
UPTEC F 18006

Examensarbete 30 hp
Mars 2018

Using Function as a Service
for Dynamic Application Scaling
in the Cloud

Andreas Abrahamsson

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Using Function as a Service for Dynamic Application
Scaling in the Cloud

Andreas Abrahamsson

Function as a Service is a new addition to cloud services that allow a user to
execute code in form of a function, in the cloud. All underlying complexity is
handled by the cloud provider and the user only pay per use. Cloud services
have been growing significantly over the past years and many companies
want to take advantages of the benefits of the cloud. The cloud services
deliver computing resources as a service over a network connection, often
by the Internet. To use the benefit of the cloud, one can not just move an
application to the cloud and think that it will solve itself. First of all, an
application needs to be optimized to be able to take advantages of the cloud.
Therefore, together with Tieto, a microservice architecture have been the
main architectural pattern when Function as a Service has been evaluated.
A major problem with applications, both application built with a monolithic
and microservice architecture, is to handle great amounts of information
flows. An application may have scaling issues when an information flow
becomes too large.
A person using Function as a Service does not have to buy, rent or maintain
their own servers. However, Function as a Service has a certain memory
and runtime restrictions, so an entire application cannot be applied to a
Function as a Service. This thesis examines the possibility of using Function
as a Service in different architectural environments and estimating the cost
of it. Function as a Service is a new addition to cloud services, so cloud
providers are also compared and evaluated in terms of the Function as a Service
functionality. Function as a Service has been tested directly on various
cloud platforms and even developed and executed locally, encapsulated in
containers. The results show that Function as a Service is a good complement
to an application architecture. The results also show that Function as a
Service is highly flexible and cost-effective, and it is advantageous compared
to physical servers and Virtual Machines. Depending on how a function is
built, the developer can lower the cost even more by choosing the cloud supplier
that fits best for their use. With the flexibility of Function as a Service,
applications can handle greater information flow without bottlenecks in the
infrastructure and therefore, becomes more efficient and cost-effective.

ISSN: 1401-5757, UPTEC F18 006
Examinator: Tomas Nyberg
Ämnesgranskare: Andreas Hellander
Handledare: Torbjörn Lundmark

Populärvetenskaplig sammanfattning

Ett stort problem med dagens applikationer är hanteringen av det stora in-
formationsflödet. Oavsett arkitektur s̊a kan det skapas en flaskhals i infras-
trukturen vilket i sin tur skapar ett skalningsproblem. Ett sätt att eventuellt
kunna lösa detta problem är att använda sig utav det nya tillägget till mol-
ntjänsten, ”Function as a Service”. ”Function as a Service” ger utvecklaren
möjligheten att skriva och köra sin kod i form av en funktion där all un-
derliggande komplexitet tas hand om av molnleverantören. Vilket betyder
att dels funktioner i en applikation istället kan köras i en ”Function as a
Service” för att göra applikationen dels snabbare men även för att spara
minne p̊a den server man använder. Genom att använda ”Function as a
Service”, s̊a behöver inte en utvecklare bry sig om att köpa, hyra eller un-
derh̊alla sina egna servrar. ”Function as a Service” har utvärderats i form av
funktionalitet men även skillnaden mellan molnleverantörerna som erbjuder
tjänsten. I denna masteruppsats har ”Function as a Service” applicerats till
olika arkitekturer, monolitisk- och mikroservice arkitektur, för att framförallt
utvärdera möjligheten att skala en applikation med hjälp av molntjänster.
”Function as a Service” har testats direkt p̊a molntjänsternas plattformar
och även skapats lokalt. ”Function as a Service” har även utvecklats och
körts i containers, för att öka flexibiliteten ännu mer.

Resultaten visar att ”Function as a Service” är ett väldigt bra tillägg
till en applikations arkitektur. P̊a grund av dess flexibilitet och l̊aga kost-
nader finns det många olika sätt och fördelar att använda det p̊a. Jämfört
med att köra samma typer av funktioner direkt p̊a fysiska servrar eller p̊a
virtuella maskiner s̊a är ”Function as a Service” mer kostnadse↵ektiv, men
framförallt smidigare d̊a man vill ändra storleken p̊a funktionerna. Det finns
begränsningar för ”Function as a Service”, vilket betyder att en funktion har
minnes- och tidsbegränsningar. Även om ”Function as a Service” är billigt
och väldigt lättanvändbart s̊a måste man utvärdera vad för typ av funktioner
som ska köras p̊a vilken plattform, för att kunna utnyttja tjänsten fullt ut.
P̊a grund av de olika begränsningarna som molntjänsterna har p̊a ”Function
as a Service” s̊a kan det skilja sig väldigt mycket i pris. S̊a det är viktigt att
välja den molntjänst som är bäst anpassad för sin funktion.

Allts̊a, tack vare ”Function as a Service” flexibilitet, s̊a är det ett väldigt
bra tillägg till en applikations arkitektur. Det ger utvecklaren möjlighet att
skala där det finns flaskhalsar i infrastrukturen. Tjänsten kan b̊ade läggas till
vid behov till befintliga applikationer men även när nya applikationer skapas
och man vill att det ska vara en del av applikationen. Genom att använda
”Function as a Service” kan en applikation bli mer robust, e↵ektivare och
även mer kostnadse↵ektivt.

3

Contents

1 Introduction 5
1.1 Background . 5
1.2 Objective . 9

1.2.1 Goals . 9

2 Theory 10
2.1 Microservices . 10
2.2 Function as a Service . 12
2.3 Container vs VM . 14
2.4 Docker Container . 14

2.4.1 Dockerfile . 15
2.4.2 Docker-compose file . 16

2.5 Cloud Services . 17

3 Method 20
3.1 FaaS added to a monolithic- and microservice architecture . . 20

4 Results 24
4.1 Evaluation of FaaS used in di↵erent architectures 24

4.1.1 FaaS added to a Monolithic Architecture 24
4.1.2 Architecture where the application and functions runs

on VMs . 25
4.1.3 FaaS added to a Microservice Architecture 26
4.1.4 FaaS encapsulated in a container and added to a Mi-

croservice Architecture 27
4.2 Benefits with FaaS compared to physical servers and VMs . . 28
4.3 Comparison between the consumption plan between the three

largest FaaS providers . 31

5 Discussion 35

6 Conclusion and Future Work 37
6.1 Conclusion . 37
6.2 Future Work . 37

7 Acknowledgments 38

4

1 Introduction

This section focuses on explaining the background to the problem and the
objective of the thesis.

1.1 Background

Monolithic architecture has been the general approach for building and run-
ning an application. It is a reliable and robust architecture where the ap-
plication is built as a single unit, [19]. Many companies want to move their
applications to the cloud to be able to use all the benefits of the cloud. By
using the cloud, the developer does not have to handle any own local hard-
ware, but instead shares from a pool of physical and virtual resources. Thus,
the cloud can shortly be explained as computing resources that are delivered
as a service over a network connection, [16]. A developer can choose how
much the cloud services should take care of and how much they want to han-
dle. Depending on how much the cloud services should take care of, there
are di↵erent models a developer can choose from. In Figure 1, I show a few
examples to provide insight into which models there are to choose from.

