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Abstract

Healthy gait requires a balance between various neuro-physiological systems
and is considered an important indicator of a subject’s physical and cognitive
health status. As such, health-related applications would immensely benefit
by performing long-term or continuous monitoring of subjects’ gait in their
natural environment and everyday lives. In contrast to stationary sensors such
as motion capture systems and force plates, inertial sensors provide a good
alternative for such gait analysis applications as they are miniature, cheap,
mobile and can be easily integrated into wearable systems.

This thesis focuses on improving overall gait analysis using inertial sensors
by providing a methodology for detecting gait events in real-world settings.
Although the experimental protocols for such analysis have been restricted to
only highly-controlled lab-like indoor settings; this thesis presents a new gait
database that consists of data from gait activities carried out in both, indoor
and outdoor environments. The thesis shows how domain knowledge about
gait could be formulated and utilized to develop methods that are robust and
can tackle real-world challenges. It also shows how the proposed approach can
be generalized to estimate gait events from multiple body locations. Another
aspect of this thesis is to demonstrate that the traditionally used temporal
error metrics are not enough for presenting the overall performance of gait
event detection methods. The thesis introduces how non-parametric tests can
be used to complement them and provide a better overview.

The results of comparing the proposed methodology to state-of-the-art
methods showed that the approach of incorporating domain knowledge into
the time-frequency analysis of the signal was robust across different real-world
scenarios and outperformed other methods, especially for the scenario involv-
ing variable gait speeds in outdoor settings. The methodology was also bench-
marked on publicly available gait databases yielding good performance for es-
timating events from different body locations. To conclude, this thesis presents
a road map for the development of gait analysis systems in real-world settings.
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Chapter 1
Introduction

1.1 Motivation

Healthy gait requires a balance between various interacting neuronal systems
and consists of three primary components [67]:

e locomotion, including initiation and maintenance of rhythmic stepping,
e balance, and
e the ability to adapt to the environment.

As such, healthy gait is considered an important indicator for quality of life
and deviations from normal walking behavior may be an indication of improper
coordination or dysfunction in any of the involved neuro-physiological systems.
This drives the need for gait analysis which can be used to help diagnose and
assess the severity of neuro-physiological disorders, monitor the rate of recovery
during rehabilitation and be further utilized in wide variety of applications
such as sports science, limb prosthetics, functional electrical stimulation (FES)
systems and more. Many of these applications would immensely benefit if
the analysis could be carried out continuously or over longer periods of time
in patients’ everyday lives with minimum intrusion. This would potentially
initiate newer interventions and improve existing decision-support systems.
The present state of practice is to perform clinical gait analysis in sophis-
ticated gait labs equipped with stationary motion capture systems and force
places that enable videotape examination, kinetic and kinematic analysis of
walking [71, 72]. Although they provide rich and accurate information, they
are inadequate for use in daily living as they are very expensive, require high
operational competence and are fixed to the environment such as lab or smart-
home. Moreover, the walking data is generally collected under highly controlled
conditions and many countries do not have access to such facilities.
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Figure 1.1: The figure illustrates the kinetic, kinematic and spatio-temporal
aspects of gait. Kinetics is the study of forces involved in producing the move-
ments while kinematics is the study of the movement of body through space.
The spatio-temporal aspect consists of spatial parameters such as step length
and temporal parameters such as stride time. Image adopted from [59].

On the other hand, wearable systems and in particular, inertial sensors
i.e. accelerometers and gyroscopes, are gaining momentum as they provide
a cost-effective, low-power, small and unobtrusive alternative for conducting
long-term and continuous monitoring of gait in everyday life. The information
collected from these inertial measurement units or IMUs can be used to esti-
mate kinematic and spatio-temporal parameters of gait or fused using filtering
techniques to re-construct the trajectory of gait. However, a major drawback
with using inertial sensors is that they suffer heavily from noise and require
robust methods to handle the noisy signals to extract clinically relevant infor-
mation.

An essential constituent of objective gait assessment is to study the spatio-
temporal parameters (refer Figure 1.1) and use them to develop objective
measures that can characterize a person’s gait. These parameters can be stud-
ied from stride-to-stride of a given leg over longer periods of time, or compared
between the left and right leg, or evaluated how much they deviate from the
parameters of a reference population group with no gait pathology. Thus, in
order to compute many of these spatio-temporal parameters, the gait cycle is
divided into different walking phases, as shown in Figure 1.2. These phases
are defined and segmented using two primary events that occur during a gait
cycle: (1) when the heel of the foot strikes the ground, referred to as Heel-
Strike (HS) or Initial Contact (IC), and (2) when the toe of the foot leaves the
ground, referred to as Toe-Off (TO) or Final Contact (FC). Hence, accurately
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Figure 1.2: This figure illustrates the different gait phases within a complete
gait cycle. Identification of these gait phases and the estimation of other gait
parameters depends on the accurate detection of the gait events of Heel-Strike
(HS) or Initial Contact (IC) and Toe-Off (TO) or Final Contact (FC). Image
adopted from [19].

identifying these gait events from inertial sensor signals is essential for many
gait analysis applications [81, 45, 56, 84, 21, 83, 28] and towards this goal,
numerous gait event detection (GED) algorithms have been developed over
the years.

However, although the major argument of using inertial sensors over fixed
sensing modalities is that they can be worn continuously in everyday life; most
authors have restricted the experiments to either gait labs or flat indoor corri-
dors. Generally, the experiments are designed in a way that imposes strict con-
straints on the sensor location and its alignment with respect to the body, and
instructs the subject to walk in straight line with pre-defined walking speeds.
While having high control over the experiments may be necessary such that
any changes in the signal waveform can be attributed to visual observations
or to validate the algorithm’s accuracy with ground truth reference systems
(normally taken to be force plates or mocap systems); these well-structured en-
vironments and highly controlled conditions are quite in contrast to real-world
situations. Gait in everyday life may involve walking with varying gait speeds,
taking turns and navigating around obstacles, walking on different surfaces
and surface inclinations, etc. Hence, these real-world conditions may be quite
different and difficult to simulate inside labs and corridors.
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This thesis is motivated by the research questions:

e How do the existing GED methods perform in actual real-world condi-
tions?

e How to develop GED methods that are robust and accurate in real-world
scenarios?

Many of the existing GED methods that have been developed using iner-
tial sensors are purely data-driven approaches that apply implicit or explicit
thresholds and contain many tuning parameters. Some methods use supervised
machine learning techniques where the model parameters are dependent on la-
beled training data and it is not clear whether and how often they would require
re-training with different real-life settings. Hence such methods may not gen-
eralize well across different subjects and environments. Furthermore, since the
intermediate data representations and transformations resemble a ‘black-box’,
the underlying steps maybe be difficult to interpret by users such as clinicians.
Few efforts have been made to include expert or domain knowledge about gait
into the data analysis to develop robust GED methods. Additionally, such
knowledge may be easier to understand by medical personnel and help in cre-
ating intermediate data representations that are perhaps more comprehensible.

This thesis addresses the questions:

e How can domain knowledge about gait be formulated and used to drive
the analysis of gait signals?

e Can the use of domain knowledge help in improving robustness of the
method?

Another disparity that exists between controlled laboratory experiments
and real-world situations is that of sensor placement. In the lab experiments,
the IMU is generally fixed to a body location such that the sensor axis is
aligned with some pre-defined limb axis and it is assumed that the sensor shall
stay static in this configuration throughout the walking trails. Next, using the
collected data, a GED method is developed that is designed specifically for
that particular body location and sensor alignment. Although the subjects
follow these instructions during the experiment, such restrictions would be
hard to follow in everyday life situations, especially for applications that may
require wearing the sensors for longer periods of time. It is quite likely that
due to comfort or other practical issues, the patients may re-adjust the sensor
disturbing the original configuration or even move them to a different body
position. Such real-world challenges require methods to be robust to changes
in axis alignment and generalize to different body locations.

This thesis hypothesizes that domain knowledge could be used to help
tackle some of these real-world challenges and addresses the question:
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e Can the of use of domain knowledge help in generalizing the approach
to multiple body locations and be invariant to axis-alignment?

1.2  Contributions

The main contributions of this thesis can be summarized as follows:

e The first step was to create a gait database that is more representative
of different real-world scenarios in contrast to data collected only from
controlled indoor experiments. Paper II presents a new gait database
called MAREA: Movement Analysis in Real-world Environments using
Accelerometers that consists of walking and running data collected from
20 subjects with accelerometers positioned on waist, wrist and both an-
kles. The data was collected in various environments such as treadmill,
indoor flat space and an outdoor street. The protocol consisted of both,
controlled and semi-controlled experiments with fixed and variable sensor
alignment, varying speeds, different walking surfaces, varying surface in-
clinations and regular turns, among others. In addition to accelerometers,
the shoes were instrumented with Force Sensitive Resistors to provide an
external reference for validation.

e A novel GED method was developed and presented in Paper I by incor-
porating domain knowledge about gait into time-frequency analysis. The
hypothesis was that prior knowledge about the fundamental principles
of gait could be used to help guide the data analysis in order to achieve
greater robustness and accuracy in estimating gait events. The paper ex-
hibits how domain knowledge could be formulated and the results show
that the presented method not only outperforms the existing methods
but also demonstrates consistently good performance across different en-
vironments and scenarios.

e In parallel, state-of-the-art GED algorithms were evaluated in differ-
ent real-world scenarios using the MAREA Gait Database and it was
assessed whether their performance was consistent across different en-
vironments. Paper II evaluates six existing GED methods and the re-
sults reveal that the performance of these algorithms is inconsistent
and varies with changing environments and gait speeds. All algorithms
demonstrated good performance for the scenario of steady walking in a
controlled indoor environment but exhibited significantly decreased per-
formance when evaluated in other lesser controlled scenarios such as an
outdoor street. The results underline the importance of testing GED
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algorithms developed for potential real-world applications in actual real-
world situations. It was also shown that the traditional and widely used
Mean Absolute Error metric is not enough to assess the overall accuracy
and consistency of a GED algorithm and that non-parametric statistical
tests could be used in conjunction to present a more comprehensive view
of their performance in different scenarios.

e Finally, Paper III presents a methodology to estimate initial contact
events from accelerometers attached to different body locations such as
legs, waist, chest and hands. The idea of utilizing domain knowledge
about gait to guide the time-frequency analysis is extended to other
body parts as the body movements are co-ordinated and periodic during
normal gait. The presented methodology is shown to be robust and is
benchmarked on four publicly available gait databases.

1.3 Publications

Appended Publications
Table 1.1 lists the three selected publications included in this thesis.

Table 1.1: List of appended publications.

Paper 1 S. Khandelwal and N. Wickstrém, Gait Event Detection in
Real-World Environment for Long-Term Applications: Incor-
porating Domain Knowledge Into Time-Frequency Analysis,
in IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 24, no. 12, pp. 1363-1372, Dec. 2016. doi:
10.1109/TNSRE.2016.2536278

Paper II  S. Khandelwal and N. Wickstrom, Evaluation of the per-
formance of accelerometer-based gait event detection algo-
rithms in different real-world scenarios using the MAREA gait
database, in Gait & Posture, vol. 51, pp 84-90, Jan. 2017. doi:
10.1016/j.gaitpost.2016.09.023

Paper IIT  S. Khandelwal, N. Wickstrém, Novel methodology for estimat-
ing Initial Contact events from accelerometers positioned at dif-
ferent body locations, in Gait & Posture, vol. 59, pp 278-285,
Jan. 2018. doi: 10.1016/j.gaitpost.2017.07.030
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Other Publications

Table 1.2 presents a list of other publications that are not explicitly included
in thesis as they form smaller parts of the appended publications or have been
written outside the scope of this thesis.

Table 1.2: List of other publications.

J. Bentes, S. Khandelwal, H. Carlsson, M. Kérrman, Tim Svensson,
Nicholas Wickstrom, Novel System Architecture for Online Gait Analy-
sis, at The 39th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), Jeju, South Korea, July
2017

S. Khandelwal, N. Wickstrom, Detecting Gait Events from Outdoor
Accelerometer Data for Long-term and Continuous Monitoring Appli-
cations, at 13th International Symposium on 3D Analysis of Human
Movement (3D-AHM), Lausanne, Switzerland, July 2014.

S. Khandelwal, Nicholas Wickstrom, Identification of Gait Events using
Expert Knowledge and Continuous Wavelet Transform Analysis, at 7th

International Conference on Bio-inspired Systems and Signal Processing
(BIOSIGNALS), Angers, France, March 2014.

S. Khandelwal, C. Chevallereau, Estimation of the Trunk Attitude of
a Humanoid by Data Fusion of Inertial Sensors and Joint Encoders, at
The 16th International Conference on Climbing and Walking Robots
and the Support Technologies for Mobile Machines (CLAWAR), Syduey,
Australia, July 2013. (received Highly Commendable Paper Award)

1.4  Outline

The outline of this thesis is as follows. Chapter 2 presents a brief overview
of different sensing modalities used to develop GED methods. It also presents
different methodological aspects of state-of-the-art GED methods developed
using inertial sensors. Chapter 3 presents how domain knowledge is formulated
and used in reasoning around the chosen methodological steps. It also intro-
duces the reader to time-frequency analysis using continuous wavelet trans-
forms and explains how non-parametric statistical tests can be used to eval-
uate the accuracy of a GED algorithm. This is followed by Chapter 4 which
provides a summary of the appended papers. Chapter 5 offers a discussion on
the thesis and finally, Chapter 6 concludes this thesis.






Chapter 2
Related Work

2.1 Gait Analysis

Human motion analysis refers to the study of human movements using sensors
and is generally focused towards two main goals: (1) classifying the movement
patterns in order to figure out what activity is being performed, and (2) char-
acterizing the movement patterns to assess how (or how well) a given activity
being performed [23, 59]. Low levels of physical activity have been associ-
ated with increased risk of chronic diseases and thus knowing which activities
a person preforms during a day gives insights into their overall health status
[8, 79]. As such, numerous works have been dedicated to classifying daily-living
activities using wearable sensors [6, 44].

On the other hand, characterizing an activity and in particular gait, pro-
vides detailed information about the subject’s physical and cognitive condition
[2, 21, 28]. Many studies have been dedicated to characterize gait and have de-
veloped quantifiable gait measures associated with one or more gait disorders
[17]. While some of these gait measures are more basic spatio-temporal mea-
sures such as: cadence or step frequency, stance time, swing time and double
support time; others are more higher-level measures such as: gait variability
which relates to a subject’s stride-to-stride fluctuations over time [12, 43, 73];
gait symmetry which is a measure of the parallels between the two lower limbs
[63, 60, 58]; and gait normality which relates to the deviation of a patient’s
gait parameters from a reference population group exhibiting no gait pathol-
ogy [61, 62, 7]. Gait events enable the computation of various temporal gait
parameters, and in turn facilitate the computation of many of the aforemen-
tioned gait measures. As such, developing methods for detecting gait events
using various sensing modalities has been an active area of research for many
years.
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The rest of this chapter is organized as follows. First, various sensing modal-
ities used in gait event detection (GED) methods are presented. Next, different
methodological aspects such as experimental design and algorithmic techniques
of state-of-the-art inertial sensor-based GED methods are presented.

2.2 Sensing Modalities

Gait is usually investigated from three aspects: kinetic, kinematic and spatio-
temporal as shown in Figure 1.1 [14, 80]. Kinetics examines the forces that
act upon the body causing it to move. As such, kinetic analysis provides infor-
mation about how the movement is produced and maintained. Kinematics is
concerned with the motion of the body and examines this from a spatial and
temporal perspective. Spatio-temporal parameters are based on spatial vari-
ables such as stride length or step width and temporal variables such as step
time or stride time. Hence, to examine these aspects of gait, different sensors
or a combination of sensors are employed [49].

Camera-based systems

A sensing modality used for kinematic analysis is the motion capture system
which consists of fixed high-speed video cameras that track movement with
the help of reflective markers attached to the body. Then, marker trajectories
are constructed using biomechanical models and the position of the heel or toe
marker is tracked through multiple frames to identify the gait events by visual
inspection. Otherwise, threshold-based peak detection algorithms are applied
to the velocity or acceleration curves of these markers in order to estimate gait
events from them [86, 20, 51, 10, 66, 27].

Force-based Systems

Another sensing modality is the use of force-based sensors which can be fixed
or mobile and the only possible position for these sensors is between the foot
and the ground. Force plates and pressure-sensitive mats allow kinetic anal-
ysis as they measure the ground reaction forces exerted by the foot sole on
the ground. Other force-based sensors include foot switches or force sensitive
resistors (FSRs) attached to the heel and toe to detect gait events. Also, an
alternative is to use pressure insoles that consists of a matrix of sensors cover-
ing the entire sole. As HS and TO produce larger impact forces compared to
the rest of gait cycle, usually thresholds such as 5, 10 or 20N are applied to
the vertical ground reaction force to detect gait events [26, 51, 37, 78, 48, 65].

Motion capture systems and force plates are commonly used together in
gait labs for comprehensive gait analysis and are generally considered as the
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ground truth reference or ‘gold-standard’ for evaluating the accuracy of event
detection algorithms.

Inertial Sensor Systems

Although camera and force-based systems provide rich and accurate informa-
tion, these sensing modalities are not well suited for out-of-clinic applications
that require long-term or continuous monitoring of gait in everyday life. For
such applications, inertial sensors developed using MEMS (Micro-Electric Me-
chanical Systems) technology provide a good trade-off between a variety of
factors such as size, weight, ease of use and comfort, cost, mobility, battery-
life, sensor positioning and cosmetic acceptance. Due to the these factors, the
literature on using inertial sensors for gait analysis is huge and is being con-
stantly reviewed [23, 33, 64, 11, 49, 17, 77]. On the other hand, the major
drawback of using MEMS-based inertial sensors is their susceptibility to noise
which may be caused by calibration errors, constant bias, thermo-mechanical
noise, temperature effects, etc. (usually stated in the respective datasheets)
and hence require robust algorithms to analyze inertial sensor signals [82].

The use of accelerometers or gyroscopes is application-dependent and are
generally commercially available packaged into a single Inertial Measurement
Unit (IMU) [55]. While accelerometry can be used to provide temporal gait
parameters, gyroscopes can be used to estimate joint rotation angles. As such,
many studies are aimed at obtaining reliable spatio-temporal gait parameters
and using them for further gait assessment. Both sensors have been widely
used for developing GED algorithms [57], and recent studies have used them
for biometric gait recognition [69].

