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We prove that if 1 ≤ p, q ≤ ∞, then the spaces Lp + Lq and Lp ∩ Lq are isomorphic if and 
only if p = q. In particular, L2 + L∞ and L2 ∩ L∞ are not isomorphic, which is an answer 
to a question formulated in [2].
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r é s u m é

Nous prouvons que si 1 ≤ p, q ≤ ∞, alors les espaces Lp + Lq et Lp ∩ Lq sont isomorphes 
si et seulement si p = q. En particulier, L2 + L∞ et L2 ∩ L∞ ne sont pas isomorphes, ce qui 
est une réponse à une question formulée dans [2].

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Preliminaries and main result

Isomorphic classification of symmetric spaces is an important problem related to the study of symmetric structures in 
arbitrary Banach spaces. A number of very interesting and deep results of such a sort is proved in the seminal work of 
Johnson, Maurey, Schechtman and Tzafriri [9]. In particular, in [9] (see also [12, Section 2.f]) it was shown that the space 
L2 ∩ Lp for 2 ≤ p < ∞ (resp. L2 + Lp for 1 < p ≤ 2) is isomorphic to Lp . A further investigation of various properties of 
separable sums and intersections of Lp -spaces (i.e. with p < ∞) was continued by Dilworth in [6] and [7] and by Dilworth 
and Carothers in [5]. In contrast to that, in the paper [2] we proved that nonseparable spaces Lp + L∞ and Lp ∩ L∞ for all 
1 ≤ p < ∞ and p �= 2 are not isomorphic. This question was left open for p = 2, and this was a motivation to continue this 
work. Here, we give a solution to this problem and, on the basis of the results of [9] and [2], we prove a more general 
theorem: Lp + Lq and Lp ∩ Lq for all 1 ≤ p, q ≤ ∞ are isomorphic if and only if p = q.

In this paper, we use the standard notation from the theory of symmetric spaces (cf. [3], [11] and [12]). Let Lp(0, ∞) be 
the usual Lebesgue space of p-integrable functions x(t) equipped with the norm
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‖x‖L p =
⎛
⎝

∞∫
0

|x(t)|pdt

⎞
⎠

1/p

(1 ≤ p < ∞)

and ‖x‖L∞ = ess supt>0|x(t)|. For 1 ≤ p, q ≤ ∞, the space Lp + Lq consists of all sums of p-integrable and q-integrable 
measurable functions on (0, ∞) with the norm defined by

‖x‖L p+Lq := inf
x(t)=u(t)+v(t), u∈Lp ,v∈Lq

(‖u‖L p + ‖v‖Lq

)
.

The space Lp ∩ Lq consists of all both p- and q-integrable functions on (0, ∞) with the norm

‖x‖L p∩Lq := max
{‖x‖L p ,‖x‖Lq

} = max

⎧⎨
⎩

( ∞∫
0

|x(t)|p dt
)1/p

,
( ∞∫

0

|x(t)|q dt
)1/q

⎫⎬
⎭ .

Lp + Lq and Lp ∩ Lq for all 1 ≤ p, q ≤ ∞ are symmetric Banach spaces (cf. [11, p. 94]). They are separable if and only if both 
p and q are finite (cf. [11, p. 79] for p = 1).

The norm in Lp + Lq satisfies the following estimates

( 1∫
0

x∗(t)p dt
)1/p +

( ∞∫
1

x∗(t)q dt
)1/q ≤ ‖x‖L p+Lq ≤ C p,q

(( 1∫
0

x∗(t)p dt
)1/p +

( ∞∫
1

x∗(t)q dt
)1/q)

if 1 ≤ p < q < ∞, and

( 1∫
0

x∗(t)p dt
)1/p ≤ ‖x‖L p+L∞ ≤ C p

( 1∫
0

x∗(t)p dt
)1/p

if 1 ≤ p < ∞ (cf. [4, p. 109], [8, Thm. 4.1] and [13, Example 1]). Here, x∗(t) denotes the decreasing rearrangement of |x(u)|, 
that is,

x∗(t) = inf{τ > 0 : m({u > 0 : |x(u)| > τ }) < t}
(if E ⊂ R is a measurable set, then m(E) is its Lebesgue measure). Note that every measurable function and its decreasing 
rearrangement are equimeasurable, that is,

m({u > 0 : |x(u)| > τ }) = m({t > 0 : |x∗(t)| > τ })
for all τ > 0.