SaaS, PaaS, IaaS and On-Premises

Figure 1: The table shows an example of di↵erent models and what can be
outsourced to the cloud (the black text) and how much you need to handle
yourself (The blue text).

5

By running the application on-premises, the company must handle ev-
erything from hardware to the application itself. Cloud services allow the
developer to decide how much they want to manage themselves and choose
the model that fits best for use. Figure 1 shows three di↵erent models that
cloud services o↵er. SaaS is when a user wants to run an application in the
cloud and everything from hardware and application is taken care of by the
cloud service. If a user wants to manage more, they can use PaaS. PaaS is
when a user controls the application and configuration around the applica-
tion and allows cloud services to take care of the rest. And then there is IaaS,
where a user can outsource hardware and cloud infrastructure but manages
the runtime environment, operating system, etc. Which more or less makes
it possible to control the entire application but does not need to maintain its
own physical servers, [16].

To use the benefits of the cloud service an application architecture needs
to be optimized. Basically, the application cannot just be moved to the
cloud and solve everything itself. The application must me optimized to be
able to run in the cloud, [13]. Therefore, with Tieto [26], I have included
microservice architecture in this thesis.

Microservice architecture is not a new invention, many see it as a part
of an SOA, Service Oriented Architecture, [13]. Both microservice architec-
ture and SOA use a complex architecture pattern and distributed system
and both need to implement a communication between the services, [3]. Mi-
croservices communicates with API and in SOA the services communicate
with an Enterprise Service Bus, ESB. SOA consists of two main parts of the
architecture, service providers and service consumers. The service provider
includes all the services that are defined within the SOA and the service con-
sumer includes the human user, third parties, etc. as can be seen in Figure
2.

6

Service Oriented Architecture

Figure 2: Shows an example of a Service Oriented Architecture

In both microservice architecture and SOA, each service has a specific
responsibility, unlike for monolithic architecture, where the entire application
is built as a single unit. A drawback with SOA is that all communication goes
through the ESB. For example, if one of the services slows down, the entire
application can be a↵ected because the ESB is clogged with all requests for
just that specific service and in the worst case scenario could cause system
failures. As mentioned, microservice architecture and SOA are quite similar
but the largest di↵erence is when it comes to size and scope. Figure 3 shows
a simple and clear image which shows that a microservice is much less than
SOA and an independent deployable service, [17].

The size of a microservice compared to a Service Oriented
Architecture compared

Figure 3: Shows an illustration of how microservice is seen as part of SOA,
i.e. as less independent deployable services

7

A microservice architecture uses suites of small services, and together
they create an application. The idea is to make the services even more inde-
pendent by pushing them into containers and making updates by replacing
a service instead of an entire system. By packing a microservice with all its
dependence, such as runtime environment, library, code etc. in containers,
the microservice is able to be executed anywhere. Containers make it much
easier for a user to develop and test a service locally and without any changes
use the same container in production, [20].

There are still some di�culties that need to be addressed, one of them
is scaling. Even if microservices are smaller services that are independent
of each other, they still need a certain amount of CPU, memory, etc, [9]
That may be an issue when the application receives a larger information
flow. Although it is possible to create a new container with a microservice
to handle a particular event, the hardware may still be limited. The idea is
to make an application even more cost-e↵ective and time-e�cient by adding
the new cloud services tool Function as a Service to the architecture.

By using Function as a Service in an application architecture, certain
features can be run in the public cloud instead of taking resources from
physical servers or virtual machines. This means that the service is hosted
by a cloud provider o↵-site and accessible through a public network, such as
the Internet. Function as a Service can be seen as a tool for an application
where some of the underlying complexity can be outsourced to the cloud
provider, [23]. For example, features in an application that only runs for a
few hours a day or just running certain times of the day could instead run
like a Function as a Service. This would save space on the physical servers
or virtual machines, which could help to scale an application. Alternatively,
at a high load of the application, use Function as a Service to handle a part
of the scaling.

Is it possible to use Function as a Service as part of an application to make
an application more reliable when it comes to scaling and cost-e↵ectiveness?
An important aspect to consider is that the function as a service is a relativity
addition to cloud services and some questions must be answered before it can
be applied in an application architecture.

8

1.2 Objective

The objective of this master thesis is to evaluate how the concept Function
as a Service should be used when developing and deploying a new appli-
cation based on a microservice architecture. What requirements we should
have on Function as a Service in terms of performance, cost, and security.
Because Function as a Service is a new addition to cloud computing services,
evaluation of current Function as a Service provider includes in the thesis.

1.2.1 Goals

The goals of this master thesis are listed below. The main objective has
been to evaluate whether Function as Service can be included in various
architectural environments, primarily for a microservice architecture and how
to e�ciently use Function as Service benefits.

• Define an architectural pattern on how Function as a Service should be
added to a microservice architecture.

• Define and build a prototype for evaluation of architecture pattern.

• Investigate the concepts, characteristics, and performance of Function
as a Service.

• Perform a study on how Function as a Service shall be monitored and
orchestrated in di↵erent environments and applications.

• Additional: investigate the impact of developing with Function as a
Service seen from an economic perspective, how to manage resource
utilization early in the design lifecycle.

9

2 Theory

This section is dedicated to the theory behind the thesis. Understand di↵er-
ent application architecture and explain the main focus of the thesis, Function
as a service. There is also a brief introduction to containers, as well as cloud
suppliers and their price plans.

2.1 Microservices

”The microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process”, [9].

A few years ago a new terminology with the name microservices was
introduced. It is not a revolutionary topic because some say it is part of
already-existing SOA. The idea of microservices is to decentralize an appli-
cation, basically dividing an application into smaller services that can be de-
ployed and maintained independently, [13]. The microservices are scaled by
distributing these services across servers and can be replicated as needed, [9].

A Monolithic- and a Microservice architecture

Figure 4: Shows an example of how a monolithic- and a microservice archi-
tecture can be built

A monolithic architecture is a classic and the most common way to build
an application and it is structured as a single unit, Figure 4. Microservices
should not be viewed as a replacement for monolithic applications, as mono-
lithic architecture still is easier to build and distribute for smaller projects.
Distributed applications like an application based on microservice architec-

10

ture are more complex to build, [3]. Each microservice has its own respon-
sibility and communicate with each other via a REST API, [19], which is
explained later in the section. The partial deployment makes microservices
unique because each microservice can be maintained and upgraded inde-
pendently, and new ones can be constructed when needed. If we compare
a microservice architecture with a monolithic architecture, we can see that
monolithic applications consist of three main parts, Figure 4. There is a user
interface (UI), a server-side application (Business logic, data access layer,
etc.) and a database, [18]. When a monolithic application needs updating, a
completely new version must be deployed. With a microservices architecture
where each functionality is placed in a separate service, an update can be
done by updating only the specific service without a↵ecting the entire ap-
plication. Therefore, a microservice architecture is much less likely to cause
system failures, [22].