2.3  Gait Event Detection Methods

Experimental Design

Numerous GED methods have been developed using inertial sensors. A closer
inspection of their experimental design reveals that they involve many different
protocols with variations in environment, floor type or walking surface, surface
inclinations, instructions for gait speed, sensor locations and other specific
conditions and constraints.

Almost all experimental set-ups consist of a highly-structured environment
such a laboratory or a hospital corridor. A recent study reviewed 78 papers
based on using IMUs as a tool for pathological gait assessment and reported
that approximately 86% were set in a lab or hospital only, 11% in patients’
home environment only and the rest 3% in both [77]. With few exceptions
which have included walking slopes [52, 5, 32| or considered included indoor
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and outdoor free walking in their experiments [52, 70]; there is a considerable
lack of studies which have developed and tested GED methods with protocols
involving free-living settings.

Most GED methods are designed for a particular body location by fixing
the sensor at a pre-defined position such as around the foot [52, 56, 31, 32],
ankle [5, 34, 74, 60], shank [24, 9, 4, 40, 25, 25], just below the knee [63, 81, 74],
thigh [4], waist (front or back) [85, 88, 46| and ear [30]. Once a body location
is chosen, usually the sensor axes is aligned with the limb/body axes with the
assumption that the sensor shall remain in this configuration throughout the
experiment. Such restrictions may be impractical and hard to follow in real-life
settings, especially for long-term and continuous monitoring applications where
the original sensor location and alignment are quite likely to get disturbed due
to practical issues and unforseen circumstances. Hence, there is a need for
algorithms which are invariant to axis-alignment [56, 60, 34] and generalize to
multiple body locations [36].

In terms of gait speed, most protocols either instruct subject to walk in a
straight line at their preferred walking speed [24, 46, 60, 81, 74] or simulate
different speeds by asking them to walk at slow, normal and fast pace [25, 40,
4, 85, 88, 63, 9]. However, since the walking distance is often in the range of
5 to 30 meters, this results in reporting performance by considering only a
couple of steps. Hence, some studies have additionally used treadmill to test
their methods on a range of walking speeds [52, 4, 88, 74, 34].

From the aforementioned factors, it can be noted that not only is there
a lack of standardized protocols but most studies carry out experiments only
in well-structured and highly-controlled lab-like conditions. As the primary
motivation of using IMUs over fixed sensors is that they be easily employed
for health-related applications in daily living, the validity of such methods
in free and uncontrolled real-world settings is unknown and needs further in-
vestigation. In this regard, publicly available gait databases can help as dif-
ferent algorithms can be objectively compared and benchmarked using them
[35, 87, 50, 42].

Algorithmic Design

A number of algorithms developed using inertial sensors either directly apply
spatial or temporal thresholds to filtered sensor signals or use them at some
intermediate stage after signal transformation, to perform peak detection for
identifying gait events [25, 85, 74, 39]. Some algorithms investigate the zero-
crossing of the signal obtained from a particular axis, i.e. when the signal
magnitude changes its sign, to set temporal windows and detect gait events [24,
88]. Other methods use a state machine-based approach by defining different
gait phases as states and then determining state transitions by using pre-
defined rules or applying adaptive thresholds on intermediate signals [56, 52, 9].
A factor common to all these methods is the use of many thresholds and other
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tuning parameters. As such, their performance is dependent on the choice of
these tunables which makes it difficult to generalize them.

Other approaches include the use of machine learning techniques such as
artificial neural network or clustering [81, 5, 47]. However, there are pros and
cons as on one hand they can easily handle large amounts of gait data, on the
other hand the model parameters are dependent on labeled training data which
may not generalize to real-world settings; especially given the lack of abundant
training data [16]. Moreover, since they resemble a ‘black-box’, the results
may be difficult to interpret by medical personnel who need to understand the
reasoning behind a decision before validating it [59].

In recent years, wavelet transforms have been used in gait analysis and in
developing GED algorithms using time-frequency analysis [4, 5, 22, 24, 68, 46,
32]. For example in [4], wavelet transform was applied to decompose the shank
angular velocity into low-frequency approximation signals and high-frequency
detail signals using the Coiflet wavelet. Next, peak detection was applied on
the approximation signals to set temporal windows (with pre-defined thresh-
olds), and search for gait events within each window. A common issue in the
use of wavelet transform for biosignal processing is the choice of appropri-
ate mother wavelet function as there are insufficient guidelines [54]. Different
mother wavelets have been used in GED methods for time-frequency anal-
ysis either using Discrete Wavelet Transform: coiflet [4], bior [22], symmlet2
[24], daubechies6 (db6) and db10 [68], dbl and db2 [32]; or Continuous Wavelet
Transform: db2 [5], Mexican hat [46]. While some studies report that the choice
of mother wavelet was based on visual similarity between the wavelet wave-
form and the sensor signal [4, 22, 32|, others do not provide any reasoning or
explanation and the selection is more ad hoc [68, 24, 5, 46].

Very few methods have considered the approach of formulating and incor-
porating domain or expert knowledge into their algorithmic design to achieve
greater robustness in detecting gait events. In [52], expert knowledge is im-
plicitly used to reason around the motion of the foot during different gait
phases and how it would result in different FSR (force sensitive resistors) val-
ues, placed below the feet. In [60], the use of expert knowledge is more explicit
where the original acceleration signal is transformed into a cyclic sequence of
symbols and organized into all possible pairs to determine which symbols are
associated with HS and TO. Next, domain knowledge about gait phases is
used to formulate different hypothesis and choose the most likely symbol pair
as HS and TO.

This thesis exhibits the formulation and use of domain knowledge to logi-
cally reason around the algorithmic steps in order to detect gait events from
sensor signals. It also shows how it can be utilized to generalize the method
such that it can be adapted to real-world settings involving different environ-
ments, gait speeds and sensor positioning, among others. The use of domain
knowledge also helps in making the system more transparent, thus potentially
increasing the acceptance of such an approach by health-care professionals.






Chapter 3
Methodology

This chapter introduces the reader to how domain knowledge about gait is for-
mulated and used to guide the methodological steps taken to develop a robust
GED method that can tackle challenges such as changes in axis-alignment, dif-
ferent sensor locations and varying gait speeds. Next, the reader is introduced
to time-frequency representation of the sensor signal using continuous wavelet
transform (CWT) by choosing an appropriate mother wavelet. The last section
of this chapter explains why traditionally used metrics such as Mean Absolute
Error (MAE) are not sufficient and shows how non-parametric tests can be
used to complement the MAE in providing an overview of the accuracy and
performance of a GED method.

3.1 Domain Knowledge

Invariance to axis-alignment

As mentioned before, most algorithms analyze signals obtained from individual
accelerometer axis by positioning the sensor in a specific pre-defined orienta-
tion [81, 45, 63, 31, 74, 5, 85] with the assumption that the accelerometer shall
stay statically positioned throughout the experiment. However, it is quite likely
that external factors might disturb the original configuration during long-term
analysis [85], and thus either the axis alignment should be checked and read-
justed frequently or the exact orientation of the accelerometer must be known
throughout, to compensate for the misalignment of the axes. Hence, a pre-
processing step is utilized to make the algorithm invariant to any changes
in axis alignment at the expense of losing information about the directional
vectors of each individual axis. This is done by computing the magnitude of
the resultant acceleration signal, i.e. Acc, = \/(1C(:X2 + accy? + acc,? where

15
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accy, accy, acc, are the signals obtained from each individual axis of the 3-
axes accelerometer; and then using it for further analysis.

Spectral relationships present in normal gait

A major challenge is to design an algorithm that can effectively tackle varying
gait speeds in real-world scenarios. It is known that normal gait is rhythmic
in nature and involves a series of co-ordinated body movements. Hence, the
principles or underlying fundamental gait relationships involved in walking
also remains consistent throughout different gait speeds. For example, one such
underlying gait principle is the frequency relationship that is present between
gait event and gait cycle. In every gait cycle, there are two gait events, namely
HS and TO. Hence the frequency of the event (HS and TO) is twice that of
the cycle.

In a similar manner, such logical reasoning can be extended to other parts
of the body in order to develop a common methodology for estimating gait
events from accelerometers located at different body locations. An accelerome-
ter placed at any body location captures accelerations from the local movement
of the respective body part and the global movement of the body, in a given
direction. As these co-ordinated body movements are periodic in nature during
normal gait, the underlying frequencies associated with these movements are
also co-related. For example, arm swing is a natural motion where each arm
swings with the motion of the opposite leg. Thus, the wrist accelerometer cap-
tures a combination of the local acceleration forces due to the arm swing and
the global acceleration forces due to the forward movement of the body. An
accelerometer positioned in the central body such as chest or waist captures a
combination of forces generated periodically, consisting of the gait events from
both legs and local movements of the body part such as pelvic movements
in the transverse and frontal plane [29]. As such, the major frequency in the
central body acceleration signal is a combination of the gait cycles of the two
legs, which is twice the frequency of the gait cycle of an individual leg.

As these spectral relationships remain consistent with varying gait speeds,
incorporating them into the algorithmic design minimizes the use of thresholds
and tuning parameters; thus making it more robust across different subjects
and real-world scenarios.

CWT and choice of mother wavelet

It is important to find a representation that allows to capture the aforemen-
tioned spectral relationships in gait, localized in time such that they can be
effectively utilized. Thus, continuous wavelet transform (CWT) is used as it
provides a simultaneous time-frequency decomposition of the acceleration sig-
nal. However, there are insufficient guidelines on the selection of wavelet basis
function for gait signals and choosing the most appropriate mother wavelet
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is a challenge [15, 54]. As explained later in the following section, domain
knowledge is used to logically reason around the choice of mother wavelet for
computing the CWT of the acceleration signal.

3.2  Time-frequency representation

In order to exploit the aforementioned spectral relationships present in gait
and capture local variations in the temporal gait acceleration signal, a sig-
nal representation is needed that allows to study or inspect these frequencies
localized in time.

Fourier Transform

Fourier Transform (FT) has been the classical way of studying the frequency
content of a signal by computing the inner product of the signal x(t) with sine
and cosine basis functions, given as:

o0

Flw) = J x(t) e 1@t dt (3.1)
—00

However, as F'T assumes that the frequency content of the signal is constant

throughout the entire signal, it is not possible to localize on frequency varia-

tions in time [3].

Short-Time Fourier Transform

An option is to use short-time Fourier Transform (STFT) which takes a window
of finite length and slides it over the temporal signal. By performing FT in
each of the overlapping windows, we can plot a time-frequency diagram, also
known as spectrogram, that shows the power spectrum for each time region.
However, since the window size is fixed, the time-frequency resolution will be
the same throughout the region. Hence, a challenge is to specify the appropriate
window size as a short window length will yield good time resolution but poor
frequency resolution as shown in Figure 3.1. This is due to the fact that a short
window length can capture high frequencies but there will be a limit to the
low frequencies it can capture within the window. Similarly, choosing a large
window length will allow to analyze low frequencies but then will result in a
poor time resolution due to the big window length.

Continuous Wavelet Transform

An alternative is to use Continuous Wavelet Transform (CWT) which allows to
analyze the signal using variable window width, with different frequencies. As
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(a) Example of composite acceler-
ation signal, computed as, Acc, =
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(c) Spectrogram of Acc, using a win-
dow length of 300 samples with 50%
overlap. Due to a larger window size,
this spectrogram gives better fre-
quency resolution but poorer time
resolution in comparison to the pre-
vious figure (Fig. 3.1b) with a smaller
window size.
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(b) Spectrogram of Acc, using a win-
dow length of 50 samples with 50%
overlap. As the window size is fixed
in STFT, the time-frequency resolu-
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(d) Continuous Wavelet Transform
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frequency decomposition where both,
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be captured simultaneously.

Figure 3.1
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such, it is designed to give good time resolution and poor frequency resolution
at high frequencies (small or finer scales); and good frequency resolution and
poor time resolution at low frequencies (large or coarser scales) as shown in
Figure 3.1. Another advantage is that CWT is not limited to using sinusoidal
analyzing functions and a large selection of basis functions, known as wavelets,
can be employed that satisfy predefined mathematical criterion [3].

The CWT is a convolution of the signal x(t) with scaled and translated
versions of the wavelet function Py b, also called the mother wavelet, and is
expressed as:

CWT(ab) = | x(vws,ar

o0 1 . /t—Db
= LOO x(t) \/atl) ( . ) dt

where a and b are the scaling and position or translation parameters [3].
The normalization factor 1/,/a is to ensure that the norm for any translated
or scaled version of the mother wavelet is same as the mother wavelet itself,
ie. [[Wab(t)||= (). For its practical implementation, the CWT involves a
numerical approximation of the transform integral, i.e. a summation computed
on a discrete grid of a scales and b locations. The CWT of a discrete time signal
xn(n =0,..,N —1), with equal time spacing 8¢, is defined as the convolution
of x,, with a scaled and translated mother wavelet:

N—1 1/2 .
Wals) = 3wy (2) w0 | (32)

S
n’=0

where s is the wavelet scaling factor and n is the localized time index. Thus,
for a discrete time signal, the wavelet is resampled at a sampling interval of
d¢/s to obtain the wavelet transform at scale a. The transform coefficients
produced by this process are a measure of how similar that wavelet function is
to the signal, at that scale and position in time. As such, wavelet transforms
have been applied to wide variety of biosignals such as EMG, EEG, respiratory
patterns, gait and ECG [1].

In the context of this thesis, CWT was chosen in analyzing gait signals as
it could capture subtle signal variations generated by the movement of the legs
such as fast changes in gait speed, localized in time. Furthermore, it gives a
smooth and redundant time-frequency representation of the signal that is easily
comprehensible and interpretable. Fig. 3.2 shows an example of the CWT of
a composite acceleration signal obtained from an accelerometer positioned at
the ankle during walking and running on a treadmill. The speed transitions
captured by CWT can be easily identified and visualized which makes it easier
to interpret and explain to medical experts such as clinicians.
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Figure 3.2: The CWT, using the Morlet wavelet, of a composite acceleration
signal obtained from an accelerometer positioned at the ankle during walking
and running on a treadmill.

The protocol consisted of the following activities:

1. Walking from 4km/hr to 7.4km/hr increasing in steps of 0.4km/hr

2. Running from 7.4km/hr to 10km/hr increasing in steps of 0.4km /hr

3. Walking at preferred walking speed with the treadmill set to 10°inclination
4. Walking at preferred walking speed

The figure shows the ability of CWT to capture non-stationary signal fea-
tures and yield a representation that is easily interpretable. Low or fine scales
correspond to high frequencies and high or coarse scales correspond to low
frequencies. The dotted arrows mark the switch between the activities.



3.2. TIME-FREQUENCY REPRESENTATION 21

Choice of Wavelet Function

There is a wide variety of wavelet basis functions available with different prop-
erties, sometime referred to as wavelet families. If no prior knowledge is avail-
able, generally some factors may be considered while choosing a particular
mother wavelet, such as whether the wavelet is orthogonal or non-orthogonal,
complex or real, width and shape of the wavelet [75].

Based on the formulated domain knowledge, a wavelet basis was desired
that would facilitate investigating or studying the gait event and gait cycle
spectral relationships, in time. In other words, a wavelet function which would
correlate very well with both, the gait event (HS and TO) and gait cycle
regions in the composite acceleration signal and clearly distinguish between
these frequencies in the spectral domain. Another, desirable property was that
the wavelet should be symmetric and thus avoid any skewness in the spectral
domain. This would facilitate in defining clear spectral-temporal boundaries
to localize the gait event region and also define the gait cycle.

Two widely used non-orthogonal and symmetric wavelets for the CWT of
biosignals are the Mexian hat wavelet and the Morlet wavelet [1]. The Mexian
hat wavelet, which is the second derivative of a Gaussian function, correlates
well with the events regions in the composite acceleration signal but does not
correlates well with the gait cycle. In contrast, the Morlet wavelet which has
multiple oscillations in its waveform clearly distinguishes between event and
cycle frequencies, and hence was chosen as the mother wavelet. Figure 3.3
illustrates the result of taking the CWT of the composite acceleration signal
with Mexican hat and Morlet wavelet. It shows the effect of using the non-
symmetric db44 wavelet, suggested for the use of biosignals in a recent study
[564], which leads to skewness in the spectral domain and makes it difficult to
define both, gait event and gait cycle boundaries.

As shown in Figure 3.4a, the Morlet wavelet is a complex sinusoid within
a Gaussian envelope and is defined as:

Vo (t) = 1/ glwot eft2/2 (33)

where wq is the central frequency of the mother wavelet and its value de-
termines the number of ‘effective’ sinusoidal oscillations contained within the
Gaussian envelope. The /4 term is a normalization factor which ensures
that the wavelet has unit energy. To satisfy the admissibility criteria, wg is
generally chosen to be greater than 5.

The wavelet scale a and its equivalent Fourier frequency f are inversely
proportional to each other, i.e. a < 1/f. For the Morlet wavelet, this relationship
can be derived analytically and is given as [75, 13]:

! ina (3.4)

fwo+ 2+ w?
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Figure 3.3: The CWT of a composite acceleration signal using different wavelet
functions, namely, db44, Mexican hat and Morlet wavelet. db44 is an asym-
metric wavelet and causes skewness in the spectral domain. Mexican hat is a
symmetric wavelet but does not distinguish between the gait event and cycle
frequencies, in time. The Morlet wavelet is symmetric and clearly distinguishes
between the event and cycle frequencies, in time. As such, the Morlet wavelet
was chosen as the mother wavelet.
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Figure 3.5: An example of the scalogram of the composite acceleration signal
and the corresponding scale-dependent energy distribution.

where wy is the center frequency of the Morlet. Figure 3.4b shows this scale-
frequency relationship of the Morlet.

