GeoSherik
An interactive mapping portal for schools in Bhutan
(Prototype)

Tshering Penjor

June 2007
Abstract

Rapid development in Information technology are creating learning and teaching more interactive and efficient through innovative technology. The potential use of Internet and computer technology in the education has been widely recognized globally. Bhutan although with its limited ICT (Information and communication Technology) infrastructure shares the same view and wishes to yield the benefits of the technology into their education curriculum.

The aim of the project is to demonstrate the capability of web technology in developing web portal with low-end technology to teach school children the basic skills of mapping and GIS. The basic skills on map reading and application of simple query related to GIS forms the core component of this application which will help children learn map reading.

The application is created with low-end technology and is simple and easy to use. The project is not a complete portal and will not cover all aspect of mapping but will supplement the conventional classroom curriculum and can be developed into a full cross-curriculum portal with further contribution.
Table of contents

Abstract ... 2

Table of contents ... 3

List of Abbreviations .. 4

1 **Introduction** .. 5

1.1 Project Objective .. 5

1.2 Country’s Background ... 6

1.3 Status of Information Technology (IT) in Bhutan .. 7

1.3.1 Education technology for Bhutan ... 8

2 **Methods and materials** ... 9

2.1 Rationalizing the need .. 9

2.2 Selected technology ... 10

2.2.1 Scalable Vector Graphics (SVG) ... 10

2.2.2 Hyper text markup language (HTML) ... 11

2.3 Application design ... 11

2.4 Site Content ... 13

2.4.1 Creating page in Dreamweaver ... 13

2.4.2 Creating Animation in Adobe Image ready ... 14

2.4.3 Creating search feature using javascripts. ... 15

2.4.4 Creating Maps in SVG format. .. 15

2.4.5 Integrating Mapview into structure of web pages .. 17

3 **Results** .. 18

3.1.1 Home Page ... 18

3.1.2 Mapping Basic ... 18

3.1.3 Searching Text ... 19

3.1.4 Interactive Map. ... 20

3.1.5 Tools used for the interactive Maps ... 21

3.1.6 System requirement ... 22

4 **Discussion and Conclusions** .. 23

4.1.1 Advantages .. 23

4.1.2 Limitations .. 23

4.1.3 Future Developments .. 23

Acknowledgement .. 25

References .. 26
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJAX</td>
<td>Asynchronous JavaScript and XML</td>
</tr>
<tr>
<td>ASP</td>
<td>Active Server Page</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disk</td>
</tr>
<tr>
<td>CSS</td>
<td>Cascading Style Sheet</td>
</tr>
<tr>
<td>CFML</td>
<td>Cold Fusion Markup Language</td>
</tr>
<tr>
<td>DVD</td>
<td>Digital Versatile Disc</td>
</tr>
<tr>
<td>ESRI</td>
<td>Environmental Science Research Institute</td>
</tr>
<tr>
<td>GHZ</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GIF</td>
<td>Graphic Interchange format</td>
</tr>
<tr>
<td>HTML</td>
<td>Hyper Text Mark-up Language</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>JSP</td>
<td>Java Server Page</td>
</tr>
<tr>
<td>SVG</td>
<td>Scalable Vector Graphic</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
</tr>
<tr>
<td>WYSWYG</td>
<td>What you see is what you get</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible markup Language</td>
</tr>
</tbody>
</table>
1 Introduction

Webster defines education as the act or process of imparting or acquiring particular knowledge or skills. Thus, “imparting or acquiring knowledge” becomes the integral part of the education system. This process can be made effective and interactive through use of innovative technology. Technologies like information and communication (ICTs) have become vital components in teaching and learning process and have alleviated innovation skills. Physical distance and isolation have been narrowed marginally in the Bhutanese context over the past years with computer and internet technologies thus providing a wider horizon for learning and teaching. Research has inferred that the levels of achievements by students are highly enhanced through the integration of innovative technology in the class room instructions (Apple corp.).