A microservice can be written in all programming languages and can use
di↵erent data storage technologies. A microservice can be directly linked to
its own database or di↵erent microservices can share a database and use each
other stored data, [19].

As the name microservice explains, there are micro (small) services that
together build an application. But how small should a microservice be?
Depending on who who gets the question, there will be di↵erent answers, as
a microservice does not have a certain size. The general idea is that each
service should be managed individually by a group with a specific task, where
each group should not contain more than a couple of people, [9].

A microservice can be deployed directly on a physical server, virtual ma-
chine (VM) or in a container. The benefits of using microservice in a con-
tainer are that it encapsulates the microservice and that it makes it more
independent, [15]. The container makes it easy for the user to package, design
and execute the code anywhere, which is advantageous when developing and
deploying microservices, [2]. You can create your container containing your
microservice and test it locally on your own computer, and without mak-
ing any changes, you can distribute the same container to your application.
The communication between microservices is made by an API (Application
Programming Interface) and the developer chooses what the availability of
the various microservices should have. An API is used to read and write
data between application components, [21]. An API can be viewed as an
interface that has a set of features that allow users to access specific data
in an application. The Representative State Transfer (REST) API is a way
to communicate between application components via the web. REST API
is based on Http-requests and the Web API is a great way to use it in a
.Net-framework, [19].

11

2.2 Function as a Service

Function as a service, or FaaS, is a relatively new additional service to existing
cloud services. It can be seen as a tool that can be used both for existing and
new applications. The idea is that a user can develop, operate and maintain
its own code without having to handle the underlying complexity, [23]. The
cloud services provide a user with all the infrastructure, from servers to
scaling. All that a user needs to do is create a function triggered by a
particular event and the rest takes care of the cloud provider, [1].

One step by step guide how FaaS works

Figure 5

As figure 5 demonstrates, a user uploads a code in the form of a function to
a cloud service that provides FaaS or writes the function directly to the cloud
service platform. An event is determined to trigger the function when needed.
When a function is triggered, it is executed within a few milliseconds and then
shut down immediately after it is ready. What makes FaaS advantageous to
compare with other options is its cost-e↵ectiveness. All that a user is charged
for is when a FaaS is running, so when a function is not used, the user is
not charged. Since all underlying complexity is handled by a cloud provider,
users have the choice to choose from many di↵erent programming languages
to develop their function in, [14]. FaaS is an event-driven service with many
di↵erent events to choose from. For example, an event might be a timer
trigger if you want a function to trigger at a specific time or a queue system
that starts a function when the queue becomes too long. These examples
are ideas on how to move functions to the cloud as well as handle scaling
problems. A function can also be triggered by an Http-request, which is the
most common event in this thesis, [23].

However, there are some disadvantages of FaaS. As many other cloud
services, FaaS also has limits on how long each invocation can run and how

12

much memory each function may use. The more memory and time a function
requires, the higher the cost. If a function is too large or takes a long time
to complete, the cloud provider shuts down the function without returning a
response, [23].

There are di↵erent constraints depending on the cloud providers used.
Generally, the time limit is five minutes but the memory limit varies more,
100MB � 3008MB. It is also important not to do the functions too small
because there is also a lower limit on memory and runtime that platform
providers charge for. Thus, it is important to develop a function so that is
optimized to take full advantage of FaaS, [27].

FaaS uses a function.json file that defines which configurations and bind-
ings a function have. The runtime uses the function.json file to determine
which events will trigger the function and the type of data that allows trans-
fer to and from an executed function. In Figure 6 is shown an example.json
file example, [1].

Function.json

Figure 6: An example of a Function.json file that executes a FaaS with an
Http-request. Function.json defines the configurations and bindings that a
FaaS has

JSON is a good way to store and exchange data, it is only in text format
and therefore easy to use and understand. A common use of JSON is when
web servers exchange data. JSON can be used when communicating with
servers and is also used as a data format for any programming language, [8].

13

2.3 Container vs VM

If containers are compared to VMs, there are many similarities to how they
isolate and allocate. However, a major di↵erence is the use of the operative
system. A VM requires an operating system on every VM, and a container
visualizes the operating system instead. This means that in every VM that
is created, there is a complete copy of the operating system, libraries etc.
that tends to slow down a process. VMs use a Hypervisor, Virtual Machine
Monitor, which is a program that allows one to host many VMs on a single
hardware, [15].

Containers work with layers, where all its dependencies, lite, code, li-
braries, runtime, etc. are packaged together. Containers that share servers
use the same operating system but are still isolated from each other, [24].
Containers are built to take as little memory as possible, so for example if
a VM takes approximate GB in memory, a container with the same func-
tionality takes approximate MB instead. However, it is possible to combine
VMs and containers which gives the developer many di↵erent flexible ways
to create applications, [6].

2.4 Docker Container

Docker has been used in this project to build and execute the microservices
in containers, including FaaS. Docker is a container platform with an open
source technology where you can build and manage your application. With
Docker, you can do anything from developing an application to using it in
production. It can be applied both on-premises and/or in the cloud. Docker
is available to everyone and easy to use, [6].

Docker Scheme

Figure 7: An example of the main parts needed to create a Docker con-
tainer, [4]

14

Figure 7 shows the basic components for building a docking container.
Docker can communicate with the local computer via the terminal, where
the user can build an image or pull an image from the Dockers registry. A
container is created when an image is executed, the container’s dependencies
are defined in the image. One major advantage of a container is that it allows
the user to pack an application with all its dependence in a standardized
software development device, [24].

Thus, a container is the runnable instance of an image. Users can create
and operate a container on their local computer and regardless of the envi-
ronment, the containerized software will always be the same. The idea of
using containers is to isolate e.g. a microservice, to make them independent
of the rest of the application. A container could run on both physical servers
and virtual machines, or both, and you can also combine containers with
VMs if needed, [15].

2.4.1 Dockerfile

An image is a template with instructions for creating a container. It is
lightweight and contains everything that is required to run a piece of software.
The executable package contains everything from code to system library. An
image can be based on another already existing image but with customiza-
tions. To build an image, a Dockerfile is created with a set of layers that
defines your applications environment. Because the application environment
is defined in the Dockerfile, it is possible to reproduce it anywhere. When
you change something in a Dockerfile, only the newly added part needs to
be updated and not the entire Dockerfile, [6]

An example of a Dockerfile

Figure 8: A Dockerfile with di↵erent of layers used to create a container, [5]

15

Figure 8 shows an example of a Dockerfile. It is a description of how
to package a service with its dependencies in a container. At the top of the
Dockerfile, is the command ”FROM”, which indicate which runtime environ-
ment the container will use. The larger an application is the better it is to
keep track of all containers, therefore it can be good to have ”WORKDIR”.
”WORKDIR” allows the developer to define which working directory they
are going to work from. Then there is ”ADD”, where all information needed
in the new working directory is added. The ”RUN” command installs and
runs the packages that are specified, which in this case are the requirement
textfile. ”EXPOSE” makes the port used available to the world outside the
container. At last, ”CMD”, the command executes app.py in this case when
the container launches with python as the communication language. This
provides a brief introduction how a Dockerfile can look like, there exist many
other commands that suit the needs of a developer, [5].