Scale-dependent Energy Distribution

The relative contribution to the total energy contained within the signal x,
at a specific scale a is given by the scale-dependent energy distribution:

N—1
E(a) = ) Wa(a)P (3.5)
n=0

where Wy (a)? is the two-dimensional wavelet energy density spectrum, also
known as scalogram. Peaks in E(a) highlight the dominant energetic scales
within the signal. For example, as shown in Figure 3.5, peaks in the scale-
dependent energy density spectrum of the composite acceleration signal high-
light the dominant scales that correspond to the frequency of gait events and
gait cycle.
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3.3 Using non-parametric tests for evaluating
performance

Various statistical measures are used in the literature to indicate the perfor-
mance of a GED algorithm, i.e. how well is the algorithm able to detect gait
events. One of the most popular ways used to present the performance of an
algorithm is by reporting it’s temporal detection accuracy, sometimes referred
to as True Error [76, 41, 66, 88, 63]. It is computed by taking mean of the
temporal difference between the estimated gait events by the algorithm and
the corresponding ground truth (GT) events, given as:

n

D (Algo; — GTy)

i=1

TE =

Sl

Another similar temporal accuracy measure often reported in literature is
the Mean Absolute Error [60, 5, 46, 34], given as:
1 n
MAE = — > |Algo; — GT|

i=1

Although they indicate the ability of a GED method to detect events accu-
rately in time, they standalone do not provide an overview of the algorithmic
performance as only the true positive events estimated by the method are
used to compute these measures. Figure 3.6 shows an example of applying two
methods, namely Method 1 and Method 2, on a part of the left foot com-
posite acceleration signal of a subject from the Outdoor Walk & Run dataset
in the MAREA Gait Database [35]. The magenta triangles are the HSs es-
timated by the two methods where true positive events have been circled in
black and the green dots show the corresponding GT events. Although both
methods have very similar TE and MAE values, it is evident from the figure
that Method 2 performs better than Method 1. As such, these error measures
by themselves are not enough to indicate the performance of a GED algo-
rithm. Consequently, many authors have complemented the temporal error
measures with other statistical scores such as Sensitivity, Specificity, F1 score
or providing the Bland-Altman analysis for showing the agreement between
the estimated events and GT [56, 63, 5, 85].

In this thesis, it is shown that an alternate way of assessing the performance
of a GED algorithm can be done by comparing the shape of the two stride
time distributions obtained from the method and ground truth. Stride time
is defined as the time between two consecutive HSs or TOs. If all estimated
gait events exactly matched the corresponding GT events, then this would
lead to identical stride time distributions and indicate high temporal accuracy
and performance of the method. However, occurrence of any false positives or
false negatives would lead to shorter or longer stride time durations, which in
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Figure 3.6: This figures shows the result of applying two GED methods, namely
Method 1 and Method 2, on the left foot acceleration signal (Subject 15)
taken from the Outdoor WalknRun dataset of MAREA Gait Database. The
estimated HSs by the respective methods are shown as magenta triangles and
the ground truth (GT) HSs are shown as green circles. The true positive events
(taking a temporal tolerance of GT + 5 samples) detected by the respective
algorithms have been circled in black. The TEs obtained for Method 1 and
2 are -0.0031s and 0.0029s respectively, and the MAEs are 0.003s and 0.004s.
Although it is evident from the figure that Method 1 has occurrence of false
positives and false negatives, both methods have very similar TE and MAE
values.
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turn would be reflected in the shape of the resulting stride time distribution
and would be dissimilar compared to the corresponding one obtained from
GT. The same logic can be extended to comparing the step time distributions
where step time is defined as the time between the gait event of one leg and
corresponding event of the other leg.

Since daily life walking involves varying gait speeds, it is difficult make
any assumptions on the underlying form of the resulting stride or step time
distributions. As such, non-parametric statistical tests such as Kolmogorov-
Smirnov (KS) test and the Mann-Whitney U (MWTU) test can be employed to
test the similarity of two stride or step time distributions [18].

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test is used to compare two data distributions
by comparing their empirical cumulative distribution functions (CDFs), given
as Fn(a) = % > I(xi < a) where n is the observed data points and I is
a function that returns 1 when its argument is true and 0 when it is false.
The top row in Figure 3.7 shows the histogram of the stride time distributions
obtained by applying Method 1 and 2, along with corresponding GT, on an
Outdoor WalknRun dataset in the MAREA Gait Database. The bottom row
shows the corresponding empirical CDFs of the respective methods along with
the stride time CDF computed from GT events. Thus if we have two samples
of size n and m with corresponding empirical CDFs F,, (x) and Gy, (x), and we
want to test:
Ho:F=G Vs Hy:F#G

then the KS statistic Dy, is given as:

Dnm = max |Fn(x) - Gm(x)|

The null hypothesis is rejected if Dy > c(a) (%)1/2 where c(x) is the
critical value at « level of significance (for example, c(«) is 1.36 for o = 0.05).

Applying the KS test to the stride time distributions obtained from Method
1 and GT leads to a KS statistic: D = 0.22. This is shown using the dotted
magenta line in the bottom-left subfigure of Figure 3.7. Hence the test rejects
the null hypothesis as D is greater than the critical value, i.e. D > 0.09 (for
o« = 0.05). Similarly, applying the KS test to Method 2 and GT leads to a
KS statistic D = 0.028 and hence the test does not reject the null hypothesis
indicating that the stride time distribution of Method 2 is more similar to GT
as compared to Method 1. In other words, two distributions are more similar
if the KS statistic is closer to 0 and more dissimilar if it is closer to 1.
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Figure 3.7: The top row shows the stride time histograms of applying two
GED methods, namely Method 1 and Method 2, on the left foot acceleration
signal (Subject 17) taken from the Outdoor WalknRun dataset of MAREA
Gait Database. The stride time computed from ground truth (GT) HS events
is also shown. The bottom row shows the empirical cdfs of the above stride
time histograms. The KS test is utilized to compare the cdf of a method and
the GT and the corresponding KS statistic is shown using dotted magenta
lines.
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Mann-Whitney U Test

The Mann-Whitney U (MWU) test is another non-parametric test that can be
employed to test the null hypothesis that two groups have the same distribution
while the alternate hypothesis is that one group has larger (or smaller) values
than the other. The test statistic for MWU is computed as:

1. Combine all data points and rank them.

2. Add up the ranks for data points in the first group and call this R;.
Compute U; = Ry —ny(ny +1)/2 where n; is the number of data points
in this group. Similarly, compute U, for the second group.

3. The test statistic is defined as U = min(Uy, Us).

If both the sample sizes are large (>10), then U is approximately normally
distributed in which case the p-value can be obtained from a z-test computed
as z = (U—my)/ou, where my = nq(n; +ny +1)/2 and oy = v/ myns/6
[38].

Taking the same example in Figure 3.7, applying the MWU test to compare
the stride time distributions computed from Method 1 and GT events leads
to z = 2.02 and results in a p-value of 0.043. As this is less than the level of
significance & = 0.05, the MWU test rejects the null hypothesis that the two
samples have the same distribution. Similarly, when comparing the stride time
distributions computed from Method 2 and GT events, the MWU test yields
a p-value of 0.956 and the test does not reject the null hypothesis. In other
words, it is a test of equality of medians and tests whether both samples come
from distributions with the same shape.






Chapter 4
Summary of Appended Papers

This section introduces the motivation, objectives and results of each individ-
ual paper and how they relate to the overall objectives of this thesis.

4.1 Paper I - Gait Event Detection in Real-World
Environment for Long-Term Applications:
Incorporating Domain Knowledge Into
Time-Frequency Analysis

Gait analysis can be used to help diagnose and assess the severity of neuro-
physiological disorders such as Parkinson’s Disease, multiple sclerosis, cerebral
palsy, dementia, etc [77, 21]. Moreover it could be used to assess the rate of
recovery of a patient during rehabilitation after stroke, hip replacement or
lower limb injuries [17]. These applications would immensely benefit from long
term and continuous monitoring of gait in patients’ natural ecology. In contrast
to fixed sensors such as motion capture systems and force places found in gait
labs; inertial sensors can be used for gait analysis in daily life as they are
unobtrusive, cheap, miniature and wearable.

The goal of Paper I was to propose a new method that can detect gait
events from accelerometer signals. The method was shown to be robust and
effectively tackle real-world challenges such as varying gait speeds, different
walking surfaces and surface inclinations, and changes in sensor axes orienta-
tion. The gait event detection results were compared to two state-of-the-art
methods for experiments conducted in different environments such as indoor
flat space, treadmill and outdoor street. Two 3-axes Shimmer3 accelerome-
ters were positioned at the ankles of each subject and force sensitive resistors

31
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(FSRs) were embedded in the shoes to simultaneously collect ground truth
information.

The proposed method was based on utilizing domain knowledge in the form
of fundamental spectral relationships present in gait to drive time-frequency
analysis of the acceleration signals. Domain knowledge was used to logically
reason around choosing the Morlet wavelet to compute the continuous wavelet
transform (CWT) and represent the acceleration signal simultaneously in both,
time & frequency. A running window was taken across the CWT coefficients
and the energy density spectrum was computed in every window to highlight
the major frequencies associated with gait event and cycle. As the energy
density spectrum profile shifts along the spectral axis in response to different
gait speeds, a tracking procedure was designed to track these major frequencies
varying in time. The information extracted from the tracking procedure was
used to define a spectral-temporal search space within which the gait event
was estimated.

The results showed that the proposed method performed well when com-
pared to gait events detected using FSRs. It demonstrated good performance
as other methods for the activity of steady walking in an indoor flat space, but
outperformed other methods when the gait speeds were varied; especially for
walking and running in an outdoor street. This was probably due to the fact
that there is larger variation in the acceleration signals collected from walk-
ing and running in an unstructured environment such as an outdoor street in
comparison to steady walking in a well-structured indoor corridor. As such,
while the proposed method utilized spectral relationships in gait that remain
unchanged; the other methods are unable to adapt as they are purely data
driven with numerous tuning parameters.

Paper I contributed to this thesis by presenting a robust gait event de-
tection method that helps in enabling long-term and continuous gait analysis
in everyday life. It also illustrates how domain knowledge about gait could
be formulated and used to guide the signal analysis. Additionally, the paper
shows how domain knowledge is used to logically reason around choosing a
mother wavelet to compute the CWT of the acceleration signal.

4.2 Paper II - Evaluation of the performance of
accelerometer-based gait event detection
algorithms in different real-world scenarios using

the MAREA gait database

Although the major argument of using inertial sensors over fixed sensors such
as high-speed cameras and force plates is that they can be easily used in
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everyday life, almost all existing gait event detection methods have been de-
veloped and assessed using data collected in well-structured and highly con-
trolled indoor conditions with pre-defined paths and walking speeds. Thus, it
is presently unclear and remains to be seen how these methods perform in
other environments and lesser controlled conditions [67]. Moreover, there is a
lack of publicly-available gait databases that consist of data collected outside
indoor corridors and other real-world settings.

The objective of Paper II was to present a new gait database called MAREA
(Movement Analysis in Real-world Environments using Accelerometers) and
benchmark the performance of six state-of-the-art gait event detection al-
gorithms in different scenarios constructed using the database. The selected
methods were developed from accelerometers positioned on the lower leg, such
as forefoot, ankle and shank. It was also shown that non-parametric statisti-
cal tests could be used to provide an overview of the detection accuracy of a
method and that the traditionally used Mean Absolute Error is not enough to
indicate the overall performance of a method.

The database consisted of walking and running activities done by 20 healthy
subjects in indoor flat space, treadmill and outdoor street, with accelerome-
ters positioned on waist, wrist and both ankles. From this five different sce-
narios were constructed to reflect varying real-world situations on which the
state-of-the-art methods were evaluated. In addition to presenting the absolute
temporal accuracy of each method, the F1 score was computed and two non-
parametric statistical tests (Kolmogorov-Smirnov test and Mann-Whitney U
test) were employed to compare the shape of stride time distributions obtained
from each method and corresponding ground truth datasets.

The results reveal that the performance of these algorithms is inconsis-
tent and varies with changing environments and gait speeds. All algorithms
demonstrated good performance for the scenario of steady walking in a con-
trolled indoor environment but exhibited significantly decreased performance
when evaluated in other lesser controlled scenarios such as walking and run-
ning in an outdoor street. This is probably due to the use of many tuning
parameters and spatial or temporal thresholds in the algorithmic design which
renders them unable to adapt to large variations such as differences in gait
speeds. Additionally, it may be attributed to fact that many methods process
individual axis signals obtained from pre-defined axes alignment fixed relative
to the limb with the assumption that they shall remain static throughout the
experiment. However, deviations from original configuration are likely to occur
in uncontrolled scenarios and everyday life conditions.

Paper II contributed to this thesis by showing that methods developed and
previously assessed in highly controlled indoor conditions with the argument
of use in daily living, demonstrate significantly lower performance in lesser
controlled and structured conditions such as an outdoor street. Additionally,
the paper shows how non-parametric statistical tests could be used to assess
the overall detection accuracy of a method.
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4.3 Paper III - Novel Methodology for Estimating
Initial Contact Events from Accelerometers
positioned at Different Body Locations

Most gait event detection algorithms are designed for a specific body location
such as ankle, shank, waist, chest, arm, etc [57]. Although choosing a position
is application-dependent, it restricts the patient to wear the sensor at that
pre-defined location throughout the study. This can be problematic, especially
for long-term or continuous monitoring of gait during daily life, where either
the patient may not comply and change the original sensor location or take-off
and re-attach the sensor, thus disturbing the original alignment. Hence there
is a need for robust algorithms that can detect gait events with high accuracy
from different body locations.

The objective of Paper III was to present a methodology called DK-TiFA
(Domain Knowledge in Time-Frequency Analysis) that can detect Initial Con-
tact events from different body locations. In order to assess the performance,
DK-TiFA was benchmarked on four large publicly available gait databases con-
sisting of total seven unique body locations [35, 87, 50, 42]. It was shown that
the proposed methodology demonstrated high accuracy and robustness for es-
timating Initial Contact events from data consisting of different accelerometer
specifications, varying gait speeds and different environments.

The proposed methodology builds on the approach presented in Paper I by
extending the domain knowledge about spectral relationships present in gait
(previously formulated for the ankles), to other parts of the body. For each
location, a running window was taken along the CWT coefficients of the accel-
eration signal and the energy density spectrum was computed in every window
to highlight the dominant spectral frequencies (or scales). Next, a tracking pro-
cedure was designed to consistently track the most dominant spectral energy
scale in every window. This information was used to obtain a distinct tem-
poral signal where the local maxima points in the signal corresponded to the
estimated Initial Contact events.

The results showed that the proposed methodology performed well when
applied to different gait databases. Non-parametric statistical tests and Bland-
Altman analysis were used to assess the accuracy and overall performance of
applying the method to acceleration signals collected from different body loca-
tions. However, it was observed that the proposed methodology demonstrated
lower performance for estimating events from placements on the arm such as
wrist and upper arm. This was due to the fact that the tracking procedure
was unable to effectively tackle rapid changes in arm swing behaviour of the
subjects.

Paper III contributed to this thesis by presenting a methodology that is
capable of estimating Initial Contact events from different body locations. This
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helps in enabling gait analysis in daily life by overcoming patient compliance
and other practical sensor location issues, likely to occur in real-life settings.






Chapter 5
Discussion

The goal of the work presented in this thesis was to develop methods that
could detect gait events in real-world conditions from inertial sensor signals.
This requires the methods to be robust to changes in original sensor config-
uration, different environments, variations in gait speeds and adapt to mul-
tiple body locations. While this thesis addresses many of these issues, there
are other practical and application-based requirements which may arise when
implementing the proposed methodology in real-world situations. Moreover,
there are some methodological limitations which may restrict its direct use in
various applications and require future work.

One such requirement may be that the method should be online or fast
enough to be executed in near real-time. Currently, the proposed method is
offline as it requires temporal windowing of the CWT coefficients to extract
relevant information from every window which is then compiled together in
a later step. One approach, to render it online would be to parse the sensor
signal in chunks of some size and run the algorithm over each such chunk of
data. The windowing is necessary to adapt the method to varying gait speeds
and as such could be avoided for studies where the gait speeds remain fairly
constant, such as walking with preferred walking speed. Also, currently the
method is implemented in MATLAB® v8.5 (MathWorks, USA) with in-built
functions and routines. The execution speed may be increased by migrating
to a low-level language such as C/C++ and using faster routines for com-
putationally expensive operations; such as calculating the CWT coefficients
which is a essentially convolving two signals. Overall, future work is required
for figuring out optimal ways of converting the proposed methodology online.

Monitoring a patient over longer periods of time would generate sensor
data that consists of activities other than just walking such as sleeping, sitting
and other daily living activities. A limitation of the proposed method is that
it can be implemented only on walking segments of the sensor signal as it does
not distinguish between walking and non-walking tasks. A possible solution
may be to integrate an activity recognition algorithm that can extract walk-
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ing segments from the raw data and then parse it to the proposed method.
Additionally, as the method avoids thresholds and uses little tuning parame-
ters, the sampling frequency may be varied depending on the activity. Thus
for non-walking tasks the data could be sampled at lower rates to save energy
and increase battery-life and switched to higher sampling rates during walking
to obtain better detection accuracies.

The algorithms designed in Paper I and Paper III take a temporal window
along the CWT coefficients to track the varying gait speeds. However, the
algorithms are unable to adapt to very fast transitions in gait speeds as they
cause large shifts in local signal energy. Thus, depending on the window size,
this leads to an energy density spectrum profile which is a combination of
two very different gait speeds with overlapping event and cycle regions from
the CWT coefficients corresponding to each speed. For example, this is seen
in Paper I where both constraints are not satisfied and curve is fit over the
profile which may still not satisfy the set constraints. Another similar example
is seen in Paper III where the algorithm is unable to adapt to fast changes in
arm swing motion of the subjects.

Choosing a sensor location for an application may depend on numerous
aspects such as the body part to be studied, practical issues such comfort
and ease of use, aesthetic appeal, number of sensors, etc. Although Paper
III aims to present a method that can detect HS from multiple locations,
it does not do so autonomously and requires the location information as an
input to the algorithm. Also, while Paper I shows how to detect both HS and
TO from sensors located at the ankles, future work is required to extend the
methodology to detect TOs from upper body locations such as waist. This
would be challenging as the TO forces experienced in the upper body parts is
much less in magnitude compared to the feet and there may be overlapping
forces such as HS of the other foot and local body movements. On the other
hand, it would be advantageous as instead of two sensors (placed at the ankles)
required to obtain gait events from both legs, only one sensor (placed on the
upper body) would be enough.

A current limitation is that the presented algorithms have been tested only
on healthy gait. This was because there is lack of any publicly-available patho-
logical gait databases. Although, I believe that in a similar fashion, domain
knowledge could be adapted and coupled with time-frequency analysis to tackle
issues with pathological gait. But that being said, extremely challenging gait
behaviors such as shuffling gait with no well-defined gait events would warrant
deeper investigation.

