
DOCTORA L  T H E S I S

Department of Computer Science, Electrical and Space Engineering
Division of Signals and Systems

Statistical Sensor 
Calibration Algorithms

Anas Wasill Alhashimi

ISSN 1402-1544
ISBN 978-91-7790-084-9 (print)
ISBN 978-91-7790-085-6 (pdf)

Luleå University of Technology 2018

A
nas W

asill A
lhashim

i   Statistical Sensor C
alibration A

lgorithm
s 

Control Engineering 

sensor
accuracy

calibrated
accuracy

sensor
variance

calibrated
variance

p (x̂k |yk )
p (yk |xk )

true value

E [yk] E [x̂k] xk
xk



 



Statistical Sensor Calibration Algorithms

Anas Wasill Alhashimi

Department of Computer Science, Electrical and Space Engineering
Division of Signals and Systems
Luleå University of Technology

Luleå, Sweden

Supervisors:

Thomas Gustafsson, Damiano Varagnolo



Printed by Luleå University of Technology, Graphic Production 2018

ISSN 1402-1544  
ISBN 978-91-7790-084-9 (print)
ISBN 978-91-7790-085-6 (pdf)

Luleå 2018

www.ltu.se



to my mother and father,
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to my whole family and friends.

One is still a scientist as long as he asked for knowledge,
and if he thinks that he has the knowledge, he is an ignorant.





Abstract

The use of sensors is ubiquitous in our IT-based society; smartphones, consumer electronics,
wearable devices, healthcare systems, industries, and autonomous cars, to name but a few,
rely on quantitative measurements for their operations. Measurements require sensors, but
sensor readings are corrupted not only by noise but also, in almost all cases, by deviations
resulting from the fact that the characteristics of the sensors typically deviate from their ideal
characteristics.

This thesis presents a set of methodologies to solve the problem of calibrating sensors with
statistical estimation algorithms. The methods generally start with an initial statistical sensor
modeling phase in which the main objective is to propose meaningful models that are capable
of simultaneously explaining recorded evidence and the physical principle for the operation
of the sensor. The proposed calibration methods then typically use training datasets to find
point estimates of the parameters of these models and to select their structure (particularly
in terms of the model order) using suitable criteria borrowed from the system identification
literature. Subsequently, the proposed methods suggest how to process the newly arriving
measurements through opportune filtering algorithms that leverage the previously learned
models to improve the accuracy and/or precision of the sensor readings.

This thesis thus presents a set of statistical sensor models and their corresponding model
learning strategies, and it specifically discusses two cases: the first case is when we have a
complete training dataset (where “complete” refers to having some ground-truth information
in the training set); the second case is where the training set should be considered incomplete
(i.e., not containing information that should be considered ground truth, which implies
requiring other sources of information to be used for the calibration process). In doing so,
we consider a set of statistical models consisting of both the case where the variance of the
measurement error is fixed (i.e., homoskedastic models) and the case where the variance
changes with the measured quantity (i.e., heteroskedastic models). We further analyze
the possibility of learning the models using closed-form expressions (for example, when
statistically meaningful, Maximum Likelihood (ML) and Weighted Least Squares (WLS)
estimation schemes) and the possibility of using numerical techniques such as Expectation
Maximization (EM) or Markov chain Monte Carlo (MCMC) methods (when closed-form
solutions are not available or problematic from an implementation perspective). We finally
discuss the problem formulation using classical (frequentist) and Bayesian frameworks, and
we present several field examples where the proposed calibration techniques are applied on
sensors typically used in robotics applications (specifically, triangulation Light Detection and
Rangings (Lidars) and Time of Flight (ToF) Lidars ).
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Chapter 1

Introduction

Sensors are ubiquitous in our IT-based society: touch-sensitive devices, temperature con-
trollers, mobile acceleration and inertial sensors, light sensors, sound sensors, and so forth
surround us and help create all the services that we now take for granted. The number of
sensors involved in our daily lives is expected to increase with the expected developments in
electronics and technology in all the various aspects of life, for example, with the introduction
of autonomous cars and Internet of Things (IoT). For example, according to Allied Market
Research predictions, the sensor market will increase with a compound annual growth rate
of 11.3 percent until 2022, when the market is expected to reach a staggering size of $241
billion1. In a recent study, Yole Development predicted an exponential growth for robotic
vehicle sensor revenue in the future2, as shown in the diagram in Figure 1.1.

Clearly, the quality and performance of the applications that employ any form of sensing is
largely dependent on the precision and accuracy of the sensors. Unfortunately, measurements
from any type of sensor are always corrupted by noise; in many cases, the characteristics
of the physical sensor (e.g., its transfer function in the case where it is modeled as a linear
time-invariant system) deviate from the ideal characteristics. Therefore, there is always a
technological (and also market) demand for more accurate and precise sensors.

However, increasing the accuracy and precision of sensors may come at a cost; for example,
this may require modifying the hardware design of the sensing part, which typically leads
to increasing the costs of the sensors, in turn potentially limiting their applications. This
intuitively showswhy there is a large strive to attempt to increase the accuracy and precision of
sensorswithoutmodifying their hardware but rather through statistical signal processing tools.
In other words, assuming the availability of extra computational resources or information, one
may implement statistical calibration techniques. Considering the large revolution occurring
in terms of “smart devices” (i.e., devices that have both extended computational power and
memory) in a large number of applications, it appears that performing on-the-fly calibration
of the sensors is an available approach.

In the following, wewill focus on statistical sensor calibration techniques. For this purpose,
we will typically pass through an initial step of statistical sensor modeling, in which the main
objective is to propose meaningful statistical models that agree with the recorded evidence

1
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Figure 1.1: Forecast of the revenue associated with robotic vehicle sensors in future decades
(where GNSS stands for Global Navigation Satellite System).
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and that (if possible) mimic the physical principles for the operation of the sensors. We will
then use training datasets to learn the parameters of the above statistical models, as well as
consider the problem of selecting the best model order (i.e., also determine the structure of the
model). Subsequently, starting from the above statistical models, we will derive algorithms
that can process new measurements coming from the sensors (that can thus be considered as
test sets) and filter them to statistically improve their accuracy and/or precision.

This introductory chapter is organized as follows. In Section 1.1, we extend themotivations
for this thesis that we outlined above, as well as provide a more precise and generic definition
of “sensor” and the associated main sources of deviations. Subsequently, in Section 1.2,
we mathematically define “statistical sensor calibration”, with a particular focus on the
distinctions between internal and external calibration. Then, in Section 1.3, we present the
methodology used for solving the introduced calibration problems. Since we are interested
in distance sensors, specifically in Lidars (which, incidentally, will be used as the standing
example throughout this entire thesis), we present some details about these sensors; we also
present the scientific literature related to our work in Section 1.6. Finally, we outline this thesis
in Section 1.7.

1.1 The sensor calibration problem
As mentioned above, sensors are widely used in a variety of applications, such as mobile
phones, consumer electronics, cars, airplanes, and robotics. For this reason, defining what a
“sensor” is requires using a very broad concept. In this broad sense, we borrow the definition
used in [1], where a sensor is defined as “a device or subsystem whose purpose is to detect events
or changes in its environment and respond with an electrical signal where the sensor’s output signal
may be in the form of voltage, current, or charge”. Note that this definition is clearly Information
Technology (IT) oriented; indeed, it corresponds, broadly speaking, to consider as sensors
the devices that provide information that is directly accessible to electronics components and
that is thus suitable for being processed numerically by means of opportune computer-based
algorithms.

Clearly, several different technologies can be used to build such types of sensors, depending
on what we would like to detect, the materials used, and the required properties, all of which
clearly vary from application to application. In general, a good sensor should be sensitive to
the measured property and insensitive to other properties, and it should not influence the
measured quantity [2] (e.g., a temperature sensor should not be affected by air turbulence
and should also not affect with its own thermal capacity the temperature of the object to be
measured).

Different sensors have clearly different input-output responses. These responses may
be static, dynamic, linear, nonlinear, and so on, depending on the practical case [1]. As an
example, a linear static input-output relation for an ideal sensor may be represented as

yk = a+ bxk (1.1)

where yk is the output of the sensor and xk is the “true” value that we would like to measure.
In this specific (and very simple) case, the parameter a is called the intercept (from the
graphical fact that it corresponds to the value of yk when xk = 0), and the parameter b is
called sensitivity. Note that although model (1.1) appears very simplistic, it often constitutes
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a good representation in the cases where a nonlinear and dynamic sensor is used around
some working point (which justifies linearization operations) in a situation in which there
is a clear separation of time scales between the dynamics of the sensor and the ones of the
quantity to be measured (which justifies considering the sensor as in equilibrium). In any
case, as well as for this simple case of a static sensor with a linear response, we never obtain
in practice the ideal response yk = xk since a certain deviation from the ideal characteristics
generally occurs. It is thus clear that there is practically always the possibility of introducing
some data-processing strategy that aims at estimating the value of these deviations such that
it will be possible to post-process the raw information and correct its statistics.

Before discussing potential calibration and filtering strategies, in the next SubSection, we
present some of the reasons behind the presence of the deviations in model (1.1).

1.1.1 Sources of deviations
There are many reasons for deviations between the sensor readings and the actual quantity
that should be measured. Referring again to model (1.1) for simplicity, and introducing them
only briefly to provide the reader a “summary”, some of these reasons are as follows:

• Sensitivity errors: this corresponds to situations for which the value of the parameter b is
not known precisely.

• Offset errors (or bias): this corresponds to not precisely knowing the parameter a.

• Saturation effects: this case occurs when the measured property exceeds certain limits for
which the output signal reaches a maximum (or minimum) level but then any further
increase (or decrease) in the input will not produce a corresponding variation in the
output.

• Drift: this is defined as a slow change in the output signal that is independent of the
measured quantity; very often, this is caused by some unobserved physical changes in
the sensor.

• Noise: this is defined as potentially time-correlated random deviations of the output
that result from unobserved physical phenomena (e.g., thermal noise in the electronics
governing the sensor).

• Hysteresis errors: these effects appear when the output of the sensor depends on the state
of the sensor itself; in this case, the same input level may lead to different output values
depending on how the input is approaching that level in time (i.e., if the time derivative
of the input is positive or negative).

• Quantization errors: in our definition of sensor, for whichwe always consider the presence
of electronics components, the potential use of Analog-to-Digital Converters (ADCs)
leads to approximations of the measured property in the sense of quantizations of it.

Note that hysteresis errors are, in a sense, the archetypes of errors induced by the dynamics
within the sensors. To clarify this point, most sensors generally require a certain amount of
time to respond to changes in the stimuli (e.g., classical temperature sensors such as mercury-
based ones have small but non-null thermal inertia; thus, their temperature profile follows
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first-order models, i.e., also change while measuring the temperature of the surrounding
environment). If this time dependency is ignored and the measurements are considered
directly without opportunely filtering them, then the sensor outputs will clearly be affected
by an error that is typically called dynamic error in the sensor calibration community. Finally,
as mentioned above, the sensors may to some extent be sensitive to properties that are not the
ones that will be measured. For example, there may be distance sensors whose readings are
actually influenced by the temperature of their environment. As we will show, this situation
may be tricky in the sense that it poses some observability issues: if this disturbance is also
not measured, then there is the need for some non-naïve statistical approach to compensate
for it.

Returning to the above list of deviations, some of these deviations will result in systematic
errors (or, using amore statistics-oriented name, bias), while otherswill result in random errors.
Systematic errors can typically be compensated for by means of some type of calibration
strategy. Conversely, noise can be reduced by signal filtering processing, but this (as we will
show in the later sections) is generally at the expense of the dynamic response of the filtered
sensor.

We now continue in SubSection 1.2, discussing what wemean by statistical sensor calibration.

1.2 Statistical sensor calibration
Here, statistical sensor calibration is the overall process of transforming sensor outputs such
that they are as close as possible to the value to be observed (or, referring to model (1.1), to the
whole set of algorithms that shall be used such that the input-output map eventually becomes
as close as possible to that of an ideal sensor). Note that unlike the standard hardware sensor
calibration, in our definition, “statistical sensor calibration” does not involve modifying the
hardware but rather transforming the sensor outputs into something that is closer to the
actual values using signal processing tools and filtering techniques.

To provide a graphical overview of this concept, Figure 1.2 shows the sensor and sensor
calibration procedures in a simplified diagram, where we indicate the true value of the
quantity to be observed with xk, the random noise with νk, the sensor output with yk and
the calibrated measurement with x̂k. The systematic errors are assumed to be added in the
sensor block.

Sensor

νk

Calibration
ykxk x̂k

Figure 1.2: A graphical description of our definition of the concept “sensor calibration”.

The main objective of this thesis is to present a generic procedure that can be used to
perform statistical sensor calibration for any sensor and that can account for the various
deviations introduced above. As a case study, we will consider distance sensors (specifically
Lidar sensors) since these sensors are useful for many robotics and industrial applications.
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We nonetheless stress that the procedures developed in this thesis are generic and can thus
be applied to a multitude of other types of sensors.

Before presenting the mathematics behind the proposed schemes, we report that there
are several types of sensor calibration strategies. In general, we can divide these strategies
into two main categories: external sensor calibration (described in Section 1.2.1) and internal
sensor calibration (described in Section 1.2.2). The first category generally refers to spatial
and temporal calibrations (see the examples hereafter); the term external is used in this case
because the sources of deviations in the measurements are not within the sensor itself but
rather generated by external effects such as mechanical installation issues, timing-clock drifts,
or delays [3].

1.2.1 Calibration of the external parameters

Extrinsic (Spatial) calibration

Assume that a sensor measures distance, speed, acceleration, or any other physical quantity
through a dependence on the sensor location and orientation with respect to the installation
reference frame. Installation errors could then be due to misalignment, installation errors
or hardware accuracy limitations. These errors will then result in translation and rotation
errors. Even if we know the sensor model very precisely, we need to calibrate for these errors.
In general, the calibration problem is formulated as a nonlinear minimization problem to
find the translation and rotation parameters that lead to the minimum error in the training
dataset.

Extrinsic calibration problems are clearly important in multisensor systems where sensor-
to-sensor transformations are required, as described extensively in [4]. An example is collabo-
rative stereovision applications, where several robots equipped with cameras collaborate to
form 3D images from the information that they capture.

Temporal calibration

Inmany digital sensors, wemay record themeasurements by leveraging on an accurate system
clock. Thus, if the clock is not as precise as expected or if the clock frequency drifts over time,
then we will obtain measurements at a slightly shifted time scale. This may not constitute a
problem if the input is static (i.e., if the measured quantity is not changing over time) or if it is
changing very slowly with respect to the time drift. However, in other cases, this error could
have large effects, and in such cases, temporal calibration is important. Practical examples
where temporal calibration is needed include clock synchronization in multiagent systems, as
discussed in [5]; synchronized voltage phaser measurements in electric power networks; and
measurements of distance based on ToF Lidars .

The issue of finding generic algorithms for generic spatial and temporal external calibration
of sensors is beyond the scope of this thesis, as this topic is extremely broad. We will instead
focus on the issue related to the internal calibration of sensors. Therefore, whenever we
mention the calibration problem in the following sections, we implicitly mean “internal sensor
calibration”.
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1.2.2 Calibration of the intrinsic parameters
As stated above, this is the main topic of this thesis; specifically, we will consider different
types of linear and nonlinear models and assume both homoskedastic and heteroskedastic
noise variances. In general, we consider that the expected value of the sensor measurements
E [yk] might be biased in the sense that E [yk] �= xk. Moreover, the noise effects will affect the
sensor measurements in the sense that they will have a certain variance. Our aim with the
calibration process is to ensure that the filtered measurements have an expected value E [x̂k]
that is less biased and that they have a smaller variance, as graphically explained in Figure 1.3.
Referring to the definitions introduced in the figure, which also indicates the density of the
raw measurement p (yk |xk ) and the density of the calibrated measurement p (x̂k |yk ) under
the assumption that both yk and x̂k are normally distributed, our aim is thus to improve the
accuracy and precision of the readings.

sensor
accuracy

calibrated
accuracy

sensor
variance

calibrated
variance

p (x̂k |yk )
p (yk |xk )

true value

E [yk] E [x̂k] xk
xk

Figure 1.3: Definitions of sensor accuracy and precision (reciprocal of the variance). The
aim of calibrating a sensor is to improve both of these quantities by using some opportune
statistical estimation tool.

Wewill defer describing the calibration problem in deepermathematical terms to Chapter 3
and instead continue in the following section by describing the general methodology that
will be used throughout this thesis.

1.3 Calibration methodologies
The general methodology that we follow to solve the statistical sensor calibration problem is
described graphically in Figure 1.4. In practice, we will always follow a three-step procedure:
perform some statistical modeling, proceed to model estimation, and then develop some data
filtering technique.

In more detail,
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step 1: build a statistical model for the sensor (Chapter 3)

step 2: estimate the model order and model parameters (Chapter 4)

step 3: build and use a filter based on the statistical
model built in step 1 and identified in step 2 (Chapter 5)

Figure 1.4: Generic diagram presenting the methodology applied in this thesis.

for the statistical modeling step, themain objective is to find a statistical model that explains
the measured evidence and (if possible) also embeds the physical principles for the
operation of the sensor. It is in this step that we pose assumptions such as linearity
/ nonlinearity and about the behavior of the measurement noise variance. A general
description on how to perform this step is presented in Chapter 3;

for the model estimation step, we note that once step 1 is performed and we thus have a pro-
posed structure for the sensor model, the next operation is to perform model parameter
estimation, together with deciding the model complexity, from the available information.
Importantly, the model parameter estimation step can use different amounts of informa-
tion: for example, the most classical strategy is using training and test datasets. Other
practical cases of interest are when some data are missing or the data sets are incomplete
(in the sense that some quantities are nonobservable). As we will show, addressing
these situations leads to further complications in the estimation procedure. Another
objective here is to decide the model complexity, which is generally performed through
comparing several models with different degrees of complexity. First, the parameters of
each model are estimated using a training dataset, and then the model that best fits a
validation dataset is selected. Further details about model parameter estimation and
deciding model complexity with the associated problems are presented in Chapter 4;

for the step of filtering new measurements from the sensor, we note that once steps 1 and
2 above are completed, we then have the model structure, its complexity, and a point es-
timate of its parameters. The last step is then to process the forthcoming measurements
using the calibrated model and a suitable filtering technique to be developed. This filter-
ing is thus the one performing the last operation of transforming the raw measurements
from the sensor into something that is closer to the true value of the quantity to be
observed. Further details about the filtering procedures and the associated problems
are presented in Chapter 5.
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We continue by discussing a specific type of sensor because this type of sensor will be
used as the standing example throughout this thesis.

1.4 Distance-measuring sensors
The capability of measuring distances is essential to interact effectively with unknown envi-
ronments. When in an unknown place, for example, a robot (or an animal or a human; from a
principles perspective, this does not matter) must infer where the obstacles are to be able to
move without colliding with them.

An example more connected with a recent technological development is that of au-
tonomous cars: being able to measure distances is paramount for these systems; they indeed
need to continuously update maps of their surrounding environment to decide their actions
based on the positions of the various obstacles. Thismeans that they need tomeasure distances
in a very precise and accurate way. Autonomous cars are nonetheless just an example; in every
industrial and practical application where the environment is unknown, from autonomous
robots that clean floors to robots that fly to perform aerial inspection and repair, one needs to
be able to measure distances. Distance sensors, to summarize the message that we want to
convey, are ubiquitous.

Measuring distances can be achieved using different technologies. A dichotomy typically
used in this field is active vs. passive range finders [6]. The first category contains devices that
somehow “illuminate” the target using their own energy (e.g., radars, as explained better
below), whereas the second category consists of devices that do not send any energy, such
as stereocameras (i.e., two cameras with separate sensors that use the environment light to
capture two images of the scene and then determine the distance from the sensor to the target
through processing the two images. Microsoft Kinect is a well-known example).

Another important passive distance sensor is the odometer, which is a device used to
measure the distance traveled by a platform through counting the number of wheel rotations.
Odometers are heavily employed in wheeled robotics; they generally suffer from errors
due to slipping and, to be precise, they cannot detect the distance to objects. However, we
mention them due to their extended presence in practical situations (and also because we
will specifically address the problem of how to integrate the information coming from these
sensors with information from other distance-measuring devices).

For completeness, some of the most famous active range sensors are the following:

radar, which stands for radio detection and ranging. Radars illuminate their surrounding
environment by sending electromagnetic energy using their antennas; when the electro-
magnetic waves hit a target, part of them are then reflected back toward the transmitter
(which also typically works as a receiver). When the sensor detects the wave coming
back, it then records the time between when it was sent and when it was received.
The distance between the emitter and the target is thus related to the measured time.
Some advantages of radars are that they work day and night without being strongly
affected by rain, snow or poor visibility. A disadvantage is that the target must reflect
electromagnetic energy;

ultrasonic range finders, also called sonars, whose working principle is very similar to that
of radars, but they employ ultrasound waves rather than electromagnetic waves. That



10 Chapter 1. Introduction

is, the sensor transmits ultrasound waves, the waves hit a target, part of them are
reflected back, and the recorded elapsed time corresponds to the distance between the
sensor and the target. An advantage of sonars is that these types of waves are reflected
from most surfaces. A disadvantage is that the speed of ultrasonic waves depends on
environmental conditions such as temperature and pressure, quantities that are typically
not observable by the system;

lidar, which stands for Light Detection and Ranging and will be described in full detail in
the following Section 1.5. This thesis indeed considers practical Lidar examples, and
we use them to illustrate in which sense one may start from the physical phenomena
underlying the measurement process to derive the statistical model of the sensor itself.

1.5 Lidar sensors

Among the various distance sensors illustrated above, Lidars are very promising, particularly
for distances up to hundreds of meters, and are being increasingly employed due to their
excellent performance relative to their relatively contained costs. Indeed, they are often
the main sensors used in applications such as navigation, object detection, localization and
mapping. To strengthen this claim, we note that Lidars serve as the main distance sensor
for Google’s and Volvo’s self-driving cars; for example, Google’s cars are equipped with
a Velodyne 64-beam Lidar system [7] (costing approximately $70, 000) mounted on the top
(see Figure 1.5). This type of Lidar allows vehicles to generate detailed 3D maps of their
surroundings. Volvo cars instead employ a cheaper solution based on several (but cheaper)
static sensors; nonetheless, Volvo’s basic approach for creating 3D maps of the surrounding is
the same as Google’s.

There is clearly an increasing interest to have Lidars that are not only accurate but also
cheap: accurate and precise Lidars already exist (see the Velodyne 64-beam), but they tend
to be expensive and thus not suitable for mass deployments. Meanwhile, cheap Lidars also
already exist; of course, their shortcoming is that they have larger biases and noise variances
than their expensive counterparts.

Again, one of the objectives of this thesis is to provide general statistical tools that can
be used to improve the precision and accuracy of sensors. Cheap Lidars will thus constitute
a perfect field example for assessing whether our methodologies have practical meaning.
Before discussing the literature related to the problem of sensor calibration, we describe the
basic operating principles for the types of Lidar technologies that will be considered in this
thesis. The first type that we consider (details in Section 1.5.1) is the pulsed ToF Lidars ,
which have also been considered in our paper [8]. The second type (details in Section 1.5.2) is
triangulation Lidars , which have been considered in our papers [9, 10].
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Figure 1.5: A simplified drawing of the various sensors present in Google’s self-driving cars.
The Lidar sensor is mounted on the top, and its purpose is to map the surrounding vehicles
and objects. Source: Boston Consulting Group (BCG)

1.5.1 ToF Lidars
One of the most famous manufacturers of ToF Lidars is SICK AG3, and Figure 1.6 shows two
of these devices that we used in our experiments, namely, the LMS200 and LMS111 sensors.

The basic principle underlying the operation of pulsed ToF Lidars is shown in Figure 1.7.
In brief, a pulsed infrared laser beam is emitted by the laser source, travels out of the device,
and is then reflected from the object surface into the device again, where its arrival time is
detected by an opportune photoreceiver. The time between the transmission and the reception
instants is then used to measure the distance between the scanner and the object. Moreover,
since the laser beam is deflected by a rotating mirror, the sensor can measure distances in a
fan-shaped scan pattern.

The measurement of the distance derives from ideal considerations: if the temporal width
of the pulse is null, then the distance d between the sensor and the object should satisfy

d =
c τ

2
(1.2)

where c is the speed of light and τ is the measured ToF between when the laser pulse is
emitted and when it is received.

3Simply to illustrate the market penetration of ToF Lidars , we report that SICK AG was founded in 1946 and
now has more than 50 subsidiaries and equity investments, as well as numerous agencies around the globe. In
the fiscal year 2016, SICK had more than 8,000 employees worldwide and achieved group sales of just under
EUR 1.4 billion (source: ).
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Figure 1.6: Two of the ToF Lidars that have been used in our validation experiments. On the
left, the SICK LMS200 Lidar . On the right, the SICK LMS111 Lidar . (source: SICK AG with
permission)

transmitter

receiver

fixed

m
irror

rotating
m
irror objectlaser scanner

laser beam

laser
junction

laser
cavity

Figure 1.7: Graphical description of the operating principle for pulsed ToF Lidars. A pulsed
infrared laser beam is first emitted from the transmitter. The case of the transmitter, in dark
gray, encloses a laser junction and a laser cavity. The emitted laser beam is then deflected by
a rotating mirror (resulting in a fan-shaped scan pattern) and is finally reflected back by the
object. The time of flight τ between the transmission and the reception of the laser beam is
then used to estimate the distance d between the scanner and the object.
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ToF Lidars require fast and expensive electronic counters to measure very small time differ-
ences; they also require precise and calibrated rotating mirrors (also expensive); finally, they
also require laser diodes that emit precise and calibrated wavelengths, which requires tem-
perature calibration procedures. All these requirements together make ToF Lidars expensive
and bulky devices.

Laser diode wavelength

The laser diode is the basic element in all ToF Lidars . We now briefly describe the role of its
temperature in determining its lasing wavelength; this dependency is indeed of paramount
importance in our experiments. We observed that during our experiments on LMS200 ToF
Lidar, changing the device temperature results in corresponding changes in the measured
distance when the true distance is fixed (see Figure 3.4). Without diving into the physical
explanations, it implies variability in the calculated τ shown in Equation (1.2).

From [11], we know that the emitted wavelength changes with temperature in discrete
steps, as schematically shown in Figure 1.8.
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Figure 1.8: Plot of single-mode laser diode wavelength vs. case temperature at constant power
operation [11] using a Mitsubishi ML 4402 GaAs index-guided laser diode.

From a logical standpoint, this dependency is explained through the following chain of
consequences:

• at every given temperature, each laser diode cavity admits a set of specific and given
lasing modes. The set of lasing modes is the set of wavelengths for which photons with
that specific wavelength are in resonance within the diode cavity;
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• certain frequencies cause more pronounced photon avalanche effects than others; the
laser diode medium thus exhibits a certain gain profile, as shown in Figure 1.9;

• the cavity lasing mode that has a higher gain profile statistically tends to be the winning
mode and will statistically be the dominant mode produced by the laser (i.e., the laser
pulse will contain coherent photons with identical frequency content). Note that it is
not a deterministic relation; in practice, the probability of having a laser pulse with a
specific frequency content is directly proportional to its associated gain profile;

• if the temperature of the laser cavity changes, this will shift the cavity modes (toward
increasing or decreasing wavelengths, depending on the temperature change);

• at the same time, changing the temperature of the laser cavity also shifts the gain curve;
the shift of the gain curve is nonetheless generally larger in amplitude than the shift in
the cavity modes. This implies that the modes not only shift in wavelengths but also
change in relative importance.

1.5.2 Triangulation Lidars
The triangulation Lidar used in our experiments and shown in Figure 1.10 is from Neato4.
This type of Lidar is among the cheapest available on the market. Incidentally, the sensor that
we used cost $135.00 as of February 2016 on eBay. Nonetheless, the original industrial goal
was to reach an end user price of $30.00. Returning to the operating principle of this type
of sensor, triangulation Lidars consist mainly of an infrared laser transmitter, a pinhole lens,
and a pinhole CCD camera. The working principle is extremely simple and schematically
illustrated in Figure 1.11. First, the transmitted laser beam hits an object and is then reflected
back to the pinhole CCD camera. Then, the camera, which is simply a linear sensor, measures
the distance b′k between the dotted line (which is parallel to the laser beam) and the laser beam
reflected from the object. The similarity between the large and small triangles in Figure 1.11
then provides the relation

dk =
bd′

b′k
(1.3)

where k is the measurement index, dk is the perpendicular distance to the object, and d′ and b
are constants given by the geometry of the Lidar .

It is clear from (1.3) that b′k is inversely proportional to dk. Clearly, this will induce quanti-
zation issues: uniform quantization in measuring b′k will induce nonuniform quantization
in measuring the distance dk. Moreover, any additional measurement noise over b′k that is
uniform over the entire length of the CCD sensor will be mapped into a nonuniform mea-
surement noise over the possible distances dk. The noise of this sensor is thus intrinsically
heteroskedastic, as will be explained in more detail in Example 3.4.

The simple operating principle of the triangulation Lidars , togetherwith using inexpensive
laser diodes and CCD pinhole cameras, make the cost of the device very low compared with
the ToF Lidars . Triangulation Lidars are also very light, and this enables their use in aerial
applications. However, their precision and accuracy are very limited compared to ToF Lidars
.

4A manufacturer of robotic vacuum cleaners, .
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Figure 1.9: The plot explaining the cavity modes, gain profile and lasing modes for a typical
laser diode. The upper drawing shows the wavelength v1 as the dominant lasing mode, while
the lower drawing shows how both wavelengths v1 and v2 are competing; this latter case is
responsible for the mode-hopping effects.
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Figure 1.10: Photo of a triangulation Lidar produced by Neato (XV-11) and the associated
Arduino board for interfacing it with standard computers.
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Figure 1.11: Diagram exemplifying the working principle of a triangulation Lidar . The
laser emits an infrared laser signal that is then reflected by the object to be detected. The
beam passes through a pinhole lens and hits a CCD camera sensor. By construction, the
triangles defined by (b, dk) and by (b′k, d

′) are similar; this means that the distance to the object
is nonlinearly proportional to the angle of the reflected light, and as soon as the camera
measures the distance b′k, one can estimate the actual distance dk using triangle similarity
concepts.
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1.6 Related work
We now review the scientific literature on sensor calibration techniques. We start by first
analyzing the literature dedicated to the devices that we will specifically consider in this
thesis, and then we survey literature on the generic issue of sensor calibration.

As mentioned above, the most common types of distance sensors used in terrestrial
applications and with measurement ranges from centimeters to hundreds of meters are
Lidars, sonars [12], and odometers. One may expand this list and add radars [13] to it;
nonetheless, they tend to be used for deeper ranges than the ones considered here [14], and
thus, we avoid presenting an exhaustive literature review for them for the sake of brevity.

1.6.1 Characterization and calibration of Lidars
Specific types of Lidars have specific statistical models, and leveraging on these differences,
different authors proposed different calibration algorithms. In the following Sections 1.6.1.1
and 1.6.1.2, a brief review of the literature will be presented.

1.6.1.1 ToF Lidars

The characterization of the intrinsic parameters of ToF Lidars has been analyzed in [15,
16, 17, 18, 19, 20, 21, 8, 22]. Specifically, a characterization study of the Sick LMS200 Lidar
with measurement drift over time and targeting the influence of the surface properties and
the incidence angle on the measurement process was presented in [15], and the paper also
proposed a probabilistic rangemeasurementmodel constructed starting from the experimental
results. A detailed characterization of the Hokuyo URG-04LX 2D Lidar, a device with issues
such as time drift effects and dependencies on distance and target properties, was presented
in [16]. The authors concluded that the accuracy of the sensor is strongly dependent on the
target properties and that it is consequently difficult to establish a calibration model. However,
a computationally inexpensive algorithm for range correction in industrial scenarios that is
based on the material surface was recently proposed and developed in [17]. A comparison
between the Sick LMS200 and Hokuyo URG-04LX sensor for measurement drift over time
and the effects of material and color on measurement accuracy were discussed in [18].The
geometry of the emitted beam and the mixed pixel effect for LMS200 Lidar were characterized
in [19]. Amodel was proposed by [20] for estimating edge loss in Lidar data by considering the
impacts of various factors, such as scanning distance, density of data and incidence angle on
the edge loss. The evaluation results showed that using this model reduces the measurement
error. The performance of CSEM SwissRanger2 and CanestaVision DP205 3D Lidars was
characterized in [21], examining the effects of target range, reflectance, angle of incidence and
mixed pixel effects. In our previous work [8], we analyzed how the temperature stabilization
transient constitutes a source of measurement drift over time for the LMS200 Lidar. The paper
proposed a statistical model that accounts for the bias induced by temperature changes and
the laser diode mode-hopping effects, leading to an alternative calibration procedure that is
based on EM strategy. Recently, a probabilistic modeling of Hokuyo UTM-30LX Lidar was
presented in [22].

Still considering calibration issues, there have also been considerable efforts on how to
perform intrinsic calibration for multibeam Lidar systems, where the results from one beam
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are used to calibrate the intrinsic parameters of other beams [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].
As for single-beam Lidar systems, [30] proposed a method for the intrinsic calibration of
a revolving-head 3D Lidar and the extrinsic calibration of the parameters with respect to a
camera. This technique involves an analytical method for computing an initial estimate for
both the Lidar’s intrinsic parameters and the Lidar-camera transformation, which is then used
to initialize an iterative nonlinear least-squares refinement of all of the calibration parameters.

The authors in [33] built a 3D laser scanner using 3 2D laser scanners and proposed an
online optimization to calibrate the intrinsic parameters of the constructed device.

1.6.1.2 Triangulation Lidars

The calibration of the intrinsic parameters of triangulation Lidars has been studied in [34,
35, 36, 9, 37, 10]. Specifically, the technology introduced in [34] performed an early assess-
ment of the potential for the triangulation Lidars technology. These devices are affected by
nonlinearities, as discussed in [35], and by the color of the target, as discussed in [36].

A first calibration procedure that builds on a statistical model of the sensor was proposed
in [35], where the model was assumed to be homoskedastic. A heteroskedastic model for
the sensor was proposed by [9] with a more general calibration procedure based on the WLS
for parameter estimation and AIC for model selection. This model was extended in [37] to
include the beam angle, and a calibration procedure suitable for targets with flat surfaces was
also proposed. In addition, calibration procedures have been proposed that do not require
independent sources of ground-truth information (unknown states), as in [10], where an
approximated EM procedure is used for joint parameter and state estimation.

We also mention the topic of online calibration of sensor parameters for mobile robots
when performing Simultaneous localization and mapping (SLAM), which is very useful in
navigation tasks. In this category, [38] proposed an approach to simultaneously estimate a
map of the environment, the position of the onboard sensors of the robot, and its kinematic
parameters. These parameters are subject to variations due to wear of the devices or mechani-
cal effects such as loading. Another similar methodology for the intrinsic calibration of depth
sensor during SLAM was presented in [39].

1.6.2 Ultrasonic sensor
For the calibration of sonars, the existing literature presents ultrasonic range-finder models
in [40] and opportune calibration algorithms in [41]. Specifically, a probabilistic measurement
model for sonar suitable for robot localization was proposed by [40], and a calibration model
of an ultrasonic range-finder from POLAROID ultrasonic ranging system was built in [41]; it
is based on experimental results and includes a probability directional diagram of the sensor
and probability estimation of the sensor measurements.

1.6.3 Odometer sensor
An exhaustive literature review on how to calibrate odometers was presented in [42]. Note
that this review presents, among others, an online identification algorithm for the odometer
parameters for a differential drive mobile robot. Complementing the last cited work, [43]
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described how to treat the case of linearized odometer models and considered how the errors
from this linearization process propagate to other computations.

After presenting the above list of specialized literature, we now move to reviewing works
that address calibration-related issues from a more general perspective.

1.6.4 Parameter estimation in heteroskedastic models
Estimating the parameters of models consisting of heteroskedastic noises is a challenging
task. Ordinary Least Squares (OLS) can clearly be used as a one-fits-all technique, but from a
statistical perspective, this is not desirable. In this case, the OLS solution is indeed known
to lead to inefficient estimators, with a loss of statistical performance that increases with the
degree of heteroskedasticity [44]. Indeed, the OLS solution returns biased estimates of the
variance term in the model and incorrect confidence intervals [45].

To design better estimators, one should check the structure of the noise term. In het-
eroskedastic systems, this can be either dependent or independent of the states. For the
latter case, Gibbs samplers have been proposed for linear heteroskedastic Bayesian models in
[46]. Here, the measurements were assumed to be independent and identically distributed
with a Student-t distribution; in this manuscript, the author also showed the equivalence in
posteriors between the Student-t measurement case and an appropriate mixture of Gaussian
measurements. However, in this thesis, we will focus on the more general case where the
noise structure depends on the states. Specifically, we consider the situation where the noise
structure is an unknown function of the states, which is a type of model that has been studied
in the econometrics literature, for example, in [47], where the paper proposed a two-step
estimation procedure for models where the kth disturbance variance σk is of the form

σk = σ2xλ
k

where xk is the state and σ2 and λ are unknown model parameters. This procedure has been
examined in detail for more general variance models similar to

σk = exkλ

and compared with the iterative ML by [48]. The analysis of [48] showed that the two-
step estimation procedure is inconsistent in the heteroskedasticity parameters and then
proposed a modified two-step estimation procedure that reintroduces consistency. The
Bayesian estimators for heteroskedastic systems proposed by [49] are suitable for variance
models that are of the type

σk = σ2x−λ
k .

The work of [50] extended the Bayesian approach of [49] to multidimensional settings and
estimated the parameters through opportune MCMC samplers. This work then compared the
performance of the newly proposed estimator with those of previous strategies in the literature
(specifically, the two-step and iterative ML strategies in [48]). In this case, it was shown that
Bayesian estimators provide better performance in the Root-Mean-Square Error (RMSE) and
the interquartile range sense.

We finally consider that in [47, 48, 49, 50], the authors assumed models that are useful for
econometrics settings. In this thesis, we will present a Bayesian analysis that is dedicated to
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the generic problem of parameter estimation in generic nonlinear and heteroskedastic systems
in which the nonlinearity is modeled through a polynomial of opportune order. In other
words, we consider a set of models that generalize the ones discussed above.

1.6.5 On the model order selection issue

Parametric models require, in addition to a point estimate of the parameter vectors, the
estimation of the order of the model (generally intended as an integer that determines the
dimension of the parameter vector [51]). When considering the cases where a nonlinear
function is expanded through polynomials and thus the polynomial models considered in
this thesis, the model order should be intended as the sum of the degrees of the various
polynomials constituting the models.

The problem of selecting an appropriate model order starting from the data is central
in the statistics and system identification fields. Selecting orders using cross-validation, i.e.,
using the concept of avoiding overfitting already in the training set, is a common strategy that
is known to be of practical use when a large number of data partitions and fits are available.
Other model order selection strategies based on information criteria such as AIC, BIC and
Deviance Information Criterion (DIC) use the likelihood of the proposed model as a biased
estimate for the information criterion and then subtract a penalty term to make the estimate
unbiased, with each criterion suggesting different penalty terms, as discussed in greater detail
in [51, 52].

The AIC [53] is actually an asymptotically unbiased estimate for the direct deviance
between the distributions of the true model (that is unknown) and the considered model. The
performance of AIC is widely satisfactory in many practical case studies considering finite
sample data. However, it has been reported to often suffer from an overfitting problem from
practical perspectives [51]. It is moreover generally applicable when the ML estimate of the
model parameters is available.

Regarding the problem of model selection for Bayesian models, several model selection
criteria have proposed up to now [54]. A well-known example is the BIC [55] that was
first proposed for Bayesian systems, that is based on approximating the likelihood of the
models using Laplace approximations, and that is known to be asymptotically consistent and
independent on the prior (but, as for the AIC, requiring computing the ML estimate of the
parameters). The DIC [56] is instead suitable for Bayesian inference with MCMC techniques
when the ML estimate of the parameters is not directly available; in this case, the score of
the DIC is directly calculated from the posterior samples. However, it has been reported
that this information criterion is prone to overfitting because the same data are used for
both generating the posterior samples and evaluating the estimated model. To solve the
model overfitting problem of the DIC, several improvements such as the Bayesian Predictive
Information Criterion (BPIC) have been proposed; see, for example, [57] and [58]. A recently
published review and comparison paper about these methods is [59], where the authors also
described the Bayesian Model Averaging (BMA) (that is not strictly used for selecting a certain
specific model but rather for employing convex sum over the candidate models; note that the
authors in [59] concluded that the BMA – if feasible – often returns better models than the
model selection criteria described above).
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1.7 Thesis outline
This thesis is divided into seven chapters:

Chapter 1 , i.e., this chapter, provided an introduction to the sensor calibration problem
and described the methodology that we propose for solving the problem, as well as
presented some details about the sensors that will be considered in our examples as a
case study;

Chapter 2 describes the theoretical background about parameter and state estimation, and
it also describes the numerical techniques used in this thesis, such as EM and MCMC,
with toy examples. This chapter is a quick guide focused on the needs of this thesis,
and it is intended for readers that would like to refresh their knowledge on estimation
theory in general. This chapter thus does not constitute the focus of our research;

Chapter 3 starts describing our contributions to the scientific literature by defining the statis-
tical models that we have been considering in our work, also listing the possible choices
that are of interest in this thesis;

Chapter 4 describes our model parameter estimation framework, starting with addressing
linear homoskedastic models and then proceeding to the nonlinear and heteroskedastic
cases. This chapter also presents the important case where the user has incomplete
information at handwhen performing the calibration step. Finally, this chapter addresses
the issues of selecting the model order and model complexity;

Chapter 5 addresses how to use the estimated models in practice, i.e., how to filter new raw
data coming from a sensor to improve its statistical properties;

Chapter 6 presents several field applications where the sensor calibration is used coupled to
some practical needs. Here, we test the methodology developed in our years as a PhD
student and quantitatively analyze the improvements that our algorithms can bring in
terms of precision and accuracy;

Chapter 7 finally describes some conclusions that we gathered in this journey and discusses
some potential future directions.

Table 1.1: Summary and meaning of the most common symbols.

symbol description

c the speed of light
d the distance between the Lidar and the object
τ the measured time of flight for Lidar
λ0 the laser Diode nominal wavelength in Lidars
f the frequency of light
k time / measurement index (i ∈ {1, . . . ,M})
T training dataset
V verification dataset
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Table 1.1: Summary and meaning of the most common symbols.

symbol description

M number of measurements in training dataset
L number of measurements in verification dataset
xk value of the state at time k
x state vector
yk sensor measurement at time k
y measurement vector
Ω the sample space
PΩ the set of all probability distributions on Ω
θ parameter vector θ ∈ Θ
Θ the parameter vector space
σν nominal standard deviation of the measurement noise
f0 Fourier expansion fundamental frequency
JM the number of mixture components
�(θ) is the log-likelihood function of θ
Pd heat power generated by the junction (equal to zero when the device is off)
tj temperature of the junction
tc temperature of the transmitter case
ta temperature of the external ambient
ts noisy measurement of the temperature of the transmitter case
C1 thermal inertia of the transmitter case
C2 thermal inertia of the laser scanner case
R1 thermal resistance between the transmitter case and the laser scanner case
R2 thermal resistance between the laser scanner case and the ambient

fmean (·) (static) measurement bias (see (3.19))
fnoise (·) (static) heteroskedastic standard deviation of the measurement noise (see (3.19))

Σν covariance of the measurement noise vector (see (3.21))
N polynomial model order for the term fmean

φk,m the incidence angle at scan k for beam m on flat target
αi polynomial coefficient of dik for fmean

βi polynomial coefficient of dik for fnoise
ci polynomial coefficient of φi

k for fmean

κi polynomial coefficient of φi
k for fnoise

S number of sensors
fstate (·) (static) state evolution function (see (3.19))

ek standard Gaussian process noise
σe standard deviation of the process noise
uk input at time k
t index of the MCMC run

tmax maximal number of MCMC iterations
tmin burn-in MCMC iterations

μα, Σα, τα parameters defining the prior for α (see (3.37))
Gx Vandermonde matrix associated to the set of states x (see (4.144))
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Table 1.1: Summary and meaning of the most common symbols.

symbol description

ρ power factor defining the actual variance of the noise term fnoise (see (3.38))
τν = σ−2

ν nominal precision of the measurement noise
aν , bν parameters defining the prior for σν

νk normalized measurement noise at time k
γ acceptance probability

β, β′ proposal variances
Jp the number of candidate models in the set of models

Table 1.2: Symbols and meanings of some used set.

symbol description

R the set of real numbers
R+ the set of positive real numbers
Q the set of rational numbers
Q+ the set of positive rational numbers
N the set of natural numbers
N+ the set of positive natural numbers
Z the set of integers numbers
Z+ the set of positive integers numbers
0 vector of zeros with opportune length
1 vector of ones with opportune length
0 matrix of zeros with opportune dimensions
IN identity matrix of size N ×N





Chapter 2

Background

This chapter provides a general background of the statistical estimation theories that will be
used in this thesis, as well as explains and briefly summarizes the numerical methods that
we built upon for solving some of our estimation problems, such as EM and MCMC. Finally,
this chapter describes the basic algorithms that we used for the filtering and state estimation
steps, such as the Kalman filter for linear systems and particle filters for nonlinear systems.

