

By furthermore assuming that M has no boundary (M is hence assumed to be closed and oriented), the
usual adjoint d' to the exterior derivative d is defined. In this setting we may find the adjoint to D, which
we denote by DT, using (6.53). Differentiating £,

DB = dy Bru’ — refrut! (6.54)
we get
(DB, B') = (dar B, Br) (u*, u') = (e, Br) (w7 )

= (Bl Bt o) = (Bt B0, ) (6.55)

0
= (B, di Biu' — i[5 5 -u).

The operator djw is just the co-differential from Hodge theory and Ll = " A\ where, locally, e = V,dx"
such that e? = V#9, is the fundamental vector field generated by e. By setting the relations

o
—a=0 6.56
70 (6.56)
djwu =0 (6.57)
du=0 (6.58)

with a € Q(M)E, the adjoint of D
o

Dl =di, — %Ll (6.59)
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is thus found. As we have hoped for, the adjoint D' preserves the Z-grading of QM )8 and maps the
subalgebra to itself. Also, D' is nilpotent,

9
ou
on the invariant subalgebra, which is precisely what we want.

The case G = U(1) extends naturally to the case when G = T" = U(1)" is a rank n torus. What needs
to be done then is, for a chosen basis {e,} of its Lie algebra and dual basis {u®}, to extend Q(M)&[u] =

(S(g*) @ Q(M))E so that it has indeterminates {u®} (L,u” = 0 holds for this case as well since the structure
constants remain zero). The corresponding derivative D on this space is given by

(D1 = (@2 + (50262 = gt it} = =220 =0 (6.60)

D =dy — u®iq. 6.61
M a

The inner product on C[u?] is similarly constructed by defining on homogeneous elements

n

n n n
<H(u‘“)ki, H(u‘”)lf> = [ o)™, (o)), = [ ate™". (6.62)
i=1 j=1 o 0=l i=1
and then extended linearly to the entirety of C[u®]. To find the adjoint to u®, assume that ¢ = a, for some
r € {1,...,n}. It is sufficient to derive it for homogeneous elements as they constitute a basis for Clu®].

Then

<uc ﬁ(’uai)ki, ﬁ(uaj)lj> _ <(uar)k,‘+1 ﬁ(uai)&-’ ﬁ(uaj)lj>

i=1 7j=1

i=1 j=1
u L

= () )y T ), (),

i=1
i (6.63)
= ((u)*r L (o) T L)k, (o)),
o
_ <H(uai)ki’lr(ua7.)l,.1 H(uaj)lj>
i=1 j=1
it "
where we on the third equality used the same computation as in (6.50). We find that
0
“fh= _— 6.64
()l = o0 (6.64)
where 9
S (ub)F = 598k (ub)* 1, (6.65)

. o 0 . . .
From this derivation, observe that Jue picks out only the factor with a, = ¢. Since all the factors commute,
U
0 . .
we may conclude that e commutes with everything except for the case a, = ¢. Moreover, due to the fact
u

0
that u¢ acts linearly, v is a linear operator and thus a (degree —2) derivation. Following the previous
U

procedure, we define the inner product on Q(M)& [u?] via, with 8, 8" € Q(M)&[u?],

(8,8 = (Basankr.e, (W) o) B0y, () (u))

" N " " (6.66)
= (Baycankrtn s Bay anty 2, (@) (@) ()P (),
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From there, the adjoint to D can be found as

0 1

Df :d}[\/l— Ou“L

(6.67)

la analogously to L . We have thus the case when G is a compact connected abelian

where we define ¢/ =1
Lie group covered.
Let us now repeat the analysis, but in the framework of the Weil model. Inspired by [34] and looking at

(6.20), we see that we can write the differential in the toroidal case G = U(1)" as

d=dy +u®

o (6.68)

We may construct an inner product in A(g*) as in (6.62) by defining on homogeneous elements

<H (C™)F H (C)! > = [Jice )k, (o)l = T % (6.69)
C

=1 j=1 i=1 =1

where k; and [; are either 0 or 1, and then extending it by linearity to the entire algebra. By a similar
computation as before, one shows that the adjoint to C® is the degree —1 differential

0

at .
¢ e

(6.70)

which satisfies

b ab
3Oa(0) = koo, (6.71)

An Lso-product on Qg (M) can now be constructed as

<7> = (7)<7>u<7>C' (672)

Using this construction, the adjoint to d will be given by

0
Ous’

dt =di, +Cc° (6.73)
This operator preserves the Z-grading of Q¢ (M) and is nilpotent.