For further development of gait analysis, I believe it is necessary to not
only conduct experiments in laboratory settings but also move out and per-
form experiments in patients’ daily lives. This would help in understanding
user behaviors such as preferred sensor location, gauging practical require-
ments such as system specifications, data storage, data privacy, battery-life,
feedback to users, and simultaneously drive the development of robust algo-
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rithms. Also, with homes and offices now being equipped with various sensors,
fusing the information from fixed and wearable sensing modalities would yield
much richer raw and contextual information about the patient’s movements;
leading to newer interventions and improved support systems.






Chapter 6
Conclusions and Future Work

This thesis deals with performing gait analysis, and in particular estimating
gait events, using inertial sensors in real-world settings. Traditionally, such
analysis is carried out in laboratory or similar settings, imposing a number of
assumptions and restrictions on the experimental protocols. Inertial sensors are
cheap, durable, low-powered and unobtrusive which makes them convenient for
use in daily living and enable long-term health-related applications. However,
they yield noisy signals and require robust algorithms for data analysis.

This thesis presents the use of domain knowledge about gait and shows how
it can be formulated and applied to guide the analysis of gait signals. Based
on domain knowledge, continuous wavelet transform is used by selecting an
appropriate mother wavelet which yields an intermediate data representation
that is more comprehensible and facilitates further analysis. The thesis also
suggests the use of non-parametric statistical tests in addition to tradition-
ally used error metrics to assess the accuracy and performance of gait event
detection methods. The presented methodology serves as blueprint for for-
mulating domain knowledge for estimating periodically occurring events from
other related biosignals.

A database called MAREA is presented that consists of gait activities per-
formed in different settings such as indoor space, treadmill and outdoor street;
with sensors positioned on different body locations (made publicly available at
http://islab.hh.se/mediawiki/Gait_database). It is shown that existing
methods show inconsistent performance across different scenarios constructed
using the database. The thesis presents a robust method that is capable of
detecting gait events from sensors positioned at the ankles with excellent ac-
curacy in different environments and gait speeds. Domain knowledge is used
to extend the method to estimate initial contact events from multiple body
locations such as ankle, thigh, waist, chest, upper arm and wrist; and is bench-
marked on three other publicly-available gait databases.

The presented methodology has its limitations and requires further work.
The designed algorithms are offline and work only on walking segments of the
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raw input signals. One way to deal with this would be to integrate existing
activity recognition methods in order to segregate walking and non-walking
activities from the raw sensor signals. Next, the walking sections would be
parsed in batches and the algorithms would be applied on each batch of raw
walking data.

Furthermore, the presented methodology has been tested only on healthy
gait and future work is required to adapt it to pathological gait. This could
potentially open doors to new possibilities by enabling continuous monitoring
of neuro-physiological patients (such as Parkinson’s Disease) in their natural
environment and continually obtain their gait parameters such as step time,
stride time, stance and swing time. By studying how these parameters vary over
time (such as stride time variability) in response to medicine or interventions
could not only provide objective information but also help in observing their
effects over different time scales, planning better protocols and developing new
tools for assessing disease severity.
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Gait Event Detection in Real-World Environment for
Long-Term Applications: Incorporating Domain
Knowledge Into Time-Frequency Analysis

Siddhartha Khandelwal and Nicholas Wickstrom, Member, IEEE

Abstract—Detecting gait events is the key to many gait analysis
applications that would benefit from continuous monitoring or
long-term analysis. Most gait event detection algorithms using
wearable sensors that offer a potential for use in daily living have
been developed from data collected in controlled indoor exper-
iments. However, for real-word applications, it is essential that
the analysis is carried out in humans' natural environment; that
involves different gait speeds, changing walking terrains, varying
surface inclinations and regular turns among other factors. Ex-
isting domain knowledge in the form of principles or underlying
fundamental gait relationships can be utilized to drive and support
the data analysis in order to develop robust algorithms that can
tackle real-world challenges in gait analysis. This paper presents
a novel approach that exhibits how domain knowledge about
human gait can be incorporated into time-frequency analysis
to detect gait events from long-term accelerometer signals. The
accuracy and robustness of the proposed algorithm are validated
by experiments done in indoor and outdoor environments with
approximately 93 600 gait events in total. The proposed algorithm
exhibits consistently high performance scores across all datasets
in both, indoor and outdoor environments.

Index Terms—Accelerometer, gait analysis, inertial sensors,
morlet, principles of gait, stride parameters, wavelet transform.

I. INTRODUCTION

ORMAL gait consists of three primary components: loco-

motion, balance and ability to adapt to the environment
[1]. This requires a balance between various interacting neu-
ronal and musculoskeletal systems. Dysfunction in one or more
of these systems can disturb gait, which elucidates the impor-
tance of gait analysis. In the temporal domain, the two most rel-
evant events in a normal gait cycle are heel strike (HS) and toe
off (TO); other parameters such as swing, stance and stride dura-
tion can be computed from them. Thus, identifying these events
is the key to many gait analysis applications [2]-[9] that would
benefit from long-term, continuous monitoring in humans' nat-
ural environment, enabling gait assessment and interventions
that have not previously been possible [10]. The present state of
practice is to perform clinical gait analysis in controlled gait labs
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equipped with stationary sensor systems such as motion capture
systems and force plates [11]. Although these systems provide
rich and accurate information, they are inadequate for use in
daily life as they are immobile, expensive, require high opera-
tional competence and provide information that is restricted to
only a couple of steps. Foot switches such as force sensitive re-
sistors (FSRs) provide contact timing information and are often
used as the reference method in determining the accuracy of
gait event detection in other systems [2], [12]-[14]. However,
they do not provide any kinematic data or spatial information
during swing phase, which are important aspects in patholog-
ical gait assessment [15]. Alternatively, inertial sensors such as
accelerometers and gyroscopes can be used for gait assessment
as they provide spatio-temporal information and can be used
in combination to estimate parameters such as the trajectory of
foot during gait [16]. Technological advancements have made
them miniature, low-powered, durable, inexpensive and highly
mobile, thus making it possible to collect long-term data from
daily life. While some researchers have developed gait event de-
tection algorithms from gyroscope data, others have developed
from accelerometer signals [17]. In either of these situations, re-
searchers could potentially benefit by applying improved algo-
rithms to existing gait databases and utilizing them for future ap-
plications and further gait analysis. In the context of gyro-based
algorithms, many methods have been developed from angular
velocity signals obtained from shank-attached gyroscopes. For
example, the approach in [18] uses adaptive thresholds while
[13], [19] use peak detection to identify HS and TO from an-
gular velocity signals. Other approaches include [20], where the
gait cycle is divided into four gait phases represented in the
form of a state machine and the transitions are governed by a
knowledge-based algorithm, and [21], where an online Hidden
Markov Model based method is presented. In [12], a wavelet
based method is used to search for peaks associated with HS and
TO which is modified in [22], such that the method can be used
with minimal time delay. On the other hand, accelerometers are
also being increasingly used as they are low powered devices, in
the range of few microamperes, and have been shown to provide
reliable measures of gait parameters [17], [23]. Most algorithms
analyze signals obtained from individual accelerometer axis by
positioning the sensor in a specific pre-defined orientation [2],
[31, [13], [24]-[28] with the assumption that the accelerometer
shall stay statically positioned throughout the experiment. How-
ever, it is quite likely that external factors might disturb the orig-
inal configuration during long-term analysis [28], and thus ei-
ther the axis alignment should be checked and readjusted fre-
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quently or the exact orientation of the accelerometer must be
known throughout, to compensate for the misalignment of the
axes. An alternative is to analyze the magnitude of the resultant
accelerometer signal instead which makes it invariant to indi-
vidual axis alignment, as done in [4], [29]. While some method-
ologies instruct subjects to walk in a straight line or a given path
at a self-selected pace [4], [13], [27], [29], others either pre-de-
fine a set of walking speeds or ask the subjects to walk slowly,
normal and fast, in order to test the algorithmic robustness to
different velocities [3], [14], [24]-[26], [28]. A number of algo-
rithms apply thresholds either to filtered accelerometer signals
or use them at some intermediate stage after signal transforma-
tion, to perform peak detection for identifying events [25], [28],
[29]. The performance of such algorithms is usually dependent
on choosing the optimum values of these thresholds and tuning
other parameters associated with them. Another approach is the
use of machine learning techniques that depend strongly on la-
belled training data [2], [27]. Since they are data-driven ap-
proaches that resemble a black-box model [26], not only might
they be difficult to interpret by clinicians [30] but it also re-
mains unclear whether and how often such a system would need
to be retrained with changing scenarios. Other approaches in-
clude [4], where a rule-based state machine is realized with four
gait states, namely, mid-stance, pre-swing, swing and loading
response; and the state transitions are determined by five ref-
erence signals derived from tri-axial accelerometer signals. In
recent years, wavelet transforms are being increasingly used for
gait analysis [31] and in particular to detect gait events [12],
[27], [32]-[35]. In [27], wavelet transform is used to express the
raw acceleration signals in time-frequency space which gives
high dimensionality features. Then dimensionality reduction is
done using a manifold embedding algorithm to project the data
to a smaller dimensional subspace in order to obtain a minimal
subset of features that contain salient signal information. Fi-
nally, a Gaussian mixture model (GMM) is applied to classify
each time sample as HS, TO or no-event.

The existing gait event detection algorithms that offer po-
tential for use in daily living have been developed from data
collected in controlled indoor experiments placing a number
of assumptions on the experimental design itself. On the other
hand, human gait in the real-world is quite dynamic, and fre-
quently involves different gait speeds, changing walking ter-
rains, varying surface inclinations and regular turns among other
things. Although some recent attempts have been made [27], it
is highly challenging to imitate these scenarios in labs or corri-
dors. However, portable wearable systems can be used to carry
out long-term experiments directly in natural human environ-
ments. Moreover, it is essential to distinguish between walking
and non-walking tasks prior to applying the event detection
algorithms [36] unless such a feature is included in the algo-
rithm itself. Instead of relying only on data-driven approaches,
existing domain knowledge about the fundamental principles
of gait and other prior auxiliary information could be used to
help guide the data analysis in order to achieve greater robust-
ness and accuracy. This paper proposes a novel approach that
exhibits how domain knowledge about human gait can be in-
corporated into time-frequency analysis in order to detect gait
events from walking and running segments of long-term ac-
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celerometer signals. The performance of the proposed method
is validated by experiments done in indoor and outdoor envi-
ronments, and the results are compared with two state of the
art algorithms. The rest of this paper is organized as follows.
Section II describes the proposed approach and Section I1I out-
lines the data collection procedure. Section IV presents the re-
sults of applying the algorithm in indoor and outdoor environ-
ments. Finally, Section V discusses and concludes this paper.
The Appendix provides relevant details required to implement
a part of the proposed algorithm.

II. PROPOSED ALGORITHM

A. Domain Knowledge

To detect gait events from long-term accelerometer signals,
the algorithm should be able to tackle real-world issues such as
different gait speeds, changing environments and disturbances
in sensor orientation. To achieve this goal, domain knowledge in
the form of principles or underlying fundamental gait relation-
ships between various governing gait parameters can be utilized
to drive and support the analysis. One such underlying gait prin-
ciple is the frequency relationship that is present between gait
event and gait cycle, i.e., the frequency of the event (HS and
TO) is twice that of the cycle. In the proposed algorithm, the
use of this knowledge is two-fold. The first is to logically reason
around choosing the appropriate mother wavelet for wavelet
transform, as there are insufficient guidelines on the selection of
wavelet basis function for gait signals [31]. The second involves
incorporating this fundamental frequency relationship into the
signal analysis procedure, which allows the algorithm to effec-
tively tackle changes in gait speeds. Thus, the raw acceleration
signal is first pre-processed, and this is followed by time-fre-
quency analysis guided by domain knowledge.

B. Time-Frequency Analysis

As mentioned in Section I, it is quite likely that the original
sensor orientation may be disturbed during long-term analysis.
Hence, to avoid misalignment issues, the magnitude of the re-
sultant accelerometer signal, Ace,, henceforth referred to as the
“composite acceleration signal,” is computed as

Ace, = yJacel + acc) + acc? (1)

where acc,, acc,, acc, are the signals obtained from each
individual axis of the 3-axes accelerometer, respectively.
Fig. 1(a) shows the HS and TO events present in one gait
cycle of the composite acceleration signal. To exemplify the
time-frequency relationship between gait event and gait cycle,
continuous wavelet transform (CWT) is used [37]. It produces a
time-frequency decomposition where both, short-duration high
frequency and long-duration low frequency information can be
captured simultaneously. Another key advantage of wavelet
techniques is the variety of wavelet basis functions available
for signal analysis [38]. Domain knowledge is used to select
the appropriate wavelet based on the following criteria.
« It should highly correlate with both, the frequency of the
events and the frequency of the cycle in Ace,, in order to
clearly distinguish these spectral components in time.
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Fig. 1. (a) HS and TO events in one gait cycle of a composite acceleration
signal, Acc,., obtained from the 3-axis accelerometer attached to the right ankle.
The amplitude of Ace,. is approx. 10 m/s* during stance due to the effect of
the gravitational component. (b) Time-frequency representation (top view) of
the composite acceleration signal using CWT by the Morlet wavelet. HS and
TO events exist in the finer scales (30-70) while the corresponding gait cycle
exists along the coarser scales (90—140). Color bar presented in this subfigure is
also applicable to subfigures Fig. 1(c) and (d). (c) Example of spectral-temporal
boundary, shown as semi-transparent walls, around the HS and TO region in one
gait cycle. (d) Example of CWT coefficients shifting along the spectral axis with
changes in gait speed. With faster gait speeds, the event and cycle coefficients
shift towards the finer scales and vice-versa.

* It should be symmetric to avoid spectral domain skewness.
Moreover, a wavelet with a high degree of symmetry leads
to good performance for the analysis of periodic signals
[39].

Thus, the Morlet wavelet is chosen, which is a com-
plex sinusoid modulated by a Gaussian. It is defined as
do(n) = 7 /4eiame=7"/2 where wy is the frequency and 7 is
a nondimensional time parameter [40]. The CWT of a discrete
time signal, a:,, with equal time spacing J;, is defined as the
convolution of x,, with a scaled and translated mother wavelet

o (1)

AU [m' = n)at] @

Wals) = > zartp ,

n'=0

where the (x) indicates the complex conjugate, s is the wavelet
scaling factor and n is the localized time index. Fig. 1(b) shows
the CWT of the Acc, signal where the time-frequency relation-
ship between the individual gait events of HS and TO and their
corresponding gait cycle can be simultaneously observed. The
event coefficients exist towards the finer scales that correspond
to higher frequencies while the cycle coefficients exist towards
the coarser scales corresponding to lower frequencies. As shown
in Fig. 1(c), the event regions can be located by defining appro-
priate boundaries along the spectral and temporal axes and the
position of the event can be derived by fitting a 2-D Gaussian
distribution over this region. However, defining these bound-
aries is a challenging task as changes in gait speed cause the
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Fig. 2. (a) Frequency-scale relationship for Morlet wavelet. So, for example,
if the minimum gait frequency is assumed to be 0.5 Hz, then the corresponding
maximum scale to be considered for analysis is 208, denoted smax . (b) 4 priori
energy density spectrum estimate % formulated by assuming the initial fre-
quency of the event to be 2 Hz, i.e., g, = 52ando = 9.

event and cycle coefficients to shift along the scales, as shown
in Fig. 1(d), because of shifts in the local signal energy. Faster
gait speeds mean higher gait frequency, and thus the event and
cycle coefficients exist towards the finer scales and vice-versa.
Hence, a tracking procedure is proposed that utilizes domain
knowledge to detect these transitions along the scales such that
the event regions can be determined.

Thus, as depicted in Fig. 4, the proposed algorithm consists
of three major steps that are performed systematically. These
steps are elaborated in the following subsections.

1) Pre-Processing: First, composite acceleration signal Ace,
is computed from the individual acceleration signals obtained
from the 3-axes accelerometer using (1). Then, the CWT of this
signal is computed using (2), by convoluting Acc, with a scaled
and translated real-valued Morlet wavelet to obtain W,,(s). The
range of scales to be considered for CWT can be estimated from
the non-linear frequency-scale relationship of the Morlet [40],
as shown in Fig. 2(a).

2) Tracking the Gait Speed Changes: As explained earlier,
changes in gait speed cause transitions of the event and cycle
coefficients along the scale or spectral axis and these transitions
need to be detected in order to find appropriate event region
boundaries. This is done by defining a tracking procedure that
utilizes the domain knowledge about the frequency relationship
between the gait event and cycle, i.e., the frequency of the event
(HS and TO) is twice that of the cycle. The relative contribution
of these two major frequencies to the total signal energy at a
specific scale s can be measured by the scale-dependent energy
density spectrum E, as

N—-1
Es = Z H{/YIL(S)|Z7 ERS] [lysmax] (3)

n=0

where |W,,(s)|? is the 2-D wavelet energy density function
known as the scalogram that measures the total energy distri-
bution of the signal [37]. Peaks in E; highlight the dominant
energetic scales and it is the event and cycle peaks that con-
tribute to most of the signal energy in the spectral domain. Thus,
the energy density spectrum £, of the CWT coefficients can be
approximated as a mixture of two 1-D Gaussian distributions,
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where each Gaussian represents the spectral signal energy of
the event and cycle, respectively as

E, ~ aeef(sﬂtc/dc)ﬁ + acef(sfuc/du)Z . “)

event cycle

In addition, the event-cycle frequency relationship can be used
to associate the two Gaussian means in £, as

He = 2/-LF' (5)

where (1., and p. are the two most dominant scales representing
event and cycle energy, respectively. Using this approximation,
an a priori energy density spectrum estimate £/~ is formulated
which is used to start the tracking procedure. The value of
Gaussian mean . (in scale units) can be obtained from the
frequency-scale relationship of the Morlet, shown in Fig. 2(a),
by making an initial assumption of the frequency of the event.
The corresponding g7 is then computed using (5). Also for
simplicity, both Gaussians are assumed to be of unit amplitude
and equal standard deviation ¢~, well representing event and
cycle energies. With these simplified initial parameters, E,
can be formulated [shown in Fig. 2(b)] as

E, —¢ (o m /o) Lo (2o e (1 sl (6)
To track the transitions of event and cycle coefficients along the
spectral axis, an overlapping running window is taken along the
temporal axis of the CWT coefficients. Within each window, E,
is computed using (3) and is cross-correlated with the a priori
estimate £, which helps in extracting event and cycle spectral
information from F, using the Gaussian approximation formu-
lation given in (4). Based on the extracted information, the pa-
rameters in £, are updated to form an a posteriori estimate E.,
which serves as the prior for the next window. See the Appendix
and Figs. 6 and 7 for details of the entire tracking procedure
within a window.

