CONSTRUCTING AN ARBITER OF STATUS

A Study of the European Research Council’s Emergence in the Field of Science

Peter Edlund
The aim of this thesis is to shed light on how certain actors are constructed into third-party arbiters of status. Such arbiters mediate the triadic relations in which status is created, assessing and suggesting certain candidates as particularly worthy of deference from audiences. While previous literature has provided us with compelling insights into the pervasive authority of status arbiters, less attention has been paid to the ways in which these arbiters reach their authoritative positions. I seek to build new knowledge on the processes through which third-party status arbiters are constructed by exploring how the European Research Council (ERC) was transformed into an authority in science. In a short period of time, the ERC’s evaluations of funding applications and subsequent allocations of research resources came to be approached as a benchmark of scientific quality, which scientists, departments, universities, and countries anxiously compared their research performance with. I suggest that these evaluations and allocations soon became more than instances in which quality was assessed and resources were distributed, thus turning into potent bases for status creation as well.

In three empirical chapters, which draw upon documents, interviews, and observations, I place the ERC within the context of a field, showing how its construction into a third-party status arbiter needs to be understood as a process that unfolded over time. First, I look at major tensions and struggles that surrounded Europe-level science in the advent of the ERC’s founding. Then, I examine the active efforts with which the ERC attempted to engender acceptance for its evaluations of Starting Grant (StG) funding applications. Finally, I explore the status consequences of ERC StG allocations for the careers of scientists, the milieus within departments, and the relations between universities in Sweden.

My findings contribute to previous literature by demonstrating how arbiters are constructed through mutually reinforcing relations in which the status-creating potential of evaluations is continuously framed and validated. My findings also contribute by showing how the creation of status over time requires constant maintenance efforts to sustain the agreement between arbiters and audiences in terms of candidates that are worthy of deference.

Keywords: Status, Arbiters, Fields, Evaluations, European Research Council, Starting Grants

Peter Edlund, Department of Business Studies, Box 513, Uppsala University, SE-75120 Uppsala, Sweden.

© Peter Edlund 2018

ISSN 1103-8454
urn:nbn:se:uu:diva-348202 (http://urn.kb.se/resolve?urn=nbn:se:uu:diva-348202)
ACKNOWLEDGMENTS

While I stand as its sole author, this PhD thesis would not have been possible without the support of several persons that have surrounded me during my doctoral journey.

First and foremost, I would like to thank my supervisors. Linda and Anna, your outstanding mentorship and energetic encouragement helped me navigate the many ambiguities associated with writing a dissertation. You both went above and beyond the call of duty during these last months of my thesis. Linda, I am particularly grateful for how you constantly challenged me to see the bigger picture in my thinking. Anna, I am especially thankful for how you always came up with ideas that made my arguments stronger and clearer. I am looking forward to working with both of you in the future!

Besides my supervisors, a number of colleagues affiliated with the Department of Business Studies have helped me in many important ways. Niklas Bomark continuously provided me with useful suggestions on everything from concepts to data analysis programs. I can hardly imagine a better office mate. Lars Engwall gladly shared his extensive knowledge on all matters related to the field of science. I hear that your knowledge of the bank, journalism, and management consulting fields is just as extensive. Kerstin Sahlin happily discussed national and Europe-level research funding with me in the early stages of my dissertation. I am convinced that these discussions were pivotal for my interest in the ERC. Stefan Jonsson regularly chimed in with clever ideas that pushed my theoretical framework forward. I still remember our discussion on the role of audiences in status creation as particularly enlightening. Josef Pallas constantly provided me with injections of energy whenever we bumped into each other. I am inspired by your highly enthusiastic approach to research. And Maria Grafström kindly agreed to be my final seminar opponent last October. I hope that some of your insightful comments are reflected in this thesis.

Past and present PhD students at the Department (Inti, Olof, Anna, Signe, Noomi, Maria, Jason, Hammad, Amalia, Emilia, Andreas, Siavash, Johanna, Matthias, and Christian, to name a few) became great friends and important sources of inspiration throughout these last five years. Now that this dissertation is done, I intend to make up for all the missed meetings, lunches, and ‘fikas’. Promise!
I received constructive feedback on my research from many forums. Two of them stand out, however. The weekly Organization Sector meetings at the Department of Business studies provided me with a friendly and open-minded atmosphere in which to present, discuss, and enhance my research (and eat my lunchboxes!). I was particularly helped by the comments on a paper that eventually came to form Chapter Six in this thesis. The bi-weekly Summer Seminars at the Scandinavian Consortium for Organizational Research (SCANCOR) offered me another milieu in which to ventilate and develop the first draft of this dissertation. I am thankful for the efforts of Sarah Soule, Mitchell Stevens, and Maude Engstrom to keep this sanctuary-like atmosphere alive. I am also thankful to the Handelsbanken Foundation for funding my stay at SCANCOR.

No man is an island. My family has been integral in supporting me before, during, and after this doctoral journey. From Göteborg, I have felt the constant encouragement of my mother and two sisters. My late father was probably one of the main reasons that I embarked on this journey. I think you would have liked my thesis, even though it is far removed from your dissertation on tectonic plate motion. That said, for bearing with me throughout these five last years, I dedicate this thesis to the very best trio in my life – Moa, Irma, and Ingrid. Although none of you seem to be overly enthused by the topic of my dissertation, your love and energy have kept me going.

Last but not least, my greatest gratitude goes to the persons that generously put up with my e-mailing, note-taking, tape-recording, and hours of interviews and observations. Although I have promised to not name any names, you should know that this dissertation was only made possible by your participation.

Gröna huset, April 2017
ACRONYMS

AdG Advanced Grant
CAP Common Agricultural Policy
CERN European Council for Nuclear Research (Fr. Conseil européen pour la recherche nucléaire)
CNERP Committee for a New European Research Policy
COST European Cooperation in Scientific and Technical Research
DFF Danish Research Councils (Dk. Danmarks frie forskningsfond)
EC European Commission
EIC European Innovation Council
ELSF European Life Sciences Forum
EMBO European Molecular Biology Organization
ERA European Research Area
ERC European Research Council
ESF European Science Foundation
EURAB European Research Advisory Board
EURATOM European Atomic Energy Community
EURYI European Young Investigator Award
IAWM Internet Archive Wayback Machine
FP Framework Program
FP7 Seventh Framework Program
HLEG High-Level Expert Group
LS Life Sciences
NSF National Science Foundation
OH Overhead
PE Physical Sciences and Engineering
RF Reserve Fund
RJ Bank of Sweden Tercentenary Foundation (Swe. Riksbankens Jubileumsfond)
SoE Stairway of Excellence
SSH Social Sciences and Humanities
StG Starting Grant
VR Swedish Research Council (Swe. Vetenskapsrådet)
YAE Young Academy of Europe
PART I
Science is replete with evaluations. They come in many forms and guises. Researchers evaluate and are evaluated on a nearly everyday basis. Colleagues openly question and criticize each other during seminars and presentations, hoping that this will push ideas and texts forward (e.g. Merton, 1973). Peers scrutinize manuscripts, applications, and recommendations in closed reviews. The results of such reviews are commonly used to make decisions about funding, prizes, positions, and publications (e.g. Lamont, 2009; Merton, 1973; Musselin, 2013; Zuckerman and Merton, 1971).

Regularly, research organizations evaluate and are evaluated as well. Universities themselves initiate broad internal assessments, supposedly looking for strengths and weaknesses within and between different academic units. The results of these assessments often become bases for distribution of resources to groups, centers, institutes, and departments (Bomark, 2016). Governments scrutinize state-funded universities through bibliometric exercises, drawing upon data that allegedly reflects the impact of published research. Such exercises are regularly linked to resource allocations as well (e.g. Blockmans, Engwall, and Weaire, 2014; Gläser and Laudel, 2007; Weingart, 2005). And media conglomerates continuously rank universities, using pre-specified indicators that seek to make entire entities comparable. The resulting rankings tend to shape identities, form hierarchies, and determine which activities are considered legitimate among research organizations (e.g. Elsbach and Kramer, 1996; Espeland and Sauder, 2007; Sauder and Espeland, 2009; Wedlin, 2006, 2007).

These are only a few examples, but they hint at the wide extent and variety of evaluations in science. As Robert K. Merton (1973: 276) already put it 45 years ago, researchers and research organizations are “subject to rigorous policing, to a degree perhaps unparalleled in any other field of activity”. Evaluations thus hold a central place in science. There appears to be an almost innate demand for them.

However, among this plethora of evaluations, some seem to become more authoritative than others. In Europe, one particular set of evaluations has stood out from the rest. A few times per year, the European
Research Council (ERC) announces the results of its calls for funding applications. If the ERC were to be like most other funders, its announcements would probably come and go, quickly surfacing and rapidly disappearing among loads of other information competing for the attention of the research community. But the ERC seems to be more than just another research funder. The results of its calls spread widely, attracting much interest as they are made public. The publication of these results creates a flurry of activity, noted most prominently in how scientists, department heads, faculty deans, university vice chancellors, national research council directors, and politicians on the national and European level all put great effort into analyzing and discussing who is funded by the ERC, where these funding recipients are based, and what their successful applications contained.

Part of this interest can be traced to the generous resources at stake in ERC calls. Most scientists in universities must seek and access funding with regular intervals in order to enable any significant research time (e.g. Braun, 1998; Heinze, 2008; Laudel, 2006a; Laudel and Gläser, 2014). Depending on the career stage of applicants, ERC grants range between €1.5 and €2.5 million for five years of research. Such monetary amounts and duration periods are typically characteristic of funding schemes that feature several co-applicants and support for whole programs. However, ERC grants are almost exclusively catered toward single applicants. The individual basis of these grants makes them considerably larger than most other comparable funding schemes in Europe. It is, on this count alone, perhaps not surprising that ERC grants attract much interest.

But could there be something more than resources at play here? It appears as if individual scientists, research organizations, and even entire countries anxiously measure their performance in science on the basis of ERC evaluation results. For example, shortly after the ERC’s inaugural call for applications, ScienceBusiness wrote about “exam results” that “give new boasting rights to the winners – and prove embarrassing to others” (Hudson, 2008). Senior professors, seasoned administrators, and experienced journalists can often be heard talking about the emergence of an outright “Champions League” in science (e.g. Amos, 2012; Enserink, 2007; Maasen, 2009; THE, 2016). Today, many research community actors perceive the results of ERC evaluations as a benchmark of scientific quality in Europe (e.g. Cieciura, 2017; CNRS, 2017; Deane, 2017; Oxford, 2017; Stockero, 2017).

The development of a perceived ERC-based benchmark is remarkable because it has unfolded against a backdrop that is usually characterized by ambiguous notions of quality. Traditionally, there has only been vague and tacit agreement among researchers when it comes to what scientific quality is. It has, moreover, been acknowledged that these
notions tend to vary between disciplinary domains, research organizations, and countries (e.g. Hermanowicz, 2013; Lamont, 2009). Taking this into account, one of the most conspicuous aspects of the ERC is that its evaluation results have seemingly been transformed into an unambiguous benchmark of quality in science, approached and accepted as a common yardstick against which research performance is measured across national, organizational, and disciplinary boundaries. Notably, while the relatively recent advent of rankings and bibliometrics has engendered extensive criticism (e.g. Burrows, 2012; Guttenplan, 2010; Nilsson, 2016; Redden, 2013; Werner, 2015), the research community in Europe quickly rallied around the results of ERC evaluations, without much apparent debate. These results are often placed alongside or above some of the more established quality markers in science, such as intra-professional prizes and peer-reviewed publications.

At present, the ERC’s saga is roughly 10 years old. The European Commission (EC) founded this new research funder in 2007. In spite of its rather short life, the ERC has apparently risen to an authoritative position. I am particularly concerned with how this funder, through its evaluations, developed into what could initially be understood as an arbiter of quality in science. What happened here? How did the ERC’s evaluation results come to be perceived as a benchmark of scientific quality? And what does the emergence of a quality arbiter mean for science in Europe?

From Blocks to Projects: Shifts in Research Funding

The questions I have raised are all timely in light of wider changes relating to the increased significance of research funding for the activities of scientists, departments, faculties, and universities. I suggest that these changes can provide us with the initial steps on our way to understanding the development of the ERC into an arbiter of scientific quality in Europe.

Funding for research in universities can be classified on the basis of whether it is based on internal or external resources. Traditionally, the majority of resources for research in universities have been provided directly by governments. Only minor resources have come from publicly controlled research councils and privately held foundations (e.g. Braun, 1998; Hicks, 2012). In line with Auranen and Nieminen (2010), I approach direct governmental resources as internal funding because universities have most often been allowed to decide on their subsequent distribution among faculties and departments. Moreover, I regard research council and foundation resources as external funding since universities have typically not been able to decide how they are allocated.
Generally, up until the early 1980s, universities and governments in Europe remained closely connected to each other. As I hinted to above, most research in universities was funded by governmental resources (e.g. Braun, 1998; Hicks, 2012). However, in the years that followed, several governments embarked on a string of market-influenced reforms. These reforms were largely driven by a wave of neoliberal ideas, starting in the UK and subsequently spreading to large parts of Europe. Contained in these ideas were potent notions of efficiency and competition for resources in the public sector (Hood, 1991, 1995). Such notions had considerable consequences for the relation between internal and external research funding in universities. Perhaps nowhere was this more apparent than in the welfare states of Scandinavia.

The Swedish university system presents a compelling case of how internal and external funding proportions shifted. In Sweden, research resources were typically provided to universities through periodic and centralized governmental block grants. Vice chancellors and chair professors subsequently allocated these grants to long-term programs in departments and faculties (Edlund and Wedlin, 2017). Additional resources usually came from private foundations and public research councils. While foundations were free to provide support across the gamut of disciplinary domains, research councils were often designed with mandates that limited their funding to specific disciplines. However, both private foundations and public research councils distributed resources directly to individuals conducting short-term projects in universities. These resources were thus beyond the control of faculties and departments. But, at the same time, foundations and research councils were only meant to provide small supplements on top of the much larger governmental block grants (Engwall and Nybom, 2007). Internal funding was, needless to say, dominant.

The entrance of neoliberal ideas and market-influenced reforms into the Swedish public sector during the late 1980s and early 1990s had important consequences for the funding of university research. While vice chancellors and chair professors would traditionally meet and discuss with politicians, there was presumably little room for competition over the distribution of block grants from government to universities. Now, the new message from politicians was that competition on the basis of merits could serve to increase the efficiency with which research resources were employed. Funding would be distributed to those that were best positioned to make productive use of it. It was, by extension, believed that this could improve the research performance of the Swedish university system as a whole (e.g. Engwall and Nybom, 2007; Hallonsten and Hugander, 2014; Hallonsten and Silander, 2012).

I argue that the emphasis on competition and efficiency could be seen in the growing importance that external funding soon came to as-
sume. The periodic and centralized features of block grants clashed with new ideas about flexible, responsive, and demand-driven research resources. These ideas typically favored short-term projects led by individual applicants instead of long-term programs adjudicated to departments and faculties (Engwall and Nybom, 2007). From being considered complements to governmental block grants, resources from councils and foundations rapidly became an integral part of how research was funded in Swedish universities. By the 2010s, the proportion of internal and external funding was almost equal (Hallonsten and Silander, 2012). This marked an important shift for research funding in Sweden.

Although the changing relations between internal and external funding may have been especially noticeable in Scandinavia, similar tendencies could be observed across Europe (Hicks, 2012). More generally, I suggest that the increased importance of external research funding in universities provides a background to the transformed role that evaluations of applications took at this time. The growing prevalence of short-term projects would place many scientists under regular pressure to submit applications for external funding. At the same time, the notion of allocating scarce public resources to their most productive use presumably restricted many scientists from being funded. Evaluators would thus review applications from large numbers of scientists, before selecting a few, elevating them as particularly merited, and subsequently endowing them with external funding. In this context, the notion of scientists being funded individually after competing with many others signals that evaluators previously selected and elevated these very same scientists because of how meritorious their applications were perceived to be. With the growing significance of individually and competitively allocated external funding, evaluation results at the conclusion of calls for applications hold the potential to become important markers of scientific quality.

Perspectives on Status Creation

Although the outcomes of external funding evaluations can be approached as quality markers in science, we still want to understand how the ERC’s results have come to be ascribed with more authority than others.

Since scientific quality constitutes an ambiguous notion, single evaluation results have traditionally not been able to establish themselves as a benchmark of quality in science. Instead, scientific quality is typically interpreted in various ways. From the literature, we know that quality in sociology and management studies circles around making contributions
which peers find to be interesting (Davis, 1971; Whitley, 1984). Moreover, we also know that “particularistic and ascriptive criteria” (Hargens and Hagstrom, 1967: 25) play a prominent role when physicists and biologists discuss scientific quality in their respective disciplinary domains. Taking this ambiguity into account, I suggest that evaluations of external funding applications can be understood as more than instances in which quality is straightforwardly assessed and research resources are subsequently allocated. The tendency of such evaluations to select and elevate a few scientists as particularly merited in contexts characterized by ambiguous notions of quality opens up for consequences that potentially extend far beyond application assessments and resource allocations (e.g. Allen and Parsons, 2006; Cattani, Ferriani, and Allison, 2014).

The status literature can help us shed light on many issues related to the extended consequences of evaluations in contexts where quality is ambiguous. When situated in such contexts, actors tend to adopt a social orientation, thus assessing the worth of others through cues that serve as replacements for quality (e.g. Podolny, 1994, 2005). Status is, according to this literature, among the most potent replacements because it is widely regarded as an accurate reflection of underlying quality (e.g. Henrich and Gil-White, 2001; Magee and Galinsky, 2008). In science, degrees from certain universities (Hargens and Hagstrom, 1967), memberships in specific academies (Merton, 1968), and endorsements by particular researchers (Zuckerman, 1967a) play an important role as replacements for quality when scientists attempt to assess the worth of their peers. Tellingly, status has traditionally replaced quality as the primary feature of the social order in science (e.g. Ben-David and Sullivan, 1975; Cole and Cole, 1973; Merton, 1957, 1968; Zuckerman, 1977, 1992).

By extension, as Thorstein Veblen (1953 [1899]) emphasized more than a hundred years ago, contexts where quality is ambiguous are also likely to become potent grounds for status creation. The creation of status has subsequently been conceptualized along the lines of three important approaches.

One of these approaches relates to Max Weber’s (1968 [1922]) classical essays on the role of social closures. Here, status comes into existence when actors that display valued attributes and/or behaviors retract into groups. Actors in such groups tend to gather around a common project of distinction and a collective belief of superiority. In order to maintain the exclusivity of these groups, access is deliberately restricted through scarce positions and elusive membership opportunities (e.g. Bourdieu, 1984; Elias and Scotson, 1994 [1965]; Ridgeway, 2014).

Another important approach to status creation revolves around studies by Joel Podolny and colleagues (e.g. Benjamin and Podolny, 1999;
Podolny, 1994, 2005; Podolny and Phillips, 1996; see also Stuart, Hoang, and Hybels, 1999) on the role of affiliations. Their approach draws inspiration from social network research, where relations are regarded as central sources of information for actors that are to transact with each other (e.g. Granovetter, 1973, 1974). Building on this research, status comes into existence when actors of different standing are publicly affiliated with each other. More specifically, lower standing actors gain status in situations where they are openly connected to actors of higher standing (Podolny, 1994, 2005). As such, this research largely follows the age-old adage that ‘you are who you hang with’.

While the roles of affiliations and social closures have been extensively explored, an additional approach has emerged as of late. It deals with the work of Wendy Espeland and Michael Sauder (e.g. Espeland and Sauder, 2007; Sauder, 2005, 2006; Sauder and Espeland, 2006, 2009; see also Sauder and Fine, 2008), which focuses on the role of third-party arbiters in status creation. Their approach revisits the somewhat forgotten notion that status comes into existence in relations involving three parties. Such notion extends past the bipartite assumption of actors that either seek or grant status. For example, Hans Speier (1935) emphasized that status creation should be regarded as interplays between bearers, bestowers, and observers. Charles Wright Mills (1963) proposed that the contextual basis of relations between claimants and conferrers of status has to be taken into account. And William Goode (1978: 13) stressed that status creation should be approached as “a relation among Person, Other, and Group or Community”. Although Speier, Mills, and Goode used different terms for their third-party actors, the notion of triadic relations implies that certain actors mediate status creation by assessing and suggesting particular candidates as possible recipients of deference from audiences.

Throughout several studies, Espeland and Sauder (Espeland and Sauder, 2007; Sauder, 2006; Sauder and Espeland, 2009) approached the US News & World Report (USN) rankings as a third-party arbiter that altered the traditional status order among American law schools. The arrival of these rankings upset a traditionally loose and implicit hierarchy, instead introducing strict and explicit ways of evaluating law schools that eventually rendered an alternative status order. The consequences were pervasive for schools that subsequently lost status among some of their main constituencies, such as alumni, donors, prospective students, and tuition-paying parents. These schools responded by modifying their profiles, narrowing their student selection processes, and manipulating their performance indicators, hoping that this would enhance their status in the USN’s alternative status order.
Aim and Research Questions

I take Espeland and Sauder’s studies as a point of departure for my thesis. Much like the USN was analyzed as a third-party actor that mediated status-creating relations between American law schools and their main constituencies by organizing evaluations, I will study how the ERC has similarly come to mediate such relations between scientists and the research community. This makes it possible to analyze in detail how the ERC’s role stretches beyond the notion of a quality arbiter. The idea that evaluations of funding applications can be understood as instances which extend past assessments of scientific quality and allocations of research resources presumably makes it more accurate to approach the ERC as an arbiter of status.

Although Espeland and Sauder provide us with fresh insights into the role of third-party arbiters in status creation, several questions remain unanswered and open for further exploration. Most importantly, their work predominantly appears to focus on how the USN created status for law schools. As such, Espeland and Sauder’s studies have less to say about how this arbiter reached its status-creating position in the very first place. More generally, while certain third-party arbiters engender considerable consequences for candidates, we still know little about the ways in which these arbiters develop into actors that are endowed with the authority to mediate status relations. This is an important topic, which deserves further attention. The notion of arbiters contributing to status creation in relations involving three parties suggests that central insights could go missing if we only focus on the consequences for candidates. My approach to the ERC thus incorporates the possibility that triadic status-creating relations may have substantial consequences for arbiters and audiences as well.

One way forward is to place the extended consequences of triadic relations in a broader context of fields. Pierre Bourdieu’s (e.g. 1980, 1985a; Bourdieu and Wacquant, 1992) concept of fields takes a relational perspective on the tensions and struggles that engage and affect actors seeking the authority to influence how central tenets are defined and determined in the areas of social life where these very same actors are situated. As such, this concept is particularly useful for advancing our understanding of how arbiters, candidates, and audiences all appear to be engaged in and affected by relations that define certain attributes and/or behaviors as worthy of status. Moreover, with their focus on tensions and struggles over authority, Bourdieu’s fields are also well placed for augmenting our knowledge of how certain actors are constructed into third-party arbiters that hold the potential of influencing the tenets upon which status is created in their areas of social life.
The aim of my thesis is thus to explore the antecedents and implications of the ERC’s development into a third-party arbiter of status in the field of science. In doing so, I am guided by the following research questions: How are actors constructed into the role of status arbiters? What consequences do such arbiters render in the fields where they are situated? With these questions, I attempt to develop theory that will help us further understand the construction of certain actors into third-party status arbiters that wield far-reaching authority in fields.

Thesis Organization

After this introduction comes Chapter Two. Here, I develop a theoretical account that revolves around previous literature on status, arbiters, and fields. I use the resulting framework to direct my empirical study of the ERC’s development. In Chapter Three, I present the methods for collecting and analyzing data. I discuss how my gathering and coding of data from interviews, documents, and observations contributes to the aim and research questions that guide this thesis.

Part II is an empirical section. In Chapter Four, I describe the tensions and struggles that surrounded the idea of Europe-level science throughout the early 2000s. As such, this description provides an important background to the field in which the ERC subsequently developed. In Chapter Five, I move forward by looking at the evaluation of applications for the ERC’s Starting Grant (StG) research funding scheme. I zoom in on the different steps of these evaluations, paying particular attention to how they were portrayed by the ERC and perceived by the research community. Then, in Chapter Six, I explore the perceived status consequences of StG funding allocations. Focusing on the context of Sweden, I consider how these allocations were believed to affect scientists, departments, and universities. I provide a counterpart to the consequences of StGs by also looking at a monetarily and temporally identical national scheme for ERC runner-ups.

Finally, as for Part III, I devote Chapter Seven to an analysis of the empirical study contained in this thesis. I compare and contrast my findings with previous literature, ultimately presenting a field perspective on the process through which the ERC was constructed into a status arbiter in science. I round off this thesis with Chapter Eight. Here, I present contributions, discuss implications, acknowledge limitations, and suggest avenues for future research at the crossroads of arbiters, evaluations, and status creation in fields.
Throughout Chapter One, I introduced the ERC, observed how its evaluation results have come to be transformed into a benchmark of scientific quality, and suggested that this development can be approached as the emergence of a third-party arbiter of status in the field of science.

My goal in Chapter Two is to build a theoretical framework with which I can explore how the ERC was constructed into a status arbiter. To do so, I begin by reviewing some of the main assumptions in the status literature. Then, I discuss the different ways in which status may be created, paying particular attention to triadic relations consisting of candidates, audiences, and arbiters. In the next step, I point to the consequences of status, arguing that past research has mostly focused on how candidates and audiences are affected. Finally, I suggest that the concept of fields opens up for a fuller understanding of how triadic relations may affect the construction of status arbiters as well. Fields, more specifically, highlight how tensions and struggles for the authority to create divisions successively positions certain actors in roles that enable them to influence what candidates are perceived as worthy of deference from audiences.

Conceptualizing Status

Third-party arbiters are usually taken to be actors that are involved in the creation of status. As such, before discussing the ERC’s role in status creation, it is important to clarify how I approach the concept of status. Max Weber (1968 [1922]: 305) classically defined status as “effective claim[s] to social esteem in terms of positive or negative privileges”. While Weber’s definition is relatively sparse, I suggest that a number of central assumptions can be derived from it.

One of these assumptions revolves around the notion that status is a relational concept. Candidates care deeply about how they are perceived by audiences. Because of this, candidates will attempt to display attrib-
utes and/or behaviors that engender deference from audiences (Goode, 1978). By deference, I mean acts through which “appreciation is regularly conveyed to a recipient” (Goffman, 1956: 477). The idea of audiences conveying appreciation to candidates implies that the latter can only do so much to influence how the former perceive them. Status cannot be possessed, nor can it be fully controlled. By extension, status derives much of its potency from the notion that audiences voluntarily confer it upon certain candidates (e.g. Henrich and Gil-White, 2001; Magee and Galinsky, 2008; Sauder, 2005).

Another important assumption concerns the idea that status may – but does certainly not need to – be associated with quality. In many contexts, the connection between status and quality would best be characterized as loose (Washington and Zajac, 2005). Instead, status is often based on attributes and/or behaviors that audiences consider to be worthy in their areas of social life. Whether they are ‘better’ or ‘worse’ than other behaviors and/or attributes is secondary. What matters is how worthy they are believed to be (e.g. Goode, 1978; Magee and Galinsky, 2008; Whyte, 1993 [1943]). Almost any attributes and/or behaviors can become bases for status, as long as they are valued by audiences (e.g. Berger, Zelditch, Anderson, and Cohen, 1972; Goffman, 1951).

A final assumption revolves around the notion that status is a hierarchical concept. It renders approximate orders of candidates that structure relations in social life. Positions at the top of status hierarchies are typically scarce. Many candidates seek them, yet few access them. The competition for top positions in status hierarchies makes for zero-sum situations, meaning that the ascent of some candidates almost automatically leads to the descent of others (e.g. Abbott, 1981; Washington and Zajac, 2005). However, once these orders foster agreement and gain traction, they tend to be notoriously resilient bases for deference. Such resilience largely stems from the belief that status is an accurate reflection of quality (e.g. Henrich and Gil-White, 2001; Magee and Galinsky, 2008).

Building on these three assumptions, I conceptualize status as voluntarily conferred deference, which successively shapes agreed-upon orders of individuals, groups, and/or organizations in social life. With this definition at hand, we are now in the position to continue developing our understanding of the ERC’s role as a creator of status.

Closures, Affiliations, and Third Parties

In the literature, status creation is a perennial question, which has typically been discussed through three separate approaches. I develop the
theoretical arguments for each approach independently, although they are likely to blend in many empirical situations.

One influential approach relates to the role of social closures. It is largely based on Max Weber’s (1968 [1922]) seminal work on status groups. Weber stressed that status is quickly created anytime candidates that display worthy attributes and/or behaviors retract into exclusive groups. Such groups form bonds built on a collective belief of superiority and a common project of differentiation. Their exclusivity is largely maintained by counteracting inflationary tendencies. As such, status groups tend to be characterized by deliberately restricted positions, sharply demarcated boundaries, and constantly changing grounds for inclusion (e.g. Bourdieu, 1984; Elias and Scotson, 1994 [1965]; Ridgeway, 2014).

Elias and Scotson’s (1994 [1965]) work on Winston Parva – the fictive name for their English small-town empirical setting – highlights many central features that define social closures. It hints at how status regularly comes into existence when certain groups of candidates are able to portray themselves as more worthy than others. In Elias and Scotson’s work, the Established consisted of several long-time residents with multigenerational bonds to Winston Parva. The Outsiders instead comprised a number of newcomers with no previous connections to the town. Both groups shared similar working-class backgrounds, however. Despite this, the Established were consistently able to position themselves as a superior group at church services and town hall meetings. Lacking any previous connections to Winston Parva, the newcomers misunderstood the local system of norms, values, and beliefs. These misunderstandings were drawn upon by the Established to portray their higher moral quality. Everyday interactions with the Outsiders in pubs, parks, and streets were altogether avoided. The Established closed off and formed an exclusive group, which meant that newcomers in Winston Parva seldom came into contact with the prevailing norms, values, and beliefs. By extension, such exclusion continuously reinforced the position of long-time residents as a superior group.

Another important approach to status creation deals with the role of affiliations. At the center of this approach is the notion that previous relations serve as important conduits of information for actors about to engage in exchange with each other (e.g. Granovetter, 1973, 1974). Such notion has subsequently become the basis for a number of studies that have emphasized the significance of affiliations for status creation (e.g. Benjamin and Podolny, 1999; Podolny, 1994, 2005; Podolny and Phillips, 1996; Stuart et al., 1999). As is stressed throughout these studies, when candidates of different standing are publicly connected to each other, status flows are offset. With such flows mainly going from
high-status candidates to low-status counterparts, the latter are typically much keen on connecting with the former.

The role of affiliations for status creation has been explored on several levels of analysis. On the individual, Greenfeld (1989) studied up-and-coming painters in Israeli art, examining how audiences assessed the worth of candidates across different contexts. She compared painting styles in which quality norms were clearly outlined and widely accepted with other styles in which norms were ambiguously defined and constantly contested. In contexts where norms were clear and accepted, gallerists and curators mostly assessed the potential of artists by looking at how well paintings aligned with these very same norms. However, when quality norms were ambiguous and contested, gallerists and curators regularly struggled to make sense of up-and-coming painters. In such contexts, the potential of painters was mostly assessed on the basis of eventual affiliations with respected actors throughout the international painting scene.

Charles Camic’s (1992) study of a young Talcott Parsons at Harvard also points to the role of affiliations for status creation on the individual level. However, it does so by showing how candidates attempt to build favor among audiences through strategic uses of affiliations. Camic emphasized that the way in which Parsons linked his early work to prominent thinkers was consequential for the status that this very same work subsequently enjoyed among American academic circles. More specifically, Talcott Parsons’ argumentation in *The Structure of Social Action* was skillfully connected to the thinking of Max Weber, Émile Durkheim, Alfred Marshall, and Vilfredo Pareto. These linkages enhanced the reception of his early work among US academics, which, during the 1920s and 1930s, held European sociology and economics in high regard. In connecting *The Structure of Social Action* to Weber, Durkheim, Marshall, and Pareto, Parsons also distanced it from American institutionalism. He did so even though this institutionalism was based at Harvard and constituted a compelling fit with the argumentation in his early work. As such, this distancing was a way of disaffiliating from American institutionalism, which enjoyed low status at the time.

The most influential research on the role of affiliations for status creation has perhaps been conducted at the organizational level. In their work on biotechnology start-ups, Stuart et al. (1999) showed how affiliations endowed candidates with status that was essential for their survival. They found that the life span of young biotech companies in Silicon Valley was positively affected by connections to established investors. Such connections not only provided start-ups with much-needed capital, but they also sent signals that these very same start-ups had “withstanding the due diligence process of a selective and highly capable
The status that flowed though links to established investors thus constructed beliefs about the quality of young companies. Such links became vital cues for the future potential of biotechnology start-ups because most of these companies had not released any products and/or services yet.

Benjamin and Podolny (1999) also pointed to the role of affiliations for status creation at the organizational level. They provided further substantiation for the notion that affiliations endow candidates with status that is essential for their survival. More specifically, studying the viability of wineries in California, Benjamin and Podolny’s work demonstrated that the credibility of quality claims was deeply affected by connections to certain viticultural denominations of origin. Consumers were significantly more likely to believe in claims issued by Californian wineries linked with high-status denominations of origin than in similar claims issued by wineries connected to low-status denominations. Interestingly enough, although certain affiliations fueled potent beliefs about quality, blind tests detected few – if any – differences in the features of the wines at hand.

In addition to the role of social closures and affiliations for status creation, a third approach has emerged during the last decade or so. It is an approach that deals with the involvement of third-party arbiters in the creation of status (e.g. Espeland and Sauder, 2007; Sauder, 2005, 2006; Sauder and Espeland, 2006, 2009; Sauder and Fine, 2008). The idea that there are three parties involved in status creation is not new, however. In their seminal works, Speier (1935), Mills (1963), and Goode (1978) all sought to move beyond the notion of bipartite relations between candidates and audiences. Speier proposed that status comes into existence through interplays between bearers, bestowers, and observers. Mills, furthermore, posited that status creation should be understood as situations characterized by conferrers deferring to claimants in public contexts. And Goode placed triadic relations between Persons, Others, and Groups or Communities at the center of his magnum opus on status.

In my study, I take a tripartite perspective on status creation, suggesting that the ERC mediated relations between scientists and the research community. I use the term third-party arbiters to emphasize the idea that certain actors mediate relations in which status is created, assessing and suggesting particular candidates as possible recipients of deference from audiences (e.g. Sauder, 2006; Sauder and Fine, 2008). Moreover, I employ the term audiences to reflect the notion that status builds on publicly conferred deference (e.g. Sauder, 2005, 2006; Speier, 1935). Finally, I use the term candidates to emphasize the idea that status comes into existence when arbiters and audiences reach near-agreement in terms of worthy deference recipients (e.g. Goode, 1978;
Mills, 1963). More generally, this perspective is closely connected to many central assumptions in the status literature. Triadic relations between arbiters, audiences, and candidates are in line with the notion that no actors are fully able to control the creation of status. Through such relations, it also becomes clear that status creation is characterized by voluntariness. Triadic relations highlight that status comes into existence when audiences freely display their support for candidates assessed and suggested by arbiters.