2.1 Statistical estimators and their properties
When modeling and calibrating sensors, we face the very generic problem of estimating
parameter values from a stream of discrete-time measurements. Mathematically, we assume
that we have a data sequence y = {yk}Mk=1 that has been generated statistically based on an
unknown model parametrized by θ. Here, we assume probabilistic models, i.e., that y is
generated according to a distribution of the type

y ∼ p (y |θ ) (2.1)

with p (y |θ ) interpretable either as the probability of observing y when the distribution is
parametrized by θ or the likelihood of the parameter θ given that we observed y.

Our aim is then to estimate the value of θ based on this dataset and on the knowledge of

model (2.1). The classical approach is to consider our estimate θ̂ as a statistic, i.e., a function of
the data that does not depend on the estimand θ. Thus, in formulas, our estimate will always
satisfy a structure of the type

θ̂ = f(y1, y2, · · · , yM) (2.2)

where f(·) is some opportune function of the dataset.
The aim is to have both accurate and precise estimates in the sense of Figure 1.3. These

qualities are connected to the concepts of unbiased and minimum variance estimators. An

estimator θ̂ of the parameter θ is then said to be unbiased if on average it will return the true
value [60], or mathematically,

E
[
θ̂
]
= θ , ∀θ ∈ Θ (2.3)
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whereΘ is the set of admissible (or physically meaningful) θs. Based on the above, we can
define the estimator bias b(θ) as follows:

b(θ) := E
[
θ̂
]
− θ (2.4)

where it is clear that the bias is a function of the actual parameter θ. In addition to having
an unbiased estimator (accurate estimator), another criterion for deciding the estimator
optimality (in the squared loss sense) is the minimumMSE. We can define the estimator MSE
as follows [60]:

MSE(θ̂) := E

[(
θ̂ − θ

)2
]
. (2.5)

It is then possible to expand the estimator MSE as

MSE(θ̂) = E

[(
θ̂ − E

[
θ̂
]
+ E

[
θ̂
]
− θ

)2
]

= E

[((
θ̂ − E

[
θ̂
])

+
(
E

[
θ̂
]
− θ

))2
]

= var
(
θ̂
)
+ 2E

[(
θ̂ − E

[
θ̂
]) (

E
[
θ̂
]
− θ

)]
︸ ︷︷ ︸

=0

+b(θ)2

= var
(
θ̂
)
+ b(θ)2

(2.6)

Therefore, an unbiased estimator will have the estimator variance equal to the MSE,

var
(
θ̂
)
= MSE(θ̂). (2.7)

An unbiased estimator is also said to be a minimum variance estimator if its variance is
minimal in the family of unbiased estimators of the same parameter. A Minimum Variance
Unbiased Estimator (MVUE) is thus considered to be optimal in the squared loss sense.

2.1.1 Efficiency and CRLB
Another important concept is that of efficient estimator. An efficient estimator is an unbiased
estimator that achieves the so-called Cramer-Rao lower bound for the estimator variance. The
CRLB is in turn related to the Fisher information matrix, defined as

I(θ) := −E

[
∂2 log p (y |θ )

∂θ2

]
. (2.8)

When it exists, the reciprocal of the Fisher information matrix is said to be the CRLB for the
variance of unbiased estimators, and it provides a lower bound for their variances in the sense
that

CRLB := I(θ)−1 ≤ var
(
θ̂
)
= MSE(θ̂) (2.9)

for any θ̂ in the set of unbiased estimators. Efficient unbiased estimators are thus for sure
MVUE (while the opposite is not true in general). Efficient estimators are also informally said
to “use all the available information” in the dataset related to the estimand. Importantly, an
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unbiased estimator that satisfies the CRLB may be obtained if and only if some function of
the data g(y) exists such that [60]

∂ log p (y |θ )
∂θ

= I(θ) (g(y)− θ) . (2.10)

In this case, the estimator θ̂ = g(y) is efficient and MVUE.
In the remainder of this section, we will present some examples describing how to find

the CRLB for the statistical models that are used throughout this thesis (an operation that
will be helpful later when we describe the statistical properties of our estimators). We will
start with the toy example 2.1 to demonstrate the principle behind computing the CRLB. We
will then proceed in Example 2.2 with a case where the measurement noise variance is not
constant. Finally, we will show in Example 2.3 how increasing the number of parameters in a
model also increases the CRLB with increasing number of parameters.

Example 2.1 (CRLB for systems with unknown parameter and noise variance)

Consider the following linear system:

yk = α + σννk (2.11)

where α ∈ R is the unknown model parameter, σ2
ν ∈ R+ is the unknown noise variance,

and νk ∼ N (0, 1) is independent and identically distributed (iid). Additionally, assume
that alpha is independent of νk. The parameter vector for this problem is then θ := [α, σ2

ν ]
T .

The log-likelihood of the model forM measurements is instead

log p (y |θ ) = −M

2
log(2π)− M

2
log σ2

ν −
1

2σ2
ν

M∑
k=1

(yk − α)2. (2.12)

The Fisher information matrix is then

I(θ) :=

⎡⎢⎢⎣−E

[
∂2 log p (y |θ )

∂α2

]
−E

[
∂2 log p (y |θ )

∂ασ2
ν

]
−E

[
∂2 log p (y |θ )

∂σ2
να

]
−E

[
∂2 log p (y |θ )

∂σ2
ν
2

]
⎤⎥⎥⎦ . (2.13)

The derivatives of the above terms are then

∂ log p (y |θ )
∂α

=
1

σ2
ν

M∑
k=1

(yk − α)

=
M

σ2
ν

(
1

M

M∑
k=1

yk − α

)
∂2 log p (y |θ )

∂α2 =
−M

σ2
ν

−E

[
∂2 log p (y |θ )

∂α2

]
=

M

σ2
ν

(2.14)
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and
∂ log p (y |θ )

∂σ2
ν

=
−M

2σ2
ν

+
1

2σ4
ν

M∑
k=1

(yk − α)2

=
M

2σ4
ν

(
1

M

M∑
k=1

(yk − α)2 − σ2
ν

)
∂2 log p (y |θ )

∂σ2
ν
2 =

M

2σ4
ν

− 1

σ6
ν

M∑
k=1

(yk − α)2

−E

[
∂2 log p (y |θ )

∂σ2
ν
2

]
=

−M

2σ4
ν

+
1

σ6
ν

M∑
k=1

(
E

[
y2k

]
− 2αE [yk] + α2

)
=

−M

2σ4
ν

+
1

σ6
ν

M∑
k=1

σ2
ν

=
M

2σ4
ν

(2.15)

such that
∂2 log p (y |θ )

∂ασ2
ν

=
−1

σ4
ν

M∑
k=1

(yk − α)

−E

[
∂2 log p (y |θ )

∂ασ2
ν

]
= 0.

(2.16)

Considering that

I(θ) =

⎡⎢⎣
M

σ2
ν

0

0
M

2σ4
ν

⎤⎥⎦ =⇒ I(θ)−1 =

⎡⎢⎣σ2
ν

M
0

0
2σ4

ν

M

⎤⎥⎦ (2.17)

we obtain var (α̂) ≥ σ2
ν

M
and var

(
σ̂2
ν

)
≥ 2σ4

ν

M
, implying that

α̂ =
1

M

M∑
k=1

yk (2.18)

and

σ̂2
ν =

1

M

M∑
k=1

(yk − α)2 (2.19)

are, from Equations (2.14) and (2.15), respectively, efficient estimators.

We now consider another example where the noise variance changes from sample to
sample.

Example 2.2 (CRLB for systems with unknown parameter and changing noise variance)
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Consider the following linear system:

yk = α + σνβkνk (2.20)

where α ∈ R is the unknown model parameter, σ2
ν ∈ R+ is the unknown noise variance

and νk ∼ N (0, 1) is iid. As before, α is again assumed to be independent of νk. The
parameter βk is then assumed to be known and deterministic; thus, the parameter vector
that shall be estimated for this problem is θ := [α, σ2

ν ]
T . The log-likelihood of this model

is then

log p (y |θ ) = −M

2
log(2π)− 1

2

M∑
k=1

log σ2
νβ

2
k −

M∑
k=1

1

2σ2
νβ

2
k

(yk − α)2. (2.21)

The Fisher information matrix is instead

I(θ) :=

⎡⎢⎢⎣−E

[
∂2 log p (y |θ )

∂θ2

]
−E

[
∂2 log p (y |θ )

∂θσ2
ν

]
−E

[
∂2 log p (y |θ )

∂σ2
νθ

]
−E

[
∂2 log p (y |θ )

∂σ2
ν
2

]
⎤⎥⎥⎦ (2.22)

and its derivatives are

∂ log p (y |θ )
∂α

=
M∑
k=1

1

σ2
νβ

2
k

(yk − α)

∂2 log p (y |θ )
∂α2 = −

M∑
k=1

1

σ2
νβ

2
k

−E

[
∂2 log p (y |θ )

∂α2

]
=

M∑
k=1

1

σ2
νβ

2
k

(2.23)

and
∂ log p (y |θ )

∂σ2
ν

=
M∑
k=1

−1

2σ2
ν

+
M∑
k=1

1

2σ4
νβ

2
k

(yk − α)2

∂2 log p (y |θ )
∂σ2

ν
2 =

M∑
k=1

1

2σ4
νβ

2
k

+
M∑
k=1

1

σ6
ν

(yk − α)2

−E

[
∂2 log p (y |θ )

∂σ2
ν
2

]
=

M∑
k=1

1

2σ4
νβ

2
k

(2.24)

such that
∂2 log p (y |θ )

∂ασ2
ν

= −
M∑
k=1

1

σ4
ν

(yk − α)

−E

[
∂2 log p (y |θ )

∂ασ2
ν

]
= 0.

(2.25)
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and
∂2 log p (y |θ )

∂σ2
να

= −
M∑
k=1

1

σ4
νβ

2
k

(yk − α)

−E

[
∂2 log p (y |θ )

∂σ2
να

]
= 0.

(2.26)

As before, considering that

I(θ) =

⎡⎢⎢⎢⎢⎣
M∑
k=1

1

σ2
νβ

2
k

0

0
M∑
k=1

1

2σ4
νβ

2
k

⎤⎥⎥⎥⎥⎦ =⇒ I−1(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ν

M∑
k=1

1

β2
k

0

0
2σ4

ν

M∑
k=1

1

β2
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.27)

we obtain var (α̂) ≥ σ2
ν

M∑
k=1

1

β2
k

and var
(
σ̂2
ν

)
≥ 2σ4

ν

M∑
k=1

1

β2
k

. These results suggest that the CRLB

depends on the value of the parameter βk. Specifically,

• if βk = 1, then we will obtain exactly the same results as the previous example;

• if 0 < βk < 1 or
M∑
k=1

1

β2
k

> M , we will instead obtain smaller bounds;

• if βk > 1 or
M∑
k=1

1

β2
k

< M , we will instead obtain larger bounds.

The results obtained above thus confirm the intuition that for heteroskedastic systems,
the CRLB is not fixed and depends on the samples since each sample has a different βk.

2.1.1.1 CRLB for general Gaussian models

We now consider a more generic case where θ ∈ RN+1 is a vector of unknown parameters;
thus, both the model bias and variance are functions of θ. Specifically, let the model be

y ∼ N (μθ, Cθ) (2.28)

where μθ and Cθ are generic functions of the parameter vector θ and y ∈ RM .

In this case, the Fisher information matrix will be (as shown in Appendix 3C in [60])

[
I(θ)

]
ij
=

[
∂μθ

∂θi

]T

C−1
θ

[
∂μθ

∂θj

]
+

1

2
tr

([
C−1

θ

∂Cθ

∂θi
C−1

θ

∂Cθ

∂θj

])
(2.29)



2.1. Statistical estimators and their properties 31

where

[
∂μθ

∂θi

]T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂[μθ]1
∂θi

∂[μθ]2
∂θi
...

∂[μθ]M
∂θi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[
∂Cθ

∂θi

]T

=

⎡⎢⎢⎢⎢⎣
∂[Cθ]11
∂θi

· · · ∂[Cθ]1M
∂θi

...
. . .

∂[Cθ]M1

∂θi
· · · ∂[Cθ]MM

∂θi

⎤⎥⎥⎥⎥⎦ (2.30)

where
[
X

]
ij
indicates the element with row index i and column index j in the matrix X .

Example 2.3 (CRLB for parameter estimation in polynomial models)

Consider the following linear system:

yk =
N+1∑
n=1

αn−1x
n−1
k + νk (2.31)

where α0, . . . , αN ∈ R are the unknown model parameters and νk ∼ N (0, σ2
ν) is iid.

Assume also that σ2
ν ∈ R+ is known, that xk is a known state variable, and that νk is

independent of xk.

In this setup Cα = σ2
νI , which leads to

∂Cα

∂αi

= 0, and for M measurements we have

μα =

[
N+1∑
n=1

αn−1x
n−1
1 . . .

N+1∑
n=1

αn−1x
n−1
M

]T

. (2.32)

This means that the generic model (2.29) specializes for this case into

[
I(α)

]
ij

= σ−2
ν

[
∂μα

∂αi

]T

I

[
∂μα

∂αj

]

= σ−2
ν

M∑
k=1

∂

N+1∑
n=1

αn−1x
n−1
k

∂αi

∂

N+1∑
n=1

αn−1x
n−1
k

∂αj

= σ−2
ν

M∑
k=1

xi
kx

j
k = σ−2

ν

M∑
k=1

xi+j
k .

(2.33)

As an example, consider the case N = 2, where i, j = 0, 1, 2. In this case, the information
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matrix will be

I(α) = σ−2
ν

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M

M∑
k=1

xk

M∑
k=1

x2
k

M∑
k=1

xk

M∑
k=1

x2
k

M∑
k=1

x3
k

M∑
k=1

x2
k

M∑
k=1

x3
k

M∑
k=1

x4
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.34)

We assume that xk ∼ N (μx, σ
2
x); thus, we obtain

I(α) = Mσ−2
ν

⎡⎣ 1 μx μ2
x + σ2

x

μx μ2
x + σ2

x μ3
x + 3μxσ

2
x

μ2
x + σ2

x μ3
x + 3μxσ

2
x μ4

x + 6μ2
xσ

2
x + 3σ4

x

⎤⎦ (2.35)

which has an inverse (calculated using the symbolic solvera)

I−1(α) =
σ2
ν

2Mσ4
x

⎡⎣μ4
x + 3σ4

x −2μ3
x μ2

x − σ2
x

−2μ3
x 4μ2

x + 2σ2
x −2μx

μ2
x − σ2

x −2μx 1

⎤⎦ . (2.36)

We further simplify the results by considering the case μx = 0, which provides

I−1(α) =
σ2
ν

2M

⎡⎢⎢⎢⎢⎢⎣
3 0

−1

σ2
x

0
2

σ2
x

0

−1

σ2
x

0
1

σ4
x

⎤⎥⎥⎥⎥⎥⎦ . (2.37)

This suggests that the CRLB for the parameters multiplied by xn
k is inversely proportional

to var (xk)
n.

a

Unfortunately, we cannot always use the CRLB criterion (2.10) to find an efficient estimator
since the latter might not even exist. As an alternative to the above strategy, we can use other
techniques such as ML to find an estimator that, under opportune conditions, is guaranteed
to be asymptotically efficient (i.e., reach the CRLB as the number of data samples goes to
infinity).

2.1.2 The bias–variance tradeoff

The tradeoff considered here is one of the central concepts of statistics. A typical strategy is
seeking estimators that are unbiased and that have the smallest possible variance (at least
in the asymptotic behavior). However, restricting the search to unbiased estimators may not
be optimal in the mean squared sense; i.e., estimators that have small bias may have overall
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better performance. Recalling Equation (2.6), i.e.,

MSE(θ̂) = var
(
θ̂
)
+ b(θ)2 (2.38)

it is clear that when the estimator is unbiased, then the estimator variance is a measure of the

estimation mean squared error var
(
θ̂unbiased

)
= MSE(θ̂unbiased). When the estimator is biased,

i.e.,

MSE(θ̂biased) = var
(
θ̂biased

)
+ b(θ)2 (2.39)

we may have situations for which the biased case has a smaller MSE, i.e.,

var
(
θ̂biased

)
+ b(θ)2 < var

(
θ̂unbiased

)
, (2.40)

which means that, at least in principle, introducing a small bias into the estimator may reduce
the estimator variance such that the sum of the bias squared and the variance of the biased
estimator is smaller than the estimator variance in the unbiased case. The question is then
how should bias and variance be traded off to optimize the resulting MSE? This question will
be discussed in more detail in SubSection 2.1.5.1.

2.1.3 Maximum Likelihood (ML) estimators
In formulas, ML estimators are defined starting from the knowledge of the probabilistic
model (2.1) as

θML := argmax
θ∈Θ

p (y |θ ) (2.41)

where Θ is the set of admissible θs (in practice, a form of prior information). In other words,
ML estimators correspond to finding in the parameter space Θ the parameter vector θML that
maximizes the likelihood p (y |θ ) given the measurement sequence y := {yk}M1 – in practice,
find the parameter that fits best the data in the sense of p (y |θ ).

Under mild hypotheses that the derivative of the log-likelihood function exists and the
Fisher information is not zero, as the sample size goes to infinity, the ML estimator benefits
from those important asymptotic properties (Theorem 7.1 [60]):

Consistency , meaning that the ML estimator converges almost surely to the true value of
the unknown, i.e.,

θ̂ML
p−→ θ; (2.42)

Efficiency , meaning that it achieves the CRLB when the sample size tends to infinity. This
means that no consistent estimator has a smaller asymptotic mean squared error than
the ML estimator;

Asymptotic normality , whichmeans that as the sample size increases, the distribution of the
ML estimates tends point-wise to the Gaussian distribution with mean θ and covariance
matrix equal to the inverse of the Fisher information matrix, i.e.,

θ̂ML
a∼ N

(
θ, I(θ)−1

)
(2.43)

where
a∼ means asymptotically distributed.
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Given the favorable properties above, it is typically desirable to find ML estimators.
Nonetheless, it is not always possible to express this type of estimator using closed-form
solutions since finding θML may correspond to solving a nonconvex maximization problem
for which no closed-form expressions exist. A simple example of this situation is (often) when
the distribution of the model noise vk is not differentiable with respect to θ. In these cases, one
must indeed rely on numerical optimization procedures if one wants to find the ML solution.

Note that when the ML estimator achieves the asymptotic properties listed above and an
efficient estimator simultaneously exists (e.g., that can be found using the criterion in (2.10)),
then these two estimators (at least asymptotically) coincide (see Example 7.4 in [60]).

We now show through some examples howML estimators can be computed starting from
the statistical models defining our sensing systems.

Example 2.4 (ML estimator for linear systems with unknown variance)

Here, we consider the same model as Example 2.1, but we would like to apply the ML
estimation procedure to compare the resulting estimators. Consider the measurement
vector y = [y1, y2, . . . , yM ] generated using the statistical model

yk = α + σvk (2.44)

where α ∈ R is the parameter of the model that we would like to estimate and the noise
νk satisfies νk ∼ N (0, 1). The noise variance σ2

ν ∈ R+ is also assumed to be known. If we
want to find the ML estimator for α, and since we have Gaussian noise, i.e.,

yk ∼ N
(
α, σ2

ν

)
(2.45)

the likelihood function is

p (y |α) =
M∏
k=1

1√
2πσ2

ν

exp

(−1

2σ2
ν

(yk − α)2
)

(2.46)

and the log-likelihood is

log p (y |α) = −M

2
log 2πσ2

ν −
1

2σ2
ν

M∑
k=1

(yk − α)2 . (2.47)

Taking the zero of the score

∂ log p (y |α)
∂α

=
1

2σ2
ν

M∑
k=1

(−2yk + 2α) (2.48)

with respect to α then provides

α̂ML =
1

M

M∑
k=1

yk. (2.49)
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We then compare this result with Equation (2.14), and we conclude that this estimator is

efficient forM samples and achieves the CRLB var (α̂ML) ≥ σ2
ν

M
. Since the ML estimator α̂

is unbiased, its MSE equals the variance of α̂; thus,

MSE(α̂ML) = var (α̂ML) = var

(
1

M

M∑
k=1

yk

)

=
1

M2
var

(
M∑
k=1

yk

)

=
1

M2

M∑
k=1

var (yk) since yk is iid

=
σ2
ν

M

(2.50)

The same type of derivations can then be applied to estimate σ2
ν . In this case, the log-

likelihood is

log p
(
y

∣∣σ2
ν

)
= −M

2
log 2πσ2

ν −
1

2σ2
ν

M∑
k=1

(yk − α)2 . (2.51)

Taking the zero of the score, defined as

∂ log p (y |σ2
ν )

∂σ2
ν

=
−M

2σ2
ν

+
1

2σ4
ν

M∑
k=1

(yk − α)2, (2.52)

with respect to σ2
ν then provides

σ̂2
νML =

1

M

M∑
k=1

(yk − α)2 (2.53)

which is exactly the same estimator as the efficient estimator obtained in Equation (2.15).

Since σ̂2
νML is again an unbiased estimator, its MSE is equal to its variance, i.e.,

MSE(σ̂2
νML) = var

(
σ̂2
νML

)
= var

(
1

M

M∑
k=1

(yk − α)2

)

=
1

M2

M∑
k=1

var
(
(yk − α)2

)
=

1

M2

M∑
k=1

(
E

[
(yk − α)4

]
− E

[
(yk − α)2

]2)
=

1

M2

M∑
k=1

(
3σ4

ν − (σ2
ν)

2
)
=

2

M
σ4
ν

(2.54)

In the next chapters, we will consider efficient estimators computed through the CRLB
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paradigm, when they exist. If not, we will consider ML estimators, whenever it is possible,
due to their simplicity and favorable statistical properties. When we instead need to compute
ML solutions through numerical methods, we will determine whether some approximate
solutions provide reasonable statistical performance. We will thus determine what happens
when using the estimators discussed in the next subsection.

2.1.4 Least Squares (LS) estimators
When it is not possible to calculate ML estimators in closed form, either because the distribu-
tion of the noise is unknown or because finding the maximum of the likelihood function is
analytically intractable, an alternative approach is to use LS estimators. This type of estimation
is derived starting from the paradigm of attempting to minimize the empirical expected value
of the measurement noise. In general, if

yk = f(xk, θ) + ek (2.55)

where f(·) is a generic function, xk is the input and ek is the process noise, given a dataset of

M input and output pairs T = {yk, xk}M1 , the least squares approach aims to find the θ̂ that
best “explains the data”. The last concept can be explained geometrically: we would like to

find the vector θ̂ that minimizes the Euclidean distance with the manifold formed by f(xk, �)
assuming � ∈ ΘwithΘ as the set of admissible parameters.

In practice, consider the following linear system as an example:

yk = θxk + νk (2.56)

where xk ∈ R is the known input, yk ∈ R is the measurement, θ ∈ R is the unknown parameter
and νk ⊥ θ; then, the LS estimator for the parameter θ is

θLS := argmin
θ∈Θ

‖y − θx‖22 (2.57)

θLS = argmin
θ∈Θ

M∑
k=1

(yk − θxk)
2 . (2.58)

The solution to this linear problem will then be

θLS =
(
xTx

)−1
xTy. (2.59)

Importantly, for the Gaussian noise case, the ML and LS estimators coincide. In the linear
case, the LS is asymptotically unbiased and (under mild assumptions on the informativeness
of the dataset) consistent.

In the slightly more generic model for which the variance σ2
k of the noise νk is not constant,

it is more statistically convenient to use the WLS estimator, which is defined as

θWLS = argmin
θ∈Θ

M∑
k=1

σ−2
k (yk − θxk)

2 (2.60)

or
θWLS := argmin

θ∈Θ
‖y − θx‖2Σ−1 (2.61)
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where Σ := diag(σ2
1, . . . , σ

−2
M ). The solution to this linear problem will then be

θWLS =
(
xTΣ−1x

)−1
xTΣ−1y. (2.62)

The choice of weighting the residuals in (2.60) is given by the fact that in the linear Gaussian
heteroskedastic case, one may show that the WLS and the ML solutions coincide.

Note that for the more generic case where the matrix Σ is not necessarily diagonal (which
means, from a statistical perspective, that there might be non-null correlations between the
measurement noises), the estimator is typically called a Generalized Least Squares (GLS)
estimator.

2.1.5 Bayesian estimators
The estimators considered in the previous section were dealing with Fisherian approaches in
which the estimand θ was treated as an unknown deterministic quantity. In some cases, it is
meaningful to consider θ as a random variable on which we have some prior information in
the form of a prior distribution p (θ).

The different nature of the estimand implies that we need to slightly modify the perfor-
mance index considered previously. Indeed, for the case where θ is a random variable, the
new index shall be denoted as Bayesian-Mean-Square Error (BMSE) and defined as

BMSE(θ̂) := E

[(
θ̂ − θ

)2
]
. (2.63)

At first glance, this definition might appear similar to the one given in (2.5). However, upon a
more critical inspection, we actually find that there is a difference in the two definitions, which
is that the expectation here is with respect to the joint density p (θ,y), whereas in (2.5), it is
only with respect to the density p (y). This means that if we want to have favorable properties
in the BMSE sense, we should incorporate the prior information on θ in our estimation scheme.

2.1.5.1 Minimum Mean Square Error (MMSE) estimator

The estimators that minimize the BMSE above are called MMSE estimators. These strategies
can be found by noticing that the BMSE can be written as

BMSE(θ̂) = Ep(y,θ)

[(
θ̂ − θ

)2
]

=

∫ ∫
(θ̂ − θ)2p (θ,y) dθdy.

(2.64)

Using Bayes rule, we have p (y, θ) = p (θ |y ) p (y). By substituting this result into (2.64), we
obtain

BMSE(θ̂) =

∫ ∫
(θ̂ − θ)2p (θ |y ) p (y) dθdy

=

∫ [∫
(θ̂ − θ)2p (θ |y ) dθ

]
p (y) dy

= Ep(y)

[
Ep(θ|y )

[(
θ̂ − θ

)2

| y
]]

.

(2.65)
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It is then clear that the θ̂ that minimizes the conditional expectation Ep(θ|y )

[(
θ̂ − θ

)2

| y
]

for all y also minimizes the BMSE index. We can thus find this θ̂ through differentiating the

conditional expectation with respect to θ̂, i.e., compute

∂Ep(θ|y )

[(
θ̂ − θ

)2

| y
]

∂θ̂
=

Ep(θ|y )

[
∂

(
θ̂ − θ

)2

| y
]

∂θ̂
= 2Ep(θ|y )

[(
θ̂ − θ

)
| y

] (2.66)

and then consider that its zero occurs when (note that this is a minimum since the second
derivative is always positive)

2Ep(θ|y )

[(
θ̂ − θ

)
| y

]
= 0

Ep(θ|y )

[
θ̂ | y

]
− Ep(θ|y ) [θ | y ] = 0

(2.67)

or when
θ̂MMSE = Ep(θ|y ) [θ | y ] (2.68)

since θ̂ is a function of only the measurements y; thus, it will be constant for a given y.
MMSE estimators are unbiased since

Ep(θ,y)

[(
θ̂ − θ

)]
= Ep(y)

[
Ep(θ|y )

[(
θ̂ − θ

)
| y

]]
= Ep(y) [0] = 0. (2.69)

Additionally, the variance of the estimator θ̂ is

var
(
θ̂
)

= BMSE(θ̂)

=

∫ [∫
(Ep(θ|y ) [θ | y ]− θ)2p (θ |y ) dθ

]
p (y) dy

=

∫
var (θ | y ) p (y) dy

(2.70)

which is the variance of the posterior density averaged over the measurement density.
We now use the above results to illustrate how to compute MMSE estimators for cases

that are of practical relevance in our sensor calibration settings.

Example 2.5 (the MMSE estimator for a Gaussian range sensor with Gaussian prior)

Consider the measurement vector y = [y1, y2, . . . , yM ] generated using the model

yk = α + σvk (2.71)

and assume that vk ∼ N (0, 1). Moreover, assume that the noise variance σ2
ν is known

along with the prior α ∼ N
(
αp, σ

2
p

)
. Given this information, we want to find the MMSE

estimator for α.
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Since we have Gaussian noise, the likelihood function is

p (y |α) =
M∏
k=1

1√
2πσ2

ν

exp

(−1

2σ2
ν

(yk − α)2
)

(2.72)

while the prior density is

p (α) =
1√
2πσ2

p

exp

(−1

2σ2
p

(αp − α)2
)
. (2.73)

Expanding the posterior density p (α |y ) using Bayes rule will provide

p (α |y ) = p (y |α) p (α)
p (y)

=
p (y |α) p (α)∫

p (y |α) dα
. (2.74)

Substituting these two densities then yields

p (α |y ) =

M∏
k=1

1√
2πσ2

ν

exp

(−1

2σ2
ν

(yk − α)2
)

1√
2πσ2

p

exp

(−1

2σ2
p

(αp − α)2
)

∫ ∞

−∞

M∏
k=1

1√
2πσ2

ν

exp

(−1

2σ2
ν

(yk − α)2
)
dα

. (2.75)

The last equation can finally be simplified to provide

p (α |y ) =
1√
2πσ2

B

exp

( −1

2σ2
B

(μB − α)2
)

σ2
B :=

1
M
σ2
ν
+ 1

σ2
p

μB :=
σ2
pM ȳ + σ2

ναp

σ2
pM + σ2

ν

ȳ :=
1

M

∑M
k=1 yk.

(2.76)

Skipping the details of the derivation, which can be found in Example 10.1 in [60], and
taking the conditional expectation of the posterior density yields the equation

αMMSE = Ep(α|y ) [α | y ] = μB =
σ2
pM ȳ + σ2

ναp

σ2
pM + σ2

ν

. (2.77)
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It is now possible to find the BMSE for the estimator as

BMSE(αMMSE) =

∫
var (α | y ) p (y) dy

=

∫
1

M
σ2
ν
+ 1

σ2
p

p (y) dy

=
1

M
σ2
ν
+ 1

σ2
p

=
σ2
ν

M

(
Mσ2

p

σ2
ν +Mσ2

p

)
.

(2.78)

However, calculating the posterior density is not always that simple. In this case, an
alternative approach is to compute MAP estimators.

2.1.5.2 Maximum A Posteriori (MAP) estimators

Similar to the previous MMSE case, assume that a Bayesian formalism is used to combine the
prior information p (θ)with the likelihood p (y |θ ) by using the Bayes rule. Now, different from
before, we aim to find the estimand as the potential solution that maximizes the posterior, i.e.,

θMAP := argmax
θ∈Θ

p (θ |y ) . (2.79)

To compute this quantity, note that from the Bayes rule we have

p (θ |y ) = p (y |θ ) p (θ)
p (y)

. (2.80)

Then, note that since the term p (y) is constant for a given dataset, the maximization in
Equation (2.79) is equivalent to

θMAP = argmax
θ∈Θ

p (y |θ ) p (θ) (2.81)

or equivalently,
θMAP = argmax

θ∈Θ
[log p (y |θ ) + log p (θ)] . (2.82)

θMAP is then called the MAP estimator of θ.
Before proceeding with an illustrative example of how to perform the above operations,

we would like to mention that the optimization in the MAP estimator returns only the peak
of the posterior density, but it does not minimize the MSE or any other performance index.
This means that the MAP results are only meaningful for single mode densities, whereas for
multimodal posterior densities, it will be better to compute the MMSE estimator, if possible.

However, in this thesis, we are typically aiming at having single mode densities. Thus, we
will eventually always use MAP estimators (both when we are able to compute them in closed
form and not; in the last case we indeed can resort on numerical solutions using MCMC).

Example 2.6 (the MAP estimator for a Gaussian range sensor with Gaussian prior)
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Consider the measurement vector y = [y1, y2, . . . , yM ] generated using the model

yk = α + σvk (2.83)

and vk ∼ N (0, 1). Assume that the noise variance σ2
ν is known along with the prior

α ∼ N
(
αp, σ

2
p

)
. Given this information, we want to find the MAP estimator for α.

Since we have Gaussian noises, the likelihood function is

p (y |α) =
M∏
k=1

1√
2πσ2

ν

exp

(−1

2σ2
ν

(yk − α)2
)

(2.84)

while the prior is

p (α) =
1√
2πσ2

p

exp

(−1

2σ2
p

(αp − α)2
)
. (2.85)

Expanding the log posterior density log p (α |y ) using Bayes rule will provide

log p (α |y ) = log p (y |α) + log p (α)− log p (y) (2.86)

Substituting the two densities and taking the logarithm returns

log p (α |y ) ∝ log p (y |α) + log p (α)

∝ −M

2
log 2πσ2

ν −
1

2σ2
ν

M∑
k=1

(yk − α)2 − M

2
log 2πσ2

ν −
1

2σ2
p

(αp − α)2 .

(2.87)
Differentiating this w.r.t. to α and then equating to zero yields the formula

αMAP =

σ2
p

M∑
k=1

yk + σ2
ναp

σ2
pM + σ2

ν

=
σ2
pM ȳ + σ2

ναp

σ2
pM + σ2

ν

. (2.88)

It is clear that the results obtained from the MAP paradigm in this case are identical to
those obtained from theMMSE estimator paradigm. This is not true in general; specifically,
this occurs only if the measurement and the parameter vectors are jointly Gaussian (see
Chapters 11 and 14 in [60]). The above example is thus a very peculiar and specific case.

We now calculate the BMSE for the above estimator. For this purpose, we need an



42 Chapter 2. Background

expression for the posterior density; it immediately follows that

log p (α |y ) ∝ log p (y |α) + log p (α)

∝ − 1

2σ2
ν

M∑
k=1

(yk − α)2 − 1

2σ2
p

(αp − α)2

∝ − 1

2σ2
B

M∑
k=1

(α− μB)
2 (see Equation (371) in [61])

σ2
B :=

1
M
σ2
ν
+ 1

σ2
p

μB :=
σ2
pM ȳ + σ2

ναp

σ2
pM + σ2

ν

(2.89)

where

BMSE(αMAP) =

∫
var (α | y ) p (y) dy

=

∫
1

M
σ2
ν
+ 1

σ2
p

p (y) dy

=
1

M
σ2
ν
+ 1

σ2
p

=
σ2
ν

M

(
Mσ2

p

σ2
ν +Mσ2

p

)
.

(2.90)

It is clear that this result is also identical to the MMSE case because it was calculated
using the same posterior density. However, if we compare these results with those obtained
using the ML estimator in Equation (2.50), we find that BMSE(αMAP) ≤ MSE(α̂ML). Note that
combining any prior information about a random variable will result in a reduced BMSE
compared to the MSE index of a classical ML estimator; nonetheless, this operation will
introduce some bias, as expected.

2.1.6 Estimating the variance of the noises
In the next chapters, we will estimate not only the parameters in the model that determine the
expected value of the output but also the parameters that describe the variance (or nominal
variance, see Table 1.1) of the measurement noise. The existence of unbiased estimators for
these parameters defining the variance and the existence of estimators that minimize the MSE
is a delicate (but important) issue in our framework. We thus dedicate a few lines to further
examining this specific topic.

Consider once again the simple linear model introduced in Example 2.4. Here, the ML
estimator for α was

α̂ML =
1

M

M∑
k=1

yk (2.91)

and it was, as we saw in Example 2.1, identical to the efficient estimator obtained using the
CRLB procedure. Note that this estimator is a function of the measurements only. The ML
estimator for the variance σ2

ν was instead

σ̂2
νML =

1

M

M∑
k=1

(yk − α)2, (2.92)
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which is a function of both the measurements and α; in other words, if the value of α is known,
then this will also be the efficient estimator that satisfies the CRLB in Example 2.1. If the
value of α is unknown and we substitute α with α̂ML, then this will no longer be an efficient
estimator; moreover, the estimator will be biased since for this case we will have

σ̂2
ν =

1

M

M∑
k=1

(yk − α̂ML)
2 (2.93)

E
[
σ̂2
ν

]
= E

[
1

M

M∑
k=1

(yk − α̂ML)
2

]

= E

[
1

M

M∑
k=1

((yk − α)− (α̂ML − α))2
]

= E

[
1

M

M∑
k=1

(
(yk − α)2 − 2 (yk − α) (α̂ML − α) + (α̂ML − α)2

)]

= E

[(
1

M

M∑
k=1

(yk − α)2 − 2 (α̂ML − α)
1

M

M∑
k=1

(yk − α) +
1

M

M∑
k=1

(α̂ML − α)2
)]

.

(2.94)

Considering that we have (α̂ML − α) =
1

M

M∑
k=1

(yk − α), substituting in the above equation, we

obtain

E
[
σ̂2
ν

]
= E

[
1

M

M∑
k=1

(yk − α)2 − 2 (α̂ML − α)2 + (α̂ML − α)2
]

= E

[
1

M

M∑
k=1

(yk − α)2
]
− E

[
(α̂ML − α)2

]
= σ2

ν − E
[
(α̂ML − α)2

]
= σ2

ν − var (α̂ML)

(2.95)

Since we have that, from Equation (2.50), var (α̂ML) =
σ2
ν

M
, the final step will be considering

that

E
[
σ̂2
ν

]
= σ2

ν − var (α̂ML)

=

(
1− 1

M

)
σ2
ν

(2.96)

which ensures that the estimator for the variance is biased if we use α̂ML. However, since the
bias term decreases as the number of samples M increases, the estimator σ̂2

ν is asymptotically
unbiased and thus asymptotically efficient. At the risk of being obnoxious, we stress here that
there is no finite sample efficiency.

Unbiased estimators for the parameters defining the variance of the measurement
noise

The question is then do unbiased estimators exist for the parameters defining the variance of the
measurement noise? The answer to this question is positive: unbiasedness can be obtained by
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multiplying the above estimators by the so-called Bessel’s correction term M
M−1

. The resulting

unbiased estimator will then be denoted as σ̂2
unbiased, i.e.,

σ̂2
unbiased = E

[
M

M−1
σ̂2
ν

]
=

M

M − 1
E

[
1

M

M∑
k=1

(yk − α̂ML)
2

]
=

M

M − 1

(
1− 1

M

)
σ2
ν using the result of (2.96)

= σ2
ν

(2.97)

It is then important to compare the MSE of the estimators introduced up to now:

• the MSE of the ML estimator σ̂2
νML is, from Equation (2.54),

MSE(σ̂2
νML) =

2

M
σ4
ν ; (2.98)

• the MSE of the estimator σ̂2
unbiased can be calculated using the fact that, from Cochran’s

theorem,
M∑
k=1

(yk − α̂ML)
2 ∼ σ2

νχ
2
M−1. (2.99)

Then, from the properties of the χ-squared distribution, we have

var
(
χ2
M−1

)
= 2(M − 1)

and thus,

MSE(σ̂2
unbiased) = var

(
σ̂2

unbiased

)
= var

(
1

M − 1

M∑
k=1

(yk − α̂ML)
2

)
= var

(
1

M − 1
σ2
νχ

2
M−1

)
=

2σ4
ν

M − 1
;

(2.100)

• the MSE of the estimator σ̂2
ν is instead given by

MSE(σ̂2
ν) = var

(
σ̂2
ν

)
+ bias2

= var

(
1

M

M∑
k=1

(yk − α̂ML)
2

)
+

σ4
ν

M2

= var

(
1

M
σ2
νχ

2
M−1

)
+

σ4
ν

M2

=
2(M − 1)

M2
σ4
ν +

σ4
ν

M2

=
2M − 1

M2
σ4
ν ;

(2.101)
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• finally, it is possible to find an estimator for the variance parameters with the minimum

MSE, called σ̂2
νMMSE (see Appendix B for its derivation). For this estimator, defined as

σ̂2
νMMSE =

1

M + 1

M∑
k=1

(yk − α̂ML)
2, (2.102)

the MSE will be

MSE(σ̂2
νMMSE) =

2M − 2

(M + 1)2
σ4
ν . (2.103)

It is then possible to conclude that the obtained MSEs for the various estimators satisfy
the relations

MSE(σ̂2
νMMSE) < MSE(σ̂2

ν) < MSE(σ̂2
νML) < MSE(σ̂2

unbiased).

All these MSEs will decrease and asymptotically become zero as the number of samples
increases; thus, they are all asymptotically efficient. From a finite sample perspective, nonethe-
less, there is a clear ordering from a statistical performance perspective.

Finally, note that the estimator of the sample standard deviation

σ̂ν =

√√√√ 1

M − 1

M∑
k=1

(yk − α̂ML)
2 (2.104)

is a biased estimator of the standard deviation σν , and this is because the square root function
is a strictly concave nonlinear function. Since expectations distribute only for linear operands,
Jensen’s inequality [62, 63] suggests that the expected value of the square root of the unbiased
variance estimator will be an underestimate of the sample standard deviation. In formulas,
thus, √

E

[
M

M − 1
σ̂2
ν

]
≥ E

[√
M

M − 1
σ̂2
ν

]
. (2.105)

However, we are not interested in estimating the standard deviation in this thesis and will
never discuss this again, althoughwemight write the statistical model in terms of the standard
deviation for the sake of simplicity and clarity. We will thus always work with the variance
instead, and we estimate the model variance during the parameter estimation process.

2.2 Expectation Maximization (EM) algorithms
As mentioned above, it is occasionally not possible to find the maximum of a function using
closed forms. Computing ML or MAP estimators may thus suffer from the same issue, either
because the closed-form solution does not exist or because it is very difficult to find it from an
algebraic perspective to the point that it might be desirable to find it numerically.

In the following, we discuss two different numerical approaches for finding such estimates
in a non-closed-form fashion, namely, the EM and the MCMC. These approaches are funda-
mental for our thesis, given that they will be employed several times. We thus start here by
describing the EM; the MCMC will be discussed in the next section.
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The EM is an iterativemethod for computingML orMAP estimates of a parameter vector θ
for the case where the model depends on both observed and unobserved latent variables [64].
Considering for simplicity the ML case, solving an EM problem formally corresponds to
solving the following:

θ̂ML := {θ ∈ Θ
∣∣p (y ; θ) � p

(
y ; θ(t)

)
∀θ(t) ∈ Θ} (2.106)

where p (y ; θ) is the likelihood of the observed data andΘ is the closed set of potential
candidate parameter vectors. If the likelihood depends on another unobserved variable x,
then p (y ; θ) can be expressed in terms of the joint probability as

log p (y ; θ) = log p (x,y ; θ)− log p (x |y ; θ) . (2.107)

A procedure to compute θ̂ML is then the following [65]: assume that a current estimate of the
parameters θ is available, say, θ(t); then, we take the expectation of (2.107) considering θ with
respect to probability density function defined by the parameters being θ(t), i.e.,

Eθ(t) [log p (y ; θ) | y ] = Eθ(t) [log p (x,y ; θ) | y ]− Eθ(t) [log p (x |y ; θ) | y ] . (2.108)

Noting that

Eθ(t) [log p (y ; θ) | y ] =

∫
log p (y ; θ) log p (x |y ; θ) dx

= log p (y ; θ)
(2.109)

we can then obtain

log p (y ; θ) = Eθ(t) [log p (x,y ; θ) | y ]− Eθ(t) [log p (x |y ; θ) | y ] . (2.110)

Given this, one can then define the functions L
(
θ, θ(t)

)
and V

(
θ, θ(t)

)
as

L
(
θ, θ(t)

)
:= Eθ(t) [log p (x,y ; θ) | y ] (2.111)

and
V

(
θ, θ(t)

)
:= Eθ(t) [log p (x |y ; θ) | y ] (2.112)

respectively. Now, defining the log-likelihood �(θ) := log p (y ; θ), it is possible to compute
the log-likelihood difference �(θ)− �(θ(t)) between the current estimate of the parameter θ
and the previous estimate θ(t), which will be equal to

�(θ)− �(θ(t)) = log p (y ; θ)− log p
(
y ; θ(t)

)
=

(
L

(
θ, θ(t)

)
− L(θ(t),θ(t))

)
+

(
V(θ(t),θ(t))− V

(
θ, θ(t)

))
.

(2.113)

By expanding the last term
(
V(θ(t),θ(t))− V

(
θ, θ(t)

))
, we obtain

V(θ(t),θ(t))− V
(
θ, θ(t)

)
= Eθ(t)

[
log p

(
x |y ; θ(t)

)
| y

]
− Eθ(t) [log p (x |y ; θ) | y ]

=

∫
log

p
(
x |y ; θ(t)

)
p (x |y ; θ)

log p
(
x |y ; θ(t)

)
dx

= Eθ(t)

[
− log p(x|y ; θ)

p(x|y ; θ(t))
| y

]
.

(2.114)
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Since the negative log is a convex function, we can apply Jensen’s inequality [62, 63] to obtain

V(θ(t),θ(t))− V
(
θ, θ(t)

)
≥ − logEθ(t)

[
p(x|y ; θ)

p(x|y ; θ(t))
| y

]
≥ log

∫
p (x |y ; θ)

p (x |y ; θ(t))
log p

(
x |y ; θ(t)

)
dx

≥ 0

(2.115)

for all θ and θ(t). This result establishes that if L
(
θ, θ(t)

)
≥ L(θ(t),θ(t)), then �(θ) ≥ �(θ(t)).

This will immediately suggest the following EM algorithm:

initialization step: start from an initial guess θ(t) for the parameter vector θ;

Expectation step : given the current parameter estimate θ(t), estimate the latent variables x
as the expected value of the joint distribution

L
(
θ, θ(t)

)
:= Eθ(t) [log p (x,y ; θ) | y ] . (2.116)

Maximization step: compute theθ in the parameter spaceΘ thatmaximizes the log-likelihood
function log p (x,y ; θ) or equivalently L

(
θ, θ(t)

)
given the currently estimated x, and

then set θ(t) ← θ;

increase t and return to the expectation step until reaching a certain termination condition
based on a predefined parameter accuracy.