3) Locating and Identifying the Gait Event: In order to set
up appropriate boundaries to define spectral-temporal event
regions as shown in Fig. 1(c), the information stored in the
tracking procedure is utilized. The Gaussian means fi., and
ftc.» that are stored in every window r hold information about
the local frequency of the event and cycle for the time duration
of that window. By successively compiling them from all
windows and selecting the CWT coefficients at those particular
scales, two distinct temporal signals are obtained that match the
frequency of the event and cycle in the composite acceleration
signal as shown in Fig. 3. The discrete time signal matching the
frequency of the event, denoted z¢,, is obtained as
3 /—A"e,]\/'/l\ffl)T} (7)

‘7:167. 2 I’Vn[(ﬁ‘e,ﬂw ﬂe,lv R [Le,‘m s

where W), is the CWT coefficients computed using (2), r is the
window index, M is the window step, n is the discrete time
sample and NNV is the total number of samples in the composite
acceleration signal. Similarly, the discrete time signal matching
the frequency of the cycle, denoted ), is obtained as

2L & Wal(fe,0: et - fleyr- - flenai—1)" ] (8)
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Fig. 3. (a) Figure shows CWT coefficients from one gait cycle. Two temporal
signals, z¢ and %, , are obtained by selecting the CWT coefficients from scales
corresponding to Gaussian means ji.,,. and ji.. . that are stored in every window
7. As shown, 2¢ and x¢, hold information about the local frequency of the event
and cycle. Local minima points (m;) in z¢ give the temporal bounds for indi-
vidual event regions. Positions where the signal 2:7, changes sign from negative
to positive mark the beginning and end of consecutive gait cycles. (b) Example
of the two temporal signals, x¢ and x,, obtained after low-pass filtering, that
match the frequency of the event and cycle in the composite acceleration signal,
Acc,., respectively. All signals have been standardized using zscore to scale
them into the figure.

In order to remove high frequency noise and window edge ef-
fects, both signals, z§, and xzf,, are low-pass filtered using a
zero-phase FIR filter with a cut-off frequency that is higher
than the maximum expected gait frequency, taken to be 8 Hz.
The local minima points in z7,, defined by the set {m: m is the
local minimum in x5, }, provides the bounds for the individual
event regions along the temporal axis (shown as circular dots in
Fig. 3). To determine the corresponding spectral boundary for
the event region, the scale sy ,. which distinguishes the event
and cycle spectral energies, is successively compiled from all
windows as

A T
S5 = [52,00 801, 382 ps -+ -y SAN/M 1] ©)
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and I, ,. represent the a priori, current and a posteriori energy density spectrum
estimates in the current window index r, respectively. £, ., represents the
a priori estimate in the next window with index r 4 1.

So for a given temporal bound m;(n), the corresponding
spectral bound is given by the scale interval [1,s5 ,]. Thus, a
2-D spectral-temporal event region R(n, s) is located as

%i(nv S) = VVnE[mi.'m,Hrl] (5 € [17 Si,n})' (10)
The temporal position of the maximum CWT coefficient
value in $;(n, s) could be simply used to estimate the event.
However, highly noisy signal segments in Ace, could lead
to multiple local maxima in those CWT event regions and
higher uncertainty in the precise location of the event. Thus,
a 2-D Gaussian distribution fitting is done over each such
spectral-temporal event region M;(n, s), such that the peak of
the 2-D Gaussian fit gives the estimated location of the gait
event in scale and time. Time signal z, is then used to identify
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an event as an HS or TO. The positions where the signal 27,
changes sign from negative to positive gives the temporal
bounds for consecutive gait cycles (shown as squares in Fig. 3).
Thus, within every gait cycle, the first event is labelled as an
HS and the next as a TO.

C. Performance Assessment

Two state of the art algorithms, Rueterbories ef al. (Ag) [4]
and Aung et al. (A4) [27], introduced earlier in Section I, were
also implemented in order to compare them with the proposed
method (Apas). The method of Hanlon ef al. [41] was adopted
to compute the ground truth (GT) gait events from the FSR mea-
surements. A threshold value representing 39% of the maximum
FSR value was used to identify the HSs on the rising edge of the
FSR signal. The same procedure was repeated to identify the
TOs after excluding the HS segments (HS 10 samples) from
the signal. The matching between the actual gait events from
the GT and the events detected by the proposed algorithm was
based on a temporal tolerance of =5 samples or £0.039s. Any
event missed by the FSR but detected by the algorithms imple-
mented was automatically considered a false positive since the
FSR was considered to be the GT. Statistical measures of sen-
sitivity, specificity and F1 score were computed [42]. Conven-
tionally, Mean Absolute Error (MAE) is used to present the tem-
poral accuracy of a method in detecting gait events. The MAE
was calculated (in samples) as the mean of the absolute tem-
poral difference between the true positives of the algorithm and
the corresponding GT events. Any constant bias was removed
prior to the MAE calculation, for all algorithms. However, few
true positives could lead to a low MAE value, indicating high
accuracy even though many false positives might be detected by
the method. Thus, the stride time was calculated and the Kol-
mogorov-Smirnov (KS) test was used to test the null hypoth-
esis that the stride time samples from the algorithm and the GT
came from the same empirical distribution [43]. If they did not,
then the test rejected the null hypothesis at the 5% significance
level. The KS test result provided an alternate perspective on
the accuracy of a method as it took the entire stride time distri-
bution into account, i.e., including both true positives and false
positives. The data collected were divided into training and test
data as the methodology in A 4 required training of the model
parameters. One third of the total number of subjects from the
indoor and outdoor experiments were randomly selected to rep-
resent the hold-out test data. The purpose of this was to test the
algorithmic performance in subjects that were not included in
the training procedure. Sensitivity, specificity and the MAE of
all algorithms were computed from the hold-out test data. How-
ever, the F1 score was computed by including the data from all
subjects. Welch’s t-test was used to find any significant differ-
ences between the F1 scores of any two sample groups.

III. EXPERIMENTS

The study involved 20 healthy subjects (12 males and 8 fe-
males, average age: 33.4 + 7 years, average weight: 73.2 +
10.9 kg, average height: 172.6 £+ 9.5 cm) with 11 subjects par-
ticipating in indoor and 9 participating in outdoor experiments.
Each subject had a 3-axes Shimmer3 accelerometer (£8g) at-
tached to both ankles using Velcro straps. For the left ankle,
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TABLE 1
SUMMARY OF THE EXPERIMENTS CARRIED OUT IN INDOOR AND OUTDOOR ENVIRONMENTS
Al . Total no. of
No. of . Type of e pprf)x O,a no- ©
X Environment L. Description Speed duration gait events
subjects activity .
(minutes) recorded
4km/hr to 8km/hr;
Walk Start walking and switch to m/Arto SKIAE
Indoor - & . ¢ fortabl d increasing in steps of 10 30944
run running at any comiortable spee
1 Treadmill ¢ Y P 0.4km/hr every minute
T T 5 0°.10°.0°.15°.0°
Walk .realdmil 1S Se,t o (5 ,’0 10%,0%15°,0%) Self-selected speed 12 25631
inclinations with 2 mins at each angle
Indoor - Walk Walking without any restrictions Self-selected speed 3 7361
Flat space Run Steady running or jogging Self-selected speed 3 10130
9 Outdoor - Walk Walking without any restrictions Self-selected speed 3 10844
Street Run Steady running or jogging Self-selected speed 3 8684"
" Two subjects did not complete the entire duration of the activity due to bad weather conditions.
the accelerometer axis was positioned with the y-axis pointing TABLE II

downward and the x-axis to the anterior direction while, for
the right ankle, the accelerometer was casually attached without
any planned orientation. The subjects were provided shoes that
had force sensitive resistors (FSRs) fixed at the extreme ends
of the sole in order to provide the ground truth values for HS
and TO. Both, the accelerometer and the FSRs had a sampling
frequency of 128 Hz, and the FSR output was stored locally on
the Shimmer3 microSD card using an external expansion board.
After every experiment, the data was transferred to a remote
computer and the analysis was made offline using MATLAB
v8.5 (MathWorks, Natick , MA, USA). Informed consent was
obtained from all subjects prior to the experiments. The study
was approved by and all procedures were conducted in accor-
dance with the guidelines of the Ethical Review Board of Lund,
Sweden. Table I summarizes the experiments carried out in dif-
ferent environments. The indoor experiments were conducted
on the treadmill and in a large, empty flat space. The outdoor
experiments were conducted in the form of a closed path on a
street that was approximately 50% flat and the rest being equally
uphill and downhill. The path included four turns, and the uphill
and downhill inclination angles ranged between 5° and 10°. Ex-
cept when on the treadmill, the subjects were free to select their
pace and change directions during all other activities. Manual
inspection revealed that, for some data sets, few events were
missed due to extremely low FSR values. The percentage of the
missed FSR events for indoor and outdoor data sets was 0.05%
and 0.09%, respectively. Four subjects from the indoor and three
subjects from the outdoor experiments were selected at random
to act as the hold-out test data.

IV. RESULTS

Table II shows the mean and standard deviation of these per-
formance scores for indoor (flat space) walking test data, which
is the environment in which most gait event detection algo-
rithms have been developed. Each cell in the table displays a
distinct performance score for detecting HS or TO from the
accelerometer signal obtained from the left (LF) or right foot
(RF). The column under LF displays the score when the sensor
is positioned at a fixed pre-defined axis while that under RF dis-
plays the score when the sensor is positioned arbitrarily, thus
reflecting the influence to changes in axis orientation. The sta-
tistical measures of sensitivity and specificity display the true

MEAN (AND STANDARD DEVIATION) OF THE PERFORMANCE SCORES
COMPUTED FOR INDOOR (FLAT SPACE) WALKING TEST DATA. .Apn, Aa
AND AR STAND FOR PROPOSED METHOD, METHOD [27] AND METHOD [4]

Performance Indoor walk: Flat space
LF RF
measures s o s o
A 0.99 0.98 0.99 0.99
PM10.00) | 0.03) | 0.00) | (0.00)
Sensitivity A 0.80 091 0.99 0.97
(0.36) | (0.10) | (0.00) | (0.02)
A 0.98 0.97 0.98 0.98
R (0.00) | (0.03) | (0.00) | (0.01)
0.99 0.98 0.99 0.99
Apm
(0.00) | (0.03) | (0.00) | (0.00)
Specificity As 0.96 0.00 0.95 0.07
(0.05) | (0.00) | (0.05) | (0.08)
Ax 0.99 0.97 0.99 0.98
(0.00) | (0.03) | (0.00) | (0.01)
Apu 0.55 0.77 0.66 0.62
MAE (0.66) | (0.94) | (0.69) | (0.73)
(in samples) A 0.85 0.90 0.74 0.88
(0.88) | (0.98) | (0.80) | (1.18)
Ax 0.67 0.98 0.86 0.79
(0.74) | (0.98) | (0.85) | (0.77)
KS test Ap 4/a 2/a 4/a 2/a
datasets not rejected -AA 2/4 0/4 3/4 0/4
( total datasets tested ) Ar 4/4 4/4 4/4 4/4
No. of GT gait events 682 678 680 678

positive rate and the true negative rate of detecting HS and TO,
respectively. The MAE, in sample units, gives the temporal ac-
curacy of the algorithm for the correctly identified events. The
KS test result is shown as a ratio of how many stride time data
sets were not rejected by the null hypothesis compared to the
total stride time data sets tested. The last row of the table shows
the total number of GT gait events recorded from the test set
data. The remaining rows present a comparison with the imple-
mented methods in A 4 and Ag. Table I1I shows the mean and
standard deviation of the performance scores for all indoor ac-
tivities grouped together, only outdoor walking and all outdoor
activities grouped together. The structure of Table III is similar
to that of Table 11, where each cell displays a score for detecting
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MEAN (AND STANDARD DEVIATION) OF THE PERFORMANCE SCORES COMPUTED FOR ALL INDOOR ACTIVITIES GROUPED TOGETHER, ONLY OUTDOOR
WALKING AND ALL OUTDOOR ACTIVITIES GROUPED TOGETHER. THE SCORES PRESENTED ARE COMPUTED FROM THE TEST DATA OF EACH ACTIVITY.

TABLE 11

Apni, Aa & Ar STAND FOR PROPOSED METHOD, METHOD [27] AND METHOD [4], RESPECTIVELY

Indoor: Treadmill & Flat space Outdoor
Performance Walk & run Walk Walk & run
measures LF RF LF RF LF RF

HS TO HS TO HS TO HS TO HS TO HS TO

A 0.99 0.97 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99
M 0.00) | 0.02) | 0.00) | (0.00) | 0.00) | (0.00) | 0.00) | 0.01) | (0.00) | 0.00) | (0.00) | (0.00)

Sensitivity A 0.97 0.77 0.99 0.92 0.99 0.94 0.45 0.98 0.99 0.89 0.70 0.54
A (0.05) | (0.16) | (0.01) | (0.10) | (0.00) | (0.07) | (0.47) | (0.00) | (0.00) | (0.02) | (0.24) | (0.16)

Ar 0.84 0.75 0.82 0.71 0.98 0.97 0.99 0.98 0.70 0.43 0.69 0.44
(0.12) | (0.23) | (0.12) | (0.23) | (0.00) | (0.02) | (0.00) | (0.00) | (0.02) | (0.04) | (0.02) | (0.03)

A 0.99 0.97 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99
™ (0.00) | (0.03) | (0.00) | (0.00) | (0.00) | (0.01) [ (0.00) | (0.02) | (0.00) | (0.00) | (0.00) | (0.00)

Specificity As 0.92 0.08 0.84 0.06 0.83 0.01 0.63 0.04 0.84 0.19 0.72 0.01
(0.12) | (0.12) | (0.21) | (0.11) | (0.21) | (0.02) | (0.53) | (0.07) | (0.07) | (0.24) | (0.20) | (0.02)

A 0.95 0.85 0.94 0.82 0.99 0.97 0.99 0.98 0.99 0.71 0.96 0.71
R (0.08) | (0.11) | (0.05) | (0.11) | (0.00) | (0.02) | (0.00) | (0.00) | (0.00) | (0.02) | (0.02) | (0.02)

A 0.92 1.50 1.02 1.17 0.78 0.80 0.66 0.93 1.29 1.82 1.08 1.50
MAE M 093) | (1.28) | 0.99) | (1.12) | 077) | 0.99) | ©0.79) | (1.13) | (1.08) | (1.32) | (0.91) | (1.23)

(in samples) A 1.08 1.89 1.05 1.27 1.03 1.68 0.88 0.99 113 2.50 1.64 1.51
(1.06) | (1.52) | (0.97) | (1.21) | (0.88) | (1.68) | (0.93) | (1.12) | (0.96) | (1.44) | (1.16) | (1.20)

Ar 1.04 128 1.27 1.30 0.98 1.02 0.75 1.21 1.23 1.23 1.30 122
(1.05) | (1.17) | (1.22) | (1.24) | (0.95) | (1.00) | (0.82) | (1.18) | (1.05) | (1.08) | (1.19) | (1.22)

XS test Apm | 12/12 | 12/12 | 12/12 | 12/12 | 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

(dalasels not l’CJCC[Cd) Aa 6/12 /12 5/12 0/12 /3 /3 /3 /3 1/3 o/3 0/3 0/3

total datasets tested A | 52 | 52 | 412 | 412 3/3 3/3 3/3 3/3 /3 /3 /3 o3
No. of GT gait events 6848 6837 6847 6842 566 562 565 562 1266 1264 1267 1264
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HS or TO from LF or RF, for a particular environment and ac-
tivity (listed at the top of the table). The best performance scores
have been shown as bolded font in both tables. Fig. 5 shows the
mean F1 score of all algorithms for detecting HS and TO in
indoor and outdoor environments, obtained using all subjects'
data.

V. DISCUSSION AND CONCLUSION

The experiments were specifically designed to test the per-
formance of the algorithm on various aspects of robustness in
a real-world setting. The objective of conducting experiments
on a treadmill, in an indoor space and on an outdoor street was
to assess the performance in a variety of environmental condi-
tions consisting of different surfaces, varying inclinations and
regular turns. The aim of having fixed and arbitrary sensor ori-
entations on the left and right ankles was to evaluate the influ-
ence of changes in axis orientation on the method's performance
in these environments. Similarly, the goal of defining walking
and running activities was to evaluate the performance at dif-
ferent gait speeds. Most gait event detection algorithms, such
as Aa and Ag, have been developed from walking data col-
lected in indoor settings. The proposed algorithm demonstrates
good performance for detecting both HS and TO from indoor
walking data, implied by the high sensitivity, specificity and F1
scores shown in Table II and Fig. 5. Moreover, it detects them
with high temporal accuracy shown by the low MAE values that
are below one sample and the KS test results that do not reject
any of the four data sets tested. In comparison, Ag also shows
high performance scores for detecting both HS and TO, while

Ay detects HS significantly better than TO (p < 0.05). Al-
though A4 has an average MAE of below one sample, the low
KS test result indicates the occurrence of excessive false posi-
tives, especially for detecting TO. All algorithms exhibit no in-
fluence to changes in axis orientation with no significant differ-
ence between the F1 scores of the left and right foot {(p > 0.05).
The proposed method also exhibits robustness to different gait
speeds in indoor environments. It has high performance scores
for all the indoor activities (walk and run) grouped together, as
shown in Table Il and Fig. 5. While .Ag had exhibited good per-
formance for indoor walking, it underperforms when running is
included, with a significantly lower F1 score as compared to
walking (p < 0.05). Moreover, when running is included, .Ag's
performance decreases even more for detecting TO as compared
to HS (p < 0.05). In contrast to the controlled indoor experi-
ments, the outdoor experiments were semi-controlled and repre-
sentative of humans' natural environment in the real-world. The
outdoor walking and running data grouped together plausibly
represented the most diverse scenario, with unconstrained out-
door conditions and different gait speeds. The proposed method
demonstrated good performance in this scenario, implied by the
high performance scores shown in Table III and Fig. 5, with no
significant difference between the indoor and outdoor F1 scores
(p > 0.05). It also performed well in terms of temporal accu-
racy, with an average MAE of 1.42 samples and none of the
datasets being rejected by the KS test. Both A and Ag had
their lowest F1 scores for detecting events in this scenario as
compared to all other environments in which they were tested.
It was also significantly lower than their F1 scores for indoor
activities grouped together (p < 0.05). This might be attributed
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Fig. 5. Mean F1 scores of all algorithms for detecting HS and TO in indoor
and outdoor environments. Mean values for each given activity on the x-axis
were calculated by averaging the F1 score values obtained using data of all sub-
jects. Activities labelled Inwaix, Inan, Outwaix and Qutay represent only
indoor (flat space) walking, all indoor activities grouped together, only outdoor
walking and all outdoor activities grouped together, respectively. Mean F1 score
of detecting HS for a particular activity is shown as a square while that for de-
tecting TO is shown as a triangle. F1 score reaches its best value at 1 and worst
at 0. Apn,.Aa & Ar stand for Proposed Method, method [27] and method [4],
respectively.

to the fact that both A, and Ag were designed using indoor
walking data only and since activities in outdoor conditions are
more uncontrolled and dynamic, they introduce more noise in
the accelerometer signals. Moreover, it is difficult to make an
objective comparison between algorithms that were designed
using different datasets and protocols. However, the results ex-
hibit that the proposed method could be directly applied in dif-
ferent environments for long-term applications.