The Triadic Consequences of Status

The advantages associated with status have been explored in a voluminous body of literature. Most of this literature has focused on how status affects candidates. From past research, we know that high-status candidates typically enjoy greater attention in discussions (e.g. Simcoe and Waguespack, 2011; Torrance, 1954) and bargaining situations (e.g. Henrich and Gil-White, 2001; Magee and Galinsky, 2008; Thye, 2000) than their low-status counterparts. In addition, we also know that high-status candidates usually command higher returns for their offerings (e.g. Benjamin and Podolny, 1999; Delmestri and Greenwood, 2016) and easier access to further resources (e.g. Domina, Penner, and Penner, 2016; Stuart et al., 1999; Van de Rijt, Kang, Restivo, and Patil, 2014).

Although candidates enjoy a disparate range of status-related advantages, most of these advantages can be subsumed under Merton’s (1968) Matthew effect. At the core of this effect is a biblical passage in Matthew 25:29¹ that emphasizes how “the rich get richer at a rate that makes the poor become relatively poorer” (Merton, 1968: 62). More specifically, the Matthew effect stresses that previously successful candidates are endowed with status-related advantages that are largely unavailable to their previously unsuccessful counterparts. Such advantages continuously lead to an over-appreciation of high-status candidates’ performance and an under-appreciation of low-status counterparts’ performance. These patterns of over- and under-appreciation drive cumulative advantage processes, which gradually expand the differences between the previously successful and unsuccessful. To the extent that luck plays a role in early successes, the Matthew effect thus self-perpetuates the status-related advantages of initially fortunate candidates (see also Gould, 2002).

¹ “For unto everyone that hath shall be given and he shall have abundance; but from him that hath not shall be taken away even what he hath”.

24
Merton’s Matthew effect has been extensively studied (see DiPrete and Eirich (2006) for a review). Among this plethora of studies, a few are particularly important for my study of the ERC because they zoom in on contexts where quality is ambiguous, showing how candidates’ status from previous successes are likely to increase their future chances of success.

For instance, Stewart (2005) examined Advogato, a large and fluid virtual organization ran by developers of free software. Within this organization, status was mainly based on how members perceived the quality of other members’ contributions to the development of software. However, with the vastness and variability of Advogato, it was difficult for members to personally observe and test contributions. As such, when asked to assess contributions, members largely relied on past assessments. It meant that such assessments continuously functioned as bases for quality and, by extension, status within Advogato.

Kim and King (2014) also pointed to the association between status from earlier successes and candidates’ future chances of success in contexts where quality is ambiguous. They compared how umpires in Major League Baseball assessed the quality of pitchers with and without previous All-Star Game appearances. Their findings suggested that, when faced with ambiguous situations (i.e. pitches located close to the border of the strike zone), umpires were more generous in their assessments of high-status pitchers than in their assessments of low-status pitchers. As such, compared to low-status pitchers, high-status pitchers continuously enjoyed more over-recognition of quality and less under-recognition of quality. Kim and King (2014: 2634) concluded that “the strike zone becomes slightly larger for high status pitchers, and smaller for those with no status”.

While these studies of Advogato and Major League Baseball highlight the extensive consequences of status in contexts where quality is ambiguous, they largely seem to assume that such consequences develop through bipartite relations that involve candidates and audiences. By extension, they bypass the important notion of status consequences developing in triadic relations.

The idea of three parties was revisited by Espeland and Sauder (e.g. Espeland and Sauder, 2007; Sauder, 2005, 2006; Sauder and Espeland, 2006, 2009; see also Sauder and Fine, 2008), who focused specifically on how relations between arbiters and audiences rendered pervasive consequences for candidates. Studying the USN, they showed how the introduction of rankings altered the traditional status order among American law schools in significant ways. Many well-renowned law schools were deeply affected by placements in ranking tiers that did not match their self-perceptions. Despite being vehemently criticized by deans and administrators, the USN rankings still managed to gain trac-
tion because it was generally believed that important constituencies, such as alumni, donors, prospective students, and tuition-paying parents, believed in how schools were positioned. Over time, most American law schools eventually acquiesced, succumbing to the allure of climbing ranking tiers. Law schools were prone to abolish longstanding commitments, such as diverse student intakes, alternative course curricula, and generous minority scholarship programs, all in efforts aimed at increasing their status among constituencies.

In this thesis, I take Espeland and Sauder’s work as a point of departure for my study of how the ERC was constructed into the role of a third-party status arbiter. Their work has been instrumental for our understanding of how arbiters mediate status relations, often with extensive consequences for candidates that are affected. In similarity with how the USN mediated status-creating relations between American law schools and their constituencies through rankings, the ERC has come to mediate such relations between scientists and the research community through evaluations of applications for funding. However, since Espeland and Sauder mostly focus on the consequences of third-party arbiters’ mediation for candidates, we still know little about how these arbiters reach their status-creating positions in the very first place. I suggest that, if we take the notion of three parties in status creation seriously, important insights may be suppressed by restricting our attention to the consequences of status relations for candidates. In light of this, my approach to the ERC’s construction as a third-party status arbiter opens up for the possibility that triadic relations can affect arbiters and audiences as well.

Past research provides us with hints as to how the consequences of status may extend beyond the purview of candidates. To begin, audiences play an important role for the status-related advantages that certain candidates enjoy. Audiences, more specifically, control most of the symbolic and material resources that high-status candidates are endowed with (cf. Cattani et al., 2014). There are indications that, by extending status-related advantages to candidates in their proximity, audiences can also come to be affected.

One argument is that the attributes and/or behaviors of certain candidates may function as guidance for others that seek status. As such, proximate high-status candidates presumably allow audiences to discern and mimic some of the attributes and/or behaviors that engender deference in their areas of social life (e.g. Henrich and Gil-White, 2001; Magee and Galinsky, 2008).

Another argument is that, by extending status-related advantages, audiences can establish affiliations with proximate candidates. Such affiliations may engender potent halos, thus sparking cognitive processes in which the status of certain candidates spills over onto audiences
(e.g. Cialdini, Borden, Thorne, Walker, Freeman, and Sloan, 1976; Nisbett and DeCamp Wilson, 1977; Thorndike, 1920).

Just as audiences, third-party arbiters also play an important role for the advantages that high-status candidates enjoy. However, we still know very little about how these advantages may affect arbiters. Nonetheless, the notion that third-party arbiters assess and suggest certain candidates as particularly worthy of deference, without knowing beforehand how audiences will respond, seems important for our continued understanding of the ERC’s triadic construction into a status arbiter.

Constructing Arbiters in Fields

The concept of fields provides us with a way of grasping the broader set of status relations through which the ERC appears to have been constructed into a third-party arbiter. While several versions of this concept exist (see Martin (2003) for a review), Pierre Bourdieu’s fields stand as the most apt for my study.

Bourdieu’s conceptualization of fields is useful because it directs our attention to the multiple relations in which different actors gain and sustain their authority. While certain actors seek to sustain any authority they have, others constantly challenge it, thereby attempting to gain new authority. Such relations generate tensions and struggles that tend to make fields inherently unstable. States of inertia constitute exceptions (e.g. Bourdieu, 1980, 1985a; Bourdieu and Wacquant, 1992).

Authority is a central concern in fields since it tends to provide command over important stakes. In fields, tensions and struggles often revolve around the authority to create “vision[s] of the divisions of the social world” (Bourdieu, 1985a: 732). These divisions are closely connected to the central tenets in fields, such as what attributes and/or behaviors are considered to be worthy of deference. Actors who have the authority to create visions of divisions often do so along the lines of their own interests. As such, this authority is likely to be associated with considerable advantages for select groups of actors. But, to gain traction, divisions in fields require acceptance among candidates and audiences that may be affected by these very same divisions. From Bourdieu’s (e.g. 1984, 1991, 1996a) work in the fields of art, literature, and higher education, we know that certain visions of divisions engender acceptance because they successively come to regarded as natural features of social life. That is, such divisions gain traction by “fostering a misrecognition” and portraying “properties of a social nature in a way that makes them seem like properties of natural nature” (Bourdieu, 1991: 118; italics in original).
Other literature on fields tells us that evaluations are particularly potent tools for the creation of divisions (e.g. Allen and Parsons, 2006; Bourdieu, 1991; Cattani et al., 2014; Heinich, 2009; Schmutz, 2005). Evaluations are social practices in which the worth of individuals, groups, and/or organizations is assessed on the basis of pre-specified criteria (e.g. Lamont, 2009, 2012). Like other divisions in fields, evaluations presumably need to gain acceptance among candidates and audiences that may be affected by these assessments. Evaluations often engender acceptance when they come to be understood as objective reflections and descriptions of different activities (e.g. Allen and Parsons, 2006; Schmutz, 2005).

But the socially constructed basis of evaluations suggests that they are not just neutral practices. Through various ways of grouping, comparing, and distinguishing candidates, evaluations are often used by actors seeking to influence who is perceived to be worthy of deference from audiences in fields (cf. Bourdieu, 1991). In the field of science, this means that the ERC’s evaluations of funding applications may extend beyond instances where scientific quality is assessed and research resources are allocated. With the concept of fields, I open up for the idea that evaluations may construct certain actors as third-party arbiters that mediate status-creating relations, successively shaping strong beliefs about what candidates are worthy of status from audiences.

Concluding Remarks

Throughout this chapter, I have developed a theoretical framework that approaches the ERC as a third-party status arbiter situated in the context of a field. While most past research on triadic relations has turned its attention to the consequences for candidates and audiences, my framework suggests that such relations may play an important role for the construction of arbiters as well. Fields are important here because they expand our view of the relations in which status is created between arbiters, candidates, and audiences. More specifically, fields highlight how tensions and struggles for the authority to create divisions may position certain actors in roles from which they can influence perceptions about who is worthy of deference. As such, my theoretical framework is well placed to explore the antecedents and implications of the ERC’s construction into a third-party arbiter of status in the field of science.

Before moving on to the empirical section of this thesis, I provide a chapter in which my methods for data collection and analysis are discussed.
CHAPTER THREE: DESIGNING A STUDY OF THE EUROPEAN RESEARCH COUNCIL

I devoted the previous chapter to a theoretical framework that focused on how certain actors are constructed as third-party status arbiters in fields. This framework will guide my subsequent study of the ERC’s development in the field of science.

With Chapter Three, my goal is to describe and discuss the methods choices I made in terms of data collection and analysis. Since past research told me little about how certain actors come to be constructed into the role of status arbiters, I engaged in an exploratory study with a longitudinal and comparative structure. In what follows, I begin by making the case for how and why I gathered documents, interviewed individuals, and observed events. Then, I outline my data analysis process, presenting and justifying its different steps. Altogether, throughout Chapter Three, I strive to connect my methods with the aim and research questions of this thesis.

Setting the Stage with Documents

Because my study started at a time when ERC evaluation results already appeared to be accepted as a benchmark of scientific quality, I first turned toward the origins of this development. It proved to be integral for my understanding of the context in which the ERC’s initial steps were taken.

In Chapter Four, I provide an empirical background to the field of science, showing the ERC came into life within a European context characterized by a number of tensions and struggles. Documents supplied me with the richest way of retrospectively understanding how different actors portrayed these tensions and struggles at the time. As such, in this chapter, documents soon became the most fundamental data source. I do not claim that this data contains any truths about the field in which the ERC was founded. Instead, I approach documents as
trails left by actors that sought to promote specific visions in fields (cf. Abbott, 2001).

Initially, I gathered documents related to science policy debates in Europe from the 1950s and onward. Soon, however, I found that many discussions intensified around the turn of the new millennium. I decided to focus my collection efforts on the time period between 2000 and 2007. 2000 marked the introduction of the EC’s influential proposal for a European Research Area (ERA). It seemed to be the starting point for energetic debates about the notion of ‘Europeanizing’ science. 2007 marked the ERC’s founding, which appeared to be a watershed moment for supporters of science at the Europe-level. Although discussions continued afterward, they seemed to cool down. The documents I gathered could roughly be divided into six categories (in no specific hierarchical or chronological order).

I collected editorials, essays, and letters from academic journals. Although many of these outlets were American, they proved to be ardent arenas for science policy debates in Europe. The titles I targeted ranged from general interest journals to narrow disciplinary domain-specific outlets. Among the more general journals were *Science* and *Nature*. The more domain-specific outlets were mostly related to the life sciences (LS). Titles in the LS domain included *BioEssays, Cell, Current Biology, EMBO Reports, Lab Times, The Lancet, Molecular Oncology*, and *Nature Cell Biology*. Admittedly, I only collected a few documents from journals in the social sciences and humanities (SSH). Among SSH outlets were *European Educational Research Journal, European Political Science, European Review, Science and Public Policy*, and *Research Policy*. I found no relevant document data in physical sciences and engineering (PE) outlets. The overrepresentation of LS journals among my collected documents is not necessarily a problem. It can be interpreted as a reflection of life scientists’ almost total dominance in written science policy debates. While this dominant position can probably be traced to many historical factors (lying beyond the scope of this thesis), it may partly be understood as a consequence of the ways in which LS journals are designed. The LS disciplinary domain counts with several outlets that are structured so as to be highly amenable for debates. For instance, *Cell* and *The Lancet* are released weekly. Moreover, they are designed in ways that resemble magazines. Besides research articles, *Cell* and *The Lancet* feature permanent columns dedicated to editorial opinions, policy essays, and letters from readers. *Science* and *Nature*, which devote considerable space to the LS domain, are very similar in their format. To the best of my knowledge,

2 For reasons of simplicity, I sort journals along the broad lines of the ERC’s classification of disciplinary domains.
there are no similarly structured journals in the SSH and PE. The documents I collected from SSH-related outlets were, to be sure, part-research articles/part-science policy essays. But the general format of these outlets is, nonetheless, very different from *Cell, Science, Nature,* and *The Lancet.*

Because science policy has become a highly mediatized activity, I also gathered texts from Internet-based European news sites. These texts mostly included outtakes from *Times Higher Education, The Scientist,* and *ScienceBusiness.* Such news sites offered useful interviews and analyses from policy-related events throughout Europe.

Several national research councils and transnational interest groups frequently reported on science policy-related debates throughout the years I focused on. Their newsletters offered me timelines of events, interviews with involved actors, and summaries from adjacent meetings, workshops, and conferences.

From time to time, High-Level Expert Groups (HLEGs) contributed to the ongoing debates as well. HLEGs are groups commissioned by EC politicians seeking to tap expert knowledge on policy topics. Their interim and final reports provided me with detailed reviews on the perceived advantages and disadvantages of prominent science policy ideas that floated around throughout the early 2000s.

At some stage of their development, any major European science policy initiatives would have to pass through the EC and the European Union (EU). Because of this, I collected communications, press releases, legal protocols, and speech transcriptions from these two organizations. In what I approach as a reflection of the importance that some policy debates gained, many EC and EU documents came from political meetings entirely devoted to proposals for increasing the role and competitiveness of Europe-level science. Many of these meetings drew hundreds of attendees from dozens of EU Member States, seemingly making them arenas for important debates.

Finally, I also gathered screenshots from early versions of the ERC website, which was in function a year before the new research funder’s founding. While most information on the ERC’s early site disappeared as it was updated, I was able to collect screenshots retrospectively through the Internet Archive Wayback Machine (IAWM). The IAWM is a digital library that contains historical data on approximately 324 billion websites (InternetArchive, 2018). As the eminent founding of the ERC was approaching, many concerns relating to the new research funder remained unsolved. The IAWM provided me with useful glimpses into how these concerns were linked to wider science policy debates in Europe at the time.

That said, working on Chapter Five, I continued collecting documents. At this stage, I mostly used them to understand how the ERC
organized and portrayed the evaluation of applications within its StG funding scheme. But I also employed documents to assess how audiences perceived these very same evaluations. I decided to focus on the StG scheme since it was the ERC’s first offering. It was the only scheme featured in the inaugural ERC call for applications. And, in terms of eligibility, monetary amounts, and duration periods, StGs were virtually unmatched by any other funding schemes directed at early-career scientists in Europe. As such, ERC StGs seemed bound to catch the attention of candidates and audiences.

Temporally, I bracketed Chapter Five to the years 2007-2013. As I mentioned earlier, 2007 marked the founding of the ERC. There were, in other words, no StGs allocated before. Moreover, the EC’s Seventh Framework Program (FP7) – part of a multiannual EU R&D investment package – ran between 2007 and 2013. Since the ERC was financed by the FP7, 2007 to 2013 also became the new research funder’s first budgetary period. Altogether, this bracketing allowed me to study how the StG scheme was portrayed before the ERC’s evaluations of funding applications came to be approached as a benchmark of quality in the field of science.

When it came to documents throughout FP7, I now focused my collection on those directly related to the ERC StG scheme. These documents could be divided into six categories (once again, in no particular hierarchical or chronological order).

I gathered editorial opinions, science policy essays, and reader letters from academic journals. Here, the perceived benefits and drawbacks of StGs were largely discussed in relation to eligibility, success rates, monetary amounts, and structural issues affecting early-career scientists based throughout Europe. LS titles were still dominant outlets for these debates.

Science policy news sites remained important sources of information. At this stage, my main sources included EuroScientist, Nordforsk, ScienceBusiness, The Scientist, Times Higher Education, and University World News. In them, I found briefings from StG events and interviews with ERC representatives that discussed the organization of the newly launched funding scheme.

Newsletters from universities, foundations, academies, national research councils, and science interest groups provided me with further briefings and interviews from events in which the organization of the StG scheme was discussed. Universities and national research councils would, moreover, often write about how to improve the viability of ERC StG applications. Detailed tips and tricks gave me important insights into how the evaluation of these applications was understood.

I also collected service offerings, seminar programs, and blog posts from Dutch, English, and Israeli consultancies specialized in EU re-
search funding applications. These documents contained detailed descriptions of StG evaluations (and, of course, packaged solutions that promised to increase the chances of receiving funding!).

Because they were involved in the ERC’s operations, I turned to the EC and EU for documents as well. From their websites, I gathered newsletters, press releases, legal protocols, and speech transcriptions. Such documents allowed me to catch glimpses of the hopes and expectations that were being placed upon Europe’s newest funding scheme for early-career scientists.

And, finally, I collected newsletters, press releases, annual reports, work programs, peer review guidelines, and PowerPoint presentations directly from the ERC’s website. These documents provided me with much material on how the ERC itself attempted to present its evaluations throughout FP7.

The table that follows contains a summary of the documents I used in Chapter Four and Five:

<table>
<thead>
<tr>
<th>Temporal period (years)</th>
<th>Category (number of pages)</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background (2000-2007)</td>
<td>Editorials, essays, and letters (130)</td>
<td>Academic journals</td>
</tr>
<tr>
<td></td>
<td>Clips (14)</td>
<td>Internet-based science policy news sites</td>
</tr>
<tr>
<td></td>
<td>Newsletters (55)</td>
<td>National research councils and science interest groups</td>
</tr>
<tr>
<td></td>
<td>Reports (59)</td>
<td>European Commission High-Level Expert Groups</td>
</tr>
<tr>
<td></td>
<td>Communications, press releases, legal protocols, and speech transcriptions (313)</td>
<td>European Commission and European Union</td>
</tr>
<tr>
<td></td>
<td>Screenshots (32)</td>
<td>Internet Archive Wayback Machine</td>
</tr>
<tr>
<td>Seventh Framework Program (2007-2013)</td>
<td>Editorials, essays, and letters (108)</td>
<td>Academic journals</td>
</tr>
<tr>
<td></td>
<td>Clips (35)</td>
<td>Internet-based science policy news sites</td>
</tr>
<tr>
<td></td>
<td>Newsletters and PowerPoint presentations (277)</td>
<td>Universities, foundations, academies, national research councils, and science interest groups</td>
</tr>
<tr>
<td></td>
<td>Service offerings, seminar programs, and blog posts (91)</td>
<td>Research funding application consultancies</td>
</tr>
<tr>
<td></td>
<td>Newsletters, press releases, legal protocols, and speech transcriptions (87)</td>
<td>European Commission and European Union</td>
</tr>
<tr>
<td></td>
<td>Newsletters, press releases, annual reports, work programs, peer review guidelines, and PowerPoint presentations (474)</td>
<td>European Research Council</td>
</tr>
</tbody>
</table>

Table 1. Summary of collected documents

All in all, I gathered 1675 pages of text with different spacing and sizing. The documents I employed in Chapter Four allowed me to develop a comprehensive picture of the tensions and struggles that prevailed in the field of science from the turn of the millennium and onward. How-
however, for Chapter Five, documents did not provide me with a satisfactory understanding of StG evaluations. Because of this, I turned to other data sources as well.

Assessing Perceptions with Interviews

I sensed that my collected documents largely lacked the perceptions of those who actually evaluated applications. It seemed difficult to enhance my understanding of how the ERC’s evaluation results were transformed into a benchmark of scientific quality without attending to the experiences of StG evaluators themselves.

In attempting to remedy this, I initially interviewed seven senior scientists who had previously been active as ERC StG evaluators. Staying true to my temporal bracket, I made sure that all of these scientists had sat on panels sometime between 2007 and 2013. Such bracketing made it possible to continue comparing and mixing data from documents and interviews. The evaluators that I interviewed were all based at Swedish host organizations. Six evaluators were from Northern University and one was from Central University. When it came to disciplines, three of these interviewees were active within the LS domain; one within the PE domain; and three within the SSH domain. Interviews with StG evaluators thus became an important complementary data source in Chapter Five. These interviews provided me with many insights on the ERC’s attempts at portraying its evaluations. I would not have been able to access such insights through documents.

Two arguments guide my views on what interviews are and what data they produce. Inspired by Hymes (1974), I approach interviews as speech events. Such events refer to “activities, or aspects of activities, that are directly governed by rules or norms for the use of speech” (Hymes, 1974: 52). Understanding the connection between interviews and speech events requires us to conceive that every society features a wide variety of situations in which speaking takes place. Some of these situations are guided by typified, habitualized, taken-for-granted, and normatively expected patterns, thus making them institutionalized speech events (cf. Spradley, 1979). I suggest that interviews constitute clear examples of such speech events. The format of interviews is institutionalized. Interviewers and interviewees know how they ‘should’ behave in terms of asking questions, giving answers, and taking turns.

3 In order to protect the anonymity of my interviewees, I created fictive names for all universities.

4 To simplify matters, I use the ERC’s broad classification of disciplinary domains when categorizing the provenance of my interviewees. The broadness of this classification also serves to protect my interviewees’ anonymity.
Deviations from the question-answer format tend to cause surprise, confusion, suspicion, and/or even resentment. Interviews per se are also institutionalized. We read interviews in magazines and newspapers. We watch interviews on television and the Internet. Most of us know how interviews ‘ought’ to proceed, even though most of us are seldom interviewed. As Atkinson and Silverman (1997) posited, we might even be living in an interview society. It is completely legitimate to interact intensively with quasi-strangers, posing questions and soliciting answers for an X number of minutes (if these situations are understood as interviews). In line with the notion of speech events, interviews produce data that is just as ‘natural’ as data which comes about in other situations (cf. Wolfson, 1976).

My views on interviews are also aligned with what Alvesson (2003) called the romantic interview style. He pictured an ideal-typical continuum of different approaches to interviewing. On one end of the spectrum is the neopositivist style. Its users typically adopt a distanced and disinterested attitude, regarding interviews as situations where knowledge is transferred from interviewees to interviewers. On the other end of the continuum is the localist approach. Its supporters mostly see interviews as occasions for studying behaviors that take place during the actual interviewing situations. The romantic style is, against this background, a middle-stance position. It attempts to access and elicit expressions of meaning that focus on how actors perceive, make sense of, and deal with experiences in social life. Such focus is largely in line with recent scholarly debates about the merits of interviewing (e.g. Cerulo, 2014; DiMaggio, 2014; Jerolmack and Khan, 2014; Lamont and Swidler, 2014; Vaisey, 2014). There is consensus that interviews are particularly suitable when we probe for data on “representations, classification systems, boundary work, identity, imagined realities and cultural ideals” (Lamont and Swidler, 2014: 157).

Working on Chapter Six, I continued to interview. Here, I employed the resulting data to understand the consequences of StG evaluations and funding allocations among scientists, departments, and universities in Sweden. I also used it to grasp how these consequences successively affected the ERC’s construction as a third-party status arbiter in the field of science. The documents I had collected up until then did not provide me with much guidance at this stage. Interviews soon became the main data source in Chapter Six.

I decided to focus this round of interviewing on Sweden-based early-career scientists, heads of departments within Swedish universities, and individuals with extensive experience of the science system in Sweden. Common to all of my interviewees is that they had been in close contact with ERC StG funding between the years 2007-2013.
In terms of scientists, I wanted to understand what – if any – perceived consequences StGs were associated with during the early stages of academic careers. Because of this, it made sense to locate ERC StG recipients. I eventually identified 77 Sweden-based recipients that could be placed within the focal time period. As my interviewing progressed, I learnt that there existed funding schemes for StG runner-ups too. These schemes were directly targeted at early-career scientists who had been top-graded – but not financed – at the end of ERC evaluations. Several national research councils throughout Europe offered runner-up funding. The Swedish Research Council (Swe. Vetenskapsrådet [VR]) was one of them. It extended Reserve Fund (RF) grants to StG runner-ups based in Sweden. I was able to locate 19 VR RF recipients for the years 2007-2013.

The RF funding scheme became an excellent comparison case with ERC StGs. RFs were on offer throughout all StG calls between 2007 and 2013. These years matched the time bracket for my interviews with StG recipients. Moreover, VR RFs were identical to ERC StGs in terms of monetary amounts and duration periods. But there were some differences too. As I mentioned above, VR allocated RFs to StG runner-ups. StGs were distributed by the ERC to those applicants it perceived as the most meritorious. I believe that this comparative exercise further elucidated the consequences of ERC StG evaluations and funding allocations.

I interviewed 35 early-career scientists in total. 24 were ERC StG recipients; eight were VR RF recipients; and three were recipients of both. When it came to host organizations, 17 were based at Northern University; seven at Southern University; five at Western University; three at Eastern University; two at Central University; and two at Metropolitan University. And, as for disciplinary domains, 19 were connected to the Life Sciences; 11 to the Physical Sciences and Engineering; and six to the Social Sciences and Humanities.

When it came to audiences, my interviewing also included heads of departments. I was able to match my department head and early-career scientist interviews in most cases. I interviewed some scientists without subsequently interviewing their corresponding heads. However, I only interviewed heads in those departments where previously interviewed early-career scientists were based. In addition, all heads that I interviewed were active at the time when scientists in their departments received RF and/or StG funding. Heads were important actors for my study because – if nothing else – their consent was ultimately needed.

5 There is no contradiction here. It was possible to first receive a VR RF, before re-applying for an ERC StG. However, in case of success at the ERC, the StG replaced the RF. Funding from the two schemes could, as such, not be added on top of each other.
for any funding to be hosted in departments. When approaching heads, I sought to grasp what – if any – perceived consequences ERC StGs and VR RFs had within departments that hosted recipients of funding from these two schemes.

In total, I interviewed 15 heads of department. As for funding, eight interviewees headed departments that hosted StG recipients; one that hosted a RF recipient; and six that hosted both RF and StG recipients. When it came to host organizations, nine interviewees were heads of departments within Northern University; two within Central University; and one each within Southern University, Western University, Eastern University, and Metropolitan University. In terms of disciplinary domains, six interviewees headed LS-related departments; three PE-related departments; and six SSH-related departments.

Finally, as a complement, I also interviewed eight individuals with decades-long experience of the European and Swedish science systems. These eight individuals included two funding administrators at Northern University, two members of the ERC’s governing body, and two senior research officers and two top management representatives from VR. Interviews with these individuals, along with data from early-career scientists and heads of departments, provided me with important insights concerning the perceived consequences of ERC StG and VR RF funding for relations between universities.

Altogether, I conducted 65 interviews, distributed across a spectrum of levels, organizations, and disciplinary domains. Since they are useful for “comparison across contexts, situations, and kinds of people” (Lamont and Swidler, 2014: 158), interviews successively became the main data source in my study.

The table below summarizes my interviewing process:

6 I did not conduct any interviews in Swedish university colleges for the simple fact that no recipients of ERC StGs and/or VR RFs were hosted in those organizations throughout my bracketed time period. Neither were there any evaluators, heads of departments, and/or research funding administrators connected to StG and/or RF funding in university colleges.
I approached all interviewees by e-mail, presenting myself as a PhD student interested in the ERC and requesting an appointment sometime in the near future. At this stage, potential interviewees were informed about their right to refuse being audio-recorded; to skip questions as wished; to access complete transcriptions; and to remain anonymous in my thesis (see Appendix One for request e-mail).

Inspired by Zuckerman’s (1972) memories from interviews with Nobel Prize winners, as well as by Laudel and Gläser’s (2007) recommendations for informed interviewing of scientists, I prepared myself extensively before each appointment. I collected publicly available data on interviewees’ funding, positions, publications, and research groups. Using this data, I developed career biographies in advance of upcoming interviews. Preparation was also necessary in order to become somewhat acquainted with the research areas of those I was about to interview. Even if their areas of research were not central topics in my study, I believe it was important to be familiar with them. Having some knowledge of what my interviewees worked with on a daily basis gave me the psychological comfort of being able to follow basic technical language. I ended my preparations by crafting interview guides in advance of each appointment. Some questions included in these guides were specific to certain interviews. Many other questions were of a more general type, which meant that versions of them surfaced in most

<table>
<thead>
<tr>
<th>Group (number of interviewees)</th>
<th>Funding scheme(s) (number of interviewees)</th>
<th>Host organization (number of interviewees)</th>
<th>Disciplinary domain (number of interviewees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluators (7)</td>
<td>European Research Council Starting Grants (7)</td>
<td>Northern University (6) Central University (1)</td>
<td>Life Sciences (3) Physical Sciences and Engineering (1) Social Sciences and Humanities (3)</td>
</tr>
<tr>
<td>Early-career scientists (35)</td>
<td>European Research Council Starting Grants (24) Swedish Research Council Reserve Funds (8) Swedish Research Council Reserve Funds and European Research Council Starting Grants (3)</td>
<td>Northern University (16) Southern University (7) Western University (5) Eastern University (3) Central University (2) Metropolitan University (2)</td>
<td>Life Sciences (19) Physical Sciences and Engineering (11) Social Sciences and Humanities (5)</td>
</tr>
<tr>
<td>Heads of departments (15)</td>
<td>European Research Council Starting Grants (8) Swedish Research Council Reserve Funds (1) Swedish Research Council Reserve Funds and European Research Council Starting Grants (6)</td>
<td>Northern University (9) Southern University (1) Western University (1) Eastern University (1) Central University (2) Metropolitan University (1)</td>
<td>Life Sciences (6) Physical Sciences and Engineering (3) Social Sciences and Humanities (6)</td>
</tr>
<tr>
<td>Mixed individuals (8)</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Table 2. Summary of four interviewee groups
interviews (see Appendix Two for guides). Coming prepared for appointments was, by extension, a matter of appreciating and respecting my interviewees’ decision to expend some of their time on answering my questions.

I carried out 63 face-to-face interviews, as well as two over the telephone. Physical meetings took place in offices, laboratories, lunchrooms, and cafés. I began all appointments by reintroducing my study, reiterating the rights of interviewees, and asking for consent to audio record. All interviewees agreed to being recorded, which proved highly beneficial. Full attention could be given what was said, pauses required to take notes could be avoided, and interviewees could be assured that they would not be misquoted.

My actual interviews started with simple and non-threatening questions, intended to make interviewees comfortable talking. I routinely posed a grand tour question (Spradley, 1979) early on, asking interviewees to describe their first experiences of the ERC. Toward the middle of my interviews, I asked more complex and (what could be interpreted as) more threatening questions. I sensed that interviewees, by then, had become comfortable talking. Toward the end, I returned to simple and non-threatening questions once again. My intent was to round off on a positive note. I ended with a hypothetical question, which consisted of asking interviewees to describe ERC StGs and/or VR RFs for someone with no knowledge of them.

All my interviews were conducted in a semi-structured manner. With this, I mean that questions departed from, but were not restricted to, my interview guides. I asked for clarifications when answers were unclear; I probed for details when answers were too general; and I posed follow-up questions when answers contained interesting leads. As my data collection process evolved, my interview guides evolved too. Indeed, I kept some questions throughout the entire process. But I added or subtracted many others along the way, either when preparing for interviews or spontaneously during the actual appointments.

Intervies spanned a range from 45 to 180 minutes in length. Most of them lasted approximately 90 minutes. As part of an explicit priority, I transcribed all audio recordings in verbatim within 48 hours after interviewing had taken place. This allowed me to analyze my latest interviews, looking for emerging themes in advance of upcoming appointments. Transcribing was especially important during periods when I had several interviews booked in close temporal proximity to each other. Altogether, my transcriptions rendered 851 pages of single-spaced text in 12-pointed font.
Contextualizing Data with Observations

I supplemented my documents and interviews with observations on a smaller scale. The data I collected while observing became a great way of understanding how the ERC and the StG funding scheme were portrayed, debated, and perceived outside of written texts and face-to-face conversations.

My observations were conducted at an information session, a workshop, and a roundtable discussion. These events varied in terms of target groups, number of attendees, and organizing organizations. But they all seemed to be important meeting places for actors interested in, knowledgeable about, and/or related to the ERC. Captivating presentations and lively discussions led me to approach these events as arenas where ideas about the ERC were exchanged, developed, and spread. Tellingly, at each and every observed event, there were actors I either had interviewed or was about to interview. It gave me the feeling that I had requested appointments with actors who moved about in the field. It also gave me the sensation that I was attending events of importance for my study.

In one of my observations, I went to an ERC StG information session for potential applicants, arranged by an early-career scientist organization at Northern University. Upfront, the goals of this session were to introduce the StG scheme, inform about its central features, and encourage applications from scientists in the initial stages of their academic careers. The event lasted three hours and was open for anyone. Most attendees, however, seemed to be early-career scientists. I counted 32 individuals in the classroom where the information session was held, which meant that almost all seats were taken. The list of speakers consisted of a senior research officer from VR, a senior scientist with vast experience of evaluating StG applications in the PE disciplinary domain, and an early-career scientist from the LS domain who had previously received funding from the ERC. Their presentations ranged all the way from technical details about eligibility rules to experiences after receiving €1.5 million for independent research as a fresh PhD graduate. There was a red thread running through the three talks, however. It was how to write successful ERC StG applications. At times, it even appeared as if the actual goal of the information session was how to become a prominent scientist. I heard about the ‘best’ journals, the ‘appropriate’ collaborations, and, as it would be, the ‘right’ research funders.

