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Abstract Monotonic regression is a standard method for extracting a monotone function
from non-monotonic data, and it is used in many applications. However, a known drawback
of this method is that its fitted response is a piecewise constant function, while practical
response functions are often required to be continuous. The method proposed in this paper
achieves monotonicity and smoothness of the regression by introducing an L2 regularization
term. In order to achieve a low computational complexity and at the same time to provide
a high predictive power of the method, we introduce a probabilistically motivated approach
for selecting the regularization parameters. In addition, we present a technique for correcting
inconsistencies on the boundary. We show that the complexity of the proposed method is
O(n2). Our simulations demonstrate that when the data are large and the expected response
is a complicated function (which is typical in machine learning applications) or when there
is a change point in the response, the proposed method has a higher predictive power than
many of the existing methods.

Keywords Monotonic regression · Kernel smoothing · Penalized regression · Probabilistic
learning

1 Introduction

There is a multitude of applications in which it can be believed that one or more predic-
tors have a monotonic relationship with the response variable, i.e., the response function
is non-decreasing (or non-increasing) when one or more of these predictors increase. Such
applications can be found in psychology, biology, signal processing, economics and many
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other disciplines [1,2,21,22]. Perhaps the most widely known approach which allows for
extracting a monotonic dependence is monotonic regression (MR) [5,38].

In this paper, we consider the case of amodel with one predictor x ∈ R. The corresponding
MR problem can be formulated as follows. Let f (x) be an unknownmonotonic true response
function. Given n observations (X1, Y1), . . . , (Xn, Yn), where Xi ∈ R and Yi ∈ R are the
observed predictor and response values, respectively. The values of Yi are randomwith mean
f (Xi ). The predictor values are sorted as X1 < X2 < . . . < Xn . It is required that the
fitted response values inherit this monotonicity. They are obtained by solving in μ ∈ Rn the
optimization problem:

min
n∑

i=1
(μi − Yi )2

s.t. μi ≤ μi+1, i = 1, . . . , n − 1, (1)

It can be easily shown that a solution to this problem is a maximum likelihood estimator of
the parameters μi , when Yi are assumed to be normally distributed with mean μi and, at the
same time, the μi s are non-decreasing with respect to the predictor.

There exists a simple algorithm, called pool adjacent violators (PAV), that solves problem
(1) in O(n) steps [4]. It is widely used due to its computational efficiency, but yet some prac-
titioners are skeptic about usingMR in their applications because the fitted response returned
by the MR resembles a step function while the expected response in these applications is
believed to be continuous and smooth. When there is more than one predictor involved, MR
can also be applied, and there are computationally heavy exact algorithms for solving MR
problem, such as the algorithm in Maxwell andMuckstadt [25], or computationally inexpen-
sive approximate MR algorithms, such as algorithms in Burdakov et al. [11] and Sysoev et
al. [40]. However, the fitted response still resembles a piecewise constant function even in the
model with many predictors. Recently, a new generalized additive framework was proposed
in Chen and Samworth [12], but when the model has one input, this method returns the same
response as the PAV algorithm.

In order to handle the lack of smoothness of the MR, various techniques were developed
for the model with one predictor. One group of methods [17,19,24,28] combines the MR
approachwith kernel smoothers, and the fitted response appears to bemonotonic and smooth.
A particularly simple ad hoc approach is discussed in Mammen [24], where a smooth mono-
tonic estimator mIS first applies the monotonic (called isotonic in Mammen [24]) regression
and then a kernel smoother; in another estimatormSI, the smoothing is followed by themono-
tonization. Since the complexity of the kernel smoothing is O(n2) [16] and the complexity
of the MR computation is O(n), the computational cost of mIS and mSI is O(n2). Other
methods in this group seem to be more computationally heavy: They either are based on a
numerical integration or apply quadratic programming.

Another large group of methods produces a smooth monotonic fit by applying smoothing
spline techniques [8,9,26,27,35,36,44]. The quality of the fitting and prediction, as well
as computational time of these methods, depends on the number of knots in a spline. If
the number of knots (which defines both the complexity and the quality of the model) is
fixed, these models are capable to fit quite large data within an acceptable time. However,
modern applications often involve data that are large and at the same time are generated
by complicated processes. In order to fit such large and complex data, a large number of
knots might be needed, which in its turn leads to prohibitively large computational times.
We discuss this issue further in Sect. 5. In addition, we include into our simulation studies
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the method introduced in Pya and Wood [35] (which was shown to be more precise than any
of Bollaerts et al. [8], Meyer [26], Meyer [27]).

In the literature, there is also some amount of work based on Bayesian approaches (see for
ex. [20,23,30,31,37,39,42]). In general, these methods involve Markov chain Monte Carlo
sampling or other type of stochastic optimization, which makes them computationally heavy
compared to the aforementioned frequentist alternatives. Complexity and scalability issues
are often dismissed or not in the main focus in these papers, and the authors often consider
pretty small samples in their simulations. For instance, the method described in Holmes and
Heard [20] was presented as ‘extremely fast to simulate,’ and it completes the computations
‘under two minutes’ for a sample size containing around 200 observations. In contrast, the
method presented in this paper can fit more than a million observations in less than a minute,
as it is illustrated in Burdakov and Sysoev [10]. However, in order to compare the predictive
power of these models and our approach, we include in our simulation studies the approach
described in Neelon and Dunson [30,31]. The choice of the method was motivated by the
public availability of the code [32], and also by the results of the simulation in Shively et al.
[39] demonstrating that there is no obvious winner among the methods in Holmes and Heard
[20], Neelon and Dunson [31] and Shively et al. [39]. We have also decided not to include the
methods based on Gaussian process optimization (such as [23,37,42]) into our simulations
because they require at least O(n3) numerical operations per iteration, which makes these
algorithms too expensive for large data.