For simplicity, we avoid dealing with the details of the various possible termination rules,
and we refer interested readers to [66].

Intuitively, the EM algorithm assumes that we have an observation vector y, a parameter
vector that we would like to estimate θ, and a density p (y ; θ). Additionally, it assumes that
there is an unobserved variablex that wewishwe had since knowing this unobserved variable
would make the dataset complete. Since we do not observe this variable but we know the
structure of its conditional distribution p (x |y ; θ) that depends on the unknown parameter
θ, the algorithm starts by making a guess for the unknown parameter θ that describes the
evidence (this corresponds to the first initialization step). Then, the algorithm uses this guess
to estimate the latent variables by assuming that the guess is correct and thus calculates the
conditional distribution p (x |y ; θ) (this corresponds to the first expectation step). Note
that in this step, since we do not really know x but rather have an estimate of its conditional
distribution p (x |y ; θ), we need to integrate over all possible values of x (this corresponds
to performing an expectation operation). Thus, in the maximization step, we maximize the
log-likelihood function log p (y ; θ) or its surrogate L

(
θ, θ(t)

)
given the currently estimated x

to find a better estimate of the parameter vector θ. Once this improved estimate is obtained,
we use it to find a new estimate for x and reiterate the procedure. Since this cannot decrease
the likelihood, this means that if the procedure does not converge to the global maximum, it
then converges at least to a local one.

2.3 Markov chain Monte Carlo (MCMC) algorithms
The second numerical technique that we will consider in this thesis for finding the maximum
of a density function is the MCMC. Specifically, the MCMC technique is not a numerical
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maximization method but rather a numerical Monte Carlo integration method running on
Markov chains, as we will discuss soon. The MCMC method is a generic strategy that has
been used extensively in Bayesian inference to integrate over the posterior distribution of
model parameters given the data, and it has also been used in classical frequentist inference to
integrate over high-dimensional parameter densities for various parameter learning problems.

Intuitively, Monte Carlo integration approximates expectations through performing sam-
ple averages on a set of samples generated from the required distribution using properly
constructed Markov chain after running for a long time [67].

Before proceeding further with describing MCMC formalisms, we first define the impor-
tant concept of Markov chain.

2.3.1 Markov chains
Defining Markov chain in some detail is useful for our purposes not only because they are the
basic component in MCMC methods, techniques that we will employ extensively, but also
because Markov chain are used in state space models, which is another formalism that we
will use often in the next sections.

We start by defining a Markov process, i.e., a stochastic process that models the states of a
system with a sequence of random variables or events {X0, X1, . . . , Xk} k ≥ 0 (here, k refers
to the time index) in which the probability of each event depends only on the state of the
previous event. Mathematically, this means that a Markov process satisfies

p (Xk+1 |Xk, Xk−1, . . . , X0 ) = p (Xk+1 |Xk ) . (2.117)

We can now define the following:

Definition 1 (Markov chain). The Markov process {Xt} t ≥ 0 is said to be a Markov chain with
initial distribution p (X0) and transition probability p (· |·) that can be completely specified by:

• an initial state X0 with initial distribution p (X0),

• and a transition probability p (Xt+1 |Xt ).

Here, we are interested in Markov chains that have a unique stationary distribution φ(·), i.e.,
processes for which after running the Markov chain for a sufficiently long time, the result will
be independent of the initial distribution (something that is typically indicated by saying that
the chain will forget its initial distribution). For this type of process, p (Xt |X0 ) ≈ φ(x) and the
new samples {Xt} t ≥ tmin will be samples extracted from something that is approximately
φ(x).

2.3.2 Monte Carlo simulations
For some function of interest f(·), we are interested in finding

I(f) =

∫
f(x)φ(x)dx. (2.118)
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This task can be performed using Monte Carlo integration, i.e., drawing iid random samples
{X(t)}tmax

t=1 from φ(x) and numerically evaluating the integral as

Itmax(f) =
1

tmax

tmax∑
t=1

f(X(t))
a.s.−−−−→

tmax→∞
I(f). (2.119)

Under the assumption that the samples are extracted from φ(x), we have that the estimate
Itmax(f) is asymptotically unbiased. According to the strong law of large numbers, the estimate
converges almost surely to the original integral I(f) as the number of samples goes to infinity.

In our framework, we will employ the above technique when we have the problem that the
density φ(x) is not a standard distribution, which implicitly means that generating samples
from φ(x) is not possible. A meaningful method for generating the samples is then to run a
Markov chain with a unique stationary distribution that is exactly (or very close to) φ(x) and
then run the chain for a sufficiently long time. In this case, indeed, the chain sequence can
be considered as being simulated samples from φ(x). If the random samples were generated
using a Markov chain , then we will have obtained what is typically called a Markov chain
Monte Carlo (MCMC) method.

As stated before, running the MCMC for a sufficiently long time will produce a sequence
of samples from the stationary distribution. However, the samples that have been generated
before the convergence should be neglected. For instance, if the sequence reached convergence
at time t = tmin, we are interested in the sequence generated after the convergencemoment, i.e.,
the sequence {X(t)} tmax ≥ t ≥ tmin. The first generated samples, say up to tmin, are typically
discarded, and they are called burn-in samples. The samples after convergence can be used to
find an estimate of E [f(X)] if the chain is ergodic; for this case, the estimator will then be

E [f(X)] ≈ 1

tmax − tmin

tmax∑
t=tmin

f(X(t)). (2.120)

The above operation is called an ergodic average; the convergence of the empirical expectation
to the actual expectation value is then ensured through the ergodic theorem. The details of this
convergence are not covered in this brief summary, and we refer interested readers to [67].

The overarching problemwhen performingMCMC is then to be able to generate a Markov
chain that has a stationary distribution that is exactly φ(x). To guarantee this circumstance,
one may employ several different but standard methods. In the next subsection, we present
two very famous techniques: the Metropolis–Hastings and the Gibbs sampling methods.

2.3.3 Metropolis–Hasting
The Metropolis–Hastings method was first presented in its generalized form by Hasting [68].
The algorithm is very simple and easy to implement in computers, and it can be summarized
as follows (see Algorithm 1): starting from an initial state x(0), at each iteration 0 ≤ t ≤ tmax,
sample a candidate for the chain x′ using a so-called proposal distribution q(x′ | x(t)). Then,
accept or reject the proposal with an acceptance probability γ calculated using

γ = min

[
1,

φ(x′)q(x(t) | x′)

φ(x(t))q(x′ | x(t))

]
. (2.121)
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If the candidate is accepted, then update the chain x(t+1) = x′; otherwise, keep the previous
chain value x(t+1) = x(t), increase t, and repeat the same procedure until convergence or until
reaching tmax.

The proposal distribution could then be any distribution that covers the support of φ(·)
to obtain samples generated from the distribution very close to φ(·). However, the proposal
distribution greatly affects the overall acceptance rate of the scheme and thus the mixing
properties of the chain. Another factor controlling the convergence of the chain is also the
relation between φ(·) and q(· | ·). A practically useful criterion that monitors the chain mixing
is the acceptance rate, which can be determined directly from the acceptance frequency. It has
been empirically shown in [69] that the best mixing rate for a multivariate normal distribution
is from 20%–40% depending on the dimensions of the state space.

Algorithm 1 Metropolis–Hasting MCMC

1: initialization:
x(0)

2: for t = 0, 1, . . . tmax (or up to convergence) do
3: generate a new proposal:

x′ ∼ q(x′ | x(t))
4: calculate the acceptance probability:

γ = min

[
1,

φ(x′)q(x(t) | x′)

φ(x(t))q(x′ | x(t))

]
5: if γ > U [0, 1], then accept the proposal and set x(t+1) = x′

6: otherwise, reject the proposal and set x(t+1) = x(t)

7: end for

In the case that the proposal distribution is symmetrical, we will have q(x′ | x(t)) = q(x(t) |
x′); thus, the acceptance probability will simplify to

γ = min

[
1,

φ(x′)

φ(x(t))

]
. (2.122)

The simplified version of the algorithm is called the Metropolis algorithm, and it was originally
considered by Metropolis [70]. A special case of the Metropolis algorithm is the so-called
random-walk Metropolis, in which the proposal distribution is q(x′ | x(t)) = q(| x′ − x(t) |).

Because an exhaustive inspection of the performance of the various algorithms is beyond
our objectives, in this thesis, we will usually consider Gaussian random-walk Metropolis
algorithms and consider the case where the proposal distribution is q(x′ | x(t)) = N

(
x(t), β

)
.

Here, the parameter β will determine the proposal scaling; we will thus generally adjust its
valuemanually to achieve rapidmixing for the chain and thus ignore the issue of automatically
tuning this crucial parameter.

Finally, we would like to remark that if x(t) is a vector of random variables, then in this
case, we can perform Metropolis–Hastings for each element of x(t) separately, a strategy that
is called single-component Metropolis–Hastings. Note that in this case, we can also implement
Metropolis–Hastings schemesworking on thewhole vectors or consider intermediate schemes
where we divide the vector into smaller blocks and perform Metropolis–Hastings on each
block separately.
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Example 2.7 (A simple example of a Metropolis–Hastings algorithm with truncated
Normal proposal)

Assume that we want to generate samples from the density

p (x) = x exp (−x) (2.123)

using a truncated Gaussian proposal. Applying then Algorithm 1 with a random–walk
proposal equal to only positive outcomes of q(x′ | x(t)) = N

(
x(t), 5

)
, Nsamples = 100000, a

burin–in set of 1000 samples and an acceptance probability

γ = min

⎡⎢⎢⎢⎣1,
p (x′)

∫ x(t)

−∞
N (x, 5) dx

p (x(t))

∫ x′

−∞
N (x, 5) dx

⎤⎥⎥⎥⎦ (2.124)

where the Gaussian integration terms are due to normalization of truncated proposal,
leads for example to the chain plotted in Figure 2.1. For this specific run of the algorithm
the acceptance ratio was approx 40%.
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Figure 2.1: Plot shows the histogram of the samples generated using MCMC algorithm and
the actual plot of the function in Example 2.7



52 Chapter 2. Background

2.3.4 Gibbs sampler
The Gibbs sampling scheme was first proposed by the brothers Stuart and Donald Geman in
1984 [71]. This algorithm is a special case of the single-component Metropolis–Hastings al-
gorithm where the proposal is always accepted. In Gibbs sampling schemes, the proposal
distribution is indeed the conditional distribution for each parameter given the remaining
parameters as constants; here, we thus update the parameters one component by one (in
any order). Therefore, it is applicable for the cases where we cannot draw samples from
the joint distribution, either because it is very complex or because it is not entirely known,
while it is possible to generate samples directly from the conditional distributions of the
parameters (a very common situation in Bayesian inference, where the posterior distribution
is the conditional distribution).

To exemplify how the Gibbs sampler works, assume that the vector x consists of three
parameters, namely, x = {x1, x2, x3, } (generalizing to an arbitrary number of parameters is
then straightforward). In this case, it is possible to express the conditional distribution of
x1 given the other parameters p (x1 |x2, x3 ) in terms of the joint distribution p (x1, x2, x3) as
follows:

p (x1 |x2, x3 ) =
p (x1, x2, x3)

p (x2, x3)
∝ p (x1, x2, x3) since x2, x3 are assumed fixed
∝ φ(x)

(2.125)

The proposal distribution for x′
1 will thus be q(x′

1 | x(t)) = p
(
x′
1

∣∣∣x(t)
2 , x

(t)
3

)
. Recalling that

we assume x
(t)
2 and x

(t)
3 do not change during this step, we have x′

2 = x
(t)
2 and x′

3 = x
(t)
3 .

Substituting this in Equation 2.121, we will then obtain

γ = min

[
1,

φ(x′)q(x
(t)
1 | x′)

φ(x(t))q(x′
1 | x(t))

]

= min

⎡⎣1, p (x′
1, x

′
2, x

′
3) p

(
x
(t)
1 |x′

2, x
′
3

)
p
(
x
(t)
1 , x

(t)
2 , x

(t)
3

)
p
(
x′
1

∣∣∣x(t)
2 , x

(t)
3

)
⎤⎦

= min

⎡⎣1, p (x′
1 |x′

2, x
′
3 ) p (x

′
2, x

′
3) p

(
x
(t)
1 |x′

2, x
′
3

)
p
(
x
(t)
1

∣∣∣x(t)
2 , x

(t)
3

)
p
(
x
(t)
2 , x

(t)
3

)
p
(
x′
1

∣∣∣x(t)
2 , x

(t)
3

)
⎤⎦

= min [1, 1] = 1

(2.126)

which indicates that the probability of acceptance γ is always γ = 1; in other words, all
proposals will always be accepted. Generalizing the equations for x = [x1, x2, . . . , xNx ], where
Nx is the vector length, we can thus define

x−i := [x1, . . . , xi−1, xi+1, . . . , xNx ]

as the vector of all elements except xi. The proposal distribution for xi will thus be

q(x′
i | x(t)) = p

(
x′
i

∣∣∣x(t)
−i

)
. (2.127)
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The generic algorithm for implementing Gibbs samplers is presented in Algorithm 2, where

the vector x(t)
−i is defined as

x
(t)
−i :=

[
x
(t+1)
1 , . . . , x

(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
Nx

]
.

Algorithm 2 Gibbs sampler MCMC

1: initialization:
x(0)

2: for t = 0, 1, . . . tmax (or up to convergence) do
3: update x using the Gibbs sampler:

x
(t+1)
1 ∼ p

(
x1

∣∣∣x(t)
−1

)
x
(t+1)
2 ∼ p

(
x2

∣∣∣x(t)
−2

)
...

...

x
(t+1)
Nx

∼ p
(
xNx

∣∣∣x(t)
−Nx

)
4: end for

Metropolis within Gibbs
Consider the more complicated case where it is possible to generate samples from the condi-
tional distribution for part of the parameters but not for all of them. In this case, it is possible
to implement a hybrid approach, where we use Gibbs samplers for the group of parameters
that we can sample from their conditional distribution and a Metropolis–Hastings sampler
for the ones that we cannot sample from their conditional distribution. This combination is
known in the literature as Metropolis within Gibbs samplers.

2.3.5 MCMC issues
In this section, we consider some of the most important practical issues that are associated
with successful implementations of MCMC schemes.

2.3.5.1 Initialization

In theory, if one considers the situation where the Markov chain is irreducible and has a
unique stationary distribution, then from a theoretical perspective, starting the chain from
any initial value will make the chain converge to the stationary distribution after a certain
number of iterations. Theoretically, in this case, the starting value of the MCMC does not
affect the final result. However, finite sample effects lead to the practical conclusion that
there may be a great dependence of the results on the initial condition. Discussing this topic
in detail is beyond the scope of this thesis; we thus refer readers to [72, 67] for an in-depth
analysis of the issues associated with how to choose the initial conditions.
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2.3.5.2 Mixing

In Metropolis–Hastings algorithms, it is possible to control the scale of the proposal distri-
bution. The effect of varying this scale is that the chain mixing and the acceptance ratio of
the algorithm will change. To have good mixing for the chain, it is advisable to cover the
whole support of the stationary distribution. Since the stationary distribution is generally not
known, however, there is a need for alternative performance indices that can provide practical
indications on how to tune the scale. The acceptance ratio is one of such measures, and it
is known to heavily affect the chain mixing properties. The recommended values for the
acceptance ratio vary with the number of parameters that one intends to estimate. Indications
are to start from 44% when estimating just one parameter down to 20% for a large number of
parameters. See Table 1 in [69] for more detailed indications.

2.3.5.3 Convergence

It is not easy to empirically decide when the chain has converged to its stationary distribution
given that the stationary distribution is actually not known in field applications. The simplest
way to investigate the convergence is by visually inspecting the traces for the various param-
eters. Several convergence diagnostic tools exist in the literature; however, for brevity, we
describe only two of them: the Gelman–Rubin convergence diagnostics, and the autocorrelation
function.

The Gelman–Rubin convergence diagnostics [73] is based on estimating the variance of
the stationary distribution using both the within-sequence variance W and the between-
sequence variance B. Specifically, assume that we run n = 1, . . . , Nchains independent chains
to estimate the average of the distribution, say, μ. Moreover, assume that each chain has
Nsamples := tmax − tmin samples and that μn and σ2

n are the posterior mean and variance for the
nth chain. Then, one can define

W :=
1

Nchains

Nchains∑
n=1

σ2
n (2.128)

and

B :=
Nsamples

Nchains − 1

Nchains∑
n=1

(μn − μ̄)2 μ̄ :=
1

Nchains

Nchains∑
n=1

μn. (2.129)

Under stationarity assumptions, the following weighted average is then known to be an
unbiased estimate of the posterior variance for the parameter μ [54]:

V̂ =
Nchains − 1

Nchains
W +

1

Nchains
B. (2.130)

The convergence of the chain can thus bemonitored by calculating the potential scale reduction
factor

R̂ =

√
V̂

W
. (2.131)

Indications from the literature suggest that if R < 1.2 for all the parameters of the model, then
the chain can be assumed to have converged [74]. Note that these are indications; for example,
[74] proposed an alternative strategy where the factor above is corrected by accounting for
the variability of the samples.
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A method for determining how long the chain should be is to calculate the autocorrelation
of the Markov chain as a function of the sample lag g, i.e., as

ρ̂g =

Nsamples−g∑
n=1

(Xn − μ̄)(Xn+g − μ̄)

Nsamples∑
n=1

(Xn − μ̄)2

(2.132)

and then determine the smallest lag g thatmakes ρ̂g ≈ 0. Additionally, several other alternative
methods exist for this case; we refer readers to [75] for a detailed review of this issue.

2.4 Filtering and smoothing algorithms

In this Section, we provide a simplified (and hopefully easy to understand) presentation
for some methods that can be used for solving the state inference problems faced in this
thesis, i.e., to estimate the actual state xk of the system based on the measurement sequence
y1:k := {y1, y2, . . . , yk} and a point estimate of the parameters of themodel of the system. Based
on different hypotheses on the availability of the measurements, the process of estimating the
states of the system can be divided into two classes: filtering and smoothing.

When we talk about filtering, we implicitly assume that we are receiving a new measure-
ment at each time index and that we want to use this new measurement with the estimate
of the previous state to generate a new estimate of the current state. In other words, when
filtering, the previous measurement is not stored in the system; rather, we store only the most
recent estimate of the state and of the covariances. The relation between the states and the
measurements is represented through the Probability Density Function (PDF) p (x0:k |y1:k ),
the learning process is called joint filtering, and the PDF is called joint filtering density. The
filtering problem can be solved in a statistically optimal way for linear Gaussian systems
using the Kalman filter, as detailed in SubSection 2.4.1, and in a suboptimal way for nonlinear
systems using particle filters.

When we talk about smoothing, we implicitly assume a completely different situation than
before: here, we consider that we have a measurement sequence whose time indices go from
k = 1 up to k = M and that all the measurements are stored in the memory. Here, we
would like to estimate the state xk for all k ∈ [1,M ]. The PDF that shall be considered in
this case is p (x0:M |y1:M ), whereM is the time index of the last available measurement. The
learning process is now called joint smoothing, and the PDF is called joint smoothing density.
The smoothing problem can be solved optimally for linear Gaussian systems using a Kalman
smoother (specifically, the RTS Kalman smoother is explained in SubSection 2.4.2) and can be
solved in a suboptimal way for nonlinear systems using a particle smoother.

In the sensor calibration tasks considered in this thesis, we aremore interested in smoothing
problems. However, we will also describe the filtering process because filtering can be
considered an intermediate step that makes the smoothing easier to understand.
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2.4.1 Kalman filters
Kalman filters are a recursive implementation of the MMSE estimators for the specific case
of linear and Gaussian models. In this case, the filtering density for the single state, i.e.,
p (xk |y1:k ), can be recursively calculated using Bayes rule as follows:

p (xk |y1:k ) =
p (yk |xk ) p (xk |y1:k−1 )

p (yk |y1:k−1 )
. (2.133)

Note that the denominator can be calculated using marginalization

p (yk |y1:k−1 ) =

∫
p (yk |xk ) p (xk |y1:k−1 ) dxk; (2.134)

moreover, p (xk |y1:k−1 ) can be determined using marginalization, i.e.,

p (xk |y1:k−1 ) =

∫
p (xk |xk−1 ) p (xk−1 |y1:k−1 ) dxk−1. (2.135)

Equation (2.134) represents the measurement prediction density since it predicts yk based
on the sequence of the whole previous measurements y1:k−1. Equation (2.135) instead rep-
resents the state prediction density since it predicts xk based on the sequence of the whole
previousmeasurements y1:k−1. Kalmanfilteringmeans recursively applying Equations (2.133)–
(2.135) on state space models that admit Markov properties, i.e., models such that Equa-
tions (2.134) and (2.135) become

p (yk |yk−1 ) =

∫
p (yk |xk ) p (xk |yk−1 ) dxk (2.136)

and

p (xk |yk−1 ) =

∫
p (xk |xk−1 ) p (xk−1 |yk−1 ) dxk−1 (2.137)

respectively. Note that the densities p (yk |xk ) and p (xk |xk−1 ) are inevitably included in the
measurement process and state update model of the state space equations.

Consider the linear Gaussian state space model{
xk+1 = Axk +Buk + ek =⇒ p (xk |xk−1 ) ∼ N (Axk−1 +Buk−1, Q)
yk = Cxk +Duk + νk =⇒ p (yk |xk ) ∼ N (Cxk +Duk, R)

(2.138)

where

• xk ∈ RNx is the unknown state vector,

• yk ∈ RNy is the output vector and y ∈ RM×Ny := [y1, . . . , yM ]T ,

• uk ∈ RNu is the known system input vector,

• A ∈ RNx×Nx , B ∈ RNx×Nu , C ∈ RNy×Nx and D ∈ RNy×Nu are the model parameter
matrices.

Moreover, assume that
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• the noise processes are distributed as[
ek
νk

]
∼ N

([
0
0

]
,

[
Q S
ST R

])
(2.139)

where Q ∈ RNx×Nx
+ , R ∈ R

Ny×Ny

+ and S ∈ R
Nx×Ny

+ are the process, output and joint
covariance matrices, respectively; 0 is a vector of zeros with opportune length; and

• the initial state is also Gaussian, i.e., x0 ∼ N (μ0, P0), where μ0 ∈ RNx and P0 ∈ RNx×Nx
+

are known.

(We warn the reader that, before describing the equations for the linear Gaussian systems, it
may be useful to review the relations in Appendix A.3 since they are extensively used in the
derivation.)

We then follow the derivation procedure presented in [76, 77]. Specifically, assume that
we have the estimate p (xk−1 |y1:k−1 ) = N

(
x̂k−1|k−1, Pk−1|k−1

)
from the previous steps. Thus,

using Equation (A.5), we can write the joint density of the current state xk and the previous
state xk−1 as

p (xk−1, xk |y1:k−1 ) = N
([

x̂k−1|k−1

Ax̂k−1|k−1 +Buk−1

]
,

[
Pk−1|k−1 Pk−1|k−1A

T

APk−1|k−1 APk−1|k−1A
T +Q

])
. (2.140)

The prediction density p (xk |y1:k−1 ) can then be found by marginalizing Equation (2.140) with
respect to xk−1, i.e.,

p (xk |y1:k−1 ) = N
(
Ax̂k−1|k−1 +Buk−1, APk−1|k−1A

T +Q
)
. (2.141)

Since this is the prediction density by definition, which means that

p (xk |y1:k−1 ) = N
(
x̂k|k−1, Pk|k−1

)
(2.142)

we have
x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (2.143)

and
Pk|k−1 = APk−1|k−1A

T +Q. (2.144)

Using the same procedure, the measurement density p (yk |xk ) and the prediction density
p (xk |y1:k−1 ) provide the following joint density:

p (xk, yk |y1:k−1 ) = N
([

x̂k|k−1

Cx̂k|k−1 +Duk

]
,

[
Pk|k−1 Pk|k−1C

T

CPk|k−1 CPk|k−1C
T +R

])
. (2.145)

We can then marginalize Equation (2.145) with respect to xk to obtain

p (yk |y1:k−1 ) = N
(
Cx̂k|k−1 +Duk, CPk|k−1C

T +R
)
. (2.146)

Then, evaluating Equation (2.133), whichmeans conditioning Equation (2.145) on yk, provides
the following density (see Equation (A.3)):

p (xk |y1:k ) = N
(
x̂k|k−1 +Kk

(
yk − Cx̂k|k−1 −Duk

)
, Pk|k−1 −Kk

(
CPk|k−1C

T +R
)
KT

k

)
(2.147)
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where
Kk := Pk|k−1C

T
(
CPk|k−1C

T +R
)−1

. (2.148)

From the definition
p (xk |y1:k ) := N

(
x̂k|k, Pk|k

)
(2.149)

it then follows that
x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1 −Duk

)
(2.150)

and that
Pk|k = Pk|k−1 −Kk

(
CPk|k−1C

T +R
)
KT

k . (2.151)

We can at this point summarize the Kalman Equations in the prediction and correction phases
as follows, starting from x̂0|0 = x0 ∼ N (μ0, P0), and applying the recursion for k = 1, . . . ,M :

prediction

⎧⎨⎩
x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

Pk|k−1 = APk−1|k−1A
T +Q

update

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1 −Duk

)
Pk|k = Pk|k−1 −Kk

(
CPk|k−1C

T +R
)
KT

k

Kk = Pk|k−1C
T

(
CPk|k−1C

T +R
)−1

(2.152)

2.4.2 The RTS Kalman Smother
Consider the same linear and Gaussian state space model defined in the previous Section 2.4.1,
i.e., {

xk+1 = Axk +Buk + ek
yk = Cxk +Duk + νk

(2.153)

where

• xk ∈ RNx is the unknown state vector,

• yk ∈ RNy is the output vector and y ∈ RM×Ny := [y1, . . . , yM ]T ,

• uk ∈ RNu is the known system input vector,

• A ∈ RNx×Nx , B ∈ RNx×Nu , C ∈ RNy×Nx and D ∈ RNy×Nu are the model parameter
matrices.

Assume once again that

• the noise processes are distributed as[
ek
νk

]
∼ N

([
0
0

]
,

[
Q S
ST R

])
(2.154)

where Q ∈ RNx×Nx
+ , R ∈ R

Ny×Ny

+ and S ∈ R
Nx×Ny

+ are the process, output and joint
covariance matrices, respectively; 0 is a vector of zeros with opportune length; and
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• the initial condition is also Gaussian, i.e., x0 ∼ N (μ0, P0), where μ0 ∈ RNx and P0 ∈
RNx×Nx

+ are known.

We then aim to obtain the equations of the RTS Kalman smoother starting from the estimate
p (xk |y1:M ) = N

(
x̂k|M , Pk|M

)
calculated in the previous section and following the procedure

described in [76] starting from the density p (xk−1, xk |y1:k−1 ). Specifically, we expand this last
density using the joint probability rule of conditional events to obtain

p (xk−1, xk |y1:k−1 ) = p (xk |xk−1, y1:k−1 ) p (xk−1 |y1:k−1 ) . (2.155)

The first density on the right-hand side of Equation (2.155) is the state evolution density,
while the second density p (xk−1 |y1:k−1 ) is the filtering density (2.149). Note that this density
can be obtained directly from the Kalman filter equations (2.152). Therefore, we can apply
Equation(A.5) to obtain the joint density of conditional normal densities as

p (xk−1, xk |y1:k−1 ) = N
([

x̂k−1|k−1

Ax̂k−1|k−1 +Buk−1

]
,

[
Pk−1|k−1 Pk−1|k−1A

T

AP T
k−1|k−1 APk−1|k−1A

T +Q

])
. (2.156)

We can then apply the conditioning rule of normal densities (A.3) to obtain

p (xk−1 |xk, y1:k−1 ) = N
(
x̂k−1|k−1 + Jk−1(xk − Ax̂k−1|k−1 − Buk−1), Pk−1|k−1 − Jk−1AP

T
k−1|k−1

)
(2.157)

where

Jk−1 = Pk−1|k−1A
T

(
APk−1|k−1A

T +Q
)−1

.

We now consider the joint density of the current state xk and the previous state xk−1 given
the vector of all measurements, and we decompose it as

p (xk, xk−1 |y1:M ) = p (xk−1 |xk, y1:M ) p (xk |y1:M ) (2.158)

where the first density on the right-hand side of Equation (2.158) is the same as p (xk−1 |xk, y1:k−1 )
because of the Markovian property, where the state xk−1 is independent of the measurements
yk:M given the state xk, and where the second density is our starting value. Thus, the joint
density becomes

p (xk−1, xk |y1:M ) =

N
([

x̂k|M
x̂k−1|k−1 + Jk−1(x̂k|M −Ax̂k−1|k−1 +Buk−1)

]
,

[
Pk|M Pk|MJT

k−1

Jk−1Pk|M Jk−1Pk|MGT + Pk−1|k−1 − Jk−1APk−1|k−1

])
.

(2.159)

The marginal mean and covariance of this density correspond to

x̂k−1|M = x̂k−1|k−1 + Jk−1(x̂k|M − Ax̂k−1|k−1 +Buk−1), (2.160)

Pk−1|M = Pk−1|k−1 − Jk−1APk−1|k−1 + Jk−1Pk|MJT
k−1, (2.161)

Pk−1|M = Pk−1|k−1 + Jk−1

(
Pk|MJT

k−1 − APk−1|k−1

)
. (2.162)
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We can thus summarize the RTS Kalman smoother as follows, starting from x̂0|0 = x0 ∼
N (μ0, P0), and applying the following recursion:

for k = 1, . . . ,M

forward Filter
(Kalman filter)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

prediction

⎧⎨⎩
x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

Pk|k−1 = APk−1|k−1A
T +Q

update

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1 −Duk

)
Pk|k = Pk|k−1 −Kk

(
CPk|k−1C

T +R
)
KT

k

Kk = Pk|k−1C
T

(
CPk|k−1C

T +R
)−1

and for k = M,M − 1 . . . , 1

backward filtering

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂k|M = x̂k|k + Jk(x̂k+1|M − Ax̂k|k − Buk)

Pk|M = Pk|k + Jk
(
Pk+1|MJT

k − APk|k
)

Jk = Pk|kA
T

(
APk|kA

T +Q
)−1

(2.163)

2.4.3 Modified RTS smoothers
The RTS Kalman smoother can be used for performing joint parameter–state estimation in the
expectation step of the EM algorithm. In our derivations, we followed the same procedure
described in [65], which requires the calculation of the extra term Mk|M because of the
required expectations in the following terms:

• Eθ

[
ykx

T
k | y

]
= ykx̂

T
k|M

• Eθ

[
xkx

T
k | y

]
= x̂k|M x̂T

k|M + Pk|M

• Eθ

[
xkx

T
k−1 | y

]
= x̂k|M x̂T

k−1|M +Mk|M .

In this case, the smoother equations for x̂k|M , Pk|M andMk|M are calculated backward in
time as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̂k|M = x̂k|k + Jk(xk+1|M − Āx̂k|k − B̄uk)

Pk|M = Pk|k + Jk(Pk+1|M − Pk+1|k)

Jk = Pk|kĀ
TP−1

k+1|k

(2.164)

for k = M, . . . , 1. The matrixMk|M is initialized as

MM |M = (I −KMC)ĀPM−1|M−1 (2.165)

and calculated using

Mk|M = Pk|kJ
T
k−1 + Jk(Mk+1|M − ĀPk|k)J

T
k−1 (2.166)
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for k = M − 1, . . . , 1. Finally, the quantities x̂k|k, Pk|k, Pk+1|k and KM can be computed by a
standard Kalman filter for the system described by

Ā := A− SR−1C
B̄ := B − SR−1D
Q̄ := Q− SR−1ST .

(2.167)

In the special cases considered in Chapters 4 and 5, we will always have systems for which
S = 0; thus, Ā = A, B̄ = B and Q̄ = Q (more details about the equations and proofs leading
to these can be found in [65]). The Kalman filter equations for this specific case are thus of
considerable interest for our case. These can then be summarized as follows [78] (see also
(2.152)):

prediction

⎧⎨⎩
x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

Pk|k−1 = APk−1|k−1A
T +Q

update

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1 −Duk

)
Pk|k = Pk|k−1 −Kk

(
CPk|k−1C

T +R
)
KT

k

Kk = Pk|k−1C
T

(
CPk|k−1C

T +R
)−1

(2.168)

with k = 1, . . . ,M .

2.5 Selection of the structure of the model and of its com-
plexity

In many cases, there is a need to select a specific structure for the model among a set of
competing alternative structures (e.g., linear, bilinear, polynomial, and so forth). Even if the
structure is defined, there is also very often a need to decide the model complexity for a
certain model structure (e.g., the number of states, the order of the polynomials, and so forth).
Solving both of these problems requires employing appropriate model selection tools.

Before introducing these tools, it may be beneficial to discuss the bias and variance tradeoff.
Specifically, assume that we have a measurement yk that is generated through

yk = f(xk) + νk (2.169)

where f(·) is a generic static function representing the measurement process, xk is the known
input or state of the system, and νk ∼ N (0, σ2

ν) is iid noise with σ2
ν as the noise variance. If we

have an estimate f̂(·) of the function f(·) that has been estimated using the training dataset T ,
then the expected prediction error (if we use the square error loss) is

Err(xk) = E

[(
yk − f̂(xk)

)2
]

= σ2
ν + var

(
f̂(xk)

)
+ bias2(f̂(xk))

(2.170)
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where the pair {xk, yk} does not belong to the training set (see Appendix C for the derivation

of this index). This result is obtained based on the assumption that yk is uncorrelated with f̂(·);
in other words, this result comes from the assumption that the test set is different from the
training set). Equation (2.170) clearly indicates that the prediction error has three components:
the first one is constant and represents a lower limit that cannot be modified by the user
choices; in other words, one cannot do better than the amount of measurement noise present
in the system. The other two components can be interpreted as a (squared) bias and a variance,
and they depend on the estimated model and its structure. Increasing the model order (or
complexity) generally decreases the bias component but simultaneously increases the variance
component because it captures the noise variations in the training set. Therefore, very simple
models will have small variances but large biases, and very complicated models will have
smaller biases but larger variances. This implies that an optimum balance exists between
these two components, and reaching this optimal balance results in a minimal prediction
error.

Assume that Equation (2.170) is applied on a pair that is part of the training dataset, i.e.,
{xk, yk} ∈ T . In this case, we will obtain a training error rather than a prediction error; we
then define the training error for the entire dataset as

err(x) =
1

M

M∑
k=1

(
yk − f̂(xk)

)2

. (2.171)

The training error err(x) is smaller than the total prediction error, which is defined as

Err(x) :=
1

M

M∑
k=1

Err(xk) (2.172)

because the training error is typically minimized when fitting the training dataset. Intuitively,
this means that the prediction error will be the training error plus a compensation term Cterm,
i.e.,

Err(x) = err(x) + Cterm. (2.173)

The model selection algorithms work by exploiting the intuitive derivations above, and they
can be divided into two main groups [79]: the first estimates the prediction error Err(x)
directly (such as cross-validation and bootstrap) and can work with linear and nonlinear
models. However, those methods suffer from large computational complexities and require
large datasets. However, the second group uses the training error Err(x) directly and attempts
to compensate for the model complexity by using opportune estimators of the (unknown)
prediction errors. Methods in this category are, for example, the AIC, the BIC, and other
similar criteria; despite their numerical advantages w.r.t. the methods in the first class, they
work only for a special class of models that are linear in the parameter. In the following, we
list and briefly describe these methods, and we refer interested readers back to the existing
literature for more theoretical details.

2.5.1 Akaike Information Criterion (AIC)
Assume that the density of the true model is p (y) and that a set of Jp generic models
{p (y |θj ) , j = 1, . . . , Jp} is available. The AIC is based on finding the discrepancy between the
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true model and a generic model p (y |θj ) through using the Kullback–Leibler1 information

D(p (y) , p (y |θj )) = Ep(y) [log p (y)]− Ep(y) [log p (y |θj )] . (2.174)

Then, consider the right-hand side of this equation: here, only the second term depends on
the proposed model p (y |θj ). The intuition is then that we need to select the model that
minimizes this term. Unfortunately, exactly calculating this term is not possible for two
specific reasons:

• first, we do not know the exact values of θj in p (y |θj ); the best that we can compute is

the ML estimate of θj given a training dataset, which means p
(
y

∣∣∣θ̂j

)
;

• second, we cannot compute the expectation with respect to the true model p (y) since
the true model is not known.

The AIC [53] is then an asymptotically unbiased estimate for the second term in Equa-
tion (2.174) multiplied by -2, i.e.,

AIC := −2 log p
(
y

∣∣∣θ̂j

)
+ 2N. (2.175)

This estimation is based on considering linear systems with N unknown parameters, the

asymptotic distribution of the ML estimator of the parameters θ̂j , and the second-order Taylor

expansion of p (y |θj ) around θ̂j . All these components can then be combined to select the
model that returns the smallest AIC score (that should be the one that is the closest to the
true model density).

The AIC is reported to suffer from overfitting even with infinite sample size [51, 81].
To improve its performance, authors have proposed using a corrected version of the AIC,
typically called AICc [82, 83]. This version considers an exact unbiased estimate of the second
term in Equation (2.174) for the linear models case, and it results in

AICc := −2 log p
(
y

∣∣∣θ̂j

)
+

2NM

M −N − 1
. (2.176)

Asymptotically (i.e., for infinite sample sizes), we have that AICc → AIC, while for finite
sample size, AICc has less risk for overfitting than AIC.

2.5.2 Bayesian Information Criterion (BIC)
Similar to the AIC, the BIC is built on top of considerations starting from the ML estimator
for the parameters of the unknown models. Specifically, assume having a set of Jp candidate
models {fj, j = 1, . . . , Jp}with the corresponding estimated parameter vectors θj . Assume
that a prior density p (θj) also exists for each of the various model parameters. It is then
possible to write the posterior density for a given model given the training dataset T as

p (fj |T ) ∝ p (T |fj ) p (fj) . (2.177)

1The Kullback–Leibler divergence was introduced by Solomon Kullback as the directed divergence between
two distributions; see pp.7 in [80].
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To compare two different models j1 and j2, we can write the ratio

p (fj1 |T )

p (fj2 |T )
=

p (T |fj1 )
p (T |fj2 )

p (fj1)

p (fj2)
. (2.178)

Assuming a uniform prior for the models, the previous expression simplifies to

p (fj1 |T )

p (fj2 |T )
=

p (T |fj1 )
p (T |fj2 )

. (2.179)

The term
p (T |fj1 )
p (T |fj2 )

is then called the Bayes factor, and it reflects the data contribution ratio.

When this ratio is greater than one, we should select model j1; otherwise, we should select
model j2. To calculate the term p (T |fj1 ) in the Bayes factor, we need to perform opportune
approximations under the assumption of a linear model with Nj1 parameters. Specifically,
using a Laplace approximation (see pp. 207 in [79]) to the integral

p (T |fj1 ) =
∫

p (T |fj1 ,θj1 ) p (θj1 |fj1 ) dθj1

we obtain

log p (T |fj1 ) = log p
(
T

∣∣∣fj1 , θ̂j1

)
− Nj1

2
logM +O(1) (2.180)

where θ̂j1 is the ML estimate of θj1 , which in turn provides the BIC score

BIC(j) = −2 log p
(
T

∣∣∣fj, θ̂j

)
+Nj logM. (2.181)

The BIC is reported to be asymptotically consistent, i.e., the BIC will in probability choose the
correct true model when the number of samples goes to infinity [51].

2.5.3 Generalized Likelihood Ratio (GLR) test
The model selection step can be also performed using hypothesis testing approaches, where
the null hypothesis H0 assumes that the measurements are generated from the first model
and where the alternative hypothesis H1 assigns the measurements to the other competing
model. In this case the test is performed through comparing the likelihood ratio (the null
over the alternative hypothesis) against a predefined threshold value: if the likelihood ratio is
then larger than the threshold this implies that H1 should be rejected.

In our specific model selection case, consider to have two competing models, namely
p1 (y ; θ1) of order N1 and p2 (y ; θ2) of order N2, where θ1 ∈ Θ1 andΘ1 ⊂ Θ2 (the last fact
corresponding to assume the first model to be a lower-dimensional model compared to the
second model). The hypothesis is thus

H0 : model parameters ∈ Θ1

H1 : model parameters /∈ Θ1.
(2.182)

Informally, this means to test whether the parameters are in the smaller or in the larger model.
The GLR is then defined as

Λ :=
arg max

θ1∈Θ1

p1 (y ; θ1)

arg max
θ2∈Θ2

p2 (y ; θ2)
=

p1

(
y ; θ̂1

)
p2

(
y ; θ̂2

) (2.183)
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where θ̂1 and θ̂2 are the ML estimate of the parameters. Note that usually these parameters
are then calculated using an opportune training dataset; the score is instead computed using
a validation dataset. For the nested models case, it has been shown in [84] that the asymptotic
distribution of the Λ is

Λ ∼ χ2 (N2 −N1) for N2 > N1 (2.184)

where χ2 (N2 −N1) is Chi-square distribution with N2 −N1 degrees of freedom. To decide
between the two model orders based on a threshold value, we can then select the model
order N1 if Λ is larger than the threshold value, otherwise we select model order N2. The
threshold value can be determined using different approaches, see for example [85]. A natural
implementation of the GLR test is thus in a sense equivalent to an information criterion
method.





Chapter 3

Statistical models for static sensors

In this chapter we describe how to build statistical models that can capture the behaviors of
typical sensors. The chapter lists the difficulties and challenges that influence the modeling
step, specifically focusing on what phenomena increase the complexity of these models, and
provide, during this process, several practical examples.

3.1 Definitions

Consider a sample of measurements y = {yk}Mk=1 representing a physical process x = {xk}Mk=1

corrupted by noise. Let this sample belong to a sample space Ω, with PΩ being the set of all
probability distributions on Ω. A statistical model for this physical process is defined as a
set of probability distributions on the sample space Ω which is a subset of PΩ (see [86]).

Now consider a parametric function p (y ; θ) : Θ → PΩ, whereΘ is the parameter space.
A parametrized statistical model is a set of parameters Θ with the function p that assigns
for each parameter point θ ∈ Θ a probability distribution p (y ; θ) ∈ PΩ. Therefore, for each
parametric statistical model we need to define the function and the parameter space so to have
a fully specified model. A very simple but intuitive example is the normal distribution model
N (μ, σ2)where μ ∈ [0, 1] and σ2 ∈ [1, 2] are unknown model parameters. The parametrized
statistical model in this example is the set of all normal distributions spanned by the parameter
values. Figure 3.1 shows a graphical representation of this definition1.

Our definition clearly admits introducing Bayesian formalisms: a Bayesian parametric sta-
tistical model requires in addition to the above definition just introducing a prior distribution
on Θ.

Learning a model will then correspond to the operation of obtaining one point θ∗ of the
parameter set Θ that best fits a dataset in some sense. In other words, after specifying the
complete statistical model for the measurement process our aim is then to obtain a point
estimate for our model by opportunely processing the available samples measured through
the to-be-calibrated sensor. Notice that this will be the main objective of the next chapter,

1The above definition is adopted in statistics literature, however, in some system identification literatures
for example [87] when the parameter vector θ varies over some feasible values, it is called model set or model
structure.
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p (y ; θ)

true distribution
g(y)

Figure 3.1: An example for clarifying our definition of statistical model. The plot shows
indicates the true distribution g(y) plus part of the space of a specified parametric family of
distributions p (y ; θ).

while here we deepen the discussion on how to appropriately formulate a parametrized
statistical model.

We then startwith the important consideration that the transformation p should be injective,
so to guarantee to have identifiability in the parameters, or mathematically speaking, to
guarantee that for any two sets of parameters θ′ and θ if we have θ′ = θ thenwe are guaranteed
that p (y ; θ′) = p (y ; θ) and vise versa.

The statistical model (or the set of models) could at least theoretically be obtained as
follows: after carefully examining the physical laws, then one can construct a model with
some unknown parameters that mimics these physical laws. Such kind of models is called a
gray box statistical model [88]. If examining the physical laws is cumbersome, one may instead
employ standard models (e.g., linear or polynomial models, as we will show below). Ignoring
the physics of the system leads to do what is called black box statistical modelling. In this thesis
we aim to have gray box models whenever it is possible, but also admit black box modelling.

3.2 Considerations about the amount of information avail-
able for the calibration process

The amount of information contained in our datasets play a very important rule in the
statistical sensor calibration process described in Section 1.3, as it influences both model
building and model estimation processes. Therefore, it is important to clarify how different
information contents imply different estimation possibilities. We then remark that we use the
notation:
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• y for the sensor measurement vector;

• x for the true values of the quantity that we would like to measure with the sensor. We
also call x the state of the system, because it is the main objective behind the sensing
process;

• all the other variables that may influence the measurements y (like temperature, hu-
midity, etc.) will be called system variables and indicated with opportune notations
depending on the specific cases that we will consider in the rest of the thesis.

In general, we divide the datasets into two groups:

complete datasets, also called full datasets, i.e., datasets that contain both the measurements
y, the true values x (the ground truth) and all other independent variables that influence
y effectively;

incomplete datasets, i.e., the remaining situations where some information about one of
those variables is missing.

