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Abstract: We characterize the spectral response of a distributed-feedback resonator when 
subject to a thermal chirp. An Al2O3 rib waveguide with a corrugated surface Bragg grating 
inscribed into its SiO2 top cladding is experimentally investigated. We induce a near-to-linear 
temperature gradient along the resonator, leading to a similar variation of the grating period, 
and characterize its spectral response in terms of wavelength and linewidth of the resonance 
peak. Simulations are carried out, showing good agreement with the experimental results and 
indicating that the wavelength of the resonance peak is a result only of the total accumulated 
phase shift. For any chirp profile we are able to calculate the reflectivities at the resonance 
wavelength, and this information largely explains how the linewidth of the resonance 
changes. This result shows that the increase in linewidth is governed by the increase of the 
resonator outcoupling losses. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Periodic corrugated structures have been extensively investigated over the last decades, for 
their significant and wide range of applications, being employed as spectral filters [1,2], 
temperature and strain sensors [3], couplers [4], beam splitters, as well as part of the resonant 
structure in distributed-feedback (DFB) [5] and distributed-Bragg-reflector (DBR) lasers. The 
latter application relies on the fact that the Bragg grating provides very high wavelength 
selectivity [6], hence allowing for the development of ultranarrow-linewidth lasers [7–10]. 
The grating period has a strong influence on the longitudinal-mode selectivity [11–13]. 
Gratings with non-uniform period (chirped gratings) have received much interest [14–16], 
and substantial attention has been paid to the design of chirped gratings that manipulate the 
intracavity power distribution and avoid spatial hole burning in DFB lasers [17–19]. 

Despite careful design of DFB resonators for ultranarrow-linewidth laser operation, 
asymmetric heating of the device due to non-uniformly absorbed pump power in optically 
pumped lasers, which is partially converted into heat, may cause an undesired chirp in the 
Bragg structure. The resulting changes in refractive index as well as material expansion 
influence the resonance frequency and linewidth of the central emission line. Thermally 
induced chirped gratings are reported in the literature under the scope of power stability and 
spectral response [20–26], however, to the best of our knowledge, a complete and satisfactory 
explanation of the relationship between the chirped grating profile and the linewidth produced 
by the resonator is still lacking. 

In this work, we investigate the spectral characteristics of DFB resonators with a 
thermally induced chirp in their Bragg grating. A temperature gradient with an approximately 
linear profile is experimentally produced along the waveguide resonator, and the wavelength 
of the resonance peak and its linewidth are characterized. The experimental results show good 
agreement with simulations based on Born and Wolf’s [27] characteristic-matrix approach. 

2. Experimental 

2.1 Laser resonator under investigation 

The sample investigated in this work is an amorphous Al2O3:Yb3+ rib waveguide with an Yb3+ 
concentration of 4.37 × 1020 cm−3, deposited by RF reactive co-sputtering from metallic Al 
and Yb targets onto a thermally oxidized silicon wafer [28] and subsequently micro-
structured by chlorine-based reactive ion etching [29], with a SiO2 top cladding of 350 nm 
thickness added. The rib waveguide has a length of   = 1 cm and 2.5 × 1.0 µm2 lateral cross 
section, designed to support only fundamental-transverse-mode propagation [Fig. 1(a)]. A 
corrugated homogeneous Bragg grating, where κ = 8.33 cm−1 is the grating coupling 
coefficient per unit length [10], is inscribed into the SiO2 top cladding by laser interference 
lithography and subsequent reactive ion etching [9,10], providing the necessary feedback for 
single-longitudinal-mode laser operation at the Bragg wavelength λB [30]. 

The λB/4 phase shift required for producing a resonance within the reflection band of the 
Bragg grating is achieved by an adiabatic tapering of the waveguide structure [31,9], in which 
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the waveguide width first increases and then decreases gradually according to a sin2 function 
from 2.5 to 2.85 µm over a total length of 2 mm. As a consequence, the effective refractive 
index to which the propagating mode is subject also increases with the same function. The 
tapered section of the waveguide is designed to result in an accumulated phase shift of λB/4. 
The phase-shift region is centered at the position zps = 7 mm in order to yield higher output 
powers in one direction [32,9]. Having introduced the tapering of the waveguide, the resultant 
modulation of the refractive index is no longer periodic, and therefore the Bragg grating 
becomes non-periodic. 