Let us conclude this part by having a brief look at the (co)differential in the non-abelian case as well for
the Weil model, inspired by above discussions. By investigating (6.20) and (6.68), we see that

0 0
_ a b e d, b
d = d]w + u W — *fbcC C 80‘1 + fbcu C W (674)
From what we learnt before, the adjoint is then given by
0 1 o 0 0 8
dT _ dT a - d d d )
M+ C g + 31 g poe et gt pa (6.75)

6.3 Supersymmetric Quantum Mechanics from Equivariant Cohomology

We would now like to construct quantum mechanics using both the Weil model and the Cartan model of
the equivariant theory. The goal is to see the connection between what arises from the respective models
and relate them to gauge theory. As the equivariant cohomology of these models computes the de Rham
cohomology for the orbit space of a group action of a (compact and connected) Lie group, we expect the
obtained quantum mechanics to be gauged with the given Lie group as gauge group.
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6.3.1 Gauged N = 2 non-linear sigma model

Let us first investigate the simplest case without supersymmetry

1 "y

L= §guu¢u¢ (676)
together with the transformation

0a" = aVH(9) (6.77)
where a is infinitesimal and V is a vector field. Varying the action with respect to this transformation, one
gets

1 .
508 = / A5 D9V + GOV + g0 V). (6.78)

The action is invariant if and only if

apguuvp + gpua,uvp + gupauvp =Lyg=0 (679)

which we recognize as the Killing equation. Rephrased, the action with Lagrangian (6.76) is invariant under
(6.77) if and only if V' is a Killing vector field, i.e. J, is an (infinitesimal) isometry. From now on, we assume
that V' is such a vector field. Let us as a next step make the variation local by letting a = a(t). In such case,
the original action will no longer be invariant under the transformation (6.77). For things to work out, we
need to introduce a gauge field A = A(t) and modify the Lagrangian

1 . .
L= 59u(¢" + AVH)(¢" + AVY) (6.80)
for which
005 = /dtg,w(d + 6, A)VH(P” + AV?Y) (6.81)
so the action is invariant provided
0, A = —a. (6.82)

Let us now return to the case which is interesting for us, namely the A" = 2 non-linear sigma model?.

Recall that the Lagrangian is given by
1 " i - - 1 - .
L= ig,ul/(rbp‘qsy + §g/tv(¢“Dt7/}V - Dt’lp#d)l/) + ER/Lpr¢M¢V¢p¢U (5104)

where Dyt = ¢“ + (b”l”p‘gz/}” is the covariant derivative along the path ¢(¢). The action is invariant under
the transformation

St = aV* (6.83)
Sat0t = ad\VHyp* (6.84)
Sa0t = ad\VF? ., (6.85)

This is verified after some calculation, using that V' is a Killing field. This also means that the Lie derivative
of the Riemann tensor with respect to this vector field vanishes, £y R = 0. Following the same procedure
as above, make the parameter a local by adding a t-dependence and introduce a gauge field A(¢). The
Lagrangian needs to be modified by replacing

P — P =t + AV (6.86)
G — P = ADNV (6.87)
P P = ANV (6.88)

9 The following could be modified to work for the N = 1 case as well. We will not do it here since it is not really relevant for
what we are considering later.

63



SO

1 -, -, i - = _ 1 o
L= S9wd"d” + 59 [ww" +OTLU7) = (WF + TR0 | 4 S Ruwpa " 9Py (6.89)
Observe that
5ad" = ad\VH O + (4 + 0,A)V* (6.90)
Sabt = ad\VHPN 4 adh0,VFE G P + (a + G, A)DNVHp (6.91)
Sat" = ad\VH > + adrd, VI GMPP + (@ + 6,A) 0NV (6.92)

so by comparing with what we would have in the case when a is a global parameter,

St = ad\VH (6.93)
ot = ad\VH> + adrd,VF e P (6.94)
Sath = AV > + adrD, VI PP (6.95)

we see that the variation of the action is

5,8 = / dt{ G (@ + 6, A)VHG” + %g,w [" (@ + 6, A)ONV PN + P (a + 6, A) VAT, 47
(6.96)
— (@ + 0, A) NV Y — (0 + 5aA)V”F’,faw"¢”]}-

Again, the variation vanishes provided
0, A = —a. (6.97)

Given this result, the model is indeed invariant under local gauge transformation, corresponding to local
isometry transformations which means the isometry group is identified with the gauge group.