Incomplete datasets may still have sufficient information to make our statistical estimation
problems well-posed, i.e., enable us to obtain an unique solution (and to guarantee that this
solution depends continuously on the available data). When a dataset will have such a scarce
amount of information that the estimation problem becomes ill-defined in the Hadamard
sense, then we will consider that dataset useless. In this thesis we ignore this latter case; thus,
when we will mention that a dataset is incomplete we will implicitly mean that it can be used
for statistical estimation purposes. Also, it is clear that the dataset, in general, must spans
the whole support of x in statistically fair way and to be statistically rich in order to obtain
reliable estimates of the model parameters.

An example of the incomplete dataset that we will present in this thesis is the temperature
compensation of ToF Lidar with the laser diode mode-hopping (see SubSection 1.5.1 for the
physical explanation of mode-hopping). We have a dataset of the measurements and the true
distances, but there still a missing variable, a temperature dependent variable, that controls
the mode-hopping effect of the laser. We model the process as Gaussian mixture model with
unobserved latent (missing) variable, see Example 3.3.

Another kind of incomplete dataset is the case when the true values x is not known but we
have some information about them, we refer to this case as unknown states case. An example
with unknown states that we consider in this thesis is the triangulation Lidar installed on
top of a moving robot: here recorded datasets can contain the Lidar measurements and
some information about robot movement in space like linear speed and initial starting point;
However, we typically do not assume the knowledge of the true distances that corresponds to
the Lidar measurements. For a more detailed description of this phenomenon see Example 3.9
on page 89.

Note that obtaining the state x requires doing experiments in controlled environments and
using special techniques and/or equipment for recording this information. Unfortunately,
performing this operation, as seen in the just referenced example, is not always possible,
because the required measurement tools may not be available, may be too expensive, or
because performing a data collection experiment may be infeasible since the to-be-calibrated
sensor cannot be averted from the job that it is currently performing, even if its performance
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has degraded and it needs a re-calibration. This means that often there is the practical
requirement of solving a model estimation problem without knowing the actual state of
the system x. This requires substituting x with other available and opportune source of
information.

Before diving into the series of the statistical models considered in this thesis, we recall
that we saw that the state variable of the system x can be either known or unknown at the
moment of doing the calibration process. This lack or availability of information transforms
into different choices in both the modeling and learning processes. The structure of the
Sections in this Chapter will thus reflect this consideration, and will be as follows:

• Section 3.3 focuses on statistical models where the states of the system are known;

• Section 3.4 focuses on statistical models where the states of the system are instead
unknown.

In each Section we will thus offer several examples of statistical models, and follow a structure
where these models will have increasing complexity. We also provide the ancillary Section 3.5,
where we describe other statistical models typically used in the system identification and
machine learning communities but not used in this thesis for performing sensors calibration
tasks.

3.3 Statistical models for systems with known states
We now consider systems where the states are known, due to the presence of some measuring
system guaranteeing the knowledge of some “ground truth”. The parametric statistical model
here is defined by the parametric function p (y |x ; θ) : RM ×Θ → PΩ, where x ∈ RM is a
known states vector with dimensionM , and whereΘ is as before is the model parameters
space. To describe the types of models that are included in the here considered category we
start by considering the simplest example, and then increase the level of complexity gradually
with each Section.

We thus start with considering a linear Gaussian measurement model that satisfies, at the
generic time instant k, the equations

yk = θxk + σννk (3.1)

where

• θ ∈ R is the unknown model parameter vector;

• xk is the known model state;

• νk is the model noise iid standard Gaussian nose;

• σ2
ν ∈ R+ is the unknown noise variance.

Unfortunately, many sensors do not follow the simple model (3.1) and eventually more
complicated models are required. Nonetheless we start by introducing this example since
it provides a solid ground for increasing complexities through either modifying the state-
transformation part of the model (for example nonlinearities in the bias) or in the color of
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the noise of the model (for example a noise variance that nonlinearly depends on the state
of the system). We then discuss each one of these complications in SubSection 3.3.1 and
SubSection 3.3.2 respectively.

3.3.1 Modelling nonlinearities in the bias
In practice, many sensors have nonlinear responses, as we will see in the examples below. In
many cases it is possible to capture nonlinearities in this bias term using separable models,
like polynomial-expansions or Fourier-expansions. These models, as we will see in the next
chapters, simplify the model estimation process and, in many cases, keep it numerically
tractable.

We then present both polynomial and Fourier nonlinear bias models through the following
real examples:

Example 3.1 (Polynomial model)

Consider the practical case of the ToF SICK LMS111 Lidar shown in Figure 3.2, where
there is a clear nonlinear temperature effect on the measured distance yk. Let the case
temperature at time k be tck, and define H (tck) as

H (tck) :=
[
1, tck, (t

c
k)

2 , . . . , (tck)
N

]
. (3.2)

Define also the polynomial coefficient vector θ := [α0, α1, . . . , αN ]. Then the following
polynomial model can be used to model the dependency of the measured distance on the
temperature:

yk = dk +

(
N∑

n=0

αn (t
c
k)

n

)
+ σννk (3.3)

where σ2
ν ∈ R+ and νk ∼ N (0, 1) as before.

Example 3.2 (Fourier model)

Consider now the recorded measurements from another Lidar model, the SICK LMS200,
shown in Figure 3.3. This device shows a different type of nonlinearity in the bias that
can be intuitively modeled as a nonlinearity with periodic nature. Given this periodicity,
it is more suitable to model the bias term with a Fourier-expansion model. More precisely,
define now H (tck) as

H (tck) :=
[
cos (2πf0t

c
k) , sin (2πf0t

c
k) , . . . , cos (2Nπf0t

c
k) , sin (2Nπf0t

c
k)

]
(3.4)

and the parameter vector θ := [θ′1, θ
′′
1 , . . . , θ

′
N , θ

′′
N ], where the fundamental frequency

f0 ∈ R+ is assumed to be known. Then this Fourier model can be used to model the
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Figure 3.2: Recorded distance measurements from a SICK LMS111 Lidar versus the case
temperature for an obstacle whose position was fixed with respect to the sensor.

periodic dependency of the measured distance on the temperature as

yk = dk +
N∑

n=0

(
θ′n cos (2nπf0t

c
k) + θ′′n sin (2nπf0t

c
k)

)
+ σννk (3.5)

where we also have σ2
ν ∈ R+ and νk ∼ N (0, 1) as before.

3.3.2 Modeling non-constant measurement noise variances
When all the random variables in a measurement vector have the same finite variance the
model is said to be homoskedastic; otherwise, the model is called heteroskedastic. Heteroskedas-
ticity can be caused by dependencies of the noise variances from the state or from other
factors. In this thesis we consider two variations of a common strategy for modeling het-
eroskedastic noises: in SubSection 3.3.3 we consider the so-called mixture models, where
the variance might have different values conditioned on some events; in SubSection 3.3.4
we instead consider the case where the model variance depends on the model states or is a
parametric function of the states.

3.3.3 Mixture models
Some times the distribution of the noise ismulti-modal; in these cases it is convenient to use the
so-called mixture models [89] for modeling the measurement process. In the specific case of
Gaussian distributions, a common approach is to use a Gaussian mixture model (GMM) [89].
The basic idea in this case is to introduce an unobserved random variable and assume that
the observations yk are modeled conditionally on this variable. Using a GMM leads then to a
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Figure 3.3: Recorded distance measurements from a SICK LMS200 Lidar versus the tempera-
ture of its case for an obstacle whose position was fixed with respect to the sensor.

measurement model of the kind

yk =

JM∑
j=1

Δj
ke

j
k (3.6)

where

• JM is the number of mixture components;

• ejk ∼ N
(
μj, σ

2
j

)
, μj ∈ R, σ2

j ∈ R+;

• Δj
k is a binary selection variable (either 0 or 1) such that

JM∑
j=1

Δj
k = 1, (3.7)

so that the output corresponds to only one of the mixture components at each time
stamp k.

The mixture density is then the convex sum of the components densities

p (yk |Π1:JM ) =

JM∑
j=1

ΠjN
(
μj, σ

2
j

)
(3.8)

where Πj ∈ [0, 1] is a mixing parameter such that

JM∑
j=1

Πj = 1. (3.9)



74 Chapter 3. Statistical models for static sensors

Example 3.3 (GMM-based statistical modelling of the dependency of a ToF Lidar sensor
on its case temperature)

Consider the lasing mode hopping effect of the Laser Diode with junction temperature
explained in Figure 1.8, and consider the dataset recorded using a SICK LMS200 Lidar
measured distance shown in Figure 3.4. We aim now tomodel the effect of the temperature
of the laser junction tjk on the measured distance d, and understand how the noisy case
temperature measurements tsk help improving the accuracy on the final estimate of d. To
this aim we propose the following measurement model at the generic time instant k:

yk = d+H
(
tjk

)
θ + (1−Δk)w

1
k +Δkw

2
k (3.10)

where

• yk is the distance returned by the sensor (Lidar measurement);

• d ∈ R+ is the true distance from the object (assumed deterministic);

• tjk is the temperature of the laser cavity at time k;

• the two modes w1
k ∼ N (μ1, σ

2
1) and w2

k ∼ N (μ2, σ
2
2) account for a bimodal Gaussian

and white additive measurement noise (please note that the index on the upper
right corner is for the component index not the power). The Bernoulli r.v. Δk ∼
B (π) selects the active mode at time k, so that π reflects the relative importance
of the modes. Intuitively, Δk represent which lasing mode has been active during
measurement yk. We notice here that we consider bimodal noises (i.e., only two
lasingmodes) just for notational simplicity. It is nonetheless immediate to generalize
the subsequent findings for several-modal case;

• H (·)θ is a nonlinear transformation of the temperature of the laser junction tjk into
a measurement bias. In the following models 1 and 2 we show how different H (·)s
and θs express different maps from the junction temperature tjk to the measurement
bias.

Notice that, induced by our experience, we let the measurement noise modes w1
k

and w2
k be independent from the laser junction temperature tjk. Our experiments indeed

indicated that the moments of the noises are not affected by changing temperatures (at
least for a range between 0°C and 40°C). Notice moreover that model (3.10) is linear in
θ; this restrictive assumption is nonetheless essential for building distance estimation
algorithms that are numerically fast (see SubSection 4.3.4).

Model 1 (A polynomial GMM model for the dependency of the measurement on the
temperature of the sensor). Let

Hk = H
(
tjk

)
:=

[
tjk,

(
tjk

)2
, . . . ,

(
tjk

)N]
(3.11)
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and θ := [α0, . . . , αN ]. Then the generic model (3.10) specializes into

yk = d+
N∑

n=0

αn

(
tjk

)n
+ (1−Δk)w

1
k +Δkw

2
k, (3.12)

i.e., a measurement model where the temperature plays the role of a N -th order polynomial bias
(see Figure 3.2).

Model 2 (A Fourier expansion GMMmodel for the dependency of the measurement on
the temperature of the sensor). Let

Hk = H
(
tjk

)
:=

[
cos

(
2πf0t

j
k

)
, sin

(
2πf0t

j
k

)
, . . . , cos

(
2Nπf0t

j
k

)
, sin

(
2Nπf0t

j
k

)]
(3.13)

and θ := [θ′1, θ
′′
1 , . . . , θ

′
N , θ

′′
N ], where the fundamental frequency f0 is assumed to be known. Then

the generic model (3.10) specializes into

yk = d+
N∑

n=1

(
θ′n cos

(
2nπf0t

j
k

)
+ θ′′n sin

(
2nπf0t

j
k

))
+ (1−Δk)w

1
k +Δkw

2
k, (3.14)

i.e., a measurement model where the temperature plays the role of a bias that is periodic with
frequency f0 (see Figure 3.3).

Notice that in this specific example both models (3.12) and (3.14) require to know the laser
diode junction temperature. In practical scenarios, though, what one can actually measure
is the Lidar case temperature (see Figure 3.4). As an example of how to proceed in the
cases where there are some unknown quantities in the model, we now explain how one can
determine the laser diode junction temperature tjk from the measured Lidar case temperature
tsk.

In the specific example above, there is the need for a general model for the thermal
dynamics of the instrument. Physical modeling is in this case quite trivial: just like any
power electronic device, Lidars generate heat that is then exchanged with the environment,
so that the temperature of a scanner depends on the temperature of the environment. The
main source of heat inside the Lidar are thus the laser diode, the motor and the electronic
components of the system. The heat generated inside the scanner is then transferred to the
surrounding environment through the case. Since our experience indicates that motors and
other electronic components induce negligible thermal effects, we consider only the heat
produced by the laser diode.

We can thus represent the thermal model of a generic scanner as the equivalent electrical
circuit shown in Figure 3.5, interpretable as follows: when the laser is turned on, the heat
generated by the laser junction is dissipated in the surrounding environment through first
the transmitter case and then second through the laser scanner case.

Considering then the notation:
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Figure 3.4: Dependency of the distance measurements on the device temperature for a SICK
LMS200 device pointing to a fixed object in a controlled environment. Despite the true
distance and other parameters potentially affecting the measurements are constant in time,
the distributions of the measurements is temperature-varying. We can notice how the device
compensates for the temperature change by adding a temperature-varying negative bias, but
that it does not compensate the mode hopping effect.

tj tc

PdC1 R2 C2

1

R2

ṫa

R1

Figure 3.5: The proposed thermodynamic model for a generic pulsed ToF Lidar.
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Pd heat power generated by the junction (equal to zero when the device is off)

tj temperature of the junction
tc temperature of the transmitter case
ta temperature of the external ambient
ts noisy measurement of the temperature of the transmitter case

C1 thermal inertia of the transmitter case
C2 thermal inertia of the laser scanner case

R1 thermal resistance between the transmitter case and the laser scanner case
R2 thermal resistance between the laser scanner case and the ambient

it follows that the dynamics for the temperatures of the laser junction and scanner case when
the laser is on is thus ⎧⎪⎪⎨⎪⎪⎩

ṫc =
tj

R1C2

− tc
(

1

R2C2

+
1

R1C2

)
+

1

C2R2

ṫa

ṫj =
P

C1

+
tc

R1C1

− tj

R1C1

(3.15)

Discretizing the previous dynamics with a discretization step of T seconds, and letting

tk :=

[
tck
tjk

]
, uk :=

{
Pd if on,
0 if off,

νk := tak − tak−1, (3.16)

implies the following discrete-time state-space representation of the model:{
tk+1 = Atk +Buk +B′νk

tsk = Ctk + μk
(3.17)

where tsk is a noisy temperature measurement of the case at time k, νk and μk are independent
process and measurement noises, and where

A =

⎡⎢⎢⎣1−
T

R2C2

− T

R1C2

T

R1C2

T

R1C1

1− T

R1C1

⎤⎥⎥⎦ B =

⎡⎣ 0

T

C1

⎤⎦ B′ =

⎡⎣ T

R2C2

0

⎤⎦ C =
[
1 0

]
.

(3.18)
Notice that through (3.17) we introduce tsk, i.e., a noisy measurement of the temperature of
the transmitter case. This correspond to the practical assumption that perfect knowledge of
the actual case temperature tck is in general unavailable, since temperature sensors attached to
the case of the scanner will never give noiseless recordings.

Identifying model (3.17) from a dataset of recorded temperatures tjk, t
c
k and tak can be

then performed using standard system identification approaches, e.g., a Prediction Error
Method (PEM) as in [88, chap. 7]. For the common case where it may be difficult to obtain
direct measurements of the quantities, we propose to resort to the following general strategy,
that uses the datasheet of the laser scanner in conjunction with noisy case temperature
measurements tsk.
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Algorithm 3 Identification of model (3.17) starting from the datasheet of a laser scanner

1: from the datasheet of the laser scanner infer:

• its thermal resistance R1 (directly from the datasheet);

• its thermal capacity C1 (by estimating the volume of the laser diode from the
datasheet and multiplying it for the heat capacity of the material, also indicated in
the datasheet);

2: from measuring the weight and material of the case infer its thermal capacity C2;
3: estimate the generated heat power Pd by measuring the electrical power absorbed by the

device, and multiplying this quantity by 0.5 (for the estimated efficiency of generic laser
diodes [90]);

4: from situations where the scanner is in thermal equilibrium calculate R2 by calculating
the difference between the measured case temperature tsk and the ambient temperature tak
divided by the estimated generated heat power Pd.

It is then possible to estimate tj from ts after that model (3.17) has been identified, either
from measured data or using Algorithm 3, using simple filtering techniques. For example,
considering that the thermal model is observable, reachable, and with stable dynamics, it is
possible to estimate tjk from noisy measurements of the case temperature tsk via the Kalman
smoothers defined in this thesis. These estimates can the be inserted in the models (3.12)
and (3.14).

3.3.4 Modelling state-dependent noise variances
We now consider statistical models where the model noise variance depends on the states.
Assume then that an unspecified sensor transforms the state xk ∈ R of an unspecified system
into a corresponding measurement yk following the generic nonlinear static model

yk = fmean (xk) + fnoise (xk) νk (3.19)

where the term fmean (xk) models the bias as a static nonlinear function depending on the
state of the system, while the static function fnoise (·) captures the heteroskedasticity of the
measurement system and νk ∼ N (0, 1) and independent.

Consider then a set ofM measurements collected from (3.19), and assume also to perfectly
know the values of the states xk at the various time instants k. The vector of measurements
can then be written compactly as

y = fmean (x) + fnoise (x)� ν (3.20)

where y := [y1, . . . , yM ]T , x := [x1, . . . , xM ]T , ν := [ν1, . . . , νM ]T . fmean (x) ∈ RM and
fnoise (x) ∈ RM is defined similarly, and � indicates the Hadamard product. Assuming
independence between the measurement noises the measurement noise covariance matrix is
therefore

Σν := diag
(
fnoise(x1)

2, . . . , fnoise(xM)2
)
. (3.21)

When the noises are correlated, Σν would instead clearly be non diagonal.
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A practical case where one can immediately verify that measurement noises are het-
eroskedastic and that the source of heteroskedasticity is actually the state of the system is the
one of triangulation Lidars . More specifically, consider Figure 3.6 and its caption. Here it is
clear how the distance of the target from the sensor affects the measurement noise.
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Figure 3.6: Example of distance measurements collected by a triangulation Lidar . The
measurements are visibly corrupted by a heteroskedastic noise.

In the next example we thus provide a full description of how to model these systems,
starting from physical considerations, and in this way explain how it may be possible to obtain
some heteroskedastic models.

Example 3.4 (Statistical modelling of triangulation Lidars )

Recall the operation principle of the triangulation Lidar described in Section 1.5.2 and
Figure 1.11. Let then yk be the k-th measurement returned by the Lidar when the true
distance is dk. Physically, yk is computed by the logic of the sensor through a static
transformation of b′k in Figure 1.11; we assume here that this static transformation is
unknown, that b′k is not available, and that we want to improve the estimation for dk from
just yk.

Our ansatz for the whole transformation from dk to yk is then

yk = fmean(dk) + fmean(dk)
2σννk (3.22)

where
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• fmean(·) is an unknown nonlinear function;

• σ2
ν ∈ R+ is the noise variance;

• νk ∼ N (0, 1) is a Gaussian and white additive measurement noise.

To show how to do derive a gray box interpretation of the bias term fmean(·), we now
follow some mechanical considerations. From that interpretations we will also motivate
the presence of the fmean(·)2 multiplying the noise σννk.

Consider then the nonlinear term fmean(·) in (3.22). This is related to what is called the
radial distortion in the cameras calibration literature [91, 92, 93, 94]. Indeed camera lenses
are notoriously nonlinear at their borders, with this nonlinearity increasing as the light
beam passes closer to the lens edges. In our settings this thus happens when targets are
very close or very far.

Radial distortions are usually modeled in the camera calibration literature as a series
of odd powers, i.e., as

fmean(dk) =
n∑

i=0

αid
2i+1
k (3.23)

where the αi’s are themodel parameters. However, model (3.23) does not describe well the
evidence collected in our experiments (as will be shown numerically during the validation
of (3.22) in Appendix D). Indeed the specific case of triangulation Lidars lacks of the
symmetries encountered in computer vision settings (see (1.3) and the discussion on that
identity), and thus in our settings there is no need for odd symmetries in the model (in
other words, doubling dk does not lead to doubling b′k). We thus propose to remove this
constraint and use a potentially non-symmetric polynomial, i.e.,

fmean(dk) =
N∑
i=0

αid
i
k. (3.24)

The numerical validations ofmodel (3.24) shown inAppendix D confirm then our physical
intuition.

Using similar interpretations it is also possible to explain the presence of the multi-
plicative term fmean(dk)

2 in model (3.22). More precisely, assume for now that there are
no lens-distortion effects. The similarity between the triangles in Figure 1.11 then implies

dk
b

=
d′

b′k
. (3.25)

In (3.25) dk and b′k are generally time-varying quantities, while b and d′ are constants from
the geometry of the Lidar. Assume now that the quantity measured by the CCD at time
k is corrupted by a Gaussian noise, so that zk = b′k + wk with wk ∼ N (0, σ2

CCD) and σ2
CCD

constant and independent of dk. Thus zk ∼ N (b′k, σ
2
CCD); since

yk =
bd′

zk
, (3.26)
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assuming a Gaussian measurement noise on the CCD implies that yk is a reciprocal
Gaussian r.v. This kind of variable is notoriously difficult to treat (e.g., their statistical
moments cannot be derived from closed form expressions starting from the original
Gaussian variables). For this reason we perform a first order Taylor approximation of the
nonlinear map (3.26) above. In general, if{

zk ∼ N (b, σ2)
yk = φ (zk)

(3.27)

then the first order Taylor approximation of the distribution of yk is [3, (A.16)]

yk ∼ N
(
φ(b), φ′(b)2σ2

)
(3.28)

where φ′(·) is the first derivative of φ(·) w.r.t. zk. Substituting the values of our specific
problem into formula (3.28) leads then to the novel approximated model

yk ∼ N
(
bd′

b′k
,

(−bd′

b′2k

)2

σ2
CCD

)
, (3.29)

or, equivalently,
yk = dk + d2kσννk νk ∼ N (0, 1) (3.30)

where σ2
ν =

σ2
CCD

b2d′2
is a scaled version of σ2

CCD independent of dk and to be estimated from

the data.
Consider now that actually there are some lens distortion effects that imply the pres-

ence of the nonlinear term fmean(dk). We can then repeat the very same discussion above,
and obtain model (3.22) by substituting dk with fmean(dk) in (3.30).

Combining Equations (3.22) and (3.24) to end up with the following model with
polynomial expansion

yk =
N∑
i=0

αid
i
k +

(
N∑
i=0

αid
i
k

)2

σννk (3.31)

Note then that, starting from the models above, it is (as typical) possible to derive
simplified alternative models that trade off statistical performance for solvability in a
closed form. In other words, one may in this specific case (but consider this as just an
example to illustrate a generic approximation procedure) the following alternative models:

• either based on some validations (e.g., the ones that we show Section D) or on the
will of approximating the model complexity, one may constrain the model order for
the polynomial to be always N = 2. Based on that, it is possible to specialize the
statistical model for triangulation Lidars to

yk = fmean(dk) + d2kσννk. (3.32)
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In other words, this model differs from (3.31) only for the fact that the noise is
multiplied by d2k instead of fmean(dk)

2. This approximation is intuitively meaningful,
since fmean(dk) represents a distortion term induced by the pinhole lens: ideally,
indeed, fmean(dk) should be equal to dk.

• the second approximation that can be performed is to replace fmean(dk) with its
estimate. In this case the simplest estimate that we can have for fmean(dk) and that
requires no math to calculate is yk′ such that k′ �= k. However, we should be very
careful when using this type of approximations since the statistical properties of yk
should be independent on yk′ and both should have the same (or very close) actual
distances, i.e. dk = dk′ .

yk = fmean(dk) + y2k′σννk (3.33)

Sometimes it is then possible to perform statistical modelling using simpler models as
building blocks. For example the models used in the previous example can be used as the
starting point for building heteroskedastic statistical models where one considers also the
effects of angles on the measurement process, as explained in Figures 3.7 and 3.8. In other
words, one may start with a model that includes one set of parameters, and then use this
result as a stepping stone to arrive to a more sophisticated model.

object

Lidar case

direction of rotation

Figure 3.7: Diagram exemplifying the working principle of a rotating triangulation Lidar .
The sensor sweeps a plane and takes measurements at pre-specified angles, and for each
measurement the working principle is as described in Figure 1.11. The Lidar pictured in
Figure 1.10 has an angular resolution of 1° and completes an entire rotation in about 0.2
seconds.

Example 3.5 (Adding to the statistical model of a triangulation Lidar also the effects of
measurement angles)

As Figure 3.7 suggests, one may consider that the surfaces that are hit by a Lidar laser
beam will not be in general parallel to the Lidar ’s CCD sensor.

Since the laser beam emitted by the sensor is not a dimensionless spot but rather
a cone with (at least in our setup) a width of 4cm after 2 meters from the sensor, two
targets at the same distance from the sensor but with different incidence angles will be
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Lidar

object
dk,m+1

φk,m

φk,m+1

δ

dk,m

dk,0

Figure 3.8: Each different beam of a Lidar can be associated to an index, that we arbitrarily
indicate with the additional subscript m (e.g., m and m+ 1 in the figure). When hitting a flat
surface, different beams imply different incident angles (e.g., φk,m and φk,m+1) and different
distances (e.g., dk,m and dk,m+1). With this notation the subscript k indicates the index of the
planar sweep performed by the sensor. Notice also that dk,0 is a quantity that is in general not
associated with any physical beam.

illuminated in different ways (the bigger the incidence angle, the bigger the illuminated
area). Eventually this implies that the shape of the beam returning to the CCD will vary
with the incidence angle, something that at least potentially may affect the statistics of the
raw measurement returned by the sensor. It is then meaningful to guess that model (3.22)
originally developed for null incidence angles, might need to be extended for the non-null
incidence angles case.

Obviously when increasing the complexity of a gray box model one shall verify if it is
actually meaningful to increase this complexity, from an evidence point of view. In other
words, one shall verify if the sensor measurement process is influenced by the newly
considered parameters (in our case the incidence angle effects).

In our specific case, to verify if non-null incidence angles affect bias and variance of
the measurements collected by a generic triangulation Lidar we performed experiments
by means of the set-up shown in Figure 3.9, where both the sensor and the target are
mounted on standard tripods. Results of these experiments are summarized in Figure 3.10,
and suggest that this dependence is actual. This thus motivates the need for extending
model (3.22).

As a showcase for readers that need to perform similar operations, let then φk,m be the
incidence angle at scan k for beam m. A novel measurement model that builds on top of
the previously proposed one is then

yk,m =

(
N∑
i=0

αid
k
k,m +

N∑
i=1

ciφ
k
k,m

)
︸ ︷︷ ︸

bias

+

(
N∑
i=0

βid
k
k,m +

N∑
i=1

κiφ
k
k,m

)
︸ ︷︷ ︸

variance

νk,m (3.34)
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Figure 3.9: The experimental setup used to collect evidence for checking whether incidence
angles affect bias and variance of the measurements collected by a generic triangulation Lidar.
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Figure 3.10: Summary of the statistics of the measurements collected as in Figure 3.9 for some
specific incidence angles, clearly indicating that the first two moments of the measurement
process actually depend on this variable.

where the parameters αi, ci, βi, and κi are the parameters defining the polynomial maps
(for notational simplicity all with the same order), and with νk,m ∼ N (0, 1) an iid stan-
dard normal noise. Notice that model (3.34) extends the original model (3.22) by adding
polynomial terms to both the bias and the variance of yk,m. More specifically, the structure
is chosen so that the effects of non-null incident angles are additive w.r.t. the effects de-
scribed in Example 3.4, to preserve statistical identifiability (as discussed more extensively
later).

3.3.5 Bayesian models
When prior information about the statistical model is available, one should take a Bayesian
approach to modelling. To give a practical example of what we mean with this operation, we
ladder on the previous results and reinterpret the previously proposed models with this new
lens.

Example 3.6 (Bayesian statistical modelling of triangulation Lidar sensors)

Consider a triangulation Lidar sensor mounted on top of a robot, so that we have a
situation very similar to the one defined before, but we would like to make use of our
previous knowledge about the nonlinear function and that gives us the possibility of
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adding Bayesian interpretations. For instance, in the case of Figure 3.6, the sensor is
attached to a wheeled robot moving with nominally constant speed on a flat surface
towards a fixed target, so to “explore” all the potential statistical dependencies of yk on
xk (notice that for this specific case we collected the distances xks using a Vicon motion
capture system, a positioning system that has high accuracy and precession, so that for that
reason we can assume negligible state measurement errors and treat the Vicon readings
as the true values of the states). Consider then once again the generic model (3.19), i.e.,

yk = fmean (xk) + fnoise (xk) νk (3.35)

with νk ∼ N (0, 1) and independent. As for fmean (xk), we again assume that it can be
captured through a polynomial of opportune order N , i.e.,

fmean (xk) =
[
1 xk x

2
k . . . xN

k

]︸ ︷︷ ︸
=:Gxk

⎡⎢⎢⎢⎢⎢⎣
α0

α1

α2
...

αN

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:α

= Gxk
α (3.36)

for a suitable value of N (that we here assume to be known and fixed). Assume then the
unknown parameter vector α in (3.36) to be a random variable with a known Gaussian
prior α ∼ N (μα,Σα), where

μα :=
[
0 1 0 · · · 0

]T
Σα := diag

(
τ−2
α

)
(3.37)

and with known vector of precisions τα ∈ R+. Notice that this particular μα captures
the fact that, a priori, a sensor should follow an expected ideal behavior, i.e., should be
s.t. yk = xk. As for fnoise(·), we consider the following cases (those cases summarize the
examples that we have been providing up to now):

Case I: fnoise(xk) = σν

Case II: fnoise(xk) = σνx
ρ
k

Case III: fnoise(xk) = σνfmean(xk)
ρ

(3.38)

Case I would then describe homoskedastic sensors, Case II sensors whose heteroskedastic-
ity depends on the actual state of the system and Case III sensors whose heteroskedasticity
depends on the expected measured state of the system. The noise variance σ2

ν ∈ R+ is
assumed unknown with prior

σ−2
ν = τν ∼ Gamma (aν , bν) (3.39)

where aν and bν are known hyperparameters.



3.4. Statistical models for systems with unknown states 87

Note that in the last two cases ρ ∈ R+ may be interpreted as an unknown parameter,
and one can also put a Bayesian perspective into it, e.g., having it modelled as having a
truncated Gaussian prior. This would constitute an other degree of freedom allowing for
further modeling flexibility.

3.4 Statistical models for systems with unknown states
We now consider the situation where the state of the system xk is not known by the user
that shall calibrate the sensor, a case that is the typical one in practice, since recording this
information usually requires special and dedicated hardware.

Once againwe consider, as a parametric statisticalmodel, the parametric function p (y|x;θ):
RM ×Θ → PΩ, where x ∈ RM is now the vector of unknown states with dimensionM , while
Θ as before is the parameters space. Since the state vector is not observed we need to add
a new equation to our model that describes the state evolution during the recording of any
dataset. For this reason there is the need to extend model (3.19) so to include a generic
nonlinear dynamics through the state evolution function fstate(·). Let thus the model be{

xk+1 = fstate(xk) + ek
yk = fmean(xk) + fnoise(xk)νk

(3.40)

where ek ∼ N (0, σ2
e). Note that this model is very generic; in the following Sections we

will perform an operation similar to what we did before, i.e., obtain specialized versions
of this model starting from simple versions to arrive to more complicated ones and in this
way illustrate how sensors modeling steps can be performed in practice in systems that are
different from the ones exemplified in this thesis.

3.4.1 Models with homoskedastic noises
We start by considering statistical models for dynamic systems where the state of the system
might change during each time sample and for which the variance of themeasurement process
is homoskedastic (i.e., constant and thus not depending on the system states). With the aim
of helping understanding, we do this through some practical examples.

Example 3.7 (Statistical modelling of ultrasonic ranging sensors)

Consider a ultrasonic distance sensor attached to a wheeled robot that moves with nomi-
nally constant speed on a flat surface towards a fixed target. The actual distance measured
by these sensors depends on the sound propagation speed on air and on the temperature
of the air. Assuming that the temperature of the room remains constant, ultrasonic dis-
tance sensors are thus affected by an affine bias that accounts for installation offsets and
scaling of themeasurement process. Themeasurement noise is instead typically generated
from shaking and floor surface variations effects that generate mechanical vibration of
the robot body [95]. Given this collection of physical phenomena, a meaningful statistical
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model for ultrasonic sensors mounted on a moving robot is⎧⎨⎩
dk+1 = dk + uk +ek
yuk = αu

0 + αu
1dk︸ ︷︷ ︸

affine bias

+ βu
0 ν

u
k︸︷︷︸

homoskedastic noise

(3.41)

where

• d0 ∈ R may be assumed fully known for calibration purposes;

• uk ∈ R is the known linear speed of the robot;

• ek ∼ N (0, σ2
e) and σe ∈ R+ are known variances;

• αu
0 , α

u
1 and βu

0 ∈ R are unknown model parameters;

• νu
k ∼ N (0, 1), i.i.d.

Example 3.8 (Statistical modelling of odometric sensors)

Similar to Example 3.7, we may model odometer sensors attached to a wheeled robot that
moves with a nominally constant speed on a flat surface towards a fixed target. Several
different physical models can be used to derive and describe the statistical properties of
the odometers’ measurements, e.g., [14, 96]. There seems to be consensus in considering,
in the common case where robots have two independent traction wheels, separate errors
in the translation of each wheel that increase linearly with the distance traveled and with
the number of input commands given to the robot. This means that the existing literature
indicates that heteroskedastic models should be used with odometers.

Despite this, onemay ignore these indications and proceedwith using a homoskedastic
noise, so that the model becomes⎧⎨⎩

dk+1 = dk + uk +ek
yok = αo

0 + αo
1dk︸ ︷︷ ︸

affine bias

+ βo
0ν

o
k︸︷︷︸

homoskedastic noise

(3.42)

where

• d0 ∈ R can be assumed to be fully known;

• uk ∈ R is the known linear speed of the robot;

• ek ∼ N (0, σ2
e) and σe ∈ R+ are known variances;

• αo
0, α

o
1 and βo

0 ∈ R are the unknown model parameters;

• νo
k ∼ N (0, 1) i.i.d.

For completeness, we show in Figure 3.11 a dataset that relates to the examples above.
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Figure 3.11: Realizations of the measurement errors committed by a triangulation Lidar, an
odometer and a sonar in measuring the distance between a robot hosting these sensors and a
frontal wooden obstacle, for the case where the robot was moving on a flat floor in an indoor
artificially illuminated room.

3.4.2 Models with state-dependent noise variances
We then move to the case of deriving statistical models for dynamic systems where the
state of the system might change during each time sample, and where the variance of the
measurement noise is heteroskedastic because changing with the system states. As before,
we proceed through examples.

Example 3.9 (Statistical modelling of a triangulation Lidar , an odometer and a sonar
mounted on a robot moving straight on a flat surface)

Generalizing the results obtained up to now with modeling of the various sensors, we
may consider a generic heteroskedastic sensor model of the type

y
(s)
k =

N
(s)
α −1∑
i=0

α
(s)
i dkk︸ ︷︷ ︸

mean

+

N
(s)
β −1∑
i=0

β
(s)
i dkkν

(s)
k︸ ︷︷ ︸

noise

(3.43)

where dk is the noiseless distance, (s) is the sensor label, ν(s)
k ∼ N (0, 1) i.i.d., and the

coefficients α(s)
i , β(s)

i , N (s)
α and N

(s)
β define the type of bias and noise affecting that specific

sensor type. This model thus captures the statistical behavior of the most typical distance
sensor mentioned in Examples 3.4, 3.8 and 3.7. The next ingredient that we must obtain
is then the model of the dynamics of the robot.
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Let then the transition model for the actual distance dk be linear Gaussian, i.e.,

dk+1 = dk + uk + ek (3.44)

with uk the scalar input representing the motion commands given to the robot, ek ∼
N (0, σ2

e) with σ2
e for simplicity assumed known.

Assuming then that the robot is endowed with the three different sensors mentioned
above, and that each of these sensors satisfy a measurement model like the one proposed
in (3.43), the statistical model of the system will be⎧⎪⎪⎨⎪⎪⎩

dk+1 = dk + uk +ek
yuk = αu

0 + αu
1dk +βu

0 ν
u
k

yok = αo
0 + αo

1dk +βo
0ν

o
k

ylk = αl
0 + αl

1dk + αl
2d

2
k +βl

2d
2
kν

l
k.

(3.45)

For the sake of compactness, it is convenient to rewrite models in vector forms. To do this,
it is possible to define Nmax as the maximum order of the polynomials appearing in (3.43), i.e.,

Nmax := max
s

{
N (s)

α , N
(s)
β

}
s∈{1,...,S}

, (3.46)

(where in our specific case above we have Nmax = 3), and then let the (redundant) state vector
describing the robot’s motion be xk := [1, dk, · · · , dNmax−1

k ]T . With this notation (3.45) becomes{
dk+1 = dk + uk + ek
yk = Cxk + vk(xk)

(3.47)

where yk := [y
(1)
k , . . . , y

(S)
k ]T is the measurements vector and C is the parameter matrix

C :=

⎡⎢⎣α
(1)
0 · · · α

(1)
Nmax−1

...

α
(S)
0 · · · α

(S)
Nmax−1

⎤⎥⎦ (3.48)

(note that there is the need for padding the various coefficients with zeros when necessary).
Given model (3.43), moreover, the measurement noise vk(xk) satisfies vk ∼ N (0, R(xk)) with

R(xk) := diag
(
r(1) (xk) , . . . , r

(S) (xk)
)

(3.49)

and

r(s) (xk) :=
([

β
(s)
0 · · · β(s)

Nmax−1

]
xk

)2

. (3.50)

As did before, it is also possible to obtain approximated linear time-varying state space
models, in case there is the need for numerical simplicity in the learning and filtering steps.
In this case the model may be simplified as[

xk+1

yk

]
=

[
Ak Bk

C 0

] [
xk

1

]
+

[
wk

vk(xk)

]
(3.51)
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with 0 is matrix of zeros and 1 vector of ones with opportune dimensions. For our specific
case with Nmax = 3 we will thus have

xk+1 =

⎡⎣ 1
dk+1

d2k+1

⎤⎦ =

⎡⎣ 1
dk + uk + ek

(dk + uk + ek)
2

⎤⎦ (3.52)

=

⎡⎣ 1
dk + uk + ek

d2k + dkuk + dkek + ukdk + u2
k + ukek + dkek + ukek + e2k

⎤⎦ (3.53)

=

⎡⎣ 1
dk + uk + ek

d2k + 2ukdk + u2
k + 2dkek + 2ukek + e2k

⎤⎦ (3.54)

=

⎡⎣ 1
dk

d2k + 2ukdk

⎤⎦ +

⎡⎣ 0
uk

u2
k

⎤⎦ +

⎡⎣ 0
ek

(dk + uk)2ek + e2k

⎤⎦ (3.55)

=
[
Ak Bk

]
xk + wk (3.56)

where

Ak :=

⎡⎣1 0 0 0
0 1 0 0
0 2uk 1 0

⎤⎦ Bk :=

⎡⎣ 0
uk

u2
k

⎤⎦ wk :=

⎡⎣ 0
ek

(dk + uk)2ek + e2k

⎤⎦ (3.57)

with uk (assumed known) conveniently absorbed into the various model matrices. Note that
in this specific case E [wk] =

[
0 0 σ2

e

]
, and that the noise covariance is

E
[
wT

k wk

]
=

⎡⎢⎣0 0 0
0 E [e2k] E [(dk + uk)2e

2
k + e3k]

0 E [(dk + uk)2e
2
k + e3k] E

[
((dk + uk)2ek + e2k)

2
]
⎤⎥⎦ (3.58)

=

⎡⎣0 0 0
0 σ2

e 2σ2
e(dk + uk)

0 2σ2
e(dk + uk) E [4(dk + uk)

2e2k + 4(dk + uk)e
3
k] + 3σ4

e

⎤⎦ (3.59)

=

⎡⎣0 0 0
0 σ2

e 2σ2
e(dk + uk)

0 2σ2
e(dk + uk) 4σ2

e (dk + uk)
2 + 3σ4

e

⎤⎦ . (3.60)

3.4.3 Bayesian models
Once again it is possible to exploit, if available, Bayesian approaches in case there exist prior
information about the statistical model – something that may lead in more accurate models
and thus eventual filtering results. As before, we start from an example.

Example 3.10 (Bayesian statistical modelling of triangulation Lidar sensors mounted on
top of a robot)

Consider Example 3.6 once again, but now with the assumption that the model states are
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not observed. Instead, consider them as random variables with priors, so that the model
will be (see Equation 3.19 and the definitions in Example 3.6){

xk+1 = xk + uk + ek
yk = fmean(xk) + fnoise(xk)νk

(3.61)

where

• x0 is the fully known initial state;

• fmean = Gxk
α is as in (3.36);

• α ∈ R is a random variable with known Gaussian prior α ∼ N (μα,Σα), where

μα :=
[
0 1 0 · · · 0

]T
Σα := diag

(
τ−2
α

)
(3.62)

and where the vector of precisions τα ∈ R+ is assumed to be known;

• uk ∈ R is a known scalar input representing the speed command given to the robot;

• ek ∼ N (0, σ2
e) and iid;

• σe ∈ R+ is the unknown process standard deviation, on top of which we assume
the prior

σ−2
e =∼ Gamma (ae, be) ; (3.63)

• νk ∼ N (0, 1) and iid.

As before we can consider three specific cases for fnoise:

Case I: fnoise(xk) = σν ;
Case II: fnoise(xk) = σνx

ρ
k;

Case III: fnoise(xk) = σνfmean(xk)
ρ.

(3.64)

In these cases σν , ρ ∈ R+ are unknown measurement model parameters; ρ can be assumed to
follow a truncated Gaussian prior; and

σ−2
ν = τν ∼ Gamma (aν , bν) . (3.65)

Note that with these assumptions the unknown state vector x = {x1, . . . , xN} ∈ RN
+ has also a

Gaussian prior x ∼ N (μx,Σx).

3.5 Other models
In this thesis we are considering only parametric models. In other terms, we basically assume
the existence of a finite set of parameters θ so that, once we know these parameters, it is
possible to predict the distribution of the future output ỹk given the current state xk without
the need for knowing the training data T , i.e.,

p (ỹk |xk, T ; θ) = p (ỹk |xk ; θ) . (3.66)
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On the other hand, this is not the unique choice that could have been posed on the structure
of the underlying estimand model. We note that there exist a big family of models called
nonparametric models that admit the existence of an infinite set of parameters θ for which the
distribution of the future output ỹk depends on the parameters and the available data T until
the current state xk, i.e.,

p (ỹk |xk, T ; θ) �= p (ỹk |xk ; θ) . (3.67)

Examples of nonparametric models are histograms and Gaussian processes. There are differ-
ent definitions for indicating what a nonparametric model is; here we will however adopt the
definition above, since we believe that it is more suitable for our calibration needs. As for the
nonparametric modeling for Bayesian systems, a good reference for the interested reader is
[54].





Chapter 4

Estimating the model parameters

4.1 Definitions
In this Chapter we discuss the problem of obtaining point estimates for the parameters of
the various statistical models described in Chapter 3. Note that here we consider both the
problem of estimating the model parameters and the model complexity starting from some
available information.

More formally, in this Chapter we assume to start from having already chosen a parametric
statistical sensor model defined by an opportune set of parameters (parameter space) Θ
together with a probability distribution function p (y ; θ). The here analyzed step is thus
to find a parameter vector θ∗ that best “fits” the dataset with respect to a norm that will be
defined later on. This selection process will thus end in choosing a specific density p (y ; θ∗)
among the set of potential densities p (y ; θ) with the hope that this chosen density is in a
certain sense “closer” to the true density as explained graphically in Figure 4.1. Among the
various selection strategies, in this thesis we practically consider either ML orMAP estimation
methods to estimate θ∗, given their favorable statistical properties.

The problem of selecting a model structure among a set of candidate ones can be presented
graphically as in Figure 4.2. For simplicity, assume that the set of competing model structures
has cardinality 3, i.e., that the overall set of candidate models is the union of three distinct
sets. Choosing for each of these sets a specific model in the sense of Figure 4.1 leads thus
to obtain three specific models, i.e., {p1 (y ; θ∗

1) , p2 (y ; θ∗
2) , p3 (y ; θ∗

3)} where each model
has different parameter vectors and where the parameter vectors θ∗

1,θ
∗
2,θ

∗
3 were obtained,

e.g., applying ML approaches. Selecting the best structure means then selecting that specific
model that is estimated to be as close as possible to the unknown true distribution. Obviously
different strategies of estimating this distance may potentially lead to different choices.