 

Fig. 1. (a) Illustration of DFB rib waveguide. Inset: transverse profile of guided fundamental 
mode. (b) Schematic of experimental setup for inducing a temperature gradient and measuring 
wavelength and linewidth of the resonance peak. 1: block with circulating water at room 
temperature (22°C); 2: ~15 mm long aluminum block; 3: metal block with power resistor 
connected to a control-loop feedback mechanism for controlled temperature increase; 4: 
thermally conductive layer, consisting of thermal paste; 5: sample, where the DFB resonator is 
indicated by a yellow line. (c) Measured temperature (squares) along the waveguide and fit 
(lines) by a linear function. (d) Modulation of effective refractive index along the propagation 
direction, as a combined result of the increase in waveguide width to achieve a λ/4 phase shift 
and the considered values for the linear chirp. The “non-etched” and “etched” series of graphs 
represent the half period of the non-etched and etched grating, respectively. The waveguide 
with a linear chirp profile is represented at the bottom of the figure. 

2.2 Generation of temperature gradient 

Besides the capability of homogeneously heating the entire sample, we generate 
experimentally a temperature gradient by controlling the temperature in the sample holder 
onto which the sample is mounted, along the waveguide direction. The sample holder [Fig. 
1(b)] consists of a cooled metal block, an aluminum block, and a heated metal block. A layer 
of thermally conductive material is added, onto which the sample is mounted to ensure 
adequate heat transfer between the holder and the sample. 

For the set of heating temperatures used in the experiment, the temperature on the top 
surface of the sample holder is measured using a thermocouple sensor with a temperature 

                                                                              Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4895 



accuracy of ± 0.5 K, in several positions along the surface where the waveguide is to be 
placed [Fig. 1(c)]. As a simplification for the thermal modeling, we consider that air cooling 
is approximately the same for the sample holder and for the sample when it is mounted onto 
it. The temperature along the waveguide is fitted by a linear function beginning with the data 
points at z0 = 3.5 mm, from which the temperature at the center of the phase shift is estimated. 

2.3 Resonance measurement 

The approximately Lorentzian-shaped resonance near 1028.25 nm is measured in the 
unpumped sample, hence including the full absorption loss by the Yb ions, and the peak 
wavelength and full-width-at-half-maximum (FWHM) linewidth of the resonance are 
characterized. Investigations of the unpumped sample provide insightful information about 
the behavior of light inside the optical resonator [33], being of crucial importance for 
understanding the behavior of the resonator during laser operation. 

As a probe beam, the signal from a scanning narrow-linewidth laser (DLC DL pro, 
TOPTICA) centered at 1028.25 nm is fiber-coupled to the waveguide by use of refractive-
index-matching oil to avoid Fresnel reflection. The transmitted light is collected by an optical 
fiber and discriminated from residual room light by a monochromator, which is set to 1028.5 
nm with a bandwidth wide enough to ensure detection of the resonance peak for all 
experimental situations, and detected by a photomultiplier tube [Fig. 1(b)]. This setup enabled 
measurement of the spectral response of the resonator for the temperature profiles produced 
along the waveguide [Fig. 1(c)], which result in thermally induced chirp profiles of the 
grating period. 

This measurement technique results in a spectral convolution between the signal profile 
and the resonance profile under investigation. The FWHM of 40 MHz of the scanning 
narrow-linewidth laser is considered in order to de-convolute the measurement and obtain the 
correct line shape of the resonance, to which a Lorentzian curve is fitted to derive the FWHM 
linewidth. 

3. Calculations and simulations 

Our experimental investigations are complemented by theoretical considerations and 
simulations. 

3.1 Resonance linewidth 

The resonance linewidth results from the total losses of the resonator, which comprise the 
outcoupling losses, the intrinsic losses of the passive resonator, and the absorption losses 
introduced by the unpumped Yb ions. The outcoupling losses are due to the transmission of 
light through the distributed mirrors, where gratings 1 and 2 are defined as the part of the 
Bragg grating at the left- and right-hand side of the phase-shift center, respectively, and 
provide the reflectivity values R1 and R2. If light penetrates into grating 1 and 2 by the 
penetration length  p1 and  p2, respectively, resulting in the single-path resonator length 