The ability of the proposed method to effectively tackle real-
world challenges is enabled by the use of domain knowledge to
guide the time-frequency analysis. Knowledge about the event-
cycle frequency relationship present in gait is utilized to log-
ically reason around choosing the appropriate mother wavelet
(Morlet), in order to gain a distinct separation between the event
and cycle frequencies in time, as shown in Fig. 1(b) and (c). It
is also utilized in the tracking procedure to tackle any gait speed
speed changes, which is a substantial requirement for many
real-world applications. In addition, the scale-frequency rela-
tionship of the Morlet is used to select the appropriate scales
for analysis based on the frequency of the activity. While the
proposed method was developed with the accelerometer placed
around the ankle, it still remains to be investigated if and how the
technique may be utilized to detect events from other parts of the
body. With an arbitrary sensor placement on the body, it might
be challenging to attribute the sensor information to the left or
right foot, thus making it difficult to identify and label individual
events. However, it would be possible to detect gait cycles using
the tracking procedure presented in this method. Another limi-
tation of the proposed method is that it has been validated only
on healthy gait. Future work is needed to test the method on
pathological gait and make any required adaptations to the al-
gorithm. A service has been provided (http://islab.hh.se/medi-
awiki/Gait_events) to assist interested readers in making use of
the proposed method with their data.
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Fig. 6. Example of the steps involved in the tracking procedure of window
index » = 1. First subfigure shows the a priori energy density spectrum es-
timate £, to start the tracking procedure. Second subfigure shows the scale
delay, 7,. in the cross-correlation result of (B, % E; ). Third subfigure shows
s, which distinguishes the scales corresponding to event and cycle energies
in E, .. Fourth subfigure shows the a posteriori estimate E, whose parameters
are stored after both constraints are satisfied.

To conclude, this paper proposes a novel approach that ex-
hibits how domain knowledge about human gait can be incor-
porated into time-frequency analysis in order to develop a ro-
bust algorithm that can detect gait events from long-term ac-
celerometer signals. The ability of the algorithm to effectively
adapt in real-world scenarios is validated by experiments done
in indoor and outdoor environments that involve different gait
speeds, changing walking terrains, varying surface inclinations
and regular turns among other things. The proposed algorithm
is shown be accurate and robust with consistently high perfor-
mance scores across all datasets.

APPENDIX

This section elaborates on the details required to implement
the tracking procedure to tackle changes in gait speeds. As ex-
plained earlier in Section 1I-B2, in order to track the transi-
tions of the event and cycle coefficients, an overlapping running
window is taken along the temporal axis of the CWT coeffi-
cients. In principle, a window size that captures the information
about one gait cycle would be sufficient but it is practically de-
sired to be large enough to account for signal noise and should
thus include additional gait cycles. In this paper, the running
window size is taken to be 3 or 6 s with a 50% overlap. The
entire tracking procedure within a given window consists of the
following steps (refer Fig. 6).

a) The energy density spectrum E . of the CWT coeffi-
cients selected from the current window is computed
using (3) as E., = SUFTOMTLipp )12 where
s € [1, Smax], 7 is the window index and M is the window
hop size, i.e., the number of samples by which each
successive window is advanced in time. F, , highlights
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b)

)

d)

the dominant energetic scales of event and cycle in the
current window r.

The a priori estimate E_, is cross-correlated (*) with
E , in order to measure the scale delay 7. between them,
calculated as 7, = arg maX,e(1,s,,..](E; % Es ). For the
first window (r = 1), the a priori estimate formulated in
(6) is used. Scale delay 7, reflects the change in gait speed
from the previous window. However, very fast transitions
in gait speeds would cause large shifts in the local signal
energy. As such, the Gaussian mixture parameters in E_ .
may be very different from that of E ., resulting in an in-
correct 7, value due to poor alignment of the two signals.
Thus, Constraint I is used to verify that 7, lies within the
expected scale bounds

Hep+1e>1
,UA;T + Tr < Smax ’

Constraint I : { (11)

If Constraint I is satisfied, then the a priori estimate I, is
updated to form an a posteriori estimate EA“ . This is done
by first calculating a scale, 55, = argmin F, , where
s € (e, + Trypty, + 7], that helps to distinguish the
range of scales in which the event and cycle energies lie

in E, .. The set of equations used to form the a posteriori
estimate F; .. are

ﬂe,r = argmaXse(l,s, ) Es.,
de,r = MaXse(1 5, ] E; .,
Fer = Ty

llc,r = arg maxse[s;)r,smax] E.@.r
SA,rSmax] E,,

Gow =00, (12)

A,y = MaAX,e],

To verify that the updated Gaussian means in Ew up-
hold the frequency relationship stated in (5), a constraint
is applied as Constraint II: 1.9 < fi,,/fi. » < 2.1. The
relationship is relaxed by 5% to accommodate effects of
signal noise and low frequency resolution in finer scales
[44].

If either of the constraints are not satisfied, then curve
fitting of a two term 1-D Gaussian mixture is performed
over E, and the resulting fit parameters are used
to constitute E“. Since curve fitting is sensitive to
starting point declarations, the event-cycle frequency
relationship can be utilized to define two sets of possible
starting points for {a., fte, Te, e, ooy e}, to guide the
fitting procedure in order to obtain a good fit. These
are Setl = {ay, fiy/2, Smax/16, dy. fiys Smax/8}
and Set2 = {ay, piy, Smax/16, @y 21ty s Smax/8}
where ., is the most energetic scale in E, ie.,
arg MaxX,e[1,s,...] &s,» and ay is the corresponding en-
ergy value at that scale i.e., maX,¢(1,6,,..) Fs,r. Thus,
two fits over E,, are obtained by using each set as
the starting point. In order to decide the better fit, an
initial check is made to verify whether the fit parameters
lie within the expected bounds, i.e., {a.,a.} > 0 and
{pres ptey 0oy e} € [1, Smax], and a fit that lies outside

-3
x10 i —E(s)
15l ---RMSE;#(Fit1) = 0.0012
---RMSE;,,;(Fit2) = 0.0009
S + RMSE, ¢, (Fit1) = 0.0008
% 10- + RMSE,.,, (Fit2) = 0.0027
£
<
st
o Lo /o | Rl
1 40 80 120 160 200
Scales

Fig. 7. Example of how RMSE computation is influenced by the lower energy
values in F, .. Even though Fitl is a better fit than Fit2, initially it gives a higher
RMSE;,i: because it includes lower energy scales corresponding to the lower
10% values of E, ... However, if these lower energy scales are excluded, then
Fitl gives a lower RMSE,,..,, indicating that it is a better fit as compared to
Fit2.

these bounds is rejected. If both fits lie within the ex-
pected bounds, then root mean square error (RMSE) is
computed for both the fits. In the RMSE computation,
only high energy density values are taken into account,
and the lower 10% of E , is excluded to remove its in-
fluence on the RMSE calculation as it does not contribute
to the event and cycle energies, as shown in Fig. 7. The
better fit is chosen as the one with the lowest RMSE
value, following which Constraint II is verified again to
ensure that the fit is correct. In case of violation, the a
posteriori estimate EA“ is constituted directly from the
existing parameters of the a priori estimate I/, . without
any update from the current window, i.e., ES,T —E .

e) The Gaussian parameters in a posteriori estimate E.s,r and
scale sy, computed in the current window are stored fol-
lowing which EAfTT serves as the prior for the next window,
ie, B g & B
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Numerous gait event detection (GED) algorithms have been developed using accelerometers as they
allow the possibility of long-term gait analysis in everyday life. However, almost all such existing
algorithms have been developed and assessed using data collected in controlled indoor experiments
with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-
world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though
portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack
of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in
various real-world settings.

This paper presents a new gait database called MAREA (n =20 healthy subjects) that consists of
walking and running in indoor and outdoor environments with accelerometers positioned on waist,
wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-
based GED algorithms in different real-world scenarios, using the MAREA gait database. The results
reveal that the performance of these algorithms is inconsistent and varies with changing environments
and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a
controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for
Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser
controlled scenarios such as walking and running in an outdoor street, with a combined median F1score
of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better
performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The development of gait event detection (GED) algorithms
using various sensing modalities has been an active area of
research for many years [1]. In the past decade, several GED
algorithms have been developed using motion capture systems,
present in gait labs, and recent studies have compared and
evaluated their performance [2-5]. Alternatively, inertial sensors
are being used as they allow the possibility of long-term
monitoring in everyday life and provide spatio-temporal informa-
tion that can be fused to obtain the entire trajectory of the limb

* Corresponding author at: Center for Applied Intelligent Systems Research,
School of Information Technology, Halmstad University, P.O. Box 823, SE-301
18 Halmstad, Sweden.

E-mail address: siddhartha.khandelwal@hh.se (S. Khandelwal).

http://dx.doi.org/10.1016/j.gaitpost.2016.09.023
0966-6362/© 2016 Elsevier B.V. All rights reserved.

segment [6,7]. While many GED algorithms have been developed
using gyroscopes, others have used accelerometers as they are
miniature, inexpensive and low-powered devices [1,8]. However,
as accelerometers suffer heavily from noise due to mechanical
vibrations, they require robust algorithms for accurate event
detection. Almost all existing accelerometer-based GED algorithms
have been developed and assessed using data collected in
controlled indoor experiments, that usually involves instructing
the subjects to walk in a straight line or a given path at self-selected
pace [9,10] or predefined walking speeds [11-13]. On the contrary,
in the real-world, human gait is quite dynamic in different
environments, often involving varying gait speeds, changing
walking surfaces and varying surface inclinations, among others.
Therefore, it needs to be assessed whether such dynamic and
uncontrolled real-world scenarios have an impact on the perfor-
mance of existing GED methods which have been developed from
controlled protocols in laboratory settings. However, as almost all
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Table 1

Overview of the experiments carried out in different environments to create the MAREA gait database.

Subjects Environment Activity Speed Duration Short description
11 Treadmill (flat) Walk & run 4km/h-8km/h; 10min Start walking and switch to running at self-selected speed
increasing in
steps of 0.4 km/h
every minute
Treadmill (slope) Walk Self-selected 12 min Treadmill is set to (57, 0°, 10°, 0°, 15°, 0°) inclinations
with 2 min at each angle
Indoor flat space Walk & run Self-selected 6 min Start walking and switch to running after 3 min
9 Outdoor street Walk & run Self-selected 6 min Start walking and switch to running after 3 min

The database is made publicly available at http://islab.hh.se/mediawiki/Gait_database.

publicly available accelerometer-based gait databases [14,15] and
recent comparative studies [16] also consist of only controlled
indoor experiments, there is a lack of gait datasets or any studies
that evaluate the performance of existing GED methods in various
real-world settings; especially when portable wearable systems
can be readily used to conduct experiments directly in humans’
natural environment.

Consequently, a new gait database called MAREA: Movement
Analysis in Real-world Environments using Accelerometers, was
collected that comprises of various gait activities in different
environments, both indoors and outdoors. The objective of this
study is two-fold: (1) to introduce the MAREA database which is
made publicly available for all readers, and (2) to assess the impact
of different real-world scenarios on the performance of state-of-
the-art GED algorithms, using the MAREA database. The database
is made publicly available at http://islab.hh.se/mediawiki/
Gait_database (Table 1).

2. Materials and methods
2.1. MAREA gait database

20 healthy adults (12 males and 8 females, average age:
33.4 47 years, average mass: 73.2 +10.9 kg, average height:

172.6 &+ 9.5 cm) participated in the study that was approved by the
Ethical Review Board of Lund, Sweden. Each subject had a 3-axes
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Shimmer3 (Shimmer Research, Dublin, Ireland) accelerometer (+8 g)
attached to their waist, left wrist and left and right ankles using elastic
bands and velcro straps. Fig. 1 shows the position and orientation of
the accelerometers at the beginning of each experiment. On the waist,
the accelerometer X and Y axes were pointing to the lateral and
downward direction, respectively. On the wrist and left ankle, the Z
axis was pointing in the lateral direction while the Y axis was pointing
downward and was aligned with the limb longitudinal axis. In order
to simulate a lesser controlled scenario, the accelerometer on right
ankle was positioned such that the Y axis was pointing downward but
the Z axis was marginally disturbed such that it was not exactly
perpendicular to the sagittal plane. The subjects were provided shoes
that were instrumented with piezo-electric force sensitive resistors
(FSRs), fixed at the extreme ends of the sole in order to provide the
ground truth values for HS and TO. An external expansion board was
used to synchronously collect the data from the FSRs on each foot and
the respective ankle accelerometer, at a sampling frequency of
128 Hz, and stored locally on the Shimmer3 microSD card. However,
as the waist and wrist accelerometers were not connected to the
external expansion board, they were not in perfect synchronization
with the ankle accelerometers and the FSRs.

11 subjects participated in the indoor experiments that were
conducted on the treadmill and a flat surface (games court). Two
separate trials were conducted on the treadmill. For the first trial,
the treadmill speed was initially set to 4 km/h which was gradually
incremented to 8 km/h, increasing in steps of 0.4 km/h every
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Fig. 1. (a) Position and orientation of each accelerometer at the beginning of every experiment. (b) The pedestrian street used for outdoor experiments is shown in red and the
arrows show the closed-loop path defined for the experiments. Different path segments are annotated as A, B, C, D, E where segment BDE of the path, shown using dotted
arrows, is an underpass. (c) The approximate elevation profile of the defined closed-loop outdoor path.
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minute. The subjects were free to switch to running at any
comfortable speed. For the second trial, the subjects were first
asked to select their preferred walking speed (PWS) prior to the
experiment. The experiment began by changing the treadmill
inclinations to (5°, 0°, 10°, 0°, 15°, 0°), keeping each inclination
angle for 2 min. For the flat surface experiment, the subjects were
asked to walk for 3 min at self-selected pace and then run for 3 min
at a steady pace. The subjects were free to change their directions
at any time. For a given subject, all indoor experiments were
conducted in one day with resting breaks in between each trial.
9 subjects participated in the outdoor experiments that were
conducted in the form of a closed-loop path on a pedestrian street
made of asphalt concrete, shown in Fig. 1b. The defined path
consisted of turns and segments that were relatively flat, uphill and
downhill, as shown in Fig. 1c. The subjects were asked to start at
point A and walk for 3 min at self-selected pace and then switch to
jogging or running for 3 min, at a steady pace.

After every experiment, the data was transferred to a remote
computer and all analysis was done offline using MATLAB v8.5
(MathWorks, USA). Timings of the switch from walking to running
were noted down during the experiments, in order to segregate the
dataset into walking and running segments. The method of Hanlon
and Anderson [17] was adopted to compute the ground truth (GT)
gait events from the FSR signals. A threshold value representing
39% of the maximum FSR value was used to identify the HSs on the
rising edge of the FSR signal. The same procedure was repeated to
identify the TOs after excluding the HS segments (HS + 10 samples)
from the signal. Finally, all datasets were manually inspected to
correct any false positives or false negatives that may have occurred.

In order to test the performance of GED algorithms in different
environmental settings, five different scenarios were defined using
the MAREA database, namely:

o Indoor Walk: Walking in an indoor flat space. This scenario
represents the controlled experimental protocol of most GED
methods as shown in Table 2.

Indoor Walk & Run: Walking and running in an indoor flat
space. This scenario involves variable gait speeds in a controlled
environment.

o Treadmill All: All walking and running activities on the treadmill
grouped together. This scenario involves a different surface with
variable gait speeds and changing surface inclinations, in a
controlled environment.

Outdoor Walk: Walking on an outdoor street. This scenario
represents walking on a different surface with varying surface
inclinations, in a semi-controlled environment.

o Outdoor Walk & Run: Walking and running on an outdoor street.
This scenario perhaps represents the most dynamic environment
involving varying gait speeds and surface inclinations.

2.2. GED algorithms evaluated

Several methods have been developed to detect gait events
from accelerometer positioned at the lower trunk as it requires
only one sensor [18-22]. However, as the trunk accelerometer
signal is composed of combined accelerations from both feet [8],
the challenge is to distinguish and correctly attribute the detected
events (both HS and TO) to the left and right foot in an automated
way [20], using only the waist signal. Other authors have favored to
use two accelerometers instead, positioning one on each lower leg
[1], in order to be closer to the point of contact to measure maximal
acceleration forces generated by each foot [16,23]. Six such state-
of-the-art GED algorithms were selected that were developed from
accelerometers positioned on the lower leg, such as forefoot [9],
ankle [10,12,13,24] and shank [11]. A summary of the experimen-
tal protocol followed by each of these methods is given in Table 2. A
brief description of the selected algorithms is given as follows:

Ajg: In [9], a rule-based state machine is realized with four gait
states, namely, mid-stance, pre-swing, swing and loading
response. The state transitions are then determined by defining
five reference signals derived from tri-axial accelerometer
signals.

Agr: In [12], a statistics-based gait event detector algorithm is
presented. The algorithm uses a sliding window and computes
threshold values, based on local signal statistics, within every
window. Then the thresholds are applied to isolate the peak and
valley candidates from which gait events are detected.