The purpose of this work is to develop a method which (a) is fast and well scalable, i.e.,
able to efficiently handle large data sets and can be efficiently applied in iterative algorithms
like GAM or gradient boosting; (b) is statistically motivated rather than ad hoc; (c) enables
a user to select a desired degree of smoothness, as it is with splines or kernel smoothers and
(d) has a reasonably good predictive power.

For achieving these goals, we modify theMR formulation (1) by penalizing the difference
between adjacent fitted response values. This is aimed at eliminating sharp ‘jumps’ of the
response function. In this paper, we show that such a simple idea has a rigorous probabilistic
background. Our smoothed monotonic regression (SMR) problem is formulated as

min
n∑

i=1
(μi − Yi )2 +

n−1∑

i=1
λi (μi+1 − μi )

2

s.t. μi ≤ μi+1, i = 1, . . . , n − 1, (2)

where λi > 0, i = 1, . . . , n−1, are preselected penalty parameters whose choice is discussed
in this paper.

In this work and in an accompanying paper [10], we study problem (2) from different
perspectives and present a smoothed pool adjacent violators (SPAV) algorithm that computes
the solution of the SMR problem. Paper published by Burdakov and Sysoev [10] is focused
on convergence properties given a set of penalty parameters � = {λ1, . . . , λn−1} and con-
tains the proof of the optimality of the SPAV algorithm from the optimizational perspective.
However, the algorithm presented in Burdakov and Sysoev [10] cannot be directly used in
machine learning applications. Firstly, the algorithm requires the set � to be specified, and if
traditional parameter selection, i.e., cross-validation, is used, the overall computational time
becomes exponential in n (because at least 2n−1 possible� need to be considered). Secondly,
the algorithm is only able to deliver predictions for the values of the input variables present
in the training data; the prediction for all other input values becomes undefined. This is a
known limitation of the monotonic regression discussed in Sysoev et al. [41].
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The current paper introduces a probabilistic framework that allows for resolving the critical
issues mentioned above and thus enables employing the SMR in machine learning applica-
tions. In particular, this framework induces a motivated choice for the penalty parameters that
reduces the overall worst-case computational cost to O(n2). This framework makes it also
possible to deliver consistent predictions for the input values that are outside the training data.
In addition, we present a technique that performs correction of the boundary inconsistencies.
Last but not least, the paper presents numerical analysis of the predictive performance of the
proposed model and some alternative algorithms.

The paper is organized as follows. Section 2 presents the SPAValgorithm and also contains
estimates of the complexity of this algorithm given a fixed set of�. In Sect. 3, a probabilistic
model inducing the SMR problem is presented, an appropriate choice of the penalty param-
eters is discussed and a consistent predictive model is presented. In particular, this section
introduces a generalized cross-validation for the probabilistic model corresponding to (2).
Section 4 considers a problem of inconsistency of the SMR on the boundaries and introduces
a correction strategy. In Sect. 5, results of numerical simulations and a comparative study of
our smoothing approaches and some alternative algorithms are presented. Section 6 contains
conclusions.

2 SPAV algorithm

One can see that the objective function in (2) is strictly convex, because the first term is a
strictly convex function and the other one is convex. The constraints are linear. Therefore, the
SMR problem (2) is a strictly convex quadratic programming (QP) problem. In principle, it
can be solved by the conventionalQP algorithms [33]. However, these algorithms do notmake
use of the special structure of the objective function or constraints in (2), whereas taking this
structure into account, as one can see below, allows for substantial speeding-ups. It should
also be noted that the general purpose QP algorithms are not of polynomial complexity in
contrast to our algorithm.

Owing to the strict convexity of theSMRproblem, its solution is unique and it is determined
by the Karush–Kuhn–Tucker (KKT) optimality conditions [33]. To derive them, consider the
Lagrangian function

L (μ, ρ) =
n∑

i=1

(μi − Yi )
2 +

n−1∑

i=1

λi (μi+1 − μi )
2 −

n−1∑

i=1

ρi (μi+1 − μi ) ,

where ρ ∈ Rn−1 is the vector of nonnegative Lagrange multipliers. Its first derivative is
calculated by the formula

∇μi L (μ, ρ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 (μ1 − Y1) + 2λ1 (μ1 − μ2) + ρ1, i = 1,
2 (μi − Yi ) + 2λi−1 (μi − μi−1) +

+2λi (μi − μi+1) − (ρi−1 − ρi ) , i = 2, . . . , n − 1,
2 (μn − Yn)+

+ 2λn−1 (μn − μn−1) − ρn−1, i = n.

(3)

To represent the KKT conditions in a compact form, we shall use the following notation.
Let

I (a) =
{
1, if a is true,
0, if a is false
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stand for the indicator function. We denote by A ∈ Rn×n and B ∈ Rn×(n−1) the matrices
whose elements are defined as

Ai j =

⎧
⎪⎪⎨

⎪⎪⎩

1 + λi−1 I (i > 1) + λi I (i < n), if j = i,
−λi−1 I (i > 1), if j = i − 1,
−λi I (i < n), if j = i + 1,
0, otherwise

and

Bi j =
⎧
⎨

⎩

−I (i > 1), j = i − 1,
I (i < n), j = i,
0, otherwise.

Note that A is a tridiagonal matrix. Denote also Y = (Y1, . . . , Yn)T .
Using this notation and the formula for∇μL (μ, ρ), we can represent the KKT conditions

as

A · μ = Y + 1

2
B · ρ, (4)

μi ≤ μi+1, i = 1, . . . , n − 1, (5)

ρi ≥ 0, i = 1, . . . , n − 1, (6)

ρi (μi+1 − μi ) = 0, i = 1, . . . , n − 1. (7)

The algorithm that we introduce here for solving the SMR problem belongs to the class
of dual active set algorithms [7,18]. At each iteration, it solves the problem

min
n∑

i=1
(μi − Yi )2 +

n−1∑

i=1
λi (μi+1 − μi )

2

s.t. μi = μi+1, i ∈ S, (8)

for a set of active constraints S ⊆ {1, 2, . . . , n − 1}. Our algorithm starts with S = ∅,
enlarging it from iteration to iteration, and terminates when the vector μ that solves this
problem becomes feasible in the original problem (2).