Now, we state the main result of this paper.

Theorem 1. For every 1 ≤ p, q ≤ ∞ the spaces Lp + Lq and Lp ∩ Lq are isomorphic if and only if p = q.

If {xn}∞n=1 is a sequence from a Banach space X , by [xn] we denote its closed linear span in X . As usual, the Rademacher 
functions on [0, 1] are defined as follows: rk(t) = sign(sin 2kπt), k ∈ N, t ∈ [0, 1].

2. L2 + L∞ and L2 ∩ L∞ are not isomorphic

Let x be a measurable function on (0, ∞) such that m(supp x) ≤ 1. Then, clearly, x is equimeasurable with the function 
x∗χ[0,1] . Therefore, assuming that x ∈ L2 (resp. x ∈ L∞), we have x ∈ L2 + L∞ and ‖x‖L2+L∞ = ‖x‖L2 (resp. x ∈ L2 ∩ L∞ and 
‖x‖L2∩L∞ = ‖x‖L∞ ).

Theorem 2. The spaces L2 + L∞ and L2 ∩ L∞ are not isomorphic.

Proof. On the contrary, assume that T is an isomorphism of L2 + L∞ onto L2 ∩ L∞ .
For every n, k ∈N and i = 1, 2, . . . , 2k , we set

�n
k,i = (n − 1 + i − 1

k
,n − 1 + i

k
], un

k,i := χ�n , vn
k,i := T (un

k,i).
2 2 k,i
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Clearly, ‖un
k,i‖L2+L∞ = 2−k/2. Therefore, if xn

k,i = 2k/2un
k,i, y

n
k,i = 2k/2 vn

k,i , then ‖xn
k,i‖L2+L∞ = 1 and

‖T −1‖−1 ≤ ‖yn
k,i‖L2∩L∞ = max(‖yn

k,i‖L2 ,‖yn
k,i‖L∞) ≤ ‖T ‖ (1)

for all n, k ∈N, i = 1, 2, . . . , 2k .
At first, we suppose that, for each k ∈ N, there are nk ∈ N and 1 ≤ ik ≤ 2k such that

‖ynk
k,ik

‖L2 → 0 as k → ∞. (2)

Denoting αk := xnk
k,ik

and βk := ynk
k,ik

, observe that m(
⋃∞

k=1 suppαk) = 1 and so the sequence {αk}∞k=1 is isometrically 
equivalent in L2 + L∞ to the unit vector basis of l2 and [αk] is a complemented subspace of L2 + L∞ . Then, since 
βk = T (αk), k = 1, 2, . . ., the sequence {βk}∞k=1 is also equivalent in L2 ∩ L∞ to the unit vector basis of l2. Moreover, if P
is a bounded projection from L2 + L∞ onto [αk], then the operator Q := T P T −1 is the bounded projection from L2 ∩ L∞
onto [βk]. Thus, the subspace [βk] is complemented in L2 ∩ L∞ .

Now, let εk > 0, k = 1, 2, . . . and 
∑∞

k=1 εk < ∞ (the choice of these numbers will be specified a little bit later). Thanks to 
(2), passing to a subsequence (and keeping the notation), we may assume that

‖βk‖L2 < εk and m{s > 0 : |βk(s)| > εk} < εk,k = 1,2, . . .

(clearly, this subsequence preserves the above properties of the sequence {βk}). Hence, denoting

Ak := {s > 0 : |βk(s)| > εk} and γk := βkχAk ,k = 1,2, . . . ,

we obtain

‖βk − γk‖L2∩L∞ ≤ max{‖βkχ(0,∞)\Ak‖L∞ ,‖βk‖L2} ≤ εk,k = 1,2, . . . .

Thus, choosing εk sufficiently small and taking into account inequalities (1), by the principle of small perturbations (cf. [1, 
Theorem 1.3.9]), we see that the sequences {βk} and {γk} are equivalent in L2 ∩ L∞ and the subspace [γk] is complemented 
(together with [βk]) in the latter space.

Denote A :=
∞⋃

k=1
Ak . We have m(A) ≤

∞∑
k=1

m(Ak) ≤
∞∑

k=1
εk < ∞ and hence the space

(L2 ∩ L∞)(A) := {x ∈ L2 ∩ L∞ : supp x ⊂ A}
coincide with L∞(A) (with equivalence of norms). As a result, L∞(A) contains the complemented subspace [γk], which is 
isomorphic to l2. Since this is a contradiction with [1, Theorem 5.6.5], our initial assumption on the existence of a sequence 
{ynk

k,ik
}∞k=1 satisfying (2) fails.