I also observed a workshop for ERC StG applicants, organized by VR. The event was closed to all but Sweden-based applicants from the LS and SSH disciplinary domains that had advanced to the second step of StG evaluations. This second step features an appointment at ERC
headquarters in Brussels during which applicants present their proposed research projects, before being interviewed about them. The stated goal of VR’s workshop was to prepare Sweden-based applicants for their upcoming appointments at ERC headquarters. With some help from a senior research officer at VR, I was eventually authorized to observe the event. I received permission to do so after securing consent from all attendees and assuring that everyone present would be kept anonymous in my study. The workshop lasted for six hours and was held in a conference room at VR’s offices. I counted a total of 12 attendees in the room. Present were seven hopeful StG applicants, all of them from the LS disciplinary domain, seeing as none from the SSH domain had advanced to the second evaluation step in that year’s call. In addition to these applicants, the organizers had also invited an LS StG recipient, two senior scientists with multiple appointments as VR and ERC evaluators in the LS domain, and two senior research officers from VR with extensive experience of funding at the Europe-level. During the workshop, applicants were expected to present their research projects as if they were at the actual presentation in Brussels. I perceived that most post-presentation comments focused on how to greet, answer questions from, and communicate the worth of projects to StG evaluators. Little time was spent discussing research contents per se.

The third event I observed was a roundtable discussion for deans, heads of departments, and research funding administrators, organized by VR in conjunction with the Bank of Sweden Tercentenary Foundation (Swe. Riksbankens Jubileumsfond [RJ]). It was an invitation-only event, not open to anyone but a small number of actors from Swedish universities. I managed to secure access with the help of a top management representative at VR. Here, access meant that I was asked to keep all attendees anonymous afterward. The roundtable’s upfront goal was to exchange ideas and suggestions on how to increase the number of Sweden-based ERC StG applicants in the SSH disciplinary domain. The event lasted for five hours and was held in a conference room at VR’s offices. I counted 25 attendees altogether in the room. Most of them were – as expected – deans, heads of departments, and research funding administrators from different Swedish universities. But, to kick off the discussions, the organizers had also invited a StG SSH evaluator, two StG recipients from the SHH domain, and several top management representatives from RJ and VR. Each of them presented their own experiences and recommendations in the form of short talks. The subsequent discussions were heated. Many ideas and suggestions for how to increase the ERC StG participation of Sweden-based early-career scientists in the SSH domain were heavily debated. The importance ascribed to StGs was taken for granted, however. It was never discussed.

I summarize my instances of observation in the table below:
<table>
<thead>
<tr>
<th>Organizing organization</th>
<th>Type of event</th>
<th>Target audience</th>
<th>Number of attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern University</td>
<td>Information session</td>
<td>Potential European Research Council Starting Grant applicants from all disciplinary domains</td>
<td>32</td>
</tr>
<tr>
<td>Swedish Research Council</td>
<td>Workshop</td>
<td>Second-step, Sweden-based European Research Council Starting Grant applicants from the Life Sciences and the Social Sciences and Humanities</td>
<td>12</td>
</tr>
<tr>
<td>Swedish Research Council and Bank of Sweden Tercentenary Foundation</td>
<td>Roundtable discussion</td>
<td>Deans, heads of departments, and research funding administrators from Swedish universities</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 3. Summary of observed events

I made sure to take detailed notes on speech, but also on behavior and context, at all three observed events. Altogether, after I had transcribed them, these notes rendered 14 pages of single-spaced text with 12-pointed font.

Coding, Analyzing, and Making Sense

I stopped gathering data on the ERC when my understanding of its field, its StG evaluations, and its subsequent funding allocations seemed enough to fulfill the aim and answer the research questions that guide this thesis.

By this time, I had already started to analyze data. My approach was to code all documents, interviews, and observations. Aligning with Miles and Huberman (1994), I see coding as an indexing procedure in which specific labels are assigned to text passages of different lengths. My coding process generally followed an iterative pattern in which I constantly moved between data and theory. I believe this pattern accurately reflected the exploratory character of this study.

Throughout my analysis, I relied extensively on nVivo 10 computer software. Many of its features were of key importance when it came to handling larger data amounts. nVivo primarily provided me with the means to develop an indispensable overview of my data. This software made it possible to pull together all documents, interviews, and observations into a single file. Within it, I could switch between data sources, drag codes from one place to another, and explore emerging connections. nVivo’s “Matrix Coding Query” function was especially important. It enabled me to pit passages of text from different interviews, documents, and observations against each other in a comparative manner. The “Matrix Coding Query” function proved to be highly useful when approaching the respective consequences of ERC StGs and VR RFs in Chapter Six.
I continuously coded data throughout the collection process. However, at three points in time, I rounded up and re-coded all my data. Inspired by the “Gioia methodology” (e.g. Corley and Gioia, 2004; Gioia, Corley, and Hamilton, 2013; see also Van Maanen, 1979), each coding round usually consisted of three steps. I began by looking for terms, phrases, and descriptions as they were found in the original wording of my data sources. The free and open-ended character of this step led to numerous “first-order codes”. Next, I gathered and collapsed many codes that were quite similar to each other. The outcome of this step was a set of “second-level themes”. Finally, I searched for explicit connections between theory and themes, creating “aggregate dimensions” that reflected the main nexuses of data and literature.

The initial round of coding was quite inconclusive. Based on a relatively small number of documents and interviews, I developed first-order codes and second-level themes. Through coded documents, I was beginning to outline the major debates that characterized the field of science in the early 2000s. After analyzing my interviews with senior scientists, I could also start to build a better understanding of the different steps in the evaluation of StG applications. Finally, through coded interviews with early-career scientists, I was developing tentative patterns for the advantages that accrued to ERC StG recipients. However, my documents and interviews still moved in multiple directions. I was having difficulties reconciling disparate first-order codes into cohesive second-level themes. It was evident that I needed to collect more data.

The next coding round rendered somewhat sturdier findings. By now, I had collected more documents. My analysis of these documents was crystallizing around five different tensions and struggles that appeared to loom throughout the years preceding the ERC’s founding. I had conducted more interviews with StG evaluators and recipients as well. But I had also expanded the scope of my interviewing, now including a number of VR RF recipients, heads of departments, research officers, and funding administrators. Through my coding of interviews, I was starting to see links between the evaluation of StG applications and the wide-ranging consequences of ERC funding allocations among early-career scientists, within departments, and between universities. These consequences only became clearer when I compared them with the apparent lack of RF-related consequences. My first-order codes and second-level themes were slowly being filled with data I could put together and pool into aggregate dimensions. Past research on fields, status, and arbiters was an important guide at this stage of analysis.

The final round of coding proved to be decisive. I was able to add a few observations, as well as interviews with members of the ERC’s governing body and top management representatives at VR. When analyzing all my documents, interviews, and observations, I started to
sense that the extensive consequences of StGs could have important implications for the ERC’s construction into a status arbiter in the field of science. These findings were directly related to the aim and research questions of my thesis.

Rounding Off

Documents from many outlets, interviews within several organizations, and observations at multiple events enabled me to develop a longitudinal and comparative exploration of how the ERC was constructed as a third-party status arbiter in the field of science. The different methods choices presented throughout this chapter thus take me one step closer to the ways in which certain actors are constructed into the role of status arbiters.

The next three chapters constitute Part II, which is the empirical body of this thesis. I begin with Chapter Four. It provides a background to the tensions and struggles that characterized the field in which the ERC was founded.
PART II
In the first part of this thesis, I introduced the ERC, presented my aim with studying it, and posed research questions that will be guiding me. I also developed a theoretical framework with which the construction of third-party status arbiters in fields will be approached. And, finally, I described and discussed my methods choices, arguing for the value of jointly using documents, interviews, and observations to study how the ERC was constructed as a status arbiter in the field of science.

Part II starts with Chapter Four. My goal in this chapter is to provide an empirical background that describes the field in which the ERC was founded. I suggest that such a background is necessary because we cannot understand the ERC’s development in a vacuum. More specifically, I condense the field of science in early-2000s Europe into five interrelated themes that outline the major sources of tensions and struggles. These themes relate to debates about transatlantic scientific superiority; continental funding; basic research; competition; and agriculture. While they had lingered for quite some time already, I argue that many tensions and struggles in the field intensified as Europe entered the new millennium. I round off this empirical background by shortly describing how a pan-European and competition-based funder of basic research eventually came to be founded in the midst of still ongoing debates. Altogether, Chapter Four will be integral for our understanding of the context in which the ERC’s construction as a status arbiter unfolded.

Competing for Transatlantic Supremacy in Science

The first theme concerns the long-standing assumption of competition between Europe and the US for scientific superiority. In order to grasp this source of tensions and struggles, I start by looking back at the decade immediately following WWII.

Throughout the 1940s, science rose to a prominent position in the US. Such rise was mainly fueled by a perceived connection between
military research and military power. Among the American public, it was largely believed that scientific advances had been key to the termination of WWII. However, during the times of peace that followed, science lost some of its prominent positioning in the popular mind. Research funding became scarcer once again. Presumably fearing that scientists would flee the US if financing could not be secured, the American government created the National Science Foundation (NSF) in 1950. From the very start, the NSF was portrayed as a funder of research across the gamut of disciplinary domains. It soon came to be regarded as a success by scientists and politicians alike (Darmon, 1995; Nedeva, 2013).

In Europe, small groups of respected scientists used the NSF as inspiration, lobbying throughout the 1950s for the creation of a similar initiative within the EU. Many politicians were supportive of the idea, regarding a pan-European research funder as one way of remaining competitive against the background of American advances in science. But such research funder would require extensive compromises between countries with different scientific traditions, economic opportunities, and legal structures. Although the EU had recently succeeded in organizing a fledging internal market for goods, integrating science in a similar manner was not seen as a political possibility at the time (Gronbaek, 2003).

For the rest of the 20th century, American and European governments often compared themselves on the basis of scientific advances. However, with the new millennium approaching, these comparisons seemed to intensify. I argue that critics of science policy in Europe played a central role here. For many decades, the notion of a “European paradox” (Gronbaek, 2003: 396) dictated that Europe was ahead of the US in basic research, but weaker when it came to its applied counterpart. In a series of essays throughout the early 2000s (e.g. Banda, 2002; Krull, 2002; Schiermeier, 2001; Stone, 2002; Winnacker, 2002), science policy critics vigorously attempted to dismantle what they regarded as a false mantra of security. To them, the US was ahead of Europe in both basic and applied research. The European paradox was thus perceived to be a mistaken notion. Through potent rhetoric, critics were largely able to portray a widening transatlantic gap in scientific productivity.

One of the most influential contributions to the debate around this time was a paper by Keith Pavitt (2000) – then active as Professor of Science and Technology Policy at the University of Sussex. Using data from informatics, cellular biology, and biomedical engineering, he sought to show how the publication rates of scientists in European universities were shrinking vis-à-vis those in American universities. Pavitt also employed data on R&D investments to push the notion that most major companies in Europe were moving parts of their knowledge-
intensive operations across the Atlantic. To him, these developments were general symptoms of how European science was lagging behind its American counterpart.

Science policy critics approached changing patterns in the awarding of Nobel Prizes as especially worrisome. Before WWII, Europe was dominant in terms of Prize winners. The tables had turned afterward. From the 1950s and on, US-based scientists received considerably more Nobels than researchers active in Europe. An interviewee with extensive experience of European science policy making reminisced:

“Everyone was nervous since the US had gotten so many Nobel Prizes the last couple of decades. What were they doing that was better than us [Europe]? It seems like this was the most important question at the time” (Interview 64 – ERC StG evaluator).

The importance attributed to Nobel Prizes can be understood in light of them being “regarded as the supreme symbol of scientific excellence” (Zuckerman, 1978: 420). The Nobels are regularly used to emphasize the standing of entire countries and continents. However, as Europe came to realize, it could not use Nobel Prize numbers as an asset anymore. Such realization only served to reinforce a growing conviction among European policy circles that the US was superior in science (e.g. Breithaupt, 2003a, 2004; Connerade, 2003).

To be sure, this initial theme was associated with further debates in the field of science. The perception of transatlantic competition for scientific superiority went hand in hand with several other tensions and struggles that characterized the field as Europe entered the new millennium.

National and Continental Approaches to Funding

My second theme deals with the idea of creating a Europe-level research funding system. It is an idea that, for long, has been a source of tensions and struggles in the field. Proponents and opponents of a ‘Europeanized’ funding system have engaged in extensive debates that essentially concern the relationship between the global features of science and the local aspects of its financing (cf. Nedeva, 2013). To understand how these debates played out during the early 2000s, I will begin by examining their origins in the EU’s early days.

In 1957, with the Treaty of Rome, the European Atomic Energy Community (EURATOM) was established. It constituted one of the earliest initiatives specifically directed at promoting research cooperation between EU Member States. Funding for cooperation within the
EURATOM’s span would, according to its supporters, provide the foundations for a European nuclear industry. Despite high-hoped hopes, this initiative never became the beacon for scientific and industrial progress many had wished for. The EURATOM was halted by financial impasses, management problems, bureaucratic rules, and abandoned projects. By extension, it served as a reminder of how unwilling Member States were to cede any national sovereignty over science policy-related matters. Nonetheless, at its time, cooperation within the EURATOM constituted the most ambitious and far-reaching initiative for research funding integration in Europe (Dumoulin, 1995; Shaw, 1995).

The 1960s and 1970s saw a string of attempts aimed at pooling national research funding and lifting it to the Europe-level. The most prominent attempts included the European Council for Nuclear Research (*Fr. Conseil européen pour la recherche nucléaire [CERN]*) , the European Molecular Biology Organization (EMBO), the European Co-operation in Scientific and Technical Research (COST), and the European Science Foundation (ESF). Most of these organizations came to be regarded as failures, however. The COST and the ESF were endowed with little financing and restricted mandates, which weakened their operations. While some saw the CERN and the EMBO as successes, these two organizations only catered to specific disciplines (i.e. physics and biology, respectively). Ardent supporters of a Europe-level research funding system sought to encompass the gamut of disciplinary domains in their initiatives. For these supporters, the CERN and the EMBO were no solutions (Gronbaek, 2003; Nedeva, 2013).

Entering the 1980s, EU Member States remained in a vigilant stance, “jealously guarding their sovereignty” (Nedeva, 2013: 224) against any further attempts at expanding research funding matters onto the European scene. In 1984, to the surprise of many, the EC succeeded in establishing the Framework Programs (FPs). The FPs consisted of multianual R&D investment packages, which subsumed all of the EU’s resources to technology-related disciplines under one single heading (Gronbaek, 2003). Although proponents of Europeanized research funding perceived this as a step forward, two issues dampened their enthusiasm. To begin, the FPs only provided resources for applied research. As we will see throughout this chapter, Europe-level basic research has historically been much more disputed than its applied counterpart. Perhaps most importantly, it was evident that the great majority of resources for research still remained at the national level. The FPs constituted a small fraction of the total research funding in Europe.

After the Treaty of Maastricht (EC, 1992) was signed, it became a potent means for blocking any new efforts that sought to expand funding cooperation between Member States. The Treaty’s principle of subsidiarity emphasized that European initiatives should be avoided if their
outcomes could be reached through national activities instead. With this principle looming in the background, most attempts at lifting nation-level funding onto the continental scene appeared unthinkable throughout the rest of the 1990s (Wedlin, 2008).

About to enter the new millennium, the idea of research funding cooperation came to the fore once again. I suggest that this development can largely be attributed to potent links that were constructed between cooperation and productivity. Integration proponents stressed that Europe’s lag vis-à-vis the US in scientific productivity was essentially a consequence of the fragmented state that characterized European research funding. Europe was seen as an addition of 15 Member States and the EU, which missed important synergy effects by not cooperating. Integration proponents repeatedly emphasized that research funding could not continue to be compartmentalized into national spaces anymore. Europe needed “to go beyond the current ’15 + 1’ structure” toward “a more coherent approach” (Finney, 2000: 7).

Supporters of such an approach to funding were timely aided by the proposal for a European Research Area (ERA). Launched by Philippe Busquin – the new European Commissioner for Research – in January 2000, the ERA was largely “fueled by fears about European competitiveness” (Schiermeier, 2002: 108). The proposal suggested an increased integration of science-related matters across Member States. For Busquin, the organization of a supply-and-demand-like market for science, technology, and higher education in the EU was a key component of the ERA. Among the main features of such a market was cooperative funding activities between different national research councils across Europe (Gronbaek, 2003).

Figure 1. Phillipe Busquin (European Commissioner for Research) during the drafting of the proposal for a European Research Area (source: Dickson (1999)).
But the ERA proposal included no binding rules. There was, for example, nothing that could prevent research councils from only paying lip service to the proposed activities. Participation hinged on voluntary willingness. While many had been supportive of the ERA suggestion, it soon became clear that there was no immediate desire to advance past its ideational stage (Schiermeier, 2001).

Other notorious pushes for Europe-level funding in the early years of the new millennium included the 2001 establishment of the Committee for a New European Research Policy (CNERP). It consisted of Swedish senior scientists, active in policy making at the national and European level. Like many other initiatives, the CNERP departed from the notion that research funding was fragmented in Europe, emphasizing how each EU Member State handled its own affairs within circumscribed science spaces. Such fragmentation was assumed to have negative consequences for the overall quality of science in Europe (RJ, 2001, 2002).

Seeking to disseminate its message, the CNERP organized a number of publicized conferences. The first one was held in the fall of 2001. Among its attendees were Swedish politicians and scientists. CNERP members presented “disturbing numbers” (Stone, 2002: 826) that showed how Member States invested two percent of their national annual budgets on R&D. The US, by comparison, spent more than twice. These numbers were portrayed as alarming. Consensus among attendees was that Europe not only needed to invest more in research, but also cooperate more in funding-related issues (Nedeva, 2013). Soon after, in the spring of 2002, a second conference was organized. However, this time, it was international in scope. Among the 60 attendees were politicians, senior scientists, and national research council directors from most parts of Europe (RJ, 2002). Several prominent actors in science policy circles were now endorsing the CNERP’s work in public. The directors and presidents of the European Federation of Academies of Sciences and Humanities, the French National Center for Scientific Research, the Netherlands Research Council, the Volkswagen Foundation, and the ESF were all talking favorably about it (Gronbaek, 2003; Zethraeus, 2003).

In sum, as the mid-2000s were approaching, the FPs still remained in place. While many voices in the research community asked for further Europe-level funding initiatives, EU Member States were mostly against them. The relationship between national systems and European spaces continued to be punctuated by tensions and struggles. This was particularly noticeable in debates about the role of basic research.
Debating the Role of Applied and Basic Research

The third theme largely runs in parallel with the first two. It deals with debates about the position of applied and basic research among wider efforts aimed at integrating funding in Europe. As in earlier themes, I begin with a short detour in time.

When the FPs were established in the mid-1980s, it was clear that they would almost entirely be directed toward applied research. Their main goal was to enhance the competitiveness of Europe. To achieve this, the FPs focused on cross-national cooperation in public-private consortia, socio-economic measurements of impact, and politically pre-defined research topics (Breithaupt, 2003b; Enserink, 2006).

The FPs constituted one of the most extensive attempts at integrating applied research funding at the Europe-level. While this meant that Member States ceded some control over applied research, no similar developments could be seen when it came to its basic counterpart. Except for the CERN and the EMBO, almost all basic research was conducted in centers, institutes, and universities funded at the national level (Schiermeier, 2001). And, with the passage of the Single European Act (EC, 1987), any possibilities at expanding the proportion of basic research in the FPs appeared to be effectively blocked. The Act emphasized that R&D held a central role in “strengthening the scientific and technological bases of Community industry” (EC, 1987: 10). Such emphasis on technology and industry was largely interpreted as binding the EC to continue funding applied research (Wedlin, 2008). The idea of ‘Europeanizing’ basic research funding did not seem to be making much progress.

Throughout the early 2000s, however, the perception of basic research changed among science policy circles. Two factors were decisive here. One of them was the push that basic research received by the ERA proposal. In his proposal, Busquin emphasized that Europe needed to develop centers, institutes, and universities on par with the most prestigious research organizations in the US. Within these aspirations, the EC came to portray basic research as a “driver of technological progress and economic development” (Winnacker, 2002: 446). Even if it was not discussed in terms of a stand-alone enterprise, basic research was now being regarded as a significant precursor to its applied counterpart.

The CNERP’s work was another factor that came to be decisive for the changing perception of basic research. CNERP members repeatedly emphasized that the notion of a Europe-US lag could largely be attributed to inherent deficiencies in the FPs. Such deficiencies allegedly revolved around an overemphasis on milestones and deliverables (e.g. Breithaupt, 2003a; Cordis, 2003; Gross, 2005). Milestones and deliverables were two terms that had acquired a quasi-profane luster among
basic research proponents. The CNERP gained substantial influence by adding a multidisciplinary dimension on top of its message. It emphasized that basic research funding across a wide range of disciplines should be coordinated at the Europe-level. This emphasis presumably caught the interest of many scientists that had been estranged from earlier debates (Simons and Featherstone, 2005; Zethraeus, 2003).

A number of publicized initiatives sought to keep the momentum up. For example, in 2003, a group of senior life scientists came together and founded the European Life Sciences Forum (ELSF). Many of its members simultaneously held high positions at national research councils. The ELSF was, as such, posed to become an important actor. Its main goal was to advance LS research, promote awareness of its contributions to society, and increase its impact on policy-making instances (Van Dyck, 2002). While there already was some funding available for basic LS research at the Europe-level – most notably through the EMBO –, these resources were widely perceived to be insufficient. The ELSF soon became an influential supporter of basic research. Through meetings, conferences, and social movement-like activities, it managed to gather and unite a number of prominent scientists from different disciplines. These activities sent a multidisciplinary voice of support for more basic research funding at the continental level (Breithaupt, 2004; EPSO, 2003).

Another publicized initiative was an open letter, signed in 2003 by 45 Nobel Prize winners with long-standing connections to European universities. The letter, which was addressed directly to Commissioner Busquin, portrayed the FPs as a grave impediment for Europe’s competitiveness. The 45 Nobel winners urged the EC to create a system with which basic research funding activities could be coordinated at the Europe-level (Breithaupt, 2004). Presumably in light of its prominent signatories, the open letter came to be widely perceived as a potent demonstration of support for ongoing attempts at increasing the EU’s proportion of basic research (e.g. Bosch, 2003; Cordis, 2003). Eventually, this letter caught the EC’s attention. Six of the 45 Nobel Prize winners were soon invited to Brussels for a personal rendezvous with Busquin. Reports describe a meeting in which the FPs were attacked on several counts (e.g. Bosch, 2003; Cordis, 2003). Timothy Hunt – shared recipient of the 2001 Nobel Prize in Physiology or Medicine – stressed that the focus on milestones and deliverables was misaligned with his perception of doing research. “Drawing up a contract for someone to make a fundamental discovery is missing the point. Discoveries crop up where you least expect them” (quoted in Cordis, 2003: 1).

But, despite these efforts, the resistance against an extended ‘Europeanization’ of basic research remained firm within many quarters. Such resistance was particularly notable among Member State govern-
ments. Their stance, however, needs to be understood in light of further tensions and struggles that simultaneously prevailed within the field of science.

Contestation Surrounding Allocation Mechanisms

My fourth theme points to the generally uneasy relationship between different mechanisms for distributing research funding in Europe. Tensions and struggles could most clearly be seen when it came to how EU funding allocations were debated in the field.

The EC had, from the very start, distributed FP resources through the apportionment principle of *juste retour*. It meant that each Member State received a share proportional with its contribution to the EU budget. Many politicians in Eastern and Southern Europe were avid supporters of this principle. But scientists in Western and Northern Europe frowned at it. They tended to regard *juste retour* as a distributive principle that collided head-on with most notions of scientific quality. Scientists perceived it to be a political cover-up for national interests and regional development (Breithaupt, 2003a; Schiermeier, 2001, 2002).

By the early 2000s, *juste retour* had been a contested principle for quite some time already. Critics of the EC’s research funding allocations were now being aided by an influx of ideas about competition in European science. Such ideas were especially noticeable in relation to the three specific developments. On the European level, the Lisbon Strategy Targets dictated that the EU’s main goal for the coming decade should be to become “the most competitive and dynamic knowledge economy in the world” (EP, 2000). Also on the European level, the ERA proposal included competition for funding as a central component in the market for science, technology, and higher education that was being suggested (Schiermeier, 2001). And, on the national level, sweeping reforms in France, Germany, and the UK were all positioning competition as a core feature of their revamped research funding systems (Banchoff, 2003). The EC’s principle of *juste retour* went against many ideas contained in these developments.

The apportionment of EU research resources continued to be a subject of contestation throughout the coming years. A number of notable events served to illustrate this. To begin, there was the publication of the so-called Sapir Report. In July 2002, Romano Prodi – then EC President – commissioned André Sapir – Professor of Economics at the Université Libre de Bruxelles – with the task of organizing an Independent High-Level Study Group. Its goal would be to screen the entire system of EU economic policies, focusing on the consequences of the
Lisbon Strategy Targets. Sapir recruited seven other senior economists from Europe and the US for the task at hand. The group’s final report (EC, 2003) was delivered to Prodi in July 2003. It immediately came to be regarded as an “agenda-setter” (Pelkmans and Casey, 2004: 3) in the field. The Sapir Report was heavily critical toward present research investments in the EU. These investments were expounded for being insufficient, politically predefined from Brussels, and distributed according to the principle of *juste retour*. Sapir and colleagues concluded that the EC should consider creating a system by which research funding could be allocated through competition between scientists at the continental level (EC, 2003).

In the fall of 2002, during Denmark’s EU Presidency, there was also the organization of a publicized conference in Copenhagen. Arranged by the Danish Research Councils (*Dk. Danmarks frie forskningsfond* [DFF]), the goal of this event was to discuss current mechanisms for distributing Europe-level funding. The distribution of such funding was a topic that came to be ascribed great importance. Attesting to this, attendees at the DFF conference included a wide range of politicians, senior scientists, and national research council representatives (DFF, 2002). While this conference did not emanate in any new conclusions, it successfully placed the issue of research funding allocation on the EC’s agenda (Breithaupt, 2004).
An HLEG was soon commissioned to explore the role of basic research, competition, and funding at the Europe-level. Federico Mayor – former Director-General of the United Nations Scientific, Educational, and Cultural Organization – came to head the group. Its other members were a mix of senior professors, academy secretaries, science interest organization presidents, and national research council directors from most corners of Europe. The Mayor Report (UFM, 2003) soon became an important contribution to ongoing debates. The main idea throughout the Report was that the EU’s notion of added value in research had to be reformulated:

“Until now European added value has been defined as the collaboration of research teams in different countries. It is now time to bring a new definition of added value, one that incorporates the principle of allowing a researcher in any European state to compete with all other researchers on the basis of excellence” (UFM, 2003: 9).

While the idea of competing for funding was not entirely new, the Mayor Report portrayed it as a novel means for overcoming the decade-long roadblock posed by the EU’s principle of subsidiarity. Soon, this portrayal was receiving broad backing across Europe (e.g. O’Neill, 2004; THE, 2004a). Such backing was presumably aided by a “rampant dissatisfaction” (Stone, 2002: 826) with the FPs, as well as by a field that was increasingly opening up for competition.
Finally, there was a string of reports from the European Research Advisory Board (EURAB). It was established by the EC in 2001 as an independent consultative committee. The EURAB’s task was to provide recommendations on design and implementation of EU-wide science policy. In addition to consulting at the request of the EC, the EURAB was also free to pursue its own issues and activities. Throughout 2003 and 2004, its reports repeatedly came to stress that the EU should “promote outstanding quality and excellence through competition at the continental (European) level” (EURAB, 2003: 2). Doing so was perceived to be key for the creation of “a more globally competitive European research community” (ibid).

By now, competition had certainly been presented as a value-adding mechanism before. Despite this, the EURAB’s insistence on the value of competition was influential. Its insistence gained resonance because the message came from an organization that was closely linked to the EC. The EURAB also engendered attention by skillfully inserting its reports into ongoing discussions about the upcoming FP7 (e.g. Cordis, 2007; THE, 2004b).

By the mid-2000s, critics of the EC’s research funding allocation had made important advances. Competition for funding was successively turning into an accepted idea within European science policy circles. But the progress of this idea was complicated by its close connection to other debates in the field.

The Future of Europe: Agriculture or Science?

The fifth and final theme links to most of the tensions and struggles I have discussed so far. It deals with the issue of how to finance the ideas of competition, basic research, and Europe-level funding. Science policy critics could hardly avoid this issue because any new initiatives would ultimately need to be financed somehow. More generally, however, this theme also relates to broader debates about the EU’s future priorities and directions.

Although the notion of competing for basic research funding at the continental level had gained significant traction, its operationalization was challenging. Several operationalization proposals were presented. However, in light of growing demands for initiatives that were independent from Brussels and Member States, most proposals failed to engender any considerable enthusiasm.

The EC, for instance, proposed that the different FP basic research funding posts could be merged into one budget. But few scientists believed that resources from the FPs could be disentangled from the EU’s control. Critics assumed that FP-based funding would automatically fall
under “the immense bureaucratic workload that comes with an EC contract” (Breithaupt, 2004: 341). The EC’s proposal consequently received little – if any – support.

A proposal advanced by the ESF was met with similar reactions. Its proposal suggested that an existing organization should receive pooled resources from national research councils in order to be transformed into a full-fledged funder at the Europe-level. The ESF clearly pictured itself as the most appropriate organization for such a transformation (cf. Banda, 2002; O’Neill, 2004; Schiermeier, 2001, 2002). It was already managing the European Collaborative Research program – a voluntary funding scheme that channeled resources from research councils into prioritized areas. The ESF also had partial responsibility for the European Young Investigator Awards (EURYI) – a scheme that provided generous funding for early-career scientists (Breithaupt, 2003a). But critics doubted that national research councils could provide independent resources. It was widely believed that the interests of Member States would interfere in any funding allocations. There were also concerns about redirecting resources from mature and well-functioning research councils (UFM, 2003). The ESF’s proposal was not perceived to be a realistic alternative.

Others proposals fully embraced the notion of an independent basic research initiative. The ELSF, for example, suggested that an entirely new budget should be created through contributions from private sources. Such sources would include trusts, charities, foundations, and companies (Van Dyck, 2003). But critics emphasized that the idea of including private sources was troublesome for any European basic research funding initiative claiming to be independent. And companies were, in any event, not willing to participate. Some executives wondered why their organizations should contribute resources to tax-funded basic research (Euroscience, 2003). Other executives expressed concerns about control over intellectual property. For instance, Hans Van Der Berg – Director of Research Coordination at Akzo Nobel – firmly emphasized that “industry is not able to fund science at arm’s length” (quoted in Breithaupt, 2003a: 338). The ELSF’s proposal soon lost momentum.

Inspired by the notion of an independent basic research funding initiative, the CNERP early on advanced two proposals as well. A moderate proposal consisted of taking ten percent from the upcoming FP budget. Given that it was already earmarked for Europe-level R&D, resources from the FPs could relatively quickly be reshuffled into a new basic research funding initiative. But the EC signaled that it would not allow any resources to be diverted from applied research (Breithaupt, 2004).

A more radical CNERP proposal consisted of extracting a tenth from the Common Agricultural Policy (CAP) budget. With some minor mod-
ifications to the Treaty, this tenth could soon be released for other uses. Such modifications would double the EU’s budget for research in a single stroke. Michael Sohlman – CNERP member and Head of the Nobel Foundation – largely portrayed the proposal as a fork in the road: “Is agriculture the future of Europe or is R&D?” (quoted in Stone, 2002: 827). The EU was not about to touch the CAP budget, however. After extensive and conflict-ridden negotiations, agricultural cooperation in Europe was now regarded as a success (Schiermeier, 2001). The EU also resisted the CNERP’s dual demand for support and independence. Simply put, this dual demand emphasized how Brussels should support basic research with resources that would subsequently become independent from the EU. Although it was appreciated by scientists, this demand became a tall order for politicians (Breithaupt, 2004; May, 2004).

As the mid-2000s were approaching, the issue of how to finance an independent basic research funding initiative at the Europe-level remained in flux. Among scientists, the most supported proposal seemed to be the notion of taking ten percent from the CAP budget. But the EC hesitated. It remained lukewarm toward this idea.

At this stage, it is timely to recap the five themes I have discussed so far. The timeline below provides a summary:
The American government creates the National Science Foundation. It serves as a source of inspiration for scientists in Europe.

The European Union establishes the European Atomic Energy Community. It constitutes one of the most ambitious research cooperation initiatives at the time.

The European Union introduces the Single European Act. It is interpreted as binding the European Commission to continue funding applied research.

Science policy critics argue that Europe is lagging behind the US in science; The proposal for a market-like European Research Area is presented by the European Commission; The European Union launches its competitive Lisbon Strategy Targets for the coming decade; France, Germany, and the United Kingdom stress the role of competition when reforming their research funding systems.

The Committee for a New European Research Policy is founded. It quickly becomes an influential supporter of competition, basic research, and Europe-level funding.

The so-called Sapiens Report recommends the European Commission to devise competition for funding between researchers.

The Danish Research Councils organize a publicized conference in which mechanisms for European research funding allocation are discussed; The so-called Mayor Report introduces a competition-based notion of added value at the Europe-level; The European Research Advisory Board reiterates the role of competition for funding.

The so-called Mayor Report introduces a competition-based notion of added value at the Europe-level; The European Research Advisory Board reiterates the role of competition for funding.

The Treaty of Maastricht is signed. Its principle of subsidiarity blocks most research cooperation attempts at the Europe-level.

The proposal for a New European Research Policy is founded. It quickly becomes an influential supporter of competition, basic research, and Europe-level funding.

Science policy critics argue that Europe is lagging behind the US in science; The so-called Sapiens Report recommends the European Commission to devise competition for funding between researchers.

The Committee for a New European Research Policy is founded. It quickly becomes an influential supporter of competition, basic research, and Europe-level funding.

The American government creates the National Science Foundation. It serves as a source of inspiration for scientists in Europe.

The European Union establishes the European Atomic Energy Community. It constitutes one of the most ambitious research cooperation initiatives at the time.

The European Union introduces the Single European Act. It is interpreted as binding the European Commission to continue funding applied research.

Science policy critics argue that Europe is lagging behind the US in science; The proposal for a market-like European Research Area is presented by the European Commission; The European Union launches its competitive Lisbon Strategy Targets for the coming decade; France, Germany, and the United Kingdom stress the role of competition when reforming their research funding systems.

The European Life Sciences Forum organizes a multidisciplinary voice in support of basic research funding; 45 Nobel Prize winners criticize the Framework Programs through an open letter to the European Commission; The so-called Mayor Report introduces a competition-based notion of added value at the Europe-level; The European Research Advisory Board reiterates the role of competition for funding.

The Danish Research Councils organize a publicized conference in which mechanisms for European research funding allocation are discussed; The so-called Sapiens Report recommends the European Commission to devise competition for funding between researchers.

The so-called Mayor Report introduces a competition-based notion of added value at the Europe-level; The European Research Advisory Board reiterates the role of competition for funding.

Most turn-of-the-millennium tensions and struggles in the field of science can be embedded within more general developments relating to a scientization of Western society throughout the 20th century (cf. Drori and Meyer, 2006; Drori, Meyer, and Schofer, 2003). When it comes to economic development, science “emerged as an alternative engine of… growth to the classic triumvirate of land, labor, and capital” (Etzkowitz, 2003: 103). Tensions and struggles in the early 2000s also played out in tandem with long-standing debates about the EU’s expansion. As such, the five themes discussed this far bear close relationship to many central debates in the organizing of Europe per se.
A New Research Funder is Founded

Despite many tensions and struggles in the field, scientists and politicians were successively coming to the conclusion that creating a Europe-level basic research funder was the only way to turn Busquin’s ERA vision into reality.