This Chapter is thus dedicated to list a series of algorithms for performing the two estima-
tion steps discussed above, i.e., estimating a specific set of parameters given a specific model
structure, and estimating a model structure among a set of competing ones. The chapter is
thus divided into three main Sections: the first, Section 4.2, discusses the model parameters
estimation problem for the specific situation when we can obtain a training dataset consisting
in all the possible available information on the system (which means a dataset having, beside
the measurement vector y, also a vector of the true values of the quantity to be measured, the
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p (y ; θ)

true distribution
g(y)

p (y ; θ∗)

Figure 4.1: Graphical and intuitive representation of what it means to select a parameter
vector θ∗ ∈ Θ. The intuitive idea is that through the estimation process we select a model
p (y ; θ∗) that should be as “close” as possible to a true (but unknown) model g(y).

true distribution
g(y)

p1 (y ; θ∗1)

p2 (y ; θ∗2) p3 (y ; θ∗3)

Figure 4.2: Graphical and intuitive representation of what it means to select a model structure
among a set of competing ones. Here there are depicted three sets, corresponding to three
different structures. For each specific structure one can select a specific model, e.g., pi (y ; θ∗

i ).
The structure selection process is then selecting, among this set, the model that should be as
“close” as possible to a true (but unknown) model g(y).
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state x of the system, typically called in this thesis the groundtruth).
Note that as we already stated in Section 3.2, obtaining the state x requires doing ex-

periments in controlled environments and using special techniques and/or equipments for
recording this information. Unfortunately, performing this operation is not always possible,
because the required tools for collecting this information may not be available, may be too
expensive, or because performing a data collection experiment may be infeasible since the
to-be-calibrated sensor cannot be averted from the job that it is currently performing, even if
its performance has degraded and it needs a re-calibration. This means that often there is
the practical requirement of solving a model estimation problem without knowing the actual
state of the system x. This requires substituting x with other available and opportune source
of information; to this important model estimation problem we dedicate thus Section 4.3.

Lastly, in Section 4.4 we discuss the problem of selecting the model structures and discuss
some practical examples.

4.2 Estimation for systems where the state of the system is
known

Since in this sectionwe assume that the states of the systemdriving themeasurement processes
are known, we can directly consider how to perform parameters estimation steps on top of
the generic model (3.19)

yk = fmean (xk) + fnoise (xk) νk. (4.1)

As did in the previous chapter, we discuss an incremental approach where we start from the
simplest models (i.e., linear with Gaussian noise), then proceed with more complicated ones.

4.2.1 Linear Gaussian models
Consider then the simplest linear model (3.1) with Gaussian disturbance, i.e.,

yk = θxk + σννk. (4.2)

Our aim is now to find estimators of the unknown model parameters θ and σ2
ν .

4.2.1.1 Models with unknown scale parameter

Consider the measurement vector y = [y1, y2, . . . , yM ], that could be the measurement of a
range sensor, generated through

yk = θxk + σννk (4.3)

where θ ∈ R is the parameter of the model that we would like to estimate and the noise νk
satisfies νk ∼ N (0, 1). Assume here the noise variance σ2

ν to be known and deterministic, as
well as the state vector x = [x1, x2, · · · , xM ]T representing the true state of the system. Since
we have Gaussian noises,

yk ∼ N
(
θxk, σ

2
ν

)
. (4.4)
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To compute the ML estimator of the unknown quantity, we then proceed as follows: the
likelihood function is

p (y |θ ) =
M∏
k=1

1√
2πσ2

ν

exp

(
−1

2σ2
ν

M∑
k=1

(yk − θxk)
2

)
(4.5)

and the log-likelihood is

log p (y |θ ) = −M

2
log 2πσ2

ν −
1

2σ2
ν

M∑
k=1

(yk − θxk)
2 . (4.6)

The score with respect to θ is then

1

2σ2
ν

M∑
k=1

(
−2ykxk + 2θx2

k

)
(4.7)

so that its zero is

θ̂ML =

(
M∑
k=1

ykxk

) (
M∑
k=1

x2
k

)−1

(4.8)

which can be written in vector form as

θ̂ML =
(
xTx

)−1
xTy. (4.9)

The variance of the estimator is, finally,

var
(
θ̂ML

)
= var

⎛⎝ M∑
k=1

ykxk

(
M∑
k=1

x2
k

)−1
⎞⎠

=
M∑
k=1

var (yk) x
2
k

(
M∑
k=1

x2
k

)−2

= σ2
ν

(
M∑
k=1

x2
k

)−1

= σ2
ν

(
xTx

)−1
.

(4.10)

4.2.1.2 Models with unknown noise variance

The estimator derived in the previous section is probably the most simple one from a math-
ematical derivations point of view. Even if appealing, it relates though to a model and
hypotheses that are very restrictive. We now start extending it incrementally, assuming in
this section that the focus is on the noise variance. Consider then again the measurement
vector y = [y1, y2, . . . , yM ] generated using the same model, i.e.,

yk = θxk + σννk (4.11)

where νk ∼ N (0, 1) is white and Gaussian. Assuming both the parameter θ ∈ R and the
state vector x = [x1, x2, · · · , xM ]T to be known, we want to find the ML estimator for σ2

ν ∈ R+.
Since we have Gaussian noises, i.e.,

yk ∼ N
(
θxk, σ

2
ν

)
(4.12)
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the likelihood function is

p
(
y

∣∣σ2
ν

)
=

M∏
k=1

1√
2πσ2

ν

exp

(
−1

2σ2
ν

M∑
k=1

(yk − θxk)
2

)
(4.13)

and the log-likelihood is

log p
(
y

∣∣σ2
ν

)
= −M

2
log 2πσ2

ν −
1

2σ2
ν

M∑
k=1

(yk − θxk)
2 . (4.14)

The score with respect to σ2
ν is then

− M

2σ2
ν

− 1

−2σ4
ν

M∑
k=1

(yk − θxk)
2 (4.15)

and taking the zero of score gives

σ̂2
ML =

1

M

M∑
k=1

(yk − θxk)
2 (4.16)

which can be written in vector form as

σ̂2
ML =

1

M
(y − θx)T (y − θx) . (4.17)

4.2.1.3 Models with unknown scale parameter and noise variance

For this case, consider again the measurement vector y = [y1, y2, . . . , yM ] generated using the
same model

yk = θxk + σνk (4.18)

where νk ∼ N (0, 1) is white and Gaussian. Assume the parameters θ ∈ R and σ2
ν ∈ R+ to be

unknown, while the state vector x = [x1, x2, · · · , xM ]T to be known. We want now to find the
ML estimator for θ and σ2

ν . Since we have Gaussian noises, i.e.,

yk ∼ N
(
θxk, σ

2
ν

)
(4.19)

the likelihood function is

p
(
y

∣∣θ, σ2
ν

)
=

M∏
k=1

1√
2πσ2

ν

exp

(
−1

2σ2
ν

M∑
k=1

(yk − θxk)
2

)
(4.20)

and the log-likelihood is

log p
(
y

∣∣θ, σ2
ν

)
= −M

2
log 2πσ2

ν −
1

2σ2
ν

M∑
k=1

(yk − θxk)
2 . (4.21)

Now we can follow exactly the same procedure described in SubSection 4.2.1.3 to obtain

θ̂ML =
(
xTx

)−1
xTy (4.22)
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and follow the same procedure of SubSection 4.2.1.2 to obtain

σ̂2
ML =

1

M
(y − θx)T (y − θx) . (4.23)

Since θ is unknown, we can not directly determine the above expression from algebraic

perspective. We then solve this problem through substituting θ with its ML estimator θ̂ML, so
to obtain

σ̂2 =
1

M

M∑
k=1

(
yk − θ̂MLxk

)2

. (4.24)

Note that this estimator of the variance is not the ML estimator anymore, therefore we change

the notation to σ̂2, and continue simplifying through expanding the square, so to get

Mσ̂2 =
M∑
k=1

y2k − 2
M∑
k=1

θ̂MLxkyk +
M∑
k=1

x2
kθ̂

2
ML

=
M∑
k=1

y2k − 2

(
M∑
k=1

x2
k

)−1 (
M∑
k=1

xkyk

)2

+

(
M∑
k=1

ykxk

)2 (
M∑
k=1

x2
k

)−1

=
M∑
k=1

y2k −
(

M∑
k=1

x2
k

)−1 (
M∑
k=1

xkyk

)2

=
M∑
k=1

y2k −
(

M∑
k=1

x2
k

)−1 (
M∑
k=1

xkyk

)2

(4.25)

or

σ̂2 =
1

M

((
yTy

)
−

(
xTx

)−1
xTy

(
xTy

))
. (4.26)

4.2.1.4 Models with unknown but separable parameters vectors

Consider the measurement vector y = [y1, y2, . . . , yM ] generated using the statistical model

y = Hθ + σνν (4.27)

where θ ∈ RN is the parameter vector of the model that we would like to estimate and ν ∈ RM

is the noise vector satisfies ν ∼ N (0, IM), where IM is the identity matrix of orderM . Note
that this model is said to be separable since the coefficients H and θ appear under the form of
a multiplication. In this section the noise variance σ2

ν is assumed known, as well as the input
matrix H ∈ RM×N which is a function of the state xk, here assumed to be known. If we want
to find the ML estimator for θ, and since we have Gaussian noise, i.e.,

y ∼ N (Hθ, Rν) Rν := σ2
νIM (4.28)

we have to compute the likelihood function, that is

p (y |θ ) =
M∏
k=1

1√
2πσ2

ν

exp

(−1

2σ2
ν

(y −Hθ)T (y −Hθ)

)
, (4.29)
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and the log-likelihood function, that is

log p (y |θ ) = −M

2
log 2πσ2

ν −
1

2σ2
ν

(y −Hθ)T (y −Hθ) . (4.30)

The score with respect to θ is thus
HT (y −Hθ) (4.31)

which has a zero for
θ̂ML =

(
HTH

)−1
HTy. (4.32)

We can verify that this ML estimator is unbiased, i.e.,

E
[
θ̂ML

]
= E

[(
HTH

)−1
HTy

]
(4.33)

since substituting y from Equation (4.27) in the above equation, we obtain

E
[
θ̂ML

]
= E

[(
HTH

)−1
HTHθ +

(
HTH

)−1
HTσνν

]
. (4.34)

Since H is known and deterministic, also ν is independent on θ, so that

E
[
θ̂ML

]
=

(
HTH

)−1
HTHE [θ] +

(
HTH

)−1
HTσνE [ν] = θ. (4.35)

The variance of the estimator is then

var
(
θ̂ML

)
= var

((
HTH

)−1
HTy

)
(4.36)

so that, applying the identity var (aX) = a var (X) aT for any random vector X and determin-
istic matrix a, we get

var
(
θ̂ML

)
=

(
HTH

)−1
HTvar (y)H

(
HTH

)−1
. (4.37)

Recalling finally that from Equation (4.28) we have var (y) = σ2
νIM , substituting will result in

var
(
θ̂ML

)
= σ2

ν

(
HTH

)−1
. (4.38)

4.2.1.5 Models with unknown but separable parameters vectors and unknown noise
variances

Consider the measurement vector y = [y1, y2, . . . , yM ] generated using the statistical model

y = Hθ + σνν (4.39)

where θ ∈ RN is the parameter vector of the model that we would like to estimate, ν ∈ RM is
the noise vector satisfies ν ∼ N (0, IM), and IM is the identity matrix of orderM . The noise
variance σ2

ν is now assumed unknown, and thus, with respect to the previous section, we want
to estimate this also. Finding the ML estimator for θ can be done similarly as done before.
This means that, since we have Gaussian noise, i.e.,

y ∼ N (Hθ, Rν) Rν := σ2
νIM (4.40)
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the likelihood function is

p
(
y

∣∣θ, σ2
ν

)
=

M∏
k=1

1√
2πσ2

ν

exp

(−1

2σ2
ν

(y −Hθ)T (y −Hθ)

)
(4.41)

and the log-likelihood is

log p
(
y

∣∣θ, σ2
ν

)
= −M

2
log 2πσ2

ν −
1

2σ2
ν

(y −Hθ)T (y −Hθ) . (4.42)

As in SubSection 4.2.1.4 we get

θ̂ML =
(
HTH

)−1
HTy (4.43)

and
E

[
θ̂ML

]
= θ , var

(
θ̂ML

)
= σ2

ν

(
HTH

)−1
. (4.44)

We note that since we have in our hypotheses a Gaussian noise with a diagonal covariance
matrix of equal elements, we can find the ML estimator of the parameter vector θ even if we
don’t know the noise variance. Taking the zero of the score of Equation (4.42) with respect to
σ2
ν we indeed get

− M

2σ2
ν

− 1

−2σ4
ν

(y −Hθ)T (y −Hθ) = 0 (4.45)

or

σ̂2
ML =

1

M
(y −Hθ)T (y −Hθ) . (4.46)

Since the true value of θ is unknown, we replace it with its ML estimator θ̂ML, so that we get

σ̂2 =
1

M

(
y −Hθ̂

)T (
y −Hθ̂

)
. (4.47)

Note that this is a biased estimator of the variance σ2
ν (see SubSection 2.1.6). An unbiased

version (but with increased MSE) can be obtained through multiplying σ̂2 by the Bessel’s
correction factor M

M−1
.

The estimators above can at this point be used in some practical examples related to the
models that have been introduced in Chapter 3:

Example 4.1 (Parameters estimation for polynomial models)

Consider the statistical model in Example 3.1, i.e.,

yk = d+
N∑

n=0

αn (t
c
k)

n + σννk (4.48)

where αn ∈ R and σ2
ν ∈ R+ are the unknown model parameters, d ∈ R+ is fixed and

known andN ∈ Z+ is for now assumed to known (later onwewill discuss how to estimate
it using model order selection methods). We can rewrite the model in vector form

y = d1+Hα+ σνν (4.49)
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Figure 4.3: Example of application of the model estimation procedure for a SICK LMS111
Lidar sensor. The figure plots the recorded distance measurements from a SICK LMS111
Lidar versus its case temperature in a situation where the distance between the sensor and
the target was constant in time. On the same plot we plot the two ML estimates for two
polynomial models of orders respectively 2 and 5.

where

H :=

⎡⎢⎣H (tc1)
...

H (tcM)

⎤⎥⎦ =

⎡⎢⎣1, tc1, (tc1)
2 , . . . , (tc1)

N

...

1, tcM , (tcM)2 , . . . , (tcM)N

⎤⎥⎦ (4.50)

α :=
[
α0, α1, . . . , αN

]T
ν :=

[
ν1, ν1, . . . , νM

]T
(4.51)

Assuming the knowledge of a dataset containing the measurement-temperature pairs
T = {yk, tck}Mk=1, and following the procedure described in SubSection 4.2.1.5, we thus get

α̂ML =
(
HTH

)−1
HT (y − d1) (4.52)

and

σ̂2 =
1

M − 1
(y − d1−Hα̂)T (y − d1−Hα̂) . (4.53)

Applying the previous example on a practical case can lead to the results shown in
Figure 4.3.

Example 4.2 (Parameters estimation for Fourier models)
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Consider now the statistical model of Example 3.2 and the definitions therein, i.e.,

yk = d+
N∑

n=0

(θ′n cos (2nπf0t
c
k) + θ′′n sin (2nπf0t

c
k)) + σννk (4.54)

where θ′n, θ
′′
n ∈ R and σ2

ν ∈ R+ are the unknown model parameters, d ∈ R+ is fixed and
known and N ∈ Z+ is known (as before, we will discuss how to select the model order
later on). Rewriting the model in vector form

y = d1+Hθ + σνν (4.55)

where

H :=

⎡⎢⎣H (tc1)
...

H (tcM)

⎤⎥⎦ =

⎡⎢⎣ cos (2πf0t
c
1) , sin (2πf0t

c
1) , . . . , cos (2Nπf0t

c
1) , sin (2Nπf0t

c
1)

...
cos (2πf0t

c
M) , sin (2πf0t

c
M) , . . . , cos (2Nπf0t

c
M) , sin (2Nπf0t

c
M)

⎤⎥⎦
(4.56)

θ :=
[
θ′1, θ′′1 , . . . , θ′N , θ

′′
N

]T
ν :=

[
ν1, ν1, . . . , νM

]T
(4.57)

leads to estimate the unknown model parameters θ and σ2
ν using a dataset containing

the measurement-temperature pairs T = {yk, tck}Mk=1 by following the same procedure
described in SubSection 4.2.1.5. More precisely, we get

θ̂ML =
(
HTH

)−1
HT (y − d1) (4.58)

and

σ̂2 =
1

M − 1

(
y − d1−Hθ̂

)T (
y − d1−Hθ̂

)
. (4.59)

Applying the previous example on a practical case can lead to the results shown in
Figure 4.4.

4.2.2 Mixture models
We now consider how to specialize the parameter estimation problem for statistical mixture
models defined in SubSection 3.3.3 as

yk =

JM∑
j=1

Δj
ke

j
k (4.60)

where

• JM is the number of mixture components;

• ejk ∼ N
(
μj, σ

2
j

)
, μj ∈ R, σ2

j ∈ R+;

• Δj
k is a binary selection variable (either 0 or 1) such that

∑JM
j=1 Δ

j
k = 1.
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Figure 4.4: Example of application of the model estimation procedure for a SICK LMS200
Lidar sensor. The figure plots the recorded distance measurements from a SICK LMS200
Lidar versus its case temperature in a situation where the distance between the sensor and the
target was constant in time. On the same plot we plot the two ML estimates for two Fourier
models of orders respectively 2 and 8.

For simplicity we consider the case where JM = 2; the described procedure is however generic
for any number of components. For this specific case, we then useΔk := Δ1

k and (1−Δk) := Δ2
k

as an auxiliary notation. We then start our discussion from SubSection 4.2.2.1, where the
selection variable Δk is assumed to be known. The more practically useful (but algebraically
involved) case where Δk is unknown will instead be discussed in SubSection 4.3.4.

4.2.2.1 GMM parameter estimation with known mixing factors

Consider the model

yk = Δke
1
k + (1−Δk) e

2
k (4.61)

where e1k ∼ N (μ1, σ
2
1) and e2k ∼ N (μ2, σ

2
2). Given the measurements y = [y1, y2, . . . , yM ] and

the selection variablesΔ = [Δ1,Δ2, · · · ,ΔM ]T the problem is to find the ML estimator for the
model parameters θ = [μ1, μ2, σ

2
1, σ

2
2]

T where Π1 = Π and Π2 = 1− Π. To do so, consider that,
since the distribution of the measurements is

yk ∼ ΠN
(
μ1, σ

2
1

)
+ (1− Π)N

(
μ2, σ

2
2

)
, (4.62)

the likelihood is

p (y |θ,Δ) =
M∏
k=1

[
ΠΔk (1− Π)1−Δk√

2π(Δkσ2
1 + (1−Δk)σ2

2)
exp

(
− (yk −Δkμ1 − (1−Δk)μ2)

2

Δk2σ2
1 + (1−Δk)2σ2

2

)]
(4.63)
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so that the log-likelihood is

log p (y |θ,Δ) = Ck −
1

2

M∑
k=1

log 2π(Δkσ
2
1 + (1−Δk)σ

2
2)−

M∑
k=1

(yk −Δkμ1 + (1−Δk)μ2)
2

Δk2σ2
1 + (1−Δk)2σ2

2

(4.64)

where Ck :=
M∑
k=1

Δk log Π +
M∑
k=1

(1−Δk) log(1− Π). The last equation is thus equivalent to

log p (y |θ,Δ) = Ck −
1

2

M∑
k=1

Δk log 2πσ
2
1 −

1

2

M∑
k=1

(1−Δk) log 2πσ
2
2

− 1

2σ2
1

M∑
k=1

Δk (yk − μ1)
2 − 1

2σ2

M∑
k=1

(1−Δk) (yk − μ2)
2 .

(4.65)

Computing the zero of the score with respect to μ1 and μ2 eventually gives the ML estimators

μ̂1ML =
M∑
k=1

ykΔk

(
M∑
k=1

Δk

)−1

μ̂2ML =
M∑
k=1

yk(1−Δk)

(
M∑
k=1

(1−Δk)

)−1 (4.66)

respectively. Then computing the zero of the score with respect to σ2
1 and σ2

2 , instead, gives
the estimators

σ̂2
1ML =

M∑
k=1

Δk (yk − μ̂1ML)
2

σ̂2
2ML =

M∑
k=1

(1−Δk) (yk − μ̂2ML)
2 .

(4.67)

The mixing parameter Π1,2 is actually the probability that a given measurement comes from
the distribution e1k or e

2
k respectively. Therefore,

Π = Π1 =

M∑
k=1

Δk

M∑
k=1

Δk +
M∑
k=1

(1−Δk)

=

M∑
k=1

Δk

M
(4.68)

and
Π2 = 1− Π1. (4.69)

It is important to note that it was possible to find the ML estimator in SubSection 4.2.2.1
because the selection variableΔwas given. In practice this is usually not the case. This means
that in general there is the need to estimate the variousΔk’s in order to estimate the remaining
model parameters θ. Finding closed-form ML estimators is in this unknown Δ’s case is not
feasible, since the likelihood function is nowmore complex and bimodal with respect toΔ. In
such cases, where there are non-observed latent variables involved in the estimation process,
a strategy is to employ the EM algorithm. This case is presented in details in SubSection 4.3.4.
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4.2.3 Models with state-dependent variance of the measurement noise
Now we consider an other type of statistical models with non-fixed variances of the measure-
ment noises, in which this moment depends on the state. More precisely we consider the
generic model

yk = fmean (xk) + fnoise (xk) νk (4.70)

where the term fmean (xk) models the bias as a static nonlinear function depending on the
state of the system, where the static function fnoise (·) captures the heteroskedasticity of the
measurement process, and where νk is a iid standard Gaussian noise. We start our discussion
through considering first fnoise (xk) = σνfvariance (xk), where fvariance (xk) is a known function
of xk, in SubSection 4.2.3.1. Then in SubSection 4.2.3.2 we consider the case where fvariance (xk)
is an unknown function of xk.

4.2.3.1 The case where the variance depends on a known function of the states

In this case we have the generic model

yk = fmean (xk) + fvariance (xk) σννk (4.71)

where

• fmean (·) is the unknown function that we want to estimate;

• νk ∼ N (0, 1) and iid;

• σ2
ν ∈ R+ is the unknown nominal variance of the model;

• fvariance (xk) is a known function of xk (which is also known in this setup). Therefore, the
values of fvariance (xk) are known for each sample k.

Our aim now is to estimate fmean (·) and σ2
ν using a dataset that contains information on both

yk and xk simultaneously.
We then note that it is possible to transform the heteroskedastic system in (4.71) into

a homoskedastic system through dividing both sides of Equation (4.71) on fvariance (xk) as
soon as fvariance (xk) �= 0 (if this happens, actually the problem of estimating fvariance becomes
ill-posed). The transformed model will then be

yk
fvariance (xk)

=
fmean (xk)

fvariance (xk)
+ σννk (4.72)

which is clearly a homoskedastic system with fixed variance σ2
ν . Assume that we can de-

compose the nonlinear function fmean (xk) as a linear model H(xk)θ where H(xk) is a known
transposed vector with the same length as θ, and define

ỹ :=

⎡⎢⎢⎢⎢⎣
y1

fvariance (x1)
2

...
yM

fvariance (xM)2

⎤⎥⎥⎥⎥⎦ H̃ :=

⎡⎢⎢⎢⎢⎣
H(x1)

fvariance (x1)
...

H(xM)

fvariance (xM)

⎤⎥⎥⎥⎥⎦ ν :=

⎡⎢⎣ ν1
...

νM

⎤⎥⎦ . (4.73)
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Given these quantities we can then rewrite model (4.72) in a vectorial form, i.e., as

ỹ = H̃θ + σνν. (4.74)

Following the same procedure that we followed in SubSections 4.2.1.5 and 4.2.1.4, we can
compute the ML estimator for the model parameters as

θ̂ =
(
H̃T H̃

)−1

H̃T ỹ. (4.75)

The corresponding MMSE but biased estimator for the variance is then

σ̂2
ν =

1

M

(
ỹ − H̃θ̂

)T (
ỹ − H̃θ̂

)
. (4.76)

The estimators above can be immediately used in the following practical example:

Example 4.3 (Calibrating triangulation Lidars using the simplified model (3.32))

We can consider using the alternative and simplified model (3.32) for a triangulation
Lidar considering that in general there exists a trade off between simplifying the statistical
models of a system and obtaining simpler numerical implementability conditions. We
thus propose in this example to seek an estimate for αi and σ2

ν in (3.31), by considering

yk = fmean(dk) + d2kσννk. (4.77)

This model differs from the one considered in (3.31) only for the fact that the noise is
multiplied by d2k instead of fmean(dk)

2. This approximation is intuitively meaningful,
since fmean(dk) represents a distortion term induced by the pinhole lens: ideally, indeed,
fmean(dk) should be equal to dk.

Assuming then to use model (4.77) it is possible to derive a ML estimator of θ as done
in the scheme presented before this example. In other words, dividing both sides of (4.77)
by d2k leads to

yk
d2k

= g(dk) + σννk (4.78)

where (cf. (3.24))

g(dk) =
N∑
i=0

αkd
i−2
k . (4.79)

This means that the estimation problem can be cast as the problem of estimating the

parameters α := [α0, . . . , αN ]
T and the noise variance σ2

ν describing the linear system

yk
d2k

=
[
d−2
k . . . dN−2

k

] ⎡⎢⎣α0
...

αN

⎤⎥⎦ + σννk, (4.80)

for which the ML solution is directly

α̂ =
(
HTH

)−1
HT ỹ (4.81)
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and the estimator for the variance is

σ̂2
ν =

1

M
(ỹ −Hα̂)T (ỹ −Hα̂) (4.82)

with

H :=

⎡⎢⎣d
−2
1 · · · dN−2

1
...

...
d−2
M · · · d(dk + uk)2

N−2

⎤⎥⎦ ỹ :=

⎡⎢⎢⎢⎣
y1
d21
...

yM
d2M

⎤⎥⎥⎥⎦ . (4.83)

4.2.3.2 The case where the variance depends on an unknown function of the states

In this case, we have the generic model

yk = fmean (xk) + fvariance (xk) σννk (4.84)

where

• fmean (·) is the unknown function that we want to estimate;

• νk ∼ N (0, 1) and independent;

• σ2
ν ∈ R+ is the unknown model nominal variance;

• fvariance (xk) is an unknown function of the known states xk. In this case, thus, we want to
estimate also this function.

In other words our aim now is to simultaneously estimate fmean (·), fvariance (·) and σ2
ν using

dataset containing both yk and xk.
Unfortunately it is not possible to follow the procedure used in the previous subsec-

tion and transform the heteroskedastic system above into a homoskedastic system, since
there is not enough information to perform a side-by-side division similar to how we did in
SubSection 4.2.3.1.

We can nonetheless consider an alternative approach where we assume that we can
decompose the nonlinear functions fmean (xk) and fvariance (xk) as linear models H(xk)θmean

and H ′(xk)θvariance respectively, where H(xk) and H ′(xk) are known transposed vectors with
the same length as θmean and θvariance respectively. Note that each element in these vectors is a
function of xk. Then Equation (4.84) can be specialized into

yk = H(xk)θmean +H ′(xk)θvarianceσννk. (4.85)

Note that since σ2
ν is unknown and θvariance is also unknown, we may have identifiability

issues between σ2
ν and H ′(xk)θvariance. For example, if we consider a polynomial expansion for

H ′(xk)θvariance, i.e.,
H ′(xk)θvariance := α0 + xkα1 + · · ·+ xN

k αN , (4.86)

we will have that the terms σναi are a multiplication of two unknown parameters. To avoid
this problem, we will then assume that σ2

ν is internally absorbed in the vector θvariance.
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Assume then θ = [θT
mean,θ

T
variance]

T and

y :=

⎡⎢⎣ y1
...

yM

⎤⎥⎦ H :=

⎡⎢⎣H(x1)
...

H(xM)

⎤⎥⎦ H ′ :=

⎡⎢⎣H ′(x1)
...

H ′(xM)

⎤⎥⎦ ν :=

⎡⎢⎣ ν1
...

νM

⎤⎥⎦ . (4.87)

We can thus rewrite the model (4.84) in vector form as

y = Hθmean +H ′θvariance � ν (4.88)

where � indicates the Hadamard product.
In this case finding the ML estimator for θ requires solving the optimization problem

argmin
θ∈Θ

||y −Hθmean||2Σ−1 (4.89)

where Σ := diag
(
(H ′

1θvariance)
2 , . . . , (H ′

Mθvariance)
2). Solving this optimization problem in

closed form is not possible, in general, because we will have terms that correspond to the ratio

of two unknown functions, i.e.,
(Hkθmean)

2

(H ′
kθvariance)2

. Solution shall thus be implemented through

numerical techniques or using the approximated two-step estimation procedure that will be
presented in the next SubSection 4.2.3.3.

To clarify this concept, we provide yet another example:

Example 4.4 (Calibrating the statistical model of triangulation Lidars )

Our goal in this example is to find a calibration procedure for the statistical model
in (3.31), i.e.,

yk =
N∑
i=0

αkd
i
k +

(
N∑
i=0

αkd
i
k

)2

σννk (4.90)

through estimating the unknown αk and σ2
ν from a dataset T = {yk, dk} in which we know

dk (e.g., thanks to a Motion Capture (MoCap) system).
Given our Fisherian setting, we seek for theML estimate for both fmean(·) and σ2

ν where

fmean :=
∑N

i=0 αkd
i
k. Since now model (3.31) implies

yk − fmean(dk) ∼ N
(
0, fmean(dk)

4
)
, (4.91)

it follows immediately that the corresponding negative log-likelihood is proportional to

L := log (detΣ) +
(
y − fmean(d)

)T
Σ−1

(
y − fmean(d)

)
(4.92)

where

• y := [y1, . . . , yM ]T ;

• d := [d1, . . . , dM ]T ;

• fmean(d) := [fmean(d1), . . . , fmean(dM)];



4.2. Estimation for systems where the state of the system is known 111

• Σ := diag (fmean(d1)
4, . . . , fmean(dM)4).

Calibrating the statistical model thus means finding the ML estimates in our settings
through solving

argmin
θ∈Θ

L (θ) (4.93)

for several different N = 1, 2, . . . , Nmax, with

θ :=
[
α0, . . . , αN , σ

2
ν

]
(4.94)

and Θ the set of θ ∈ Rn+1 for which σ2
ν > 0, and then deciding which N is the best one

using the model complexity selection criteria that will be discussed at the end of this
chapter.

Unfortunately problem (4.93) is not convex in general because it consists of polynomial
ratios, so it neither admits a closed form solution nor it can be easily computed using
numerical procedures. Solving problem (4.93) is thus numerically difficult.

4.2.3.3 An ad-hoc two–steps estimation procedure

While collecting a training set, sometimes it is possible to control the data collection process so
that we can record different subsets of the whole training set, one for each one of the several
fixed values of xk. In these cases we can apply the following two-step estimation procedure
to estimate the model parameters.

Assume that the number of fixed values of xk that we have recorded is MT . Each of these
sub-datasets containsKm measurement-state pairs of the kind

Tm :=
{
yk,m, xm

}Km

k=1
m = 1, . . . ,MT (4.95)

Note that here we replaced the subscript of the state from xk to xm because the state is
assumed fixed during an experiment but it might be different for different experiments. Also
we added the dataset index m to the measurement yk,m in order to differentiate between
different datasets. The statistical measurement model will then be

yk,m = fmean(xm) + fnoise(xm)νk,m m = 1, . . . ,MT
= H(xm)θmean + fnoise(xm)νk,m

(4.96)

where νk,m ∼ N (0, 1), fmean(xm) and fnoise(xm) are fixed for each m. The two-step procedure
that we propose will then be

step1: estimate the value of the model variance f̂noise(xm)
2 for each dataset Tm : this can be

done immediately through calculating the differences among the various yk,m’s, i.e.,

Δy,m := {yk1,m − yk2,m} k1 = 1, . . . , Km − 1 k2 = k1 + 1, . . . , Km. (4.97)

Then, since xm is constant within each dataset, it follows immediately from Equa-
tion (4.96) that

(yk1,m − yk2,m) = fnoise(xm) (νk1,m − νk2,m) ∼ N
(
0, 2fnoise(xm)

2) . (4.98)
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Consequently, it is possible to estimate each f̂noise(xm)
2 as half of the empirical variance

of the set Δy,m, or

f̂noise(xm)
2 :=

1

2

1∑Km−1
k1=1 Km − k1

Km−1∑
k1=1

Km∑
k2=k1+1

(yk1,m − yk2,m)
2 (4.99)

step 2: estimate θmean : dividing each measured yk,m by the corresponding f̂noise(xm) corre-
sponds to consider the auxiliary homoskedastic measurement process

ỹk,m = H̃(xm)θmean + νk,m

ỹk,m :=
yk,m

f̂noise(xm)
H̃(xm) :=

H(xm)

f̂noise(xm)
.

(4.100)

Defining then

ỹ :=
[
ỹ1,1 . . . ỹK1,1, . . . , ỹ1,M . . . ỹKM ,M

]T
, (4.101)

h̃m :=

⎡⎢⎣H̃(xm)
...

H̃(xm)

⎤⎥⎦
⎫⎪⎬⎪⎭Km times H̃ :=

⎡⎢⎣ h̃1
...

h̃M

⎤⎥⎦ (4.102)

it follows immediately that the ML estimate for θmean is

θ̂mean =
(
H̃T H̃

)−1

H̃T ỹ. (4.103)

Example 4.5 (Calibrating triangulation Lidars with measurement angles)

In this Example, we consider the same model (3.34) described in Example 3.5

yk,m =

(
N∑
i=0

αkd
k
k,m +

N∑
i=1

ckφ
k
k,m

)
︸ ︷︷ ︸

bias

+

(
N∑
i=0

βkd
k
k,m +

N∑
i=1

κkφ
k
k,m

)
︸ ︷︷ ︸

variance

νk,m. (4.104)

Our aims are now is to learn the model parameters αk, ck, βk, κk from training datasets. To
estimate the parameters in the model (4.104), we assume that we are endowed withMT
different datasets: in each single dataset both the Lidar and the surrounding environment
are fixed, while the environment varies among the various datasets. This corresponds to
assume to be endowed with

Tm :=
{
yk,m, dm, φm

}
k=1,...,Km

m = 1, . . . ,MT (4.105)

where we stress that within each Tm the actual distance is the known constant dm (and
thus not dk,m) and (similarly) the incidence angle is the known constant φm (and thus not
φk,m). This information is then assumed to be collected through an opportune MoCap
system.

For notational convenience, we summarize all the quantities involved in our setup
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with the additional notation

dm :=

⎡⎢⎢⎢⎣
1
dm
...
dnm

⎤⎥⎥⎥⎦ φm :=

⎡⎢⎣φm
...
φn
m

⎤⎥⎦ (4.106)

α :=

⎡⎢⎣α0
...
αn

⎤⎥⎦
T

c :=

⎡⎢⎣c1...
cn

⎤⎥⎦
T

β :=

⎡⎢⎣β0
...
βn

⎤⎥⎦
T

κ :=

⎡⎢⎣κ1
...
κn

⎤⎥⎦
T

(4.107)

θ′ :=
[
α c

]
θ′′ :=

[
β κ

]
θ :=

[
θ′ θ′′] . (4.108)

With this additional notation, we can compactly rewrite model (4.104) as

yk,m =
[
α c

] [
dm

φm

]
︸ ︷︷ ︸

=:μm

+
[
β κ

] [
dm

φm

]
︸ ︷︷ ︸

=:σm

νk,m m = 1, . . . ,MT (4.109)

where, due to the waywe constructed the datasets, the various μm and σm areMT different
values, and the yk,m vary only because of the effect of the noise νk,m.

Assuming that we have the datasets Tm in (4.105), to infer the model parameters θ
in (4.108) we then follow the steps of Section 4.2.3.3:

1) estimate the σm’s: first compute all the possible differences among the various yk,m’s,
i.e.,

Δy,m := {yk1,m − yk2,m} k1 = 1, . . . , Km − 1 k2 = k1 + 1, . . . , Km. (4.110)

Then, since dm is constant within each dataset, it follows immediately from Equa-
tion (4.109) that

(yk1,m − yk2,m) = σm (νk1,m − νk2,m) ∼ N
(
0, 2σ2

m

)
. (4.111)

Thus it is possible to estimate each σm as the square root of half of the empirical
variance of the set Δy,m;

2) estimate θ′′ :=
[
β κ

]
: considering the definition of σm in (4.109) we can immediately

estimate θ′′ through LS as

θ̂′′ = (HTH)−1H

⎡⎢⎣ σ1
...

σM

⎤⎥⎦ (4.112)
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with

H :=

⎡⎢⎣dT
1 φT

1
...

...
dT
M φT

M

⎤⎥⎦ ; (4.113)

3) estimate θ′ :=
[
α c

]
: dividing each measured yk,m by the corresponding σm corre-

sponds to consider the auxiliary homoskedastic measurement process

ỹk,m =
[
α c

] ⎡⎢⎢⎣
dm

σm

φm

σm

⎤⎥⎥⎦ + νk,m. (4.114)

Defining then

ỹ :=
[
ỹ1,1 . . . ỹK1,1, . . . , ỹ1,M . . . ỹKM ,M

]T
, (4.115)

h̃m :=
1

σm

⎡⎢⎣d
T
m φT

m
...

...
dT
m φT

m

⎤⎥⎦
⎫⎪⎬⎪⎭Km times H̃ :=

⎡⎢⎣ h̃1
...

h̃M

⎤⎥⎦ (4.116)

it follows immediately that the ML estimate for θ′ is

θ̂′ =
(
H̃T H̃

)−1

H̃T ỹ. (4.117)

To complete the example, we consider estimating the model of a triangulation Lidar by
means of several recorded datasets using a target with adjustable distance and incidence
angles as shown in Figure 3.9. This setup enables to follow the 2-steps procedure described

above, and perform the calibration of the model parameters α̂k, ĉk, β̂k and κ̂k by using the raw
Lidar measurements yk,m, the actual values for the target angle φm and the actual values for
the distance dm.

The resulting training errors are then graphically shown in Figure 4.5; it is immediate to
note how the error committed by the raw measurements (i.e., the upper manifold) is bigger
than the error committed by the calibrated data for every tested incidence angle.

4.2.4 Bayesian models
Consider the generic model (3.19)

yk = fmean (xk) + fnoise (xk) νk (4.118)

where νk ∼ N (0, 1) iid. Having prior information about the unknown functions fmean (·) and
fnoise (·), for example prior information about them being monotonically increasing or de-
creasing usually leads to have information about the function parameters, when a parametric
modeling is considered. In this Section we describe some estimation procedures that can be
followed for performing statistical sensor modeling with prior information about the model
parameters.
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Figure 4.5: Calibration error surfaces for the calibration process. The upper surface is for the
raw Lidar data, while the lower surface is for the calibrated data. The calibration has been
done with distances up to 4 meters, but the target was not visible for φ = ±80◦ therefore we
removed the φ = ±80◦ from the plot.

We start our discussion with the linear homoskedastic system fnoise (xk) = σν defined by

yk = H(xk)θmean + σννk (4.119)

where θmean ∈ RN are the unknown model parameters and σ2
ν ∈ R+ is known. We then

assume the following prior on the estimands:

p (θmean) ∼ N (μθmean ,Σθmean) (4.120)

where μθmean ∈ RN and Σθmean ∈ RN×N
+ are some known hyperparameters.

Using Bayesian formalisms, statisticallymeaningful estimators can be found bymaximizing
the posterior p (θmean |y ), i.e., by finding the MAP estimator for θ

θ̂mean = arg max
θmean∈Θ

p (θmean |y ) . (4.121)

To compute this quantity, applying the Bayes rule we obtain

p (θmean |y ) = p (y |θmean )
p (θmean)

p (y)
. (4.122)

Given then a fixed observation vector, p (y) will be constant. This means that we obtain

p (θmean |y ) ∝ p (y |θmean ) p (θmean) . (4.123)
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This eventually makes solving the MAP problem be equivalent to maximizing

θ̂mean = arg max
θmean∈Θ

p (θmean |y )
= arg max

θmean∈Θ
p (y |θmean ) p (θmean) .

(4.124)

Since y and θmean are jointly Gaussian then the posterior PDF will be Gaussian also (see
Theorem 10.3 in [60]) with mean

E [p (θmean |y )] = θ̂mean = μθmean + ΣθmeanH
T

(
HΣθmeanH

T + I
)−1

(y −Hμθmean) (4.125)

and variance

var (p (θmean |y )) = Σθmean − ΣθmeanH
T

(
HΣθmeanH

T + I
)−1

HΣθmean . (4.126)

Nuisance parameter

In the previous results, the nominal variance was assumed to be known. This is not the case in
general, since in the most generic settings both the parameters and the variance are unknown.
If we are not interested on the value of the variance, we can integrate it out of the posterior
density. For example, if the joint posterior is p (θmean, σ

2
ν |y ), we can then write the posterior

parameters as

p (θmean |y ) =
∫

p
(
θmean, σ

2
ν |y

)
dσ2

ν . (4.127)

Using Bayes rule we can then compute

p
(
θmean, σ

2
ν |y

)
= p

(
y

∣∣θmean, σ
2
ν

) p (θmean, σ
2
ν)

p (y)
; (4.128)

substituting in (4.127) we then obtain

p (θmean |y ) =
∫

p
(
y

∣∣θmean, σ
2
ν

) p (θmean, σ
2
ν)

p (y)
dσ2

ν (4.129)

so that, if σ2
ν is independent on θmean, then

p (θmean |y ) =
∫

p
(
y

∣∣θmean, σ
2
ν

)
p
(
σ2
ν

)
dσ2

ν

p (θmean)

p (y)
. (4.130)

Matching then the terms of the last Equation with Equation (4.122) leads to

p (y |θmean ) =

∫
p
(
y

∣∣θmean, σ
2
ν

)
p
(
σ2
ν

)
dσ2

ν . (4.131)

An example illustrating the usefulness of the concepts above is the following:

Example 4.6 (Parameters estimation in heteroskedastic Bayesian models with nuisance
variance)

Assume that we have the heteroskedastic statistical model

y = Hθ + fvariance (x,θ) σνν (4.132)
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where

• y := [y1, . . . , yM ]T is the measurement vector;

• x := [x1, . . . , xM ]T is the known state vector;

• H is a known matrix that depends on x;

• ν := [ν1, . . . , νM ]T , νk ∼ N (0, 1) and independent;

• θ ∈ RN is the unknown parameters vector with a known Gaussian prior θ ∼
N (μθ,Σθ), where

μθ :=
[
0 1 0 · · · 0

]T
Σθ := diag

(
τ−2
θ

)
(4.133)

and with known vector of precisions τθ ∈ R+;

• σ2
ν ∈ R+ is to be regarded as nuisance parameter with the prior

p
(
σ2
ν

)
=

⎧⎨⎩ λ exp

(
− λ

σ2
ν

)
σ4
ν

σ2
ν > 0

0 σ2
ν < 0

(4.134)

where λ ∈ R+, and σ2
ν independent of θ.

Our aim is to find an estimate for the parameter vector θ.
We start through marginalizing out the nuisance parameter σ2

ν , so that we will have

p (y |θ ) =

∫
p
(
y

∣∣θ, σ2
ν

)
p
(
σ2
ν

)
dσ2

ν

=

∫ ∞

0

λ exp
(
− λ

σ2
ν

)
σ4
ν(2πσ

2
ν)

M
2 det

1
2 Σ

exp

(
− 1

2σ2
ν

(y −Hθ)T Σ−1 (y −Hθ)

)
dσ2

ν

(4.135)

where
Σ := diag

(
f 2
variance (x1,θ) , . . . , f

2
variance (xM ,θ)

)
. (4.136)

Letting τν := σ−2
ν , then dτν = σ−4

ν dσ2
ν . Letting also a :=

(
λ+ 1

2
(y −Hθ)T Σ−1 (y −Hθ)

)
,

and substituting in the last equation plus simplifying, we obtain

p (y |θ ) = λ

(2π)
M
2 det

1
2 Σ

∫ ∞

0

τ
M
2

ν exp (−aτν) dτν . (4.137)

The integral on the right side can then be evaluated using the gamma integral property,
i.e., ∫ ∞

0

τ
M
2

ν exp (−aτν) dτν = a−(
M
2
+1)Γ

(
M

2
+ 1

)
(4.138)
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for M
2
+ 1 > 0 and a > 0 (note that both these hypotheses are always true in our problem

formulations). Hence, Equation (4.137) can be evaluated to be

p (y |θ ) = λΓ
(
M
2
+ 1

)
(2π)

M
2 det

1
2 Σ

(
λ+ 1

2
(y −Hθ)T Σ−1 (y −Hθ)

)M
2
+1

. (4.139)

Applying the Bayes rule we can then find that the posterior density is

p (θ |y ) ∝ p (y |θ ) p (θ) ; (4.140)

Expanding, we then obtain

p (θ |y ) ∝
λΓ

(
M
2
+ 1

)
exp

(
−1

2
(θ − μθ)

T Σ−1
θ (θ − μθ)

)
(2π)

M+1
2 det

1
2 Σdet

1
2 Σθ

(
λ+ 1

2
(y −Hθ)T Σ−1 (y −Hθ)

)M
2
+1

. (4.141)

This means that now we can estimate the parameters vector using MAP through maxi-
mizing the posterior density above, i.e., perform our estimation step as

θ̂ = argmax
θ∈Θ

p (θ |y ) . (4.142)

However the optimization problem above does not admit in general closed form solutions.
Also from numerical perspectives this estimator leads to problematic implementations,
since the cost that shall be optimized is a ratio of functions with unknown parameters –
something that is not convex in general.

Example 4.7 (Parameters estimation in homoskedastic Bayesian models)

Consider the first statistical sensor model that we provided in Example 3.6, i.e., Equa-
tion (3.38), which we can write in vector form as

y = fmean (x) + σνν (4.143)

where

• y := [y1, . . . , yM ]T is the measurement vector;

• x := [x1, . . . , xM ]T is the known state vector;

• ν := [ν1, . . . , νM ]T , νk ∼ N (0, 1) and independent;

• fmean (x) can be expanded as a polynomial of order N , where N is assumed known
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here and

fmean (x) =

⎡⎢⎣1 x1
1 · · · xN

1
...