2.4.2 Docker-compose file

To make it easier to build and run multiple containers, a docker-compose
file can be created. It is a YAML file and is a tool for defining and running
a multi-container application. With a single command, a user can create
and launch all services encapsulated in the containers from the user con-
figurations. For development, the compose file is very good for testing the
application environment.

An example of a docker-compose file

Figure 9: A docker-composing file that execute a service based on a Dockerfile

Figure 9 illustrates an example of a docker-compose file that executes a
service based on a Dockerfile. It is a basic docker-compose file that defines the
version at the top. Version 3 is the newest and currently the most beneficial
version to be used. Line 3 defines which service to run, in this case, a service
called product service. The service is based on an image, where the di↵erent
layers are set in the Dockerfile. ./App explain to the docker-compose the file
that the Dockerfile is located in this location. In the ./App direction, the

16

name of the dockerfile is set to Dockerfile, but the dockerfile can be named
anything. The port defines which container port you can access. In this
example, the microservice is created and executed in a container with access
port 8080.

Figure 10 shows when the docker-compose file is built with the docker�
compose build command and executed with docker � compose up �d com-
mand, �d is added so that the container will run in the background. As
can be seen in Figure 10 all layers from the dockerfile are built and with
docker � compose up, the container is created with access port 8080, as
defined in the docker-compose file.

An example of how to build and run the docker-compose file in
the terminal

Figure 10: Shows how an image is built and executed to create a container
with all its dependencies

2.5 Cloud Services

Cloud services provide an opportunity to build and implement an applica-
tion in a modern, e�cient and reliable manner. Cloud services provide an
opportunity to use computing resources that are delivered over a network
connection. The company providing cloud services allows the user to de-
cide how much the platform provider wants to take care of, [16]. In this
project, three di↵erent cloud platforms have been evaluated for their FaaS
functionality.

17

Cloud services providing FaaS

(a) Microsoft Azure Func-

tions, [1]

(b) Amazon Web Services

Lambda, [14]

(c) Google Cloud Func-

tions, [10]

Figure 11: The three largest cloud services providing FaaS, their FaaS func-
tionality have been evaluated with respect to their limitations and costs

The three biggest cloud services that provide FaaS are Microsoft Azure,
Amazon Web Services, and Google Cloud, [24]. As previously mentioned,
no matter what cloud service is used, users should be able to develop their
code in any programming language. FaaS is a new addition to cloud services
and there are some di↵erences depending on the cloud platform used, which
is to be evaluated in the thesis. The di↵erences are in price, memory and
execution time. Note, because FaaS is relatively new, it is developing fast
and new updates are constantly updated and enhanced.

The first cloud supplier presented is Microsoft Azure, although Amazon
was the first major company to develop FaaS, I have almost exclusively used
Azure Functions in this project, Figure 11a. As for the Azure price plan,
there are two di↵erent options for how the user can be billed. It is either the
consumption plan that has been used in this project or app’s service plan.
In the app’s service plan a function runs dedicated to a VM, so the benefits
of paying per use are gone and therefore I excluded it in this thesis. With
Azure Functions when executing a function, it can not exceed 1024MB in
memory and the function has a time limit of ten minutes. The user is billed
for the nearest 100mS and at least 128MB in memory, so it is important to
optimize the function and do not use to small functions. To run a function
for ten minutes, you must manually change it in the function.json file, since
the update just arrived. In Azure Functions, a user can create a Function
App that allows the user to scale up to 200 instances. Table 1 shows the
consumption plan for Azure Functions, [1].

18

Table 1: Azure Function consumption plan

Price Free grant (per month)
Execution time $0.000016 /GB-s 400 000 GB-s
Total # of runs $0.20 per million executions 1 million executions

One thing to mention is that storage is not included in the free grant.
Azure o↵ers new customers a free version where the user can test Microsoft
Azure with 1600 in fictional currency, [1].

Amazon Web Services, AWS, is currently the largest supplier of FaaS
called AWS Lambda, Figure 11b. If AWS Lambda is compared with Azure
Functions, the price plan is almost identical. AWS Lambda has the same
minimum allocation area as Azure functions at 128MB but has triple in
maximum memory use. In AWS Lambda you can create functions that
require a memory use up to 3008MB, with 64MB in increments and the
maximum runtime is five minutes. In Table 2 shows the price plan for AWS
Lambda, [14].

Table 2: AWS Lambda price plan

Price Free payment (per month)
Execution time $0.00001667 /GB-s 400 000 GB-s
Total # of runs $0.20 per million executions 1 million executions

The last cloud service I have evaluated is Google Cloud. The function-
ality of FaaS was developing by Google in 2017 and it is not as advanced
compared to the other two actors. Google Cloud Function, Figure 11c, is
built so that it is very cheap to execute a function with regard to time but
little more expensive for every million executions. A function is allowed to
run for 540 seconds with maximum 1000 deployed functions in each project.
Each function is allowed to have a maximum size of 100MB, which is much
lower than the other actors. How this a↵ects the user will be evaluated and
presented in the results section, [10].

Table 3: Google Functions price plan for FaaS

Price Free payment (per month)
Execution time $0.0000025 /GB-s 400 000 GB-s
Total # of runs $0.40 per million executions 2 million executions

FaaS is growing and developing all the time and more companies have
started to o↵er FaaS. It is important to remember that it is still in develop-

19

ment, there are only a few cloud computing service that are o↵ering FaaS
on a large scale. IBM o↵ers an open source system for FaaS, called IBM
Cloud Functions (based on OpenWhisk), which the user has the ability to
use it in the cloud or on premises. Brief facts about IBM Cloud Functions
also o↵ers 400 000 free GB-s, cost $0.000017 per execution and rounded up
to the nearest 100mS. A function can run up to five minutes but can only
use 48MB in memory. OpenWhisk has not been taken into account in this
project due to time constraints, [11].

3 Method

In this section, I go through how FaaS have been added and tested to di↵erent
architectures.

3.1 FaaS added to a monolithic- and microservice ar-
chitecture

To evaluate FaaS and its advantages in various architectures, I began my
thesis by learning the basics of monolithic- and microservices architecture. I
also needed to have knowledge of API and JSON to understand how FaaS
should communicate, set bindings and configurations. I used a web API to
communicate with my microservice and my FaaS and the Web API:s ”get”-
method to receive the information from the FaaS, Figure 13. In API, I
decentralized my JSON-file containing the information needed to trigger my
FaaS through an Http-request. FaaS has its own function.json file, Figure
6, where all configurations and bindings were determined for FaaS. Figure
12 shows how I tested how to attach FaaS to a monolithic and microservices
architecture. I also evaluated whether FaaS could be executed in a container.