 1 2 ,res p p= +    (1) 

its round-trip time becomes 

 
2

,res
RTt

c
=


 (2) 

with c being the average speed of light in the waveguide medium (including the low-and 
high-index parts of each period and the thermally induced refractive-index change). These 
losses are quantified by the outcoupling decay-rate constant 1/τout according to 
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out RT

R R

tτ
−

=  (3) 

The intrinsic round-trip losses LRT, a parameter commonly used in laser physics, of the 
passive resonator originate mostly in scattering at the corrugated Bragg mirrors and at the 
interfaces of the guiding medium, as well as scattering and absorption of light inside the 
guiding medium (but do not include the absorption or gain due to the Yb ions), i.e., these 
losses can alternatively be described by a propagation-loss coefficient per unit length, αprop: 

 21 .prop res

RTL e α−= −   (4) 

Here the assumption has been made that the propagation losses do not change due to the 
adiabatic widening in the phase-shift region. These losses are quantified by the decay-rate 
constant 1/τprop according to 

 ( )ln 11
.RT

prop
prop RT

L
c

t
α

τ
− −

= =  (5) 

The passive resonator is defined as the resonator at the transparency point, in which the 
atomic system provides neither absorption nor amplification of light. The decay-rate constant 
1/τc of the passive resonator is the sum of the above-mentioned decay-rate constants. In the 
presence of additional absorption losses due to the unpumped atomic system with an 
absorption coefficient per unit length, αabs, resulting in the absorption decay-rate constant 
1/τabs according to 

 1
,abs

abs

cα
τ

=  (6) 

the total decay-rate constant 1/τL of photons inside the resonator then becomes 

 ( ) [ ] ( )1 2 1 2
ln 1 ln1 1 1 1

.
RT

abs prop abs
L out prop abs RT RT

R R L R R
c c

t t
α α α

τ τ τ τ
− −  − = + + = + = + +  (7) 

The amplitude of the intracavity electric field decays exponentially with a lifetime of 2τL. 
Fourier transformation of such an exponential decay in the time domain to the frequency 
domain results in the electric-field amplitude per unit frequency interval, whose square 
represents the intensity spectral profile, which in case of insignificantly varying mirror 
reflectivities and photon decay time over the main part of the spectral resonance line results in 
an approximately Lorentzian-shaped spectral profile [34] with a FWHM linewidth given by 

 1 1 1 1 1
,

2 2L out prop abs
L out prop abs

ν ν ν ν
πτ π τ τ τ

 
Δ = = + + = Δ + Δ + Δ  

 
 (8) 

where Δνout, Δνprop, and Δνabs are the resonance linewidths arising from the individual 
contributions to the total resonator losses. Although the spectral profiles are symmetric in the 
frequency domain [34], in this work we display the results in the wavelength domain, as the 
wavelength range over which the analysis is carried out is small enough to result in negligible 
asymmetry of the spectral profiles. 

Although the temperature dependence of transition cross sections in laser systems can be 
significant [35,36], the absorption losses and the waveguide propagation losses remain 
approximately constant for the temperature range investigated here. A temperature increase 
results in a change of Bragg-grating period due to an increase in refractive index as well as 
thermal expansion of the device. These two effects together result in an increase in the optical 
path length that the light travels in each grating period. For the purpose of the simulations, we 
assume that the increase in refractive index is the dominating effect. For its temperature 
dependence, we make a first-order approximation, dn/dT = const. It results in a change of the 
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wavelength-dependent grating reflectivities and, consequently, the penetration lengths, the 
resonator length, and the outcoupling losses. A longitudinally non-uniform temperature 
increase further complicates the situation. 

3.2 Simulations 

We base our simulations of the spectral response of the DFB resonator on the characteristic-
matrix approach, which is suitable to characterize light propagating through a stratified 
medium, as described by Born and Wolf [27] for a planar wave. The method consists in 
exploiting Maxwell’s equations for the electric and magnetic field components in the 
dielectric medium under investigation and applying the appropriate boundary conditions 
between two adjacent media in the form of a matrix. For the case of a periodically stratified 
medium, such as a Bragg grating, one can define the characteristic matrix for one period as 
the multiplication of a matrix corresponding to a layer with lower refractive index (the etched 
part), namely mM ′  by another matrix corresponding to a layer of higher refractive index (the 