...
1 x1

M · · · xN
M

⎤⎥⎦
︸ ︷︷ ︸

=: Gx

⎡⎢⎣α0
...

αN

⎤⎥⎦
︸ ︷︷ ︸
=: α

= Gxα; (4.144)

• α ∈ RN+1 is the unknown parameters vector with a known Gaussian prior p (α) ∼
N (μα,Σα), where

μα :=
[
0 1 0 · · · 0

]T
Σα := diag

(
τ−1
α

)
(4.145)

and with known vector of precisions τα ∈ RN+1
+ ;

• σ2
ν ∈ R+ is the unknown model variance with prior

σ−2
ν = τν ∼ Gamma (aν , bν) (4.146)

where aν and bν are known hyperparameters.

Assume moreover that τν is independent on α and that both parameters are independent
on x and on ν. Our aim is to find the MAP estimator for α and σ2

ν .
The joint parameters posterior density is in this case

p (α, τν |x,y ) ∝ p (y |x,α, τν ) p (α, τν)
∝ p (y |x,α, τν ) p (α) p (τν) .

(4.147)

We can then apply a Gibbs sampling scheme through alternatively sampling the condi-
tional densities p (α |x,y, τν ) and p (τν |x,y,α) to generate a sample from the joint density
p (α, τν |x,y ). Then our MAP estimator will be the maximum of the obtained sampled
distributions. The conditional density for α will then be

p (α |x,y, τν ) =
p (α, τν |x,y )
p (τν |x,y )

=
p (α, τν |x,y )

p (τν)
∝ p (y |x,α, τν ) p (α) .

(4.148)
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Expanding, we get

p (α |x,y, τν ) ∝ exp
(
− τν

2
(y −Gxα)T (y −Gxα)

)
exp

(
−1

2
(α− μα)

T Σ−1
α (α− μα)

)
∝ exp

(−1
2

[
τνy

Ty − τνy
TGxα− τνα

TGT
xy + τνα

TGT
xGxα+

αTΣ−1
α α−αTΣ−1

α μα − μT
αΣ

−1
α α+ μT

αΣ
−1
α μα

])
∝ exp

(−1
2

[
αT

(
τνG

T
xGx + Σ−1

α

)
α−

(
τνy

TGx + μT
αΣ

−1
α

)
α+

−αT
(
Σ−1

α μα + τνG
T
xy

)
+ μT

αΣ
−1
α μα + τνy

Ty
])

∝ exp

[
−1
2

(
α−

(
τνG

T
xGx + Σ−1

α

)−1 (
Σ−1

α μα + τνG
T
xy

))T

(
τνG

T
xGx + Σ−1

α

)−1
(
α−

(
τνG

T
xGx + Σ−1

α

)−1 (
Σ−1

α μα + τνG
T
xy

))]
(4.149)

and similarly the conditional density τν will be

p (τν |x,y,α) ∝ p (y |x,α, τν ) p (τν) . (4.150)

Expanding, we get

p (τν |x,y,α) ∝ τ
M
2

ν τaν−1
ν exp

(
− τν

2
(y −Gxα)T (y −Gxα)

)
exp

[−τν
bν

]
∝ τ

M
2
+aν−1

ν exp

(
−τν

(
1

bν
+ 1

2
(y −Gxα)T (y −Gxα)

)) (4.151)

Algorithm 4 summarize the Gibbs sampler for generating the samples described above.
Since the conditional distribution p (α |x,y, τν ) has the form of a normal distribution, the
minimum variance unbiased estimator of the parameter vector α is the sample mean

α̂ =
1

tmax − tmin

tmax∑
t=tmin

α(t) (4.152)

while p (τν |x,y,α) has the form of Gamma distribution, therefor the minimum variance
unbiased estimator of τν is

τ̂ν =
1

(tmax − tmin)

tmax∑
t=tmin

τ (t)ν . (4.153)

To tie the previous estimation scheme to a practical case, we applied Algorithm 4 on
a real dataset recorded from a triangulation Lidar considering the model investigated in
Example 4.7 and a fixed polynomial order of N = 2. The obtained posterior densities of the
various parameters are then plotted in Figures 4.6 and 4.7.

Example 4.8 (Parameters estimation using the heteroskedastic Bayesian model (3.38) un-
der the case II)

Now we consider the second statistical sensor model considered in Example 3.6, Equa-
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Figure 4.6: The estimated posterior densities for the parameters α0, α1 and α2 of Example 4.7
(plots produced using a field dataset).
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Figure 4.7: The estimated posterior density for the parameter τν of Example 4.7 (plot produced
using a field dataset).

Algorithm 4 MCMC for the case fnoise(xk) = σν

1: initialization:
α(0) = μα

τ
(0)
ν ∼ Gamma (aν , bν)

2: for t = 0, 1, . . . tmax (or up to convergence) do
3: update τν and α using the Gibbs sampler:

α(t+1) ∼ p
(
α(t)

∣∣∣x, τ (t)ν

)
τ
(t+1)
ν ∼ p

(
τ
(t)
ν

∣∣x,y,α(t+1)
)

4: end for
5: where

p
(
α(t)

∣∣∣x,y, τ (t)ν

)
∝ N

(
B(t)A(t), B(t)

)
A(t) = τ

(t)
ν GT

xy − Σ−1
α μα

B(t) =
(
τ
(t)
ν GT

xGx + Σ−1
α

)−1

p
(
τ
(t)
ν

∣∣x,y,α(t+1)
)

∝ Gamma

(
aν +

M

2
,

(
1

bν
+

1

2
C(t+1)TC(t+1)

)−1
)

C(t+1) =
(
y −Gxα

(t+1)
)
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tion (3.38), i.e.,
y = fmean (x) + fnoise (x)� ν (4.154)

where

• y := [y1, . . . , yM ]T is the measurement vector;

• x := [x1, . . . , xM ]T is the known state vector;

• fnoise (x) := σν [x
ρ
1, . . . , x

ρ
M ]T where ρ ∈ R+ is an unknown parameter with truncated

Gaussian prior

p (ρ) ∼
{

N
(
0, σ2

ρ

)
ρ > 0

0 ρ < 0
(4.155)

and where σ2
ρ is a known hyperparameter;

• ν := [ν1, . . . , νM ]T , νk ∼ N (0, 1) and independent;

• fmean (x) is expanded as a polynomial of order N , where N is assumed known, and

fmean (x) =

⎡⎢⎣1 x1
1 · · · xN

1
...

...
1 x1

M · · · xN
M

⎤⎥⎦
︸ ︷︷ ︸

=: Gx

⎡⎢⎣α0
...

αN

⎤⎥⎦
︸ ︷︷ ︸
=: α

= Gxα; (4.156)

• α ∈ RN+1 is the unknown parameters vector with a known Gaussian prior p (α) ∼
N (μα,Σα), where

μα :=
[
0 1 0 · · · 0

]T
Σα := diag

(
τ−1
α

)
(4.157)

and with known vector of precisions τα ∈ RN+1
+ ;

• σ2
ν ∈ R+ is the unknown model variance with the prior

σ−2
ν = τν ∼ Gamma (aν , bν) (4.158)

where aν and bν are known hyperparameters.

We also assume that the parameters are independent on each other and they are indepen-
dent on x and ν also. In this case the increased complexity comes from the fact that also
ρ shall be estimated from the data. Note that Σν in this case becomes

Σν = σ2
νdiag

(
x2ρ
1 , . . . , x2ρ

M

)
(4.159)

so that the MAP estimator is

arg max
α∈RN ,σ2

ν∈R+,ρ∈R+

p
(
α, σ2

ν , ρ |x,y
)
. (4.160)
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We can then follow steps that are similar to the ones we followed in Example 4.7 for
finding the conditional densities p (α |x,y, τν , ρ) and p (τν |x,y,α, ρ). To construct the
Gibbs sampler, however, it shall be noted that p (ρ |x,y,α, τν ) is not a standard distribution
from which we can sample easily. More precisely,

p (ρ |x,y, τν ,α) =
p (ρ,α, τν |x,y )
p (α, τν |x,y )

=
p (ρ,α, τν |x,y )

p (τν ,α)
∝ p (y |x,α, τν , ρ) p (ρ)

∝ det
−1
2 Σν exp

(
− τν

2
(y −Gxα)T Σ−1

ν (y −Gxα)
)
exp

(
− 1

2σ2
ρ
ρ2

)
.

(4.161)
In other words we need to resort to a Metropolis within Gibbs algorithm, resulting in
Algorithm 5.

To tie the procedure above to a real case scenario, we applied Algorithm 5 on the same real
dataset used in Example 4.7, but considering now the model discussed in this Example and
using a polynomial order of N = 2, as before. The obtained posterior densities of the various
parameters are then plotted in Figures 4.8 and 4.9.

Remark 2. We note that the hyperparameter β determining the proposal variance of the scheme requires
manual tuning. As suggested in the literature, it is beneficial to tune β so that the acceptance ratio of
the sampler lies around 44% (see [97] and Table 1 in [69] for more details).

Example 4.9 (Parameters estimation in heteroskedastic Bayesian model (3.38) Case III)

Now we consider the third statistical sensor model in Example 3.6, Equation (3.38), i.e.,

y = fmean (x) + fnoise (x)� ν (4.162)

where

• y := [y1, . . . , yM ]T is the measurement vector;

• x := [x1, . . . , xM ]T is the known state vector;

• fnoise (x) := σν [fmean(x
ρ
1), . . . , fmean(x

ρ
M)]T where ρ ∈ R+ is the unknown parameter

with truncated Gaussian prior

p (ρ) ∼
{

N
(
0, σ2

ρ

)
ρ > 0

0 ρ < 0
(4.163)

where μ2
ρ is a known hyperparameter;

• ν := [ν1, . . . , νM ]T , νk ∼ N (0, 1) and independent;
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Figure 4.8: The estimated posterior densities for the parameters α0, α1 and α2 of Example 4.8
(plots produced using a field dataset).
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Figure 4.9: The estimated posterior density for the parameter τν of Example 4.8 (plot produced
using a field dataset).
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Algorithm 5 MCMC for the case fnoise(xk) = σνx
ρ
k

1: initialization:
α(0) = μα

ρ(0) = 0

τ
(0)
ν ∼ Gamma (aν , bν)

2: for t = 0, 1, . . . tmax (or up to convergence) do
3: update τν and α using the Gibbs sampler:

α(t+1) ∼ p
(
α(t)

∣∣∣x,y, τ (t)ν , ρ(t)
)

τ
(t+1)
ν ∼ p

(
τ
(t)
ν

∣∣x,y,α(t+1), ρ(t)
)

4: generate new proposal:
ρ(t+1) ∼ N

(
ρ(t), β

)
5: calculate the acceptance probability:

γ = min

⎡⎣1, p
(
y

∣∣∣x, ρ(t+1),α(t+1), τ
(t+1)
ν

)
p
(
y

∣∣∣x, ρ(t),α(t+1), τ
(t+1)
ν

) P

⎤⎦
where

P =
p
(
ρ(t+1)

)
p (ρ(t))

6: accept the proposal if γ > U [0, 1] and 0 ≥ ρ ≥ 10.
7: end for
8: where

p
(
α(t)

∣∣∣x,y, τ (t)ν , ρ(t)
)

∝ N
(
B(t)A(t), B(t)

)
A(t) = τ

(t)
ν GT

xD
(t)y − Σ−1

α μα

B(t) =
(
τ
(t)
ν GT

xD
(t)Gx + Σ−1

α

)−1

D(t) = diag
(
x−2ρ(t)

1 , . . . , x−2ρ(t)

M

)
p
(
τ
(t)
ν

∣∣x,y,α(t+1), ρ(t)
)

∝ Gamma

(
aν +

M

2
,

(
1

bν
+

1

2
C(t+1)TD(t)C(t+1)

)−1
)

C(t+1) =
(
y −Gxα

(t+1)
)

p
(
ρ(t)

)
∝ N (0, 1)



128 Chapter 4. Estimating the model parameters

• fmean (x) is expanded as polynomial of order N , where N is assumed known here
and

fmean (x) =

⎡⎢⎣1 x1
1 · · · xN

1
...

...
1 x1

M · · · xN
M

⎤⎥⎦
︸ ︷︷ ︸

=: Gx

⎡⎢⎣α0
...

αN

⎤⎥⎦
︸ ︷︷ ︸
=: α

= Gxα; (4.164)

• α ∈ RN+1 is the unknown parameters vector with a known Gaussian prior p (α) ∼
N (μα,Σα), where

μα :=
[
0 1 0 · · · 0

]T
Σα := diag

(
τ−1
α

)
(4.165)

and with known vector of precisions τα ∈ RN+1
+ ;

• σ2
ν ∈ R+ is unknown model variance with the prior

σ−2
ν = τν ∼ Gamma (aν , bν) (4.166)

where aν and bν are known hyperparameters.

Once again we also assume that the parameters are independent on each other and they
are independent on x and ν also. In this specific case Σν can be rewritten as

Σν = σ2
νdiag

(
fmean(x1)

2ρ, . . . , fmean(xM)2ρ
)

As before, the posterior of p (ρ |x,y,α, τν ) is not expressible using standard distributions
fromwhich we can sample from directly. Moreover the posterior of p (α |x,y, τν , ρ) is also
not known, and has to be computed resorting to Metropolis-Hasting acceptance/rejection
mechanism. These assumptions result in having to apply Algorithm 6.

For comparisons, applying Algorithm 6 on the same real dataset used for Examples 4.7
and 4.8 but considering the model in this Example and a polynomial order of N = 2, we
obtain the posterior densities of the various parameters that are plotted in Figures 4.10 and
4.11.

Note that once again finding the hyperparameters β and β′ requires manual tuning so
that the acceptance ratio of the sampler lies between 20% and 31% depending on the length
of parameter vector to estimate (see Table 1 in [69] for more details).
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Figure 4.10: The estimated posterior densities for the parameters α0, α1 and α2 of Example 4.9
(plots produced using a field dataset).
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Figure 4.11: The estimated posterior density for the parameter τν of Example 4.9 (plot produced
using real dataset).
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Algorithm 6 MCMC for the case fnoise(xk) = σνfmean(xk)
ρ

1: initialization:
α(0) = μα

ρ(0) = 0

τ
(0)
ν ∼ Gamma (aν , bν)

2: for t = 0, 1, . . . tmax (or up to convergence) do
3: update τν using the Gibbs sampler

τ
(t+1)
ν ∼ p

(
τ
(t)
ν

∣∣x,y,α(t)
)

4: generate new proposals:
α(t+1) ∼ N

(
α(t), β

)
ρ(t+1) ∼ N

(
ρ(t), β′)

5: calculate the acceptance probability:

γ = min

⎡⎣1, p
(
y

∣∣∣x, ρ(t+1),α(t+1), τ
(t+1)
ν

)
p
(
y

∣∣∣x, ρ(t),α(t), τ
(t+1)
ν

) P

⎤⎦
where

P =
p
(
ρ(t+1)

)
p
(
α(t+1)

)
p (ρ(t)) p (α(t))

6: accept the proposal if γ > U [0, 1] and 0 ≥ ρ ≥ 10.
7: end for
8: where

p
(
α(t)

)
∼ N (μα,Σα)

p
(
τ
(t)
ν

∣∣x,y,α(t), ρ(t)
)

∝ Gamma

(
aν +

M

2
,

(
1

bν
+

1

2
C(t)TE(t)C(t)

)−1
)

E(t) = diag
(
fmean(x1)

−2ρ(t) , . . . , fmean(xM)−2ρ(t)
)

p
(
ρ(t)

)
∝ N (0, 1)
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4.3 Estimation for systems with unknown states
We now discuss the parameter estimation problem for the case where the states of the system
are fully or partially unknown. We start our discussion from inspecting the generic state
space model (3.40) described in Section 3.4, i.e.,{

xk+1 = fstate(xk) + ek
yk = fmean(xk) + fnoise(xk)νk

(4.167)

and recall that, here,

• the function defining the dynamics fstate(·) is assumed to be known,

• xk ∈ RNx is the unknown state vector,

• yk ∈ RNy is the out put vector and y ∈ RM×Ny := [y1, . . . , yM ]T ,

• fmean(·) and fnoise(·) are functions with unknown parameters that we want to estimate.

Assume the noise processes to be distributed according to[
ek
νk

]
∼ N

([
0
0

]
,

[
Q 0
0 R

])
(4.168)

where Q ∈ RNx×Nx
+ and R ∈ R

Ny×Ny

+ are the process and output covariance matrices respec-
tively (hereafter assumed to be diagonal), and where 0 is a matrix of zeros with opportune
dimensions. Assume moreover that the initial state is also Gaussian, i.e., x0 ∼ N (μ0, P0),
where μ0 ∈ RNx and P0 ∈ RNx×Nx

+ are unknown and diagonal.
Note that the state evolution model that we considered above is very generic, and treating

this case is –as one may forecast– requires advanced numerical schemes. Complying with the
structure of the thesis up to now, we start our discussions by considering first the simplest case
possible, i.e., that one of linear time-invariant Gaussian dynamical systems before proceeding
with nonlinear models.

Consider then the following linear time-invariant system:{
xk+1 = Axk +Buk + ek
yk = Cxk +Duk + νk

(4.169)

where

• xk ∈ RNx is the unknown state vector,

• yk ∈ RNy is the output vector and y ∈ RM×Ny := [y1, . . . , yM ]T ,

• uk ∈ RNu is the known system input vector,

• A ∈ RNx×Nx and B ∈ RNx×Nu are the known state evolution matrices, C ∈ RNy×Nx and
D ∈ RNy×Nu are the sensor model parameters matrices (considered unknown).
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Assume the noise processes to be distributed according to[
wk

νk

]
∼ N

([
0
0

]
,

[
Q 0
0 R

])
(4.170)

where Q ∈ RNx×Nx
+ and R ∈ R

Ny×Ny

+ are the process and output covariance matrices re-
spectively. Assume moreover that Q is known and R is unknown, with 0 again a matrix of
zeros with opportune dimensions. Assume finally that the initial state is also Gaussian, i.e.,
x0 ∼ N (μ0, P0), where μ0 ∈ RNx and P0 ∈ RNx×Nx

+ are known.
Define then the unknown parameter vector θ as

θ :=
[
Vec(C)T Vec(D)T Vec(R)T

]T
(4.171)

where the operator Vec(X)T is the vectorization operator (i.e., that thus converts the matrixX
into a vector through stacking its columns one over the other). Our goal now is to estimate the
model parameter vector θ given themeasurement vector y and themodel (4.169). Formulating
the ML estimator problem corresponds then to consider

θ̂ML := argmax
θ∈Θ

p (y,x |θ ) . (4.172)

Solving this optimization in these general settings is not possible without adding information
on the state vector x experienced by the system during the collection of the measurements.
In other words, we aim at using incomplete datasets with unknown states (as described in
Section 3.2) to estimate the model parameters (and usually estimate also the states of the
system at the same time).

4.3.1 State Estimation
Performing state estimation is not the main target of this Section, being it instead dedicated to
the problem of estimating the parameters of some statistical model. Nonetheless we present
here a brief description of the state estimation problem for completeness and as starting
point for the next and more interesting topic of deriving joint parameter and state estimation
algorithms. We start first by considering the problem of state estimation for linear Gaussian
systems, and then proceed with describing how to perform state estimation in more general
nonlinear cases.

4.3.1.1 Linear Gaussian models

Consider a linear model of the type{
xk+1 = Axk +Buk + ek
yk = Cxk +Duk + νk

(4.173)

where

• xk ∈ RNx is the unknown state vector,

• yk ∈ RNy is the output vector and y ∈ RM×Ny := [y1, . . . , yM ]T ,
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• uk ∈ RNu is the known system input vector,

• A ∈ RNx×Nx and B ∈ RNx×Nu are the known state evolution matrices, C ∈ RNy×Nx and
D ∈ RNy×Nu are the sensor model parameters matrices which is considered unknown.

Assume the noise processes and the initial state to be distributed according to⎡⎣ wk

νk
x0

⎤⎦ ∼ N

⎛⎝⎡⎣ 0
0
μ0

⎤⎦ ,

⎡⎣ Q 0 0
0 R 0
0 0 P0

⎤⎦⎞⎠ (4.174)

where Q ∈ RNx×Nx
+ and R ∈ R

Ny×Ny

+ are the process and output covariance matrices respec-
tively, assumed to be known, μ0 ∈ RNx and P0 ∈ RNx×Nx

+ are also known.
The current problem is then the following: starting from datasets containing the sequence

of measurements y = [y1, · · · , yM ]T and some knowledge on the initial state of the system
x0 ∼ N (μ0, P0), we are required to estimate the state of the system x = [x0, · · · , xM ]T . Given
this assumption, we strive for finding the MAP estimator for x given {y,u} in (4.173). This is
equivalent to determining the density p (x |y,u), i.e., solve the optimization problem

x̂MAP := argmax
x∈X

p (x |y,u) . (4.175)

It is known that we can perform this task optimally in the mean-squared sense using what
is known as a Fixed-Interval Kalman smoother. There are different implementations for this
strategy; we summarized the one proposed by [98] in SubSection 2.4.2.

Example 4.10 (State estimation for linear Gaussian systems)

Consider the model (4.173) and the definitions therein. Given the measurement vector
y := [y0, . . . , yM ], the smoothed state vector can be computed starting from x̂0|0 = x0 ∼
N (μ0, P0) by applying a RTS Kalman smoother as described in Equation (2.163), i.e., by
applying recursively the strategy:

for k = 1, . . . ,M

forward Filter
(Kalman filter)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

prediction

⎧⎨⎩
x̂k|k−1 = Ax̂k−1|k−1

Pk|k−1 = APk−1|k−1A
T +Q

update

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
Pk|k = Pk|k−1 −Kk

(
CPk|k−1C

T +R
)
KT

k

Kk = Pk|k−1C
T

(
CPk|k−1C

T +R
)−1

(4.176)
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and for k = M,M − 1 . . . , 1

backward filtering

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂k|M = x̂k|k + Jk(x̂k+1|M − Ax̂k|k − Buk)

Pk|M = Pk|k + Jk
(
Pk+1|MJT

k − APk|k
)

Jk = Pk|kA
T

(
APk|kA

T +Q
)−1

.

(4.177)

The required estimated states is then x̂k|M .

4.3.1.2 Nonlinear models

We now consider the state estimation problem for the more general case where the state space
model is nonlinear and the measurement model is heteroskedastic as in (4.167), but where
the functions fmean(·) and fnoise(·) are assumed to be known, i.e.,{

xk+1 = fstate(xk) + ek
yk = fmean(xk) + fnoise(xk)νk

(4.178)

Assume then the noise processes and the initial state to be distributed according to⎡⎣ wk

νk
x0

⎤⎦ ∼ N

⎛⎝⎡⎣ 0
0
μ0

⎤⎦ ,

⎡⎣ Q 0 0
0 R 0
0 0 P0

⎤⎦⎞⎠ (4.179)

where Q ∈ RNx×Nx
+ and R ∈ R

Ny×Ny

+ are as usual the known process and output covariance
matrices, and where μ0 ∈ RNx and P0 ∈ RNx×Nx

+ are also known.
Our aim is then to find the MAP estimate for the states x given {y,u}, i.e., to solve the

optimization problem
x̂MAP := argmax

x∈X
p (x |y, x0 ) (4.180)

A general close form solution does not exist for this problem, and in the most general set-
tings there is the need of numerical methods for finding the smoothed state above. The
contemporary literature suggests to use schemes belonging to the family of particle filters – in
other words, particle smoothers are now considered an acceptable choice to obtain practical
efficiency (being accurate implementations of these filters also asymptotically efficient with
the number of particles going to infinity). In this thesis we do not cover how to implement
particle filters, and send the interested reader back to [99] for more information.

4.3.2 Joint Parameters and States Estimation
Estimation problems typically are dedicated to the tasks of either estimating the parameters
of the model or estimating the state of the system. This is specially true in that cases where
the model parameters are not changing with time: one learns the parameters once, and then
performs state estimation the next times. Sometimes, though, it may be necessary to perform
joint parameters-state estimation steps where one learns both the quantities at the same time.
This is particularly true if one has no complete dataset available, i.e., given the definitions
introduced above, when there is some missing information in the available dataset.
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We here thus discuss this case, and consider how and when using a joint parameters and
states estimation approach. As one may forecast, given our discussions above, in such cases
there is typically no simple analytical solution to the estimation problem. In this thesis the
generic strategy that we follow is to apply the EM algorithm described in SubSection 2.2 to
iterate steps where we estimate the states of the system (that are thus in this way considered
as latent variables) through the expectation step, and then perform parameters estimation
operations when doing the maximization step (more precisely, through maximizing the
likelihood function given the smoothed states).

As did in the rest of the thesis, we then start describing the simplest case possible, corre-
sponding to the one of linear Gaussian systems; we then proceed with a more general and
also more challenging situation where the systems are both nonlinear and heteroskedastic.

4.3.3 Linear Gaussian systems
For linear Gaussian systems, the expectation step in the EM algorithm corresponds to perform
the expectation in Equation (2.116) (see for e.g., [65]), i.e., compute

L(θ, θ̂(t)) := Eθ̂(t) [log p (x,y ; θ) | y ] . (4.181)

This step can be implemented using smoothing algorithms, for example the RTS Kalman
smoother to estimate the latent variables (the states) using the best available parameters
estimate. In the maximization step, instead, the joint state-measurements likelihood function
is maximized while keeping the states estimated in the expectation step as constant (see the
example below for the actual equations). Solving this will then refine the currently available
estimates of the parameters of the system. Iterating these two steps until convergence leads
then to the desired point estimates of both the state and the parameters of the system.

Note that stopping criteria for EM algorithms are usually based on relative or absolute
changes in the parameter estimate or in the value of the log likelihood, see, e.g., [100]. In our
implementations we typically checked if the absolute changes in the parameter estimates was
smaller than a threshold ε typically chosen as 10−5.

Example 4.11 (Equations of a generic EM algorithm for linear Gaussian systems)

Consider the model [
xk+1

yk

]
=

[
A B
C 0

] [
xk

1

]
+

[
wk

vk

]
(4.182)

withwk ∼ N (0, Q) iid, vk ∼ N (0, βRk) iid, 0 a vector of zeroswith opportune dimensions,
Q and Rk diagonal matrices, and β2 an unknown scalar.

Given a measurement sequence {yk} and a fully known initial state x0 ∼ N (μd,Σd),
we can apply the EM to estimate the matrix C and the scalar β2 by considering θ defined
as

θ :=
[
Vec(C)T β2

]
. (4.183)

Computing L
(
θ, θ̂(t)

)
requires then finding log p (y,x ; θ). Given the above model we
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have that [
xk

yk

]
∼ N

([
A B
C 0

] [
xk−1

1

]
,

[
Q 0
0T βRk

])
. (4.184)

with x0 ∼ N (μd,Σd) and with μd and Σd known. Defining

Σk :=

[
Q 0
0T βRk

]
(4.185)

and using both the Bayes rule and the Markovianity of (4.182) we then get

p (y,x ; θ) = p (x0 ; θ)
M∏
k=1

p (yk |xk ; θ) p (xk |xk−1 ; θ) (4.186)

that leads immediately to

log p (y,x ; θ) = log p (x0 ; θ)+
M∑
k=1

log p (yk |xk ; θ) +
M∑
k=1

log p (xk |xk−1 ; θ) .
(4.187)

Given (4.184) the joint log likelihood thus can be written as

log p (y,x ; θ) ∝ C + log detΣd
−1 − ‖x0 − μd‖2Σd

+
M∑
k=1

(
log detΣ−1

k −
∥∥∥∥[

xk

yk

]
−

[
A B
C 0

] [
xk−1

1

]∥∥∥∥2

Σk

)
(4.188)

where ‖�‖2� := �T �−1 � and C is a constant independent of the variables y, x, and θ.
Applying then the conditional expectation E

p
(
x|y ; θ̂

(t)
) [·] on both sides, expanding the

norms opportunely and ignoring multiplicative factors yields to (see also [101])

L
(
θ, θ̂(t)

)
= C +

M∑
k=0

(
log detΣk

−1 − tr (Ek)
)

(4.189)

with, for k = 0, Σ0 = Σd and

E0 := Ep(x|y ; θ̂(t))

[
Σ−1

d (x0 − μd) (x0 − μd)
T
]

(4.190)

and, for k = 1, . . . ,M ,

Ek := Ep(x|y ; θ̂(t))

[
Σ−1

k

([
xk

yk

]
−

[
A B
C 0

] [
xk−1

1

])
([

xk

yk

]
−

[
A B
C 0

] [
xk−1

1

])T
] (4.191)
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and

Σk :=

[
Q 0
0T β2Rk

]
. (4.192)

Since we are interested in finding C and β, calculating tr (Ek) requires computing the
following quantities

Ep(x|y ; θ̂(t))
[
xkx

T
k

]
Ep(x|y ; θ̂(t))

[
ykx

T
k

]
.

(4.193)

To do this, we follow the same procedure in [78]; using the identity cov
(
xk, x

T
k

)
:=

Ep

[
xkx

T
k

]
− Ep [xk]Ep

[
xT
k

]
or

Pk|M = Ep(x|y ; θ̂t)
[
xkx

T
k

]
− x̂k|M x̂T

k|M (4.194)

we also get

Ep(x|y ; θ̂t)
[
ykx

T
k

]
= ykEp(x|y ; θ̂t)

[
xT
k

]
(4.195)

= ykx̂
T
k|M . (4.196)

Therefore, to proceed we need to find the terms x̂T
k|M and Pk|M in the expectation step. To

this aim, consider that, given θ̂(t) i.e., the estimate of the parameters at iteration t, it is
possible to compute

L
(
θ, θ̂(t)

)
= Ep(x|y ; θ̂(t)) [log p (y,x ; θ)] . (4.197)

Intuitively speaking, this operation corresponds to estimating the smoothed state x̂T
k|M and

the smoothed covariance Pk|M . In the linear Gaussian case under consideration this can
be done optimally (from a statistical perspective) using appropriate Kalman smoothers,
as explained in Algorithm 7 (see also SubSection 2.4.3).

As to perform the M–step, we compute θ̂(t+1) := {Ĉ(t+1), β̂2
(t+1)

} using

θ̂(t+1) = argmax
θ∈Θ

L
(
θ, θ̂(t)

)
. (4.198)

For completeness, we present here a detailed derivation of the maximization step for the
generic model in (4.182). Starting with Equation (4.189), since we would like to estimate
C and β, we keep only the second row of Ek. Calling it Ēk for k = 1, . . . ,M , we get

L
(
θ, θ̂(t)

)
∝ −

M∑
k=1

log β2 −
M∑
k=1

tr
(
Ēk

)
(4.199)

Ēk := Ep(x|y ; θ̂(t))
[
β−2R−1

k (yk − Cxk) (yk − Cxk)
T
]

(4.200)
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Taking then the zero of the score with respect toC and using the matrix derivative identity

∂

∂X
tr

(
(AXB + C) (AXB + C)T

)
= 2ATAXBBT + 2ATCBT

with A = I , C = −yk and B = xk yields to

∂L
(
θ, θ̂(t)

)
∂C

= 2
M∑
k=1

Ep(x|y ; θ̂(t))
[
β−2R−1

k Cxkx
T
k

]
−2

M∑
k=1

Ep(x|y ; θ̂(t))
[
β−2R−1

k ykx
T
k

]
.

(4.201)

For the single output case (i.e., the situation for which Rk is 1× 1), we can solve for C to
obtain the estimator

C(t+1) =

(
M∑
k=1

Ep(x|y ; θ̂(t))
[
R−1

k ykx
T
k

]) (
M∑
k=1

Ep(x|y ; θ̂(t))
[
R−1

k xkx
T
k

])−1

. (4.202)

Now, to find β2 we can use the identity tr (aX) = atr (X). Then taking the zero of the
score with respect to β2 leads then to

∂L
(
θ, θ̂(t)

)
∂β2

= −M

β2
+ β−2

M∑
k=1

tr
(
Ēk

)
= 0 or (4.203)

(β2)(t+1)=
1

M

M∑
k=1

Ep(x|y ; θ̂(t))

[
R−1

k (yk − Cxk) (yk − Cxk)
T
]
. (4.204)

For the case of a single output, we substitute for C(t+1) from Equation (4.202) in the last
term of the bracket expansion, and then simplify so to obtain

(β2)(t+1) =
1

M

M∑
k=1

Ep(x|y ; θ̂(t))
[
R−1

k

(
yky

T
k − C(t+1)xky

T
k

)]
. (4.205)

For completeness, we report also the following algorithm:

4.3.4 GMM parameter estimation with unknown mixing
We now consider a more complex statistical model where the noise is bimodal, i.e.,

yk = Δke
1
k + (1−Δk) e

2
k (4.206)

where e1k ∼ N (μ1, σ
2
1) and e2k ∼ N (μ2, σ

2
2). Assume themeasurement vectory = [y1, y2, . . . , yM ]T

to be known, and the binary mixing variables Δk ∈ {0, 1} to be unknown. The problem is
then finding the ML estimator for the unknown model parameters θ = [μ1, μ2, σ

2
1, σ

2
2,Π1,Π2]

T

and Δk.
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Algorithm 7 Kalman smoother for the Expectation step in linear Gaussian systems

1: Requires: C(t), (β2)(t)

2: set (initial state for the forward pass) P1|1 = Σ1 x̂1|1 = μ1

3: compute, for k = 2, . . . ,M (forward pass)
Pk|k−1 = APk−1|k−1A

T +Q

Kk = Pk|k−1C
(t)T

(
C(t)Pk|k−1C

(t)T +Rk(β
2)(t)

)−1

Pk|k = Pk|k−1 −KkC
(t)Pk|k−1

x̂k|k−1 = Ax̂k−1|k−1 +B1
x̂k|k = x̂k|k−1 +Kk

(
yk − C(t)x̂k|k−1

)
4: compute, for k = M, . . . , 1 (backwards pass)

Jk = Pk|kA
TP−1

k+1|k
Pk|M = Pk|k + Jk

(
Pk+1|M − Pk+1|k

)
JT
k

x̂k|M = x̂k|k + Jk
(
x̂k+1|M − Ax̂k|k − B1

)
(the last equation being performed only when k �= M )

Let then Π1 = Π and Π2 = 1−Π. Considering that the distribution of the measurements is

yk ∼ ΠN
(
μ1, σ

2
1

)
+ (1− Π)N

(
μ2, σ

2
2

)
(4.207)

the log-likelihood is then

log p (y |θ ) =
M∑
k=1

log

[
Π

1√
2πσ2

1

exp

(−1

2σ2
1

(yk − μ1)
2

)
+(1− Π)

1√
2πσ2

2

exp

(−1

2σ2
2

(yk − μ2)
2

)]
.

(4.208)

Finding analytical expressions for the maximum of this log likelihood is complicated by the
summation inside the log function; closed-form solutions for the ML estimators in general
thus do not exist. However, it is possible to introduce some latent variables that simplify the
process of solving this optimization problem. In this case the latent variables that we can
introduce areΔ = [Δ1,Δ2, · · · ,ΔM ]T , and they are such that Δk = 1 if yk has been extracted
from e1k and Δk = 0 when it has been extracted from e2k. The joint log likelihood is then

log p (y,Δ |θ ) =
M∑
k=1

log

[
ΔkΠ

1√
2πσ2

1

exp

(−1

2σ2
1

(yk − μ1)
2

)
+(1−Δk)(1− Π)

1√
2πσ2

2

exp

(−1

2σ2
2

(yk − μ2)
2

)] (4.209)

or, since we have only one non zero term for each k, we can rewrite the equation in the
following equivalent form:

log p (y,Δ |θ ) =
M∑
k=1

Δk log

[
Π

1√
2πσ2

1

exp

(−1

2σ2
1

(yk − μ1)
2

)]

+
M∑
k=1

(1−Δk) log

[
(1− Π)

1√
2πσ2

2

exp

(−1

2σ2
2

(yk − μ2)
2

)]
.

(4.210)
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This expression can then be simplified, so to obtain

log p (y,Δ |θ ) =
M∑
k=1

Δk log Π +
M∑
k=1

Δk log

[
1√
2πσ2

1

exp

(−1

2σ2
1

(yk − μ1)
2

)]

+
M∑
k=1

(1−Δk) log(1− Π) +
M∑
k=1

(1−Δk) log

[
1√
2πσ2

2

exp

(−1

2σ2
2

(yk − μ2)
2

)] (4.211)

Given (4.211) we are able to write down the equations defining the particular instance of the
EM algorithm for this specific case.

Assume then that the parameter estimated in the previous stepθ′ = [μ′
1, μ

′
2, σ

2
1
′
, σ2

2
′
,Π′

1,Π
′
2]

T .

To derive the equations defining the expectation step we can compute Δ̂k as the expected
value of the random variable Δk. Since Δk is a binary random variable it follows that

Δ̂k := Eθ′ [Δk]
= p (Δk = 0 |yk,θ′ )× 0 + p (Δk = 1 |yk,θ′ )× 1
= p (Δk = 1 |yk,θ′ ) .

(4.212)

To compute the distribution of Δk = 1 given the observations yk we start using the Bayes rule,
so to obtain

p (Δk = 1 |yk,θ′ ) =
p (Δk = 1 |θ′ ) p (yk |Δk = 1,θ′ )

p (yk |θ′ )

=
Π′p (yk |Δk = 1,θ′ )

Π′p (yk |Δk = 1,θ′ ) + (1− Π′)p (yk |Δk = 0,θ′ )
.

(4.213)

After this we can estimate the latent variables as

Δ̂k =

Π′ 1√
2πσ2

1
′
exp

( −1

2σ2
1
′ (yk − μ′

1)
2

)

Π′ 1√
2πσ2

1
′
exp

( −1

2σ2
1
′ (yk − μ′

1)
2

)
+ (1− Π′)

1√
2πσ2

2
′
exp

( −1

2σ2
2
′ (yk − μ′

2)
2

) . (4.214)

As for the equations for the maximization step, taking the zero of the score of the likeli-
hood (4.211) with respect to μ1 and μ2 gives

μ̂1ML =
M∑
k=1

ykΔk

(
M∑
k=1

Δk

)−1

μ̂2ML =
M∑
k=1

yk(1−Δk)

(
M∑
k=1

(1−Δk)

)−1 (4.215)

respectively. Then taking the zero of the score with respect to σ2
1 and σ2

2 gives

σ̂2
1ML =

M∑
k=1

Δk (yk − μ1)
2

(
M∑
k=1

Δk

)−1

σ̂2
2ML =

M∑
k=1

(1−Δk) (yk − μ2)
2

(
M∑
k=1

(1−Δk)

)−1 (4.216)
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respectively. Note that we can substitute μ1 and μ2 with μ̂1ML and μ̂2ML respectively, but this
will introduce a biased estimate for the variances as discussed previously. Performing the
same operation as above with respect to Π then gives

Π̂ML =
1

M

M∑
k=1

Δk. (4.217)

The above quantities are then the novel θ′ that shall be used again in the next expectation
step.

We now employ the strategy above to one of our standing examples:

Example 4.12 (Parameter estimation for the statistical model of ToF Lidar sensors with
case temperature)

Consider the statistical model for a ToF Lidar presented in Example 3.3 on page 74.
We now aim at learning θ (i.e., the coefficients multiplyingH(·)), μ1, μ2, σ2

1 , σ
2
2), π (i.e., the

statistics of the noises w1
k, w

2
k, and of the r.v.s Δk), and the values of the mode selection

variables Δk in model (3.10), starting from a dataset containing

• yk for k ∈ {1, . . . ,M};

• d, i.e., the real distance;

• tsk, i.e., measurements of the temperature of the laser scanner case (to be transformed
into estimates of tjk through a dedicated Kalman smoother).

Let then
y :=

[
y1 · · · yM

]T
ts :=

[
ts1 · · · tsM

]T
tj :=

[
tj1 · · · tjM

]T
Δ :=

[
Δ1 · · · ΔM

]T
θ :=

[
θT μ1 μ2 σ2

1 σ2
2 π

]T
.

(4.218)

Given the frequentist assumptions on our estimands, we would like to perform ML
estimation for θ, i.e., seek for(

θ̂, Δ̂
)
:= argmax

θ,Δ
p
(
y, tj ; d,θ,Δ

)
. (4.219)

Since the laser junction temperature tj is unavailable, (4.219) cannot be solved as it is. We
thus resort to solve the approximated problem(

θ̂, Δ̂
)
:= argmax

θ,Δ
p
(
y, t̂j ; d,θ,Δ

)
(4.220)

where t̂j is the estimate of tj given ts obtained after applying a Kalman smoother on the
learned model (3.17). We also note that, instead of considering the joint density of y and
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t̂j , it is in this specific case sufficient to consider the conditional density of y given t̂j , i.e.,(
θ̂, Δ̂

)
= argmax

θ,Δ
p
(
y

∣∣∣ t̂j ; d,θ,Δ)
. (4.221)

To prove this, we consider that, by the definition of conditional probability,

p
(
y, t̂j ; d,θ,Δ

)
= p

(
y

∣∣∣ t̂j ; d,θ,Δ)
p
(
t̂j ; d,θ,Δ

)
= p

(
y

∣∣∣ t̂j ; d,θ,Δ)
p
(
t̂j

) (4.222)

since t̂j does not statistically depend on the parameters d, θ andΔ.
It is then important to note that the ML problem in (4.221) contains the latent variables

Δ. To estimate them we thus resort a tailored EM approach [64]. To this aim define then
the auxiliary variables

Σ1 := diag
(
1− Δ̂k

)
Σ2 := diag

(
Δ̂k

) ỹk := yk − d

ỹ := y − d1
H :=

⎡⎢⎣H1
...

HM

⎤⎥⎦ =

⎡⎢⎣H
(
t̂j1

)
...

H
(
t̂jM

)
⎤⎥⎦
(4.223)

with 1 being a vector of K ones. The computation of
(
θ̂, Δ̂

)
is performed through the

iteration up to convergence of the following two steps:

E-step

δk = (1− π̂) N
(
ỹk −Hkθ̂ − μ̂1, σ̂

2
1

)
+ π̂ N

(
ỹk −Hkθ̂ − μ̂2, σ̂

2
2

)
k = 1, . . . ,M

Δ̂k =
π̂N

(
ỹk −Hkθ̂ − μ̂2, σ̂

2
2

)
δk

k = 1, . . . ,M

(4.224)

M-step
C = σ̂2

1 Σ1 + σ̂2
2 Σ2

θ̂ =
(
HTC−1H

)−1

HTC−1ỹ

μ̂k =
1TΣk

1TΣk1

(
ỹ −Hθ̂

)
i = 1, 2

σ̂2
k =

(
ỹ −Hθ̂

)T

Σk

(
ỹ −Hθ̂

)
1TΣk1

i = 1, 2

π̂ =
1

M

M∑
k=1

Δ̂k

(4.225)

In our numerical experiments we empirically found convenient to use the following
initial state:

θ̂ = 0, μ̂1 = 0.1, μ̂2 = −0.1, σ̂2
1 = 0.1, σ̂2

2 = 0.1, π̂ = 0.5. (4.226)
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As for the convergence of the EM to the true ML estimate, we note that EM algorithms are
not in general ensured to have convergence properties. A sufficient condition for convergence
is in [102], where authors show that EM algorithms are convergent if the maximizer of the
M-step is unique (a condition that is almost always satisfied in practice). In our case theM-step

maximizer is unique as long as in the update for θ̂ in (4.225), the matrix HTC−1H admits
inverse. In general, e.g., in both the case of polynomial models and of Fourier expansion
models this translates in the need for at least N samples associated with N different latent
variables to be estimated.

4.3.5 Models with state dependent measurement variance
We now extend our considerations on how to apply the EM algorithm to perform joint
parameters and states estimation from the simple case of linear Gaussian systems to the one
of nonlinear and heteroskedastic systems. More precisely, consider{

xk+1 = fstate(xk) + ek
yk = fmean(xk) + fnoise(xk)νk

(4.227)

where

• the functions fstate(·), fmean(·) and fnoise(·) are generic nonlinear functions with fstate(·)
assumed to be known while the other ones are assumed to be unknown,

• xk ∈ RNx is the unknown state vector,

• yk ∈ RNy is the output vector and y ∈ RM×Ny := [y1, . . . , yM ]T .

Assume the noise processes and the initial state to be distributed according to⎡⎣ wk

νk
x0

⎤⎦ ∼ N

⎛⎝⎡⎣ 0
0
μ0

⎤⎦ ,

⎡⎣ Q 0 0
0 I 0
0 0 P0

⎤⎦⎞⎠ (4.228)

where Q ∈ RNx×Nx
+ and I (the identity matrix) are the process and output covariance matrices

respectively, assumed to be known, and where μ0 ∈ RNx and P0 ∈ RNx×Nx
+ are also assumed

to be known.
The corresponding joint parameters and states estimation procedure is now quite similar

to the previous case of linear Gaussian system: in the expectation step of the corresponding
EM algorithm, indeed, we can apply smoothing algorithms to determine the expectation

L(θ, θ̂(t)) := Eθ̂(t) [log p (x,y ; θ) | y ] . (4.229)

Note that, however, it is in general not possible now to use linear Kalman smoothers because
of both the system nonlinearity and the noise heteroskedasticity. We need indeed to apply
instead other state filtering algorithms, e.g., some opportune particle smoother [103].