By the mid-2000s, an opening suddenly became available. With EU membership extensions, agricultural policy incomes quickly increased. At the same time, the CAP budget was left unchanged. Such developments made it politically possible for the EC to transfer resources from agriculture to science. In August 2006, after legal negotiations that extended well into the 11th hour, €7.5 billion were secured for the founding of a new research funder (CEU, 2006).

The ERC was launched in February 2007. Its launch conference was described as “ecstatic”, with attendees expecting the new funder to become “a fresh start” (Enserink, 2007). And the ERC appeared to waste no time. It immediately attempted to portray itself as a central actor in the field of science. Its general point of departure came to be that Europe was an unattractive place for research. In line with many tensions and struggles that prevailed within the field, the ERC pointed to three conditions it saw as especially problematic.

One of these conditions related to the notion of overly bureaucratic EU research funding. ERC representatives emphasized that milestones and deliverables constituted hindrances for research. The ERC’s funding schemes would provide a counterpoint to this alleged bureaucracy by keeping their application and allocation procedures simple and flexible. Politicians, as it was often pointed out, needed to “trust the dynamic of science” (Antonoyianakis and Kafatos, 2009: 513).

Another condition that the ERC saw as especially problematic was the supposed lack of alternatives to the FPs’ focus on applied research, politically predefined areas, consortia-building requirements, and socioeconomic measurements. To counteract this, the ERC would concentrate entirely on “frontier research” (ERC, 2010). With this term, basic research was portrayed as an explorative endeavor that could yield significant scientific advances, both on its own and as a precursor to applied research (Antonoyianakis, Hemmelskamp, and Kafatos, 2009).

A final condition that the ERC saw as especially problematic related to the principle of *juste retour*. The ERC’s funding would allegedly provide a counterpart to this principle by allocating its resources through competition at the Europe-level. Applicants from all over the continent were to compete against each other on the sole basis of scientific quality. Ultimately, only the most meritorious scientists would receive funding. National interests and regional development were not meant to have any place at the ERC (Winnacker, 2008).
From day one, the new research funder strived to become a point of reference and an instigator of development in the field of science. Fotis Kafatos – the ERC’s first President – mentioned that “the most important added value of a world-class European organization… will be its role as a model for best practice and as a catalyst for change at national levels in Europe” (quoted in Scott, 2007). Kafatos envisioned a field in which scientists, departments, universities, national research councils, and whole countries continuously benchmarked their own research performance against ERC evaluation results. The ERC’s existence would ultimately be justified by raising scientific quality across the entire continent, thus “spearheading Europe’s aspirations to become the most dynamic and competitive knowledge-based society in the world” (Antonoyiannakis et al., 2009: 805). With this unmistakable hint at the Lisbon Strategy Targets, the ERC seemed poised on carving out a position for itself at the very center of EU visions for the first decade of the 2000s.

Summing Up

With this chapter, I have sought to provide a general outline of the major tensions and struggles that characterized the field of science in Europe during the early years of the new millennium. I argued that the most important debates related to American and European scientific leadership; national and Europe-level funding; applied and basic research; competition and apportionment; and agriculture and science. It was among these tensions and struggles that the ERC eventually came into life.

Moving forward, in the next chapter, I focus on the evaluations of applications for the StG funding scheme. We will see that these evaluations became central building blocks for the ERC’s construction as a status arbiter in the field of science.
I used the previous chapter to describe the main tensions and struggles in the field where the ERC was founded. This description is intended to function as an empirical background for my study of the ERC’s construction into a third-party status arbiter in the field of science.

In Chapter Five, my goal is to investigate how the ERC sought to engender acceptance for its evaluations. I do this by looking closely into evaluations within the ERC StG funding scheme for early-career scientists. Throughout the sections that follow, I discuss the main aspects of StGs, the reproach they initially faced, and the ERC’s subsequent responses to this criticism. I argue that these responses largely focused on presenting StG evaluations as objective judgments of quality, which featured respected panelists and rendered selective funding allocations. The meticulous organization of these evaluations seems to have played a central role in constructing the ERC as an authority.

Europe, Research Funding, and Fledgling Careers

Almost 100 years ago, Max Weber pointed to the precarious characteristics of careers in science:

“it is extremely hazardous for a young scholar without funds to expose himself to the conditions of the academic career. He must be able to endure this condition for at least a number of years without knowing whether he will have the opportunity to move into a position which pays well enough for maintenance” (Weber, 2009 [1919]: 129-30).

However, not much has changed since Weber’s time. The period between PhD completion and a first permanent position remains one of the most insecure stages in academic careers (e.g. Eldén and Jonsson, 2014; Melin and Danell, 2006). With shrinking governmental block grants, access to external research funding has become an imperative
condition for up-and-coming scientists in most domains (e.g. Coggleshall, Norvell, Bogorad, and Bock, 1978; Laudel, 2006b).

However, in mid-2000s Europe, there were few national funding schemes specifically directed toward recent PhDs. Even fewer were available at the European level. A notable exception was the ESF’s EURYI scheme. Launched in 2003, it was exclusively targeted toward early-career scientists. In terms of eligibility, it meant that applicants should be temporally situated within a window of two to eight years after their PhD completion. They also had to be based – or willing to base themselves – at host organizations in Europe. When it came to monetary amounts and durations periods, EURYIs consisted of €1 million for five years. An important feature was that resources from this funding scheme were fully transferrable between hosts. Such transferability would empower recipients by giving them the option of moving their work to the host organizations that offered the most favorable conditions for research (ESF, 2007a). In sum, EURYIs were far more generous than other comparable early-career scientist schemes available at the time.

The ESF’s funding scheme engendered mixed reactions in the field, however. While the monetary amounts, duration periods, and transfer possibilities associated with EURYIs were lauded, other features drew less praise. I suggest that this criticism could roughly be boiled down to three points.

There were, to begin, reservations against the way in which the ESF financed its early-career scientist scheme. EURYIs were based on a common pot that consisted of resource contributions from national research councils. But the ESF repeatedly experienced difficulties in recruiting and maintaining its financiers. The main reason for this was the lacking *juste retour* in EURYI pot contributions. Research councils were hesitant, knowing that their contributions might not be returned. Funding scientists directly was perceived as more secure than to have this very same funding go through a common EURYI pot first. This evidently resulted in a shaky financing base (Hollricher, 2008).

There were also complaints regarding the application process. The ESF did not allow direct applications. Instead, before becoming eligible, potential applicants had to procure a nomination from their national research councils. They would only be able to apply after securing such nomination. Many critics perceived this to be a bureaucratically burdensome process. They stressed that, when it came to procuring EURYI nominations, personal connections at research councils seemingly mattered more than the scientific quality of applicants (e.g. Lente, 2005; Watson, Andersen, and Hjorth, 2005).

Perhaps most importantly, there was criticism against the EURYI budget. Since its founding, the ESF’s main task had been to organize
cooperative activities between national research councils. Research funding was, as such, not its core competence. The ESF budget for early-career scientist funding consisted of €30 million, which was enough to allocate 25 EURYIs annually (ESF, 2007a, 2007b). Critics stressed that this budget made little – if any – difference for the conditions of up-and-coming scientists in Europe (Bohannon, 2006).

It was against this background that the StG funding scheme was launched into the field. The ERC’s scheme was portrayed as a potent response to many shortcomings in European research funding. Earlier, I mentioned that the ERC constructed a notion that depicted Europe as unwelcoming for science. That said, it managed to build a particularly strong case for a European research system that was hostile to early-career scientists. The ERC stressed that science in Europe was organized along the lines of strict hierarchies. Allegedly, this constituted a constraint for new ideas, independent publications, and access to permanent positions. As it was repeatedly emphasized, recent PhDs were encountering difficulties in making transitions from working under supervisors to establishing autonomous lines of research (Antonoyiannakis and Kafatos, 2009; Gilbert, 2007; Wolinsky, 2010). The ERC also stressed that Europe was a place that gravely underinvested in early-career scientists. Having completed their PhDs, talented scientists faced uncertain career structures. They were forced to rely on a patchwork of different funders. The ERC saw this as another factor that inherently complicated the establishment of autonomous research lines (Gilbert, 2007).

The ERC repeatedly sought to magnify the picture it was outlining. It often did so by predicting that early-career scientists would move with their research to the US if Europe did not redress its deficiencies. Such predictions were portrayed as urgent wake-up calls (e.g. ERC, 2007a; Winnacker, 2008). In order to mitigate what was presented as an otherwise imminent brain drain, the ERC would offer stable, long-term, and generous research funding for many promising scientists situated at the beginning of their academic careers. The ERC’s funding was thus portrayed as a solution to many of the woes that Europe supposedly experienced.

In designing its StG scheme, the ERC took the EURYIs as a launchpad. Although certain features were directly transposed, such as the focus on early-career scientists, generous monetary amounts, and transferrable resources, the ERC’s new scheme sought to distance itself from the ESF’s precursor as well. The perceived bureaucracy of EURYI application processes would be counteracted by making it simple to apply for StGs (Heldin, 2008). It meant removing the need to secure nominations from national research councils in favor of direct applications from early-career scientists. ERC applicants would only be required to
show an agreement with a European host organization, stating that the latter could accommodate an eventual StG recipient (Antonoyiannakis and Kafatos, 2009). The ERC’s StG funding scheme would also feature wider eligibility, larger monetary amounts, longer duration periods, and greater number of grants awarded annually than the ESF’s EURYI scheme. When it came to eligibility, scientists between two and 12 years after their PhD completion could apply for StGs. Moreover, in terms of monetary amounts and duration periods, successful applicants would receive up to €1.5 million for five years of research. And, in what could be interpreted as attempts to magnify the launch of its early-career scientist scheme, the ERC earmarked its entire first-year funding budget (i.e. €300 million) for StGs. It effectively made the ERC’s inaugural StG budget ten times bigger than the yearly ESF budget for EURYIs. As such, when it came to grant numbers, the inaugural ERC budget would be enough for 250-350 StGs (Schreck, 2007).

Launching Starting Grants

The first StG call was announced in December 2006, three months before the ERC was established. In April 2007, as its inaugural call closed, the ERC had received 8,787 applications across the LS, PE, and SSH disciplinary domains. 299 early-career scientists were subsequently awarded StGs, thus rendering a success rate of 3.4 percent (Cordis, 2009a).

It was an exceptional call, however. When we compare it with the rest of FP7, it is plain to see that the first StG call stood out – both in terms of applications and success rate. In the table below, I provide descriptive statistics for all disciplines in StG calls between 2007 and 2013:

7 From 2012 onward, the eligibility period for StGs became two to seven years after PhD completion.
8 In connection to this, the ESF decided to “postpone” its EURYI funding scheme for an indefinite period (ESF, 2007a).
2007 marked a notable peak in terms of StG applications. After the ERC was “steamrolled” (Schreck, 2012: 58) in its first call, applications to the StG scheme did not reach the same level again during FP7. This was presumably due to resubmission restrictions introduced before the second ERC StG call (I will return to the role of these restrictions later on). We can also see that 2007 marked a low point when it came to success rates. They were significantly higher during the remaining years of FP7, reaching a top in 2010 when 15.8 percent of all StG applications received funding. Altogether, between 2007 and 2013, 25,869 ERC StG applications were evaluated across all disciplinary domains. Nine percent of these applications were ultimately successful.

Similar patterns also emerge if we look at each discipline separately. In the graphs that follow, I visualize the descriptive statistics for each StG call during FP7 in the LS, PE, and SSH domains:

9 Altogether, the ERC received 9,167 StG applications in its first call. However, for different reasons, 380 applications were disqualified before an initial eligibility check was conducted. The column “Evaluated applications” contains all applications that made it past this eligibility check.

10 In 2008, the ERC devoted its entire research funding budget to the Advanced Grant (AdG) scheme. AdGs are open to scientists 12 or more years after their PhD completion. Potential applicants need to be based – or willing to base themselves – at a host organization in Europe. AdGs feature monetary amounts of €2.5 million for duration periods of five years (ERC, 2013).

Table 4. Applications and success rates across all disciplinary domains in European Research Council Starting Grant calls 2007-2013 (compiled with data from ERC (2015a))

<table>
<thead>
<tr>
<th>Starting Grant call</th>
<th>Evaluated applications</th>
<th>Funded applications</th>
<th>Success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>8787</td>
<td>299</td>
<td>3.4%</td>
</tr>
<tr>
<td>2008</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>2009</td>
<td>2392</td>
<td>245</td>
<td>10.2%</td>
</tr>
<tr>
<td>2010</td>
<td>2767</td>
<td>436</td>
<td>15.8%</td>
</tr>
<tr>
<td>2011</td>
<td>4005</td>
<td>486</td>
<td>12.1%</td>
</tr>
<tr>
<td>2012</td>
<td>4652</td>
<td>566</td>
<td>12.2%</td>
</tr>
<tr>
<td>2013</td>
<td>3266</td>
<td>300</td>
<td>9.2%</td>
</tr>
<tr>
<td>SUM</td>
<td>25869</td>
<td>2332</td>
<td>9%</td>
</tr>
</tbody>
</table>
Figure 4. Applications and success rates for the Life Sciences disciplinary domain in European Research Council Starting Grant calls 2007-2013 (compiled with data from ERC (2015a)).

Figure 5. Applications and success rates for the Physical Sciences and Engineering disciplinary domain in European Research Council Starting Grant calls 2007-2013 (compiled with data from ERC (2015a)).

Figure 6. Applications and success rates for the Social Sciences and Humanities disciplinary domain in European Research Council Starting Grant calls 2007-2013 (compiled with data from ERC (2015a)).
Looking at these three graphs, it is possible to see that 2007 signified a clear peak in terms of StG applications within each and every disciplinary domain. Throughout the remainder of FP7, applications never reached the same level again in any discipline. As for success rates, it is also possible to see that 2007 marked a low point in all three domains. These rates mostly rose afterwards, peaking within each and every discipline during 2012.

Although it was exceptional, the first StG call had enduring consequences for the ERC. Most importantly, with 8,787 applications, this call was heavily oversubscribed. The ERC was apparently expecting 3,000 applications (Enserink, 2007). I suggest that this oversubscription became a double-edged sword for the ERC’s fledgling position in the field of science. On the one hand, the number of StG applications was quickly transformed into a strategic possibility. The 8,787 applications were immediately used to justify the necessity of an ERC. The number of applications came to be portrayed as evidence for how needed the new research funder was. Such portrayal could be noticed in comments from ERC governing body members. To take an example, soon after the inaugural call for StGs had concluded, Fotis Kafatos confidently emphasized that the oversubscription was a “measure of the need for grants of this kind in Europe” (quoted in ERC, 2007b). Ernst-Ludwig Winnacker (2008: 128) – the new research funder’s first Secretary General – similarly stressed that it was “a special mark of confidence in the idea of an ERC”.

On the other hand, the inaugural StG call also turned into an untimely challenge for the ERC’s evaluation system. The ERC had previously warned that there would be a “problem” (Enserink, 2007) if more than 3,000 applications were received. After the first call, it was now facing “an avalanche of… proposals” (Antonoyiannakis et al., 2009: 806). A last-minute plea for assistance was sent to national research councils, which hurriedly dispatched evaluators to Brussels. Some StG panels were, despite this, left with more than 400 applications to sift through (Schreck, 2014). The challenge was perhaps not only to evaluate them all in time, but also to evaluate them in a manner that could lay the foundations for a reference point in the field of science. Summing up the ERC’s first call, one of my interviewees emphasized that

“It was both a problem and a success of sorts, because, with almost 9,000 applications, it showed the need for an ERC and it was very publicized, so the ERC kind of immediately got a lot of attention and advertising in conjunction with this. At the same time, it was also a nightmare to handle it, all those applications, we were not really prepared” (Interview 13 – ERC governing body member).
StG evaluations soon became a target for criticism. With 8,787 applications and a budget for 250-350 grants, the success rate in the inaugural ERC StG call was evidently bound to end up below four percent. Critics doubted that it was possible to accurately identify the most meritorious early-career scientists among almost 9,000 applications. The ERC was soon being compared to a lottery. It had become a “European Research Casino” (Winnacker, 2008: 128) throughout parts of the research community.

Criticism continued to be directed at the ERC’s evaluations during the remainder of FP7. Voices in Western Europe emphasized that, despite a low success rate in the first call, competition for StGs was not much fiercer than that for national funding schemes. As I showed earlier, when we took all applications between 2007 and 2013 into account, the rate of success was nine percent. Critics pointed to similar rates in national schemes, prompting them to doubt and question the added value of competing for funding at the Europe-level (Winnacker, 2008). In Eastern Europe, politicians instead stressed that competition for StGs was too fierce. Even though success rates went up after the inaugural call, it was often emphasized that this development had not trickled down to new EU Member States in the East. Critical voices could be heard asking for a return to juste retour again (e.g. Abbott, 2010; Pain, 2013; Science, 2013).

I approach all of this criticism as serious blows against the acceptance that the ERC was seeking to engender for its evaluations. These blows constituted sweeping attacks on the results of StG evaluations since the criticism targeted both high and low success rates. This criticism gradually came to be seen as a threat to the ERC’s goal of becoming a reference point in the field of science. Discussing these developments, an interviewee stated that

“We faced a big challenge with all this [criticism] because, as an evaluator of research, you need to have a fair degree of status within the scientific community… No one is going to believe your evaluations otherwise” (Interview 64 – ERC StG evaluator).

In what I interpret as a response to the criticism it faced, the ERC soon made the organization of “credible structures and procedures to receive and evaluate applications” (Heldin, 2008: 420) top priorities. It was a response that became the starting point for a number of active efforts with which the ERC sought to foster acceptance for the processes behind its allocations of research funding.
Portraying Objective Distinctions

Looking at my data, I could see that one important way in which the ERC attempted to engender acceptance for its evaluation of StG applications was by portraying them as objective judgments of scientific quality. Such portrayal veiled the entirety of these evaluations in auras of objectivity. I interpret this as potent means of counteracting the ‘ERC-as-a-European-Research-Casino’ criticism that the first call for applications attracted. A closer look into the organization of StG evaluations reveals how the ERC constantly sought to drape these very same evaluations in guises of objectiveness.

The first step in StG evaluations was the single submission of two-part applications, consisting of short versions (i.e. curriculum vitaes (CVs) and five-page synopses) and long versions (i.e. 15-page full proposals). Applicants simultaneously underwent mandatory eligibility checks in which their career stages were controlled. Scientists situated outside of the two-to-seven-years-after-PhD-completion window received immediate disqualifications.

For this first step, the ERC devised a StG applicant profile, which it often urged early-career scientists to align with. While alignment was not mandatory, the profile outlined clear expectations in terms of what merits these scientists should be able to display. Potential StG applicants were generally expected to have reached a certain degree of independence in their work. Essentially, for the ERC, independence meant that early-career scientists should have published without their former supervisors.

Below, I present the ERC’s StG applicant profile in detail:
Research groups

a) Applicants are starting independent research groups in which they are the group leaders

Bibliometrics

a) Applicants are the authors of at least one independent publication (i.e. without the involvement of former PhD supervisors) in international multidisciplinary journals, or in discipline-specific international journals and conference proceedings. Alternatively, they are the authors of at least one independently published monograph in specific disciplinary domains.
b) Applicants have five highlighted publications (independent or co-authored with former PhD supervisors) in international multidisciplinary journals, or in discipline-specific international journals and conference proceedings. Alternatively, they have five highlighted monographs in specific disciplinary domains.
c) Unspecified number of citations (excluding self-citations)

Invited presentations

a) Unspecified number

Granted patents

a) Unspecified number

Prizes and grants

a) Unspecified number

Table 5. Suggested profile of applicants for European Research Council Starting Grants (compiled with data from ERC (2013))¹¹.

As I mentioned above, the StG profile was presented as a guideline for applicants. Failure to align with it did not signify immediate disqualification. It was, however, clear that the ERC wanted its profile to be approached as a blueprint for how early-career scientists could become “competitive enough” (ERCEA, 2013: 11). As such, potential applicants could inform themselves about what was considered to be a “promising track record of early achievements” (ERC, 2013: 20). My interviewees regularly emphasized that they perceived the StG profile to be an implicit threshold that had to be reached before applying. It was, in addition, a threshold that had consequences for how the ERC’s evaluations could be portrayed:

“Many see statistics and sometimes think ‘well, the ERC has a higher success rate than VR’. Yes, that might be true, but, on the other hand, the ERC sets the bar much higher for applicants… I think many people forget that it becomes a different sort of competition then” (Interview 55 – ERC StG evaluator).

In related research, Neufeld, Huber, and Wegner (2013) found that StG applicants often surpassed the ERC’s profile. Sometimes they did so by far. These findings presumably point to the influence of the implicit threshold that was discussed earlier. Several early-career scientists I interviewed stressed that, over time, an ‘unofficial’ StG applicant profile had taken shape. It contained considerably higher expectations than those contained in the ERC’s ‘official’ version. What follows is an elaboration of how these two profiles related to each other:

¹¹ Granted patents are only taken into consideration in disciplinary domains where patents are regularly awarded (ERC, 2013).
“In principle, you have to fulfill certain things first to even become eligible, you have to fit in with the formal requirements to begin with. But, in reality, if you look at yourself in the mirror, you also have these other higher levels, they are implicit, they are not crystal clear… If you are far from those other levels, then there is no… How should I put it? No point in applying” (Interview 21 – ERC StG recipient).

While the official profile clearly outlined what merits were expected, the unofficial one was challenging to specify. It was an ambiguity that tended to unleash processes of self-selection among potential StG applicants. Many of them refrained from applying, believing that they could not live up to the unofficial profile. It raised doubts and questions that revolved around how much was needed to have a realistic chance at succeeding in ERC StG calls.

In the second step of StG evaluations, short versions of applications were assessed. The ERC stressed that equal weight was placed on the characteristics of research projects and group leaders. Much emphasis was put on “state-of-the-art” and “groundbreaking” aspects (ERC, 2013). I use the table below to specify the criteria employed by the ERC in its evaluations of short versions:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Subcriteria</th>
<th>Content</th>
</tr>
</thead>
</table>
| a) Research project characteristics | a) Groundbreaking ideas and potential impact | a) Extent to which important challenges are being addressed
| | | b) Extent to which objectives are beyond state-of-the-art
| | | c) Extent to which projected research is considered as high in risk and high in gain |
| | b) Scientific approach | a) Extent to which methods are appropriate for specified objectives
| | | b) Extent to which novel methods are to be developed
| | | c) Extent to which estimated time plans and estimated resource needs are justified |
| | b) Research group leader characteristics | a) Intellectual capacity and creativity
| | | a) Extent to which the group leader has demonstrated ability to propose and conduct groundbreaking research
| | | b) Extent to which the group leader has provided proof of creative and independent thinking
| | | c) Extent to which the group leader’s achievements have gone beyond state-of-the-art |

Table 6. Evaluation criteria for short versions of European Research Council Starting Grant applications (compiled with data from ERC (2013)).

All short versions were scrutinized by a minimum of three evaluators. They communicated their judgments individually through a numerical score. The scores from three evaluators were subsequently added, rendering an aggregate letter-based grade for each applicant.
There were three different grades: A (i.e. sufficient quality), B (i.e. high, but insufficient, quality), and C (i.e. insufficient quality). Approximately 20-25 percent of all applications received As during the second step. They were the only ones eligible to continue in competition. B- and C-graded applicants were automatically disqualified. And they were not only disqualified from the call in question, but also from others in the future. The ERC’s resubmission restrictions dictated that Bs were not allowed to apply in the upcoming year. Applicants with Cs could not apply in the next two calls. These restrictions were allegedly necessary “in order to maintain the quality and the integrity of the… evaluation process” (ERC, 2013: 18).

When interviewed, an experienced StG evaluator emphasized that, “in order to pass, they [applicants] practically have to be scored as excellent by all three evaluators… That is actually a pretty strict requirement from the ERC’s side” (Interview 62 – ERC StG evaluator). However, at this stage, if there were more As than the ERC believed it would be able to accommodate within its annual StG research funding budget, applicants were ranked against each other. In this case, the resulting order, coupled with a budgetary cap, was used to decide who surpassed the second step. I see this use of numerical scores and letter-based grades as a very explicit instance of the ERC’s attempts at portraying its evaluations as objective. Such scores and grades created notions of scales, mutually exclusive cut-off points, and objective differences between applicants in StG evaluations.

The ERC’s resubmission restrictions fueled extensive strategizing efforts among StG applicants. My interviewees stressed the importance of timing when applying, all in the name of avoiding Bs and especially Cs. Strategic timing for applications was often associated with eventual publications in prestigious outlets. Such publications were used to polish CVs, as well as to emphasize the potential of research group leaders and their suggested StG projects.

However, despite this strategizing, it was certainly difficult to know what other early-career scientists would display in their respective applications. Such uncertainty engendered a significant degree of anxiety, especially as the ERC ranked applicants in relation to one another. Positions could thus change as more and more scientists were evaluated. There existed no absolute criteria for passing to the next step in StG evaluations.

The ERC’s third step consisted of two sections. In the first of these two, three to four evaluators picked up the long versions of remaining applications. Allegedly, at this stage, all focus was put on the characteristics of research projects. By now, each application would have amassed six to seven grades in total (i.e. three for the short versions, plus three to four for the long versions). On the basis of these new
grades, all applicants still in competition were preliminarily ranked once again.

But my interviewees seldom discussed the evaluation of long versions. They were much more eager to talk about the second section of the third step. It consisted of scheduled appointments at ERC HQ, located in Brussels’ futuristic Madou Plaza Tower. During these appointments, applicants presented their research projects, before being interviewed by evaluators. Upfront, the goal was to gauge whether StG projects had been formulated independently because the ERC repeatedly stressed that it does not fund early-career scientists who are pursuing the research lines of their former PhD supervisors. By extension, I argue that the third-step appointments at HQ were particularly important instances for the ERC’s portrayal of objective evaluations. Presentations and interviews were painstakingly organized so that these evaluations projected the impression of being able to objectively discern differences between applicants.

All early-career scientists invited to Brussels received a specific time slot for their appointments. Everyone was advised to arrive two hours in advance of their slots. Applicants were treated to a “Fort Knox-style security procedure” upon arrival, as one StG evaluator put it (Observation 2 – VR workshop). ERC administrators checked passports, provided visitor badges, and then swiftly directed applicants to waiting rooms. My interviewees compared these rooms to those featured in “Idol” (i.e. a televised song contest in which aspiring musicians nervously await their turns in large halls chock-full of other hopeful applicants). I could read about similar perceptions in my document data as well. For example, Francesco Ricci – an Italy-based StG recipient – mentioned that “you try to figure out if the others are better scientists than you” because “it’s possible that fewer than half of the people in the room will get a grant” (quoted in Schiermeier, 2014: 449).

However, applicants were not randomly placed in waiting rooms. To the contrary, considerable efforts were expended in organizing the interactions between candidates at ERC HQ. Competing applicants were immediately separated from each other upon entering the Madou Plaza Tower. And they would not be placed in the same waiting rooms as their closest competitors. It all seemed to part of an elaborate information management strategy:

“It [ERC headquarters] is strictly arranged so you only spend time in certain rooms and you are escorted between rooms and floors in order to minimize the risk that you interact with someone else who is going to present that day… So everything is very secretive, they [the ERC] do everything possible to make it impossible for you to know anything about your competitors” (Interview 47 – ERC StG recipient).
 Nonetheless, ‘glitches’ evidently existed. It was clear that some information about applicants ‘slipped through the cracks’. Such slippage could largely be attributed to ‘clues’ that were (unintentionally) left by the ERC. For instance, there were lists pasted on walls with the acronyms of all research projects that would be presented during a given day. Applicants were, on the basis of these lists, sometimes able to decipher what the acronyms stood for, which projects they represented, and who the group leaders were. This was especially the case in narrow disciplinary domains, often characterized by densely interconnected research networks. The ERC was, despite its attempts, not able to fully restrict the flow of information between applicants. However, other features of HQ appointments also contributed to sustaining auras of objectivity over StG evaluations.

![Image of the European Research Council headquarters](source: Heinze (2016)).

The actual presentations and interviews can be interpreted as further instances of crucial importance for the way in which the ERC portrayed its evaluations. When their time had arrived, applicants were picked up by administrators, which led the way into specific appointment rooms. These rooms were sparingly furnished. They featured a projector for Powerpoint files, a chronometer on the main wall, and a large rectangular table for the 12 to 16 evaluators that were present. Inside appointment rooms, the ERC’s information management strategy was reflected in strictly organized interactions between applicants and evaluators:
“Well, my impression is that you are not allowed to fraternize with the researchers at all… I mean, you were not even allowed to say ‘nice to have you here, we wish you good luck’ when presenters came in, that would have been a catastrophe… Coming from Sweden, I had never experienced anything like it, you know, but in Brussels, everything can be seen as bias” (Interview 61 – ERC StG evaluator).

Evaluators were thus instructed to maintain a distant and detached approach in their encounters with applicants. We can understand the rationale behind this approach by considering how the ERC typically distributed sparse information about StG evaluators. In connection to call announcements, only the names of evaluators that would be chairing panels were released. No information whatsoever was provided when it came to remaining evaluators. And applicants were, by no means, allowed to contact chairs with requests for any type of information (e.g. ERC, 2009, 2012a). Lists with the names of remaining evaluators were only released after the conclusion of calls.

At first glance, StG applicants should only be able to guess who would be sitting by the rectangular table as they were led into the appointment rooms at ERC HQ. The secrecy surrounding evaluators was not entirely ‘waterproof’, however. There were ways of ‘predicting’ who would be sitting by the table. My interviewees told me about how lists of past evaluators became fodder for extensive speculation. Such lists were often compiled and marketed by consultancies specialized in EU research funding applications. The ‘trick’ was that evaluators were tenured as panel members for a set number of years, even though they only participated in every other call during their tenures. The present composition of panels could, as such, be ‘predicted’ by looking at which evaluators had participated in the past. Regardless of their accuracy, applicants used these ‘predictions’ to tailor presentations and prepare answers for subsequent interview questions.
The presentations at ERC HQ consisted of individual ten-minute slots during which temporal limits were strictly kept. Kristin Tessmar-Raible – an Austria-based ERC StG recipient – stressed that, once presentations begin, “every second counts” and “you have to think hard about every word… you use” (quoted in Schiermeier, 2014: 451). Her emphasis was echoed by several of my interviewees as well. Many of them used instrumental arguments, often pointing to the opportunity of making “more than one million [Swedish] Crowns per minute” (Interview 12 – ERC StG recipient).

Immediately after presenting, applicants were interviewed for 15 minutes by the 12 to 16 evaluators in attendance. Four to five of these evaluators had read the long versions of applications carefully. They typically took the lead in asking questions. Allegedly, most questions revolved around independence, research project feasibility, and host organization infrastructure. Meanwhile, the remaining 11 to 12 evaluators were in charge of taking notes. These evaluators would occasionally contribute with questions toward the end of interviews.

Although there were some exceptions, my early-career scientist interviewees generally experienced the appointments in Brussels as press- ing, anxiety-inducing, and nerve-wracking situations. “It [the appointment] was not about pleasant chit-chat, it was actually all about challenging questions, trying to see whether you were unsure and such things” (Interview 41 – ERC StG recipient). Many third-step applicants had heard ‘horror stories’ about these appointments before traveling to Brussels. Such stories included colleagues who – faced with a barrage of critical questions from evaluators – felt verbally attacked and stum-
bled to find their words. Some left the interviews crying. ERC HQ appointments almost became ‘urban myths’ among early-career scientists from disciplinary domains where StGs played a central role for future career prospects, such as the LS and PE. One of my interviewees mentioned that

“You would hear all these things about how the presentations were structured and the questions you would get afterward, you know… The last few days before going to Brussels, I remember them, the stress levels were enormous” (Interview 12 – ERC StG recipient).

To some extent, this was no surprise. The stress experienced by applicants can presumably be traced to how the third evaluation step was organized. In advance of ERC HQ appointments, evaluators were explicitly instructed to give StG applicants “a hard time to see if they are on top of their work” (Observation 1 – Northern University information session). The possibility for evaluators to constantly switch applicants’ ranking positions probably made HQ appointments even more stressful. While preliminary rankings were established after the long versions of applications had been read, presentations and interviews could entice evaluators to shuffle StG applicants around. For many applicants, ERC HQ appointments were effectively perceived as “make or break” (Waldenström, 2013) situations.

The fourth and final step in StG evaluations consisted of allocating research funding. After all appointments had been conducted, evaluators merged their grades. The goal was to establish a definitive ranking. In general, with some variation between calls, when everything was said and done, 35-40 percent of applicants received As during the fourth evaluation step. It implied that they fulfilled the ERC’s requirements for scientific quality. All remaining applicants received Bs. They fulfilled some, but not all, quality requirements. It also meant that they were disqualified. Cs were not given at this stage.

Interestingly enough, fulfilling scientific quality requirements was no guarantee for funding. The ERC sought to be very clear on this. Every panel received a budget to cover a certain number of grants in each StG call. However, these budgets were oftentimes not enough to fund all As in the respective panels. When such situations surfaced, evaluators proceeded to rank A-graded applicants against one another. To do so, StG evaluators decomposed aggregated grades into the numerical scores that made up these very same grades. It was an exercise that rendered fine distinctions between applicants still in competition. The ranking of As resulted in priority and reserve lists for every panel. They were then transformed into all-call lists. Priority-listed applicants included those whose As were ranked highly enough to be immediately accommodated within budgets, which resulted in recommendations for
funding. No remaining As were recommended, despite having received the highest grade. The difference between being placed on priority lists and reserve lists could, as such, be minutely small. But the distinction was magnified by the fact that only applicants on one side of the dividing line received recommendations for StG funding.

However, even if they were initially placed on reserve lists, StG applicants could sometimes be transferred to priority lists. Three different situations opened up for such transfers. In the most common of them, the ERC received additional resources from the EC after the conclusion of StG evaluations. These resources became available if other EU schemes were left with funding to spare. Such instances subsequently meant that the ERC would increase the number of As it recommended for funding.

Other situations in which applicants could be transferred from reserve lists to priority lists included instances where recommended StG projects ended up being less costly than initially budgeted. Funding would thus be freed up, which implied that resources could trickle down from higher to lower ranked As.

Finally, although they constituted relatively uncommon situations, priority-listed applicants could be disqualified even after being recommended for funding. Examples of such disqualifications included instances in which early-career scientists hosted at companies were tied to contracts that regarded research findings as intellectual property. Contracts like these collided with the ERC’s goal of making StG recipients – and their findings – mobile between host organizations (ERC, 2013).

In what follows, I present a figure that summarizes the four steps of StG evaluations:
I suggest that the inaugural StG call serves as a prime example of the intricacies behind the ERC’s allocations of funding. The results of this call were released in two waves.