The potential use of Internet and computer technology in education has been widely recognized globally and countries around the world are adapting and revising their national curriculum (UNESCO Bangkok).

It is therefore in keeping with the global trend that this project “GeoSherik” meaning acquiring knowledge and skills in Geography” looks at introducing low cost web-based technology to educate users group on basic knowledge and skills on map reading and Geographical Information System.

1.1 Project Objective

In order to realize the objective of introducing the concept of GeoSherik, a prototype web portal has been developed which has been tested in the lab with success. The portal demonstrates the suitability of low-end technology in Bhutanese context. The portal will serve as an electronic repository of geographical and mapping resources with interactive interfaces for the students to learn map reading and basic GIS skills.

The web portal is a prototype and is not a complete application but can be developed further in future.
1.2 Country's Background

Bhutan is a small landlocked country sandwiched between two giant countries China in the north and India in the south. It has the total population of about 600,000 with an area of 38,394 square kilometers (Fig.1). The altitude rises from 100 meters above sea level and reaches up to 7000 meters. For centuries Bhutan remained isolated till the early sixties when Bhutan started opening to the outside world with the introduction of 1st five year plan (FYP) in the early 60s. Development in the past for a land locked country like Bhutan was not an easy task with difficult geographical settings such as rugged mountains, rapid flowing rivers and scattered settlements. Under such difficult conditions, the most effective way of enhancing development was through the introduction of the system of connectivity. One of the early means of effecting development was the introduction of road networks, building bridges and the use of existing technology such as postal services, wireless sets and in the mid 70s analogue telephones in selected parts of the country to facilitate better communication which were found to be prerequisite for bringing about positive changes in the socio-economic life of the population. Knowing the importance of ICT as a means of enhancing economic development Bhutan embarked on improving its information technology systems which is being pursued vigorously, as a result Bhutan has seen unprecedented development in the last three decades.

![Fig.1 Location map of Bhutan (Source: ESRI world Data)](image_url)
1.3 Status of Information Technology (IT) in Bhutan

Although Bhutan was aware of the importance of Information technology as mentioned above, because of difficult geographical terrain compounded by limited resources it took many years before entering into the computer domain. Computers entered into the country as late as early eighties and have yet to enter into the remote areas of the country. Similarly the use of internet was introduced in 2000 mainly accessible to District headquarters and townships with the exception of some satellite towns. The backbone connection was microwave radio with a speed of 34 Mbps digital stream with a carrier frequency of 8 GHz. However the full speed capacity through normal telephone line cannot be achieved due to the poor cable quality (Bhutan e-readiness report 2003). The common internet package is dial-up connection through modems which are configured for a speed of 64 Kbps.

Access to internet is concentrated to the urban areas due to the non availability of infrastructure like telephone connection and electricity in the rural areas. According to the survey, 50% of the internet connection is utilized in the capital city and the remaining 50% is spread over 19 districts (Fig.2). It shows the disparities of internet connection in the country due to inadequate infrastructure. “Providing Internet to some of the remote and rural schools is virtually impossible due to technical challenges and limited resources” (Bhutan e-readiness report 2003).

Fig.2 Map showing the concentration of internet connection
In an attempt to bridge the information technology divide the Education Ministry has adopted Information Technology as an important agenda and has introduced computer application in the curriculum especially in the higher and tertiary institutes. Education Information Technology program was started in 2003 to facilitate teacher’s professional development and enhance students learning. The plan aims to introduce progressively from higher secondary to lower secondary and to equip 75% of the lower Secondary School in the country by supplying 10 computers to every higher and lower secondary schools by year 2007 (Bhutan e-readiness).

1.3.1 Education technology for Bhutan

Bhutan has also incorporated Information Technology into the national development goal. “One of the objectives of the education sector for vision 2020 is to take advantage of new educational innovations and technologies to increase access to Information Technology and improve the quality of education” (Realizing vision 2020 policy and strategy).

The Ministry of Education is striving to achieve effective education system with the use of Information Technology through different means of IT recourses that are available on different media like CD, websites and digital archives. Their goal is also to connect internet in all primary schools by the year 2010 (Education Sector Strategy).