In the maximization step, instead, if it is not possible to apply the classical estimation
algorithms for finding the ML, sequential Monte Carlo technique could be used, for example
a MCMC. For more details and algorithms about applying EM with nonlinear systems we
send the reader back to [104, 105].
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We note however that there exists another approach to deal with these kind of systems:
as we show in Example 4.13, one may exploit the basic idea of approximating the nonlinear
and non-Gaussian model, if possible, with a linear Gaussian but time-varying system; this
approximation enables then to apply Kalman smoothers on the approximated system during
the expectation step, which means to compute{

xk+1 = fstate(xk) + ek
yk = fmean(xk) + fnoise(xk)νk

≈
{

xk+1 = H1θ1 + ek
yk = H2θ2 +H3θ3νk

(4.230)

whereH1,H2 andH3 are matrices constructed from xk and θ1, θ2 and θ3 are the corresponding
parameter vectors.

Another approximation is then required in the maximization step to replace the state
dependent variance (i.e., the heteroskedastic term) in the measurement process with an
approximated one that remains constant during the iteration. This means to compute

fnoise(xk) ≈ fnoise(x̂k) (4.231)

where x̂k is in this case the state estimated during the previous iteration.
To help clarifying the proposed strategy above, we consider the following example:

Example 4.13 (Parameter estimation for triangulation Lidars using incomplete datasets)

Consider the statistical model presented in Example 3.9 on 82, in which we have one or
more distance sensors with unknown parameters that we would like to estimate using
an incomplete dataset (in the sense that we do not have groundtruth information about
the state of the system). The dataset in this specific case is collected using a setup similar
to the one shown in Figure 4.14. i.e., a set of sensors that are installed over a differential
drive robot that is moving with constant speed over a flat surface. The dataset contains
then the sensors measurements plus some information about the movement of the robot
(i.e., the robot linear speed and its initial starting point).

Given a measurement sequence {yk} and a fully known initial state x0 ∼ N (μd,Σd),
define then

u := [u1, . . . , uM ]T

yk :=

⎡⎢⎣y
(1)
k
...

y
(S)
k

⎤⎥⎦ , k = 1, . . . ,M, y := [y1, . . . , yM ] (4.232)

xk :=

⎡⎢⎢⎢⎣
1
dk
...

dNmax−1
k

⎤⎥⎥⎥⎦ , k = 1, . . . ,M + 1, x := [x0, . . . , xM+1] . (4.233)
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Assuming u to be known, model (3.51) is fully described by the set of parameters

θ :=

{ {
α
(s)
0 , . . . , α

(s)
Nmax−1

}
s∈{1,...,S}

,{
β
(s)
0 , . . . , β

(s)
Nmax−1

}
s∈{1,...,S}

}
.

(4.234)

To estimate θ from a dataset of measurements y, u collected in a non-controlled environ-
ment we iterate the two steps

E step: given θ̂(t) i.e., the estimate of the parameters at iteration t, compute

L
(
θ, θ̂(t)

)
= Ep(x|y ; θ̂(t)) [log p (y,x ; θ)] ; (4.235)

M step: compute

θ̂(t+1) = argmax
θ

L
(
θ, θ̂(t)

)
. (4.236)

The expectation step in this specific case requires computing L
(
θ, θ̂(t)

)
. Following the

same procedure in Example 4.11, we then obtain

L
(
θ, θ̂(t)

)
= C +

M∑
k=0

(
log detΣk

−1 − tr (Ek)
)

(4.237)

where

Σk :=

[
Q 0
0T R (xk)

]
(4.238)

and with, for k = 0, Σ0 = Σd and

E0 := Ep(x|y ; θ̂(t))

[
Σ−1

d (x0 − μd) (x0 − μd)
T
]

(4.239)

and, for k = 1, . . . ,M ,

Ek := Ep(x|y ; θ̂(t))

[
Σ−1

k

([
xk

yk

]
−

[
Ak Bk

C 0

] [
xk−1

1

])
([

xk

yk

]
−

[
Ak Bk

C 0

] [
xk−1

1

])T
]
.

(4.240)
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Exploiting the fact that Σk in (4.238) is block diagonal, expanding we find that calculating
tr (Ek) requires computing the following quantities

Ep(x|y ; θ̂(t))
[
xkx

T
k−1

]
Ep(x|y ; θ̂(t))

[
xkx

T
k

]
Ep(x|y ; θ̂(t))

[
R (xk)

−1 Cxkx
T
kC

T
]

Ep(x|y ; θ̂(t))
[
R (xk)

−1 ykx
T
kC

T
]
.

(4.241)

Given that R (xk) in (4.241) depends on xk, the quantities above cannot be computed
in closed form, but rather requires numerical integration procedures. Since we aim at
algorithms that can be implemented on cheap hardware, we seek for approximating

L
(
θ, θ̂(t)

)
in (4.237) with an alternative approximated version L̃

(
θ, θ̂(t)

)
with closed-

form computability qualities.
To this point we note that if the covariancesR (·)were independent of xk thenwewould

be in the very same situation of [101], and thus we would be able to compute (4.241) by
means of a dedicated Kalman smoother. We thus follow this approach, and approximate
R (·) by considering xk being equal to its past estimated value.

More precisely, assume to be at iteration t of the EM algorithm; this means that at time

t− 1 we have computed both an estimate of the parameters θ̂(t) and an estimate of the

state x̂(t−1)
k (with initial state x̂(0)

k =
[
1,mean(yk), . . . ,mean(yk)Nmax−1

]
). Define thus

R
(t)
k := diag

(
r(1)

(t)
(
x̂
(t−1)
k

)
, . . . , r(S)

(t)
(
x̂
(t−1)
k

))
(4.242)

r(s)
(t)

(
x̂
(t−1)
k

)
:=

([
β
(s)
0

(t) · · · β(s)
Nmax−1

(t)
]
x̂
(t−1)
k

)2

(4.243)

and β
(s)
0

(t)
, . . . , β

(s)
Nmax−1

(t)
the set of parameters modeling sensor s estimated at time t by

the EM algorithm. R(t)
k is thus a statistically meaningful approximation of the actual noise

covariance R (xk), and with this we can approximate the quantities in (4.241) (and thus

L
(
θ, θ̂(t)

)
) by means of the following Algorithm 8. For convenience we indicate with

C(t) the estimate of matrix C in (3.48) and the process noise covariance defined by the

current estimate of the parameters θ̂(t).
Exploiting the results in [78], thus, we can claim that

Ep(x|y ; θ̂t)
[
xkx

T
k

]
≈ x̂k|M x̂T

k|M + Pk|M

Ep(x|y ; θ̂t)
[
xkx

T
k−1

]
≈ x̂k|M x̂T

k−1|M +Mk|M

Ep(x|y ; θ̂t)
[
ykx

T
k

]
≈ ykx̂

T
k|M .

(4.244)

Approximating R (xk) with R
(t)
k thus leads to approximate the expectations (4.241)

with (4.244), and thus to approximate L
(
θ, θ̂(t)

)
with an opportune L̃

(
θ, θ̂(t)

)
obtain-

able expanding Ek in (4.240) into single factors and exploiting the fact that R(t)
k does
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not depend on xk. Moreover when Algorithm 8 terminates we can also set x̂(t) =[
x̂1|M , . . . , x̂M |M

]
.

We note that approximating � with �̂ may theoretically disrupt the convergence prop-
erties of our EM strategy (something that we never experienced, though); proving the
stability of the proposed scheme is nonetheless out of scope here and currently under
analytical investigation.

Given the discussion above, we solve the Maximization step by searching that param-

eter vector that maximizes L̃
(
θ, θ̂(t)

)
, i.e., by computing

θ̂(t+1) = argmax
θ∈Θ

L̃
(
θ, θ̂(t)

)
. (4.245)

by means of closed form equations and considering the latent variables x to be equal to
that x(t) computed in the Expectation step. Given definition (4.234), estimating θ means

finding thematrixC (that contains the various
{
α
(s)
0 , . . . , α

(s)
Nmax−1

}
s∈{1,...,S}

), and thematrix

R
(
x
(t)
k

)
(that contains the various

{
β
(s)
0 , . . . , β

(s)
Nmax−1

}
s∈{1,...,S}

).

As shown in the next subsections, the actual equations for solving (4.245) depend on
which combination of sensors one uses.

The Maximization step when using just a triangulation Lidar

Having a triangulation Lidar only, and considering the likelihood (4.240), our aim is to
estimate C =

[
αl
0, α

l
1, α

l
2

]
and the variance parameter βl

2, given the current estimate of the
state provided by the previous Expectation step x̂.

Considering the structure of (4.240), this requires to compute

C(t+1) =

(
M∑
k=1

Ep(x|y ; θ̂(t))
[
R(xk)

−1ykx
T
k

])
(

M∑
k=1

Ep(x|y ; θ̂(t))
[
R(xk)

−1xkx
T
k

])−1

.

(4.246)

Unfortunately, since R(xk)
−1 is a function of the states, solving (4.246) analytically proves

to be very complicated. To reduce the computational burden associate to this step we
repeat the same approximation we performed before on R (xk), and consider it equal

to R(x̂
(t−1)
k ). Therefore we rewrite (4.246) by substituting R(xk)with

(
[0, 0, βl

2]x̂
(t−1)
k

)2

=(
βl
2x̂

(t−1)
k [3]

)2

where x̂(t−1)
k [3] is the third element in the vector x̂(t−1)

k . Since this quantity

is not a function of xk anymore, we can safely take it out of the expectations in (4.246),
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apply (4.244) and thus approximate the Maximization step with

C(t+1) ≈
(

M∑
k=1

(x̂
(t−1)
k [3])−2ykx̂

T
k|M

)
(

M∑
k=1

(x̂
(t−1)
k [3])−2x̂k|M x̂T

k|M + (x̂
(t−1)
k [3])−2Pk|M

)−1

.

(4.247)

To complete the Maximization step, we apply a similar procedure for the computation of
βl
2 and obtain (

β
l (t+1)
2

)2

=
1

M

M∑
k=1

(x̂
(t−1)
k [3])−2yky

T
k

−
M∑
k=1

(x̂
(t−1)
k [3])−2C(t+1)x̂ky

T
k .

(4.248)

The Maximization step when using both a triangulation Lidar and an odometer

In this case the matrix C is equal to

C =

[
C[1]
C[2]

]
=

[
αl
0 αl

1 αl
2

αo
0 αo

1 αo
2

]
(4.249)

where the parameters of the triangulation Lidar are given by C[1] and βl
2, and the ones of

the odometer are given by C[2] and βo
0 .

Given the x̂(t) computed in the E step, and the fact that the two sensors are independent,
the estimation of the two sets of parameters can be performed independently. Thus for
C[1] and βl

2 we can proceed as in Section 4.13, while forC[2] and βo
0 weproceed considering

that, given model (3.42) and using again ML interpretations,

C(t+1)[2] =

(
M∑
k=1

ykx̂
T
k|M

) (
M∑
k=1

x̂k|M x̂T
k|M + Pk|M

)−1

(
βo
0
(t+1)

)2

=
1

M

M∑
k=1

yky
T
k −

M∑
k=1

C(t+1)[2]x̂ky
T
k

(4.250)

The Maximization step when using a triangulation Lidar, an odometer and a sonar

In this case the matrix C is equal to

C =

⎡⎣C[1]
C[2]
C[3]

⎤⎦ =

⎡⎣αl
0 αl

1 αl
2

αo
0 αo

1 αo
2

αu
0 αu

1 αu
2

⎤⎦ (4.251)

where the parameters of the triangulation Lidar are given by C[1] and βl
2, the ones of

the odometer are given by C[2] and βo
0 , and the ones of the ultrasonic ranger are given
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by C[3] and βu
0 . The situation is as before, where sensors’ parameters can be learned

independently; one may then repeat the procedures in Sections 4.13 and 4.13, and then
apply strategy (4.250) for the particular case of the ultrasonic data yu and C[3].

Below we summarize the algorithm used in the expectation step in Example 4.13:

Algorithm 8 Approximated Kalman smoother for the Expectation step in linear systems with
heteroskedastic noise

1: Requires: C(t), R(t)
1 , . . . , R

(t)
M

2: set (initial state for the forward pass)
P1|1 = Σ1 x̂1|1 = μ1

3: compute, for k = 1, . . . ,M (forward pass)
Pk|k−1 = AkPk−1|k−1A

T
k +Q

Kk = Pk|k−1C
(t)T

(
C(t)Pk|k−1C

(t)T +R
(t)
k

)−1

Pk|k = Pk|k−1 −KkC
(t)Pk|k−1

x̂k|k−1 = Akx̂k−1|k−1 +Bk1
x̂k|k = x̂k|k−1 +Kk

(
yk − C(t)x̂k|k−1

)
4: set (initial state for the backwards pass)

MM |M =
(
I −KMC(t)

)
AkPM−1|M−1

5: compute, for k = M, . . . , 1 (backwards pass)
Jk = Pk|kA

TP−1
k+1|k

Pk|M = Pk|k + Jk
(
Pk+1|M − Pk+1|k

)
JT
k

x̂k|M = x̂k|k + Jk
(
x̂k+1|M − Akx̂k|k − Bk1

)
Mk|M = Pk|kJ

T
k−1 + Jk

(
Mk+1|M − AkPk|k

)
JT
k−1

(the last equation being performed only when k �= M )
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4.4 Model Complexity
In this Section we present the model selection problem that is intuitively and graphically
presented in Figure 4.2. We repeat the problem formulation here, assume that we have the
measurement vector y that is generated from the true process g(y). Also assume that we have

a set of candidate models consisting of Jp competing models {pj (y ; θj)}Jpj=1, usually no one
of them is the actual model, each one of those models parametrized by it’s distinct parameter
vector θj . Our aim here is to select a model that is closer to the actual model g(y), to do that
we usually follow the following procedure:

• starting from training dataset, estimate the parameter vector for each model using, for
example ML estimation procedure,

• compute a score for each candidate model using both the model and it’s estimated
parameter vector given another dataset (validation dataset), usually this score is based
on certain criterion, for example, information criterion in AIC or likelihood value of the
measurement given the parameters in GLR,

• select the model that achieves the best score.

It is evident that this procedure is based on having two different and uncorrelated datasets,
also different scoring criterion could be applied using the same procedure above, example
AIC, BIC, . . . , etc. A requirement for this procedure is to have a specified estimate for the
parameter vector, this means that it requires extra step if we used estimation techniques
like MCMC methods. There exist the DIC which parameters can be calculated directly from
posterior samples. We apply this procedure and AIC on nonlinear and heteroskedastic system
in SubSection 4.4.2.

The model selection can be also performed using hypothesis testing, as described in
SubSection 4.4.1 (where we also offer some details for the specific case of deciding model
orders with Gaussian mixture models).

Finally, we are considering only model selection in this thesis, other techniques like model
averaging [59] will not be considered here.

4.4.1 Mixture models
In the following example we apply the GLR test presented in SubSection 2.5.3 to solve a
problem of selecting the model and deciding its complexity. The specific example deals
with the nonlinear model that describes the sensor temperature nonlinear relation with the
measured distance of ToF Lidars .

Example 4.14 (Model and model complexity selection for ToF Lidars )

Consider the statistical model for the ToF Lidar in Example 3.3 on page 74 and the
associated parameter estimation procedure described in Example 4.12 on page 142, the
aim of this Example is to do two things:

1. suggesting some hints for designing different structures for H (·) (e.g., choosing
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the order for model 1, for model 2, or also designing different functional structures
depending on the collected information);

2. suggesting a numerical algorithm for discrimination between different competing
structures for H starting from data collected in a controlled environment.

Designing H (·)
The proposed EM algorithms in Example 4.12 have the numerically favorable property of
having both the E and the M steps solvable in close form. It is important to notice that
this is induced by the fact that model (3.10) is linear in θ, i.e.,

H
(
tjk

)
θ =

[
H1

(
tjk

)
, . . . , HN

(
tjk

)] ⎡⎢⎣ θ1
...
θN

⎤⎥⎦ =
N∑

n=1

Hn

(
tjk

)
θn. (4.252)

Thus with this structure the designer can model the effect of the temperature tjk on
the measurement yk as the sum of N independent effects, each one represented as an
opportune generic function of tjk (which weight is actually assumed unknown before the
training phase).

As shown in Figures 3.2 and 3.3, the structures proposed in model 1 and 2 have
quite general generalization capabilities. Nonetheless the designer can tailor H so that it
resembles other structures; our suggestion is to start from raw measured data spanning
different temperatures, check visually how the macroscopic temperature trend behaves,
and then decompose this trend as the sum of different functions, that will become the
various Hn (·) in model (3.10).

Determining the best H (·) among different competing potential structures

The process described in designing H (·)may lead to different competing structures for
H (·). In other words, the designer may propose different structures H(1), H(2), etc., and
would like to choose the “best” H(i) given a dataset containing y, ts and the true distance
d.

We propose to use the classical approach of discriminating the various H(i)s consid-
ering their goodness of fit, i.e., to use GLRs [106], for which we first estimate the best

estimates θ̂
(i)

and Δ̂(i) for each H(i) given the dataset, and then select the best hypothesis
considering their resulting log-likelihoods. More formally, the suggested procedure is
shown in Algorithm 9.

We then used Algorithm 9 on real data from a SICK LMS 200 to discriminate between
the different H(i)’s in model 1 or model 2, i.e., between the hypotheses

Hi : y ∼ (1−Δ)N
(
d+H(i)θ + μ1, σ

2
1

)
+ΔN

(
d+H(i)θ + μ2, σ

2
2

)
, (4.253)

against the null hypothesis
H0 : y ∼ N

(
d, σ2

)
(4.254)
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so that the log likelihood ratio test between the two hypotheses is

Λi(y) =
�
(
d̂, σ̂2|y

)
�
(
d̂, σ̂2

1, σ̂
2
2, μ̂1, μ̂2, θ̂, Δ̂|y, H(i)

) . (4.255)

Algorithm 9 Selection of the best H(i)

1: for i = 1, 2, . . . do
2: compute θ̂

(i)

and Δ̂(i) as in Example 4.12;

3: compute

�(i) := log(σ̂2
1)1

TΣ11+ log(σ̂2
2)1

TΣ21

+
1

2σ̂2
1

(
y − d1−H(i)θ̂(i) − μ̂

(i)
1 1

)T

Σ
(i)
1

(
y − d1−H(i)θ̂(i) − μ̂

(i)
1 1

)
+

1

2σ̂2
2

(
y − d1−H(i)θ̂(i) − μ̂

(i)
2 1

)T

Σ
(i)
2

(
y − d1−H(i)θ̂(i) − μ̂

(i)
2 1

)
where
Σ

(i)
1 := diag

(
1− Δ̂

(i)
k

)
and
Σ

(i)
2 := diag

(
Δ̂

(i)
k

)
;

4: end for
5: select H(i) that corresponds to the maximal �(i).

Figures 4.12 and 4.13 show the likelihood ratios obtained for different candidates for the
polynomial and Fourier expansions respectively. In our experiments, for the polynomial case
we obtained the highest likelihood for the polynomial order N = 16, while for the Fourier
case we obtained the optimal value for N = 180. We motivate this latter order, much higher
than that of the polynomial case, to be due to the periodic nature of the Fourier model.

4.4.2 Heteroskedastic model
We used AIC to select the polynomial orderN of the polynomial that represents the nonlinear
term in the model (3.32), as presented in more details in the following example.

Example 4.15 (Model order selection for triangulation Lidars )

Consider the simplified statistical sensor model for triangulation Lidars (3.32), presented
in Example 3.4, the nonlinear function fmean(dk) is presented as polynomial of order N as
in Equation (3.24). We would like to use datasets recorded during opportune experiments
to decide the polynomial order N that best describes the dataset. This means to select the
a value for N from the set {1, 2, . . . Nmax} using a suitable model selection criteria, more
specifically the AIC described in SubSection 2.5.1.

Our experiments consist of a robot with the Lidar mounted on top moving with
piecewise constant speeds towards a target. We recorded several datasets for training
and validation purposes, consisting of the Lidar measurements and a ground truth
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Figure 4.12: GLR for Example 3.12 (polynomial model). The vertical axis values represent the
likelihood ratio and the horizontal axis represents the polynomial order used for generating
the H(i) matrix.

polynomial order AIC score
1 -5.774
2 -7.380
3 -5.824
4 -3.890

Table 4.1: AIC scores for the different models complexities involved in the training set of
Figure 4.15.

information collected by a MoCap system (see Figure 4.14).
Training datasets were thus initially used to estimate α and σ2

ν as described in Equa-
tion (4.81). As for the model order selection, we empirically detected that N = 2 was
always the best choicewhen usingAICmeasures. E.g., for the dataset shown in Figure 4.15
we obtained the AIC scores reported in Table 4.1.
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Figure 4.13: GLR for Example 3.14 (Fourier model) with different orders. The vertical axis
values represent the likelihood ratio and the horizontal axis represents the Fourier series
order used for generating the H(i) matrix.

Figure 4.14: Experimental setup used for recording the dataset. The Lidar was mounted over
a Pioneer 3AT robot facing an obstacle; the photo moreover shows some of the cameras of the
MoCap system.
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Figure 4.15: A typical training set collected in our experiments. The plotted quantities
correspond to the measurement errors and to the polynomial models fitting these errors.



Chapter 5

Using the estimated models in practice

The previous Chapters presented respectively how to build statistical models for the mea-
surement processes, and how to obtain point estimates of the parameters of these models
plus decide which structure and order these models should have. In this Chapter we then
consider the last step of the overall sensor calibration process, i.e., how to use the (at this point)
learned model for processing new measurements coming from the sensor so to improve their
statistical properties.

Formally speaking, the main objective of this chapter is thus to solve the problem of
estimating the state of the system given the new recorded data and the estimated model. In
other words, let y ∈ RM be the vector of the new measurements, x ∈ RM be the vector of the

model states, θ̂ be the estimated model parameter vector, and p
(
y

∣∣∣x, θ̂)
be the likelihood of

the state x given the identified model θ̂ and the measurements vector y. The problem we are
considering in this Chapter is thus to find a ML estimate x̂ through solving the optimization
problem

x̂ := argmax
x∈X

p
(
y

∣∣∣x, θ̂)
. (5.1)

For the simplified case that we have only one measurement yk and one state variable xk the
problem can be rewritten as

x̂k := arg max
xk∈X

p
(
yk

∣∣∣xk, θ̂
)
. (5.2)

Unfortunately, solving the inverse problem of estimating xk given the parameters and the
new measurement is in many cases more complected than solving the forward problem of
estimating the parameters given the measurements and the states. Computing the solution
could easily be a numerically intractable problem, and in some cases the solution may not
even be unique. Therefore, it is important, before solving the problem using numerical
approaches, to make sure that at least the problem is well-posed in the Hadamard sense (and
thus guarantee unicity of the solution and a dependency law that is continuous with respect
to the dataset). This means that for the cases when we have more than one solution we need
to modify our problem by adding either constrains, or prior information about the states,
or solve approximate versions of the problem by considering statistical models that lead to
unique solutions.
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Table 5.1: Suggested filtering algorithms for the statistical models used in this thesis.

model type suggested algorithm
Linear Gaussian LS (closed form)

Linear Heteroskedastic f̂noise (xk) ≈ f̂noise (yk−1) =⇒ WLS
Nonlinear Gaussian/
Heteroskedastic

MCMC (numerical)

Mixture models/
Latent variables

EM (numerical)
static
models

have prior on xk Bayesian MCMC (numerical)

Linear Gaussian
Kalman smoother
(recursive closed-form)dynamic

models
Linear Heteroskedastic f̂noise (xk) ≈ f̂noise (yk−1) =⇒

time-varying Kalman smoother

As we will see hereafter, when considering static models under opportune Gaussianity
hypotheses solving the inverse proble problemusingML estimatorwill correspond to compute
LS solutions for linear homoskedastic systems and WLS solutions for linear heteroskedastic
systems. We will also see that for nonlinear systems (both homoskedastic and heteroskedastic)
there exists no general closed–form solution for computing the ML estimator. In these cases
we suggest to use generic numerical methods for finding these ML estimators like the MCMC.
Lastly, for the cases where we have to estimate some existing latent variables together with the
states, we suggest to find the ML estimates using numerical solutions like the EM algorithm.
Similar situations will also typically arise when considering mixture models.

Moreover, when considering models with dynamics, solving the estimation problems
considered above corresponds to perform filtering or smoothing operations. These can be
solved in a statistically optimal way using Kalman filters or smoothers in the case of Gaussian
linear systems, while for nonlinear systems or systems subject to a different type of noises
statistical optimality in the MSE sense requires implementing other strategies. For simplicity,
we report in Table 5.1 a list of the suggested filtering algorithms for the different possible
statistical models and dynamical systems considered in this thesis.

In the following we will discuss the various strategies listed in the table above. We will
follow the same style that we followed in the previous Chapters, and thus start from the
simplest case to then proceed with gradually increasing the complexity of the estimation
scheme.

5.1 Filtering for static systems
We start the discussion in this Section considering the generic static model (3.19) and assuming
that we already have computed an estimate for the generic functions fmean(·) and fnoise(·).
Thus we can assume

yk = f̂mean (xk) + f̂noise (xk) νk; (5.3)

our aim is then to find an estimate for xk. This problem is quite generic and it is not be possible

to solve it without constraining the structure of the functions f̂mean and f̂noise. Therefore, in
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the following we will describe what happens for different types of functions, and we will
consider first the state estimation problem in linear models with Gaussian noises.

5.1.1 Linear Gaussian models
We start considering the simplest linear model with Gaussian disturbance and a separable

parameter vector θ̂ ∈ RNy×Nx , i.e.,

yk = θ̂xk + νk. (5.4)

Our aim is to find an estimate of the unknown state xk ∈ RNx given a new measurement

yk ∈ RNy and a Gaussian noise νk ∼ N
(
0, R̂

)
with R̂ ∈ R

Ny×Ny

+ the (potentially estimated)

covariance matrix of the additive measurement noise. Since the measurement is assumed to
be normally distributed, i.e.,

yk ∼ N
(
θ̂xk, R̂

)
(5.5)

we can find the ML estimator of xk directly from the likelihood function

p
(
yk

∣∣∣θ̂, xk

)
=

(
2π det R̂

)−1/2

exp

(−1

2

(
yk − θ̂xk

)T

R̂−1
(
yk − θ̂xk

))
, (5.6)

whose log-likelihood is

log p
(
yk

∣∣∣θ̂, xk

)
= −1

2
log

(
2π det R̂

)
− 1

2

(
yk − θ̂xk

)T

R̂−1
(
yk − θ̂xk

)
(5.7)

and whose score with respect to xk is

θ̂T R̂−1
(
yk − θ̂xk

)
. (5.8)

The corresponding zero is then

x̂kML =
(
θ̂T R̂−1θ̂

)−1

θ̂T R̂−1yk (5.9)

and the variance of the resulting estimator is

var (x̂kML) =
(
θ̂T R̂−1θ̂

)−1

. (5.10)

Assumenow to have ameasurementmatrixy = [y1, y2, . . . , yM ]T ∈ RM×Ny that is generated
using the same statistical model above, such that yi ⊥ yj for any i �= j. Then we can apply the
results above sequentially to obtain x̂ = [x̂1ML, x̂2ML, . . . , x̂MML]

T ∈ RM×Nx .
Despite being very simple, the model and technique described above can be used to

effectively perform estimation steps in real world cases:

Example 5.1 (Filtering new Odometer measurements)

Consider the new odometer measurement vector y = [y1, y2, . . . , yM ]T ∈ RM (recorded
using a single forward moving command), and assume it to be generated through the
linear model

yk = α̂0 + α̂1xk + νk (5.11)
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where α̂0 and α̂1 are the estimated model parameters (estimated using a dataset similar to

the one presented in Figure 3.11). Assume also that νk ∼ N
(
0, σ̂2

ν

)
and σ̂2

ν is the estimated

model variance. The ML estimate of the state vector x̂ML = [x̂1ML, x̂2ML, . . . , x̂MML]
T given

y is then directly

x̂ML =
(
α̂T
1 α̂1

)−1
α̂T
1 (y − α̂01) = α̂−1

1 (y − α̂01) . (5.12)

The state estimation results obtained by processing the new odometer measurement
vector is presented in Figure 5.1.
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Figure 5.1: Effects of the calibration procedure on the original odometer measurement dis-
cussed in Example 5.1.

5.1.2 Heteroskedastic models
Consider now heteroskedastic models of the type

yk = θ̂xk + νk (5.13)

where θ̂ ∈ RNy×Nx is the estimated model parameters vector and the noise νk ∼ N
(
0, R̂(xk)

)
where R̂(xk) ∈ R

Ny×Ny

+ is the estimated covariance matrix, assumed to be a function of xk.
Our aim is to find an estimate of the unknown state xk ∈ RNx given a new measurement
yk ∈ RNy . Since the measurement is normally distributed according to

yk ∼ N
(
θ̂xk, R̂(xk)

)
(5.14)
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we can find the ML estimator of xk from the likelihood function

p
(
yk

∣∣∣θ̂, xk

)
=

(
2π det R̂(xk)

)−1/2

exp

(−1

2

(
yk − θ̂xk

)T

R̂(xk)
−1

(
yk − θ̂xk

))
(5.15)

whose corresponding log-likelihood is

log p
(
yk

∣∣∣θ̂, xk

)
= −1

2
log

(
2π det R̂(xk)

)
− 1

2

(
yk − θ̂xk

)T

R̂(xk)
−1

(
yk − θ̂xk

)
. (5.16)

It is evident that this function is not convex with respect to xk because of the generic function

R̂(xk). Because of this solving the optimization problem

x̂k := arg max
xk∈X

log p
(
yk

∣∣∣θ̂, xk

)
(5.17)

may be not trivial, and might require advanced numerical schemes for complex model struc-
tures. In the cases that the non convex log likelihood function of xk in Equation (5.16) has
a single mode, we propose to use numerical methods like Metropolis–Hastings MCMC to
generate a random sample from the density of xk and then finding the maximum of the
empirical density. In the cases that Equation (5.16) is multi modal then we need either to
approximate Equation (5.16) with a single mode function or combine a strong prior with the
density function, and solve the problem under Bayesian formalism to obtain an unimodal
posterior.

Approximated solutions
In the cases where the noise covariance matrix depends on the state it is meaningful to ap-

proximate these covariances through substituting xk with yk−1, i.e., using R̂(xk) ≈ R̂(E [yk−1]).
This approximation is acceptable when the difference | xk − yk−1 | is not too large. Moreover,
since this approximation affects the covariance part of the model, this operation will not affect
the expected value of the estimate but only affect its estimator variance (and thus, in case, the
estimated confidence intervals).

This approximation will result in obtaining the following log likelihood function

log p
(
yk

∣∣∣θ̂, xk

)
≈ −1

2
log

(
2π det R̂(yk−1)

)
− 1

2

(
yk − θ̂xk

)T

R̂(yk−1)
−1

(
yk − θ̂xk

)
(5.18)

which can be solved directly to give

x̂k ≈
(
θ̂T R̂−1(yk−1)θ̂

)−1

θ̂T R̂−1(yk−1)yk (5.19)

so that the corresponding estimator variance will be

var (x̂k) ≈
(
θ̂T R̂−1(yk−1)θ̂

)−1

. (5.20)

The clear disadvantage of performing this approximation is that, to be calculated, it requires
to know at least two independent and close measurements.

We can make a field example of how to use the concepts above as follows:
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Example 5.2 (Processing new measurements in triangulation Lidars (using a simplified
model))

Consider the triangulation Lidar introduced in Example 3.4 on page 79. Once the sensor

has been calibrated, i.e., a α̂ and σ̂2
e have been computed (for instance using the numerically

tractable solution proposed in Example 4.3 on page108), it is then possible to invert the
process and use the learned information for testing purposes. This means that given

some measurements yk collected in an unknown environment we can, through α̂ and σ̂2
ν ,

compute the ML estimate of dk.
More precisely, rewriting model (3.24) we obtain

f(dk) = dT
k α̂ dk :=

⎡⎢⎢⎢⎣
d0k
d1k
...
dNk

⎤⎥⎥⎥⎦ (5.21)

yk = dT
k α̂+ d2kσ̂ννk. (5.22)

Equating the score of yk parametrized by α̂ and σ̂2
ν to zero leads then to(

yk − dkα̂
)(
yk − dk (I −K) α̂

)
= σ̂2

νd
4
k (5.23)

with

K := diag

(
0,

1

2
, . . . ,

N

2

)
. (5.24)

This means that estimating dk from yk, α̂ and σ̂2
ν can be performed by solving (5.23) in dk

after substituting the values α and σ2
ν with their estimates.

Since the polynomial (5.23) is quartic for N = 0, 1, 2, and of order at least 6 for any
other N , the ML estimate for dk must then either rely on complex algebraic formulas or
numerical roots finding methods.

One may then want to focus on computing the LS estimate of dk, with the aim of
diminishing the computational requirements associated to these estimates. Given then

our assumption (3.24) on the structure of f(·), and given an estimate f̂ for f , the problem
of computing the LS estimate of dk from yk is the one of minimizing the squared loss(
yk − f̂ (dk)

)2
. Once again, the problem is of finding the roots of a polynomial, since the

solutions of the LS problem above are directly

d̂k ∈
{
d̃ s.t. yk − f̂

(
d̃
)
= 0

}
. (5.25)

Thus if the Lidar has heavy nonlinear radial distortions (that means it requires high order
polynomials f (·)) then one is again required to compute polynomial roots.

Notice also that some of the roots above may not belong to the measurement range of
the sensor (e.g., some roots may be negative, or off-scale); these ones can safely be dis-
carded from the set of plausible solutions. The other ones, instead, are equally plausible.



5.1. Filtering for static systems 163

This raises a question on how to decide which root should be selected among the
equally plausible ones. This question is actually non-trivial, and cannot be solved by
means of the frequentist approach used here. In other words, Bayesian formulations have
to be explored.

The strategies proposed above can of course be specialized in case there exists some
additional structural information that may be exploited in the estimation process. As an
illustration, we show how information on the structure of the environment can be used to
refine the estimators considered in the example above.

Example 5.3 (Processing new measurements of triangulation Lidars in structured envi-
ronments)

Consider the triangulation Lidar used in Example 3.5 on page 82. Assume now that
the model parameters were estimated as in Example 4.5 on page 112, and that we aim
at using the estimated model to process new measurements from the sensor posing the
additional assumption that the Lidar is facing a flat surface at an unknown distance dk,m
and with an unknown incidence angle φk,m, so that, for practical reasons, we may think
that the measurement process is now given by

yk,m =

(
n∑

i=0

α̂id
i
k,m +

n∑
i=1

ĉiφ
i
k,m

)
+

(
n∑

i=0

β̂id
i
k,m +

n∑
i=1

κ̂iφ
i
k,m

)
ek,m. (5.26)

Our novel target is to estimate dk,m and φk,m from yk,m using the trained model (5.26). No-
tice that, said in this way, the problem is ill-defined from statistical perspectives: without
posing assumptions on how the various angles φk,m1 and φk,m2 relate (m1,m2 = 1, . . . ,M
for notational simplicity) then the estimation process decouples inM independent estima-
tion problems. Unfortunately each one of these estimation problems suffer of statistical
non-identifiability: it would be impossible to distinguish the contribution from dk,m and
φk,m into yk,m.

Assume thus that the sensor is scanning a flat surface like in Figure 3.8, where for
simplicity the first beam hitting the object is beam m = 1, the last beam is m = M , and
where dk,0 is a quantity that is in general not associated with any physical beam. This
implies that we can exploit the geometrical relations

dk,m =
dk,0

cosφk,m

φk,m = φk,1 + (m− 1)δ (5.27)

where δ is the angular resolution of the scanner. Notice that in general we may assume
that for each sweep the target may be in different positions; nonetheless the derivations
below may be easily adapted to the case where it is known that for some different k’s the
object remains fixed w.r.t. Lidar .

With this assumption the estimation problem reduces to estimating dk,0 and φk,1.
Implicitly we thus assume that image segmentation problems (i.e., deciding which laser
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beams correspond to the same flat object) have already been solved by using some ad-hoc
techniques (e.g., the Split-and-Merge algorithm proposed in [107]).

To estimate dk,0 and φk,1 we then extend definitions (4.106) as

dk,m :=

⎡⎢⎢⎢⎣
1

dk,m
...

dnk,m

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
dk,0

cos (φk,1 + (m− 1)δ)
...(

dk,0
cos (φk,1 + (m− 1)δ)

)n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.28)

φk,m :=

⎡⎢⎣φk,m
...

φn
k,m

⎤⎥⎦ =

⎡⎢⎣ φk,1 + (m− 1)δ
...

(φk,1 + (m− 1)δ)n

⎤⎥⎦ . (5.29)

Given the estimates (4.112) and (4.117), the hypothesis (5.27), and the auxiliary nota-
tion (5.28) and (5.29), for every k = 1, . . . , K and m = 1, . . . ,M model (5.26) reduces
to

yk,m =
[
α̂ ĉ

] [
dk,m

φk,m

]
+

[
β̂ κ̂

] [
dk,m

φk,m

]
ek,m. (5.30)

Given that both dk,m and φk,m are deterministic functions of the estimands dk,0 and φk,1,
it is possible to eventually rewrite model (5.30) as

yk,m = ψbias,m (dk,0, φk,1) + ψst.dev.,m (dk,0, φk,1) ek,m (5.31)

where the maps ψbias,m and ψst.dev.,m are known for everym, while their arguments are the
estimands. Computing now the ML estimate of these two quantities corresponds to solve
the optimization problem

(
d̂k,0, φ̂k,1

)
:= arg min

dk,0,φk,1

M∑
m=1

(
log (ψst.dev.,m) +

1

2

(yk,m − ψbias,m)
2

ψ2
st.dev.,m

)
(5.32)

where for notational compactness we omitted indicating the arguments of ψbias,m and
ψst.dev.,m.

Solving problem (5.32) is still numerically challenging, given its highly non-convex
nature. To obtain an estimation algorithm that can be implemented in non-expensive
computational hardware we then propose an alternative reduced-complexity algorithm
that decouples the problem of estimating the initial angle φk,1 and the nominal distance
dk,0 in two cascaded estimation problems: first, estimate φk,1 through a simple line fitting,
second, estimate dk,0 through the same approach as before.

More precisely, the steps are as follows:

1) transform the measurements yk,m from their polar representation into a Cartesian
representation (considering that the indexm represents an angle);
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2) estimate the incident angle φk,1 using a simple linear regression to find the best straight
line that fits the measurements in their Cartesian representationa;

3) estimate the nominal distance dk,0 . Here there are two possible strategies for coping
with this estimation problem:

1. if it is known that there is more than one sweep k for which φk,1 and dk,0 do
not change, then proceed to estimate σk as did when estimating σm in point 1)
in the training algorithm in Example 4.5, obtain the corresponding auxiliary
homoscedastic process like in (4.114), and then proceed as in Example 5.2.
Notice that this strategy leads to some computational issues when the order of
the polynomials are higher than 3, since in this case one needs to use numerical
roots finding methods;

2. alternatively, one can follow a strategy as in Example 5.2, i.e., ignore the het-
eroscedastic term in model (5.26) and find directly dk,0 as that value that mini-
mizes ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yk,m − α̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
dk,0

cos
(
φ̂k,1 + (m− 1)δ

)
...⎛⎝ dk,0

cos
(
φ̂k,1 + (m− 1)δ

)
⎞⎠n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ĉφk,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

. (5.33)

aConsider that if we express a line in R2 as x2 = ax1 + b with a the angular coefficient of the line and b

its offset, then from a we can estimate the incident angle as φ̂k,1 as atan(a)
180
π .

5.1.3 Models with latent variables (Mixture models)
We now start considering the state estimation problemwith the presence of latent variables; as
a specific example we will consider mixture models. The assumed measurement distribution
in the statistical Gaussian mixture model will then be (see also SubSection 3.3.3)

yk ∼
JM∑
j=1

Π̂jN
(
d+ μ̂j, σ̂

2
j

)
(5.34)

where

• yk ∈ R is the new measurement for k = 1, . . . ,M ;

• d ∈ R is the unknown state;

• JM ∈ Z+ is the number of mixture components;

• Π̂j ∈ [0, 1] are the mixing probabilities such that
∑JM

j=1 Π̂j = 1;

• μ̂j ∈ R, σ̂2
j ∈ R+ are the estimated mixture parameters.
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The log-likelihood for theM measurements vector will be

log p (y |d) =
M∑
k=1

log

⎡⎣ JM∑
j=1

Π̂j
1√
2πσ̂2

j

exp

(−1

2σ̂2
j

(yk − dk − μ̂j)
2

)⎤⎦ (5.35)

as before, our aim here is to find an estimate for the states xk using the ML estimation
technique. However, the likelihood function is numerically intractable due to the sum inside
the log function (see also the discussion proposed in SubSection 4.3.4). We can then simplify
the problem through introducing some latent (i.e., unobserved) variables Δk such that the
statistical model becomes

yk = d+

JM∑
j=1

Δj
ke

j
k (5.36)

where

• ejk ∼ N
(
μ̂j, σ̂

2
j

)
;

• Δj
k is an unknown binary selection variable (either 0 or 1) such that

∑JM
j=1 Δ

j
k = 1.

For simplicity and ease of notation we will consider the case JM = 2, generalizations being
indeed obvious. In this case the model specializes then into

yk = d+Δke
1
k + (1−Δk)e

2
k. (5.37)

Since we have now also the unobserved latent variable Δk, the joint log-likelihood will be

log p (y,Δ |d) =
M∑
k=1

log

[
ΔkΠ̂

1√
2πσ̂2

1

exp

(−1

2σ̂2
1

(yk − d− μ̂1)
2

)
+(1−Δk)(1− Π̂)

1√
2πσ̂2

2

exp

(−1

2σ̂2
2

(yk − d− μ̂2)
2

)]
.

(5.38)

Since we have only one non zero term for each k, we can rewrite the previous equation in the
equivalent form

log p (y,Δ |d) =
M∑
k=1

Δk log

[
Π̂

1√
2πσ̂2

1

exp

(−1

2σ̂2
1

(yk − d− μ̂1)
2

)]

+
M∑
k=1

(1−Δk) log

[
(1− Π̂)

1√
2πσ̂2

2

exp

(−1

2σ̂2
2

(yk − d− μ̂2)
2

)]
.

(5.39)

We can then simplify this so to obtain

log p (y,Δ |d) =
M∑
k=1

Δk log Π̂ +
M∑
k=1

Δk log

[
1√
2πσ̂2

1

exp

(−1

2σ̂2
1

(yk − d− μ̂1)
2

)]

+
M∑
k=1

(1−Δk) log(1− Π̂) +
M∑
k=1

(1−Δk) log

[
1√
2πσ̂2

2

exp

(−1

2σ̂2
2

(yk − d− μ̂2)
2

)]
.

(5.40)
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Given (5.40) we are able to describe how the equations of an opportune EM algorithm (as the
ones introduced in Section 2.2) should look like. More precisely, assume that the parameters
estimated in the previous step are d′. Then we can perform:

Expectation step: to compute Δ̂k as the expected value of the random variable Δk, we
consider that, since Δk is a binary random variable, we will have

Δ̂k := Ed′ [Δk]
= p (Δk = 0 |yk, d′ )× 0 + p (Δk = 1 |yk, d′ )× 1
= p (Δk = 1 |yk, d′ ) .

(5.41)

To compute the distribution of Δk = 1 given the observations yk we can start using the Bayes
rule to obtain

p (Δk = 1 |yk, d′ ) =
p (Δk = 1 |d′ ) p (yk |Δk = 1, d′ )

p (yk |d′ )

=
Π̂p (yk |Δk = 1, d′ )

Π̂p (yk |Δk = 1, d′ ) + (1− Π̂)p (yk |Δk = 0, d′ )
.

(5.42)

We can thus estimate the latent variables as

Δ̂k =

Π̂
1√
2πσ̂2

1

exp

(−1

2σ̂2
1

(yk − d′ − μ̂1)
2

)
Π̂

1√
2πσ̂2

1

exp

(−1

2σ̂2
1

(yk − d′ − μ̂1)
2

)
+ (1− Π̂)

1√
2πσ̂2

1

exp

(−1

2σ̂2
2

(yk − d′ − μ̂2)
2

) .

(5.43)
Maximization step: here we can proceed first by taking the zero of the score of the like-

lihood (5.40) with respect to d, and keeping only the terms with d in Equation (5.40) so to
obtain

log p (y,Δ |d) ∝ −
M∑
k=1

Δk

2σ̂2
1

(yk − d− μ̂1)
2 −

M∑
k=1

(1−Δk)

2σ̂2
2

(yk − d− μ̂2)
2 . (5.44)

Once obtained the previous result, we can rewrite the expressions in a vector form and then
simplify, so to eventually obtain

log p (y,Δ |d) ∝ −1

2
(ỹ − d)T Σ−1 (ỹ − d) (5.45)

where ỹ := y − μ̂1Δ − μ̂2(1 −Δ) and Σ := σ̂2
1 diagΔ + σ̂2

2 diag(1 −Δk). Taking the zero of
the score with respect to d we then directly obtain

d̂ =
(
1TΣ−11

)−1
1TΣ−1ỹ. (5.46)

The above quantity is then the novel d′ to be used again in the next expectation step.
We can use the technique described above with the following field case:
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Example 5.4 (Processing new measurements from ToF Lidars )

Consider filtering new measurements received from a ToF Lidar with a statistical
sensor model that is similar to the one described in Example 3.3 on page 74. In this case
the parameters of the model can be assumed to have been estimated using the associated
parameter estimation procedure in Example 4.12 on page 142. The model complexity
order, instead, can be assumed to have been determined as in Example 4.14 on page 151.
Our aim now is to find an estimator for the distance between the sensor and the sensed
object given new measurements coming from the device.