The correctness of this algorithm is theoretically justified in the accompanying paper
[10] which is focused on optimization aspects of our approach. In particular, it is shown in
Burdakov and Sysoev [10] that if a constrained optimization problem (8) is solved for some
S and the corresponding Lagrange multipliers are all nonnegative, then μi = μi+1 for all
i ∈ S in (2). Moreover, if the optimal solution to problem (8) is such that μ j ≥ μ j+1 for
some j ∈ S′ : S′ /∈ S, then μ j = μ j+1 for j ∈ S′ in (2). These two properties imply that if
we set S = ∅ and compute all j ∈ S′ such that μ j ≥ μ j+1 , these are active constraints in
(2) and thus S′ can be added to S. Because the constraints corresponding to S′ are active in
(2), they will also be active in (8), and all Lagrange multipliers in (8) for the current S will
be nonnegative. Accordingly, the process of computing of S′ and updating S as

S ← S ∪ S′, S′ = {i /∈ S : μi ≥ μi+1}. (9)

can be repeated until S′ becomes empty. This will happen when either μi < μi+1 for all
i /∈ S or S contains all existing constraints from (2). This implies that the algorithm finds the
optimal solution to (2) by doing at most n updates of S.

We will show now how to efficiently solve problem (8). Let [i, j] denote a segment of
indexes {i, i+1, . . . , j−1, j}. Suppose that [p, q−1] ⊆ S. Then the corresponding adjacent
active constraints give μp = μp+1 = . . . = μq . If, in addition, p − 1 /∈ S and q /∈ S, then
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we call [p, q] a block. A singleton set {p} ⊆ [1, n] is also called a block if p − 1 /∈ S
and p /∈ S. Thus, any active set S generates a partitioning of [1, n] into a set of blocks
� = {B1, B2, . . . , BnB }, where nB is the number of blocks. Each block Bi = [pi , qi ] is
characterized by its number of elements ni = qi − pi + 1, its observed mean

Ȳi = 1

ni

qi∑

j=pi

Y j

and its common block value μ̂i such that

μ j = μ̂i , ∀ j ∈ Bi . (10)

Denote Ȳ = (Ȳ1, . . . , ȲnB )T and μ̂ = (μ̂1, . . . , μ̂nB )T . The blocks are supposed to be sorted
in increasing order of the indexes they contain, which means that pi − 1 = qi−1. We denote
by Â a nB × nB tridiagonal matrix whose elements are defined as

Âi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + λpi−1

ni
I (pi > 1) + λqi

ni
I (qi < n), if j = i,

− λpi−1

ni
I (pi > 1), if j = i − 1,

− λqi
ni

I (qi < n), if j = i + 1,
0, otherwise.

The next result shows how to easily compute the solution to problem (8).

Theorem 1 The common block values of the optimal solution to problem (8) are uniquely
defined by the system of linear equations

Â · μ̂ = Ȳ . (11)

Proof As it was mentioned above, the solution to problem (8) is uniquely defined by the
system of linear Eq. (4), where (10) holds and ρi = 0 for all i /∈ S. Consider a block
Bi = [pi , qi ]. The corresponding equations in (4) are of the form:

⎧
⎪⎪⎨

⎪⎪⎩

μ̂i + λ j−1(μ̂i − μ̂i−1) · I ( j > 1) = Y j − ρ j
2 I ( j < n) for j = pi

μ̂i = Y j + ρ j−1
2 I ( j > 1) − ρ j

2 I ( j < n) for j = pi + 1
· · ·
μ̂i + λ j (μ̂i − μ̂i+1) · I ( j < n) = Y j + ρ j−1

2 I ( j > 1) for j = qi

By summing these equations, we obtain

ni μ̂i + λpi−1(μ̂i − μ̂i−1) · I (pi > 1) + λqi (μ̂i − μ̂i+1) · I (qi < n) =
qi∑

j=pi

Y j

A simple algebraic manipulation with this equation results in Eq. (11). �
The important feature of system (11) is that the matrix Â is tridiagonal. It can be efficiently

solved, e.g., by the Thomas algorithm [13] of complexity O(n). Moreover, since Â does not
depend on Y , (11) can be viewed as a linear smoother.

We call the outlined algorithm for solving SMR problem (2) a smoothed pool adjacent
violators (SPAV) algorithm. It employs Theorem 1.

Algorithm 1 SPAV algorithm
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Fig. 1 The solid line is
f (x) = x ; the circles are
artificially generated data
Y = f (X) + ε, where
ε ∼ N (0, 0.3); the dashed line is
the SPAV solution (with linear
kernel and λ selected by
cross-validation, introduced
below); the dotted line is the PAV
solution
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Given Y = (Y1, ...Yn) and � = (λ1, . . . , λn−1).
Set S = ∅, nB = n, Bj = { j} (∀ j ∈ [1, n]) and � = {B1, . . . , Bn}.

Smoothing step
1. Compute μ̂ and μ according to (11) and (10), respectively.
2. If μi ≤ μi+1 for all i = 1, . . . , n − 1 then stop and return μ as the

optimal solution, else
PAV step
3. Enlarge S by formula (9), and update � and nB accordingly.
4. Go to step 1.

Step 3 is called PAV step because it pools adjacent violators, i.e., indexes i and i + 1
satisfying μi > μi+1 into one set and enforces μi = μi+1 in the following steps. The result
of the SPAV algorithm and the traditional PAV algorithm is compared in Fig. 1. The step-wise
response produced by PAV algorithm can sometimes be unrealistic and deviate substantially
from the true model. One can see this in Fig. 1, where the SPAV response looks much more
natural and closer to the true model.

The following theorem provides an estimate of the complexity of the SPAV algorithm.