20

FaaS added to a Monolithic- and a Microservice architecture

Figure 12: Shows a general example of di↵erent approaches I’ve used to add
FaaS to a monolithic and microservices architecture

In Figure 13 you can see a part of the code to show how I communicate
and execute my FaaS. It is done via a Web API and its ”get”-method, where
I call my FaaS via an Http-request. In order to send the information needed
for my calculations in FaaS, I create a JSON file. I deserialize the file to
make it manageable and able to save it. With this information, I can then
activate my FaaS which required in this case, a total debt, interest rate, user
ID, etc. FaaS returns a response in the form of a string that I then receive
and calls ”responseString”. Model-View-Controller, MVC, HomeController,
Figure 14, was used to determine what response a user receives when it has
made a request for eg. a microservice. In this case, the response is my FaaS
via a Web API, so now FaaS becomes part of the service.

21

Web API Controller

Figure 13: An example of how I used the Web API:s ”get” method to com-
municate with my FaaS

MVC HomeController

Figure 14: The Model-View-Controller that determines what kind of a re-
sponse a user receives when making a browser request

In order to be able to execute FaaS in a docker container, a Dockerfile
is required with a base image with a FaaS runtime environment e.g. Azure
Functions, Figure 15. By adding a base image, a container can make an
almost identical copy of the runtime environment. This makes it possible
to execute this function at any time and anywhere, using the same runtime
environment as Azure Functions uses in the public cloud. The Dockerfile can
have many di↵erent layers depending on what the developer needs. However,
when the runtime environment is determined, the other layers work in the
same way as explained in the theory section. Thus, by using the Azure
Function runtime environment, the user can develop FaaS in a container with
the same environment as the Azure Functions platform provides. Figure 16
shows an example of a docker-compose file where two FaaS are created and
added to a container. Both the FaaS have their own Docker files based on
their requirements and we can access the functions via the container access
port 8080. The docker-compose file allows multiple FaaS to be added in the
same container.

22

Dockerfile

Figure 15: An example of how a container creates an almost identical runtime
environment like Azure Functions has, in order to allow FaaS to run in a
container

Docker-compose file

Figure 16: An example of how two FaaS can be executed in a container
with all its dependence, port 8080, makes it possible to access the functions
contained in the container

When evaluating FaaS in various architectural environments, all functions
were created with Azure Functions. I created my functions both directly on
the Microsoft Azure Cloud Platform and locally on my computer. I down-
loaded the Azure Functions package to run it locally, I wrote my functions
and microservices in Visual Studio using the programming languages C#.
Azure Functions is not the cheapest or better than any other supplier but
combined with Visual Studio and an easy-to-use free account on Azure, it
became my choice. The open source services Docker has been used to encap-
sulate services and functions in containers.

23

4 Results

In this section, I will review how FaaS can be applied in di↵erent architectures
and its advantages. I will also present cost estimates and a comparison
between the FaaS suppliers.

4.1 Evaluation of FaaS used in di↵erent architectures

In this master thesis, I have studied the use of FaaS in various architectural
environments. The first test I did was to see if it was possible to add FaaS to
a monolithic architecture and to understand FaaS advantages and opportu-
nities. My second test was to create functions where they would be added to
an architecture where the application runs on a VM. The functions also run
on a VM, this has been evaluated to understand why the benefits of FaaS are
needed. The third approach was to use FaaS together with a microservice
architecture, where the entire application runs in the cloud. The fourth and
final evaluation was to see if it was possible to execute FaaS locally with
a Docker container. The main goal of this evaluation has been to see if it
possible to add FaaS to an architecture to handle scaling problems.

4.1.1 FaaS added to a Monolithic Architecture

The first evaluation of FaaS was to add it to an existing monolithic archi-
tecture that was executed locally. For example, if an application reaches a
bottleneck in the infrastructure, execution of the code can be delayed. One
idea to overcome this problem is to see if the FaaS can be added as an ad-
dition to a monolithic architecture to handle the larger information flow.
The approach with FaaS, in this case, was to run the function in the public
cloud and use it when scaling was needed. I assumed hypothetically that the
bottleneck occurred when users needed some form of calculation. I used an
Http-request as an event to trigger my FaaS and the function was executed
whenever a calculation was required. The function receives all the informa-
tion needed and returns a value in the form of a string. In Figure 17 you
can see an architecture of how FaaS can be added to a monolithic architec-
ture. It is an easy and fast way to use FaaS, where you can replace functions
in the application with FaaS or use it for scaling. With this approach, the
developer saves memory and money by letting the cloud provider take care
of the functions and all of its underlying complexity. An easy and fast way
to extend an application and make it more e�cient and handle bottlenecks
without changing too much.

24

FaaS added to a Monolithic Architecture

Figure 17: An architecture where FaaS runs in the cloud and is added to an
application based on monolithic architecture

4.1.2 Architecture where the application and functions runs on
VMs

The next approach was to create functions for an application running on
VMs. This was evaluated to create an understanding of why FaaS and its
functionality are needed. The functions were also dedicated to a VM and the
functions were executed when needed. Because VMs are based on physical
servers, there are still limits to how much space an application may use. How-
ever, when the functions are not needed, the VM can shut down and release
the memory to other areas of the application. When an application reaches
a bottleneck in the infrastructure, there are still limitations on how many
functions can be created on a VM to handle all the information. Therefore,
I understand that an application receives a certain amount of server, CPU,
memory, etc. from the physical servers and when scaling is needed there are
several issues that may occur. Regardless of whether an application runs
on physical servers or VMs, the same problem will occur when scaling is
needed. Thus, to understand the FaaS benefits and to continue with the the-
sis, I needed to understand the concept of how an application can be built
and its restrictions.

25

Architecture where the application and functions runs on VMs

Figure 18: An architecture where an entire application runs on VMs, it was
evaluated to understand the issues that may occur

4.1.3 FaaS added to a Microservice Architecture

The third approach I tested was adding FaaS to the application based on a
microservice architecture where each service was encapsulated in a container.
The containers are lightweight and applied to VMs, executed in the cloud.
Here I have added FaaS as an add-on to an application to show that it is
possible to add FaaS without making any major changes in the architecture.
This can be used for existing applications, but also when building new ones. I
will not focus on why the microservice architecture is beneficial, as explained
in the theory section, but instead focus on why FaaS is a good addition.
As mentioned in the first case of monolithic architecture, this is a perfect
way to outsource some of the underlying complexity. By calling a FaaS with
an Http-request via a Web API connected to a microservice, I could easily
replace functions running on the VM with FaaS. In Figure 19 you can see
an illustration of the architecture explained above. The result of this survey
shows the simplicity of adding a FaaS to an existing microservices architec-
ture, to both handle scaling and make the application use less memory. This
leads to both cheaper and faster applications.

26

FaaS added to a Microservice Architecture

Figure 19: An example of an architecture about how FaaS can be added to
a microservices architecture when FaaS is running in the cloud

4.1.4 FaaS encapsulated in a container and added to a Microser-
vice Architecture

The last approach was to try to execute FaaS in a Docker container to make it
more flexible, smaller and easier to develop and use in production. The con-
tainers containing FaaS are possible to run on the same VM as microservices
that are also encapsulated in containers. The idea is to create a multi-FaaS
container that starts when needed. With this architecture, we can now use
FaaS no matter how the customer wants to run their application. By using
FaaS in a container, it is now possible to execute FaaS directly on the same
VM as the application is built without using the public cloud. Therefore,
with this flexibility, you can develop and test all FaaS locally and move the
container without any changes.