Efforts are being made by the government to strengthen internet connections to many parts of the remote areas as part of the e-governance project supported by donor agencies which implies that the stage is set for the introduction of “GeoSherik” as a learning tool in schools and prepare young people for the world of work and instill an acceptance of the dignity of labor. This implies increased importance to the applied and practical studies that are able to prepare young people for technical and vocational work.
2 Methods and materials

2.1 Rationalizing the need

The primary aspects of geographic education among many others are the ability to read, interpret and make maps. Research in child’s perception and attitude to mapping skills indicate that children at second grade level have the ability to interpret qualitative information on maps (Trifonoff, 1995). Studies have also shown that children in the preoperational stage (age 2 to 7) have the ability to mentally represent symbols as theorized by Jean Piaget. (C. George Boeree, 2003) “The demand for spatial reasoning skills, central to geography as a discipline and related to many other disciplines, is predicted to increase as more information is available in graphic form on the computer” (Bausmith, Leinhardt. 1998).

Reviewing the current education curriculum in Bhutan (Fig.3) it was noticed that the maps are involved in Social studies and Geography from grade four to grade eight in the age group from 7 to 13. However, the actual map reading skills are introduced only in grade eight where children are mostly 13 to 14 yrs old. Although map reading and GIS is incorporated at the higher grades, the methodology used for delivering mapping skills and contents are of the conventional approach which is mainly teacher centered with the use of teaching aids like chalks, chalk board and paper maps. Hence to make geography learning more innovative and child centered, the Education Ministry is in the process of upgrading its curriculum through the use of computer and internet to teach about maps and mapping skills, thus GeoSherik the development of the concept.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Primary Education Grade PP-VI</th>
<th>Lower Secondary Grade VII-VIII</th>
<th>Middle Secondary Grade IX-X</th>
<th>Higher Secondary Grade X-XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmenta l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.3 Map related subjects in schools

Subjects taught in different level
GeoSherik aims to make the learning process more dynamic, interactive and effective with the integration of innovative technologies like computer and internet which also usher in learning uniformity throughout the country. Further the inclusion of web base curriculum can make children more global-centric and learning more interesting.

2.2 Selected technology

Due to limited resources like infrastructure, budget and in the absence of computer knowledge amongst the children, the project had to choose a cheaper low-end media which can be commensurate to high-tech technology currently in use sparsely. As the technology standard for most schools is rudimental an extra effort has been made to ensure that the selected technology run on existing low performance equipment. The prototype Educational portal “GeoSherik” has decided to use the following software which are reasonably cheap and user friendly for starters.

2.2.1 Scalable Vector Graphics (SVG)

Scalable Vector Graphics is a software program which creates two-dimensional graphics in XML format. SVG is compatible with three types of graphic objects: vector graphic shapes, images and text. SVG is based on XML and is suitable for platform independent web solution (Jonsson, B 2004). SVG offers all the advantages of XML’s openness, transportability and interoperability (Eisenberg 2002). There are different methods of generating SVG files. For this project the maps are generated through MapViewSVG. MapViewSVG is selected because it is user-friendly, it has robust presentation of geo-data on web and has high integration feature for web environment.

Advantages of SVG:

- SVG generates high quality graphics. It can generate smooth vector data with its anti-aliasing feature. It also supports rich graphical effects such as drop-shadows, transparency, gradient-fills and animation.
- SVG do not require traditional GIS application servers. It can be handled through normal CD ROM, DVD or through standard web servers such as Apache etc.
• SVG has enhanced the functions of standard GIS functions such as turning layers on and off, measuring and zooming which works immediate without having to refresh the existing map.

• Maps can be generated quickly with the Extensions such as EasySVG, SVGMapper and MapviewSVG which is available for ArcView 3.x and ArcGIS.