The first of these two waves highlights the dividing line that was introduced between A-graded applicants. The ERC presented a general list comprising 430 applicants that received As from their respective panels. However, since the budget was not enough to fund all A-graded applicants, these 430 individuals were divided into two lists. There was an all-call priority list, which included 201 applicants, positioned one after the other in alphabetical order (i.e. without being ranked). This was what the ERC’s budget was able to cover. All 201 priority-listed individuals were immediately recommended for funding. There was also an all-call reserve list, including the remaining 229 applicants, ranked against each other on the basis of numerical scores, beginning with position 202. These individuals were not recommended for funding at this time (ERC, 2008a).
The second wave of results instead points to the influence of haphazard events upon the composition of priority and reserve lists. Due to an oversubscribed inaugural StG call, the EC extended the ERC’s budget for research funding. It meant that a number of A-graded applicants could be transferred from the reserve to the priority list. In total, 98 individuals were transferred. They were now recommended for funding as well. Altogether, after both waves of results were released, the ERC funded 299 StG applicants. The priority list had, in other words, been extended from 201 to 299 positions between the two result waves. But a definitive dividing line was drawn between position 299 and 300. Ultimately, this rendered a success rate of 3.4 percent (Cordis, 2009a).

Commenting on the results of the first StG call, interviewees referred to almost non-existent differences between priority-listed and reserve-listed applicants:

“When people… looked at how they [ERC StG evaluators] had ranked applications, everyone realized that it was really only about decimals, that is, 0.1 or something in difference, so it could honestly be said that some researchers that never got StGs were just as excellent as some that were funded” (Interview 45 – VR senior research officer).
Minor factors, often bordering on the trivial, determined how evaluators drew distinctions:

“So, the distances in these rankings, you rank with numbers, it could easily be centesimals that differed between applicants and, in reality, one point more or less would often have to do with whether evaluators had gotten a cup of coffee or not” (Interview 58 – ERC StG evaluator).

The evaluators I interviewed were generally cognizant of the challenges in making clear-cut judgments of scientific quality. Most of the time, there was agreement in terms of what applications would be receiving Bs and Cs. Consequently, there was typically also consensus when it came to what applicants were A-worthy. But it appeared as if it was all the more challenging to differentiate between As. The final ranking exercises became ambiguous exercises, often preceded by lengthy discussions. However, most of this ambiguity was hidden behind the potent appeal of letter-based grades and numerical scores.

Building Respect for Panels

My data analysis suggested that another important way in which the ERC sought to foster acceptance for StG evaluations was by portraying them as processes conducted by respected scientists. I mostly interpret this portrayal as an additional response to the ‘European Research Casino’ criticism. To counteract accusations of randomness, the ERC repeatedly emphasized that its evaluation panels consisted of senior scientists with extensive experience from identifying scientific quality among research funding applicants (e.g. Heldin, 2008; Kafatos, 2009; Nowotny, 2013; Pinero, 2014).

The recruitment of evaluators held a central place for how the ERC portrayed its StG panels. Much responsibility for the initial organizing of panels was put upon the ERC’s Scientific Council (ScC). The ScC came to life after an extensive consultation process, involving over 40 national research councils and science interest groups. Among 400 suggested individuals, 22 were finally selected as members of the ScC. They were mostly professors at prestigious European universities, with additional appointments as directors and presidents of laboratories, centers, institutes, and academies. Their tasks at the ERC included designing calls, establishing eligibility rules, and determining peer review criteria. The ScC was also in charge of recruiting chairs to StG evaluation panels within the ERC’s three disciplinary domains. It seemed as if the ScC’s involvement in recruitment infused the subsequent evalua-
tions with much credibility. My interviewees often returned to the ScC, describing its 22 members in laudatory terms:

“If you look at those who sat in the [ERC Scientific] Council, you will see that those were the research heavyweights of Europe… They probably knew what they were doing” (Interview 51 – Northern University research funding administrator).

The ERC commonly made use of 25 panels in StG evaluations – nine for the LS, ten for the PE, and six for the SSH. A chair supervised each panel. The role of chairs was to read applications, organize meetings, and lead discussions. Another important task of theirs was to identify and recruit other evaluators. Already before its establishment, the ERC made it a goal to ensure that all chairs would be “highly respected… major scientific figure[s]” (ERC, 2006: 3). With few exceptions, they were professors at renowned universities in Europe. More often than not, they also held positions as editors of journals, presidents of academies and science interest groups, and directors of centers, institutes, and national research councils.

The regular group of StG evaluators consisted of 260 to 380 members for every call. It was a number that fluctuated somewhat depending on the research funding budget available in any given year (ERC, 2013). Early on, the ERC set out to make this evaluator group highly international in its composition. Its members would not only be recruited across Europe, but preferably from the US and Asia as well. The main rationale for doing so was to “reduce the risk of potential conflict[s] of interest” (Antonoyiannakis and Kafatos, 2009: 514). Such conflicts held an almost profane place throughout ERC discourse. They constituted a looming threat to any evaluations that supposedly only focused on scientific quality.

The ERC consequently expended extensive efforts aimed at addressing conflicts of interest in its evaluation panels. Hinting at what he perceived as widespread practices in research councils, Ernst-Ludwig Winnacker (2008: 126-27) stressed that recruiting “a single foreigner on[to] an otherwise national panel” was not enough to stave off local disputes. Winnacker claimed that the ERC took “a much broader view”, completely discarding “long-standing relationships [between evaluators]” (ibid). My interviewees spoke about the recruitment to StG panels in very similar ways. They often returned to alleged deficiencies in

13 These proportions changed slightly throughout FP7.
14 The ERC also had the possibility of accessing a remote group of up to a 1,000 additional evaluators (ERC, 2013). However, these evaluators were not assigned to any specific funding schemes. Nor did the ERC tap them on a regular basis. I have, because of this, chosen to leave the ERC’s remote group outside of my study.
national evaluations, emphasizing how such processes mostly relied on the recruitment of locally renowned scientists. Many interviewees perceived that the number of capable evaluators at the nation-level came down to the low single digits in many disciplinary domains. Under such conditions, patronage and nepotism were believed to be inevitable outcomes. A repeatedly proposed solution was Europe-level recruitment of evaluators. One interviewee told me that

“The value of this [StG] evaluation has a lot to do with being evaluated out there in Europe, there are so many possible evaluators that can be put on panels, you get away from this of people knowing people” (Interview 2 – ERC StG recipient).

A look at the background of StG evaluators only provides partial support for the ERC’s extensive emphasis on international recruitment. In the table below, I provide descriptive statistics on the location of host organizations where StG evaluators were based throughout FP7:

<table>
<thead>
<tr>
<th>Starting Grant call</th>
<th>Europe</th>
<th>United States</th>
<th>Asia</th>
<th>Others</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>239</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>245</td>
</tr>
<tr>
<td>2009</td>
<td>262</td>
<td>13</td>
<td>2</td>
<td>3</td>
<td>280</td>
</tr>
<tr>
<td>2010</td>
<td>330</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>349</td>
</tr>
<tr>
<td>2011</td>
<td>335</td>
<td>21</td>
<td>1</td>
<td>7</td>
<td>364</td>
</tr>
<tr>
<td>2012</td>
<td>339</td>
<td>26</td>
<td>1</td>
<td>5</td>
<td>371</td>
</tr>
<tr>
<td>2013</td>
<td>281</td>
<td>17</td>
<td>2</td>
<td>11</td>
<td>311</td>
</tr>
<tr>
<td>SUM</td>
<td>1786</td>
<td>97</td>
<td>9</td>
<td>28</td>
<td>1920</td>
</tr>
</tbody>
</table>

Table 7. Host organizations of evaluators in all European Research Council Starting Grant calls 2007-2013 (compiled with data from personal communication with the European Research Council Executive Agency)\(^{15}\).

Altogether, the ERC recruited 1,973 StG evaluators between 2007 and 2013. My data shows that 1,920 of them were based at host organizations in 43 different countries\(^{16}\). While the ERC explicitly sought to recruit in the US and Asia, few evaluators were actually based at host organizations in these parts of the world. It was quite clear that the great majority of StG evaluators were based in Europe. A closer look at the background of ERC StG evaluators reveals that they were disproportionately likely to be based in the UK, France, and

\(^{15}\)“Europe” includes all European Union Member States and Associated Countries. “Asia” is composed of Hong Kong, India, Japan, and Taiwan. And “Others” consists of Australia, Argentina, Brazil, Canada, Chile, Mexico, and South Africa.

\(^{16}\)I was unfortunately not able to find data on the host organizations of 53 StG evaluators.
Germany. My interview data helped me put this into context. It success-
ively became clear that chairs, instead of searching far and wide for
StG evaluators, mostly relied on close-knit research networks. Their
recruitment efforts were directed at individuals within a small number
of host organizations:

“The ERC owes much to elite institutions in Europe, the crowns or the
jewels in the national systems. German and French, and, of course, Brit-
ish elite institutions, they supply a great deal of [StG] evaluators“ (In-
terview 61 – ERC StG evaluator).

There were strong perceptions about the standing of those evaluators
that made up the ERC’s various StG panels. Early-career scientists reg-
ularly referred to these evaluators as “the most qualified” (Interview 46
– ERC StG recipient) and “the best of the best” (Interview 34 – VR RF
recipient). However, it was difficult to discern exactly what such refer-
rals built upon. Interviews with StG evaluators themselves provided me
with additional insights into the perceptions that flourished among ear-
ly-career scientists. Such perceptions seemed to be closely associated
with the revered positions that ERC StG evaluators commanded in the
research community. These positions included membership in editorial
boards:

“I think we had three persons in my panel who are… editors for the top
journals in my discipline, so these were great people to have, you know,
they were very used to determining the quality of research” (Interview
48 – ERC StG evaluator).

Other StG evaluators held leadership positions in science interest
groups:

“In my panel, we had the President of the International [discipline] As-
sociation, the President of the European [discipline] Association, and
also the President of the American [discipline] Association, you know,
people who are comfortable discussing many different types of re-
search” (Interview 61 – ERC StG evaluator).

My interviewees typically stressed that the background of evaluators
lifted the ERC’s judgments to a privileged standing in the field. How-
ever, a sub-group of evaluators was often singled out as particularly
important for the standing of these judgments. It consisted of Nobel
Prize winners. Their alleged participation in ERC panels signified that
total StG evaluations came to command respect. Early-career scientists
tended to be deeply impressed by the participation of Nobel-winning
evaluators in panels. One interviewee described how StG applicants
reacted during third-step appointments at ERC HQ:
“Many applicants came in there [into the appointment rooms] and chipped for their breath, ‘Wow, [Nobel Prize winner name] is here with questions about my project’… I think that made the evaluations really accepted, the authority and knowledge that came from having such persons on the panels” (Interview 48 – ERC StG evaluator).

Early-career scientists usually corroborated these accounts. One of them mentioned that

“In my discipline, they [the ERC] had a dream panel, there were even Nobel laureates in it… That made the whole evaluation look good, it colored it” (Interview 2 – ERC StG recipient).

While there was general agreement on the alleged influence of Nobel-winning evaluators, my data analysis showed that all of these evaluators participated in ERC panels before receiving their respective Prizes. And none of them have been active as StG evaluators afterward. The table that follows displays this in more detail:

<table>
<thead>
<tr>
<th>Starting Grant call</th>
<th>Name</th>
<th>Evaluation panel (acronym)</th>
<th>Nobel Prize (shared winners)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Moser, May-Britt</td>
<td>Neurosciences and Neural Disorders (LS 5)</td>
<td>2014 Nobel Prize in Physiology or Medicine (shared with Edvard Moser and John O’Keefe)</td>
</tr>
<tr>
<td></td>
<td>Tirole, Jean</td>
<td>Individuals, Institutions, and Markets (SH 1)</td>
<td>2014 Nobel Memorial Prize in Economic Sciences (not applicable)</td>
</tr>
<tr>
<td>2009</td>
<td>Moser, May-Britt</td>
<td>Neurosciences and Neural Disorders (LS 5)</td>
<td>2014 Nobel Prize in Physiology or Medicine (shared with Edvard Moser and John O’Keefe)</td>
</tr>
<tr>
<td></td>
<td>Tirole, Jean</td>
<td>Individuals, Institutions, and Markets (SH 1)</td>
<td>2014 Nobel Memorial Prize in Economic Sciences (not applicable)</td>
</tr>
<tr>
<td>2010</td>
<td>Moser, May-Britt</td>
<td>Neurosciences and Neural Disorders (LS 5)</td>
<td>2014 Nobel Prize in Physiology or Medicine (shared with Edvard Moser and John O’Keefe)</td>
</tr>
<tr>
<td></td>
<td>Tirole, Jean</td>
<td>Individuals, Institutions, and Markets (SH 1)</td>
<td>2014 Nobel Memorial Prize in Economic Sciences (not applicable)</td>
</tr>
<tr>
<td>2012</td>
<td>Moser, Edvard</td>
<td>Neurosciences and Neural Disorders (LS 5)</td>
<td>2014 Nobel Prize in Physiology or Medicine (shared with May-Britt Moser and John O’Keefe)</td>
</tr>
</tbody>
</table>

Table 8. Nobel Prize-winning European Research Council Starting Grant evaluators in calls 2007-2013 (compiled with data from ERC (2016)).

As can be seen, by 2012, several would-be Nobel winners had participated on ERC StG panels. They had not received their Prizes at the time, however. All of them were awarded Nobels in 2014. By then, they were not active as StG evaluators anymore. But the fact that these evaluators had not received their Prizes when they participated in ERC StG
panels seemed to be of little importance. StG evaluations were infused with Nobel-derived respect anyway.

Creating Selective Allocations

Based on my data, I could see that a final way in which the ERC attempted to engender acceptance for its evaluation of StG applications was by portraying their resulting research funding allocations as selective. I suggest that this constituted a dual response of sorts. It largely attempted to counteract Western European criticism about ERC success rates not being much different from those of national funding schemes. But, in order to simultaneously counteract Easter European criticism about StG competition being too fierce, the ERC also saw the need to present its allocations as firmly grounded in the scientific quality of applicants. In essence, this dual response became a matter of justifying the selectivity of StG research funding allocations. We need to look closer into how the ERC approached the criticism it faced from two fronts.

Throughout my interviews with early-career scientists, it became clear that StG evaluations were a common topic of discussion in offices, corridors, and laboratories. This topic was especially prone to come up when ERC call deadlines crept closer. One of my interviewees remembered how StG evaluations were discussed:

“I was constantly hearing this that ‘you have to be within the top five percent of researchers’, ‘you have to be excellent in everything you do’, and ‘you also need to have the greatest idea in Europe, otherwise, you will not have a chance when all these seniors evaluate you’… StGs felt cool and attractive, but also exclusive, almost out of reach, only the best young researchers were getting them… I felt like this was nothing for us normal, unstructured PhD students that did not know what to do in the future” (Interview 57 – ERC StG recipient).

There are reasons to believe that this was no coincidence. The ERC publicized calls widely, hoping to engender large numbers of applications from early-career scientists across Europe. But it repeatedly emphasized that the StG funding scheme was only intended for up-and-coming scientists, soon-to-be leaders in their respective disciplinary domains (e.g. Nowotny, 2010; Winnacker, 2008). Moreover, the ERC continuously attempted to advance the notion that its StG evaluations were tough. I already mentioned how evaluators were explicitly instructed to give applicants a hard time during appointments at ERC HQ. Other notable instances that contributed to this notion included ERC top management claiming that ‘even’ Nobel Prize winners came out un-
funded at the conclusion of StG evaluations. “Their project proposals”, as Helga Nowotny – the ERC’s second President – put it, “were not good enough” (quoted in Myklebust, 2012). Some of my interviewees suggested that these statements were products of elaborate efforts to construct toughness:

“I think the ERC is very good at saying that they have a difficult evaluation program, you know, pounding themselves on their chests and saying that this is not for everyone” (Interview 30 – ERC StG recipient).

Another interviewee phrased this in similar terms:

“Well, it is apparent that they [the ERC] have managed to launch something that seems to be very hard to achieve, that also makes it exclusive in our world, maybe regardless of how many get this funding” (Interview 53 – Head of an ERC StG department).

In general, while the ERC emphasized how its evaluations rendered selective allocations of funding, many early-career scientists and heads of department stressed that there were no major differences between StG success rates and rates among comparable national schemes. But these interviewees still perceived ERC StG allocations as selective. However, scientists and heads did not base their notions of selectivity upon fierce competition for research funding. Instead, they repeatedly returned to images of tough ERC StG evaluations. These images were not restricted to my interviewees. For example, in a recent editorial, *Science* (2013: 409) described these evaluations as “remorseless”.

Although the ERC’s selectivity engendered acceptance in many corners of Europe, it often led to opposite reactions elsewhere. Politicians in Eastern Europe were especially critical toward the StG scheme. They regularly claimed the ERC’s funding allocations were too selective. Earlier on, I pointed to how the portrayal of ERC StG evaluations triggered hesitance and, in some instances, self-selection processes among early-career scientists. However, in Eastern Europe, many potential applicants had allegedly given up entirely on applying. Politicians that were critical toward the ERC emphasized how scientists in this part of Europe saw no chance of accessing StG funding. These early-career scientists believed that their CVs were not good enough; that their disciplinary domains were not fashionable; and that their host organizations lacked the necessary research infrastructure to succeed in ERC competitions (Engelmark, 2015). Eastern European politicians stressed that a few hundred StGs per year were far from enough to mitigate what they perceived to be straining conditions for early-stage academic careers in Eastern Europe. These politicians proposed considerable reductions in the monetary amounts of StGs (i.e. from €1.5 million
down to €400,000) so as to increase the number of recipients. Eastern European politicians also tended to emphasize that continental competition for research funding mostly benefitted well-off applicants in Western Europe. Voices calling for *juste retour* in the allocation of StGs could be heard with increasing regularity (e.g. Pain, 2013; Science, 2013).

Looking at ERC StG calls throughout FP7, I could see that applications and subsequent funding allocations were concentrated among early-career scientists based in certain parts of Europe. In the table that follows, I present descriptive statistics for applicants based at Western and Eastern European host organizations in calls 2007 thru 2013:

<table>
<thead>
<tr>
<th>Region</th>
<th>Evaluated applications</th>
<th>Funded applications</th>
<th>Success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Europe</td>
<td>24141</td>
<td>2291</td>
<td>9.5%</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>1716</td>
<td>41</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

Table 9. Western and Eastern European applications and success rates in all European Research Council Starting Grant calls 2007-2013 (compiled with data from ERC (2015b)).

There are notable contrasts in this data. When averaging all StG calls throughout FP7, applicants based at host organizations in Western Europe reached a success rate of 9.5 percent. This can be compared to the average 2.4 percent for Eastern Europe. Such contrasts seemed to corroborate the notion that ERC StG funding often benefitted applicants in parts of Europe that were already relatively well endowed with research resources.

Tellingly, a few calls into FP7, the ERC came under substantial pressure to create and implement activities that would address the differentiated StG funding patterns in Europe (Pain, 2013). Summing up the concerns of many critics, John Smith – Deputy Secretary General of the European University Association – stressed that support from the EU should generally strive to attain “both a certain necessary concentration of research capacity and a flexibility to ensure a ‘level playing field’ of opportunities for new research capacity building” (quoted in Myklebust, 2011). Smith emphasized that the EU’s funding budget should make particular room “for excellent researchers based in… Member States not yet achieving success in ERC competitions” (*ibid*). It was largely against this background that the EC proposed “Stairways of Excellence” (SoEs). The main goal of SoEs was to function as platforms for cooperation between parts of Europe that displayed higher and lower

17 For reasons of simplicity, “Western Europe” includes all EU Member States and Associated Countries that were not part of Yugoslavia and the Soviet Union. “Eastern Europe” is composed of all Member States and Associated Countries that were part of Yugoslavia and the Soviet Union.
success rates in ERC calls. Specific assistance would be provided to the 13 countries that joined the EU from 2004 onward. An open letter co-signed by 12 research ministries in 2012 suggested that SoEs were a popular idea, especially among science policy circles in Eastern Europe (ERC, 2012b).

From its early days, the ERC touted the differential access to its funding as a source of concern (Pain, 2013). However, not much changed throughout FP7. We could, for example, see this in my comparison of success rates among applicants based at Western and Eastern European host organizations. Differences evidently remained large. In any event, while it claimed to notice these differences, the ERC simultaneously emphasized that it was beyond its responsibility to address them (Myklebust, 2012). It continuously reassured critics that StGs were open for early-career scientists from all over the continent. But the ERC also stressed that it could not treat any parts of Europe preferentially. The purported criteria of scientific quality would not be altered in order to redress any geographical imbalances in StG funding access. The ERC’s argument was essentially that, “if all the best scientists in Europe lived in Malta, then all the grants should go to scientists living there” (King, 2013). I argue that, by constantly returning to and relying on the notion of scientific quality, the ERC skillfully derailed most voices advocating for juste retour and SoEs. Differences in StG success rates were largely explained away by pointing at structural and R&D investment-related issues. Along these lines, Helga Nowotny emphasized that it was the responsibility of national research councils and governments to “create an environment in which more success can be encouraged” (quoted in Pain, 2013).

The ERC’s firm stance on its notion of quality in science received support from many scientists, politicians, and interest groups. To take an example, David McConnell – Professor of Genetics at Trinity College Dublin – asserted that “it [the ERC] does favour bright, hard-working people… so there are complaints from second division scientists, institutions, and countries” (quoted in King, 2013). Jack Metthey – Director of the EC’s Directorate General for Research and Innovation – stressed that the StG scheme would “‘lose its soul’” if the emphasis on scientific quality was dropped in favor of juste retour (quoted in ERC, 2012b: 2). Also, Katrien Maes – Chief Policy Advisor of the League of European Research Universities – emphasized that “its [the ERC’s] single-minded focus on excellent frontier research is imperative if Europe wants to have any chance of competing with the existing and emerging research powerhouses of the world” (quoted in Myklebust, 2011).

By continuously pointing to the notion of scientific quality, the ERC was able to counteract the dual criticism that its success rates faced.
When Western European critics complained that rates were too high in comparison to national funding schemes, it would respond by contending that many applicants actually fulfilled the StG requirements for quality. When critics from Eastern European instead complained that success rates were too low in certain countries, the ERC would counteract by stressing that few applicants there actually reached the scientific quality requirements for StG funding. It was a strategy that seemed to work.

Believing in Evaluation Results

However, when all was said and done, any eventual acceptance for StG evaluations hinged on creating distinctions that the research community would believe in. As such, the ERC needed to foster a certain degree of consensus around its allocations of funding.

One eloquent interviewee referred to this as a matter of “Type I and Type II errors” (Interview 48 – ERC StG evaluator). In the language of statistics, Type I errors relate to the probability of incorrectly rejecting null hypotheses. Type II errors instead concern the likelihood of incorrectly failing to reject null hypotheses (Hair, Black, Babin, and Anderson, 2010).

In the context of StG evaluations, Type I errors were used to describe the ERC’s probability of refraining from funding applicants that the research community later on might perceive as having been worthy of funding. These ‘errors’ were allegedly quite common, especially when ERC StG success rates hovered around ten percent. Evaluators allegedly found approximately 20 percent of all applicants to be worthy of being funded in any given call. The ERC’s budget was, however, not enough to cover all of them. Type I errors were, because of this, typically portrayed as immediate consequences of budgetary limitations. Errors like these could be justified by pointing to a lack of resources. They could also be drawn upon strategically to lobby for extended financial contributions from the EC.

Type II errors were instead used to describe the probability that the ERC would fund StG applicants that the research community might perceive as unworthy of funding later on. Such errors also occurred. But they were regarded as much more serious threats to the ERC’s construction of acceptance for ERC evaluations than Type I errors. Another interviewee discussed this issue at length:
“What we [ERC StG evaluators] want to be sure of is that those who get funding deserve it, and then there are always going to be those who deserved funding but did not get any… But the trust that people put in the ERC will quickly be eroded if too many not-worthy applicants get funding, so to say… A problem would arise if there is a discrepancy, you know, if I look down the corridor and realize that I am much better than the loser who got a shitload of money from the ERC” (Interview 60 – ERC StG evaluator).

Still, most StG evaluators and ERC governing body members expressed their firm belief in the allocations of funding. They confidently asserted that the research community believed in these allocations as well:

“Very, very few mistakes have been made, in the sense that I don’t think I’ve ever heard somebody tell me that ‘this guy got a grant but why?’” (Interview 18 – ERC governing body member).

In a similar vein, it was also emphasized that

“The ERC’s hit ratios have actually been really high. When peers who did not get StGs look at those who did get StGs, most of them can probably agree that those who got funding should have been funded” (Interview 60 – ERC StG evaluator).

The last few quotes project images of wide acceptance for StG research funding allocations. It should perhaps not come as a surprise to hear that evaluators and governing body members stressed their belief in how ERC funding was allocated. After all, the ERC’s goal of becoming a reference point in the field seems to be closely connected to how these allocations were perceived by the research community. We thus need to expand our view and develop a more general picture of how ERC StG funding allocations were approached.

Concluding Remarks

In this chapter, I looked closely into the ERC’s attempts at engendering acceptance for its evaluations of research funding applications. I provided a background to the StG scheme, showing how the ERC constructed a space in the field of science for its early-career scientist offer. Once launched, however, StGs were soon reproached for what critics perceived to be random and unequal allocations. I argued that the ERC’s response consisted of portraying its StG evaluations as objective judgments of quality, which featured respected panelists and rendered selective allocations of funding. StG evaluations were continuously
portrayed and defended as instances in which scientific quality was
detected.

Throughout the next chapter, I examine how ERC StGs were per-
ceived to have affected scientists, departments, and universities in the
context of Sweden. It appears as if the painstaking organization of StG
evaluations turned their subsequent results into conduits for a wide
range of consequences.
CHAPTER SIX: THE STATUS CONSEQUENCES OF STARTING GRANTS

In the two previous chapters, I provided an empirical background to the field in which the ERC was founded and an investigation of how evaluations of StG applications were portrayed during their early years. My goal in Chapter Six is to explore the perceived status consequences of ERC StG research funding allocations. Zooming in on Sweden, I assess how this funding was believed to affect the careers of scientists, the milieus within departments, and the relations between universities. My exploration thus spans the individual, organizational, and field level. Throughout this chapter, I compare the perceived consequences of StGs with those of the monetarily and temporally identical VR RFs. We will see that the results of ERC evaluations rendered a range of status consequences that almost exclusively came to be concentrated in the hands of StG recipients.

Runner-Up Research Funding Across Europe

I argue that we can interpret the establishment of numerous StG runner-up funding schemes across Europe as one of the earliest instances of research community acceptance for ERC evaluations. Such schemes were even being announced before the conclusion of the inaugural StG call. In early 2008, a few months before the results of the first call were released, several national research councils were already planning to fund ‘their’ reserve-listed ERC applicants. By the middle of that same year, research councils in Belgium, Cyprus, Finland, France, Hungary, Italy, Poland, Spain, Sweden, and Switzerland had founded runner-up schemes (Antonoyiannakis et al., 2009; ERC, 2008b; Nordforsk, 2008). In 2013, as FP7 was coming to an end, 20 countries in total had established such schemes. Bulgaria, Czech Republic, Greece, Ireland, Luxembourg, Norway, Portugal, Romania, Turkey, and Slovenia were now
also offering funding for StG runner-ups (Schreck, 2012; Vernos, 2012).\footnote{In contrast to most other countries in Europe, the UK did not have any plans to create its own scheme for StG runner-ups. A spokesman for Research Councils UK asserted that the establishment of such a scheme would “discriminate against applications who have not applied to the ERC” and “run counter to the policy of funding on the criteria of excellence” (quoted in THE, 2008).}

There was, to be sure, certain variation in how national research councils organized their runner-up schemes. Differences could, for instance, be found in terms of monetary amounts and duration periods. Some countries copied the design of ERC amounts for shorter periods. Others offered one-time payments presented as bonuses. Differences could also be found when it came to how many reserve-listed applicants would be supported after each StG call. A few research councils restricted their runner-up funding to predefined numbers of early-career scientists. However, the majority promised that all of their reserve-listed applicants would be financed. There was, nonetheless, one feature that united each and every runner-up funding scheme in Europe. All councils re-used the results of StG evaluations, considering them to be fully satisfactory bases for allocating research resources at the national level.

The ERC, perhaps not surprisingly, repeatedly expressed its satisfaction with the establishment of runner-up schemes throughout Europe. It emphasized that these schemes should be seen as important financial additions to StGs, especially in calls where the number of top-graded applications greatly surpassed the ERC’s available funding budget (e.g. Cordis, 2009a; ERC, 2012c). Moreover, the ERC also stressed that, by supporting runner-ups, national research councils ultimately encouraged early-career scientists to apply for StGs. Since success rates hovered around 10 percent, the ERC feared that many scientists would hesitate to invest time in StG applications, knowing that such efforts could very well be fruitless. By extension, it feared that early-career scientists would ignore its funding altogether, instead applying at the national level where success rates were believed to be higher. To proactively counteract this, the ERC portrayed runner-up schemes as financing possibilities for an enlarged number of StG applicants (Cordis, 2009b). But, most importantly, the ERC emphasized that national research councils’ re-usage of StG evaluation results constituted a “vote of confidence” (ERC, 2012c: 4). Soon after the conclusion of the first ERC StG call, Fotis Kafatos pointed to the extended meaning of runner-up funding schemes:
“The ERC is pleased with this clear support of the ERC’s funding strategy for the next generation of researcher leaders. It is an acknowledgement of the intrinsic quality of the ERC’s peer review evaluation mechanisms” (quoted in THE, 2008).

This way of re-using StG evaluation results evidently came to be considered as an important instance of acceptance for the preceding evaluations. The notion that research councils voluntarily re-used these results appeared to be especially important. A member of the ERC’s governing body put it in the following manner:

“We [the ERC] could not come in and claim to have an evaluation system that was better than that of any national funder. We had to prove our quality before we could, so to say, hope that anyone would use our evaluations for local payments. But, if others want to use them now, of course, that is nice” (Interview 13 –ERC governing body member).

As mentioned earlier, in this chapter, I compare the status consequences of ERC StGs with those of VR RFs. A closer look at the rationale behind the RF scheme can help us develop our understanding of how runner-up schemes can be interpreted as central instances of acceptance for StG evaluations.

Sweden, Vetenskapsrådet, and Reserve-List Support

One of the ten countries that established runner-up schemes before the conclusion of the inaugural ERC StG call was Sweden (Nordforsk, 2008). The decision to establish such a scheme was taken late in the spring of 2008. As the first wave of results was released, it became clear that several StG applicants based in Sweden were placed on the ERC’s reserve list. While these applicants hoped for funding to trickle down from the priority list, the likelihood of this happening was typically small. In any event, if further funding eventually trickled down, it would most probably not be enough to finance all Sweden-based runner-ups. Many of them could come to be left without any funding.

When all was said and done, after the conclusion of the inaugural StG call, six Sweden-based reserve-listed applicants remained unfunded. A group of actors at VR believed that the merits of these applicants still made them funding worthy. They were perceived to have endured evaluations that were already being regarded as tough by many. And they had been top-graded in it. But, in being reserve-listed, these applicants now stood without funding for their efforts. Inspired by the Swiss National Science Foundation’s runner-up scheme, the group of actors at VR was soon proposing the creation of a similar scheme in Sweden.
Several conditions were already in place. The ERC had already distributed the names of StG runner-ups to national research councils across Europe. The ERC had recently communicated that it was willing to share its entire evaluation protocols as well. But the idea of re-using evaluations conducted by another research funder was at odds with the traditional procedures for allocating resources at VR:

“Many thought that this was really strange… VR giving money to those that had been put forth by another funder? Why would anyone do that? How would we be able to know that this evaluation was good? ‘VR has always done its own evaluations’, that’s what everyone said” (Interview 38 – VR senior research officer).

It was evident that lobbying efforts would be required in order to convince skeptics about the worth of ERC evaluations. Looking for arguments, runner-up scheme proponents turned to the results of VR’s own evaluations. When the second wave of results from the inaugural StG call was released, they could compare the ERC’s priority and reserve list with previous funding allocations at VR. Their comparison showed that VR had previously funded all Sweden-based applicants now placed on the ERC’s two lists. Proponents used this finding to stress that VR’s own evaluations had not detected any differences in scientific quality between those applicants that the ERC was currently separating into priority and reserve lists. Such overlaps between ERC and VR evaluations were used to push the idea of a runner-up scheme in Sweden:

“The evaluations of the ERC and VR coincided so well that the ERC could not have picked at random, you know, they had not pulled a few applications from the bag and just chosen them” (Interview 38 – VR senior research officer).

With this comparison at hand, runner-up scheme proponents gained momentum:

“Everything was ready. There was an evaluation process that was done, and it matched well with our own. We had young researchers who were fantastically good, but who barely missed the budget for funding, and now had no money for their ideas” (Interview 45 – VR senior research officer).

Arguments like these paved the way for a runner-up scheme in Sweden. VR top management soon approved the launch of “Reserve Fund” grants. These grants would, by and large, become copies of StGs. There was a slight modification, however. RFs would be discounted with any monetary amounts that recipients currently had from other VR funding
schemes. Nonetheless, altogether, each VR RF recipient was to have €1.5 million for five years at his/her disposal.

The six Sweden-based applicants that were reserve-listed in the first StG call underwent a “simplified evaluation process” (Svenningsson, 2008) at VR. Essentially, this meant that new eligibility checks were conducted. No other type of evaluation was carried out. The results of the first StG call were considered to be entirely sufficient bases for runner-up funding allocations. Pär Omling – VR’s Director General – stressed his confidence in the ERC:

“The pressure was high in the ERC’s first round of applications and the national initiatives are proof of the value that research funders ascribe to this type of international evaluation” (quoted in Svenningsson, 2008).

I approach VR’s establishment of its runner-up funding scheme as an important signal of the acceptance that ERC StG evaluations were enjoying in Sweden. Throughout the following sections, I use the VR RF scheme to launch a comparative exploration of StG-related consequences that surfaced among early-career scientists, within departments, and between universities in the Swedish context.

Scientists, Status Boosts, and Material Benefits

The ERC, as I pointed out in Chapter Five, portrayed Europe as an unattractive place for early-career scientists. Its StG scheme was, from the very start, portrayed as a means of redressing the challenging conditions that allegedly faced recent PhDs. By awarding generous monetary amounts for lengthy duration periods, the ERC sought to “raise the status, attractiveness and visibility” (Ferrari, 2012) of those scientists that eventually received StGs.

Throughout my interviews, Sweden-based StG recipients almost unanimously subscribed to the notion that ERC funding affected their careers in several significant ways. The career consequences they discussed could be classified into two interrelated themes: status boosts and material benefits. VR RF recipients had a quite different perception of how RFs had affected them. They generally believed that runner-up funding did not render any StG-like boosts and benefits. Any eventual VR RF-related career consequences were instead perceived to be of a gradual character.

19 A reserve-listed ERC StG applicant that relocated to a Swedish university was also funded by the VR RF scheme.
In order to understand the differential consequences of ERC StGs and VR RFs, we need to begin by looking at how recipients distinguished the two schemes from each other. It was quite clear that these consequences were believed to hinge on more than monetary amounts and duration periods. To be sure, money and time were important considerations when StGs and RFs were discussed. However, the background of these schemes was just as central as monetary amounts and duration periods. €1.5 million for five years came to be perceived in very different ways depending on how these resources had initially been accessed.