Thus, there are c > 0 and k0 ∈N such that

‖yn
k0,i‖L2 ≥ c for all n ∈N and i = 1,2, . . . ,2k0 .

Then, by the generalized Parallelogram Law (see [1, Proposition 6.2.9]), we have

1∫
0

‖
2k0∑
i=1

ri(s)yn
k0,i‖2

L2
ds =

2k0∑
i=1

‖yn
k0,i‖2

L2
≥ c2 2k0 ,n ∈N,

where ri = ri(s) are the Rademacher functions. Hence, there exist θn
i = ±1, n = 1, 2, . . . , i = 1, 2, . . . , 2k0 such that 

‖ 
2k0∑
i=1

θn
i yn

k0,i‖L2 ≥ c 2k0/2, n ∈N, or equivalently ‖ 
2k0∑
i=1

θn
i vn

k0,i‖L2 ≥ c, n ∈N. So, setting

fn :=
2k0∑
i=1

θn
i un

k0,i, gn :=
2k0∑
i=1

θn
i vn

k0,i,

we have

‖ fn‖L2+L∞ = 1 and ‖gn‖L2 ≥ c, n = 1,2, . . . . (3)

Moreover, by the definition of the norm in L2 + L∞ and the fact that

∣∣∣
m∑

fn

∣∣∣ =
∣∣∣

m∑ 2k0∑
θn

i un
k0,i

∣∣∣ =
m∑ 2k0∑

χ�n
k0,i

= χ(0,m],

n=1 n=1 i=1 n=1 i=1
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we obtain

‖
m∑

n=1

fn‖L2+L∞ = ‖ f1‖L2 = 1, m = 1,2, . . . . (4)

On the other hand, since { fn} is an 1-unconditional sequence in L2 + L∞ , for each t ∈ [0, 1] we have

‖
m∑

n=1

fn‖2
L2+L∞ = ‖

m∑
n=1

rn(t) fn‖2
L2+L∞ ≥ 1

‖T ‖2
‖

m∑
n=1

rn(t) gn‖2
L2∩L∞ .

Integrating this inequality, by the generalized Parallelogram Law and (3), we obtain

‖
m∑

n=1

fn‖2
L2+L∞ ≥ 1

‖T ‖2

1∫
0

‖
m∑

n=1

rn(t) gn‖2
L2∩L∞ dt ≥ 1

‖T ‖2

1∫
0

‖
m∑

n=1

rn(t) gn‖2
L2

dt

= 1

‖T ‖2

m∑
n=1

‖ gn‖2
L2

≥
( c

‖T ‖
)2 · m, m = 1,2, . . . .

Since the latter inequality contradicts (4), the proof is completed. �
Remark 1. Using the same arguments as in the proof of the above theorem, we can show that the spaces L p + L∞ and 
Lp ∩ L∞ are not isomorphic for every 1 ≤ p < ∞. This gives a new proof of Theorem 1 from [2]. However, note that in the 
latter paper (see Theorems 3 and 5), it is proved the stronger result, saying that the space L p ∩ L∞, p �= 2, does not contain 
any complemented subspace isomorphic to Lp(0, 1).

3. L p + Lq and L p ∩ Lq are not isomorphic for 1 < p, q < ∞, p �= q

Both spaces Lp + Lq and Lp ∩ Lq for all 1 ≤ p, q ≤ ∞ are special cases of Orlicz spaces on (0, ∞).
A function M : [0, ∞) → [0, ∞] is called a Young function (or Orlicz function if it is finite-valued) if M is convex, non-

decreasing with M(0) = 0; we assume also that limu→0+ M(u) = M(0) = 0 and limu→∞ M(u) = ∞.
The Orlicz space LM = LM(I) with I = (0, 1) or I = (0, ∞) generated by the Young function M is defined as

LM(I) = {x measurable on I : ρM(x/λ) < ∞ for some λ = λ(x) > 0},
where ρM(x) := ∫

I M(|x(t)|) dt . It is a Banach space with the Luxemburg–Nakano norm

‖x‖LM = inf{λ > 0 : ρM(x/λ) ≤ 1}
and is a symmetric space on I (cf. [3], [10–15]). Special cases of Orlicz spaces on I = (0, ∞) are the following (cf. [14, pp. 
98–100]):