27

FaaS encapsulated in a container and added to a Microservice
Architecture

Figure 20: An example of an architecture on how FaaS encapsulated a con-
tainer can be added to the microservice architecture, the application can also
be run locally due to the use of a container

4.2 Benefits with FaaS compared to physical servers
and VMs

There are two main aspects to why companies would want to improve their
application. First and foremost as I explained in the previous section, it is to
make the application more e�cient. The other aspect is the cost e↵ects. In
this section, I have simulated the di↵erences between when FaaS is running in
the public cloud compared to when the same functions are executed directly
on physical servers or on Virtual Machines.

In the following example, I simulate a smaller example where I run ten
million invocations and each run takes sixty seconds to run. The function
requires 512MB in memory and I will calculate what the monthly cost will
be for each case.

I have used Azure Functions when calculating the price of using FaaS and
I start by calculating FaaS price per month. The total duration will then be
six hundred million seconds, as can be seen in Table 4.

28

Table 4: Resource consumption (seconds)

Executions 10 million
Execution duration (seconds) x 60s
Total duration (seconds) 600 million s

Each function demands a memory for 512MB and if we convert it to
GB we get 1

2GB. If we multiply the resource consumption in GB with total
execution time we receive the resource consumption in GB-s.

Table 5: Resource consumption (GB-s)

Resource consumption converted to GBs 512/1024
Execution time (seconds) x 600 million s
Total resource consumption (GB-s) 300 million GB-s

As mentioned in the theory part, Azure Functions provides the user with
400 000 GB-s for free every month. 300 000 000 � 400 000 = 299 600 000
GB-s. For the calculation of the total cost, Swedish crowns have been used,
where $0.000016 ⇡ 0.000126kr and $0.20 ⇡ 1.575kr.

Table 6: Total cost for GB-s

Total cost (Kr) 299600000 GB-s x 0.000126 kr/GB-s = 37749.6kr/month

I have calculated the total cost of GB usage each month, now we want to
add the monthly resource consumption cost. Monthly resource consumption
cost is 10 000 000 � 1 000 000 (free) = 9 000 000 executions that will
be charged. Each million execution cost 1.575kr, so 9 times 1.575 equals
14.175kr. By using Azure functions with ten million executions and 512MB
in memory the total cost is 37905.52kr/month.

If we want to use FaaS as a function running on a VM instead, I have
made some basic calculations to show you the di↵erences.

At IBM Softlayer you can order Virtual Machines with your own cus-
tomizations, I have done this to simulate the cost di↵erences between the
three approaches, [25]. As can be seen in equation (1) one can see how much
memory the function will need when they run simultaneously. Each function
allocates 512MB so the server needs to at least have 115GB in memory if we
round up the server will have 128GB in memory. On a VM there needs to
be storage, operating system, HyperVisor, maintenance, etc. Two VMs are
necessary in case of system failure which means that two VMs with 128GB

29

memory with advanced monitoring and the extra features and with unlimited
bandwidth cost 69909.93kr/month.

If we compare FaaS and functions running on physical servers we get
following calculations.

I have taken a rather small example, so I have been able to compare that
to if I would purchase my own physical servers. First of all, I need to purchase
two separate servers in case of system failure to use one as a backup. If I
buy and use two HPE ProLiant ML150 Gen9 servers where each server costs
14 495kr, the total price for both will be 28 990kr, [7]. The servers only
have 16GB in memory, which means I have to buy extra memory and also
storage to allow the operating system to be installed. If I use exactly the
same number of invocations and runs, which is ten million invocations and
each function is running for sixty seconds. In equation (1) I calculate how
many seconds there are in the month and it will run 300 million executions
every month, so every second, the server must have at least 115.74 GB in
memory.

60x60x24x30 = 2 592 000s,
300 000 000GBs

2 592 000s
⇡ 115.74GB (1)

To the server, there needs to add 120 x 2 GB in memory. If I add the
memory, I need 15 items of 8GB memory in each server, which will cost
46350kr where each memory cost 1545kr. I will also need some storage to
have my operating system on, etc. I have chosen storage of 150GB, which
some may argue that it is too much but the cost does not a↵ect the total
so much. Two number of storage cost together 2398kr and the total cost is
77738kr.

Table 7: Comparison between FaaS, VM and Physical Servers

FaaS VM Physical Servers
Executions 10 million 10 million 10 million
Duration (seconds) x 60s x 60s x 60s
Memory 512MB 512MB 512MB
Total cost 37906kr 69910kr 77738kr

The total cost of physical servers is more expensive and I have not even
included electricity costs, storage for the servers, maintenance etc. There will
be even bigger problems and cost di↵erences if an application is increasing in
memory and needs to scale. For FaaS, you do not need to change anything
because the cloud supplier takes care of the scaling. With a VM you need to

30

create a new one or increase the existing VM that costs more money. With
physical servers, you need to purchase new components where updates and
maintenance are needed, which will cost even more money. Thus, FaaS is
the cheapest choice, but the importance of simplicity and e�ciency is the
key factor.

4.3 Comparison between the consumption plan between
the three largest FaaS providers

In this section, I present the calculations of the price di↵erences between
the FaaS providers. I will show an example how the calculations have been
performed and also illustrate what happens when di↵erent parameters are
changed. For the calculation example, Azure Functions, AWS Lambda, and
Google Functions have been compared. The functions are simulated to be
executed ten million times, each invocation takes sixty seconds and allocates
512MB memory. Table 8 shows the first step, how to calculate the total
duration in seconds.

Table 8: Resource consumption (seconds)

Functions
Executions 10 million
Duration (seconds) x 60s
Total duration (seconds) 600 million s

With the total duration, we can then calculate the total consumption in
GB-s for each cloud supplier. Since the total consumption is the same for all
three, I have made a column for the calculations.

Table 9: Resource consumption (GB-s)

Functions
Converted to GB-s 512/1024
Execution time x 600 million s

Total consumption x 300 million GB-s

All three FaaS suppliers allow the customer to use 400 000 GB-s free of
charge, leaving the total GB-s charged with 299 600 000 GB-s. However, each
platform has a specific cost for every GB-s. All calculations have been made
in Swedish crowns, SEK, and in Table 10 I have converted USD to SEK
in today’s course, (7 Dec 2017). The cost of each GB-s in SEK has been

31

rounded up to nearest fifth decimal, it has been done to make the calculation
as fair as possible.

Table 10: USD converted to SEK, (7 Dec 2017)

FaaS providers Azure Functions AWS Lambda Google Functions
Cost for each..
GB-s ($) $0.000016 $0.00001667 $0.0000025
GB-s (Kr) 0.00013kr 0.00014kr 0.00002kr
million of runs ($) $0.20 $0.20 $0.40
million of runs (Kr) 1.575kr 1.575kr 3.150kr

Because the biggest memory usage for Google Functions is that each
function may not exceed 100MB. Thus, we need to create six functions to
cover the memory of 512MB, which can be seen in the Table 13.