When discussing their background perceptions of ERC funding, StG recipients repeatedly referred to the ERC’s evaluations. One interviewee emphasized how respected scientists were involved in these evaluations:

“I think that, from the start, me and many colleagues understood that this [the ERC] was backed by elite researchers out there in Europe, they kind of lent their names to its evaluations and its funding right from the beginning” (Interview 5 – VR RF and ERC StG recipient).

Another early-career scientist pointed to the potent signals that the involved StG evaluators sent:

“Everybody knows that if you have an ERC [StG], you have been evaluated properly… So, I had seven international experts evaluating my proposal and, if they agreed that you should get money – a lot of money actually –, then people will think that you are doing the right things” (Interview 12 – ERC StG recipient).

Sweden-based StG recipients readily resorted to ranking funding schemes. In terms of monetary amounts and duration periods, more generous Swedish schemes existed, such as VR’s Distinguished Young Researchers and the Wallenberg Foundation’s Academy Fellows. Yet ERC StGs were consistently positioned at the top when funding schemes were ranked. Monetary amounts and duration periods were not any major considerations when early-career scientists discussed their perceptions about funding:

“If you get the same or maybe even more money from another place, you can do similar things, but there is this ladder in funding, it has to do with other things than money, like who is giving it and how it was evaluated” (Interview 21 – ERC StG recipient).

When I looked at my interviews with VR RF recipients, it became even more apparent that €1.5 million for five years could be perceived differently depending on how these resources had been accessed initially.
Although RFs were allocated to a select number of A-graded StG applicants, this was trumped by the fact that these early-career scientists were not top-ranked at the conclusion of ERC evaluations. An aura of failure loomed heavy over VR RFs. It was exacerbated by the acceptance that StG evaluations were enjoying in Sweden. Such acceptance had important consequences for how RFs were perceived. As one interviewee put it:

“Evidently, I did not qualify for a StG, and the ERC’s evaluation is seen as the best in Europe, so, if you fail to pass that evaluation, people will see you as a second-order pick, regardless of how much money you receive” (Interview 33 – VR RF recipient).

The acceptance enjoyed by ERC StG evaluations was taken to imply that reserve-listed applicants could, when it all came around, not do much but accept their runner-up positions. Perhaps not surprisingly, the aura that engulfed VR’s runner-up scheme largely laid the basis for how recipients of this funding ranked it. They typically placed RFs far down. And they consistently positioned StGs at the top. Monetary amounts and duration periods did not play any significant role here either. While the differences in scientific quality between StG and RF recipients were– at best – minuscule, runner-up funding evidently emitted distinct signals:

“There is an obvious prestige difference in being able to write ‘ERC Starting Grantee’ on your CV, instead of ‘Receiver of National Funding in Support of an Almost Successful ERC Starting Grant Application’” (Interview 33 – VR RF recipient).

The different procedures behind the allocation of ERC StGs and VR RFs were consequential for the status that funding from these respective schemes was believed to engender. StG recipients often referred to their funding along the lines of metaphors, such as “feathers in the cap” (Interview 6 – ERC StG recipient), “ribbons” (Interview 4 – ERC StG recipient), and “badges” (Interview 8 – ERC StG recipient). The single most commonly used metaphor was, however, that of “quality stamps”. Both StG and RF recipients drew upon it repeatedly when discussing ERC funding.

All of the metaphors mentioned above hinted at the status boosts that were associated with StGs. Before applying, many would-be recipients perceived that they were situated at the margins of their disciplines. Peers allegedly paid little attention to them. ERC funding was believed to change this overnight. After being awarded StGs, it was as if recipients suddenly moved toward the center of their respective disciplinary
domains. ERC funding was perceived as an immediate status conduit for early-career scientists:

“When I got this [an ERC StG], it felt like I was getting some sort of medieval accolade, like I was upgraded to a new division... I am a bit crazy about soccer, so you can think of it in terms of a young and promising player, a talent who the coach and the public directly moved up to first-class player” (Interview 19 – ERC StG recipient).

The ERC itself was actively engaged in attempts at boosting the status of StG recipients. Such attempts were especially noticeable in the ERC’s strong support for the Young Academy of Europe (YAE). The YAE was created by a group of early-career scientists in close connection to the inaugural call for StG applications. Interestingly enough, during the YAE’s first two years of existence, academy rules dictated that membership was only open to ERC StG recipients. I approach this as an ERC-supported attempt to organize a status group in the field of science. A few years later, YAE membership rules were eventually loosened so as to include “leading young scholars whose scientific excellence has been recognized by their peers (for instance, holders of prestigious European or national research grants or awards)” (YAE, 2015). The academy recently described itself as a “group of top European young scientists with outspoken views about science and science policy” (YAE, 2016). Its members hold talks, write position papers, and meet with politicians, seeking to advance the conditions for basic research and early-career scientists in Europe.

I sensed that the consequences of StG allocations were magnified by the ambiguity that surrounded the notion of quality in the field of science. Such ambiguity made it challenging to differentiate talented up-and-coming scientists from one another. My interviewees repeatedly mentioned that, in order to move careers forward, scientists need something that clearly distinguishes them from others. The status value of ERC funding was, against this background, perceived to function as an important differentiator:

“I mean, we have a quite congested academic sector these days, what you need is something that makes you stick out. ERC funding is regarded as prestigious, it separates you from the crowd if you have it” (Interview 26 – ERC StG and VR RF recipient).

Like StG recipients, many early-career scientists that received RFs also used metaphors when referring to their funding. But they employed contrasting ones. The metaphor of “consolation prizes” was the most common among VR RF recipients. It stressed that RFs were largely
perceived as “compensations for failed European applications” (Interview 3 – VR RF recipient).

The notion of failures was subsequently used to explain what many RF recipients experienced as an almost utter absence of status boosts in the wake of runner-up funding allocations. Several of them perceived this lack of boosts to be compounded by the notion of an RF scheme that was largely unknown in the field. Altogether, these two notions implied that any eventual status gains were likely to unfold in a gradual manner. If anything, the standing of VR RF recipients in their respective disciplines could be transformed by the research that €1.5 million over five years enabled. For instance, just as StGs did, RFs allowed early-career scientists to rent office and/or laboratory space; recruit PhD students, post docs, and/or technical assistants; and buy data, equipment, and/or capacity time. VR’s runner-up scheme was believed to open doors for more and better publications than before. As such, it was successful research that ultimately held the potential to transform the status of RF recipients. However, unlike ERC StGs, VR RFs did not ‘speak for themselves’:

“All the publications that came from this [VR RF] funding have given me a lot of attention and a strong platform for the future, but, if you are financed by the ERC, you get attention simply because you have gotten ERC funding… I have not experienced that kind of recognition after getting one of these VR [RF] grants” (Interview 23 – VR RF recipient).

The differences between StGs and RFs extended past status boosts. I could see that they were perceived to translate into a wide range of material benefits as well.

Most of my interviewees believed that universities in Sweden willingly expended considerable efforts in order to host ERC funding. As such, the status value of StGs was perceived to provide its recipients with significant bargaining power in negotiations that involved department heads and/or university vice chancellors. There were, however, differences in the time it took for such bargaining power to materialize. I was able to draw an approximate line between a group of early-career scientists that received their ERC StGs in the first two calls (i.e. 2007 and 2009) and another group that consisted of scientists which were awarded theirs from the third call and onward (i.e. 2010-2013).

The ‘2007 and 2009’ group perceived that Swedish universities initially failed to appreciate StG recipients. Many Sweden-based recipients in this group sensed that ERC StGs were met with more appreciation in other parts of Europe. They had hoped that StGs would translate into immediate bargaining power. However, this was not always the case:
“My experience is that Northern University did not really understand what this [ERC StGs] was all about, maybe it had to do with this being at the beginning… I would hear colleagues out in Europe who got these things saying that they met with their vice chancellors, that they were able to negotiate with their departments, you know, that they had gotten really good bargaining situations directly, so to say… Now, I don’t want to sound ungrateful, but, at Northern University, it was not as celebrated as I would have thought” (Interview 5 – VR RF and ERC StG recipient).

The early-career scientists in the ‘2010-2013’ group perceived their situations to be quite different. In this group, there was a sensation that Swedish universities were quick to appreciate StG recipients. The transformation from “never getting anything” to “negotiating and coming up with demands” (Interview 12 – ERC StG recipient) was often believed to have been swift. It was perceived to have coincided almost exactly with the allocation of StGs.

Interviewees in both groups generally agreed on the bargaining power they wielded as FP7 was coming to a close. Many pictured a field in which the prestigious universities of Europe competed against each other, approaching StG recipients with favorable offers, hoping for them to base their research at the highest bidding host. In a true Champions League-like manner, one early-career scientist compared the situation to “transfers for soccer players” (Interview 1 – ERC StG recipient). The possibility of transferring StGs between host organizations without losing any funding was central here:

“As soon as I got my ERC [StG], that opened up for negotiations where I said, ‘well, what’s in it for me if I stay?’, essentially, keeping in mind that you, as an ERC grantee, contribute a lot to your department… ‘If there’s nothing in it for me, my funding is portable’” (Interview 12 – ERC StG recipient).

Despite the bargaining power they allegedly exerted, only one of the 24 ERC StG recipients that I interviewed had transferred with their funding from one university to another. Although several interviewees asserted that they regularly received transfer offers, most recipients also appeared to be firmly rooted in their contexts. They were often in charge of research groups. Many relied on locally available infrastructure. And several of my interviewees had families. StG transfers were thus associated with steep practical challenges. It was estimated that any eventual transfers would consume up to a year’s worth of research time. As such, while the ERC repeatedly touted the mobile character of its funding (e.g. Antonoyiannakis and Kafatos, 2009; Heldin, 2008; Winnacker, 2008), my interviewees seldom perceived the possibility of moving as a realistic option. I will, however, suggest that the notion of being able to
transfer with StGs was likely to be interpreted as a latent threat. Such a threat was, in itself, enough to engender bargaining power during negotiations with hosts. One interviewee stressed how ERC funding could be drawn upon in order to make the case for material benefits:

“These StGs contribute to our [ERC StG recipients’] competitiveness and negotiation possibilities because it gives us a card on the table, saying ‘I am the one who the ERC has identified as the one who has the science potential, now I want you to show your commitment so I can realize this potential’” (Interview 64 – ERC StG recipient).

Several StG funding recipients reported that their bargaining power provided them with significant advantages, such as preferential access to technical assistance, administrative support, and shared research infrastructure, that were not available to other early-career scientists in their departments.

At times, host organizations provided material benefits without any previous negotiations with ERC StG recipients. For instance, a few universities in Sweden swiftly offered permanent positions to recipients of funding from select schemes. StGs were, in most cases, listed first among these schemes. It meant that some Swedish universities could bypass their otherwise long and slow-moving recruitment processes, all in the name of being able to retain ERC StG recipients.

Financial support packages were perhaps the most widespread example of how hosts proactively treated StG recipients to material benefits. The vice chancellors of several universities in Sweden controlled earmarked resources that freely allowed them to fund strategic activities. Often, these activities included covering the overhead (OH) gaps that surfaced when ERC StGs were to be hosted at the departmental level. The gaps concerned discrepancies between the percentages of StGs that could be used for OH (i.e. a maximum of 20 percent) and the percentages that departments extracted from all incoming grants in order to finance such costs.

One group of departments in which I interviewed required OH outtakes that hovered around 20 percent. Small – if any – ERC StG-related gaps surfaced here. However, another group of departments extracted 30-40 percent of each incoming grant. Before hosting ERC StG recipients, these departments had to find some way of covering the 10-20 percent in OH outtakes that were missing. This is where financial support packages came into play. In many cases, these support packages were organized as annual payments of set monetary amounts, regularly reaching the vicinity of €75,000 for every StG year. The packages were primarily to be used for OH gaps. Early-career scientists emphasized that such gaps were “gladly covered by vice chancellors because ERC
funding is considered so important to have” (Interview 21 – ERC StG recipient). But there were often resources left afterward as well. The remainders were regularly transformed into research funding that could be added on top of the actual StGs.

The financial support packages offered to ERC StG recipients within Swedish universities were but one instantiation of the ‘rich-get-richer’ dynamics that concentrated extensive resources into the hands of few early-career scientists. I could also see these dynamics outside of host organizations. Both StG and RF recipients perceived that funding from the ERC significantly increased future chances of accessing additional resources from other research funders. In the following quote, an interviewee elaborated on the perceived link between StGs and further funding:

“Just the fact that you got an ERC StG helps you get more money from other funders, it gives you points when you apply for more grants… When they [evaluators] see a person that has been funded by the ERC, they will know that five top researchers have evaluated this person previously and found this person to be very good… That, of course, influences people, they get a positive attitude right from the start” (Interview 48 – ERC StG recipient).

Many interviewees perceived the influence of StGs to be especially palpable among research funders at the national level. There was a rather widespread belief that national funders lacked evaluators that could engage with narrow and/or multidisciplinary applications. In such situations, ERC StGs were perceived to provide their recipients with considerable advantages:

“I have heard how some people on evaluation panels here in Sweden reason when they are faced with 30-40 applications, particularly when these applications are not even close to what they do research on… They cannot go through publications and citations in subdomains within [the disciplines] and say ‘this is good’ and ‘this is bad’… They search for clearer heuristics to grab onto, like ‘look here, this applicant has been identified by the ERC before’” (Interview 15 – VR RF and ERC StG recipient).

My data does not allow me to say whether StGs actually augmented the chances of accessing additional research resources. But the notion that previous ERC funding provided subsequent applications with advantages hinted at the potency of StG evaluations.

VR RF recipients perceived their situations to be considerably different. The general absence of RF-related status boosts was taken to translate into a similar lack of bargaining power. It, once again, appeared as if this could be traced to the notion that few actors in the re-
search community knew about VR’s funding for StG runner-ups. An interviewee discussed how RFs would have to be ‘marketed’ before any bargaining power could possibly be derived from them:

“It’s like, if I say that I have gotten an ERC [StG], then it’s done, it would allow me to negotiate for different things directly… With these [VR Reserve] funds, it would instead be more about first telling people why they are given, what they mean, and so on… But I don’t know if that would help actually, they are not recognized grants” (Interview 33 – VR RF recipient).

The consequences were striking. RFs did not enable its recipients to negotiate any material benefits within Swedish universities. Nor did host organizations proactively endow VR RF recipients with any advantages. Financial support packages were, in any event, not even necessary. No OH gaps surfaced when RFs were hosted in departments. They always included enough coverage for OH. VR RFs were, in this sense, regarded as ‘cheaper’ to host than ERC StGs.

Outside of universities, RFs failed to engender any rich-get-richer dynamics. There was a strong perception among my interviewees that VR’s runner-up funding had little – if any – influence upon their chances of receiving resources from other research funders. Although RF and StG recipients had previously been distinguished from each other by decimals and centesimals, VR and ERC funding was believed to have very different consequences for the viability of future applications:

“It seems clear to me that if you look at someone who has a CV that is similar to mine, having an ERC [StG] instead of this [RF] grant could really tip the whole thing to one side” (Interview 17 – VR RF recipient).

Although it was not a widespread perception, one interviewee emphasized that RFs could even become ‘liabilities’:

“Reserve-list funding from VR is something different than an ERC [StG], it is seen as a compensation for reaching some lower criterion of scientific quality, and evaluators may actually become suspicious… ‘Why did this not receive a StG?’ ‘Is there something wrong with the project?’” (Interview 15 – VR RF and ERC StG recipient).

Up to now, I have discussed the different consequences of StGs and RFs for early-career scientists. However, it was also clear that these consequences reached beyond the individual level. Entire departments were affected.
Departments, Status Halos, and Priority Collisions

The ERC often emphasized that host organizations played an important role in its vision of making Europe a more attractive place for early-career scientists. It stressed this role by repeatedly asking hosts to provide StG recipients with beneficial conditions (e.g. ERC, 2006; Winnacker, 2008). The ERC recommended that “very special efforts” be made for “scientists and scholars of the calibre to win Starting Grants” (ERC, 2007c).

Heads of departments in the Swedish universities where I interviewed were familiar with the ERC’s recommendations. They attempted to accommodate StG recipients in various ways. However, in contrast to early-career scientists, department heads approached ERC StGs as ‘mixed blessings’ for the milieus of host organizations. They were believed to be associated with positive and negative consequences for departments. I suggest that these consequences could usefully be grouped into two themes: status halos and priority collisions. As for VR RFs, heads of departments perceived that this funding barely had any consequences at all for the milieus of organizations. VR’s runner-up funding was mostly approached as a considerable amount of resources for several years. Some department heads were almost incognizant of the VR RF scheme.

To begin, it should be mentioned that, during FP7, the great majority of Swedish university departments hosted no StG recipients at all. The departments in which I interviewed most often hosted one or two recipients. Very few hosted three or more. None hosted more than five. Internally, from time to time, some universities compared departments on the basis of what research resources their scientists raked in. But, throughout my interviews with heads, it became clear that the number of StG recipients was relatively unimportant for the intra-departmental consequences of this funding. ERC StGs were taken as evidence for the scientific quality of whole departments – regardless of how many recipients were hosted there.

The presence of ERC funding was often used strategically to enhance the motivation of organizational members. I could see how this usage surfaced in different forms. If there were internal doubts about the worth of departments, the first entering StG could be employed to stress how this funding reflected the current scientific quality of these very same departments. If no doubts existed internally, ERC StGs would instead be drawn upon in order to emphasize how they reaffirmed the past and present quality of departments.

But the influence of StG recipients went further. Their standing in the field was believed to endow entire departments with status. The loose connection between quality and status in science made ERC StGs
akin to halos that shone over whole organizations. It enabled entire departments to bask in the glory of one or a few organizational members. My interviewees sensed that this influenced the way in which departments were regarded within their respective universities. Allegedly, after the entrance of ERC funding, colleagues were soon looking at the research capabilities of StG hosts in an increasingly favorable light. Departments traditionally regarded as peripheral were elevated:

“My department is a bit extreme in that more than half of our expenses go to teaching, while neighboring departments barely spend 20 percent of their budget on teaching... So, after our ERC StG, I think others started to look at us differently, you know, they saw us as capable researchers too, we were more than teachers” (Interview 36 – Head of ERC StG and VR RF department).

It was as if old woes were suddenly forgotten:

“My department had economic complications and everything felt pretty gloomy for a while, but then the ERC StG, all of a sudden, gave us shine... We felt glamorous, we were being seen as a success, and others probably stopped defining us as a problem department here at the university” (Interview 53 – Head of ERC StG department).

The halos emitted by StG recipients extended beyond relations within universities. Some heads of departments perceived that ERC funding made their organizations part of a loosely defined elite in European science. Just as was the case in Sweden, the very great majority of departments out in Europe hosted no StG recipients whatsoever. Set against this background, the notion of hosting StGs fostered a sense of belonging to a small clique of organizations that could flaunt with ERC funding. This sensation was particularly strong when departments raised StG recipients from their internal ranks:

“For us, [early-career scientist name] being awarded a StG was exactly like a sports team who went to the final and won. You know, there is this positive sensation in the whole organization, ‘we got it, we are now at a high level’... An ERC StG definitely acts as a self-esteem boost, it is an indication that what we have been doing has the quality to match the very best out there in Europe” (Interview 32 – Head of an ERC StG and VR RF department).

In stark contrast to ERC StGs, VR RFs were not perceived to engender any extra-financial consequences. If department heads knew about RFs, which barely was the case at times, they spoke about the research that could be done with this funding. No StG-like status gains were dis-
discussed in relation to VR RF funding. VR’s scheme was almost ‘invisible’ within some universities:

“Most people here would probably not know about this VR [RF] funding, like ‘what is that?’; ‘how does it work?’; ‘who gets it?’... I didn’t know about it neither before [early-career scientist name] received it. It’s more of a bonus at the end of the ERC application process, sort of a subordinate clause, it would be difficult to promote it in any other way within the university” (Interview 32 – Head of an ERC StG and VR RF department).

The lack of RF-related consequences, however, meant that this funding rendered few complications within organizations. VR RF recipients were, by comparison to ERC StG recipients, ‘easy’ to host.

While ERC funding was valued for its halo-like consequences, StG recipients also brought about a number of challenges for the departments where I interviewed. I argue that a common denominator for these challenges was that they revolved around collisions between the priorities of departments and those of the ERC. How much should StGs be able to influence activities in departments?

One instance in which collisions surfaced related to research areas. Several heads of departments pointed to misfits between StG-awarded projects and department-wide strategies for research. Such instances were not limited to ERC StGs. To a certain extent, they surfaced for all major grants. But the ERC was explicitly vocal in its emphasis on scientific quality as the sole criterion for funding allocations. By extension, this allegedly implied that local research strategies were not taken into account when StGs were allocated (e.g. ERC, 2006, 2007a, 2013). My interviewees often stressed how StG-related misfits made it challenging to devise any long-term department-wide strategies for research. ERC funding was often awarded to early-career scientists that conducted research within areas not prioritized in strategies. Collisions were evident:

“These persons [ERC StG recipients] are exceptionally merited researchers, you cannot dispute that, but do they fit with our strategic planning? Is the research they and their groups want to do really the type of research that we want to do right now? We have to balance these things, but it is far from easy” (Interview 39 – Head of VR RF and ERC StG department).

The generous monetary amounts and lengthy duration periods of StGs enabled its recipients to rather freely recruit a handful of PhD students, post docs, and/or technical assistants. In itself, this was sure to boost any research area – regardless of whether it was considered strategic or not. Department heads eventually learned to cope with these challenges.
Heads often coped by adapting departmental strategies, thereby making them fit with StG-awarded research projects. Many departments where I interviewed had no specific research strategies in place. This did, however, not imply that collisions were absent. In these departments, strong local norms regularly dictated what research areas were worthy of pursuing. At times, such norms clashed head-on with StG projects. Situations like these were prone to surface in departments where organizational members typically performed research within narrow and discipline-specific topics because ERC funding was often awarded in support of broad and multidisciplinary projects. Collisions between narrowness and broadness were thus evident:

“Money talks, but it is something that can shake up a department if the internal culture and the external culture differ... So, [early-career scientist name] collaborates with people in [disciplinary domain], [disciplinary domain], and sometimes in [disciplinary domain] as well, and traditionalists in my department would not see that as real [disciplinary domain]... If the external culture gives a different signal than the internal, well, that rocks the boat” (Interview 36 – Head of VR RF and ERC StG department).

There was confusion when traditionally worthy research areas failed to secure funding:

“Then we are faced with a special situation: The persons who are supposedly not so good get ERC StGs, but the persons who are supposed to be good do not get any funds... What should we believe in?” (Interview 36 – Head of VR RF and ERC StG department).

Although some StG projects did not align with local research norms, ERC funding allocations were hardly dismissed. The acceptance enjoyed by StG evaluations beyond specific departments provided a certain degree of ‘protection’ for ERC projects that were misaligned with local norms. Another instance in which collisions surfaced concerned the activities that early-career scientists were encouraged to engage in. A few department heads sensed that there were discrepancies in terms of what the ERC and host organizations respectively expected StG recipients to spend their time on. We need to position these collisions in a wider context. Swedish universities are governmentally mandated to teach students and conduct research. Teaching thus constitutes an integral activity for most departments in Sweden. In the host organizations where I interviewed, all early-career scientists were expected to spend some of their time on teaching-related duties. The rationale behind ERC funding, however, collided with departmental expectations. StGs were,
from the very start, intended to lay the groundwork for a “proper relationship between teaching and research” (Winnacker, 2008: 127). Department heads often experienced that a ‘proper’ relationship was taken to mean considerably more research than teaching.

The different profiles of departments played an important role for the severity of teaching-research collisions. Research-oriented departments fit well with the rationale behind ERC funding. There was seldom any debate here in terms of the relationship between research and teaching. These departments were geared toward research long before they hosted any StGs recipients. In any event, there was not much teaching to be done here. Teaching-focused departments would, at first glance, seem to be a bad fit for ERC funding. To a certain extent, they were. But these departments were also underrepresented in terms of StG recipients. The eventual entrance of a few ERC StGs did not appear to have any major consequences for the traditional focus on teaching. At best, colleagues would perceive teaching-focused departments to be organizations capable of conducting research as well. Against this background, teaching-research collisions were most pronounced in departments that sought to achieve a balance between two major activities:

“We want to excel in research, of course, but we also have a lot of courses, and companies expect our students to be good in [disciplinary domain] when they come out... So, it is important that everyone in this department understands what we do, and that is research and teaching, not one or the other. But getting this point across is often very difficult... Our students do not get better because a few young researchers get StGs if these researchers do not want to teach” (Interview 39 – Head of VR RF and ERC StG department).

While some heads of departments that I interviewed attempted to encourage both teaching and research, many StG recipients successfully negotiated reduced teaching-related duties. In a few cases, full ‘buy-outs’ from teaching were arranged. I suggest that this constituted another instantiation of the bargaining power associated with ERC funding.

Discussions about research and teaching proportions in departments were often couched within more general debates about individual merits and collective responsibilities. The ERC’s StG profile played a prominent role here. From Chapter Five, we will remember that this profile centered on bibliometrics, presentations, patents, prizes, and grants. A number of department heads pictured hypothetical scenarios in which StG-seeking scientists competed against each other internally, eventually rendering milieus where individual merits became the overriding concern. Such scenarios clashed with ideas of departmental milieus where organizational members collaboratively engaged with collective
responsibilities, such as organizing seminars, volunteering on boards, and/or participating in work groups.

In some departments, the uneasy relationship between individual merits and collective responsibilities became especially salient when it was placed among discussions about incentives for organizational members. Seniors would allegedly be upset about the lack of internal rewards for engagement in collective responsibilities. Juniors – some of them StG recipients – were instead frustrated with the absence of internal rewards for individual merits. Balancing these two groups and their respective demands was considered to be an important challenge. One head of department essentially described this as being ‘stuck between a rock and a hard place’:

“So, you will have young people who got ERCs [StGs], and they will be mad because they feel like they got no rewards for that stuff. But then you have others who have done things for the department over a long time, they are also mad at you because they have neither gotten anything for their efforts… What type of environment do we want? Should the best be rewarded? Should those who do stuff for the department be rewarded? These are difficult questions” (Interview 53 – Head of ERC StG department).

However, apparently fueled by recommendations from the ERC, several departments in which I interviewed had devised internal rewards for StG recipients. Substantial parts of what early-career scientists told me about their material benefits were thus corroborated. Heads of departments emphasized that ERC StG recipients were offered additional technical assistance and administrative support. These recipients were also provided with financial support packages through resources that came directly from vice chancellors. Such packages were meant to cover the discrepancy in OH costs that most often surfaced when ERC funding was hosted. But, in addition, these support packages were often enough to pay a few months of rent for office and/or laboratory space; to recruit an additional PhD student, post doc, or technical assistant; or to buy some more data, equipment, and/or capacity time. There were other internal rewards available as well, including departmental funding schemes that early-career scientists could apply to in the initial phases of research projects. Although these schemes did not have specific targets, it was generally believed that StG recipients were in favorable positions to access this internal funding.

Despite the perceived challenges associated with hosting ERC StG recipients, there was consensus among department heads that these very same challenges were ‘necessary evils’. They were approached as the ‘price to pay’ for StG-related status halos. Heads of departments expended considerable efforts into continuously presenting their organiza-
tions as attractive hosts for ERC funding. They worried that it would not be possible to recruit and/or retain StG recipients otherwise. However, such concerns also extended past the departmental level, reaching all the way up to university managements.

Universities, Monitoring, and Status-Seeking

As I mentioned in Chapter Four, early on, the ERC envisioned that universities would use StG evaluation results to continuously evaluate their research performance. The ERC’s vision was very explicit in that the goal was to organize pan-European competition for its funding between universities (cf. Antonoyiannakis and Kafatos, 2009).

My data on Swedish universities revealed that ERC StG funding rendered important consequences for inter-organizational relations in the field. These consequences could suitably be classified into two interrelated themes: monitoring efforts and status-seeking strategies. As has been the case in previous sections of this chapter, VR RFs were hardly mentioned at all. RFs did not seem to be included among the grants that universities in Sweden competed for.

To begin, I could see that considerable efforts were expended into monitoring ERC StG calls. Such monitoring took different forms. Universities checked themselves internally, constantly comparing their results from previous calls with how they fared in current calls. Universities also compared themselves externally, continuously checking how they fared – historically and presently – in relation to others. The two monitoring forms were interrelated, however. Swedish universities checked themselves internally in order to enable external comparisons with other universities.

My interviewees emphasized that the ERC played an important role in these monitoring efforts. It regularly distributed updates on StG funding allocations, directing them to universities across Europe. Swedish universities were, as such, not exempt from these ERC updates. StG allocations subsequently became a common topic of discussion among university management teams. Relative declines in these allocations were prone to cause alarm:

“All universities in Sweden look at how many ERC [StG] projects they have, how many the others have, and, if they find themselves going down, there will directly be extra management meetings, where everyone tries to come up with solutions, like, ‘what can we do about this?’” (Interview 52 – Northern University research funding administrator).
A senior research officer expressed very similar ideas at a StG information session that I observed:

“Northern University researchers got the most [disciplinary domain] StGs in Sweden during the latest ERC call – by far. This will surely make Western University pissed. I know that management arranged a crisis meeting to discuss what happened and what could be done differently in the future” (Observation 1 – ERC StG information session at Northern University).

I suggest that several reasons were at the root of this alarmism. One of them deals with the relation between StGs and governmental block grants. The size of these block grants was partly determined by how much funding from the ERC that Swedish universities raked in. Declining StG numbers could, because of this, reverberate into shrinking governmental block grants. It is important to note that the ERC’s funding was the only one affecting the distribution of Swedish block grants in this way. I interpret this as an additional sign of the acceptance that ERC evaluations were engendering.

Taking such acceptance into account, another reason for ERC-related alarmism concerns the notion that diminishing StG numbers were prone to be perceived as evidence of declining scientific quality in universities. It was something that could have significant consequences. ERC StGs were regularly used to emphasize the worth of entire Swedish universities. Favorable StG numbers would be drawn upon strategically to stress many qualities that – at best – were ambiguously connected with ERC funding, such as the rigor of PhD programs, the dynamism of milieus, and the availability of research infrastructure. These qualities could presumably be cast in doubt if StG numbers diminished over time.

A final reason for ERC-related alarmism deals with the tendency to employ StGs as bases for new forms of ranking Swedish universities. Favorable ERC StG numbers would be used strategically to position universities against one another. Increasingly accepted and easily accessed results made ERC funding a prominent alternative to the traditional rankings divulged by Quacquarelli Symonds, Times Higher Education, and Shanghai Jiao Tong University. As such, universities whose StG numbers diminished over time would expectedly also come to experience declines in any ERC-based rankings.

In terms of sheer resources, the ERC was far from being among the major sources of research funding in the universities where I interviewed. But, even if the resources involved were relatively small, the status gains associated with StGs still warranted a continual flurry of activities that revolved around ERC calls. Throughout my interviews, I
could distill two distinct approaches that universities took when seeking to increase their ERC StG numbers. I interpret both approaches as part of more general status-seeking strategies.

One approach consisted of attempting to recruit StG recipients externally. Some universities in Europe saw the mobility of ERC funding as an inherent opportunity to raise their StG numbers. These universities continuously attempted to present themselves as attractive host organizations. They scouted the field directly after ERC calls had concluded, contacting StG recipients personally and presenting them with juicy transfer offers. On a regular basis, they also advertised lucrative professorship positions that were developed specifically for ERC StG recipients. Scouting and advertising were relatively quick ways of increasing StG numbers. But they were quite expensive as well. It seemed as if only the most resource-rich universities in the UK and mainland Europe were able to employ scouting and advertising practices successfully.

Another approach consisted of attempting to increase StG numbers by fostering recipients internally. Universities across large swaths of Europe engaged in this approach. They organized a range of application development activities for early-career scientists, often in collaboration with national research councils. Many universities in Europe also provided financial support packages for successful StG applicants, hoping to keep local recipients from moving with their newly acquired ERC funding. Application development activities and financial support pack-
ages were relatively cheap practices. But they were quite slow as well. It usually took years for results to surface – if any results surfaced at all.

Among my interviewees, it was almost a truism that universities in Sweden lacked the resources required to engage in external recruiting of StG recipients. Swedish universities thus relied upon the approach of fostering ERC StG recipients internally. As such, instead of scouting and advertising, they expended much energy on application development activities. All of the universities in which I interviewed had units dedicated to supporting research funding applications. They were variously labeled as research services, funding divisions, and grants offices. Against this background, specific support for StG applicants was either insourced or outsourced. As for insourcing, some universities had units devoted to EU funding matters. At times, a few members of these units were specifically assigned to assisting ERC applicants. As for outsourcing, consultants were used in universities where no EU funding units existed. It needs to be mentioned that a market for research funding application consultancies has emerged during the last 20 years or so. Many of these consultancies quickly expanded their offerings to comprise specific support for ERC applicants. UK-based Helix Advisory Services and Netherlands-based Yellow Research appeared to be the most commonly employed research funding application consultancies among Swedish universities.

Regardless of whether they were insourced or outsourced, StG application development activities came in several forms and guises. There were information sessions, which counted with the attendance of past ERC evaluators and StG recipients. There were two-day application-writing workshops, held at conference centers in the countryside. And there were mock panels, which attempted to imitate the evaluation of presentations and interviews at ERC HQ in Brussels. While information sessions were typically open for all, this was most often not the case when it came to application-writing workshops and mock panels. It was evident that these two latter activities were intended for a select group of early-career scientists:

“Our more specific application support is not really for everyone, it is about finding excellent individuals who have the interest, capacity, and drive to get an ERC application through and help them, because this is, in many ways, sort of an elite funding” (Interview 52 – Northern University research funding administrator).

Applicants seeking this specific support were likely to be prescreened for their probabilities of succeeding in ERC evaluations. If they surpassed this prescreening, the more resource-consuming activities, such as application-writing workshops and mock panels, would typically
become available. Some Swedish universities assigned personal coaches to StG applicants that were estimated to have the greatest chances of succeeding. Coaches like these worked almost exclusively with a single application, engaging with it from the very start and following it through the ERC’s entire evaluation process.

As I showed earlier in this chapter, many universities in Sweden also directed resources toward financial support packages. It was generally feared that talented early-career scientists would refrain from applying for StGs if they perceived ERC funding to be associated with complications. Such fears meant that OH gap coverage came to play a central role. I have already mentioned that vice chancellors in many Swedish universities controlled their own budgets for strategic activities. Allocations from these budgets did not have to receive approval from any additional bodies, such as department boards. While some vice chancellors covered OH gaps that surfaced in connection with several major grants, others were clearly only willing to cover ERC-related gaps:

“The ERC is the only funder that my university will give automatic overhead support for... There, you get support directly from the vice chancellor, and that shows you that this funding has a special standing here” (Interview 32 – Head of an ERC StG and VR RF department).