Assuming that the actual distance from the sensor and the device is constant, we thus
devise a numerical algorithm for estimating d and the values of the lasing mode selection
variables Δk starting from the model trained in Example 4.12 (i.e., the estimated vector

θ̂ :=
[
θ̂T , μ̂1, μ̂2, σ̂

2
1, σ̂

2
2, π̂

]T
and the statistics of w1

k, w
2
k and Δk) and a set of distance

measurements yk and case temperature tsk for k = 1, . . . ,M .
Assuming once again to transform the temperature sensor measurements ts into

estimated laser junction temperatures t̂j through applying Kalman smoother (2.163), the
problem of estimating d and the Δks can be cast as(

d̂, Δ̂
)
= argmax

d,Δ
p
(
y

∣∣∣ t̂j ; d, θ̂,Δ)
. (5.47)

Applying the same procedure above for solving (5.40), we compute this ML estimate
through the EM approach:

E-step
δk = (1− π̂)N

(
yk − d̂−Hkθ̂ − μ̂1, σ̂

2
1

)
+

π̂N
(
yk − d̂−Hkθ̂ − μ̂2, σ̂

2
2

)
k = 1, . . . ,M

Δ̂k =
π̂N

(
yk − d̂−Hkθ̂ − μ̂2, σ̂

2
2

)
δk

k = 1, . . . ,M

(5.48)

M-step
C = Σ1σ̂

2
1 + Σ2σ̂

2
2

d̂ =
(
1TC−11

)−1

1TC−1
(
ỹ −Hθ̂

)
ỹ := y − μ̂1Δ− μ̂2(1−Δ)

(5.49)

where Hk is defined according to either model 1 or model 2 in Example 3.3, Σ1 and
Σ2 are defined as before in Example 4.12

Σ1 := diag
(
1− Δ̂k

)
Σ2 := diag

(
Δ̂k

) H :=

⎡⎢⎣H1
...

HM

⎤⎥⎦ =

⎡⎢⎣H
(
t̂j1

)
...

H
(
t̂jM

)
⎤⎥⎦ (5.50)
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The same values of μ̂1, μ̂2, σ̂
2
1 and σ̂2

2 at the end of the training step will be then used in
the testing step, since there is no need to recompute them again.

For the sake of completeness, in our experiments we found beneficial to start from the

initial conditions d̂ =
1Ty

M
and Δ̂M = 0.5.

5.1.4 Filtering with priors
Now we consider the problem of filtering measurements with the presence of some prior
information p (x) about the state x. In practice, such kind of information is often available
under the form of, for example, constraints on the positiveness or even the range of the
admissible values of the state. Other times expected operation regimes may lead to assume
that the actual state of the system should be centered at a specific point. For these cases it is
meaningful to apply Bayesian frameworks, so that the (statistical) focus should move from

optimizing the likelihood function p
(
y

∣∣∣x, θ̂)
as in (5.1) to optimizing the posterior density

p
(
x

∣∣∣y, θ̂)
instead. In this section we thus consider the problem of finding

x̂ := argmax
x∈X

p
(
x

∣∣∣y, θ̂)
. (5.51)

We recall that posterior densities are related to the likelihoods and the priors through the
Bayes rule

p
(
x

∣∣∣y, θ̂)
=

p
(
y

∣∣∣x, θ̂)
p
(
x

∣∣∣θ̂)
p
(
y

∣∣∣θ̂) , (5.52)

where the denominator is the density of the measurement vector, which is constant in the
filtering case since y is given. Noticing that also the prior on x is not depending on the

estimated parameters θ̂, we can simplify the posterior density to

p
(
x

∣∣∣y, θ̂)
∝ p

(
y

∣∣∣x, θ̂)
p (x) (5.53)

so that the optimization in (5.51) is equivalent to

x̂ := argmax
x∈X

p
(
y

∣∣∣x, θ̂)
p (x) (5.54)

which is the problem defining the MAP estimator for x. Solving the optimization above is in
general numerically more complex than solving the problems associated to the computation
of ML solutions. Therefore for all the non-trivial cases that we considered in this thesis we
use numerical techniques like Metropolis–Hastings MCMC to first generate random samples
from the posterior and then compute the maximum of the posterior.

We now show a practical example where combining meaningful priors with multi-mode
densities that have significant mode levels can lead to change the final density to one that has
a dominant global maximum. In other words, in the next example we show how to use priors
to make the state estimation problem well-posed.
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Example 5.5 (Filtering a polynomial Lidar model with a given prior)

Consider the following heteroskedastic polynomial model for a triangulation Lidar with
order N = 2, i.e.,

yk = α̂0 + dkα̂1 + d2kα̂2 + σ̂2
νd

2
kνk. (5.55)

Here the model parameters θ̂ = [σ̂ν , α̂0, α̂1, α̂2] can be considered as the ones estimated
using the numerically tractable solution proposed in Example 4.3 on page 108 as

θ̂ =
[
0.0213, 0.0076, 0.9523, 0.0497

]
(5.56)

(note that here the value of the variance was artificially enlarged so to improve plot
visualization). We then run a Metropolis–Hastings MCMC with a Gaussian random

walk proposal distribution to generate samples from the density p
(
yk

∣∣∣dk, θ̂)
, and plot the

result in Figure 5.2 (which clearly shows how the density has two modes). Now consider
the prior

p (dk) = dk exp(−dk) (5.57)

on dk. Under the novel Bayesian framework, this prior induces the posterior

p
(
dk

∣∣∣yk, θ̂)
∝ p

(
yk

∣∣∣dk, θ̂)
p (dk) . (5.58)

Running another Metropolis–Hastings MCMC also with a Gaussian random walk pro-

posal distribution to generate samples from the posterior p
(
dk

∣∣∣yk, θ̂)
, leads to a distribu-

tion that has obviously only one dominant mode (as shown in the same plot).

5.2 Filtering for dynamical systems
We now discuss how to face filtering / smoothing problems in systems where we know a
dynamic model for how the state evolves with time. In this section we thus assume the
availability of a generic dynamical model⎧⎪⎨⎪⎩

x0 ∼ N (μ0, P )

xk+1 = f̂state(xk) + ek

yk = f̂mean(xk) + f̂noise(xk)νk

(5.59)

where

• xk ∈ RNx are the unknown states;

• yk ∈ RNy are the measurements;

• μ0 ∈ RNx is the actual value of the initial state x0;

• P ∈ RNx×Nx
+ is the covariance matrix of the initial state;
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Figure 5.2: Plot shows the histogram of Metropolis–Hastings MCMC simulations for the

density p
(
yk

∣∣∣dk, θ̂)
and the posterior density p

(
dk

∣∣∣yk, θ̂)
in Example 5.5.

• the functions f̂mean(·), f̂noise(·) and f̂state(·) are the estimated nonlinear parametric func-

tions of the measurement model, with the vector θ̂ containing the set of the correspond-
ing estimated parameters;

• νk ∼ N
(
0, INy

)
and ek ∼ N

(
0, Q̂

)
, where Q̂ ∈ RNx×Nx

+ is the estimated state covariance

matrix.

Our aim is thus to find the ML estimator for x̂k given the new measurements yk and the
estimated functions. In other words, our aim is now solving the optimization problem

x̂k := arg max
xk∈X

log p
(
yk, xk

∣∣∣θ̂, x0

)
= argmax

xk∈X

(
log p

(
x0

∣∣∣θ̂)
+ log p

(
yk

∣∣∣xk, θ̂
)
+ log p

(
xk

∣∣∣x0, θ̂
))

.
(5.60)

Since log p
(
x0

∣∣∣θ̂)
does not depend on θ̂, Equation (5.60) becomes

x̂k = argmax
xk∈X

(
log p

(
yk

∣∣∣xk, θ̂
)
+ log p

(
xk

∣∣∣x0, θ̂
))

= argmax
xk∈X

(
logN

(
f̂mean(xk), f̂noise(xk)

T f̂noise(xk)
)
+ logN

(
f̂mean(x0), Q̂

))
.

(5.61)

We then proceed to analyze how to specialize this strategy to the various models that we
have discussed in this thesis, starting as usual from simple ones and increasing the complexity
in the process.
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5.2.1 Linear Gaussian models

Consider then the special case of model (5.59), in which the functions f̂mean(·) and f̂state(·) can
be written using a polynomial basis expansion of xk, while the function f̂noise(·) is assumed
constant and independent on xk. In this case

⎧⎨⎩
x0 ∼ N (μ0, P )

xk+1 = Âxk + ek
yk = Ĉxk + νk

(5.62)

where νk ∼ N
(
0, R̂

)
, with R̂ the estimated measurement covariance matrix, and where

ek ∼ N (0, Q) with Q ∈ RNx×Nx
+ the assumed known state covariance matrix. The problem of

finding the ML estimator of the states can then be solved using for example the RTS Kalman
smoother that we described in Section 2.4.2.

To clarify the concept, we consider the following practical example:

Example 5.6 (Processing new measurements in Linear Gaussian systems)

Consider the linear system (4.182) considered in Example 4.11, and assume the avail-

ability of an estimate Ĉ forC and of β̂2 for β2, computed for example through the proposed
EM algorithms. Our new aim is then to process a new measurement vector y and find an
estimate x̂ of the latent variables x given some information about the initial condition
p (x0) ∼ N (μ0, P0), where the hyperparameters μ0 and P0 are assumed to be known.
Notice that if no information is available about the initial condition, a very meaningful
approximation is to use x̂0 ≈ y0 especially for sensors with expected linear input-output
relations.

The solution for this specific problem can then be achieved using two different ap-
proaches:

• the EM strategy discussed in Example 4.11, that can thus can be directly used to
transform the raw measurements y into some statistical estimate of x. Using an EM
approach may though be computationally demanding, and one may prefer to run it
only when strictly necessary;

• given that Ĉ and β̂2 are available, one may alternatively simply run just once the

Kalman smoother defined in Algorithm 7 with initial condition x̂
(0)
0 ≈ y0, the

consequence of selecting the initial condition in this way will vanish with increased
length of vector x. This solution is computationally more lightweight with respect
to the EM strategy above, but also statistically less performing.
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Figure 5.3: Test-set performance relative to a triangulation Lidarwith the estimation procedure
being an EM.

5.2.2 Heteroskedastic models
We finally consider another special case of model (5.59), in which all the various functions

f̂mean(·), f̂state(·),and f̂noise(·) are polynomially depending on xk. I.e., consider the case⎧⎨⎩
x0 ∼ N (μ0, P )

xk+1 = Âxk + ek
yk = Ĉxk + νk

(5.63)

where νk ∼ N
(
0, R̂(xk)

)
, with R̂(·) being the estimated measurement covariance function–

matrix, and where ek ∼ N (0, Q), with Q ∈ RNx×Nx
+ being the state covariance matrix, are all

assumed to be known. The problem of finding the ML estimator of the states is in this case
not linear, fact that would suggest to move away from linear Kalman smoothers. Despite this,
we can in any case resort to consider the approximated linear problem⎧⎨⎩

x0 ∼ N (μ0, P )

xk+1 = Âxk + ek
yk = Ĉxk + ν̄k

(5.64)

where ν̄k ∼ N
(
0, ̂̄Rk

)
with ̂̄Rk = R̂(x̂k−1)and ek as above, and thus use a RTS Kalman

smoother as an approximated but lightweight solver.
A practical example where this strategy can be used is the following:
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Figure 5.4: Test-set performance relative to a triangulation Lidarwith the estimation procedure
being a RTS smoother.

Example 5.7 (Processing new measurements in Linear heteroskedastic systems)

Consider the linear heteroskedastic system (3.51) in Example 3.9 on page 89, and
consider the corresponding estimation strategy presented in Example 4.13. Assume the

availability of estimates Ĉ for C and β̂
(s)
i for β(s)

i . Our aim is then to process the new

measurement vector y and find an estimate x̂k (and then d̂k) of the latent variables x
given some information about the initial condition p (x0) ∼ N (μ0, P0) and the robot speed
u, where the hyperparameters μ0 and P0 either estimated with the other parameters
or assumed already known. Notice that if no information is available about the initial
condition, then again a very meaningful approximation is to use x̂0 ≈ y0.

The solution for this problem can then be achieved using two different approaches:

• the approximated EM strategy introduced in Example 4.13, that can thus be directly
used to transform the raw measurements y into some statistical estimate of x. As
mentioned above, the EM algorithm may be computationally demanding, and one
may prefer to run it only when strictly necessary, Figure 5.3 shows the normalized
MSE achieved when applying this filtering;

• given that we have Ĉ and β̂
(s)
i , one may obtain an estimated x̂ by simply running

just once the approximated Kalman smoother defined in Algorithm 8 with initial

condition x̂
(0)
k =

[
1,mean(yk), . . . ,mean(yk)Nmax−1

]
. As above, this corresponds trad-
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ing off statistical performance with numerical computation requirements. Figure 5.4
shows the normalized MSE achieved when applying this filtering.





Chapter 6

Practical examples

In this chapter we present several applications where we applied our proposed statistical
sensor calibration calibrations algorithms so to improve the performance of a native mea-
surement system. The first example is dedicated to analyzing ToF Lidars , since they are
one of the promising sensors for robotic applications because of their good performance in
terms of accuracy and precision. Nonetheless these sensors are affected by a clear nonlinear
dependency on the temperature of their case. Our ansatz is thus that it is useful to calibrate
the sensors against this temperature dependence. The results of our calibration efforts is thus
described in Section 6.1.

Notice then that, despite the performance of these ToF Lidars sensors is very high, how-
ever this technology is quite expensive – a factor that limits their applicability to high-end
applications markets. Therefore, we proceed with characterizing and analyzing triangulation
Lidars , a much cheaper alternative to the previous lidars but with comparably less precision
and accuracy. The discussion of how our calibration algorithms performed for this specific
application is presented in Section 6.2.

Finally, we consider the problem of performing statistical sensor calibration with incom-
plete datasets (i.e., what we call as calibration without ground truth) in Section 6.3.

6.1 Time of Flight (ToF) Lidar
ToF Lidars estimate distances by emitting short bursts of laser light, and by measuring the
time it takes for the reflected photons to arrive back to the device [108]. Despite being based on
a very simple principle, they are very both accurate and precise [109]: for example, precisions
can reach 10mm of standard error when the object is 10m far away. Due to these favorable
properties, they are commonly used in critical industrial applications where there is the need
for high quality measurements.

It is well known that these devices need temperature compensation mechanisms, since
changing their temperature leads to changes in the statistics of the returned measurements.
The effect of temperature may be huge: experiments by [110] on an amplitude-modulated
continuous-wave laser radar pointing at a target 6 meters far away from the sensor shown
that measurements at 21°C and measurements at 45°C were differing of 40cm. Since thermal
stabilization of a laser scanner may take up to 30 minutes [111], it is clear that these sensors
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are affected by a warming-up induced time drift that must be compensated. Manufacturers
of ToF devices thus usually embed opportune algorithms in their products that implement
this temperature compensation mechanism.

Unfortunately, temperature is not the only physical factor that deserves compensation:
as described in details in Section 6.1.1, lasers can suddenly change their lasing mode. This
property, called mode-hopping effect, has a substantial impact on the measure returned by
ToF devices, since changing lasing mode means to change the spectral content of the laser
burst, i.e., to change its time of flight. Remarkably, at the best of our knowledge the existing
literature does not focus on managing this effect, but rather considers only temperature
compensation mechanisms.

6.1.1 Effects of the laser temperature on the measured distance
This section lays down interpretations motivating the structure of our proposed compensation
procedure. We thus here describe the functioning principle of ToF scanners, explain why
the measured distance depends on the temperature of the device, and motivate why the
measurement noise of a Lidar is intrinsically multi-modal.

Consider then SubSection 1.5.1, where we described the basic operation of pulsed ToF
Lidars (see Figure 1.7 on page 12 and in its caption), andwhere we also described how changes
in the temperature of the laser diode affect the wave length of the laser pulse and introduce
the aforementioned mod–hopping phenomena.

It has been stated there that the measured distance directly related to the laser wave-
length λ0, while Figures 1.8 and 1.9 present the possible changes in wavelength because of
temperature variations. We can indeed notice three distinct effects:

1. in general, lasers do not emit at a unique frequency λ. Indeed, the average spectral
distribution of the laser pulses follows a “comb”-like density like the one in Figure 6.1;

2. lasers are affected by the so-called mode hopping effect [113], and indeed oscillate between
different lasing modes (the teeth of the “comb” of Figure 6.1), for which two different
pulses generated under the same temperature and external conditionsmay have different
λs. E.g., referring to the same figure, the first pulse may contain only photons with
wavelengths λ1, while the second pulse may contain only photons with wavelengths λ2.
In other words, the actual distribution of one specific pulse may contain only a subset of
the teeth of the average spectral distribution. Using naïvely (1.2) to estimate d without
being aware of the mode hopping, i.e., assuming a certain λ0 without actually knowing
that the average λ jumps between different lasing modes reflects thus in a multimodal
measurement of d, as clearly shown in Figure 6.2;

3. the average spectral distribution of the laser pulses is not fixed, but rather depends on
the temperature of the transmitter [114]. More precisely, the positions and amplitudes of
the modes in Figure 6.1 depend on both the current flowing through the laser junction
and the geometry of the laser cavity, but eventually these two effects are inter-combined:
the current flow produces heat, that will modify the geometry of the cavity. Eventually
thus the temperature affects the position and amplitude of the modes of the average
spectral distribution. This temperature effect can be clearly seen in Figure 3.4: even if
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the device is nominally already compensated in temperature, one can clearly see two
different lasing modes shifting in temperature.

To summarize, the actual wavelength λ of a laser pulse is in general different from the
nominal λ0 because of two effects: first, the laser may oscillate between different modes;
second, these positions of these modes vary with temperature.

Consider then that we presented the statistical model for the ToF Lidar in Example 3.3
on page 74, the associated parameter estimation procedure in Example 4.12 on page 142,
model structure and model complexity in Example 4.14 on page 151, and the application
of the calibration procedure on newly coming measurements Example 5.4 on page 168. We
now thus proceed to present the practical results that we obtained by combining all these
components together.

6.1.2 Summary of ToF calibration
Physical considerations on the mode-hopping effect lead to the consideration that the mea-
surement noise of ToF laser scanners is intrinsically multi-modal. In its turn this implies that
estimating the actual distance between scanners and the surrounding objects should be per-
formed using latent-variables based statistical models, where the latent variables correspond
to the lasing modes of the laser. Since no literature seems to account for this multi-modality,
in the paper we published about this topic we aimed at closing this gap.

There we thus proposed an EM algorithm on top of a model that captures biases on the
measured distance induced by temperature changes, plus mode-hopping effects through an
opportune Gaussian mixture on the measurement noise. Importantly, thanks to a separable
model the EM iterations can be performed analytically. The computational advantages are
clear: non-separable models may indeed need to perform the EM iterations numerically,
and this would lead to a computational burden hindering the usability of mode-hopping
correction procedures in on-line settings.

The proposed strategy incorporates an accurate model of the temperature dynamics of
the laser diode. Moreover, to account for the fact that it may be difficult to collect temperature
data on the laser, we proposed a strategy for the identification of the parameters of this model
that exploits the datasheet of the laser device and some very simple experiments.

Overall, the proposed temperature compensation strategy led to diminish the spread of
the distribution of real measurements from a SICK LMS 200 around the true value d as shown
in Figure 6.3, with corresponding decays of the variance of the absolute error from 2.0mm2 to
0.68mm2, and shift of the expected absolute error from 3mm to 1mm as shown in Figure 6.4.

We eventually notice that the proposed strategy is actually still in its infancy: indeed
we considered a frequentist case for which the actual distance d is a deterministic and fixed
quantity, aiming at showing that it is possible to improve the overall precision of a laser
scanner through accounting for mode-hopping effects. Nonetheless in real scenarios dwill
vary; we thus devise future efforts focusing on strategies for which d is a stochastic process
that varies according to some given a priori distribution.
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Figure 6.3: Effects of compensating some raw data with the biases corresponding to the lasing
mode of each sample.

6.2 Triangulation Lidars calibration with complete dataset
As mentioned in the introduction of the thesis, Lidars are ubiquitously used for mapping
purposes. And, as mentioned there, different types of Lidar technologies have different
statistical performance. ToF Lidars have indeed generically lower bias and measurement
noise variances than triangulation ones, but the latter are generally cheaper. The market pull
is then to increase the performance of cheaper Lidars in a cost-effective way.

Improving the accuracy and precision of sensors can then be done in different ways,
e.g., by improving their mechanical properties. Our target is nonetheless to improve their
performance indexes through statistical calibration.

6.2.1 Triangulation Lidars modeling and calibration
Recall that we derived, starting from a combination of physical and statistical considerations,
a model that describes the statistical behavior of the measurements returned by triangulation
Lidars in Example 3.4 on page 79. The model, that can be summarized with Equation (3.22),
is based on two assumptions:

1. the effects of radial distortions in the pinhole lens can be captured by means of a
polynomial function;

2. the nonlinearities induced by the geometry of the laser-CCD system can be captured by
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means of a heteroscedastic noise which standard deviation depends in first approxima-
tion quadratically with the measured distance.

This model, validated through some experiments on real devices, allows to build tailored
triangulation Lidars calibration strategies that follow the classical training-testing paradigm.
Calibration of the exact model in Equation (3.22) is numerically intractable as presented in
Example 4.4. Obtaining point estimates of the approximated version that we presented in
Equation (3.32) is instead numerically tractable, as we described in Example 4.3 on page108
and model order selection as in Example 4.15 on page153. However, performing filtering
steps on new incoming measurements through applying ML estimation approaches is still
numerically difficult even if we employ the approximated model (3.22). We therefore propose
here to use a LS estimation strategy as presented in Example 5.2 on page 162.

It turns then out that both the ML and LS estimation strategies may be numerically
demanding, specially for sensors suffering from strong radial distortions in the pinhole camera.
In this case, indeed, the estimators may require to use numerical root finding procedures, and
this may lead to some computational disadvantages.

Irrespectively of these issues, that can in any case be mitigated by limiting the complexity
of the polynomials describing the radial distortions, the estimation strategies above have been
proved to be effective in our tests. Real-life experiments indeed showed that the techniques
allow to reduce the empiricalMSE of the sensor of a factor 17.15. For a graphical representation
of our results, Figure 6.5 shows a testing dataset before and after calibration.

Despite this promising result, the research associated to triangulation Lidars is not finished.
First of all, it would be beneficial to modify the techniques so to be implementable using
recursive estimation schemes, so to enable “on the fly” calibration steps. Moreover, by
following a classical training-testing approach, the techniques above present some limitations.
Different sensors may in fact differ even if nominally being constructed in the same way, or
sensors may change their statistical behavior in time, due to aging or mechanical shocks. This
means that techniques based on results from a controlled environment on just one sensor and
just once are eventually not entirely meaningful.

A robust approach must indeed perform continuous learning for each sensor indepen-
dently in a non-controlled environment by performing information fusion steps, e.g., combin-
ing also information from other sensors like odometry, ultrasonic and accelerometers.

These information-fusion continuous-learning algorithm nonetheless must be based on
some preliminary results on what are the statistical models of triangulation Lidars and on
how inference can be performed on them. This calibration can thus be seen as the first step
towards more evolved strategies.

6.2.2 Triangulation Lidars with flat objects
In this Section we then consider the extensions of the statistical models and calibration
algorithms related to triangulation Lidars presented in SubSection 6.2.1 in two specific ways:

• first, we consider the statistical model of the measurement process first developed in
Equation (3.22) on page 79 and add some new considerations on how different angular
displacements between the Lidar and a generic detected object may affect the bias and
variance of the sensor readings. This then led to new sensor calibration procedures that
cope with this new model, as in Example 4.5 on page 112;
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• second, we derive tailored object-reconstruction algorithms that cope with the specific
case of rotating Lidars that scan environments where the detection of walls or similarly
flat surfaces is highly likely, e.g., the built environment.

The statistical model for this specific case, derived in Example 3.5, can be summarized
through Equation (3.34). For completeness, we recall that this model is based on several
assumptions:

1. pinhole lenses introduce radial distortions that affect the measurement process through
nonlinear bias effects;

2. the nonlinearities induced by the geometry of the laser-CCD system can be captured by
means of heteroscedastic noises which standard deviations depend in first approxima-
tion at least quadratically with the measured distance;

3. angular displacements between the sensor and the targets also contribute to the bias and
the heteroskedasticity of the measurement process with some nonlinear dependencies.

The introduction of model (3.34), validated through some experiments on real devices
(see Figure 3.9 for the setup), implies the necessity to build tailored calibration strategies.
Once again, one can follow the classical training-testing paradigm1. Testing the correspond-
ing estimation strategy in field tests then showed that one can obtain improvements of the
empirical normalized MSE from 0.0560 to 0.0046 in normal operations conditions. For a
graphical representation of these estimation errors see Figures 6.6 and 6.7. The procedures
for processing new measurements is presented in Example 5.3 on page 163.

1As mentioned before, notice that it is possible to derive tailored algorithms for the filtering phases that
account for the fact that the targets should be flat surfaces [37]. It turns nonetheless out that these estimation
strategies may be numerically demanding, since the estimators would again require to use numerical root finding
procedures that may be computationally demanding. Once again these numerical issues may be mitigated by
limiting the complexity of the polynomials describing the radial distortions in the sensor.
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6.3 Multi sensor calibration with incomplete dataset

As pointed out several times in the thesis, there exist different technologies for measuring
distances, each with different distributions on their measurement errors. To contextualize this
sentence, Figure 3.11 shows three realizations of the distance measurement errors committed
by three different and off-the-shelf commercial sensors typically used in robotics applications.

Calibrating the sensors above means finding how to process the raw information so to
diminish its instrumental bias and noisiness levels. The standard calibration procedure that
we considered also in the situations above in this section is then to compare the measurements
against some “groundtruth” and then learn through this comparison how the original readings
are affected by bias and noise. Obtaining this groundtruth in its turn typically requires first
setting up the data collection environment, then collecting the data, and eventually execute
some opportunely implemented statistical learning algorithms. Since the characteristics of
these sensors may change over time, it is also advisable to perform this procedure periodically.
The problem with this “standard way” is that setting up a controlled environment may
be expensive and time consuming, specially if the sensors are installed in some end-user
commercial applications and thus spread around the globe.

In this section we thus specifically apply the results that we presented in Section 4.3 on
page 132 for the specific case of estimating the intrinsic parameters of distance sensors that
are to be used in terrestrial robotics applications, and thus in situations where the ranges
of the measurements are in the order of meters, their precision in the order of millimeters,
and their typical usage is on wheeled robots. More precisely we consider how to calibrate
distance sensors using, instead of groundtruth information as above, alternative structural
assumptions on the statistical model of the sensor readings and on the movement of the
sensor in space.

In practice, thus, we consider the practical need of calibrating a distance sensormounted on
an autonomous terrestrial robot while assuming that: i) we do not have access to groundtruth
information; ii) we have access to the inputs given from the robot to the wheels’ motors; iii) the
robot moves on a straight line; iv) the surrounding environment does not change. (Optionally,
as hinted in Section 4.3, these strategies may be easily modified if the robot shall be endowed
with other non-calibrated distance-measuring sensors such as odometers and ultrasound
rangers.) In practice, thus, we consider the archetypal situation of an autonomous vacuum
cleaning robot that makes straight moves in an unknown environment.

We also assume that we know the structure of the statistical models of the various sensors,
so that calibration problem can be cast as a statistical inference problem (i.e., transform a
dataset of distances measured by the sensors plus commands given to the robot’s wheels into
a (meaningful) estimate of the sensors’ intrinsic parameters, under the assumption that the
robot moves along a straight line).

As for this specific case, thus, we can use the statistical modeling that was presented in
Example 3.9 on page 89, the parameter estimation algorithm presented in Example 4.13 on
page 145, and the algorithm for filtering new incoming measurements that we presented in
Example 5.7 on page 174.
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6.3.1 Comments on the results from the practical examples
Surprisingly from certain points of view (but unsurprisingly from others), the proposed
groundtruth-less calibration procedure competes with alternative groundtruth-based strate-
gies, in the sense that:

1. the groundtruth-less calibration strategy leads to results that are similar to the ones that
can be obtained with groundtruth-based strategies (and sometimes even better). This is
not totally surprising: we indeed postulate that the information on the actuation signal
given to the robots’ wheels (that was not used, e.g., in [9]) compensates for the loss of
the groundtruth;

2. adding odometers and sonars tends to improve the overall estimation performance,
but the improvement also tends to be quite contained, indicating that the additional
information brought from these sensors is minimal;

3. violating the standing assumption of the movement being confined to a line is not
disrupting the proposed estimation procedures, since the sensitivity of these errors on
the heading error has been numerically evaluated as very low.

Despite promising from a practical implementation perspective, the groundtruth-less strategy
hasn’t been fully developed yet: future research efforts are then directed to both prove the
theoretical convergence properties of the overall EM scheme, plus generalize the strategy
towards also aerial robotic applications, where our assumptions on the robot moving on a
line are not valid anymore. Moreover an interesting research direction is on understanding
how to infer if the robot is not moving along a line from the data and potentially additional
assumptions on the structure of the surrounding environment. This indeed would help
developing a control signal that guarantees straight-line motions, that is of particular interest
in robotics applications.
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Figure 6.8: Comparison of the normalized empirical MSE for various types of estimators
testing using different combinations of Lidar, odometer and sonar sensors.
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Figure 6.9: Comparison of the test-set performance of various estimators.



Chapter 7

Conclusions and Future Directions

7.1 Conclusion
The main objective of our efforts is to provide methodologies, techniques, and numerical
instruments that can help users improve the statistical performance of sensing units. The
approach that we followed has been the one of using statistical algorithms that are numerically
tractable and that can thus be implemented on off-the-shelf computers with reliable execution
time. In other words, we have been focusing at improving sensors accuracy and precision
through statistical sensor calibration, a task that does not involve modifying the fabrication
processes of the considered sensors.

In the proposed methodology we consider a standard approach where the calibration
process is divided into the execution of three distinct and separate steps: first, statistically
describe the functioning of the sensing process through an opportune statistical model. Here
the user shall derive a model for the measurement process that agrees with both the sensor
physics and the recorded datasets, keeping in mind that over-complex models will generally
not lead to benefits (as Ockham’s razor intuitions state). Second, estimate the parameters
of these models through applying appropriate estimation and system identification tools.
Notice that in our setups we considered mainly approaches based on splitting the recorded
data into a training and a validation sets, even if other approaches are available. Third, and
once the user has a point estimate of the initially proposed models, develop, implement and
use opportune filtering algorithms that process the new coming measurements and transform
them so that their statistics will be overall improved.

In our discussions we considered different models, and highlighted how different choices
may lead to completely different statistical and numerical properties. For example, we con-
sidered both homoskedastic and heteroskedastic models, and thus admitted variances for
the noise processes that can vary (the latter case) or not (the former). For this specific case
we highlighted and often stressed the existence of an intrinsic trade-off: estimating the pa-
rameters for heteroskedastic models is an intrinsically complicated problem, that often leads
to analytical intractability (and that thus requires users to implement opportune numerical
methods). At the same time, homoskedastic variances may provide absolutely insufficient
flexibility in describing the evidence. Thus, one of the first (and probably most important)
messages of the thesis is: there exists no free lunch also in the sensors calibration field. Simple
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homoskedastic models lead to easy calibration and filtering schemes, but may also lead to
noticeably poorer performance.

An other important concept that we brought to the light during our work is that one
may admit different levels of prior knowledge and different amounts of field information
when facing the calibration process. More precisely, we considered how to frame the model
estimation problem when considering the practically relevant situation where the available
dataset does not comprise all the information that one would want, in the sense that some
of the variables that may influence the measurement process can be unknown because not
opportunely registered. Weproposed for this specific case some solutions that rely on applying
EM procedures, where typically in the expectation step we estimated the missing information
through opportune smoothing operations. We also noticed that nonlinear models make this
smoothing problem once again analytically intractable; therefore an other message is that
when dealing with incomplete datasets users have to either approximate their models or they
will be required to solve the smoothing problems numerically.

Lastly, we notice that the problem of filtering (or smoothing) new measurements coming
from a sensor for which one has a point estimate of its statistical model requires solving in
general a model–inversion problem. As one may foresee, model–inversion problems require
– to admit unique solutions – injectivity. Multi-modal distributions may thus give single
global solutions only if combined with informative prior information. In other words, multi-
modal distributions for the measurement noise require facing the calibration problems using
Bayesian formalisms. If not, users will have to approximate the multi-modal densities with
some unimodal ones.

7.2 Future directions
The conclusions drawn in the previous section clearly indicate that interesting research
directions are investigating how multi-modal optimization (for exampled through simulated
annealing) may be useful for performing filtering steps, and finding ad-hoc and numerically
efficient methods for solving the problem of calibrating nonlinear heteroskedastic sensors
with incomplete datasets. These two are however only the most immediate examples of future
directions in the field of sensors calibration.

There are however other directions that in our opinion deserve to be investigated, since
(at least from intuitive perspectives) promising: first of all, we notice that a recent trend in the
system identification community is to employ nonparametric and semi–parametric statistical
models. This research trend in our opinion shall be exported also in the framework considered
in this thesis. This consideration logically connects to the problem of model order selection:
more specifically, we notice that the BIC looks suitable for many applications; however, it is
formally derived considering Laplace approximations on linear Gaussian models, assump-
tions that are seldom fulfilled in our statistical sensors calibration problems. As recalled in
the previous section, nonlinearity and heteroskedasticity assumptions are fundamental for
obtaining valuable calibration results. This implies that there is the need for deriving model
selection criteria that are suitable for the nonlinear calibration cases treated in this thesis.

Finally, we remark that there is currently no general solution to the problem of joint
parameters-states estimation in nonlinear and heteroskedastic systems. This situation is the
most complex one from a modelling perspective; nonetheless it has big practical implications
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and utility. We devise that solving this problem should be numerically feasible by using
opportune EM algorithms where both the expectation and the maximization steps shall be
implemented through opportune sampling techniques; however, to the best of our knowledge,
this general problem has not been solved yet.
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Appendix A

Some useful backgrounds

A.1 An overview on stochastic process
1. A stochastic process is a collection of random variables {Xt, t ∈ T}.

2. A sample path or realization of a stochastic process is the collection of values assumed
by the random variables in one realization of the random process, e.g., the sample path
x1, x2, x3, . . . , when X1 = x1, X2 = x2, X3 = x3, . . . .We may speak of the probability of a
realization, and we mean p (X1 = x1, X2 = x2, X3 = x3, . . .), for example.

3. The state space is the collection of all possible values the random variables can take on,
i.e., it is the sample space of the random variables.

4. For example, if Xk ∈ [0,∞) represent random times for all k, then the state space of the
stochastic process is [0,∞).

5. Often, the index set T is associated with time, sometimes even when it does not actually
represent time. In this description, the stochastic process has a state that evolves in time.
For example, the process may start in state X1 = 3, then evolve to state X2 = 4, and
much later enters the state X100 = 340. The index set may also be associated with space,
for example T = R2 for the real plane.

6. Classifying stochastic processes. Stochastic processes can be classified by whether the
index set and state space are discrete or continuous.

A.2 Some estimators terminology
1. unbiased estimator is the estimator that converges in average to the true value of the

parameter, mathematically speaking E
[
θ̂
]
= θ;

2. consistent estimator is the estimator that have the distribution of the estimate becoming
more concentrated around the true value as the number of samples increased;
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3. efficient estimator is the unbiased estimator that achieves the CRLB for the estimator
variance;

4. CRLB is the minimum possible limit for the variance of any unbiased estimator;

A.3 Preliminaries on Gaussian variables
Assume that the random variables x1 and x2 are jointly Gaussian[

x1

x2

]
∼ N

([
μ1

μ2

]
,

[
Q1 S
ST Q2

])
(A.1)

then the marginal densities are

x1 ∼ N (μ1, Q1) x2 ∼ N (μ2, Q2) (A.2)

and the conditional densities are (we used the result of lemma 7.1 in [3], the proof is there
also)

p (x1 |x2 ) ∼ N
(
μ1 + SQ−1

2 (x2 − μ2) , Q1 − SQ−1
2 ST

)
p (x2 |x1 ) ∼ N

(
μ2 + SQ−1

1 (x1 − μ1) , Q2 − SQ−1
1 ST

)
.

(A.3)

Now consider that the random variables x1 and x2 have the following Gaussian densities

p (x1) ∼ N (μ1, Q1) p (x2 |x1 ) ∼ N (Ax1, Q2) (A.4)

where A is a constant matrix. Then the joint distribution is[
x1

x2

]
∼ N

([
μ1

Aμ1

]
,

[
Q1 Q1A

T

AQ1 AQ1A
T +Q2

])
(A.5)

and the marginal density is

x2 ∼ N
(
Aμ1, AQ1A

T +Q2

)
. (A.6)
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Minimum MSE estimator for the noise
variance

We start from the biased estimator in Equation (2.93)

σ̂2
ν =

1

M

M∑
k=1

(yk − α̂ML)
2 (B.1)

and then replace the constantM with a variablem to obtain the estimator

σ̂2
m =

1

m

M∑
k=1

(yk − α̂ML)
2 (B.2)

now we would like to find the value m∗ that results in minimum MSE for the estimator, or
finding

m∗ = arg min
m∈R+

MSE(σ̂2
m). (B.3)

We start with rewriting σ̂2
m in terms of σ̂2

unbiased to obtain

σ̂2
m =

M − 1

m
σ̂2

unbiased (B.4)

then we have the following results directly, first the expected value of the estimator is

E
[
σ̂2
m

]
=

M − 1

m
E

[
σ̂2

unbiased

]
=

M − 1

m
σ2
ν (B.5)

and the variance of the estimator is

var
(
σ̂2
m

)
=

(M − 1)2

m2
var

(
σ̂2

unbiased

)
(B.6)

substituting the result of Equation (2.100) for var
(
σ̂2

unbiased

)
in the above equation to obtain

var
(
σ̂2
m

)
=

(M − 1)2

m2

2σ4
ν

M − 1
=

M − 1

m2
2σ4

ν (B.7)
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thus, from Equations (B.5) and (B.7), the MSE(σ̂2
m) will be

MSE(σ̂2
m) = 2

M − 1

m2
σ4
ν +

(
M − 1

m
σ2
ν − σ2

ν

)2

= 2
M − 1

m2
σ4
ν +

(M − 1−m)2

m2
σ4
ν

=
σ4
ν

m2

(
(2M − 2) + (M − 1−m)2

)
.

(B.8)

to find the minimum of MSE(σ̂2
m), we differentiate the last equation with respect to m and set

the derivative to zero to obtain the minimizerm∗ = M + 1.
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Derivation of Equation (2.170)

Err(xk) = E

[(
yk − f̂(xk)

)2
]

= E

[((
yk − E

[
f̂(xk)

])
+

(
E

[
f̂(xk)

]
− f̂(xk)

))2
]

= E

[(
yk − E

[
f̂(xk)

])2
]
+ 2E

[(
yk − E

[
f̂(xk)

]) (
E

[
f̂(xk)

]
− f̂(xk)

)]
+E

[(
E

[
f̂(xk)

]
− f̂(xk)

)2
] (C.1)

the first term in Equation (C.1) is

E

[(
yk − E

[
f̂(xk)

])2
]

= E

[(
(f(xk) + νk)− E

[
f̂(xk)

])2
]

= E
[
(f(xk) + νk)

2] − 2E
[(

(νk + f(xk))E
[
f̂(xk)

])]
+ E

[
f̂(xk)

2
]

= E [ν2
k ] + f(xk)

2 − 2f(xk)E
[(

f̂(xk)
)]

+ E
[
f̂(xk)

2
]

= σ2
ν +

(
f(xk)− E

[(
f̂(xk)

)])2

= σ2
ν + bias2

(
f̂(xk)

)
(C.2)

the second term in Equation (C.1) is

E
[(

yk − E
[
f̂(xk)

]) (
E

[
f̂(xk)

]
− f̂(xk)

)]
= E

[(
(f(xk) + νk)− E

[
f̂(xk)

]) (
E

[
f̂(xk)

]
− f̂(xk)

)]
= E

[(
f(xk)− E

[
f̂(xk)

]) (
E

[
f̂(xk)

]
− f̂(xk)

)]
= f(xk)E

[(
f̂(xk)

)]
− E

[
f̂(xk)

2
]
− f(xk)E

[(
f̂(xk)

)]
+E

[
f̂(xk)

2
]

= 0
(C.3)
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and the last term in Equation (C.1) is var
(
f̂(xk)

)
. Substitute these terms in Equation (C.1)

yields

Err(xk) = E

[(
yk − f̂(xk)

)2
]

= σ2
ν + var

(
f̂(xk)

)
+ bias2(f̂(xk))

(C.4)
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Validation of the approximation (3.29)

The approximation introduced by the first order Taylor expansion in (3.29) can be seen as
arbitrary. Nonetheless we show in this section that on the collected datasets it actually
corresponds to the most powerful approximation in a statistical sense.

To this aim we perform this two-step validation:

1. (check if the noises are iid and normal) perform a normality test on the yk’s assuming
that measurements are collected at a fixed distance (i.e., dk is constant): indeed ek is
approximately Gaussian as much as yk is;

2. (check the order of the term multiplying ek) compare the following alternative statistical
models for the measurements yk:

H0 : yk = f(dk) + ek

H1 : yk = f(dk) + f(dk)ek

H2 : yk = f(dk) + f(dk)
2ek

H3 : yk = f(dk) + f(dk)
3ek

(D.1)

and check which one describes better the collected information.

As for point 1 we can use standard iid tests (like the Wald-Wolfowitz runs [115]) and
standard normality tests (like the Shapiro-Wilk normality test). These tests performed on our
registered data showed p-values of 0.56 and 0.42, so we can safely consider the measurement
noises to be iid and Gaussian.

As for point 2, we instead consider the following strategy: for everymodel above, assuming
that measurements are collected at a fixed distance (i.e., dk is constant), we can perform a
simple algebraic manipulation of (3.22) to obtain

yk − yk−1

f(dk)�
= ek − ek−1 (D.2)

where � indicates the order of the model (that means � ∈ {0, . . . , 3}). (D.2) in its turn indicates
that, since ek and ek−1 are assumed iid,

yk − yk−1

f(dk)�
∼ N

(
0, 2σ2

e

)
, � ∈ {0, . . . , 3} . (D.3)
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Figure D.1: Evaluation of (D.6) on the collected datasets.

Assume now that the dataset is composed by different batches each corresponding to dk’s
that are constant in the batch, but different among batches. Moreover assume that each batch
is sufficiently rich to make it is possible to estimate with good confidence the unknown f (dk)
through the empirical mean of the yk relative to that batch. By combining the information
from different batches it is then possible to check whichmodel � describes better the measured
information.

Indicate then with B the number of batches in the dataset, with b = 1, . . . , B the index of
each batch, and with Bb the set of k’s that are relative to that specific batch b. In formulas, we
thus:

1. estimate, for each model batch b = 1, . . . , B, the distance

f̂b =
1

|Bb|
∑
k∈Bb

yk; (D.4)

2. estimate, for each model � = 0, . . . , 3, the variance of ek as

σ̂2
e :=

1

B

B∑
b=1

⎛⎝ 1

2|Bb|
∑

k,k−1∈Bb

(
yk − yk−1

f̂ �
b

)2
⎞⎠ . (D.5)

3. compute, for each model � = 0, . . . , 3, the log-likelihood of the data as

− logP
[
y ; d, σ̂2

e

]
=

B∑
b=1

⎛⎜⎝|Bb| log
(
f̂ 2�
b σ̂2

e

)
+

Bb∑
k=1

(
yk − f̂b

)2

f̂ 2�
b σ̂2

e

⎞⎟⎠ (D.6)

where y := [y1, . . . , yN ]
T and d := [d1, . . . , dN ]

T .
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In Figure D.1 we then show the log-likelihoods for the different models. As it can be seen,
hypothesis H2 is the one that best describes the collected evidence.

A non rigorous (but graphical and intuitive) argument supporting H2 as the hypothesis
best describing the evidence is then the one offered in Figure D.2. The argument goes as
follows: for the exact � ∈ {0, . . . , 3} the quantities

yk − yk−1

f(dk)�
� ∈ {0, . . . , 3} . (D.7)

should be iid independently of dk. This iid-ness is indeed a necessary condition for iid-ness
of the measurement noises (one of our assumptions).

Since f(·) is actually unknown, this iid-ness test must be performed by means of some
estimate of f(·). In the following we use the estimator defined in Example 4.3 over an experi-
ment where we manually increase the true distance dk. As it can be seen, the hypothesisH2 is

the unique one for which the quantities
yk − yk−1

f̂(dk)�
are homoskedastic. Thus the normalizing

factor � = 2 is the unique one guaranteeing iid-ness for the measurement noises. Notice
that this argument is a non rigorous wishful thinking, since we use some estimates as the
ground truth; nonetheless the heteroskedasticity of the noises for � = 0, 1, 3 indicates that
these hypotheses are non-descriptive.
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Figure D.2: Plots of the quantities
yk − yk−1

f̂(dk)�
for � = 0, . . . , 3 and for increasing dk and for

f̂(·) computed as in Example 4.3. The results graphically suggest that f̂(dk)2 is the unique
normalizing factor for which we obtain homoskedastic samples.
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