Some of the limitation at present with SVG is with the web browsers which requires a plug-in program on the computer to view the content on the web. It is possible to view and read SVG files compressed by GnuZip (gzip) which can compress up to 50% of its original size (Jonsson, B 2004). The drawback is that all compressed files gets an extension .svgz instead of .svg which becomes un-editable with the XML tag.

2.2.2 Hyper text markup language (HTML)

Hyper text markup language is a markup language used for creating web pages. It controls the structure of the web documents by implying formatting commands in the form of labels known as HTML tags (Fig 4). It is possible to write the tags by hand coding but there are lots of HTML editors in the market which publishes web pages without having to code it manually. In this project, Macromedia MX professional HTML editor was used for generating web pages.

Macromedia Dreamweaver MX has the option of creating web pages by hand coding with html tags or through visual editing. It can create instant result with its WYSWYG (What you see is what you get) feature. For web graphic enhancement and simple animation in this project Adobe Photoshop 6 and Adobe Image Ready was used.

2.3 Application design

While designing the prototype Educational portal “GeoSherik” certain web designing principals are followed to make the Site more efficient and effective.
Consistency
Through out the website, consistency has been maintained with choice of color, number of fonts and placement of navigation buttons.

Easy Navigation
Navigation was made easy and simple so that the users will not be lost while browsing from one page to the other. Instead of allowing random browsing, navigation buttons are used to guide the student through the lesson in controlled way.

Limited flashy items
Animated images and flashy items are scarcely used to reduce the distraction from the main course content.

![Flow diagram showing the process in developing the web portal](image)

Layout Grid
A layout grid was designed (Fig.6) as a guide to give consistency for the entire page in the portal. The entire portal was designed at a screen size of 1024*768.
2.4 Site Content

The Portal is divided into three main pages which are further sub divided into its related contents. The structure has been created in a hierarchical order to group the related contents in logical order to create easy navigation (Fig.7). Every page is linked to a global navigation for easy access to the main page. The individual pages are linked to its local navigation button for easy access within the section. The local navigation buttons are restricted to one direction to force user to complete the section before jumping to different section.

2.4.1 Creating page in Dreamweaver

The main page (home page) has been created with all the elements that are common to all web pages, such as Global navigation buttons, the Logo, the address bar and the title page, here after saved as template. The template is used later for replicating the subsequent pages. HTML table has been used to create structured layout and easy
positioning of visual elements like Flash buttons and Images. Navigation buttons are linked to its respective pages through the link properties (Fig.8)

2.4.2 Creating Animation in Adobe Image ready

Animations are used for explaining the grid references and compass direction since it can be expressive in explaining such process (Kraak & Ormeling, 2003). Adobe image software is used to create animation effect. The base image of the grid and compasses are in GIF format. The animation palette is used in conjunction with layers palette to create animation frames. Different instances of layers are used as a frame and each frame are assigned with delay time of 0.5 second for the animation to repeat. The time parameters are used for delaying the replay between the frames (Fig.9). The animation effect in these two lessons will help children understand the concept of grid reference through interaction.
2.4.3 Creating search feature using javascripts.

A Search feature has been created using a JavaScript. The JavaScript (Fig.10) was embedded on the html tags through the code design mode in Dreamweaver (Fig.10a).

```javascript
var TRange=null
var LastSearchedString=""

function findStringInDocument (str)
{
    if (parseInt(navigator.appVersion)<4) return;
    var strFound;
    if(str!=LastSearchedString)
    {
        //alert("New search!")
        TRange=null;
        LastSearchedString=str;
    }
    if (navigator.appName=="Netscape")
    {
        // NAVIGATOR-SPECIFIC CODE
        strFound=self.find(str);
    }
}
```

Fig. 10a Javascripts embedded into HTML

Fig. 10 Java scripts for searching text

2.4.4 Creating Maps in SVG format.

The SVG Maps are generated using the MapviewSVG extension to ArcView 3.2. The sources of data are ESRI shape files. The process starts by creating thematic maps in ArcView 3.2. Cartographic principles are applied on the chosen layers to make the map legible. After defining colors, fonts, symbols and setting the scale limit to display; then MapviewSVG has been used to generate the maps (Fig. 11).