This type of targeted OH gap coverage was prone to cause resentment within Swedish universities, especially at the departmental level. In departments, organizational members regularly wondered why only certain funding schemes were supported, as well as why such decisions were taken at the university level. A common response from vice chancellors was that universities should develop cohesive research funding strategies. Such strategies often contained visions of university-wide collaborations to support major grant applications. But, as we already saw at the departmental level, funding strategies were believed to be associated with inherent challenges. They would presumably be even more challenging at the university level.

Rounding Off

Throughout this chapter, I explored the consequences that were perceived to surface in the wake of ERC StG funding allocations. I studied how StGs were believed to affect the careers of scientists, the milieus within departments, and the relations between universities in Sweden. My findings showed that ERC StG funding was widely perceived to bring about status boosts and material benefits for early-career scientists, status halos and priority collisions at departments, and monitoring
efforts and status-seeking strategies among universities. I compared these consequences with those of the monetarily and temporally identical VR RF scheme. In contrast to StGs, RFs were ‘only’ seen as generous resources for research. VR RFs were generally believed to be devoid of extra-financial consequences.

Next up is Part III, which consists of two chapters. The first of them is Chapter Seven, where I draw upon my theoretical framework to provide an analysis of the empirical findings contained in this thesis.
PART III
CHAPTER SEVEN: CONSTRUCTING A MERITOCRATIC ARBITER OF STATUS IN SCIENCE

The data that I employed in Part II of this thesis was gathered with a constant eye toward my research questions. We will remember that I asked how actors are constructed into the role of third-party status arbiters, as well as what consequences such arbiters engender in the fields where they are situated. I put the collected data to use in three empirical chapters.

Part III begins with Chapter Seven. My goal here is to analyze how the ERC came to be constructed as a third-party arbiter of status. With my theoretical framework and empirical findings in mind, I argue that the ERC’s construction can be understood as a process that unfolded over time. As such, in Chapter Four, I provided a background to the major tensions and struggles that characterized Europe-level science during the early years of the new millennium. I showed that the involvement of the EU and the EC in basic research funding was rather contested. The ERC did not have any given authority as a status arbiter to begin with. In Chapter Five, I moved forward, now looking closely at the ERC’s evaluation of applications to the StG funding scheme. I demonstrated how the ERC attempted to engender acceptance for these evaluations by presenting them as objective judgments of scientific quality, which featured respected panelists and rendered selective allocations of funding. Then, in Chapter Six, I explored the status consequences that were perceived to come about after the conclusion of ERC StG evaluations. I pointed to how StGs were believed to affect the careers of scientists, the milieus within departments, and the relations between universities in Sweden.

In Chapter Seven, I suggest that the process through which the ERC was constructed into a third-party status arbiter needs to be approached from a field perspective. Such perspective highlights the important role of relations between different actors in fields. In terms of status relations, these actors include arbiters, audiences, and candidates. I begin by examining how the ERC sought to create status through distinct ways of framing its StG evaluations. However, in line with the relation-
al features of status, I argue that the ERC’s framing could not do much more than to lay the groundwork for status creation. As such, I then turn to specific sub-processes through which actors in the research community validated the status creating potential of StG evaluations. Finally, I suggest that mutually reinforcing relations between the ERC’s framing and the research community’s validating were integral for the successive construction of the ERC as a third-party arbiter of status in the field of science.

The European Research Council Framing Itself

Previous literature has provided us with compelling insights into the pervasive authority of status arbiters (e.g. Espeland and Sauder, 2007; Sauder, 2005, 2006; Sauder and Espeland, 2006, 2009; see also Sauder and Fine, 2008). But the literature has, in general, paid less attention to how these very same arbiters are constructed. I start by exploring one part of the process through which the ERC was constructed into a third-party arbiter of status in its field, focusing on the ERC’s active efforts to frame itself as a meritocratic evaluator of scientific quality. Central for this framing were three features that the ERC came to emphasize as characteristic of its evaluations. I argue that these features included exactness, expertise, and exclusivity.

To begin, the ERC expended active efforts on framing its evaluations as exact. It was a way of portraying StG evaluations as instances in which early-career scientists could be distinguished from each other with precision, even if their merits were almost equal at times. From past research, we know that exactness projects notions of clear-cut and unambiguous evaluation results (e.g. Allen and Parsons, 2006; Schmutz, 2005). We also know that such notions tend to engender acceptance among audiences. As Bourdieu (1991: 120) emphasized, the distinctions “most efficacious socially are those which give the appearance of being based on objective differences”.

I argue that the fourth-step ranking of StG applicants was a key instance in which the ERC attempted to infuse its evaluations with exactitude. We will remember that an intricate system of scores and grades was used to qualify and disqualify early-career scientists throughout StG evaluations. Although it mattered at each and every evaluation step, this system perhaps played its most striking role during the fourth step. In recurring situations where the number of top-graded applicants surpassed the available ERC funding budget, StG evaluators proceeded to rank these very same applicants against one another. To enable such rankings, aggregated grades were decomposed into their original scores once again. These exercises rendered fine-grained differences between
remaining ERC StG applicants, sometimes situated in the vicinity of decimals and centesimals. All applicants were subsequently positioned in descending order. Dividing lines would eventually bracket off those StG applicants that the ERC could fund within available budgets. Such lines also laid the groundwork for what became priority and reserve lists. Priority-listed applicants received immediate recommendations for ERC funding, while all others were reserve-listed and left waiting for any eventual budgetary enlargements that could expand the priority lists. However small the division between these two lists, the alluring exactness of numbers hid the arbitrariness of the distinctions produced. The notion of minuscule – but detectable – differences in merits among ERC StG applicants veiled the fourth-step rankings in auras of exactitude.

But, more than procedures with which to accommodate budgets, we can also approach the rankings of ERC applicants as exercises that introduced potent bases for status creation. Previous literature tells us that certain divisions in social life hold the capacity to become prominent status-creating situations. For example, Bourdieu (1991: 120) pointed to the *concours* – France’s competitive academic examination –, which “creates differences of all or nothing” between high school students. The last student passing the *concours* would enter and eventually graduate from an elite *grande école*, while the first one failing was set to become a “nobody” (*ibid*). Similarly, Merton (1968: 57) termed “the phenomenon of the 41st chair” in reference to the French Academy’s cap of 40 lifetime members. He contemplated the relative disadvantage of just missing the Academy intake, thus becoming one of several 41st chair occupants, despite displaying near-equal merits as members. Many great names in French science and culture were allegedly forgotten “as an artifact of having a fixed number of places available at the summit of recognition” (*ibid*). Divisions like the *concours* and the French Academy intake introduce arbitrary distinctions along some dimension, often exaggerating minimal differences between candidates. Such distinctions typically direct disproportionate attention toward candidates occupying the last positions qualifying for status as compared to those just missing out. I take inspiration from this research, suggesting that the alleged exactness of the ERC’s fourth-step rankings created divisions that stringently split the uppermost tier of StG applicants into two. Such distinctions held the status-creating potential to shape strong perceptions of ‘winners’ and ‘losers’. Since only priority-listed applicants were ERC-funded, the apparent flipside of the ERC’s exactitude was that everything but being endowed with StGs came to be regarded as failures.

The ERC also expended active efforts on framing its evaluations as expert-driven. Extant literature makes the case that experts tend to pos-
sess specialized training and extensive experience. Such training and experience portrays them as particularly cognizant of prevailing conditions in fields (e.g. Allen and Parsons, 2006; Lamont, 2009). Expert participation in evaluations is thus likely to infuse their subsequent results with considerable credibility (e.g. Cattani et al., 2014; Heinich, 2009). The ERC’s efforts can, in this way, be interpreted as attempts at enhancing the credibility of StG evaluations through affiliations to prominent scientists. These efforts covered a number of instances, ranging from the committees that recruited StG evaluators to the scientists that participated in the actual panels. Through all of this, the ERC continuously claimed that its evaluators were the best equipped to detect the most meritorious applicants in Europe.

Taking this further, I interpret the ERC’s claims as potent bases for status creation because the results of expert-backed evaluations are likely to be understood as outcomes that reflect the selections of knowledgeable actors in the field. Such selections tend to become influential since audiences typically see them as being informed by experts’ training and experience (cf. Stuart et al., 1999). Along these lines, the ERC presumably hoped that the results of StG evaluations would be transformed into valuable endorsements for the selected early-career scientists.

However, it also appears as if the ERC’s efforts to affiliate its evaluations with experts could render unintended consequences. We will remember that the ERC was much keen on protecting itself from conflicts of interest, nepotism, and patronage. Such conflicts are generally regarded as biases in evaluations of science (Lamont, 2009). It thus made them particularly uneasy fits with the ERC’s constant emphasis on its scientific quality criterion. The ERC repeatedly touted that its Europe-level recruitment of StG evaluators constituted a protection against any potential conflicts of interest, nepotism, and patronage. While it devoted much energy to preventing interactions between evaluators and applicants, the ERC seldom considered the potential for interactions between evaluators themselves. Nonetheless, from past research, we know that small groups of experts imply “an increased risk that the selection process will be contaminated by the mutual familiarity (or rivalry) of the persons, in place of the objective evaluation of works” (Heinich, 2009: 94).

Finally, the ERC expended active efforts on framing its evaluations as exclusive. It was a way of promoting StG evaluations as instances in which only the most meritorious early-career scientists received funding. From past research, we know that exclusive evaluations typically enlist many candidates and subsequently only select and elevate a few (e.g. Allen and Parsons, 2006; Cattani et al., 2014). By European means, StG calls attracted large amounts of applications. And the ERC
regularly stressed that its StGs were solely intended for early-career scientists set to become future leaders in their respective disciplinary domains. But the research community did not perceive the ERC’s subsequent success rates as particularly low. Indeed, these rates were not believed to be much different from those at national research funders. Such beliefs would clearly be problematic for any actor attempting to construct exclusive evaluations.

Taking inspiration from Goffman (1951), I approach the ERC’s framing by looking at the connections between scarcity and exclusivity. To begin, textbook economics would have it that a large demand and a small supply render notions of scarcity. When it came to ERC StG evaluations, scarcity was associated with the relationship between applicant numbers and funding recipients in calls. On average, between 2007 and 2013, approximately one in ten StG applicants came to be funded. However, as I noted above, these success rates were not perceived to be particularly low. In the ERC’s case, scarcity was not enough to produce exclusivity. Scarcity is most often a necessary but not a sufficient condition. There are many objects, behaviors, and attributes that are scarce. But this does not make each of them exclusive per se. To take an example, “the paintings of an unskilled amateur may be extremely rare, yet at the same time almost worthless” (Goffman, 1951: 298). For something to be perceived as exclusive, it usually requires features that combine scarcity and desirability. In terms of evaluations, while some of them may render scarce outcomes, previous literature tells us that these very same evaluations usually come to be perceived as exclusive if their frequent rejections also foster subsequent desires for continued participation among unsuccessful candidates (e.g. Bourdieu, 1991; Heinich, 2009). Against this background, when seeking to portray its StG evaluations as exclusive, I argue that the ERC constructed a framing in which other features than success rates were emphasized. In terms of framing StG evaluations as exclusive, the perception that they were tough came to be central.

The perceived toughness that enveloped ERC StG evaluations was fueled by the idea of Europe-level competition. It was a potent idea that the ERC continuously pushed to project images of an all-European field in which early-career scientists anonymously competed for StG funding against each other. Such images strongly suggested that only the very best research projects in Europe had any chance of succeeding.

The appointments at ERC HQ in Brussels were perhaps even more important for the perceived toughness that surrounded StG evaluations. Applicants first presented compressed versions of their projects in front of a dozen or so evaluators, after which they were interviewed about any question marks that might have surfaced. It was widely believed that the ERC, through these appointments, sought to test the independ-
ence of StG applicants. Early-career scientists often perceived the presentations and interviews as meticulously organized controls, designed to discern who was behind the research projects (i.e. applicants or their former supervisors) now being proposed. They reported receiving presentation slots with strict temporal limitations, not subject to any exceptions whatsoever. What followed after their presentations was regularly described as continuous flows of critical questions from evaluators. ERC HQ appointments almost became part of the folklore in certain disciplinary domains, such as the LS and PE. In offices, corridors, and laboratories, potential applicants discussed different approaches to and strategies for StG presentations and interviews. Over time, ERC appointments eventually came to be transformed into fodder for extensive gossiping and storytelling.

More generally, when we pool together the three ways in which the ERC sought to frame its evaluations, a bigger picture surfaces. Together, the notions of exactness, expertise, and exclusivity that surrounded the ERC’s evaluations laid the bases for vivid images of merit-based instances in which scientific quality was the paramount focus. The ERC eventually came to frame the StG applicants who were funded as a group composed of the most merited early-career scientists that Europe could offer. Whether ERC StG evaluations were meritocratic or not plays a minor role here. More important is whether the research community believed that they were meritocratic or not. A notion that only the most meritorious StG applicants were funded would suffice as potent groundwork for status creation. One of the central assumptions in the literature is that status may be associated with quality, although this does certainly not need to be the case (Washington and Zajac, 2005). Nonetheless, with the backing of an imagery that framed its evaluations as meritocratic instances, the ERC could actively seek to construct its StG funding recipients into a status group with European dimensions.

Others Validating the European Research Council

Throughout the preceding section, I argued that the ERC played a significant role for the status-creating potential of its evaluations by framing them as instances in which merits were detected. At the same time, I also pointed to the importance of considering whether the research community believed in these evaluations or not. We need to remember that status is a relational concept. Actors can only do so much to influence how others perceive them. Status cannot be possessed. Neither can it be fully controlled. Status derives much of its potency from the notion that it consists of voluntary deference, which is created and conferred in triadic relations between candidates, audiences, and arbiters (e.g.
Goode, 1978; Mills, 1963; Sauder, 2006; Speier, 1935). It means that the ERC was only able to outline bases for status creation by framing its StG evaluations as exact, expert-driven, and highly exclusive. The ERC could not demand that these bases be used for subsequent status confer- rals among audiences and candidates. Consistent with the relational aspects of status, actors in the field of science first needed to validate the ERC’s bases for status creation. I suggest that different actors within the research community confirmed their underlying belief in the framing of StG evaluations by validating the results of these very same evaluations through three specific sub-processes: Adopting, amplifying, and identifying.

One important validation sub-process thus deals with how national research councils across Europe adopted ERC evaluation results by using the latter as bases for the establishment of runner-up funding schemes. I argue that such funding schemes can be interpreted as strong demonstrations of belief in the ERC’s framing of its preceding evaluations. These schemes indicated that research councils believed in the appropriateness of the procedures used to detect merits among early-career scientists, even if the ERC itself did not fund all top-graded StG applicants.

In total, between 2007 and 2013, 20 councils developed schemes for reserve-listed ERC StG applicants. Although they came in many forms and guises, there was a common denominator for all of these schemes. National research councils looked at the results of StG evaluations, paying especial attention to the reserve lists. These lists were quickly amalgamated as bases for funding allocations to national StG runner-ups. In doing so, research councils simultaneously ‘outsourced’ one of their core activities – evaluating applicants – to the ERC. Councils across Europe tended to approach StG reserve lists as useful sources of information on meritorious early-career scientists that had not been funded for budgetary reasons.

I focused specifically on the RF funding scheme – VR’s offering for Sweden-based ERC StG runner-ups. As was the case in other parts of Europe, the rationale for establishing the RF scheme was evidently based on perceptions of appropriate ERC evaluations. VR adopted reserve-listed StG applicants, portraying them as highly merited early-career scientists that had endured particularly tough evaluations at the European level. Although ERC evaluation results were allegedly cross-checked with earlier VR funding allocations, I argue that the overall organization of the RF funding scheme can still be interpreted as a demonstration of belief in the preceding StG evaluations. The notion that VR regularly funded Sweden-based early-career scientists previously detected by the ERC can be taken as a potent signal of how properly conducted StG evaluations were believed to be.
Another important validation sub-process relates to how Swedish host organizations amplified ERC evaluation results by treating StG recipients preferentially. I suggest that such preferential treatment can also be taken as potent instantiations of belief in the ERC’s framing of its preceding evaluations. With this treatment, hosts indicated how they believed that the procedures behind StG evaluations detected early-career scientists of such quality that their research projects deserved to be supported with further resources.

Host organizations in Sweden tended to regard StGs as more than research funding. Heads of departments regularly transformed this funding into scientific quality stamps by pointing to several perceptions about ERC evaluations. Largely validating the ERC’s framing, department heads often referred to notions of exact procedures, expert-packed panels, and utterly exclusive research funding allocations. Images of all-European competition and tough Brussels appointments were particularly important for the transformation of ERC StGs into quality stamps. There appeared to be a veritable conviction about the merits of early-career scientists that received StG funding after surpassing the ERC’s evaluations.

Interestingly enough, in Swedish host organizations, StG-related scientific quality stamps were regularly believed to extend beyond the individual level. Heads of departments and university management teams largely regarded ERC StG recipients as products of their local milieus. As such, eventual StG successes were also believed to affect the hosts that fostered recipients. ERC funding was prone to spark cognitive processes in which the successes of a few early-career scientists translated into positive judgments that spilled over onto whole departments and universities. StGs were often perceived to cast far-reaching status halos, which engulfed entire host organizations in auras of glory (cf. Cialdini et al., 1976; Nisbett and DeCamp Wilson, 1977; Thorndike, 1920). Such halos were drawn upon to promote a wide range of research-related activities that – at best – were loosely associated with StG recipients themselves. Status halos developed regardless of how many ERC-funded early-career scientists any given department and university hosted. One StG recipient was clearly enough to set off halos that reached disparate corners of organizations.

Host organizations in Sweden were – perhaps not surprisingly – much keen on retaining StG recipients. The potential to transfer ERC funding opened up for negotiations between hosts and recipients. From earlier research, we know about the authority that high-status candidates are likely to exert in bargaining situations (e.g. Henrich and Gil-White, 2001; Magee and Galinsky, 2008; Thye, 2000). Interestingly enough, most StG recipients could hardly move with their funding. A number of factors, such as families, laboratories, and research groups, effectively
kept them rooted. However, the constant possibility of transferring ERC StGs turned into a latent threat, which, in itself, was enough to engender considerable bargaining power. Host organizations were seldom able to resist this threat. They were thus prone to treat StG recipients preferentially, hoping that this would keep them from transferring. Along these lines, hosts regularly endowed ERC StG recipients with a wide range of material benefits, including extended access to administrative, technical, and financial support. A few host organizations also placed StG recipients on special promotion tracks for permanent positions, using their funding as replacements for local evaluations of scientific quality. These benefits and tracks tended to amplify the generous resources that ERC StG recipients already enjoyed. By extension, since such material benefits and special promotion tracks were almost entirely reserved for StG recipients, I argue that this preferential treatment largely validated the ERC’s attempts at constructing a status group composed of early-career scientists who surpassed its evaluations.

While StGs brought about status halos, they were also associated with considerable challenges for Swedish host organizations. Tellingly, at the departmental level, ERC StG recipients were often characterized as mixed blessings. Some challenges related to priority collisions. For example, in many departments, the ERC’s singlehanded focus on research collided with local milieus that expected early-career scientists to engage in teaching as well. Other challenges were connected to financial costs. For instance, ERC StG funding regularly brought about OH gaps that departments were unable to cover. University management teams often stepped in, plugging StG-related gaps with resources earmarked for strategic activities. However, when all was said and done, priority collisions and financial costs appeared to matter little for organizations that hosted ERC StG recipients. Departments and universities would allegedly accommodate a range of challenges relating to ERC funding. Hosts clearly believed that StGs were worth the collisions and costs they caused.

Finally, another important validation sub-process deals with how Sweden-based StG recipients identified with ERC evaluation results by thinking about themselves as being part of a status group with European dimensions. I argue that such thoughts can be interpreted as further demonstrations of belief in the ERC’s framing of its preceding evaluations. The thinking of StG recipients largely signaled that they, after enduring ERC evaluations, came to internalize the notion of having been propelled into a group composed of the most meritorious early-career scientists in Europe.

While status literature mostly deals with how audiences extend advantages to certain candidates, I take a slightly different perspective here. Bourdieu’s (1991, 1996b) work tells us that candidates tend to
internalize their status over time, successively influencing how they perceive themselves. Along these lines, StG recipients clearly identified with the status value that their ERC funding was associated with. They often emphasized this value through vivid metaphors, such as feathers in the cap, ribbons, badges, and stamps. StG recipients used these metaphors to stress the notion that ERC funding functioned as widely valid cues for their scientific quality. It was a notion that emphasized how they believed themselves to have endured tough evaluations in which quality was detected. Such endurance was perceived to continue signaling scientific quality in a range of contexts that were quite disconnected from the previous StG evaluations. By extension, the notion of quality cues largely validated the ERC’s framing of its evaluations.

Moreover, Sweden-based StG recipients also incorporated the status value that was associated with their ERC funding into how they thought about their early-stage careers in academia. These recipients regularly perceived that StGs had boosted their careers, particularly in terms of how this funding came to be associated with a wide range of status-related advantages. Such advantages allegedly revolved around peer recognition, attention from politicians, and access to further resources at the national level.

One set of perceived status-related advantages thus concerned the recognition that ERC StGs were believed to engender among peers. There were stark differences in pre- and post-StG experiences. Before it came to be endowed with ERC funding, the work of Sweden-based StG recipients was met with a certain degree of ambivalence. However, after being ERC StG-funded, it was as if their work suddenly came to be elevated by peers. From past research, we know that high-status candidates, compared to low status counterparts, receive better judgments for similar performances (e.g. Kim and King, 2014; Simcoe and Waguespack, 2011). However, I suggest that the quickness with which the work of StG recipients came to be recognized was remarkable. Their alleged trajectories were compared with fast ascents from promising talents in junior leagues to seasoned players in senior leagues. ERC funding was, as such, believed to render almost immediate transitions between levels of recognition. Little did it seem to matter that, in most cases, StG recipients had not yet conducted any research with their new-gained resources. There was a strong notion that the very act of receiving ERC funding was enough to engender recognition.

Another set of perceived status-related advantages dealt with the attention that ERC StG recipients believed their funding attracted among Europe-level politicians involved in science policy issues. Such advantages are largely in line with the notion that high-status candidates engender more attention for their ideas (e.g. Simcoe and Waguespack, 2011; Torrance, 1954) than low-status counterparts. However, in the
case of Europe-level politicians, the attention that was allegedly engendered by StG recipients came to be collectively channeled through the YAE. We will remember that the latter was an academy that framed itself as a platform with which Europe’s most talented early-career scientists could seek to advance policy issues. The ERC was actively engaged in the YAE’s creation, supporting its activities from the very start. Most importantly, during its first two years of existence, membership in this academy was only extended to StG recipients. I interpret this as further attempts by the ERC to equate its funding recipients with the most talented early-career scientists Europe could offer. And these attempts were believed to render consequences. Several Sweden-based StG recipients emphasized how the YAE, through talks, conferences, and position papers, repeatedly caught the oft-elusive attention of EU and EC politicians involved in science policy issues. The YAE’s membership composition was regularly claimed to be central for the attention that this academy purportedly attracted. There was a belief among StG recipients that the status behind their suggestions on science policy issues would make these very same suggestions seem like knowledgeable and palatable stances when they reached Europe-level politicians.

A final set of perceived status-related advantages concerns the alleged impact of StGs upon access to further resources from national research funders. As I mentioned earlier, ERC StGs were believed to function as widely valid cues for scientific quality. In terms of their wider validity, it was often stressed that these cues were likely to influence evaluations at national funders. There was a general notion among Sweden-based StG recipients that they would be granted certain leniency on the basis of previously having endured the ERC’s evaluations. As such, the notion that ERC StG recipients would be given leeway can, by and large, be interpreted as instantiations of the success-bred-success dynamics featured in Merton’s (1968) Matthew effect. The literature tells us that past successes are likely to increase the chances of future success, especially in contexts where quality is ambiguous and difficult to evaluate (e.g. Domina et al., 2016; Van de Rijt et al., 2014). It was, along these lines, believed that previous successes in ERC evaluations would ignite cognitive processes among national-level evaluators, shaping their beliefs about the quality of StG recipients, ultimately elevating them above other applicants for funding.

In sum, although the sub-processes of adopting, amplifying, and identifying may seem like disparate phenomena at first glance, I argue that they constitute three specific ways through which actors in the field of science validated ERC evaluation results. Such validations can, more generally, be interpreted as potent expressions of belief in the ERC’s framing of its preceding evaluations.
Framing and Validating Reinforcing Each Other

The ERC’s framing and the research community’s validating can be approached as essential features of mutually reinforcing relations that continuously sustained perceptions about StG evaluations as instances in which the most meritorious early-career scientists were detected. While the ERC repeatedly framed its evaluations as instances in which the most meritorious scientists were detected, the research community regularly validated this framing by expressing its belief in the merits of those applicants that were funded after the conclusion of these very same evaluations.

I suggest that these mutually reinforcing relations were integral for the ERC’s construction into a third-party status arbiter in the field of science. From past research in the fields of art and literature, we know that the role of critics is successively constructed when audiences come to perceive their criticism as useful guidance for cultural preferences (e.g. Van Rees, 1987; Wijnberg and Gemser, 2000). For example, literature critics gain authority when they “come up with an assessment that other people... might somehow use as a peg for their own verbal response” (Van Rees, 1987: 286). Similarly, art critics garner authority when they promote new styles that gallerists, collectors, and curators subsequently come to support. Wijnberg and Gemser (2000: 324) proposed that “elevation to position of authority would usually go to experts who identified and championed an emerging movement in the visual arts”. I draw inspiration from this literature, arguing that the ERC was successively constructed into the role of a status arbiter as different actors commenced to base their perceptions about the most meritorious early-career scientists on StG evaluation results. The ERC’s framing as a meritocratic evaluator of scientific quality was continuously reinforced when the results of its evaluations were constantly validated through a number of thoughts and actions within the research community, such as runner-up funding schemes among national research councils, preferential treatment patterns within Swedish host organizations, and Europe-level status groups among Sweden-based scientists.

Once again, as I have already suggested, whether ERC StG evaluations actually detected the most meritorious early-career scientists is not very significant here. It is more important to consider that the research community believed in the merit-detecting capacity of these evaluations. We can approach this belief through the Thomas theorem, which famously states that, “if men define situations as real, they are real in their consequences” (Thomas and Thomas, 1928: 572). The research community evidently perceived that the merit-detecting capacity of StG evaluations was ‘real’. As such, regardless of what ERC StG evaluations were capable of detecting, the research community’s perceptions
laid potent bases for subsequent thoughts and actions based on the results of these very same evaluations.

More generally, I argue that the mutually reinforcing relations between the ERC and the research community transformed StG evaluation results into more than bases for funding allocations. These results gradually came to be constructed as potent bases for status creation and conferral that affected early-career scientists who received funding. Consistent with the notion of triadic relations, status came to be created and conferred when the ERC and different actors in the research community agreed upon the worth of scientists that were detected as meritorious at the conclusion of StG evaluations.

Summing Up

Throughout this chapter, I used a field perspective to analyze the process through which the ERC was constructed into a third-party status arbiter. In doing so, I pointed to the important role played by relations between different actors in fields. I began by examining how the ERC attempted to create status with its StG evaluations, framing them as exact, expert-driven, and highly exclusive instances in which the most meritorious early-career scientists were detected. Then, I continued by investigating how several actors in the research community validated the ERC’s framing. The results of ERC StG evaluations came to be adopted as bases for runner-up funding schemes among national research councils; amplified through patterns of preferential treatment within Swedish host organizations; and identified with status groups among early-career scientists. To round off, I suggested that mutually reinforcing relations between the ERC’s framing and the research community’s validating were central for the successive construction of a status arbiter in the field of science.

In the eighth and last chapter of my thesis, I present contributions, discuss implications, acknowledge limitations, and suggest avenues for future research.
In the preceding chapter, I took a field perspective to analyze the process through which the ERC was successively constructed as a third-party statusarbiter. I suggested that mutually reinforcing relations between the ERC’s framing and the research community’s validating came to be central for the emergence of a statusarbiter in the field of science.

With Chapter Eight, my goal is to place the findings of this thesis against a broader setup of literatures and developments. I start by presenting the theoretical contributions that spring from my study of the ERC. Then, I discuss a number of field-level implications in the wake of increasingly accepted StG evaluations. Finally, I acknowledge limitations and point to avenues for future research on arbiters, evaluations, and status creation in fields.

Theoretical Contributions

My study of the ERC allows me to propose contributions that are primarily directed at the literature on third-party status arbiters. I suggest that these contributions shed further light on the relations, processes, and consequences that are associated with the construction of status arbiters in fields.

While Espeland and Sauder (e.g. Espeland and Sauder, 2007; Sauder, 2005, 2006; Sauder and Espeland, 2006, 2009; see also Sauder and Fine, 2008) have been central for our understanding of the pervasive authority that third-party status arbiters may command, their work mostly concerns the consequences such arbiters render for candidates. Moreover, since its main focus is placed on consequences, Espeland and Sauder’s work largely departs from status arbiters that already seem to command pervasive authority in the contexts where they are situated. Throughout this thesis, I have argued for an expanded scope of inquiry that includes exploring how the authority of arbiters is constructed in the very first place. I have suggested that such a scope can, by exten-
sion, also help us augment our understanding of the consequences that third-party arbiters render with their activities.

To be sure, in some passages, Espeland and Sauder hint at how the authority of status arbiters is constructed. For instance, we learn that USN rankings regularly came to be met with scorn and resentment among American law schools. These rankings were, interestingly enough, still able to gain traction. Key for their traction was the wide perception among law schools that important constituencies, such as alumni, donors, prospective students, and tuition-paying parents, paid attention to the USN. Although it was unclear whether these constituencies actually attended to the rankings, the perception that they did was, in itself, enough to offset a flurry of responses among schools. More generally, whether they paid attention or not, I suggest that this points to the important role played by audiences throughout the construction of status arbiters. Such arbiters cannot ascribe authority to themselves. They require the (perceived) support of audiences in order to engender consequences among candidates.

With my study of the ERC, I contribute to the literature on third-party status arbiters by extending our understanding of how audiences’ perceptions about candidates affect the construction of arbiters. I thus highlight the importance of considering how status arbiters mediate audiences’ perceptions about candidates. While third-party arbiters assess and suggest certain candidates as particularly worthy of deference, such assessments and suggestions need to be considered from the perspective of audiences as well. It means attending to how audiences perceive the candidates that status arbiters assess and suggest as worthy of deference. Such perceptions proved to be central for the ERC’s construction into a third-party status arbiter. In my study, I pointed to how the ERC was gradually constructed into a status arbiter by assessing and suggesting candidates that audiences subsequently came to perceive as worthy of deference. More generally, the construction of arbiters successively unfolds through mutually reinforcing relations that also include candidates and audiences. Such relations consist of processes in which third-party status arbiters continuously frame certain candidates as particularly worthy of deference, while audiences constantly validate this very same framing by using the latter as bases for actions and thoughts.

In using Bourdieu’s concept of fields (e.g. 1980, 1985a; Bourdieu and Wacquant, 1992) for my study of the ERC’s emergence, I also contribute to the literature on third-party status arbiters by opening up for a broader set of mutually reinforcing relations in which status arbiters are constructed. More than arbiters engendering status consequences that affect candidates, fields allow us to grasp the multiple relations through which the construction of arbiters gradually unfolds.
The concept of fields enables us to see how arbiters affect candidates and audiences. For instance, with their activities, third-party arbiters lay the bases for status-related advantages that certain candidates subsequently come to enjoy. Audiences are likely to offer such advantages because they believe in the worth of those candidates assessed and suggested by status arbiters. Throughout my study, this could be noticed in how the ERC’s evaluation results were amplified when they became potent bases for material benefits and special promotion tracks that Sweden-based ERC StG recipients subsequently came to be endowed with in their host organizations. Swedish hosts were prone to offer such benefits and promotion tracks because the ERC’s framing of its evaluations formed strong perceptions about the merits of StG recipients.

Fields also allow us to grasp how candidates affect arbiters and audiences. For example, by conducting themselves in ways that reinforce the notion of them being particularly worthy of deference, candidates largely validate third-party arbiters’ activities. Such conduct is also likely to bring about status for audiences that are affiliated with candidates who have been assessed and suggested as worthy by status arbiters. In my study, this could be noted when Sweden-based StG recipients identified with the framing of ERC evaluations, thus propagating the notion that these early-career scientists were part of a status group with European dimensions. Against this background, ERC StG recipients subsequently came to bring about status halos that engulfed entire Swedish host organizations.

Finally, the concept of fields enables us to see how audiences affect arbiters and candidates. For instance, by appropriating the assessments and suggestions of third-party arbiters as bases for thoughts and actions, audiences essentially validate the activities of status arbiters. In validating these activities, audiences also reinforce the status of those candidates that arbiters assess and suggest as worthy of deference. Throughout my study, this could be noticed in how the ERC’s evaluation results were adopted when these very same results became direct bases for VR’s runner-up funding scheme. With its RF scheme, VR strongly indicated that it believed in how the ERC conducted its evaluations, even if not all top-graded StG applicants were funded. By extension, in offering resources to runner-ups, VR also validated the notion that StG recipients were among the most meritorious early-career scientists in Europe.

Status arbiters thus develop within triadic relations that are central for the creation of status. The mutually reinforcing relations between arbiters and audiences successively shape near-agreement when it comes to what candidates are worthy of deference. Such agreement is at the basis of the status-related advantages that certain candidates subsequently come to enjoy. But this agreement also serves to construct the
notion that third-party arbiters are capable of assessing and suggesting candidates that audiences come to perceive as worthy of deference. The status-creating potential of near-agreement between arbiters and audiences holds the capacity to spiral away in contexts where this very same potential is continuously maintained by mutually reinforcing relations that frame and validate certain candidates as particularly worthy of deference.

However, if I have focused on the creation of status in triadic relations, my study of the ERC also points to how status creation can break down. Status comes into existence when arbiters and audiences reach near-agreement in terms of worthy candidates. As such, if arbiters and audiences subsequently disagree, these relations would presumably collapse after some time (cf. Mills, 1963; Sauder, 2006). There are thus reasons to believe that certain limits circumscribe the status-creating potential of arbiters in triadic relations. We cannot assume that this potential spirals endlessly. Audiences would gradually lose their belief in the activities of status arbiters if the latter regularly assess and suggest candidates that subsequently come to be perceived as unworthy of deference (cf. Merton, 1968). In general, it is challenging for status arbiters to maintain the status-creating potential of their activities because these arbiters have no reliable methods of knowing whether the candidates that are assessed and suggested will conduct themselves in ways that engender deference. In my study, these challenges related to the notion that ERC StG evaluations were essentially forward-looking. These evaluations distributed resources to research that had not been conducted yet. There was, as such, no accurate way for the ERC to know whether StG recipients would produce research that was on par with how they were framed. Over time, unworthy candidates taint the potential to create status, thus withering the perception that third-party arbiters mainly assess and suggest worthy candidates. Altogether, this shows how status creation requires constant maintenance efforts that sustain the near-agreement between arbiters and audiences in terms of which candidates are worthy of deference.