Theorem 2 The complexity of the SPAV algorithm is O(n2)

Proof Smoothing step followed by PAV step can be viewed as one iteration. As it was
mentioned above, the number of iterations does not exceed n. The complexity of step 1 is
determined by the complexity of composing and solving a tridiagonal system of equations,
which is O(n). Step 2 involves O(n) comparison operations. Step 3 involves a search that
requires O(n) operations plus adding an element to a list and updating the list of blocks
which requires O(n) steps. Therefore, the total complexity of one iteration is O(n), which
means that the total complexity of the algorithm is O(n2). �

Note that the quadratic complexity is aworst-case estimate,which assumes that the number
of iterations is n. In practice, we observed that this number was fewer than n, and the CPU
time of SPAV algorithm was growing with n much slower than as n2.
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3 Connections to probabilistic modeling

It is a known fact that penalization of the objective can often be thought of putting a reg-
ularization prior on the model, as it is for instance with ridge regression and LASSO [29].
We now consider how the problem (2) can be represented from the probabilistic perspective.
Assume the following model for the means:

Yi ∼ N (μi , α
2), (12)

where the prior on the components of μ are assumed to be of the following form:

μi+1 ∼ μi + N+(0, σ 2
i ), i = 1, . . . , n − 1, (13)

p(μ1) ∝ 1. (14)

Here N+ is the truncated normal distribution that ensures that the sequence of μi ’s is non-
decreasing and σ 2

i . The constants σ 2
i can be arbitrarily chosen but since we assume that the

expected response should be a continuous function, it is natural to let σ 2
i depend on how

close Xi+1 is to Xi : The smaller the distance, the lesser the variance should be; and when
Xi+1 = Xi , σ 2

i should be zero.
We introduce a family of functions K , called here kernel (by analogy to the Gaussian

Process model), which meet the requirements mentioned above and are defined by

σ 2
i = 1

βK (Xi , Xi+1)
, (15)

where, for instance,

K (X, X ′) = 1

|X − X ′|p . (16)

Here β is some constant that steers the level of smoothness: The higher the β, the lesser the
variance is and the higher is the degree of smoothness; p is a constant that also steers the
flexibility of the model: Higher p allows for larger variation between the nearest points. We
shall call the function K , for p = 1 and p = 2, a linear kernel and p = 2 quadratic kernel,
respectively. In principle, one may select some expression for the kernel K (X, X ′) other than
(16); the important is that this function should be non-decreasing with respect to

∣
∣X − X ′∣∣,

and 1/K (X, X ′) should become zero for X = X ′.
An important property of our model is presented in the following result.

Theorem 3 The solution to problem (2), where

λi = α2

σ 2
i

, i = 1, . . . n − 1, (17)

is the maximum a posteriori estimate provided by model (12)–(14).

Proof According to Bayes theorem, the posterior distribution is

p(μ|Y, X) ∝ p(Y |μ, X) · p(μ|X).

Here, the likelihood is the product of normal distributions

p(Y |μ, X) ∝ exp

(

−
∑n

i=1(Yi − μi )
2

2α2

)

.
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The prior p(μ|X) can be computed via the chain rule:

p(μ|X) = p(μ1|X)

n−1∏

i=1

p(μi+1|μi , X).

Taking into account that μi ≤ μi+1 for all i = 1, . . . , n − 1, we have

p(μ|X) ∝ exp

(

−
∑n−1

i=1 (μi+1 − μi )
2

2σ 2
i

)

= exp

(

−1/(2α2)

n−1∑

i=1

λi (μi+1 − μi )
2

)

,

where λi is defined by (17).
By computing the product of the likelihood and the prior, and then taking the logarithm,

we get

log p(μ|Y, X) ∝ −
n∑

i=1

(Yi − μi )
2 −

n−1∑

i=1

λi (μi+1 − μi )
2 ,

which implies that the maximum of p(μ|Y, X) is assured by the solution to problem (2). �
Using this theorem and assuming that the variance is given by (15), we obtain

λi = α2

σ 2
i

= λK (Xi , Xi+1), (18)

where λ = α2 ·β. Given that the noise variance α2 is fixed, the smoothing parameter λ plays
the same role as β: The higher λ is, the greater is the degree of smoothness of the fitted SPAV
response.

For the kernel defined by (16) with p = 2, formula (18) indicates that the penalty terms
in (2) takes the form

λi (μi+1 − μi )
2 = λ

(
μi+1 − μi

Xi+1 − Xi

)2

.

Then, in this case, smoothing is performed by penalizing the squared slope of the expected
response where the slope is computed by using a finite-difference approximation.

Our analysis enables us to conclude that, using the probabilistic approach, it is possible
to select an appropriate structure of λi in such a way that it reflects the location of the X
components. Without using probabilistic modeling, this structure would perhaps be difficult
to determine. Another advantage of using probabilistic methodology is that it provides a
strategy for determining consistent predictions for some new values of X , as it is discussed
below.

Prediction for monotonic regression is a special problem, as it is discussed in Sysoev et
al. [41].

In general, the MR is only able to compute unique predictions for the values of the input
levels that are present in the training data. This can be a critical obstacle for applying MR
in many machine learning applications. However, for the smoothed MR, we can define a
consistent prediction model for some new predictor value X∗ as follows.

Consider the followingmodel for the expected responseμ∗ that corresponds to a predictor
value X∗ which is located between Xi and Xi+1:

μ∗|μi ∼ μi + N+(0, σ 2
i,∗), (19)

μi+1|μ∗ ∼ μ∗ + N+(0, σ 2∗,i+1), (20)
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where the σ values are defined by (15) in which variables (Xi , Xi+1) are substituted by
(Xi , X∗) or (X∗, Xi+1), respectively. If X∗ is outside the observed interval, i.e., X∗ > Xn

or X∗ < X1, then we simply define the predicted value for μ∗ as μn or μ1, respectively.
The prediction model presented by (19) and (20) is a natural extension of the model

given by (13) because the two models have the same structure. Accordingly, we can derive
the prediction in the same way as it was done for (13), i.e., by computing a maximum a
posteriori estimate of μ∗|μi , μi+1.