Fig. 11 Generating SVG maps via MapviewSVG
The maps are made interactive by setting up the features for the individual layers. Interactive features like tool tips, identifying features on the map and building up queries are defined in the “information about feature” window (Fig.12).

Fig.12 Feature information Window

The Styles and design for the SVG map interface are applied through MapView component. Here you can specify the background color, highlight color and font types. The size of map is also defined in the Map View component window (Fig.13).

Fig.13 MapView Components Windows

In the final step all the XML files and image files that are related to the maps are exported under the folder that we specify. MapView also generates a configuration file together with map files which contain all the setting parameters for the SVG maps that is generated. The configuration file is loaded when the SVG maps are loaded. MapView also generates single index html file for the maps with the default file name index, each time the map is generated by running the MapView. This index.html is used as a default page for displaying the maps on the web.
2.4.5 Integrating Mapview into structure of web pages

The Index.html file generated in MapViewSVG is reloaded in the Dreamweaver for customizing the layout of the pages. The link is created from the other pages to the index file of the map (Fig.15).

Fig.14 Exporting the map files and configuration files

Fig.15 Design view of SVG document in Dreamweaver for customization
3 Results

The web portal (“GeoSherik”) is the final output of this project. The portal is a product of combined interactive SVG maps and dynamic WebPages. The portal will enable students to learn basics of mapping and to find some additional resources through the web links on the portal. The results of the main features in the portal are described in the following section.

3.1.1 Home Page

Home Page is the main starting page and it is the gateway to the other pages in the portal. All the other pages are linked through Home page. This page gives the introduction to GeoSherik and contains information on the required settings and plug-ins to be able to display all the animation and graphics properly (Fig.16).

3.1.2 Mapping Basic

This section is the main part which contains the mapping skills. All the mapping related lessons are grouped under this section. The pages under this section inherit the same style and layout from the main page. The map reading lesson begins with the basic concepts,
like definition of maps, the importance of maps and its symbols in maps and the methods to use grid references (Fig. 17).

3.1.3 Searching Text

The search function created using JavaScript allows the user to search text within the pages. When the user enters the text in the Search field and press the Find button the JavaScript code is executed and starts searching for a similar text in the current page and the results are highlighted in the page once found. The search gets terminated once it reaches the end of the file (Fig. 18).

Fig. 17 Web Interface showing different section of the mapping lessons

Fig. 18 Showing Highlighted Text
3.1.4 Interactive Map.

The interactive maps are displayed in this section. It teaches students to run simple queries through interactive features. The Tool tip text displays the attribute text when the user moves the mouse cursor over the theme (Fig. 19).

Users can also run simple query from the query builder icon. By clicking on the query builder icon, it invokes a new browser window. User can build the query expression by either clicking on fields, operators, and values, or by typing it in. By clicking the "Select" button, a new window will display information about the selected features (Fig. 20). Also the selected features are highlighted in the map in this case shown in yellow color.
The user can also use “Identifying Tools” to identify features on the Map. When you click on a feature in the map, a new browser window will open which displays the attributes of the feature (Fig. 21). The displayed attributes depend upon the visible field in the table properties while generating interactive maps from the MapviewSVG.

![Fig. 21 Attribute displayed using identifying instructions for the map](image)

Users also have the option of using other features like measuring the distance and displaying coordinates interactively on the maps.

3.1.5 Tools used for the interactive Maps

Users can use dynamic features like zoom in, zoom out, Pan and measurement on the interactive map by using the standard GIS tools that are generated by MapViewSVG. The tools are made interactive programmatically in JavaScript using event handler. For detail instruction, see Fig. 22.

Instructions for the map

- **Zoom in:** Press the "Ctrl" key and click once in the map to zoom in centered or drag a box over the particular area.
- **Zoom out:** Press the "Ctrl" and the "Shift" key and click once in the map.
- **Panning:** Press the "Alt" key and click in the map, hold down the mouse button, and drag in any direction.
- **Back to original view.**
- **Hyperlink:** Click on the map to display data.