Table 11: Total cost for GB-s with Azure Functions

Total cost (Kr) 299600000 GB-s x 0.00013kr/GB-s = 38948kr/month

Table 12: Total cost for GB-s with AWS Lambda

Total cost (Kr) 299600000 GB-s x 0.00014kr/GB-s = 41944kr/month

Table 13: Total cost for GB-s with Google Functions

Total cost (Kr) 299600000 GB-s x (0.00002 x 6)kr/GB-s = 35952kr/month

The number of executions that will be added to the monthly cost will be
10 000 000 � 1 000 000 (free) = 9 million executions for Azure Functions and
AWS Lambda. For Google Function, there will be 10 000 000 � 2 000 000
(free) = 8 million executions. The cost of each million run is shown in Table
10. For Azure Functions and AWS Lambda, the cost of running a function
for 9 million times is, 9 x 1.575 = 14.175kr and for Google Functions it is
8 x 3.150 = 9.45. We have to remember that we needed 6 times as many
functions with Google Function, therefore we need to multiply 9.45 with
6 which equals 56.7kr. Table 14 shows the total cost for the three FaaS
suppliers for this particular example, rounded up to the nearest integer.

32

Table 14: Total cost

FaaS providers Azure Functions AWS Lambda Google Functions
Total cost (Kr) 38962kr 41958kr 36009kr

Through this example, we can note that Google Functions is the cheap-
est option, however, this is not the entire truth. Depending on how much
memory a function requires, runtime or number of executions, the result will
vary. In Figure 21 shows the results where I have done the same calculation
but changed di↵erent parameters.

Comparison of the platform providers

0 100 200 300 400 500 600 700 800 900 1000

of runs

0

2

4

6

8

10

12

14

T
o
ta

l c
o
st

 p
e
r

m
o
n
th

104

Azure
Lambda
Google

(a) Total cost per month as a function

of number of executions, 100MB 10s

0 10 20 30 40 50 60 70 80 90 100

of runs

0

2

4

6

8

10

12

14

T
o
ta

l c
o
st

 p
e
r

m
o
n
th

105

Azure
Lambda
Google

(b) Total cost per month as a function

of number of executions, 1024MB 60s

0 500 1000 1500 2000 2500 3000 3500

Memory

0

2

4

6

8

10

12

T
o
ta

l c
o
st

 p
e
r

m
o
n
th

105

Azure
Lambda
Google

(c) Total cost per month as a function

of memory use for each function, 60s 10mil-

lion

0 100 200 300 400 500 600

Total runtime

0

1

2

3

4

5

6

7

8

9

T
o
ta

l c
o
st

 p
e
r

m
o
n
th

104

Azure
Lambda
Google

(d) Total cost per month as a function

of total runtime, 512MB 10million

Figure 21: The graphs (a-d) indicate that depending on the type of functions
you want to put in a FaaS, you must select the cloud service that best suits
your requirements

33

As Figure 21 demonstrate, using FaaS does not mean that everyone that
provides FaaS gives the same outcome of your function. Figure 21 shows four
di↵erent graphs where each curve represents a FaaS provider. In each graph,
I have changed di↵erent parameters to show some examples of the di↵erence,
but you can do endless many di↵erent analyses.

In Figure 21a I have the total cost per month as a function of a number
of executions. The memory requirement for each function has been 100MB,
which is Google Functions maximum memory for a function, where each
function runs for ten seconds. The result shows that each curve is linear and
that in this case, Google Function makes the best choice.

Figure 21b shows the total cost per month as a function of a number of
executions. What I am showing here is that only by making the functions
larger, (1024MB) and where they will run for 60 seconds makes a big di↵er-
ence compared to Figure 21a. By making these, quite small, changes now
Google Function is by far much more expensive to use.

Figure 21c shows an outcome where I have determined the number of
executions and time, a number of executions are equal to ten million and time
for each invocation is equal to sixty seconds. Although the AWS Lambda and
Azure Function have similar consumption plan, they have some di↵erences
in memory and runtime. In this case, because AWS Lambda allows each
function to use 3008MB in memory, Lambda becomes much cheaper to use
the greater the memory required by the function. Of course, when a function
requires more memory needs, Azure Function and Google Function need to
create more functions to achieve the same memory requirements.

Finally, Figure 21d displays the total cost per month as a function of
total runtime. Here I have specified that each function requires 512MB and
a total number of executions to ten million. Since all cloud providers allow
every function to run for at least five minutes, 300 seconds, there are no
major di↵erences in the beginning. The longer a function runs the bigger
the di↵erences will be. Azure Functions allows each function to run up to
ten minutes, 600 seconds, where the other two options need to adjust the
number of functions to achieve the same total time required.

34

5 Discussion

Nowadays, several companies want to move their application to the cloud to
make it both more cost-e↵ective and e�cient. One common problem is that
many people move the entire application directly to the cloud. A problem
may occur because now the application is not optimized to execute in the
cloud and may even become even more expensive. It is crucial to first and
foremost build an application that is suitable for performing in the cloud.
By using this paper survey, many companies can improve their applications
with their own customization. If some companies have scaling problems
but still want the application to be executed in their own data center, they
can simply add FaaS that is executed in the public cloud and save memory,
money, time etc. As the result shows, FaaS is very flexible and can be used in
many di↵erent ways. From just using FaaS to existing applications to handle
a large flow of information to apply FaaS in a container and run locally,
developers will have the opportunity to improve an application in the best
possible way.

FaaS can also be used to move functions that run on physical servers or
virtual machines. If you have functions that run only a couple of hours a day
or the function that runs on a schedule, you could instead let them run as
a FaaS. In other words, a function that does not run for twenty-four hours,
seven days a week can instead be performed in a FaaS to save both money,
but maybe even more importantly, space on the servers.

I have evaluated how to improve cost and e�ciency, but one of the most
important aspects is how security can be ensured when using FaaS in pro-
duction. First of all, we have to decide how sensitive information we want
to send to FaaS and where in the production the bottleneck is. One way to
overcome that sensitive data is leaked is by using UUID (Universal Unique
Identifier), where you send out a random number linked to, for example, an
ID number. If you want to send out e.g. An ID number to a FaaS, you
should send out a random number instead associated with the ID number.
Certainly, there is still a risk that someone could figure out which random
number is associated with which ID number. However, if we combine UUID
with a time stamp so that it will never generate the same number twice, it
would be almost impossible to figure out what information it contains. One
thing worth mentioning is that a FaaS only runs for a short time and then
”dies”, so the time window for hacking a FaaS is very small. The reason why
FaaS is so advantageous is that it is flexible. The result shows that FaaS can
be used in many di↵erent ways and architectures. If a company is determined
to execute an application in its own data center, FaaS can be designed to
run in containers or directly on a VM. Thus, the company is responsible for

35

the security together with the remaining part of the application.
As a developer, it is important to be able to monitor an application as

well as possible. When Faas is used, it is very likely that many FaaS will run
simultaneously. It is then important to find the best and most e↵ective way
to monitor FaaS in order to use it in production. I put a version on each FaaS
so I know which version I am using. The semantic version can be used, where
a version consists of three numbers, [28]. Major.Minor.Patch and depending
on what you change, change one of the numbers. Major is when you change
in API, Minor is when you, for example, add a functionality and Patch is
when you make smaller bug fixes. Developers need to know the version to
keep track of which one to use.