6.3.2 Supersymmetric quantum mechanics in the Cartan model - the abelian case

We start with the simplest example to illustrate the process of deriving the quantum mechanics corresponding
to the different models. We will begin by investigating the case of the Cartan model. Recall that in section
5.2, the supercharges where given by the de Rham differential and the co-differential. Mimicking that fact,
define supercharges

Q=D =dy —uty (6.98)
Qt =Dt =dl, - aia ne (6.99)

Recall that in our notation ¢, = V*¢, and = Viudx#A. In order to determine the structure of the system
we make use of the (anti-)commutators

[das, f(2)] = (Vf)l” (6.100)
[dhys f(@)] = = (V) (6.101)
{dar, i} = (VX )utrte (6.102)
{di,,ix} = —(V, X, )" (6.103)
{tx,0h} = g X"Y” (6.104)
[aia’“b} =0 (6.105)
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for some function f and vector fields X = X*0, and Y = Y*9,. Relations (6.100), (6.102) and (6.104)
can be derived by using the fact that dj; and tx are anti-derivations. For instance, with o € Q(M)¢ and
recalling (5.158),

dM(ng(Oé) =dy(Xpda! AN o) = dpy(Xpda!) N oo — Xpda! N dyra
= (6.106)
{dpm, LJS(}O( = dM(L;Oé) + Xpda! Ndyra = dpy (X pda!) N o= (V, X, )de” Ada! Ao

which precisely gives (6.102). Equations (6.101) and (6.103) are just adjoints to equations (6.100) and (6.102)
respectively. As an example,

[l f(2)] = (~[dar, f(@))T = —(V, f)e# (6.107)

which is (6.101). The commutator (6.105) is also derived by using that 9 is a derivation. Take an element

ou®
B € QM)E[u](M). Then

0
ous

oub p O

bay —
(w'8) = 8ua6+u ou®

B = { 0 b] 8= aubﬂzd“bﬂ (6.108)

—u
ous’ ous

from which the commutator can be read off.
Using the commutation relations, we may derive the Hamiltonian

1 1 0 0
_ 1 — L, v T, tv v, T LYV
H= §{D,D } = 3 [A + (Vo Vo) (e — Fuat V) + VEVZ U + 9w VEVy uaaub] (6.109)
with classical counterpart (using (5.169))
1 - -
H= 5 |:g,ul/PlLPV - prai/fuﬂfyl/}pﬂfa
(6.110)
+ Vo Vau (b 9pFp” — b PH”) + Vo, Vapth ¥ + ngaﬂwbabb}

where we have defined fields corresponding to u® and S
b s u® (6.111)

0
b — —. 6.112
e (6.112)

Continuing to utilize the commutators, we can compute the infinitesimal transformations of the fields by

50 = [eQ + €QT, 0] = [edps + &dl,, O] — [euta + é%ﬁl, O] (6.113)

where the brackets above stand for the super commutator (see (2.15)) and O is some operator. The infinites-
imal transformations of the fields take the form

St = et — et (6.114)
Syt = e(igh — Th pPyT) — VLD (6.115)
S = E(—idh — Th Py7) — VLD (6.116)
0 = —&V,, " (6.117)
0 = V" (6.118)
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after translating back to the classical case. Note that the first term in (6.113) gives rise to the infinitesimal
supersymmetry transformations in Section 5.2 for ¢*, ¥ and *.

Recall that in the Cartan model, we are working with invariant forms. In other words, we require that
the Lie derivative along the direction of the group action to vanish,

Lo ={dn, e} =0. (6.119)
Note that in particular £,¢9 = 0, which means the fundamental vector fields V,, are necessarily Killing vector
fields. Observe that {das, LL} =0= {djw, tu}. Hence

1
{daryvay = VHdar, 1y + (Y Vay ) 07 = Ev(m(st(LH) + (V, V)it (6.120)

where d4p is the SUSY variation in Section 5.2; we have that 64z (9" i) = {edar + €d§w, 9" 1, }. Classically,
this corresponds to dggr1*. Note that division by Grassmann valued numbers are generally not well defined,
in this case this just means that we remove € from the term. Hence

VIVA = Va9 t1P17 + (V, Vi )0 = 0 (6.121)

or classically, . B )
Var(io™ = T 0P97) 4 (V V)M 9” = 0. (6.122)

This could also have been done using the commutation relations. We may derive more constraints from the
vanishing of the Lie derivative. If £, = 0, then 6L, must also vanish. We have that

0 W], La). (6.123)

0L, = [eD + eDt, L] = e[dar, La] + €L, La] — eu[n, La] + €5

The first vanishes automatically. The second term vanishes thanks to V, being Killing vector fields. Let us
calculate the third and fourth commutator. The third commutator is proportional to

[Lasw] = [dnrtas o] + [tadnr, ). (6.124)

Taking the first term,
[d]\/[La7 Lb] = dM{La, Lb} — {dM, Lb}La = 0 (6125)

The first anticommutator vanishes directly and the second one vanishes by the constraint (6.119). Similarly,
[tadpr, tp] = 0 and hence
[La,tp] =0. (6.126)