non-etched part), namely mM ′′ , and thus obtain the matrix for period m, namely 

,m m mM M M′ ′′=  given by 

 
cos cos sin sin cos sin sin cos

,

cos sin sin cos cos cos sin sin

m
m m m m m m m m

m m m
m

m
m m m m m m m m m m

m

p i i

p p p
M

p
ip ip

p

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′− − − ′ ′′ ′ =
′ 

′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′′− − − ′′ 

 (9) 

as defined in Born and Wolf. For the low-index layer of the mth period (and for the high-index 
layer accordingly), m m mγ β′ ′ ′=  , where m′  is the length of the layer, the propagation constant 

mβ ′  is defined as usually, 0m mk pβ ′ ′= , with cosm m mp n θ′ ′ ′= , in which 0k  is the wavenumber in 

vacuum, mθ ′  is the angle between the propagation vector and the direction of stratification 

(which corresponds to the waveguide axis for our device), and cosm mn θ′ ′  is the effective 

refractive index, defined as a complex number in which the imaginary part corresponds to the 
continuous losses in the medium. The effective refractive index is obtained by use of a mode 
solver. The equation to be solved is a transcendental equation, known as the characteristic 
equation for our planar asymmetric waveguide, in which the parameters are the geometry of 
the waveguide and the refractive index profile. We consider TE polarization and a non-
magnetic medium. In order to obtain the characteristic matrix for the entire structure, a 
multiplication of all the individual matrices Mm corresponding to the thermally chirped 
periods m is carried out. Our object of interest is the resonator, which is experimentally 
characterized by launching light and analyzing the outcoupled light, therefore, the first and 
last layers of the medium considered in the simulation are the refractive-index-matching oil, 
with n  = 1.55. 

This method is sometimes found in the literature as the transfer-matrix method (TMM) 
[37]. However, this terminology is not consistently used in the literature, might actually refer 
to very different approaches [38–40], and very often corresponds to the solutions of the 
coupled-mode theory (CMT) [5,41] in a matrix form. We chose the characteristic-matrix 
approach for its simplicity, for circumventing the requirement of knowing a priori the grating 
coupling strength (which would be required in CMT), for being valid for relatively large 
grating depth and refractive index difference, and, finally, for the absence of approximations 
other than the plane-wave approximation when describing the structures investigated in this 
work. 

3.3 Thermal-chirp profile 

A linear chirp profile of the Bragg-grating period Π(z) with position z, 
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is considered to compare the simulation results of the spectral characteristics of the resonator 
with the experimental results. The simulations are then extended to quadratic and exponential 
chirp profiles. 

For the simulation, we consider that the grating period along the z direction is the product 
of a constant physical length multiplied by the refractive index profile along z, in which we 
impose the desired chirp profile [Fig. 1(d)]. In Eq. (10), the chirp coefficient δlin has the 
dimension (m−1), i.e., it represents the chirp per unit length. The Bragg mirrors of the DFB 
resonator are constituted by a sequence of adjacent layers of high and low refractive indices, 
the latter being achieved by partially etching the cladding layer of the waveguide. Figure 1(d) 
depicts the effective refractive index along the waveguide of both types of layers, when a 
linear chirp profile is considered. The constant value at positions z ≤ z0 = 2.5 mm is obtained 
by use of a mode solver (software COMSOL), for both the etched and non-etched layers 
(using the. For z > z0, the initial effective refractive index at the position z0 = 2.5 mm 
increases linearly with length z according to the value of the linear chirp coefficient δlin. The 
additional increase of effective refractive index in the phase-shift region, as a result of the 
tapering of the waveguide width according to the sin2 function centered at position z = 7 mm, 
is also calculated [Fig. 1(d)]. 

4. Results and discussion 

Firstly, we characterize the spectral response of the DFB resonator as a function of 
temperature without thermal chirp and derive the relevant parameters that will allow us to 
investigate and understand the situation with thermal chirp. 