The Implications of Meritocratic Distinctions

I take my theoretical contributions to launch a wider discussion of potential implications for the field of science. ERC StG evaluation results filled an inherent desire for clear-cut distinctions in a field where notions of quality have traditionally been characterized by tacit agreement and vagueness (cf. Hermanowicz, 2013; Lamont, 2009). The ERC’s framing and the research community’s validating formed a background against which StG-produced distinctions successively came to be ac-
cepted as a merit-based benchmark of scientific quality. The acceptance engendered by these distinctions ramified into a number of implications for the field of science, including competition, stratification, and individualization.

As such, I suggest that one important implication can be interpreted as the formation of perceptions about Europe-level competition between host organizations. In Chapter Four, I showed that, during the early 2000s, the field of science opened up for the idea of organizing continental competition for basic research funding between individuals. It was an idea that came to be embodied in the ERC’s organization. However, while its funding engendered competition between individuals, StGs also rendered competition between organizations. More specifically, I argue that the European dimensions of ERC StGs moved Swedish departments and universities beyond the national context, opening them up for a continental field of science in which this funding constituted important status symbols. As such, in this field, hosts perceived StG recipients to be desirable assets. Competition for these assets was amplified by the possibility of transferring ERC funding between host organizations in Europe. StG recipients could thus place their funding at one host initially, only to transfer later on. Among host organizations, such possibility fueled extensive strategizing aimed at increasing ERC StG numbers. This strategizing revolved around recruiting StG recipients externally and/or fostering them internally. Resource-rich hosts in the UK and mainland Europe regularly attempted to make use of the ERC’s funding transfer possibility, thus courting external StG recipients from other organizations. Swedish hosts, however, expressed that they lacked the resources needed to make use of this possibility. Instead, these host organizations expended efforts directed at raising new ERC StG recipients from internal ranks.

From past research on cognitive models of strategy (e.g. Porac, Thomas, and Baden-Fuller, 1989; Porac, Thomas, Wilson, Paton, and Kanfer, 1995), we know that perceptions of being in competition with other organizations are enough to engender responses. Along these lines, previous research on rankings (e.g. Wedlin, 2006, 2011) tells us that business schools often perceive that they compete on a global market for higher education, although the great majority of these schools draw their students locally. I suggest that this research forms an important background for how to approach the preferential treatment that hosts in Sweden endowed StG recipients with. More specifically, even as these recipients were firmly rooted in their locales, host organizations responded by extending material benefits and special promotion tracks, hoping that such treatment would keep ERC-funded early-career scientists from accepting any potential relocation offers from departments and universities abroad. But, in general, regardless of whether
hosts engaged in external recruitment and/or internal fostering strategies, the status value of ERC funding fueled potent perceptions of Europe-level competition on the basis of StG numbers.

I argue that another important implication of ERC-produced distinctions points to the development of new stratification patterns among early-career scientists. To be sure, stratification is one of the premier topics in the sociology of science. It is a topic that usually deals with the creation of skewed tier systems, associated with highly unequal access to rewards in the form of resources and recognition (e.g. Cole and Cole, 1973; Xie, 2014; Zuckerman, 1970). Indeed, science displays several features that make it akin to a “winner-takes-all market” (cf. Frank and Cook, 1995). Such features include large bases of budding actors and intense competition for rewards, resulting in high concentration of resources and recognition among few scientists. However, as Xie (2014: 809) stressed, long-standing perceptions of a “merit-based system” in science “makes inequality seem fair and acceptable” (cf. Merton, 1973).

As such, the research community’s belief in the merit-detecting capacity of StG evaluations was central for the acceptance that ERC-produced distinctions subsequently engendered. Moreover, I suggest that this belief may also have been central for the patterns of stratification that took shape among Sweden-based early-career scientists in the wake of StG evaluations. To begin, ERC-produced distinctions introduced resource and recognition differences between StG recipients and many scientists that either refrained from applying or failed to access funding. The generous monetary amounts, lengthy duration periods, and perceived status boosts that were associated with ERC StGs provided its recipients with advantages that few other early-career scientists in Sweden enjoyed.

But, contrary to most of what has been discussed before throughout the sociology of science, in the case of ERC funding, recognition differences were also introduced between scientists that had received identical resources. However, such differences laid bases for stratification that were initially grounded in classifications of funding sources. From previous research in economic sociology (e.g. Baker and Jimerson, 1992; Carruthers and Espeland, 1998; Zelizer, 1989, 1994), we learn that sources often matter more than amounts when it comes to how money is ascribed with status value. Along these lines, among Sweden-based early-career scientists, research funding was compared and ranked largely on the basis of where it came from. Monetary amounts played a minor role for how funding was classified. As such, even if RFs were identical to StGs in terms of amounts, VR’s funding was devoid of any StG-like status value because it was allocated to Sweden-based applicants that were reserve-listed at the conclusion of ERC eval-
uations. VR was clearly a second-class funding source in the context of ERC StG calls. These classifications rendered potent orders of worth among recipients of funding from different sources. The minuscule distinctions between receiving RFs and StGs shaped stratification patterns that lasted long after the respective funding allocations. I argue that such patterns can be approached from the perspective of Merton’s (1968) Matthew effect, which postulates that minor *ex ante* advantages often magnify into far-reaching *ex post* inequalities. Enduring StG evaluations and ultimately receiving funding from the ERC translated into sets of status-related advantages —such as peer recognition, attention from politicians, and access to further resources at the national level— that were virtually unavailable for the great majority of Sweden-based early-career scientists, including RF recipients.

A final implication of ERC-produced distinctions can be interpreted as further support for an individualization of recognition in science. We will remember that StGs were allocated exclusively to individual early-career scientists. But ERC StG recipients were, at the same time, also required to lead research groups. Looking at the sociology of science literature, we would actually expect much StG-funded research to be the outcome of collective work in groups. In a longitudinal study of over 2 million patents and almost 20 million articles spanning the last five decades, Wuchty, Jones, and Uzzi (2007: 1036) suggested that an increasing proportion of “the exceptionally high impact research” was conducted in groups, even within disciplines where such research has traditionally been the domain of individual scientists.

It is possible that the recognition engendered by ERC funding in the research community would come to be distributed among StG recipients and associated research group members. Previous literature tells us that status flows through affiliations between actors of different standing (e.g. Benjamin and Podolny, 1999; Podolny, 1994, 2005; Podolny and Phillips, 1996). In the case of ERC funding, this could mean that recognition initially directed at StG recipients would subsequently spill over onto associated group members. As such, while ERC StG recipients clearly enjoyed status boosts after being funded, their boosts could also raise the status of affiliated members. The latter would — if nothing else — be able to signal that they were previously selected for membership by present StG recipients. Such signals could, in themselves, engender status-related advantages for associated research group members, including better judgments and easier access to resources *vis-à-vis* non-members (cf. Stuart et al., 1999).

However, when it all came around, this distribution of recognition did not seem to be at play in the case of ERC funding. Instead, the recognition engendered by this funding in the research community came to be concentrated among StG recipients. I suggest that such con-
centration can render conflicting status dynamics within research groups, especially when aspects of collective work and individual recognition – both of which appeared to be coupled with StGs – collide. Intra-group status differences have been extensively studied in the social psychology literature. For example, we know that task groups generally punish members who claim more recognition than they are believed to deserve (e.g. Anderson, Beer, Srivastava, and Spataro, 2006; Anderson and Kilduff, 2009). We also know that high-status members are likely to retain their standing in groups if they demonstrate humility and generosity (e.g. Flynn, Reagans, Amanatullah, and Ames, 2006; Hardy and Van Vugt, 2006). Similar conclusions have, by and large, been reached in the sociology of science literature. Zuckerman (1967b: 33) showed that the Nobel Prizes tended to concentrate all recognition upon winners themselves, with the subsequent “effect of erecting barriers” within their research groups. Other members of these groups became upset, sensing that they did not receive due recognition for their alleged contributions to the Nobel Prize-winning research. Winners themselves threaded cautiously, engaging in noblesse oblige practices aimed at reciprocating an enlarged share of recognition to their group members throughout future research endeavors (see also Zuckerman, 1977, 1978).

The intra-group conflicts that I highlighted for the case of ERC StG funding can be interpreted as an inherent byproduct of the reward system in the field of science. With growing proportions of research being carried out in groups, individual contributions have consequently been blurred. In this context, the distribution of recognition becomes an ambiguous and arbitrary exercise. That said, despite profound changes in the conduct of research, the reward system in science typically continues to bestow status upon individuals.

Besides StGs, prestigious prizes provide further examples of the continuous efforts to reward individual scientists. The recently emerging ‘megaprizes’ – those that offer purses in excess of $1 million – are largely fueled by notions of turning promising individuals into “science superheroes” (Merali, 2013). Influential scientific discoveries provide additional examples. Some of the most notorious discoveries throughout the 19th and 20th centuries, such as the Higgs particle in physics, the Langerhans islets in medicine, and the Nash equilibrium in economics, have summarily been equated with specific surnames (cf. Merton, 1957; Zuckerman, 1992).

From this, we can conclude that there is a disconnection between how research is carried out and how it is rewarded. Part of this disconnection can be traced to stereotypical images of science as an individual endeavor. Although StGs supported such pictures, the ERC was, by no means, alone in promoting them. Stereotypical images of lonely genius-
es display a long and persistent history in the field of science. They have surfaced on and off in Western literature since the medieval ages (Haynes, 1994). These pictures are not restricted to science either. Stereotypical images of particularly skilled individuals surface in the field of art as well (e.g. Becker, 1982; Greenfeld, 1989; Rossman, Esparza, and Bonacich, 2010). Artworks usually come to be regarded as products of solitary activities. However, in contrast to these pictures of how art is typically created, Becker (1982) proposed that artworks could be approached as production chains. The early steps in such chains encompass manufacturers of canvas cloths, brushes, and paints. Without these suppliers, artists would have nothing to work with. Later steps in Becker’s production chains include critics, galleries, and museums. These actors are crucial for the success of budding artists (see also Greenfeld, 1989). Despite this apparent division of labor, most – if not all – status deriving from the resulting artworks is typically conferred upon artists themselves. As with prizes in science, art awards continuously push stereotypical images of lonely geniuses. The potential contributions of groups that surround artists are seldom recognized. In sum, the “emphasis on individual winners affirms the romantic ideology of art as heartfelt expression of the artist rather than the collective achievement of the artistic team or broader art world” (Rossman et al., 2010: 31-2).

Limitations and/or Avenues for Future Research

My study of the ERC is subject to certain limitations. I believe three such limitations deserve particular attention. They are connected to aspects of my data, context, and object of study.

One possible limitation thus concerns the data I employed. In my study, I used interviews, documents, and observations to show how being endowed with StGs was widely perceived to constitute status boosts for Sweden-based early-career scientists. While this qualitative data allowed me to explore perceptions, it did not enable me to gauge any long-term career consequences of receiving ERC StGs. Quantitative analyses that focus on these consequences would constitute interesting avenues for future research. Such analyses could look at whether StGs subsequently affect different indicators of academic success among recipients. Potential indicators may, for instance, include publications, citations, positions, and grants. VR RF recipients would constitute an excellent control here. Comparisons of long-term career consequences between StG and RF recipients could circumvent some of the typical problems relating to differences in scientific quality because both early-career scientist groups were ultimately top-graded by evaluators. Comparisons between ERC StG and VR RF recipients would also
be well situated to isolate StG-related status boosts since both groups were endowed with identical monetary amounts for the same duration periods. While the relatively low numbers of RF recipients may pose problems for quantitative analyses, I suggest that further comparative data could be collected among early-career scientists from other countries in Europe with similar runner-up funding schemes based on the results of ERC StG evaluations.

Another potential limitation relates to my empirical context. I focused on the field of science, which has traditionally been characterized by ambiguous understandings of quality (e.g. Davis, 1971; Hargens and Hagstrom, 1967, 1982; Whitley, 1984). The ERC’s emergence presented a compelling counterpart to this ambiguity. Along these lines, StG evaluations were framed as exact, expert-driven, and highly exclusive instances in which scientific quality was detected. Such framing catered to an innate demand among the research community for clear-cut distinctions. However, when it comes to scope conditions, the ambiguous characteristics of quality in science restrict the generalizability of my study. This implies that the findings of my study may not be generalizable to fields where there already are widely accepted actors that define what quality is and how it should be determined. Fields like these would presumably include many sports, such as soccer, tennis, and hockey, to name a few. Future research could, nonetheless, assess whether my findings in science can be generalized to other fields where notions of quality are ambiguous. The fields of art, music, and literature present themselves as compelling contexts here. These three fields all feature a similar lack of consensus when it comes to what their central tenets are, who should define them, and how they should be determined (e.g. Anand and Jones, 2008; Anand and Watson, 2004; Bourdieu, 1991, 1993; Greenfeld, 1989; Peterson, 1979). The fields of art, music, and literature would thus contain several conditions that open up for tensions and struggles between actors seeking the authority to construct divisions in these very same fields (cf. Bourdieu, 1985a). By extension, the similarities between these fields provide exciting possibilities for comparative studies of how actors are constructed into third-party arbiters. Such studies could focus on a number of prominent arbiters, comparing the antecedents and implications of their evaluations across the respective fields. I believe this would provide us with potent bases to assess the wider generalizability of many findings contained in this thesis.

Finally, another possible limitation deals with my object of study. The ERC’s construction as a status arbiter can, to a certain extent, be interpreted as a ‘success story’. Perhaps not surprisingly, the ERC itself was much keen on framing its own development as a roaring success. But, based on how StG evaluation results came to be validated by the
research community, the ERC’s distinctions were evidently successful in terms of garnering acceptance throughout the field of science. Such acceptance created a range of status consequences that affected early-career scientists, departments, and universities in Sweden. While I previously pointed to the constant maintenance efforts that status creation requires, there are also instances in which evaluations could start losing their status-creating potential. I suggest that such instances constitute important avenues for future research.

One instance in which evaluations may start to lose their status-creating potential involves the notion of status inflation. In connection to my study, entering 2018, the ERC had funded more than 7,000 scientists across Europe. Almost 4,000 of them had been endowed with StGs (ERC, 2018). That is, although ERC StG recipients were not common, they were neither rare. And the number of recipients grows after the conclusion of every call for StG applications. What do these inflating numbers imply for the perceived exclusivity of ERC StGs? How long can the status-creating potential of StG evaluations be maintained if several hundred early-career scientists are funded every year?

Another instance that could lead evaluations to start losing their status-creating potential is the notion of status misallocation. As for the case of ERC funding, StG evaluations may come to be tainted if their results directed resources at early-career scientists that subsequently became accused of data fabrication, unethical scientific practices, or involvement in other types of research-related scandals. Studies on Victorian-era England (Adut, 2005), the American auditing sector (Jensen, 2006), and the Swedish mutual fund industry (Jonsson, Greve, and Fujiwara-Greve, 2009) show that scandals often render potent consequences, which quickly diffuse from perpetrators to non-perpetrators as the attributes and/or behaviors of one actor contaminate other actors that are perceived to be similar. Because of this, research-related scandals involving ERC-funded scientists could rapidly taint the preceding StG evaluations, gradually eroding the perception that they consistently detected the most meritorious applicants. While I know of no such scandals that involve StG recipients, the risk is palpable when 4,000 early-career scientists have been endowed with ERC funding to date. What would eventual research-related scandals imply for the perception that ERC StG evaluations detected the most meritorious applicants? How would such scandals affect the status-creating potential of StG evaluations?

More generally, while my focus has been placed on what may be interpreted as a success story of status creation, further insights into how status is created could thus be obtained from studies that attend to situations in which status creation breaks down. As such, can we find examples of third-party arbiters that were initially able to create status
through their activities, only to lose this authority later on? If so, what responses do these situations evoke among arbiters, audiences, and candidates? Moreover, can we find examples of third-party arbiters that framed their activities as bases for status creation, only to be met with scant validation from audiences afterward? If so, what are the dynamics behind such situations? I believe that intriguing answers to several of these questions can be found in the triadic relations where status is created and conferred.
Initial E-Mail

All potential interviewees

Dear [potential interviewee name],

My name is Peter Edlund. I am a PhD student at the Department of Business Studies, Uppsala University. My work forms part of a broader project that goes under the acronym SUIT (Swedish Universities in Transition), headed by associate professor Linda Wedlin. The general aim of this project is to analyze the implications of higher education and research reforms in Sweden during the 1990s and 2000s.

More specifically, within the SUIT project, my thesis deals with the ERC, its evaluations of applications, and the perceived consequences of its research funding allocations. It is against this background that I now contact you. I believe your experiences as [evaluator/funding recipient/head of department/governing body member/top management representative/senior research officer/research funding administrator] would be highly valuable for the progress of my thesis. Your experiences will, by extension, contribute to a broader understanding of the ERC’s implications for scientists, departments, and universities in Sweden.

I would thus like to ask for an interview sometime during this [season]. If you accept my request, the actual interview is expected to take one hour approximately. Please be informed that you may skip questions, remain anonymous, refuse being audio-recorded, and access complete transcriptions of any eventual recordings. I would be very grateful if it is possible to schedule an interview with you.

Best regards,

Peter Edlund
APPENDIX TWO: INTERVIEW GUIDES

Evaluators

European Research Council Starting Grant evaluators

<table>
<thead>
<tr>
<th>I. Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tell me about your career up to now. What have been the highlights?</td>
</tr>
<tr>
<td>2. What are your current positions? What duties do they entail?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. European Research Council Starting Grant evaluator tenure</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. I am specifically interested in your position as StG evaluator within the ERC’s [panel name]. What did you know about the ERC before assuming this position?</td>
</tr>
<tr>
<td>4. What do you think the ERC was looking for among its potential StG evaluators?</td>
</tr>
<tr>
<td>5. How did you become recruited as an ERC StG evaluator?</td>
</tr>
<tr>
<td>6. You seem to have many positions and duties simultaneously. Why did you accept the invitation to become a StG evaluator?</td>
</tr>
<tr>
<td>7. Could you tell me about the different steps in an ERC StG evaluation process? Although I am interested in how this process is framed by the ERC, I am just as interested in how you perceived it.</td>
</tr>
<tr>
<td>9. I would like you to look at this list with names of the other evaluators that participated in your panel. Who were these evaluators? What positions did they hold? Did you know anything about these evaluators before you were recruited? If so, what did you know about them?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Rounding off</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. How would you describe a StG for an early-career scientist who has never heard about this funding scheme before?</td>
</tr>
</tbody>
</table>
Early-Career Scientists

European Research Council Starting Grant recipients

I. Introduction
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?
3. What role has external research funding played in your career? What role does such funding play in your disciplinary domain?

II. European Research Council Starting Grant Applications
4. What did you know about the ERC before applying for a StG?
5. There are several funding schemes for early-career scientists based in Sweden and Europe. Why did you apply for an ERC StG?
6. What do you think the ERC was looking for in StG applications?
7. Did you receive any support before, during, and/or after your ERC StG application? If so, what did this support consist of?

III. European Research Council Starting Grant Evaluations
8. Could you tell me about the different steps in a StG evaluation process? Although I am interested in how this process is framed by the ERC, I am just as interested in how you perceived it.
9. I would like you to look at this list with names of the evaluators that participated in the panel that evaluated your first/latest StG application. Who were these evaluators? What positions did they hold? Did you know anything about these evaluators before applying? If so, what did you know about them?

IV. European Research Council Starting Grant Receptions
10. You received an ERC StG in [year] for [research project acronym]. What do you think this has implied for your career? How do you think other scientists in your disciplinary domain perceive StGs?
11. Do you think there are any drawbacks related to receiving an ERC StG? If so, what are these drawbacks?

V. European Research Council Starting Grant Host Organizations
12. What do you think your StG has implied for [department name] and [university name]?
13. ERC StGs are mobile within Europe. Why did you choose [department name] and [university name] as hosts for your StG? Have you received any competing offers to locate your ERC StG at other host organizations? If so, what have these offers consisted of?

VI. Rounding off
14. How would you describe an ERC StG for an early-career scientist who has never heard about this funding scheme before?
I. Introduction
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?
3. What role has external research funding played in your career? What role does such funding play in your disciplinary domain?

II. European Research Council Starting Grant Applications
4. What did you know about the ERC before applying for a StG?
5. There are several funding schemes for early-career scientists based in Sweden and Europe. Why did you apply for an ERC StG?
6. What do you think the ERC was looking for in StG applications?
7. Did you receive any support before, during, and/or after your ERC StG application? If so, what did this support consist of?

III. European Research Council Starting Grant Evaluations
8. Could you tell me about the different steps in a StG evaluation process? Although I am interested in how this process is framed by the ERC, I am just as interested in how you perceived it.
9. I would like you to look at this list with names of the evaluators that participated in the panel that evaluated your first/latest StG application. Who were these evaluators? What positions did they hold? Did you know anything about these evaluators before applying? If so, what did you know about them?

IV. Swedish Research Council Reserve Fund Receptions
10. You received a VR RF in [year] for [research project acronym]. Did you know anything about RFs before receiving one? If so, what did you know about them?
11. I am interested in the connection between ERC StGs and VR RFs. Could you tell me about the different steps between being reserve-listed for a StG by the ERC and receiving a RF from VR?
12. What do you think your VR RF has implied for your career? How do you think other scientists in your disciplinary domain perceive RFs?
13. Do you think there are any drawbacks related to receiving a VR RF? If so, what are these drawbacks?

V. Swedish Research Council Reserve Fund Host Organizations
14. What do you think your RF has implied for [department name] and [university name]?
15. VR RFs are mobile within Sweden. Why did you choose [department name] and [university name] as hosts for your RF? Have you received any competing offers to locate your VR RF at other host organizations? If so, what have these offers consisted of?

VI. Rounding off
16. How would you describe a RF for an early-career scientist who has never heard about this funding scheme before?
Swedish Research Council Reserve Fund and European Research Council Starting Grant recipients

I. Introduction
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?
3. What role has external research funding played in your career? What role does such funding play in your disciplinary domain?

II. European Research Council Starting Grant Applications
4. What did you know about the ERC before applying for a StG?
5. There are several funding schemes for early-career scientists based in Sweden and Europe. Why did you apply for an ERC StG?
6. What do you think the ERC was looking for in StG applications?
7. Did you receive any support before, during, and/or after your ERC StG application? If so, what did this support consist of?

III. European Research Council Starting Grant Evaluations
8. Could you tell me about the different steps in a StG evaluation process? Although I am interested in how this process is framed by the ERC, I am just as interested in how you perceived it.
9. I would like you to look at this list with names of the evaluators that participated in the panel that evaluated your first/latest StG application. Who were these evaluators? What positions did they hold? Did you know anything about these evaluators before applying? If so, what did you know about them?

IV. Swedish Research Council Reserve Fund and European Research Council Starting Grant Receptions
10. You received a VR RF in [year] for [research project acronym]. Did you know anything about RFs before receiving one? If so, what did you know about them?
11. I am interested in the connection between ERC StGs and VR RFs. Could you tell me about the different steps between being reserve-listed for a StG by the ERC and receiving a RF from VR?
12. What do you think your VR RF implied for your career? How do you think other scientists in your disciplinary domain perceived RFs?
13. Do you think there were any drawbacks related to receiving a VR RF? If so, what were these drawbacks?
14. You received an ERC StG in [year] for [research project acronym]. What do you think this has implied for your career? How do you think other scientists in your disciplinary domain perceive StGs?
15. Do you think there are any drawbacks related to receiving an ERC StG? If so, what are these drawbacks?

V. Swedish Research Council Reserve Fund and European Research Council Starting Grant Host Organizations
16. What do you think your RF implied for [department name] and [university na-
17. VR RFs were mobile within Sweden. Why did you choose [department name] and [university name] as hosts for your RF? Did you receive any competing offers to locate your VR RF at other host organizations? If so, what did these offers consist of?

18. What do you think your subsequent StG has implied for [department name] and [university name]?

19. ERC StGs are mobile within Europe. Why did you choose [department name] and [university name] as hosts for your StG? Have you received any competing offers to locate your ERC StG at other host organizations? If so, what have these offers consisted of?

VI. Rounding off

20. How would you describe a RF for an early-career scientist who has never heard about this funding scheme before?

21. How would you describe a StG for an early-career scientist who has never heard about this funding scheme before?
Heads of Departments

Heads of departments hosting European Research Council Starting Grant recipients

I. Introduction
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?
3. What role has external research funding played in your career? What role does such funding play in your disciplinary domain?

II. Head of department tenure
4. I am specifically interested in your position as head of [department name] at [university name]. What duties did this position entail?
5. What do you think were the biggest accomplishments during your tenure as head of department? What do you think were the biggest challenges during your tenure?
6. What role did external research funding play in [department name] during your tenure as head of department?

III. European Research Council Starting Grants
7. [Early-career scientist name] received an ERC StG in [year] for [research project acronym]. What did you know about StGs before [early-career scientist name] received one?
8. Was there any support available for ERC StG applicants in [department name] and/or [university name] at the time? If so, what did this support consist of?
9. StGs are mobile within Europe. Why do you think [early-career scientist name] chose [department name] and [university name] as hosts for his/her ERC StG?
10. What do you think [early-career scientist name]’s StG implied for his/her career? What do you think this ERC StG implied for [department name]?
11. How do you think other scientists in [department name] perceived StGs? How do you think [university name] management perceived ERC StGs?
12. Do you think there were any StG-related drawbacks for [department name]? If so, what were these drawbacks?

IV. Rounding off
12. How would you describe an ERC StG for an early-career scientist who has never heard about this funding scheme before?
Heads of departments hosting Swedish Research Council Reserve Fund recipients

<table>
<thead>
<tr>
<th>I. Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tell me about your career up to now. What have been the highlights?</td>
</tr>
<tr>
<td>2. What are your current positions? What duties do they entail?</td>
</tr>
<tr>
<td>3. What role has external research funding played in your career? What role does such funding play in your disciplinary domain?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Head of department tenure</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. I am specifically interested in your position as head of [department name] at [university name]. What duties did this position entail?</td>
</tr>
<tr>
<td>5. What do you think were the biggest accomplishments during your tenure as head of department? What do you think were the biggest challenges during your tenure?</td>
</tr>
<tr>
<td>6. What role did external research funding play in [department name] during your tenure as head of department?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Swedish Research Council Reserve Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. [Early-career scientist name] received a VR RF in [year] for [research project acronym]. What did you know about RFs before [early-career scientist name] received one?</td>
</tr>
<tr>
<td>8. Was there any support available for ERC StG applicants in [department name] and/or [university name] at the time? If so, what did this support consist of?</td>
</tr>
<tr>
<td>9. VR RFs are mobile within Europe. Why do you think [early-career scientist name] chose [department name] and [university name] as hosts for his/her RF?</td>
</tr>
<tr>
<td>10. What do you think [early-career scientist name]’s VR RF implied for his/her career? What do you think this RF implied for [department name]?</td>
</tr>
<tr>
<td>11. How do you think other scientists in [department name] perceived VR RFs? How do you think [university name] management perceived RFs?</td>
</tr>
<tr>
<td>12. Do you think there were any VR RF-related drawbacks for [department name]? If so, what were these drawbacks?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. Rounding off</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. How would you describe a RF for an early-career scientist who has never heard about this funding scheme before?</td>
</tr>
</tbody>
</table>
Heads of departments hosting Swedish Research Council Reserve Fund and European Research Council Starting Grant recipients

I. Introduction
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?
3. What role has external research funding played in your career? What role does such funding play in your disciplinary domain?

II. Head of department tenure
4. I am specifically interested in your position as head of [department name] at [university name]. What duties did this position entail?
5. What do you think were the biggest accomplishments during your tenure as head of department? What do you think were the biggest challenges during your tenure?
6. What role did external research funding play in [department name] during your tenure as head of department?

III. Swedish Research Council Reserve Funds and European Research Council Starting Grants
7. [Early-career scientist name] received a VR RF in [year] for [research project acronym]. What did you know about RFs before [early-career scientist name] received one?
8. Was there any support available for ERC StG applicants in [department name] and/or [university name] at the time? If so, what did this support consist of?
9. VR RFs are mobile within Europe. Why do you think [early-career scientist name] chose [department name] and [university name] as hosts for his/her RF?
10. What do you think [early-career scientist name]’s VR RF implied for his/her career? What do you think this RF implied for [department name]?
11. How do you think other scientists in [department name] perceived VR RFs? How do you think [university name] management perceived RFs?
12. Do you think there were any VR RF-related drawbacks for [department name]? If so, what were these drawbacks?
13. [Early-career scientist name] received an ERC StG in [year] for [research project acronym]. What did you know about StGs before [early-career scientist name] received one?
14. ERC StGs are mobile within Europe. Why do you think [early-career scientist name] chose [department name] and [university name] as hosts for his/her StG?
15. What do you think [early-career scientist name]’s ERC StG implied for his/her career? What do you think this StG implied for [department name]?
16. How do you think other scientists in [department name] perceived ERC StGs? How do you think [university name] management perceived StGs?
17. Do you think there were any ERC StG-related drawbacks for [department name]? If so, what were these drawbacks?
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. Rounding off</td>
<td></td>
</tr>
<tr>
<td>18. How would you describe a RF for an early-career scientist who has never heard about this funding scheme before?</td>
<td></td>
</tr>
<tr>
<td>19. How would you describe a StG for an early-career scientist who has never heard about this funding scheme before?</td>
<td></td>
</tr>
</tbody>
</table>
Mixed Individuals

European Research Council governing body members

I. Introduction
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?

II. Emergence of the European Research Council
3. I am specifically interested in your position as [title] at the ERC. When and where did the idea of an ERC emerge? How did this idea develop?
4. Who were the main proponents of an ERC? What arguments did they use? Who were the main opponents of an ERC? What arguments did they use?
5. When did you first become involved with the ERC?

III. The European Research Council in the Seventh Framework Program
6. The ERC was established in 2007. What were its main goals?
7. What did the term competition mean for the ERC?
8. What did the term excellence mean for the ERC?
9. What were the biggest accomplishments for the ERC throughout FP7? What were its biggest challenges throughout FP7?

IV. European Research Council Starting Grants
10. There are several funding schemes for early-career scientists based in Sweden and Europe. Why do you think scientists apply for ERC StGs?
11. What do you think StGs imply for the careers of recipients? What do you think ERC StGs imply for the organizations that host these recipients?
12. Do you think there are any drawbacks for early-career scientists that receive ERC StGs? If so, what are these drawbacks? Do you think there are any drawbacks for the organizations that host these recipients? If so, what are these drawbacks?

V. Rounding off
13. How would you describe a StG for an early-career scientist who has never heard about this funding scheme before?
I. Introduction
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?

II. The Swedish Research Council and the European Research Council
3. I am specifically interested in your position as [title] at VR. What did you know about the ERC before assuming this position?
4. Tell me about relations with the ERC during your tenure as [title] at VR. Was there any cooperation with the ERC during your tenure? If so, what did this cooperation consist of?

III. Swedish Research Council Reserve Funds
5. VR allocated its first RFs shortly after the ERC was established. Why was the VR RF funding scheme created?
6. Who were the main proponents of the RF funding scheme? What arguments did they use? Who were the main opponents of the VR RF scheme? What arguments did they use?
7. I am interested in the connection between StGs and RFs. Could you tell me about the different steps between being reserve-listed for a StG by the ERC and receiving a RF from VR?
8. There are several funding schemes for early-career scientists based in Sweden and Europe. What role do you think VR RFs play?

IV. Rounding off
9. How would you describe a RF for an early-career scientist who has never heard about this funding scheme before?
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?

II. The Swedish Research Council and the European Research Council
3. I am specifically interested in your position as [title] at VR. What did you know about the ERC before assuming this position?
4. Tell me about relations with the ERC during your tenure as [title] at VR. Was there any cooperation with the ERC during your tenure? If so, what did this cooperation consist of?

III. Swedish Research Council Reserve Funds
5. VR allocated its first RFs shortly after the ERC was established. Why was the VR RF funding scheme created?
6. Who were the main proponents of the RF funding scheme? What arguments did they use? Who were the main opponents of the VR RF scheme? What arguments did they use?
7. I am interested in the connection between StGs and RFs. Could you tell me about the different steps between being reserve-listed for a StG by the ERC and receiving a RF from VR?
8. There are several funding schemes for early-career scientists based in Sweden and Europe. What role do you think VR RFs play?

IV. Rounding off
9. How would you describe a RF for an early-career scientist who has never heard about this funding scheme before?
Northern University research funding administrators

I. Introduction
1. Tell me about your career up to now. What have been the highlights?
2. What are your current positions? What duties do they entail?

II. Northern University research funding administrator tenure
3. I am specifically interested in your position as [title] at Northern University. What duties did this position entail?
4. What do you think were the biggest accomplishments during your tenure as [title] at Northern University? What do you think were the biggest challenges during your tenure?
5. What role did external research funding play at Northern University during your tenure as [title]?

III. European Research Council Starting Grants
6. [Early-career scientist name] was the first to receive an ERC StG at Northern University. What did you know about StGs before [early-career scientist name] received one?
7. Was there any support available for ERC StG applicants at Northern University at the time? If so, what did this support consist of?
8. StGs are mobile within Europe. Why do you think early-career scientists choose Northern University as host organization for their ERC StGs?
9. What do you think StGs imply for the careers of scientists at Northern University? What do you think their ERC StGs imply for Northern University?
10. How do you think other scientists at Northern University perceive StGs? How do you think Northern University management perceives ERC StGs?
11. Do you think there are any StG-related drawbacks for Northern University? If so, what are these drawbacks?

IV. Rounding off
12. How would you describe an ERC StG for an early-career scientist who has never heard about this funding scheme before?
ABBREVIATIONS

EURAB (2003), *The European Research Council (ERC) - A Possible Implementation Model*. Brussels: European Research Advisory Board.

Schiermeier, Q. (2014), "Early-Career Funding: Big Introductions", retrieved on February 9, 2016 from http://www.nature.com/naturejobs/science/articles/1 0.1038/nj7518-449a

YAE (2015), "Join Us", retrieved on 2015/05/24 from http://www.yacadeuro.org/contact_form.htm

DOCTORAL THESES
Department of Business Studies, Uppsala University

38 Smith, Dag, 1989, Structure and Interpretation of Income Models. Uppsala: Department of Business Studies

82 Nordin, Dan, 2000, *Två studier av styrning i kunskapsintensiva organisationer.* Uppsala: Företagsekonomiska institutionen.
87 Silver, Lars, 2001, *Credit Risk Assessment in Different Contexts: The Influence of Local Networks for Bank Financing of SMEs.* Uppsala: Department of Business Studies.

118 Persson, Magnus, 2006, Unpacking the Flow: Knowledge Transfer in MNCs. Uppsala: Department of Business Studies.

156 Lippert, Marcus, 2013, Communities in the Digital Age: Towards a Theoretical Model of Communities of Practice and Information Technology. Uppsala: Department of Business Studies.

175 Holmstedt, Matthias, 2015, L.M. Ericsson’s internationalization in Africa from 1892 to 2012: A study of key factors, critical events, and core mechanisms. Uppsala: Department of Business Studies.

177 Hadjikhani, Annoch, 2016, Executive expectation in the internationalization process of banks: The study of two Swedish banks’ foreign activities. Uppsala: Department of Business Studies.

178 Alimadadi, Siavash, 2016, Consistent Inconsistency: The Role of Tension in Explaining Change in Inter-organizational Relationships. Uppsala: Department of Business Studies.