For the fourth term, let w € Q(M). Since L, is a derivation (also, recall the notation ¢}, = V,,./* =V, ,dz"A),
EGLLW = L Vppda! Nw = Lo(Vipda") ANw + Vydat A Low <= [Lq, LZ] = Lo(Vopdat) A (6.127)

In other words

Lo(Vopda!) = (dyrta + tadps)(Vopda!) =V, (VI )da” + VIV, Vi, dat — VIV, Vi, dat

6.128
=VyV, Vadat + VIV, Vo, dat = (V'V Vo, — VIV, Vi )dat ( )
where we on the last equation used the Killing equation V,V;, + V,V;, = 0. Hence
(Vv v 9t
0=0L, =€V V., Vo =V, VMVb,j)wL (6.129)
which classically corresponds to
(VI Vay — VIV Vi )b+ = 0. (6.130)
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Note that we need to enforce these constraints by hand since @ = D is not automatically nilpotent (recall
(4.19) which requires this), but only on the invariant subalgebra.
Taking the conjugate momenta to b* and b* to be

Py = %Ea (6.131)
Py = —%ba (6.132)
the Lagrangian takes the form
L=Lyz+ Lo (6.133)
where 1 ) )
.o 7 _ — _ _
LdR = QQWQWQV + §g;LV(¢#thV - th#d)y) + iR;wpow'uquud)pﬂ}U (6134)
is just the A/ = 2 non-linear sigma model Lagrangian given in (5.104) and
Lo = %E%a - %Eaba =V Vi (BP9 — b ) — Vi Var b — g VIV BB (6.135)
This Lagrangian is proven to be a total derivative under the infinitesimal SUSY transformation &
1d — 1d .
L=e¢-— Rp¥) —e=— it 1
6 62 dt(gul/w (b ) 62 dt(guuw (b )7 (6 36)

given the constraints (6.122) and (6.130). As a verification, let us go through the Noether procedure to
obtain the supercharges

B _ . . . _ .
s = [ dt{;gww — M+ g €D — &)
5 [P (E(idY = T B007) — EVIH) 4 (P — e )T,
— (B! — T, ry) — EVIB )" — (e0F — &)Ll 07|

+ %Baévauw + %évaﬂwba

1d — 1d .
+ €§%(guu¢“¢u) - €2dt(guu¢“¢l’)}
B _ . . . _ .
- /0 dt {;gwéw” N+ g (e — ) (6.137)

2l — T, 0007) 4+ 5 (e — )T, u
— E(—ig — TPy )Y — (e — e )T), 0w
11( JH AV fli( KAV
+€2dt gwﬂﬁ ¢ )_€2dt QW¢ ¢ )
+ i€b" Vo bt + iébavaﬂwﬂ}
/ﬁ o d . WAV Ta _d . v a n
= dt <Z€dt(19uu¢”¢ -b Va,u'l/)#) + Zfa(flguuwﬂ(ﬁ -b Vaud}#))
0

Note that this is up to a few terms the same computation as in (5.109). The supercharges can thus be read
off,

Q = igu"d” — b Vot (6.138)
Q" = —igu W' ¢” — b Vot (6.139)
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which after quantization exactly correspond to D and D. However, it is at this point a bit unclear how to
relate the obtained Lagrangian to the Lagrangian (6.89).
6.3.3 Supersymmetric quantum mechanics in the Weil model - the abelian case

In this case, following what we did before, the supercharges will be given by

Q:d:dM—i—u“% (6140)

9
fo gt gt a
Qf=df =d), + 0" o

The Hilbert space is Qg (M) = (W (g) ® Q(M))pas with inner product (6.72). The following commutation
relations will be needed:

(6.141)

[ aaa,ub} = 5 (6.142)
u

9 b ab
{aCa’C }:5 (6.143)

The commutation relation (6.142) is proved in the previous section and the proof for (6.143) is given in
(3.73).
Using the commutation relations, the Hamiltonian corresponding to the supercharges can be computed,

1 1
H=2-{d,d}==|A+u"
2{d,d} 2{ +u

o .0
T

(6.144)

, C® and ——. We denote the classical counterparts

0
Note that the de Rham part is decoupled from u®, —
ou® oce

by

P ' x ( )
Y — g™ onn ( )
P gl (6.147)
b > u® (6.148)
J (6.149)

( )

(6.151)

ou®
¢t +— C*

b +——

c® +— i
ocae’

where ¢z, and L}qu are just the operators ¢, and LL acting only on the Q(M) part of (W(g) @ Q2(M))pas (and
supercommuting with the rest of the elements). The corresponding classical Hamiltonian takes the form

1 o _
H= 3 [9u P*P” — Ry po 0" P07 + bb + c| . (6.152)

68



Continuing on as in the previous section, the infinitesimal SUSY transformation of the fields are given by