![Fig. 22 Instruction using tools. (Source: Generated from MapViewSVG)](image)
3.1.6 System requirement

<table>
<thead>
<tr>
<th>Hardware:</th>
<th>PC 486 with CD Rom, 32 MB RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systm:</td>
<td>Windows 98/XP</td>
</tr>
<tr>
<td>Internet browser:</td>
<td>Internet Explorer.</td>
</tr>
<tr>
<td>Plug-ins:</td>
<td>Adobe SVG Viewer</td>
</tr>
<tr>
<td></td>
<td>Macromedia Flash viewer</td>
</tr>
</tbody>
</table>
4 Discussion and Conclusions

The GeoSherik Portal has been designed to suit the current ICT situation in the country. It is low tech and requires less resource in terms of software and hardware. Although it is possible to develop a web portal with low tech software, further research will have to be conducted for studying the efficiency of the application. Based on the evaluation result changes may be incorporated to make it more user friendly and effective. It is felt that designing such an educational portal requires proper institutional setups and interdisciplinary linkages where curricula and technical developers could complement each other. This Portal does not cover all aspects of mapping skills in schools, but it has great potential for supplementing the traditional classroom based learning.

4.1.1 Advantages

- The portal is cost effective. Due to reduce technical complexity the need for expensive software and infrastructure are substantially less.
- The portal can be run straight from the CD reducing the process of installing and copying it to the hard disk.
- The Portal is simple and easy to operate and maintain.
- The web based mapping skills will reduce the conventional/traditional class room teaching.

4.1.2 Limitations

- All portals devised require power and in the context of Bhutan, this can be used only where power is available. Thus the spread of this portal will be limited to places where power supply is available.
- To display all the interactive features from macromedia flash and SVG vector graphics the Flash plug-in and SVG viewer plug-in needs to be installed.
- Less control on SVG files generated in MapViewSVG. Mozilla Firefox doesn’t support XML files generated in MapViewSVG 2.4.0
- Internet connection required for resources and link pages on the portal.

4.1.3 Future Developments

The portal can be enhanced further by including multimedia features like 3D animation; sound, video images and complex GIS operation to upgrade the utility of the mapping phenomena (Kraak & Ormeling, 2003). There are options to upgrade the portal as a cross-curriculum portal for students to familiarize themselves on other educative issues
apart from map reading and GIS. “Cross-curriculum projects allow students to see how knowledge and skills are connected in the workplace” (Bottoms & Webb, 1998). Interactive Quiz page can be added to the portal to evaluate the students understanding of the subject. Finally the usability test on the portal needs to be carried out to evaluate effectiveness of the portal.
Acknowledgement

At the outset I would like to thank the Royal Government of Bhutan for giving this opportunity to attend this course.

I would like to extend my sincere gratitude to the sponsors Mr. Ola Wennerby and family, Mr. Bengt Melin and family and the Jhomolhari Trust for sponsoring my study in Sweden.

My gratitude is also due to all my friends Mr. Bengt Andersson and family, Mr. Thomas Bylund and family, Mr. Daniel Johansson and Mrs. Cilla Johansson, Mrs. Jeanette Persson, Mr. Ian Brook, Mr. Anders Bergman and Mr. Staffan Olive for their unstinted support during my stay in Gavle.

I would also like to thank the supervisors Mr. Thomas Bylund, Mrs Peggy Fredriksen, Mr. Mikael Segerlund and Professor Dr. Anders Östman for their kind advice and valuable throughout the assembly of this project.

Finally, I would like to dedicate this project to my parents, my two boys and my wife for their endless support in my endeavor.
References

ArcView GIS 3.2 desktop Online Manual

Education Sector Strategy, Realizing vision 2020 policy and strategy, Ministry of Education, Royal government of Bhutan

MapViewSVG 2.4 Desktop online Manual

Macromedia Dreamweaver Mx online manual