Theorem 4 Given model (19), (20), the maximum a posteriori estimate of μ∗|μi , μi+1 can
be computed as

μ∗ = K (Xi , X∗)μi + K (X∗, Xi+1)μi+1

K (Xi , X∗) + K (X∗, Xi+1)
. (21)

Proof By Bayes formula and the chain rule, we get:

p(μ∗|μi , μi+1) = p(μ∗, μi , μi+1)

p(μi , μi+1)
= p(μi )

p(μi , μi+1)
p(μ∗|μi )p(μi+1|μ∗).

Therefore,

logp(μ∗|μi , μi+1) ∝ − (μ∗ − μi )
2

2σ 2
i,∗

− (μi+1 − μ∗)2

2σ 2∗,i+1

.

By maximizing the expression above and using (15), we get

2βK (Xi , X
∗)(μ∗ − μi ) + 2βK (X∗, Xi+1)(μ

∗ − μi+1) = 0,

which leads to (21). �
From the practical machine learning perspective, it is crucial that instead of optimizing

n − 1 parameters in (2), we need to estimate only one parameter λ. A possible way of doing
this is cross-validation. The standard cross-validation implies that several λ values need
to be considered, and the SMR needs to be computed for each λ value. This leads to the
overall computational time O(n2) (because the number of considered λ values is normally
smaller than n and is not dependent on n). However, applying the cross-validation may still
be computationally expensive.

We suggest a procedure called here generalized cross-validation. It is based on the follow-
ing idea supported by empirical observations. The expected (true) response should normally
be increasing, and there is a little chance of observing a region where the response is constant.
Since in our model the response is constant for the observations that were merged into one
block by the PAV step of the SPAV algorithm, we can conclude that in an ideal model there
should be very few executions of the PAV step. Accordingly, if we remove the PAV steps
from this algorithm, it should not affect much this ideal model, although the monotonicity
may be violated. The algorithm can be presented as follows.

Algorithm 2 Smoothing algorithm

Given Y = (Y1, ...Yn) and � = (λ1, . . . , λn−1).
Solve (4).

The fitted responses produced by the SPAV and Smoothing algorithms are presented in
Fig. 2, which demonstrates that these responses are quite similar.
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Fig. 2 An artificially generated
data
Y = f (X) + ε, ε ∼ N (0, 0.3)
where the solid line is
f (x) = x2, the dashed line is the
response obtained by the SPAV
algorithm (cross-validated, linear
kernel) and Smoothing algorithm
with the same λ as in the SPAV
algorithm (dotted line)
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Fig. 3 Cross-validation curve
(solid) and the generalized
cross-validation scores (dashed)
for some artificially generated
data, n = 100

0.0 0.5 1.0 1.5 2.0

8.
50

8.
60

8.
70

lambda

C
V

 s
co

re

We define the generalized cross-validation as a standard cross-validation in which Algo-
rithm 2 is applied instead of Algorithm 1 in order to determine an optimal penalty λ. This
strategy allows for substantially reducing the computational time. Our numerical experi-
ments confirm that the local optimum of the cross-validation curve and the generalized
cross-validation curves are typically located close to each other, as it is illustrated in Fig. 3.

4 Correction on the boundaries

The MR is known to be inconsistent on the boundaries, which means that the MR estimates
for μ1 and μn do not converge to the true values when n tends to infinity, and some solutions
to this problem were suggested [34,43]. This problem is also known as the spiking problem.
An intuitive explanation of this issue is the asymmetry of the PAV algorithm on the boundary:
The observation with index n can only be merged into a block with the observations i < n,
while the observation with index j located in the middle of the domain of X can be merged
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into a block with neighbors i > j and i < j . It may happen that Yn > Yi for all i < n. In
this case, the PAV algorithm does not make any error correction and returns μ̂n = Yn .

A similar kind of asymmetry can be observed in the SMR problem: The objective function
in (2) contains two penalty factors (involving i + 1 and i − 1) for all i = 2, . . . , n − 1, while
for i = n or i = 1 there is only one penalty factor. Figure 1 demonstrates that the SPAV
fitted response can sometimes behave badly on the boundaries, i.e., it can be shifted toward
the observed values of Y1 and Yn .

In order to resolve this issue, we apply the idea presented in Wu et al. [43]. More specifi-
cally, we add two extra terms aimed at penalizing too high values of μn and too low values
of μ1:

min
∑n

i=1 (μi − Yi )2 + ∑n−1
i=1 λi (μi+1 − μi )

2 + φμn − φμ1

s.t. μi ≤ μi+1, i = 1, . . . , n − 1, (22)

where φ > 0 is a penalty factor.
It can be easily verified that

(μ1 − Y1)
2 + (μn − Yn)

2 + φμn − φμ1 =
(

μ1 − Y1 − φ

2

)2

+
(

μn − Yn + φ

2

)2

+ c,

where c does not depend on μ1 or μn . Like in Wu et al. [43], this observation allows for
reducing problem (22) to (2) by shifting the first and the last observed response values as
follows:

Y1 ← Y1 + φ

2
and Yn ← Yn − φ

2
.

Then problem (2) modified in this way can be solved by means of the SPAV algo-
rithm. The only requirement is to use the values Y ′ = Y + φ · e instead of Y , where
e = (1/2, 0, . . . , 0,−1/2)T .

Consider now how to choose the parameter φ. One possibility is to use cross-validation,
as it was suggested for λ. However, selecting an optimal combination of two parameters
might be computationally expensive, and we describe an alternative approach that appeared
to work well in practice.

The SPAV algorithm solves problem (11) repeatedly, and if Y is replaced by Y ′, the
equation becomes

Â · μ̂ = Ȳ ′ = Ȳ + φē, (23)

that is

μ̂ = Â−1Ȳ + φ Â−1ē, (24)

where ē =
(

1
2n1

, 0, . . . , 0, −1
2nm

)
, and n1 and nm are sizes of blocks 1 and m = nB , respec-

tively. We suggest to select φ in such a way that μ̂ = μ̂(φ) approximates the observed data
Ȳ in the best way in the least-squares sense:

min
φ

(μ̂(φ) − Ȳ )T (μ̂(φ) − Ȳ ).