(5¢u — aﬁ“ _ gwu

Sy = e(igh — Th pPep”)
St = E(—igH — TH PPy°)

0b* = —ec®
50" = ec”
oc® = eb”
5 = eb®

Note that the transformation of ¢, ¥ and 1) are as in 5.2, this reflects the fact that they are decoupled from
the new fields. This also means that the conjugate momenta for the ¢, 1 and v are the same as before.
Taking the conjugate momenta to the new fields to be

Pba - §ba
1
Py = —=b°
b 2
)
Pca - —iéa
1
Paa = — = CL7
5¢
the (classical) Lagrangian takes the form
L=1L4r+ Lw

where

1-
Ly = —=b%% —
w 2 2

and Lgp is given in (6.134). One can show that Ly is invariant under 0,

0Lw = 0.

B
Going through the Noether procedure, with S, := / dt Ly,
6S Bdt Z‘l_)a' e iL‘“b“ ! b - i““b“
= ——b%c* — —€ec™b* — —ébc* + —c%¢
7 Jo 2 2 2 2
B - .
= / dt[—iéb®c® — ieb*c?]
0

? - d 7a .a -—d a—=a
:/0 dt [zedt(b c )+Z€$(b c )}

0

1 P = ;
~=a..a 7baba_ 7baba _
cc + 5 5 +

(6.160)
(6.161)
(6.162)

(6.163)

(6.164)

(6.165)

(6.166)

(6.167)

B
where we integrated by parts in the third equality. This together with the variation of Sy := / dtLgg,
0

given in (5.109), gives us

B o
08 = / dt (ied(igww“qb” +b%c?)

which gives us the charges

Q = igm/"/;“éu + Baca
QT = _iguuwu(éy +b*e?
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+ 16—

(_Z’guvwﬂ(by + b Ca))

(6.168)

(6.169)
(6.170)



which precisely correspond to d and df. However, as in the case of the Cartan model, it is not entirely
obvious how to relate the Lagrangian here to the Lagrangian (6.89).
Let us conclude this section by computing the index. The path integral splits into three parts

x(Ma) = D¢DYDYDYDIDEDce ™%
e (6.171)

= D¢DiYDipe ™Sk DbDbe 5 DeDee 5.
PBC PBC PBC

where now Syg is given in Euclidean time and

A 1- . 1- 1- s S B rd 1
= [ dr [ 209 — Zb%b% + b ) = [ dr (%% 4+ b ) = [ dr b* ([ — + = | b® 172
i [[ar (g g i) = Lo (B i) = [arb (e g)w oam

o 1. 1 A 1 p d 1
Se = /0 dr (2cac'a - 56“0“ + 26“6“) = /0 dr (cac'a + 26“0‘1) = /0 dr ¢* (dT + 2) c? (6.173)

where "now means derivative with respect to 7. Using (3.57), we obtain

and

_ d 1\*
DbDbe % = Det | — + = 174
/ e e (dT + 2) (6 )
and from (3.123) we get
d 1
DéDee % =Det | — + = | . 1
/ cDce e (d7+2) (6.175)

This results in a relation between Euler characteristics of the homotopy quotient Mg = (M x EG)/G and
with M itself,

X(Mg) = DYDY Dipe 547 = x(M). (6.176)
PBC

In other words, the Euler characteristic is invariant under taking homotopy quotients.

7 Concluding Remarks

Let us conclude by giving a brief summary of the results and some possible continuations of the project.

When deriving the index theorems, the central quantity of interest is the Witten index Tr(—1)" e, In
this thesis, we investigated the supersymmetric non-linear sigma models, in the case when we have N/ =1
and N = 2 supercharges. In the initial setting, we computed the Witten index in both the canonical picture
and through the use of the path integral. For the A" = 1 case, we ended up with the index theorem for the
spin complex and for A/ = 2 we received the index theorem for the de Rham complex, also known as the
Chern-Gauss-Bonnet Theorem. Thereafter we considered a (compact and connected) Lie group acting on
the manifold and instead of considering the whole manifold, we wanted to investigate the orbit space. The
key tool in this analysis was equivariant cohomology, which is a cohomology theory dealing with homotopy
quotients of manifolds. The goal of this section was to, with the A/ = 2 non-linear sigma model in mind,
through the Weil and Cartan model try to derive corresponding Lagrangians and relate them to gauge
quantum mechanics. Unfortunately, the attempt was not successful. However, what we did find out through
computing the path integral expression for the Witten index in the Weil model setting was that the Euler
characteristic remains invariant under taking the homotopy quotient, i.e. x(M) = x((M x EG)/G), at least
ifG=U()".