4.1 Spectral response without thermal chirp 

The calculated reflectivity curves of gratings 1 and 2 and the wavelength of the resonance 
peak for different sample temperatures are displayed in Figs. 2(a) and 2(b), respectively. In a 
first-order Bragg grating, the period Λ = λB/(2neff), the Bragg wavelength λB, the grating 
reflectivities, and the resonance wavelength shift in the same way with temperature. 
Consequently, the reflectivities at the resonance wavelength and, therefore, also the linewidth 
remain the same. By homogeneously heating the entire sample, we determine experimentally 
the temperature dependence of spectral response of the DFB resonator [Fig. 2(c)]. The 
dependence of wavelength shift of the resonance peak with temperature [Fig. 2(d)] is 
approximately linear and amounts to 12.0 pm/K for ~1028 nm, i.e., a relative wavelength shift 
of ~1.2 × 10−5 K−1, which is in reasonable agreement with the values of 19 ± 1 pm/K [10] and 
20 pm/K [42] reported for ~1560−1590 nm, therefore corresponding to the same relative 
wavelength shift. From the shift of peak wavelength with temperature, we derive the value of 
dn/dT = 1.86 × 10−5 K−1. Since part of the shift is due to sample expansion, this value 
represents an upper limit to the refractive index change with temperature. The value is higher 
than the corresponding value of 0.83 × 10−5 K−1 in Y3Al5O12 and the absolute of the two 
values of −0.43 × 10−5 K−1 and −0.20 × 10−5 K−1 for the c- and a-axes, respectively, in YLiF4 
(see Ref [43]. and Refs. therein), but smaller than the value of 4.58 × 10−5 K−1 previously 
reported for amorphous Al2O3 [44]. In Fig. 2(c), the measured line shape of the device 
exhibits a small asymmetry, which is likely due to the measurement method, but its exact 
origin is unclear. The change of FWHM linewidth of the resonance with temperature is 
displayed in Fig. 2(e), indicating that the linewidth remains unchanged within the 
experimental errors. This is because the resonator losses, particularly the outcoupling losses at 
the resonance wavelength, do not change significantly when homogeneously heating the 
sample. 
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Fig. 2. Results when homogeneously heating the sample to different temperatures. Simulated 
reflectivity of (a) grating 1 and (b) grating 2 as a function of wavelength. Vertical lines: 
wavelength of resonance peak at each temperature; green and red triangles: maximum 
reflectivity of grating 1 and grating 2, respectively. Lightest (darkest) color: sample at room 
(highest) temperature. (c) Measured spectral response of DFB resonator. (d) Measured (dots) 
and simulated (line) wavelength shift of resonance peak as a function of temperature and 
according increase in refractive index. (e) Measured (dots) FWHM linewidth of resonance 
peak as a function of temperature. The average value (line) is 5.26 ± 0.10 GHz. 

4.2 Spectral response with thermal chirp: simulation 

In Fig. 3 we present the simulated spectral response of the resonator with a linear chirp 
profile. The reflectivity profile of (a) grating 1 and (b) grating 2 is displayed for the different 
values of linear chirp coefficient δlin, which ranges from 0 to 6.5 × 10−2 m−1 in steps of ~2.241 
× 10−3 m−1. The vertical lines indicate the wavelength of the resonance peak resulting from 
the combined effect of the two grating profiles, whereas the triangles indicate the wavelength 
where the maximum reflectivity of each of the two gratings occurs. Their dependencies on 
linear chirp coefficient δlin are shown separately in Fig. 3(c). 

We obtain the reflectivity spectra of both gratings and the resulting Lorentzian-shaped 
resonance from the same simulation, enabling us to place the resonance within the reflection 
band of the gratings, as depicted in Figs. 3(a) and 3(b). We set the continuous losses equal to 
zero to correctly simulate the reflectivity spectra of gratings 1 [Fig. 3(a)] and 2 [Fig. 3(b)]. 
The transmission spectrum is obtained by considering also the absorption and propagation 
losses [Fig. 3(e)]. The dependence of the wavelength of the resonance peak on the chirp 
profile is the same, independent of the value of the continuous losses. We have not 
experimentally investigated the reflectivity spectrum of each grating individually, which 
would require cutting the sample into two at the phase-shift center, to confirm if the 
simulation and experimental results agree in this regard. 
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Fig. 3. Simulated results with chirped grating. Reflectivity of (a) grating 1 and (b) grating 2 as 
a function of wavelength. The curves in red are for the case δlin = 0.0493, discussed in detail in 
the text. Vertical lines: wavelength of resonance peak at each temperature profile; green and 
red triangles: maximum reflectivity of grating 1 and grating 2, respectively. Lightest (darkest) 
color: sample without (highest) chirp. (c) Dependence of the wavelengths of resonance peak 
(blue circles) and maximum reflectivity of grating 1 (green triangles) and grating 2 (red 
triangles) on δlin. (d) Reflectivity R1 and R2 at the wavelength of the resonance peak provided 
by gratings 1 and 2, respectively, and their product R1R2 as a function of the shift of 
wavelength of the resonance peak (lower x-axis) resulting from the linear chirp coefficient 
(upper x-axis). (e) Transmission spectrum of the resonator as a function of wavelength, shown 
for five different values of δlin as indicated in the legend. The intensity is normalized to unity at 
each resonance peak. Inset: resonant peaks located at the left-hand side of, coincident with, and 
at the right-hand side of the reflectivity dip provided by grating 1. 