(a) for 1 ≤ p, q < ∞, let M(u) = max(up, uq), then LM = Lp ∩ Lq;
(b) for 1 ≤ p < ∞, let

M(u) =
{

up if 0 ≤ u ≤ 1,

∞ if 1 < u < ∞,
then LM = Lp ∩ L∞;

(c) for 1 ≤ p, q < ∞, let M(u) = min(up, uq), then M is not a convex function on [0, ∞), but M0(u) = ∫ u
0

M(t)
t dt is convex 

and M(u/2) ≤ M0(u) ≤ M(u) for all u > 0, which gives LM = LM0 = Lp + Lq;
(d) for 1 ≤ p < ∞, let

M(u) =
{

0 if 0 ≤ u ≤ 1,

up − 1 if 1 < u < ∞,
then LM = Lp + L∞.

A Young (Orlicz) function M satisfies the �2-condition if 0 < M(u) < ∞ for u > 0 and there exists a constant C ≥ 1 such 
that M(2u) ≤ C M(u) for all u > 0. An Orlicz space LM(0, ∞) is separable if and only if M satisfies the �2-condition (cf. [10, 
pp. 107–110], [14, Thm. 4.2 (b)], [15, p. 88]). With each Young function M one can associate another convex function M∗ , 
i.e. the complementary function to M , which is defined by M∗(v) = supu>0 [uv − M(u)] for v ≥ 0. Then M∗ is also a Young 
function and M∗∗ = M . An Orlicz space LM(0, ∞) is reflexive if and only if M and M∗ satisfy the �2-condition (cf. [14, 
Thm. 9.3], [15, p. 112]).

Theorem 3. Let M and N be two Orlicz functions on [0, ∞) such that both spaces LM(0, ∞) and LN(0, ∞) are reflexive. Suppose that 
LM(0, ∞) and LN (0, ∞) are isomorphic. Then, the functions M and N are equivalent for u ≥ 1, that is, there are constants a, b > 0
such that aM(u) ≤ N(u) ≤ bM(u) for all u ≥ 1.
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Proof. If both functions M and N are equivalent to the function u2 for u ≥ 1, then nothing has to be proved. So, suppose 
that the function M is not equivalent to u2. Then, clearly, LM(0, 1) is a complemented subspace of LM(0, ∞) and LM(0, 1)

is different from L2(0, 1), even up to an equivalent renorming. By hypothesis, LN (0, ∞) contains a complemented subspace 
isomorphic to LM(0, 1). Then, by [12, Corollary 2.e.14(ii)] (see also [9, Thm. 7.1]) LM(0, 1) = LN(0, 1) up to equivalent norm. 
This implies that M and N are equivalent for u ≥ 1 (cf. [10, Thm. 8.1], [14, Thm. 3.4]). �
Corollary 1. Let 1 < p, q < ∞, p �= q, then (Lp + Lq)(0, ∞) and (Lp ∩ Lq)(0, ∞) are not isomorphic.

Proof. For such p, q, the Orlicz spaces (Lp + Lq)(0, ∞) and (Lp ∩ Lq)(0, ∞) are reflexive, and are generated by the Orlicz 
functions M(u) = min(up, uq) and N(u) = max(up, uq) respectively, which are not equivalent for u ≥ 1 whenever p �= q. 
Thus, by Theorem 3, these spaces cannot be isomorphic. �
4. Proof of Theorem 1

Proof of Theorem 1. We consider four cases.
(a) For p ∈ [1, 2) ∪ (2, ∞) and q = ∞, it was proved in [2, Theorem 1].
(b) For p = 2 and q = ∞, it is proved in Theorem 2.
(c) Let p = 1 and 1 < q < ∞. If we assume that L1 + Lq and L1 ∩ Lq are isomorphic, then the dual spaces will be also 

isomorphic. The dual spaces are (L1 + Lq)
∗ = Lq′ ∩ L∞ and (L1 ∩ Lq)

∗ = Lq′ + L∞ , where 1/q + 1/q′ = 1. By (a) and (b), the 
spaces Lq′ + L∞ and Lq′ ∩ L∞ are not isomorphic, thus their preduals cannot be isomorphic.

(d) For 1 < p, q < ∞, p �= q, the desired result follows from Corollary 1, and the proof is completed. �
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