In the future, one should keep investigating the relation between equivariant cohomology and gauge
quantum mechanics. After all, by interpreting the group acting on the manifold as the gauge group (acting
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on the manifold through local isometries) one should be able to relate this, in some way, to gauge quantum
mechanics. Furthermore, fixing the gauge means making a choice of a smooth section on the principal
fibration 7 : M x EG — (M x EG)/G (i.e. the particle moves horizontally, or in other words, not in the
direction of the fibres), which correspond to making a smooth choice of representatives for the elements of
the orbit space (M x EG)/G. A quick first guess is that the different Lagrangians obtained from the different
models should correspond to choice of different gauges, based on the fact that equivariant cohomology is built
on a quotient with the would be gauge group. What might be an obstacle is the fact that one is considering
M x EG in place of the usual case with only M as the total pace of some principal bundle. One might also
want to consider different models for equivariant cohomology than covered in this thesis, for instance the
BRST-model. This might lead to deeper insight to the problem of gauging. It would indeed be interesting
to see how the different Lagrangians of the different models relate to each other.

As a generalization of the considerations in the last section, one can repeat the computations for the
non-abelian case.
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A Clifford Algebras and Spin Structures

In this section, we will review some general facts about Clifford algebras, spin structures and related topics,
which can be found in [35] (we will however use a different convention). No proofs will be presented. Let V
be a d-dimensional vector space over R and let the inner product {,) be defined. From the inner product,

we may as usual obtain the norm ||v|| := v/ (v, v).

Definition A.1. The Clifford algebra Cl(V') (also written as Cl(d)) over V is the quotient of the tensor

algebra @ VO with the ideal generated by v ® v — ||v||? for v € V.
k>0

We hence get the multiplication rule, from here on omitting the tensor product sign,

{v,w} = vw + wv = 2(v, w) (A1)
If we choose an ON-basis {e1,...,eq}, we get the relation
—eje; ifi#j
eies =4 .#‘2 (A2)
1 ifi=j

for fixed i, j. The Clifford algebra carries a natural grading and we may write

V) = @ cr(v) (A.3)

k>0

where C1°(V) = R and C1'(V) = V. Each CI*(V) is generated by e, := eq, ...€q,, where o < --- < ay

and with eg := 1 generating C1°(V). From this, we see that the (vector space) dimension of Cl(V) is
d

d
E <k:> = 2%, Note that the Clifford algebra Cl(V) is, as a vector space, isomorphic to the exterior algebra
k=0
AV.

The subspace ClZ(V) forms a Lie algebra with Lie bracket given by

[a,b] = ab — ba. (A.4)

We denote this by spin(V') and it turns out to be the Lie algebra for the Lie group Spin(V'), defined below.
From the Clifford algebra, we can define the Spin(d)-group.

Definition A.2. Let a; € V such that ||a;|| = 1. Pin(V) (or Pin(d)) is the group of elements of C1(V') of
the form a = a; ... ag. Spin(V) (or Spin(d)) is the group of elements in C1(V) of the form a = a; ... agm,
i.e. Spin(V) = Pin(V) N CI°V*" (V).

Using the anti-automorphism of C1(V)
a—a (A.5)

defined on ey = eq, - .. €q, as reversing the order of the e,
(Cay -+ €ap) = €ay - Cays (A.6)
we may define the homomorphism ¢ : Spin(d) — SO(d) defined by the action
o(a)v := ava' (A7)

on v € V. In fact, the homomorphism ¢ turns out to be a double covering map.
Consider now the complexification of the Clifford algebra CI(V)¢ := CI(V) @ C. We have the following

property:
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Theorem A.1. There is an algebra isomorphism

e C " ifd=2n+1

Ve = { C¥>2" ifd=2n. (&.8)

where CE*! denotes the set of complex k x l-matrices.

We recognize the contents in Theorem A.1 from physics via the gamma matrices, which is a matrix
representation of the Clifford algebra. Let p be that representation. Then the basis vector e; is associated
to the gamma matrix v; = p(e;) such that

{’Yia ’7j} = 2(52JI (Ag)
which is exactly of the form (A.1) for basis vectors and hence respects (A.2).
We now choose an orientation of V; we define {ej,...,eq} to be a positive ON-basis.

Definition A.3. The chirality operator is defined by
F:=1i"e1...¢eq (A.10)
where n = d/2 if d is even and n = (d + 1)/2 if d is odd.

The chirality operator is independent of choice of positive ON-basis. Also, I'> = 1, which means it has
eigenvalues +1 and we receive a decomposition into eigenspaces®’ of I', C1(V)¢ = CIT(V)c @ Cl™ (V)¢, where
CI*(V)c has eigenvalue +1. Furthermore, for v € V

(A.11)

vI'  if d is odd
I'v = . .
—vI'  if d is even.