This yields the optimal estimate

φ̂ = (Ȳ − μ′)T e′

‖e′‖2 ,
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where μ′ = Â−1Ȳ and e′ = Â−1ē. Therefore, the fitted value μ̂ at each Smoothing Step of
the SPAV algorithm can be computed as follows:

Algorithm 3 Step 1 of SPAV with correction

1. Solve Âμ′ = Ȳ
2. Solve Âe′ = ē

3. Compute φ̂ = (Ȳ−μ′)T e′
‖e′‖2

4. Compute μ̂ = μ′ + φ̂ · e′

Note that the linear equations in Algorithm 3 involve tridiagonal matrices only, and the rest of
the algorithm contains simple vector operations. Therefore, the complexity of computing the
correction is O(n), and the overall O(n2) complexity of the SPAV algorithm is not affected
by introducing the correction.

5 Numerical results

Modern machine learning methods are often required to process large and complex data, and
this needs to be taken into account when examining the performance of the fitting methods.
In order to evaluate the efficiency of the proposed smoothing approach, we compared it to
the following methods:

– monotonic smoothers mIS and mSI described in Mammen [24],
– PAV solution mPAV,

and to two more recent methods:

– shape constrained additive models (SCAM), described in Pya and Wood [35],
– Bayesian isotonic regression (BIR), introduced in Neelon and Dunson [30] and Neelon

and Dunson [31].

The former two methods have a fixed complexity estimate, which is O(n2), while the per-
formance of the two latter methods depends on the number of knots.

Intuition dictates that the number of knots in a model should be dependent on the com-
plexity of the underlying data generating process, and it was confirmed by our preliminary
simulations.We considered data sets for various values of n and responseY = X+sin(X)+ε,
where X ∼ U [0, �n/3�] and ε ∼ N (0, 1). It is obvious that both the size and complexity of
the data increase with n. It appeared that in order to capture the features of the underlying
data, it was necessary for the BIR and SCAM methods to increase the number of knots in
proportion to n. Figure 4 represents one such case.

In order to study how BIR and SCAMmethods perform in case of large and complex data,
i.e., when both size and complexity of the data increase, we performed simulations where
data were generated according to the model above, and the number of knots was selected as
k = n/2 for SCAM and k = n/5 for BIR, and each model was generated 100 times. Tables 1
and 2 demonstrate the CPU time averaged over model instances. By applying a polynomial
regression to these results, it can be concluded that the complexity grows in practice faster than
quadratically with n for these approaches. By extrapolating the results, it can be concluded
that for n = 100,000 observations and the settings described above the SCAM algorithm
will take approximately 6 days while the BIR algorithmwill require approximately 220 days.
Accordingly, it can be prohibitively expensive to fit large and complex data by these methods
if a high quality of prediction is required. In contrast, the computational complexity of the
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Fig. 4 Data were generated as X ∼ U [0, 50], Y = X + sin(X) + ε, ε ∼ N (0, 1),N = 150. The top panel:
data are fit by SPAV (dotted line), SCAM with 40 knots (light curve) and SCAM with 80 knots (dark curve).
The bottom panel: data are fit by SPAV (dotted line), BIR with 5 knots (light curve) and BIR with 30 knots
(dark curve). Both figures are zoomed to X ∈ [0, 25]. Both panels demonstrate a clear underfitting of SCAM
and BIR when the amount of knots is not sufficient

Table 1 Computational time (s) for SCAM algorithm with a number of knots increasing with n

n 100 200 300 400 500 600 700 800 900 1000

Time 0.28 1.25 4.07 8.85 16.7 18.2 30.1 39.4 50.5 77.6

Table 2 Computational time (s) for BIR algorithm with a number of knots increasing with n

n 100 120 140 160 180 200 220 240 260 280 300

Time 12.2 17.6 24.0 31.2 39.9 49.5 60.3 73.1 86.7 101.6 118.7

SPAV method is only dependent on the amount of observations, and its practical complexity
grows almost linearly with n [10]. For the aforementioned model with n = 100,000, the
SPAV algorithm takes less than a minute.

Our comparative simulation studies involve the data generated as X ∼ U [0, A], Y =
f (X) + ε, ε ∼ N (0, s) for all combinations of the following settings: n = 100, 1000 or
10,000; s = 0.03 or 0.1, the functional shape f is one of the following functions f1(X) =
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X , f2(X) = X2, f3(X) = (X + sin(X))/10, f4(X) = tanh
( n
10 (X − 0.5)

)
, and A =

�n/5� when f3 is used and A = 1 otherwise. These functions were chosen in order to
represent various possible behaviors of the underlying model such as linearity, nonlinearity,
increasing complexity or a sudden level shift. The latter property is dismissed by many
methods although the change points are often present in machine learning applications. To
measure the uncertainty of our results, we generate M = 100 instances for the same model.

Each data set generated in our simulations was processed by:

– m1: SPAV algorithm with linear kernel with correction where λ was selected by the
generalized cross-validation with 10 folds,

– m2: SPAV algorithm with linear kernel with correction where λ was selected by the
cross-validation with 10 folds,

– m3: SPAV algorithm with quadratic kernel without correction where λ was selected by
the generalized cross-validation with 10 folds,

– m4: SPAV algorithm with linear kernel without correction where λ was selected by the
generalized cross-validation with 10 folds.

– mSCAM: SCAM algorithm. Due to time limitations, we fixed k = 15 as it was done in
the R package documentation of SCAM.

– mBIR: BIR algorithm. Due to time limitations, we fixed k = 3 as it was recommended in
Neelon and Dunson [30].