From Fig. 3(c), we identify that the wavelength of the resonance peak (blue circles) shifts 
linearly towards larger values for increasing values of δlin, which is a consequence of the 
linear increase in the accumulated phase shift. By identifying, for each δlin, the wavelength of 
the resonance peak and the reflectivity provided by gratings 1 and 2 at this specific 
wavelength, namely R1 and R2, we determine how the reflectivity values change for 
increasing values of δlin [Fig. 3(d)]. 
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The range over which the spectral response of grating 1 shifts is smaller than the range 
over which the resonance shifts, because the sections of the structure that belong to this 
grating are subject to a smaller deviation from the initial period [Fig. 1(d)]. As a consequence, 
the resonance peak experiences a dip in the reflectivity spectrum provided by grating 1, as 
highlighted in red in the curves in Fig. 3(a) for δlin = 0.0493 m−1. This dip is the spectral 
feature observed in Fig. 3(a) at wavelengths around 1028.655 nm for values of δlin around 
0.05 m−1, as can also be observed in Fig. 3(d). On the other hand, the reflectivity spectrum of 
grating 2 shifts over a larger range than the resonance [Fig. 3(b)], because in this part of the 
sample the deviation from the initial period is large [Fig. 3(d)], and the reflectivity values R2 
provided by this grating decrease monotonically as δlin increases [Fig. 3(d)]. 

Figure 3(e) shows the normalized transmission of the resonator for five different values of 
δlin. When comparing Figs. 3(a) and 3(b) with Fig. 3(e), we note that the resonance peak is 
broad enough to experience non-constant reflectivity values, particularly in those wavelength 
regions where the reflectivity values vary considerably as a function of wavelength. The 
result of this wavelength-dependent reflectivity is an asymmetric, non-Lorentzian-shaped 
peak [34], as can be observed in the inset of Fig. 3(e). The inset also displays the consequence 
of the dip in the reflectivity spectrum provided by grating 1: δlin = 4.707 × 10−2 m−1 (red 
curve), 4.931 × 10−2 m−1 (green curve), and 5.155 × 10−2 m−1 (blue curve) result in resonance 
peaks located at the left-hand side, at the center of, and at the right-hand side of the 
reflectivity dip, respectively. The red and blue curves are rather asymmetric; leading to larger 
FWHM values in the simulation [see later in Fig. 4(c)]. 

The reflection band changes drastically when the chirped profiles are imposed on the 
grating. This is a result of the change in the individual spectral responses provided by gratings 
1 and 2, as is confirmed by Figs. 3(a) and 3(b). In addition to their entire spectral responses 
shifting towards longer wavelength, notably the reflection provided by grating 1 for longer 
wavelengths presents a smoother and broader profile, therefore resulting in a broader and 
distorted reflection band, as observed in Fig. 3(e). 

4.3 Spectral response with thermal chirp: experiment and comparison with simulation 

The spectral profile of the resonance is obtained experimentally with the setup shown in Fig. 
1(b) for the temperature profiles produced as shown in Fig. 1(c). The resonance peak and part 
of the adjacent features of the resonator transmission spectrum are displayed in Fig. 4(a). 
Each resonance peak was fitted by a Lorentzian function and both were simultaneously 
normalized such that the peak value of the Lorentzian function is unity. 