In the case when d is even, we have the fact that multiplication by v maps Cli(V)@ to CIT (V)¢ since for
a4 € Cli(V)C
I'vay = —vlatx = Fvay. (A.12)

In terms of gamma matrices, the chirality operator takes the form
Ya+1 = p(L) =" ... 74 (A.13)
From here on, we only consider the case when d = 2n is even. In V¢, consider the subspace W spanned

by
1

nj = ﬁ(ezjfl — i€;) (A.14)
with j = 1,...,n. By extending the inner product (,) to V¢ via complex linearity, we obtain
(i, mj)c = 0 for all j (A.15)
which in particular implies that
(w,w)c =0 for all w € W. (A.16)

_ 1 _
Defining W as the subspace spanned by 7; = E(egj_l + iey;), we obtain the decomposition Vo =W & W.

W can be identified with the dual space of W with the bilinear form (,)c.

Definition A.4. The exterior algebra of W, S := AW, is called the spinor space. One may also write Sy
to emphasize the dimension of V.

29From linear algebra, we know that involutory operators are diagonalisable if the ground field is not of characteristic 2.
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Any vector v € V can be decomposed as v = w + w’ for some w € W and w’ € W. Let s € S. One may
define the algebra homomorphism p : C1(V)¢c — End(S)c (i.e. a representation of C1(V)¢) by

p(w)s := v2e(w)s
A7
p) = —V3u(w')s AT

where € denotes the exterior product and ¢ the interior product. The map p is extended to the entirety of
Cl(V)¢ by the rule p(vv’) = p(v)p(v') for v,0" € V. In fact more can be said:

Theorem A.2. For d = 2n, the map p defined above is an algebra isomorphism
Cl(V)¢ = End(S)c. (A.18)

The famous fact that endomorphisms on (finite dimensional) vector spaces can be represented by square
matrices can now be observed; the the gamma matrices can be seen to act on the spinor space S as linear
operators.

Observe that n;n; — 7;1; = 2iezj_1€2; so we way rewrite the chirality operator as

1

r=—
2TL

(mm —mm) - (Mafn — nln)- (A.19)
The operator acts on S via the representation p as

p(I) = (=1)"(e(n)e(m) — e(m)e(m)) - - (€(nn)e(7n) — e(m1)e(m)) (A.20)

Take an element 7, A -+ A 7y, from S = A*W and act on it with (e(1,)t(7m) — ¢(7m)€(1m)). There are
two cases: (1) m # m; for all ¢ and (ii) m = m; for some 4. In case (i) only the second term contributes

(€m)t(m) = LI )€Mm))Mmy A Ay = —Nmy A A iy, (A.21)

and in case (ii) the second term vanishes

(€M) e(Tm) — L(Tm)€Mm))Mmy A= Ay, = Ny A==+ A iy - (A.22)

When acting with p(I') on 7, A -+ Ay, case (1) happens n — k times and case (ii) occurs k times. Hence

p(0) = (=1 (=1)" "0y Ave Aty = (1) g A+ A i, (A.23)
and we can identify p(T') with the operator (—1)* which results in the splitting of S into eigenspaces S =
ST @ 8™, where ST = AW and S~ = A°YMW are the subspaces of even and odd exterior powers
respectively.

Since Spin(V) € Cl(V) C Cl(V)¢, any representation of Cl(V)¢ restricts to a (group) representation of
Spin(V) which means
p : Spin(V) — End(S)c (A.24)

is a representation of the spin group. Also, note that for a € Spin(V)
p(T)p(a) = p(T'a) = p(al’) = p(a)p(T) (A.25)

in virtue of (A.11) and the fact that Spin(V') € CI®***(V). This implies that ST is left invariant under the
action of p(Spin(V)) and so the representation is reducible. The representation on S is however irreducible.

Definition A.5. The representation p : Spin(V) — End(S)c is called the spinor representation. The
representations on p : Spin(V) — End(Si)(c are called the half spinor representation.
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We now would like to extend the inner product (,) on V as a Hermitian inner product on V¢ defined by
<O[i€i, ﬁj€j> = 67;jOéiBj. (A26)

By letting elements in AV of the form e;; A --- A e;, constitute an ON-basis, this inner product natu-
rally extends to AV (which we mentioned before is isomorphic to CI(V')). One can show that the spinor
representation is unitary with respect the Hermitian inner product, for a € Spin(V)

(p(a)s, p(a)s’) = (s, ') (A.27)

for all 5,s" € S.

Let M be a oriented Riemannian manifold with metric g. We would now like to define spin structures.
We will use the tangent space T, M in each point as the vector space V for the construction of Clifford
algebras. The fact that M is equipped with a Riemannian metric makes it possible to reduce the structure
group of the tangent bundle TM to SO(d). We may therefore construct the oriented orthonormal frame
bundle : FsoM — M of M, which is an associated principal SO(d)-bundle.