– monotonic smoothers mIS and mSI,
– monotonic regression mPAV,

The mean squared error (which is a measure of the predictive performance)

MSE = 1

n

n∑

i=1

(m∗(Xi ) − f (Xi ))
2

is computed, wherem∗ is a fitted response computed by somemethod. The averageMSE val-
ues computed for different settings are presented inTable 3. Standard errors se

(
MSE

)
for each

averageMSEvalueMSEwere computed from the set of theMSEvalues {MSE1, . . . ,MSEM }
as

se
(
MSE

) = 1

M

√
√
√
√

M∑

i=1

(MSEi − MSE)2,

where M is the amount of instances generated per model. The standard errors are given in
Table 4.

By analyzing MSE values, it can be concluded that the SPAV algorithm has two main
competitors: the SCAMalgorithm and the PAV algorithm. The other tested algorithms appear
to have a worse predictive performance than one of these three algorithms.

When the underlying model is simple, i.e., when it is given by functions f1 or f2, the
average MSE of the SCAM algorithm is smaller than the average MSE values of all other
algorithms, including SPAV. However, it must be noted that the SPAV algorithm is ranked
second for these cases, and its MSE values are often quite close to those of the SCAM
algorithm. Moreover, for some settings the difference is not statistically significant.

When the underlying model is complex or has sharp level shifts (change points), the
average MSE values of the SCAM algorithm are quite high even for small n values, and the
predictive performancedramatically decreases for largen values. For suchunderlyingmodels,
the SPAV algorithm is significantly more precise than the SCAM algorithm. Our results
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Fig. 5 A sample of n = 104 observations from the ‘Gas sensor’ data fitted by m1 model (left panel) and by
mSCAM model (right panel)

demonstrate that the SPAV algorithm has the lowestMSE values for these underlyingmodels,
while the PAV algorithm is ranked second, and the difference in predictive performance
between these two algorithms is statistically significant.

By comparing the variants of the SPAV algorithm in Table 3, it can be concluded that
applying the boundary correction often helps to improve the predictive power of the algorithm,
and the effect is quite substantial for simpler models. It appears that applying generalized
cross-validation instead of the usual cross-validation often leads to similar MSE values,
which was expected due to the results presented in Sect. 3. Results presented in the table also
indicate that employing a linear kernel seems to lead to a better predictive performance than
using a quadratic kernel.

In order to further investigate the performance of the SPAV approach, we consider two
real datasets: ‘Gas sensor’ data [15] (containing around 4 million observations) and ‘Geo-
Magnetic field’ data [6] (containing around fifty thousand observations). The datasets were
downloaded from UCI Machine Learning repository [3]. Figures 5 and 6 demonstrate mea-
surements of a pair of sensors for samples of n = 104 observations extracted from these
datasets. Both figures lead to the conclusion that relationship between the corresponding
sensors is reasonable to model as a monotonic function. We fit models m1 and mSCAM

(which appear to be the main competitors in our simulation studies) to these samples by
taking ‘Sensor 15’ as X variable and ‘Sensor 18’ as Y variable in the ‘Gas sensor’ data and
‘Acceleration X sensor’ as X variable and ‘Y-axis angle roll sensor’ as Y variable in ‘Geo-
Magnetic field’ data. The predictions from the fitted models are shown in Figures 5 and 6 as
solid lines.

To make a comparison of the predictive performance of m1 and mSCAM, we apply the
following procedure to each of the two datasets. In step 1, we sample (non-overlapping)
training and test data of the size n = 104 from the given dataset. In step 2, we fit m1 and
mSCAM to the training data (in model m1, the generalized cross-validation is applied to the
current training data) and compute theMSE values for the test data. Steps 1 and 2 are repeated
M = 100 times, and the obtained set of the MSE values is used to compute the mean MSE
value and the standard error of the mean MSE for both models. Table 5 illustrates the results.
In addition, we compute the test errors by sampling n = 105 observations from the ‘Gas
sensor’ data and fitting m1 and mSPAV models. The test error for m1 is 29.09 × 10−3 while
for mSCAM it is 30.85 × 10−3.

It can be concluded from the presented analysis of real datasets that m1 has a statistically
significantly better performance than mSCAM for these data. A possible explanation for this
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Fig. 6 A sample of n = 104 observations from the ‘Geo-magnetic field’ data fitted by m1 model (left panel)
and by mSCAM model (right panel)

result can be that m1 model is flexible enough to discover small but significant trends in the
data which are not discovered by mSCAM(as Fig. 5 illustrates), and m1 is better than mSCAM

in modeling sharp level shifts (as Fig. 6 illustrates).

6 Conclusions

In this work, we introduce an approach for smoothed monotonic regression in one predictor
variable. It allows for adjusting the degree of smoothness to the data. We have shown that
the worst-case computational complexity of this method is O(n2) which makes the method
suitable in large-scale settings. Moreover, it is found in the accompanying paper [10] that, in
practice, its running time grows almost linearly with n for a given set of penalty factors �.

In many machine learning applications, the dependence between the response and pre-
dictor variables is a complicated function. Our numerical experiments demonstrate that the
predictive performance of SCAM and BIRmethods can substantially degrade when the com-
plicated data are involved, unless a sufficiently large amount of knots is used. At the same
time, it may be impossible to choose a proper number of knots in these algorithms with-
out making them prohibitively too expensive. The SMR method is free of this shortcoming.
Our simulations demonstrate that, in these settings, the SMR method has the best predic-
tive performance compared to the other tested algorithms. It should be emphasized that the
computational cost of the our approach does not depend on the complexity of the underlying
response function.

Another obvious advantage of the SMR method is that it is able to treat both smooth or
non-smooth responses: For small values of the smoothing parameter, a response close to
piecewise-constant is produced, and the increasing smoothing parameter value increases the
degree of smoothness. Our numerical experiments reveal that our approach has a superior
predictive performance in situations when there is a sharp change in the level in the response
function, and that is important for the applications characterized by the presence of change
points.