Ags: In [11], strides are divided into faster and slower strides
based on an approx. stride duration of 1.5s and separate
calculations are performed for each category. For the faster
strides, the raw signal is low-pass filtered and the first and last
peak within every approx. stride duration is labeled as
approximate HS and approximate TO. Then temporal windows
are defined to detect the final HS and TO. A similar approach is
adopted for slower strides.

Ama: In [10], wavelet transform is used to express the 3-axis
acceleration signals in time-frequency space. The high di-
mensionality is then reduced using a manifold embedding
algorithm that projects the data to a smaller dimensional
subspace and gives a minimal subset of features which contain

Table 2
An overview of the data collection protocol followed by the GED methods. The experimental protocol of most GED methods involves walking in an indoor flat space or
treadmill.
Method No. of subjects Acc. type Sampling Activity Cadence/speed Environment Ground truth
freq. (Hz) (length/time)
A [9] 10 healthy Tri-axial 160 Walk (30m) 70steps/min & Indoor flat surface Foot switches
10 hemiparetic self-selected speed
Agr [12] 1 above-knee Bi-axial 60 Walk 1.5-3km/h Treadmill (flat) -
amputee
Ags [11] 15 healthy Two uni-axial 500 Walk (15m) 60-100 steps/min & Indoor flat surface Force plates
10 transtibial self-selected speed
amputees
Ama [10] 8 healthy Tri-axial 1500 Walk (8.4m) Self-selected speed Indoor flat surface Mocap system
Platform (slope)
Aps [13] 6 healthy Tri-axial 50 Walk (6 m) Self-selected speed & Indoor flat surface Pressure mat
slow-paced speed
Ask [24] 20 healthy® Tri-axial 128 Walk & run 4km/h-8km/h & Treadmill (flat, slope) Foot switches
(34min) self-selected speed Indoor flat surface

Outdoor street (flat, slope)

2 MAREA gait database.
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salient signal information. Finally, a Gaussian mixture model is
applied to classify each time sample as HS, TO or no-event.
Agas: In [13], a symbol-based method is presented which uses
piecewise linear segmentation followed by clustering to
symbolize the 2-axis acceleration signal. Then the context
and distribution of each symbol is analyzed based on expert
knowledge, in order identify HS and TO.

Asi: In [24], domain knowledge about gait is incorporated into
time-frequency analysis to detect gait events from 3-axis
accelerometer signals. A tracking procedure is implemented
using wavelet transform coefficients that extracts features from
a running window to define spectral-temporal event regions.
Finally, a 2-D Gaussian distribution fitting is done over each
event region to estimate the corresponding gait event.

The above algorithms were implemented on the data obtained
from left and right ankle accelerometers. Signals from all 3-axes
were used to implement Ag, Ajg and Aya. The X and Y axis signals
were used for methods Agr and Ags, as they utilize vertical and
anterior-posterior axis information. Similarly, Y and Z axis signals
were used for Aas as it utilizes vertical and lateral axis information.
The parameter values for all algorithms were used as reported by
the respective authors except Agr and Ags, which explicitly set
threshold values for the size of temporal windows utilized in their
algorithms. As the window size is dependent on sampling
frequency and gait speed, their values were empirically deter-
mined by varying the window size from 0% to 100% of the average
gait cycle using the Treadmill All scenario, as it consisted of
maximal variation in gait speeds.

2.3. Statistical analysis

A temporal tolerance of +5 samples or +0.039 s was used to
match the GT gait events with those detected by the algorithms. Any

constant bias was removed and the F1 score was computed in order to
evaluate the overall performance, as:

., PrecisionxRecall

Fr = 2 precision + Recall
where

. True positives
Precision = — —
True positives + False positives

and

True positives
Recall = — -
True positives + False negatives

Welch’s t-test was used to find any significant differences
between the F1 scores of any two sample groups. In order to
evaluate the accuracy, mean absolute error (MAE) was computed
by finding the mean of the absolute difference (in time) between
the true positives and the corresponding GT events. As an
alternative approach, the stride time distributions resulting from
the GED method and the corresponding GT were compared using
non-parametric tests as similar distributions would indicate
higher accuracy and vice-versa. The Kolmogorov-Smirnov (KS)
test and the Mann-Whitney U (MWU) test were applied to test the
null hypothesis that the two stride time distributions were
identical and both tests rejected the null hypothesis at the 5%
significance level [25].

3. Results

Fig. 2 shows the F1 scores for detecting HSs and TOs in five
different scenarios, defined earlier in Section 2.2. Each colored
boxplot consists of the F1 scores of applying a particular GED
method on the data from all subjects collected for a given scenario.
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Fig. 2. F1 scores for detecting HSs and TOs by applying the GED methods in the five different scenarios consisting of a combination different environments and gait activities.
Each boxplot represents the F1 scores of applying a particular GED method on data from all subjects collected for a given scenario. The median F1 score for each boxplot is
shown as a black dot. The F1 score reaches its best value at 1 and worst at 0. The abbreviations Ask, A, Agr, Ags, Ama and A, stand for methods [24], [9],[12],[11],[10] and [13],

respectively.
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The first two subfigures in Fig. 3 show the MAE in detecting HSs
and TOs by various GED methods in different scenarios along with
the number of true positives detected by the respective methods,
for each scenario. The remaining subfigures in Fig. 3 show the KS
test and MWU test results for comparing the stride time
distributions, computed using HSs and TOs, of a particular GED
method with that of the corresponding GT dataset, for a given
scenario. Each bar shows the number of datasets not rejected by
the KS test out of the total datasets tested, for a given algorithm.
Similarly, each square point (connected by dotted lines) represents
the MWU test result for the same datasets.

4. Discussion

The statistical results of applying GED methods in various real-
world scenarios reveal that the performance of most GED methods
for detecting HS and TO is not consistent across different
environments and activities. As shown in Table 2, the experimental

S. Khandelwal, N. Wickstrém / Gait & Posture 51 (2017) 84-90

protocol of GED methods usually involves walking on a flat surface
such as a corridor which is represented by the Indoor Walk
scenario. In this setting, the best performance is exhibited by Ask
and Ajg with high median F1 scores of 0.99 for all subjects, for both
HSs and TOs. Both algorithms demonstrate high temporal accuracy
in detecting events, shown by the KS and MWU test results where
none of the 22 stride time datasets were rejected with the
exception of one dataset. Algorithms Agr and Ags exhibit high F1
scores for HSs but show comparatively larger variances in their F1
scores for TOs. Moreover, the rejection of few datasets by KS and
MWU tests indicates that for those subjects, the methods have low
temporal accuracy and diminished performance for detecting TOs.
Algorithms Ay, and Ass also exhibit good performance for
detecting HSs for most subjects but not for TOs. This is indicated
by the significantly lower F1 scores for TOs as compared to HSs
(p < 0.05) and the rejection of all TO datasets by the KS and MWU
tests. With the exception of Agr, while all other algorithms have
their highest median F1 scores for detecting HSs in the Indoor Walk
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Fig. 3. The first two subfigures show the MAE (left y-axis) in detecting HSs and TOs along with the number of true positives (right y-axis) detected by various GED methods in
different scenarios. The remaining five subfigures show the KS test and MWU test results for comparing the stride time distributions of a particular GED method with that of
the corresponding GT dataset, for a given scenario. Each bar shows the number of datasets not rejected by the KS test out of the total datasets tested, for a given algorithm.
Similarly, each square point (connected by dotted lines) represents the MWU test result for the same datasets. The total no. of datasets is computed as the product of: No. of
subjects x Environment x Two ankles. For e.g. the total datasets for Treadmill All scenario = 11 x 2 x 2 (44 datasets). The abbreviations Asy, Ajg, Agr, Ars, Ama and Axs stand for

methods [24], [9], [12], [11], [10] and [13], respectively.
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scenario, they exhibit larger variances in their F1 scores for
Outdoor Walk suggesting decreased performance in a lesser
controlled environment. In particular, Ags exhibits the largest
variance with significantly lower F1 score for TOs as compared to
Indoor Walk scenario (p < 0.05). Additionally, for methods Ags and
Agr, the ratio of TO datasets rejected by the KS and MWU test
increases from Indoor Walk to Outdoor Walk, suggesting their
decreased temporal accuracy with the change of environment.
However, this change in accuracy with the change of environment
is not distinctly observable in the conventional MAE results, as
shown in Fig. 3. As MAE is computed using only the true positives,
few true positives could result in a low MAE value indicating high
accuracy although, in reality, the method might exhibit poor
performance due to numerous false positives. In contrast, as the
stride time distribution takes both, true positives and false
positives into account; comparing the shape of this distribution
with that of the GT, presents a better overview of the accuracy of a
method.

Since most GED algorithms have been designed for walking
with small speed variations, they are unable to adapt to large
differences in gait speeds. This is illustrated in the results of all
‘WalknRun’ scenarios characterized by decreased F1 scores, for
both HSs and TOs, as compared to the ‘Walk’ scenarios and large
rejections of datasets by both KS and MWU tests. For example,
when Indoor WalknRun is compared to Indoor Walk, methods A,
Agrr and Axs have significantly lower F1 scores for HSs (p < 0.05)
and all algorithms have significantly lower F1 scores for TOs
(p < 0.05). Except Ask, which is designed for variable gait speeds,
all other algorithms show a large increase in the ratio of datasets
being rejected by KS and MWU tests, especially for TOs, indicating
reduced temporal accuracy for ‘WalknRun’ datasets. Moreover,
almost all algorithms exhibit their lowest overall performance for
Outdoor WalknRun scenario, which perhaps represents the most
dynamic scenario. Though, it must be noted that it is difficult to
make objective comparisons between various algorithms as they
were developed using other datasets and protocols with different
sensor positions, sampling frequencies and accelerometer speci-
fications among others which may affect their performance
scores. Nonetheless, the results indicate that their individual
performance decreases in scenarios other than Indoor Walk,
which is usually the laboratory setting in which they are designed
and assessed.

This lower performance of GED methods in other, lesser
controlled scenarios could be attributed to the fact that most GED
algorithms are purely data-driven and hence find it challenging to
adapt to larger variations in the accelerometer data collected from
dynamic environments and activities. Moreover, the comparative-
ly lower performance for detecting TOs as compared to HSs can be
observed in algorithms that define spatial or temporal thresholds
either explicitly, as Ags, or use them at some intermediate stage
after signal transformation, such as Agr and Ass. As mentioned
earlier in Section 2.1, in contrast to the left ankle, the Z axis of the
right ankle accelerometer was marginally disturbed. It was
observed that methods Agr, Ars, Ama and Axs displayed significantly
lower F1 scores for the right foot gait events as compared to the left
foot, for all ‘WalknRun’ scenarios (p < 0.05). This may be attributed
to the algorithmic design as methods Agr, Ags and Ay process
individual axis signals obtained from pre-defined axes alignment
fixed relative to the limb, thus making it challenging to tackle
larger deviations from original configuration likely to occur in
dynamic and uncontrolled scenarios. Based on the presented
study, it is suggested that incorporating gait data from different
real-world settings, such as the MAREA database, during algorith-
mic development shall help in designing more robust and adaptive
GED algorithms for use in everyday life. A current drawback of the
database is that it lacks information from other inertial sensors

such as gyroscopes, which shall be included in future additions to
improve the database.

5. Conclusion

To conclude, a new gait database called MAREA is presented
that consists of various gait activities in different environmental
settings, both indoors and outdoors. The performance of existing
GED methods is evaluated in various scenarios defined using the
MAREA database. It is observed that while all GED methods exhibit
good performance for the scenario of steady walking in a
controlled indoor environment, they demonstrate decreased
performance in other environments and more dynamic scenarios
involving varying gait speeds and changing surface inclinations.
Moreover, all GED algorithms displayed better performance for
detecting Heel-Strikes as compared to Toe-Offs, when evaluated in
different scenarios.
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Identifying Initial Contact events (ICE) is essential in gait analysis as they segment the walking pattern into gait
cycles and facilitate the computation of other gait parameters. As such, numerous algorithms have been de-
veloped to identify ICE by placing the accelerometer at a specific body location. Simultaneously, many re-
searchers have studied the effects of device positioning for participant or patient compliance, which is an im-
portant factor to consider especially for long-term studies in real-life settings. With the adoption of
accelerometery for long-term gait analysis in daily living, current and future applications will require robust
algorithms that can either autonomously adapt to changes in sensor positioning or can detect ICE from multiple
sensors locations.

This study presents a novel methodology that is capable of estimating ICE from accelerometers placed at
different body locations. The proposed methodology, called DK-TiFA, is based on utilizing domain knowledge
about the fundamental spectral relationships present between the movement of different body parts during gait
to drive the time-frequency analysis of the acceleration signal. In order to assess the performance, DK-TiFA is
benchmarked on four large publicly available gait databases, consisting of a total of 613 subjects and 7 unique
body locations, namely, ankle, thigh, center waist, side waist, chest, upper arm and wrist. The DK-TiFA meth-
odology is demonstrated to achieve high accuracy and robustness for estimating ICE from data consisting of

different accelerometer specifications, varying gait speeds and different environments.

1. Introduction

Initial Contact events (ICE) segment the walking pattern into gait
cycles and are essential in many gait analysis applications [1-3]. Con-
sequently, numerous accelerometer-based algorithms have been de-
veloped to identify ICE from various body locations [4]. Usually, the
accelerometer is positioned on the leg such as forefoot, ankle or shank
[5-71; or on the chest or lower trunk locations [8-11]. While choosing a
position is application-dependent, researchers have studied the influ-
ence of device positioning for patient compliance, especially for long-
term studies in real-life settings [12-14]. Overcoming non-compliance
or self re-attachment of the sensor would cause changes in the original
position and orientation of the device. This would alter features of the
acceleration signal and affect most algorithms that are typically data-
driven techniques reliant on signal characteristics of a particular body
location [9,11,13]. Additionally, changes in sensor placement would
require switching between various position-dependent algorithms de-
signed with different methodologies and protocols. With the adoption
of accelerometery for long-term gait analysis in daily living [15],

current and future applications demand robust algorithms that can ei-
ther autonomously adapt to changes in sensor positioning or can detect
ICE from multiple sensors locations.

Recently, the authors had presented an algorithm that showed how
domain knowledge about gait could be incorporated into time-fre-
quency analysis to identify gait events [7]. However, it was limited to
detecting heel-strikes and toe-offs from accelerometers positioned only
on the ankles. Inspired by the prior approach, this study presents a
novel methodology that is capable of estimating ICE from accel-
erometers placed at different body locations. The proposed metho-
dology, called DK-TiFA: (Domain Knowledge in Time-Frequency Ana-
lysis), is based on utilizing domain knowledge about the fundamental
spectral relationships present between the movement of different body
parts during normal gait and incorporating it into time-frequency
analysis of the acceleration signal. In order to assess the accuracy and
robustness, DK-TiFA is benchmarked on four publicly available gait
databases consisting of 7 unique body locations and varying data col-
lection protocols.
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2. Proposed DK-TiFA methodology

Normal gait consists of a series of co-ordinated periodic movements
of various body parts such as arms, legs and trunk. The frequencies
associated with these movements are captured in the measured accel-
eration signals and lead to distinct and consistent spectral character-
istics in the frequency domain. Expert or domain knowledge is utilized
to comprehend these spectral characteristics in order to drive the time-
frequency analysis of the acceleration signal obtained from a given
body location.

Firstly, to be orientation-invariant and avoid any misalignment is-
sues, the magnitude of resultant accelerometer signal Acc, is computed
from the raw acceleration signals as:

Ace, = \Jacc,? + acc,? + acc;?

@®

where acc,, accy, acc, are obtained from each individual axis of the 3-
axes accelerometer, respectively. As the objective is to capture spectral
characteristics in the composite acceleration signal Acc,, the continuous
wavelet transform (CWT) is used as it provides a time-frequency re-
presentation that is appropriate for analyzing varying frequencies in
time [16]. The CWT of a discrete time signal x,, with equal time spacing
8, is defined as the convolution of x, with a scaled and translated
mother wavelet yo(n):

N-1 ,
Wa(s) = D Xy ¢[M]

n'=0 S (2)
where (*) indicates the complex conjugate, s is the wavelet scaling
factor and n is the localized time index [17]. To avoid spectral domain
skewness, the Morlet wavelet is chosen as it is symmetric and has been
shown to effectively distinguish spectral characteristics in time [7,18].
Fig. 1 shows the CWT of composite acceleration signals obtained from
different body locations, where finer scales correspond to high fre-
quencies and vice-versa. To determine the relative contribution of a
frequency to the total signal energy at a specific scale s, the scale-de-
pendent energy density spectrum is computed from the CWT coeffi-
cients, as:

N-1
Eo= ) WP, s €1, smul

n=0 3)
where |W,(s)|? is the 2-D wavelet energy density function that measures
the total energy distribution of the signal [16]. Peaks in E; highlight the
dominant energetic scales that contribute to most of the signal energy
in the spectral domain. Fig. 1 shows the E; profiles of the different body
locations computed from the respective CWT coefficients.

2.1. Domain knowledge

An accelerometer placed at any body location captures accelerations
from the local movement of the respective body part and the global
movement of the body, in a given direction. As these co-ordinated body
movements are periodic in nature during normal gait, the underlying
frequencies associated with these movements are also co-related. These
spectral relationships can be visualized in time by taking the CWT of the
acceleration signal and the major frequencies get highlighted as
dominant spectral peaks in their respective E; profiles.

For example, an accelerometer located at the ankle of a leg, captures
forces generated from two major events, Initial and Final Contact. As
frequency of the events is twice that of the gait cycle, the CWT coeffi-
cients corresponding to the the gait cycle exist towards the coarser
scales (or low frequency) while those corresponding to the Initial and
Final Contact events exist towards the finer scales (or high frequency
and twice that of the gait cycle). Thus, the resulting Eqnkie) profile is
characterized by two distinct peaks corresponding to the event and
cycle frequencies and the associated peak scales have a ratio of 2.
Similarly, during normal gait, arm swing is a natural motion where
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each arm swings with the motion of the opposite leg. Thus, the wrist
accelerometer captures a combination of the local acceleration forces
due to the arm swing and the global acceleration forces due to the
forward movement of the body. Peak scales in Esqisp show the un-
derlying periodic frequencies which have a similar event-cycle spectral
relationship as the ankle. An accelerometer positioned in the central
body such as chest or waist captures a combination of forces generated
periodically, consisting of the gait events from both legs and local
movements of the body part such as pelvic movements in the transverse
and frontal plane [19]. As such, the major frequency in the central body
acceleration signal is a combination of the gait cycles of the two legs,
which is twice the frequency of the gait cycle of an individual leg (e.g.
refer subfigures 3 and 7 in the second and third column of Fig. 1).