The simulation results indicate that the wavelength of the resonance peak [Fig. 4(b)] is 
mostly a result of the grating-period value at the phase-shift center, whereas the additional 
wavelength shift resulting from the grating chirp is small. For example, a wavelength shift of 
the resonance peak of more than 140 pm comprised only 5 pm of shift due to the grating 
chirp. This was verified by simulating the spectral response of a grating with a linear chirp 
profile and the constraint that its period at the phase-shift center was always the same. Since 
the increase in grating period at the phase-shift center is proportional to δlin, the shift of 
wavelength of the resonance peak is a linear function of δlin [solid line in Fig. 4(b)]. The 
measured values of wavelength of the resonance peak also exhibit a linear dependence on the 
estimated temperature at the phase-shift center [dots in Fig. 4(b)], suggesting that the first-
order approximation of the temperature profile in Fig. 1(c) and of dn/dT is reasonable. 
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Fig. 4. Measured results with thermally chirped grating and comparison with simulations. (a) 
Measured resonances for the thermally induced chirp profiles. (b) Wavelength shift of the 
resonance peak: experimental results (dots) as a function of estimated temperature at phase-
shift center (bottom x-axis); simulation results (line) as a function of linear chirp coefficient 
(top x-axis). (c) Experimental (dots) and simulated (lines) increase in linewidth of the 
resonance as a function of wavelength shift of the resonance peak. Blue curve: linewidth of the 
resonance calculated with the characteristic-matrix approach; red curve: simulation exploiting 
the reflectivity values of Fig. 4(d) in Eq. (3) for −ln(R1R2). (d) Relation between linewidth and 
the parameter –ln(R1R2) (green squares). From the linear fit (yellow curve) the single-path 
resonator length  res is calculated. 

The wavelength shift induced by the increasing temperature at the phase-shift center [Fig. 
4(b)] is 13.9 pm/K, which is slightly larger than the value of 12.0 pm/K derived when heating 
the sample homogeneously [Fig. 1(b)]. This difference is probably due to the inaccuracy in 
determining the temperature exactly at the phase-shift center, and an error in sample position 
as small as 0.5 mm would explain this discrepancy. 

After cleaning and annealing of the sample, linewidth measurements were consistently 
repeated six times over a span of several days, during which we observed that the longer the 
sample had stayed in contact with the thermally conductive material [Fig. 1(b)], the larger 
was the resonance linewidth of the resonator without chirp, whereas the additional increase in 
linewidth with the thermally imposed chirp profiles remained the same. This is a result of 
increased propagation losses due to moisture absorption by the sample when in long-term 
direct contact with the thermally conductive material, consisting of thermal paste. The 
experimental linewidth values [Fig. 4(c)] are the average of the six measurements, with the 
error bars corresponding to the standard deviation in each data set, whereas Fig. 4(a) displays 
the first of these six measurements. In the simulations, we assume constant propagation losses 
of αprop = 0.2 dB/cm, which do not take this loss deterioration over time into account. 
Therefore, the linewidth values obtained experimentally (averaged over the six 
measurements) are larger than the values obtained in the simulations. The absorption losses 
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are αabs = 0.33 dB/cm [45], resulting in a sum of propagation and absorption losses of αprop + 
αabs = 0.53 dB/cm assumed in the simulation. 

In Fig. 4(c), the measured increase in resonance linewidth (dots) as a function of 
wavelength shift of the resonance peak and the simulation results (lines) as functions of linear 
chirp coefficient are depicted. The blue curve displays the linewidth increase simulated from 
the spectral response of the resonator by use of the characteristic-matrix approach. The two 
peaks at a wavelength shift of around 150 pm are a consequence of the resonance peak 
crossing the dip in the reflectivity spectrum of grating 1, resulting in the line shape 
asymmetry displayed in the inset of Fig. 3(e). For the experimental spectra in Fig. 4(a), the 
resonance peaks corresponding to T = 28.6°C, 30.4°C, and 32.1°C present a certain 
asymmetry, which could be for the same reason. 

The red curve in Fig. 4(c) shows the calculation of −ln(R1R2), with the values of R1R2 
taken from Fig. 3(d). Comparison of the two simulation results (blue and red lines) shows that 
the general increase in linewidth is very similar, indicating that the decrease in R1 and R2 is 
largely responsible for the increase in resonance linewidth, which is consistent with Eqs. (8) 
and (10), because the propagation and absorption losses remain constant when increasing the 
chirp during each of the six measurements. However, the two curves are not in agreement in 
the region where the wavelength shift is ~150 pm, because the red curve is calculated by use 
of the values of R1R2 exactly at the wavelength of the resonance peak, thereby ignoring the 
wavelength-dependent grating reflectivity, resulting in the asymmetry of the Lorentzian-
shaped resonance [inset in Fig. 3(e)]. The peak in the red curve corresponds to δlin at the point 
where R1 is minimum, as expected from the analytical expressions of Eqs. (3) and (8). In 
order to completely explain the spectral response of the resonator, one has to consider the 
wavelength-dependent reflectivity provided by the gratings, which depends on the linear chirp 
coefficient. 