Definition A.6. A spin structure on M is a a principal Spin(d)-bundle 7 : P — M such that the diagram

P— % RoM
~ ™
s
M

commutes, where ¢ : Spin(d) — SO(d) is the double covering map given by in (A.7), defined to act on each
fibre. If M has a fixed spin structure, it is called a spin manifold.

Let U, be a local trivialization patch for Fso and tq : U, N Uy — SO(d) be the transition function
taking us from U, to Uy. On the level of transition functions we require that all transition functions Zqp
on P must satisfy p(f,s) = tap for all a,b. Note that the spin structure might not always exist. In fact,
the topological nature of M determines this; the existence of a spin structure is equivalent to the vanishing
of the so called second Stiefel-Whitney class. We will not discuss this matter in this thesis; we will simply
assume the existence here.

The definition of spin structure works in any dimension, but let us return to the assumption that d = 2n
is even. We will now put the preceding discussions to use. The fibre of P, Spin(d) (note the switch of
notation), acts on the spinor space Sy via the spinor representation and on the half spinor spaces S;lt via the
half spinor representations. Arising from this are hence associated vector bundles*! with Spin(d):

Definition A.7. The associated vector bundle &4 := P Xgpin(a) Sa is called the spinor bundle associated
with the spin structure P. The associated vector bundles Gdi := P Xgpin(a) S;lt are called the half spinor
bundles associated with the spin structure P. The sections of these bundles are called (half) spinor fields.
We denote the set of spinor fields by T'(M, &) and half spinor fields by T'(M, &3).

Observe that the spinor bundle decomposes into a sum of the half spinor bundles &, := Gj{ @® &, so the
space?? of (half) spinor fields, also splits up

(M, 8,) =T(M,&}) o T(M,&)). (A.28)

2let m: P— M bea principal G-bundle and V' a k-dimensional vector space. Let p be a k-dimensional representation of G.
The vector bundle associated with P, denoted by P x g V/, is the quotient (P x V)/G given by identifying (u,v) ~ (ug, p(g) ™ v)
with (u,v) € P x V and g € G. Denoting the equivalence classes by [u,v], the projection # : P Xxg V — M is given by
7([u,v]) = 7(u). The local trivializations are 1); : U; x V with transition functions p(t;;(u)), where t;;(u) € G are the transition
functions of P.

22The set of sections of a vector bundle always carry the structure of a vector space. The vector addition and scalar
multiplication is defined pointwise. The additive neutral element is the null section, which always exists.
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Note that these bundles are pointwise naturally equipped with the Hermitian inner product (A.26) which is
invariant under the action of Spin(d) on each fibre (A.27). In the case when M is compact, this induces a
L2-product on the spinor fields; for o, 0’ € T'(M, G4)

(0,0") := /N (o). )+ (1) (A.29)

where (1) = {/|det(g,.,)|dz' A --- A dz? is the invariant volume form (x is the Hodge star).

We end this section with a brief discussion of the (very important) Dirac operator. Roughly speaking, the
Levi-Civita connection for the tangent bundle of M induces a connection on the oriented orthonormal frame
bundle which then via the double covering map ¢ can be pulled back to the spinor bundle. The resulting
connection is known as the spin connection, which we denote by w. Let us introduce the orthonormal frame
fields e *. Using the gamma matrix representation of the Spin(d)-group®*, the spin connection is locally
given by [11]

o= Lo, (a0
i
4 -
Civita connection on T'M. The covariant derivative induced by this connection, which we call V,, is given
by

with o5 := —[Va, 73] and wuo‘ﬁ = ¢”,V,e"”, where V, is the covariant derivative associated to the Levi-
V=0 +w,. (A.31)
Definition A.8. The Dirac operator is an operator i¥ : I'(M, S4) — I'(M, &) locally given by
iVo(p) := iv"V,0(p) (A.32)
where o € T'(M, &4).

It can be shown in the case when M is compact that the Dirac operator is Hermitian with respect to the
L*-product (A.29). We also have the following result:

Theorem A.3. If M is even dimensional, the Dirac operator maps T'(M, &) to T'(M, &T).

We thus get a two termed complex, the so called spin complex

I'(M,&7) I'(M,&;). (A.33)

v

Furthermore, keeping the compactness condition, observe that the fact that the Dirac operator is Hermitian
means

(i¥’0,0) = (iV0,i¥0) (A.34)

which implies that
iYo=0 < (i¥)%o. (A.35)

A spinor field satisfying (i¥)o = 0 is referred to as harmonic.

23Which we by now can identify with the spinor representation setting p(ea) = Ya, where the eq constitute an ON-basis for
TpM.
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