However, in real-life settings, human gait is quite varied involving
changing gait speeds and environmental factors. As such, these changes
in movement patterns captured by the acceleration signal of a specific
body position are reflected in the corresponding CWT coefficients. For
example, increasing gait speeds would mean higher gait frequencies,
and the resulting CWT coefficients would exist towards the finer scales
(or high frequency) and vice-versa. Another example is shown in
Fig. 4b, where a subject walks with no arm swing and then changes to
swinging the arms, leading to varying peak amplitudes in Esuyriso-
Hence, these changes during gait propagates to the corresponding E;
profiles as shift of dominant energy scales along the spectral axis and
variations in their peak amplitudes. The challenge is to design an al-
gorithm that can tackle these local spectral transitions in E; and con-
sistently track them, in time. Thus, DK-TiFA utilizes the aforementioned
relative spectral relationships to define a two-step tracking procedure
that tracks the most dominant scale in the E; profile of a given body
position. This spectral-temporal information is further used to estimate
ICE from respective accelerometer signals.

2.2. Time-frequency analysis

As shown in Fig. 2, DK-TiFA consists of three major systematic steps
elaborated in the following subsections.

2.2.1. Pre-processing

First, the composite acceleration signal Acc, is computed from the 3-
axis acceleration signals using (1). Then the CWT of Acc, is computed
using a real-valued Morlet wavelet, as shown in (2). The range of scales
for analysis, i.e. [1, Smax] are chosen using the non-linear frequency-
scale relationship of the Morlet wavelet such that sy, = &, where A
is the sampling period, F, is the minimum gait frequency assumed to be

| w2
around 0.5 Hz [20]; and E. = (@+\2+e) yhore w, is the center fre-

quency of the Morlet, taken as 5.1057r rad/s [17,21].

2.2.2. Tracking the most dominant spectral energy scale

Based on the accelerometer placement on central body or limb, this
step tracks the most dominant spectral energy scale present in the E
profile of that position.

As explained in Section 2.1, the E; profile of a central body place-
ment such as chest or waist is characterized by a dominant peak. For
such placements, a running window is taken along the temporal axis of
the CWT coefficients and within every window r, the peak scale y/ is
computed that corresponds to the maximum spectral energy in the local
E] profile, i.e.:

W = argmaXep g, B o)
(r+1)P-1
where, E! = Z IWa()P, s € [1, Smax]
n=rp 5)

and P denotes the window hop size. In principle, a window size that
captures the information of one gait cycle is sufficient but practically it
is desired to be large enough to account for signal noise and thus it
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Fig. 1. The first column shows the different composite acceleration signals Acc, obtained from accelerometers positioned at various body locations. The different Acc,'s are time-
synchronized. The second column shows the top view of the corresponding CWT coefficients and the third column shows the energy density spectrum (E;) profiles computed from the
respective CWT coefficients. The E; profiles are similar for accelerometer placements on the limbs, such as ankles and wrists, and are characterized by two distinct peak scales. Likewise,
the E; profiles are similar for accelerometer placements on the central body, such as chest and waist, and are characterized by one dominant peak scale. The E; profiles have been
normalized to scale them into the figure.

could be taken from 3 to 6s to include additional gait cycles. The E signal, and (2) consistently track the chosen peak scale in every
profile of an accelerometer placed on the limbs such as ankle or wrist, is window.

generally characterized by two distinct spectral energy peaks and the

associated peak scales have a ratio of 2 due to the event-cycle spectral o Step 1: The E; profile of the entire Acc, is computed using (3). Then
relationship. However, as explained in Section 2.1, changes in move- the possible candidates corresponding to the event and cycle peaks
ment patterns would be reflected in the CWT coefficients and may lead in E; are computed as the set of local maxima points
to shift in peak scales and variations of the peak amplitudes in E] {(Sm, Es,), m € [1, M]}; where s, is the scale corresponding to a
profile. Thus, a two-step procedure is suggested: (1) determine which is peak value E, and M is the total number of maxima points. If only
the most dominant spectral energy scale (event or cycle) in the entire one local maxima is found (M = 1), it is determined that the event
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Fig. 2. An overview of the DK-TiFA methodology for detecting gait events from accelerometers positioned at various body locations. (*) In implementation, the event-cycle spectral
relationship is relaxed by A (here taken to be 0.4) to accommodate effects of signal noise and low frequency resolution in finer scales.
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peak scale is the most dominant spectral scale to track and the
procedure goes to Step 2. Otherwise, in case of multiple local
maxima points (M = 2), the two highest amplitude points are se-
lected and the ratio between their corresponding scale values is
computed as:

§= ﬂ, such that: E;, > Ej,

52 6)
Utilizing the event-cycle spectral relationship, if § = 2, then the most
dominant spectral scale s; corresponds to the cycle peak, otherwise s;
corresponds to the event peak. In implementation, this spectral re-
lationship is relaxed to accommodate effects of signal noise and low
frequency resolution in finer scales [22].

e Step 2: Take a running window along the temporal axis of the CWT
coefficients. Within every window r, select the two highest ampli-
tude points and their corresponding scale values, i.e.
{(sf, Ey)), (53, E,)|E5, > E,} from the set of local maxima points in
E;. If Step 1 selects to track the cycle peak, then the spectral ratio §”
is computed as:

T @

and the following two cases are checked:

- Case I: If " = 2 then s{ > s and the maximal peak Ej, corresponds
to the cycle peak as expected. Accordingly, s is stored as the
tracked scale /.

- Case II: If 8" = 2 as s; = 2s{, then Ej, corresponds to the cycle peak
instead due to locally varying peak amplitudes. Thus, s; is stored as
the tracked scale .

A similar procedure is adopted if Step 1 selects to track the event peak
instead, as shown in Fig. 2.

2.2.3. Estimating the ICE

The tracked spectral scale u stored in every window r represents
the major underlying local frequency in Acc,. By successively compiling
them from all windows and selecting the CWT coefficients at those
particular scales, a distinct temporal signal x, is obtained as:

X AW, re [1, PL]

1 ®)

X is low-pass filtered using a zero-phase filter to remove any high
frequency noise and window edge effects. Then the set of local maxima
points in x;,, is computed to estimate the desired ICE (refer Fig. 4a). If
the accelerometer was positioned on the central body such as chest or
waist, then the first point would correspond to the ICE from one leg and
the second to the ICE from the other leg and so on. If the accelerometer
was positioned on the limb such as ankle or wrist, then the corre-
sponding ICE are estimated based on which spectral scale was tracked.
If the event spectral scale was tracked then every alternate maxima
point would correspond to the ICE while if the cycle spectral scale was
tracked, the maxima points would correspond directly to the ICE of a
given leg.

2.3. Benchmarking the DK-TiFA methodology

DK-TiFA was applied on four accelerometer-based gait databases,
namely, MAREA Gait Database (MAREA-DB) [23], ZJU-GaitAcc Data-
base (ZJU-GaitAcc-DB) [24], OU-ISIR Gait Database (OU-ISIR-DB) [3]
and DaLiAc Database (DaLiAc-DB) [25]. Table 1 shows a summary of
the walking datasets included in these databases. For each walking trial,
the stride time distribution was computed from the estimated ICE of
each body location. It was previously shown that non-parametric sta-
tistical tests could be used to assess the accuracy and consistency of a
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method by comparing the shape of the two stride time distributions
obtained from the method and an external reference or ground truth
[23]. If all ICE detected from a body location matched exactly the
corresponding events from an external reference, then this would lead
to identical stride time distributions and indicate high accuracy of the
method. However, occurrence of any false positives or false negatives
would lead to shorter or longer stride time durations, which in turn
would be reflected in the shape of the resulting stride time distribution
of the walking trial and would be dissimilar compared to the corre-
sponding one obtained from the external reference. Thus, the Kolmo-
gorov-Smirnov (KS) test and Mann-Whitney U (MWU) test were ap-
plied to test the null hypothesis that the two stride time distributions
were identical and both tests rejected the null hypothesis at 5% sig-
nificance level [26]. In case of lack of any external reference, the same
approach was used to obtain insights into the consistency of the method
by comparing the stride time distributions obtained from different parts
of the body with the hypothesis that they must also be identical. Ad-
ditionally, agreement between the two distributions was analyzed using
the Bland-Altman plots [27]. None of the databases used motion cap-
ture system or force plates to collect gold standard reference. While
MAREA-DB used force sensitive resistors as an external reference
(XREF), the manually annotated gait cycles in ZJU-GaitAcc-DB was
used as XREF for computing stride time distributions. MAREA-DB had
20 subjects but one dataset had no wrist data and was excluded from
analysis. ZJU-GaitAcc-DB had 153 subjects with 2 walking sessions, 22
subjects with one session and 6 records/session, leading to 1968 data-
sets (153 X 2 X6 + 22 x 1 x6). As OU-ISIR-DB had very short
durations of walking trials, the step time distribution was computed
instead, to increase the statistical power of the test. Also, it was found
that 12 datasets had no accelerometer data for either of the positions
and 88 datasets had unequal number of samples (with more than 5%
difference) for the same trial, and few datasets were in both categories.
Thus, 95 out of 495 datasets were excluded from analysis.

3. Results

Table 1 shows the results of applying DK-TiFA on the gait databases.
For MAREA-DB and ZJU-GaitAcc-DB, each cell in the first column
shows the total number of datasets not rejected by KS and MWU test as
a result of comparing the stride time distributions computed using the
estimated ICE with that of the corresponding XREF datasets, for a
particular sensor position. Each cell in all other columns shows the total
number of datasets not rejected as a result of comparing the stride or
step time distributions computed from the ICE of one sensor location
with that of another location. Each row in Fig. 3 shows the Blan-
d-Altman (BA) plot results for each database. The x-axis for each plot in
the first two rows (MAREA-DB and ZJU-GaitAcc-DB) shows the ar-
ithmetic mean of the stride time computed from the estimated ICE and
the corresponding XREF; while the y-axis shows their difference. As no
XREF is available for OU-ISIR-DB and DaLiAc-DB, the last two rows
show the BA plots of comparing the step or stride time computed from
any two unique body locations. The dashed lines show the mean of the
differences and the limits of agreement, i.e. = 1.960 (where o is the
standard deviation of the differences); such that 95% of the differences
lie between the limits of agreement.

4. Discussion and conclusion

The results reveal that DK-TiFA performs excellently for the accel-
erometer placements on the legs such as ankle and thigh, and central
body such as waist, side pelvis and chest. Table 1 shows that for
MAREA-DB, none of the datasets were rejected by KS and MWU tests for
ankle and waist placements when compared to the XREF datasets. Si-
milarly for ZJU-GaitAcc-DB, only 0.39% of the datasets were rejected
by KS test and 0.12% of the datasets were rejected by MWU test, for
pelvis, thigh and ankle placements. For OU-ISIR-DB and DaLiAc-DB
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Table 1

Gait & Posture 59 (2018) 278-285

The KS and MWU test results of comparing the stride time or step time distributions of a given sensor position with the corresponding external reference dataset or another body location.
The right column gives an overview of the walking datasets in each database. Numbers marked as (*) denote approximate estimations either reported by the respective authors or

computed by manual inspection of the datasets.

MAREA gait database [23]: total datasets tested = 19

Sensor External Right Waist Wrist Walking
position reference ankle datasets
Left KS test 19 19 19 14 Subjects: 20
ank-
le
MWU test 19 19 19 16 Gender: 12 m, 8 f
Right KS test 19 - 19 15 Age: 33.4 = 7
ank-
le
MWU test 19 19 16 Acc. type 3-axis + 8¢
Waist KS test 19 - - 13 Sampling rate: 128 Hz
MWU test 19 16 Trial period: 3 min
Wrist KS test 16 - - - Steps/trial: 352*
MWU test 16 Total steps: 7102*
ZJU-GaitAcc database [24]: total datasets tested = 1968
Sensor position External reference Thigh Pelvis Upper arm Wrist Walking datasets
Ankle KS test 1961 1966 1963 1921 1830
MWU test 1965 1967 1960 1921 1825 Subjects: 175
Thigh KS test 1962 - 1966 1920 1835 Gender: 2/3 m, 1/3 f*
MWU test 1967 1963 1921 1824 Age: 16-40
Pelvis KS test 1958 - - 1919 1837 Acc. type: 3-axis + 5g
MWU test 1965 1916 1815 Sampling rate: 100 Hz
Upper arm KS test 1918 - - - 1821 Trial period: 7-15 s
MWU test 1921 1807 Steps/trial: 22*
Wrist KS test 1835 - - - - Total steps: 45,110*
MWU test 1828
OU-ISIR gait database [3]: total datasets tested = 400
Sensor position Left waist Right waist Walking datasets
Center waist KS test 397 399 Subjects: 495
MWU test 397 399 Gender: 1/2 m, 1/2 f*
Left waist KS test - 398 Age: 2-78
MWU test Acc. type: 3-axis + 4g
Sampling rate: 100 Hz
Steps/trial: 10*
Total steps: 10,229
DaLiAc database [25]: total datasets tested = 19
Sensor position Hip Chest Wrist Walking datasets
Ankle KS test 19 19 18 Subjects: 19
MWU test 19 19 18 Gender: 11 m, 8 f
Hip KS test - 19 18 Age: 26 = 8
MWU test 19 18 Acc. type: 3-axis + 6 g
Chest KS test - - 18 Sampling rate: 204.8 Hz
MWU test 18 Steps/trial: 488*

Total steps: 9416*

where XREF was unavailable, a comparison between the step or stride
time distributions obtained from different positions show that with the
exception of 3 datasets, none were rejected by KS and MWU test. These
results are complemented by BA plots of the respective databases for
accelerometer placements on the leg and central body. Fig. 3 shows that
for these locations, mean of the differences in the corresponding stride
or step time is very close to zero, indicating strong agreement between
them. Moreover, almost all data points are concentrated in a cluster
between the small limits of agreement with few outliers corresponding
to the false positives (below —1.960) and false negatives (above
+1.960).

However, it was observed that estimating ICE from accelerometer
placements on the arm such as wrist and upper arm was more chal-
lenging as more datasets were rejected for these positions. For MAREA-
DB, 3 datasets were rejected by the KS test while for ZJU-GaitAcc-DB,
4.65% of the total datasets were rejected by the KS test. This was also

observed in the BA plots of upper arm and wrist, where two distinct
clusters of data points exist outside the limits of agreement ( = 1.960).
The data points in the lower left corner of the graph appear due to the
occurrence of false positives in estimating ICE as the resulting stride
time values are lower in comparison to the external reference; leading
to lower mean and negative difference between them. Similarly, those
in the upper right corner appear due to the occurrence of false negatives
leading to a larger mean and positive difference between them. This
decrease in the performance is due to the fact that the tracking proce-
dure is unable to effectively tackle rapid changes in arm swing beha-
viour of the subjects. Although, arm swing motion is generated natu-
rally during bipedal walking, it is not a necessary criteria for stable
walking and often humans change their arm motions during everyday
walking [28]. An example is depicted in Fig. 4b which shows the var-
iations in the CWT of a wrist accelerometer during standing and
walking with successive movements of no swing, normal swing and
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Fig. 3. This figure shows the Bland-Altman (BA) plot results of the MAREA-DB [23] (first
row), ZJU-GaitAcc-DB [24] (second row), OU-ISIR-DB [3] (third row) and DaLiAc-DB
[25] (fourth row), respectively. The x-axis for each plot in the first two rows (MAREA-DB
and ZJU-GaitAcc-DB) shows the arithmetic mean of the stride time computed from the
estimated ICE using the DK-TiFA methodology and the corresponding external reference
(XREF); while the y-axis shows their difference. The dashed lines show the mean of the
differences and the limits of agreement, i.e. = 1.960 (where o is the standard deviation of
the differences); such that 95% of the differences lie between the limits of agreement. As
no XREF is available for OU-ISIR-DB and DaLiAc-DB, the last two rows show the BA plots
of comparing the step or stride time computed from any two unique body locations.

large arm swings.

The high robustness of DK-TiFA is due to the adept use of domain
knowledge about various body movements which can be easily ex-
tended to any body location and guide the signal analysis procedure.
This is contrary to purely data-driven techniques that are often de-
pendent on thresholds and tuning parameters and are unable to adapt
to new sensor placements or different protocols [23]. Though non-
parametric tests such as KS and MWU tests can be effectively applied to
assess the accuracy of a method, the test results are dependent on the
sample size and chosen level of significance which influences power of
the test; thus making it difficult to make objective assessments for very
small datasets, especially without any XREF. Further investigation is
required to extend the methodology to estimate Final Contact (FC) or
toe-off events from any location as it enables the computation of further
gait parameters. However, this is much more challenging as an accel-
erometer positioned at upper body parts captures much lesser of the FC
forces as compared to the combination of IC and the periodic forces
generated due to the local movement of the body part during gait.
Furthermore, there is an overlap between the IC of one foot and the FC
of the other during double support. These factors not only make it very
difficult to discern the frequency of FC from other periodic motions in
the CWT of the acceleration signal but also correctly attribute the es-
timated event to either the right or left leg automatically. This is further
compounded by the poor frequency resolution of the CWT in the finer
scales. Additionally, future work is required to adapt DK-TiFA to pa-
thological gait.

This paper presents a novel methodology that incorporates domain
knowledge about fundamental spectral relationships present between
co-ordinated body movements during normal gait, into time-frequency
analysis. The DK-TiFA methodology is demonstrated to achieve high
accuracy and robustness for estimating ICE from accelerometers
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Fig. 4. (a) Examples of the low-pass filtered temporal signal x,, for each sensor location,
that matches the frequency of the event or cycle in the corresponding composite accel-
eration signal. All signals have been normalized to scale them into the figure. The esti-
mated ICE for a given leg are marked as red or green square points. It is observed that the
ICE estimated from other body locations are marginally delayed when compared to the
ankle. (b) The CWT coefficients of the composite acceleration signal collected from the
wrist during standing and walking with successive movements of no arm swing, normal
arm swing and large arm swing. Only positive-valued coefficients are shown. (For in-
terpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

positioned at various body locations and data consisting of different
accelerometer specifications, varying gait speeds and different en-
vironments.
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