The SMR problem was introduced as a regularization problem with n regularization
parameters. Then, a connection to a probabilistic model was established which assured the
same MAP estimate as the solution to the regularization problem. The probabilistic formu-
lation provided us with a clear strategy for reducing n regularization parameters to just one
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parameter by properly setting the structure of the prior variance and thus reducing the overall
worst-case computational cost to O(n2). The prior variance depends on the kernel structure,
and the predictive performance was better when linear kernels were used compared to the
case with quadratic kernels. In addition, the probabilistic formulation provided us with a
consistent predictive model for the input values which are not present in the training data.
Further, we motivated a generalized cross-validation strategy for the selection of the smooth-
ing parameter. Our preliminary experiments confirmed that the generalized cross-validation
produces results which are similar to the cross-validation, and these required far less com-
putational efforts. Finally, a boundary effect problem was studied, and a strategy for the
inconsistency correction was suggested. The proposed strategy had a clear positive effect on
the predictive performance of the SMR method.

For estimating the predictive performance of the SMR method, it was natural to use
MSE values (as we have done in our numerical experiments). For practical data, measures
of uncertainty, such as confidence (credible) limits, can also be derived. A natural way
of deriving such intervals would be to use the probabilistic formulation (12) and derive
the posterior distribution of the quantity of interest, but this would require a full Bayesian
inference for this model. This is avoided in our scalable algorithms. An alternative (which
we recommend) is to use bootstrap techniques [14] together with the estimator provided by
the result of Algorithms 1 or 3.

Some peculiarities of our model are noteworthy. First, although the fitted response is
continuous, it is in general not differentiable. This is because the predictive model uses only
two adjacent fitted values to make prediction for a new input value, and this may result in that
the left and right derivatives of the fitted response may be different in some points. Another
peculiarity is that the fitted response and the prediction depend on the choice of the kernel,
but this is also typical for many other methods, such as kernel smoothers.

The SMR problem was formulated for the case of one predictor variable, and one can
directly use our model in a generalized additive model setting to fit the models with many
predictors. Another possible way of fitting multivariate data could be to generalize our fre-
quentist model as follows:

min
n∑

i=1
(μi − Yi )2 + ∑

j,k
λ jk

(
μ j − μk

)2

s.t. μ j ≤ μk, iff X j � Xk ∀ j, k = 1, . . . , n

For small n, the corresponding quadratic programming problem can be solved by using
conventional optimization algorithms, but for large n, these algorithms are prohibitively
expensive. Finding efficient ways of solving this problem is a direction of our future research.
Another interesting direction is to state a joint fitted and predictive model and then perform
its full Bayesian analysis.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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Table 4 Standard errors of the average MSEs times 105 of the given algorithms measured for given standard
deviations of the error s, sample sizes n and functional forms f = fi , where i = 1, . . . 4. Averages were
computed over 100 instances

s f n m1 m2 m3 m4 mSCAM mBIR mIS mSI mPAV

0.03 1 100 0.390 0.462 0.448 0.414 0.232 0.749 0.512 1.126 0.553

0.1 1 100 3.699 3.624 4.186 4.470 2.692 3.231 3.823 4.557 5.027

0.03 2 100 0.365 0.389 0.376 0.382 0.270 2.239 0.580 1.727 0.534

0.1 2 100 4.003 4.276 3.729 3.805 3.622 4.071 3.864 4.745 4.805

0.03 3 100 0.540 0.669 0.539 0.578 12.632 4.898 2.369 5.461 0.646

0.1 3 100 5.160 5.530 4.777 4.727 15.449 6.139 5.043 8.783 5.912

0.03 4 100 0.601 0.624 0.586 0.551 0.585 38.384 5.099 6.706 0.665

0.1 4 100 5.284 5.408 5.427 5.066 3.629 29.765 6.304 7.378 5.632

0.03 1 1000 0.035 0.037 0.063 0.059 0.027 0.031 0.062 0.070 0.095

0.1 1 1000 0.421 0.382 0.496 0.466 0.276 0.342 0.508 0.525 0.624

0.03 2 1000 0.046 0.047 0.057 0.052 0.035 2.811 0.057 0.093 0.074

0.1 2 1000 0.483 0.506 0.463 0.465 0.363 2.281 0.496 0.609 0.672

0.03 3 1000 0.145 0.148 0.158 0.143 1.146 1.146 5.092 32.392 0.212

0.1 3 1000 1.288 1.351 1.327 1.281 1.218 1.243 4.610 7.438 1.760

0.03 4 1000 0.109 0.072 2.735 0.113 35.331 150.595 5.425 4.893 0.082

0.1 4 1000 0.978 0.688 2.990 0.928 37.102 285.534 5.494 5.374 0.703

0.03 1 10000 0.003 0.003 0.007 0.007 0.002 0.003 0.008 0.009 0.011

0.1 1 10000 0.027 0.032 0.058 0.057 0.023 0.028 0.057 0.065 0.086

0.03 2 10000 0.009 0.008 0.009 0.008 0.007 3.185 0.013 0.014 0.011

0.1 2 10000 0.056 0.056 0.057 0.058 0.034 3.875 0.062 0.069 0.088

0.03 3 10000 0.051 0.054 0.052 0.051 0.368 0.369 89.292 89.846 0.076

0.1 3 10000 0.403 0.414 0.438 0.401 0.354 0.353 95.412 94.272 0.522

0.03 4 10000 0.026 0.008 7.020 0.026 16.191 575.552 7.724 7.703 0.009

0.1 4 10000 0.225 0.095 7.119 0.219 16.003 473.979 8.049 8.031 0.088

Table 5 Mean test MSE × 10−3

values computed for ‘Gas sensor’
and ‘Geo-Magnetic field’ data;
the standard error values are
shown after ‘±’ sign

m1 mSCAM

‘Gas sensor’ data 29.21 ± 0.05 30.88 ± 0.05

‘Geo-Magnetic field’ data 90.3 ± 0.4 93.8 ± 0.4
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