When a version is set on FaaS and I apply it in a container, I need a good
system to handle a containerized applications. A good open source applica-
tion for managing an application is Kubernetes, where you can distribute,
maintain and scale a containerized application. Kubernetes gives you the
ability to run your application anywhere, local, hybrid or in the cloud, it is
a system that provides an infrastructure for your containers, [12].

FaaS is a new addition to cloud services and it is evolving every day. By
just comparing FaaS with VMs and physical servers, one can see that the
benefits and opportunities are huge. FaaS is cheaper, but the simplicity with
FaaS is an important factor to take in consideration. When scaling is needed
with FaaS, the cloud service will handle it for us, within the limits of how
much memory and runtime the function may have. While dealing with VMs
and physical servers, one has to take care of it by themselves, which takes
both time and money. Thus, more focus can be applied in other areas over
the time saved by using FaaS.

The two most important aspects of the evaluation of FaaS are to make an
application more e↵ective and of course cheaper. FaaS undoubtedly gives the
developer the opportunity to achieve both. However, it is very important to
consider what Figure 21 shows that you have to make your own calculation
to understand which FaaS platform provider fits your function as optimally
as possible.

36

6 Conclusion and Future Work

6.1 Conclusion

My conclusions from this thesis is that FaaS is a good addition to both exist-
ing applications and in new applications architecture. Due to its flexibility,
FaaS can be used in many di↵erent architectures. It can be used where there
is, for example, bottlenecks in the infrastructure or just to use its cost ef-
fectiveness. However, just because it is a good addition, it still needs to be
calculated which FaaS provider best suits your functions.

FaaS is in the construction phase and I am sure it will have a big impact
on how applications are developed in the future to become even faster and
cheaper. Quite a few companies o↵er FaaS, as soon as it will be used on a
larger scale, I believe that even more companies will both use it and start
developing it.

By evaluating how FaaS can be used in di↵erent architectures and evalu-
ating its behavior in di↵erent environments, I conclude this conclusion. FaaS
is a very flexible addition and can be tailored to customer requirements. I
think FaaS will be widely used in the near future.

6.2 Future Work

A question for this master thesis is whether it is possible to combine FaaS
with machine learning? For example, if I create a container that contains a
large number of FaaS, can the use of machine learning help you to always
find the cheapest supplier? Could this make FaaS even more beneficial, by
always finding the cloud service that best suits my function?

I have made some discussions on how to set the version and how to
protect data. But everything must be tested practically before it can be
used in production. One must also find an optimal way to monitor their
functions as well as possible.

37

7 Acknowledgments

First I want to express my appreciation to my Supervisor Torbjörn Lundmark
and Tieto [26], who have given me the opportunity to do my master thesis
with them. Extra appreciation of Torbjörn, who has guided and inspired me
throughout the thesis.

To Andreas Hellander, who has been my subject’s reviewer, a great ap-
preciation for help with review and questions.

38

References

[1] Microsoft Azure. Introduction to azure functions. Retrieved 29 October
2017.

[2] Danny Bradbury. Microservices: Small parts with big advantages. 2
2016. Retrieved 30 October 2017.

[3] Mohsen Mosleh Kia Dalili and Babak Heydari. Distributed or mono-
lithic? a computational architecture decision framework. 8 2016.

[4] Docker. Docker overview. Retrieved 5 Januari 2018.

[5] Docker. Get started, part 2: Containers. Retrieved 3 Januari 2018.

[6] Docker. What is docker. Retrieved 29 October 2017.

[7] Dustin. Dustin physical server. Retrieved 20 December 2017.

[8] ecma International. The json data interchange syntax. 12 2017. Re-
trieved 20 October 2017.

[9] Martin Fowler and Jamses Lewis. Microservices. 3 2014.

[10] Google Cloud Functions. Introducing google cloud functions. Retrieved
20 December 2017.

[11] IBM. Ibm cloud functions. Retrieved 5 Januari 2018.

[12] Kubernetes. Production-grade container orchestration. Retrieved 10
Januari 2018.

[13] Paolo Di Francesco Patricia Lago and Ivano Malavolta. Research on
architecting microservices: Trends, focus, and potential for industrial
adoption. 2017.

[14] Amazon Lambda. Introducing aws lambda functions. Retrieved 29
October 2017.

[15] Luke Marsden. The microservice revolution containerized applications
data and all. 5 2015.

[16] Peter Mell and Timothy Grance. The nist definition of cloud computing.
9 2011.

[17] Ima Miri. Microservices vs. soa. 1 2017. Retrieved 10 Januari 2018.

39

[18] MuleSoft. Microservices vs monolithic architecture. Retrieved 5 Januari
2018.

[19] Shahir Daya Nguyen Van Duy Kameswara Eati Carlos M Ferreira Dejan
Glozic Vasfi Gucer Manav Gupta Sunil Joshi Valerie Lampkin Marcelo
Martins Shishir Narain and Ramratan Vennam. Microservices from the-
ory to practice. 8 2015. Retrieved 5 Januari 2018.

[20] Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping
study. 5 2016.

[21] Chris Richardson. Pattern: Api gateway / backend for front-end. Re-
trieved 30 October 2017.

[22] Chris Richardson. Introduction to microservices. 5 2015. Retrieved 30
October 2017.

[23] Mike Roberts. Serverless architectures. 8 2016.

[24] Gregory M. Kurtzer Vanessa Sochat and Michael W. Bauer. Singularity:
Scientific containers for mobility of compute. 5 2017.

[25] IBM Softlayer. Softlayer. Retrieved 20 December 2017.

[26] Tieto. Tieto.

[27] Matt Watson. What is function-as-a-service? serverless architectures
are here! 5 2017. Retrieved 5 Januari 2018.

[28] Tom Preston Werner. Semantic versioning 2.0.0. Retrieved 10 Januari
2018.

40

	Introduction
	Background
	Objective
	Goals

	Theory
	Microservices
	Function as a Service
	Container vs VM
	Docker Container
	Dockerfile
	Docker-compose file

	Cloud Services

	Method
	FaaS added to a monolithic- and microservice architecture

	Results
	Evaluation of FaaS used in different architectures
	FaaS added to a Monolithic Architecture
	Architecture where the application and functions runs on VMs
	FaaS added to a Microservice Architecture
	FaaS encapsulated in a container and added to a Microservice Architecture

	Benefits with FaaS compared to physical servers and VMs
	Comparison between the consumption plan between the three largest FaaS providers

	Discussion
	Conclusion and Future Work
	Conclusion
	Future Work

	Acknowledgments