According to Eq. (8), the resonance linewidth is due to the outcoupling, propagation, and 
absorption losses. Imposing a chirp in the grating period changes the refractive index n, the 
resonator length  res of Eq. (1) and, consequently, the round-trip time tRT of Eq. (2). All three 
losses depend on c and, therefore, n. However, the change in refractive index is small, 
reaching a maximum of 0.00025, hence its effect is negligible. The parameters αprop and αabs 
are defined per unit length, hence are independent of  res. Moreover, for a temperature 
increase of a few degrees, αprop and αabs remain approximately constant, as confirmed by the 
result of Fig. 2(e). Consequently, the change in Δνprop and Δνabs is negligible. In contrast, from 
Fig. 3(d) it is evident that R1 and R2 change significantly with a few degrees of temperature 
change, causing the linewidth to increase. 

The linewidth ΔνL of the resonance as a function of grating reflectivities, −ln(R1R2), is 
displayed in Fig. 4(d). The relationship is approximately linear, as indicated by the linear fit. 
For chirp values in the region where R1 exhibits the dip, the value of R1 changes rapidly forth 
and back, hence in the representation of Fig. 4(d), for −ln(R1R2) ≈0.14, there are two 
linewidth values. Each corresponds to a distinct chirp value and to a different asymmetric 
Lorentzian-shaped resonance. 

To calculate the outcoupling losses from Eqs. (8) and (3) requires knowledge of the 
resonator length  res, however, there is no unique definition of the penetration length into a 
Bragg grating in the literature. In Eq. (8), ΔνL = Δνout + C1 = −ln(R1R2)/(2πtRT) + C1, where C1 
stands for the constant contributions from the propagation and absorption losses. This can 
only lead to a linear relationship, if we assume that 1/(2πtRT) = C2 is constant, hence ΔνL = 
−ln(R1R2)C2 + C1. From this linear fit, we derive C1 = 0.453 GHz and C2 = 7.56 GHz. By use 
of Eqs. (5) and (6), from the parameter C1 we obtain αprop + αabs = 0.66 dB/cm. As discussed 
previously, in regions where the resonance experiences a strongly wavelength-dependent 
reflectivity, the asymmetrically Lorentzian-shaped resonances have a larger linewidth than 
what is calculated analytically. Since the linear fit shown in Fig. 4(d) is influenced by the 
resonances that experience this situation, the parameters C1 and C2 assume slightly larger 
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values than those we would expect, therefore, from the value of C1 we derive a larger value 
for αprop + αabs than we entered into the simulation. Finally, exploiting Eq. (2) and the 
parameter C2, we derive a single-path resonator length of  res = 1.55 mm, which represents 
the penetration length into gratings 1 and 2. Since this value was calculated using all 
considered chirp profiles, it corresponds to an average  res, and further investigation would 
be required in order to understand the effect of the chirp on  res, but the linear relationship 
proposes that the change in  res is rather small. 

We performed the same simulation analysis for quadratic and exponential chirp profiles. 
The trend in the linewidth increase is consistent with that induced by the linear chirp, 
indicating that the understanding of the linewidth being the direct consequence of the 
resonator losses can be generalized and extended to virtually any grating profile, provided 
that the reflectivity at the wavelength of the resonance peak, resulting from the grating chirp 
profile, is determined. The less significantly the grating reflectivities and consequent photon-
decay time vary over the main part of the spectral resonance line, the better is the agreement 
between the linewidth increase obtained via the spectral response of the resonator and via the 
increase in outcoupling losses. 

5. Conclusion 

We have investigated the spectral response of a DFB rib waveguide resonator experimentally 
and by simulations using the characteristic-matrix approach. The resonator was subject to 
thermal effects, namely a (i) uniform heating of the entire sample or (ii) a close-to-linear 
temperature gradient along the waveguide. For uniform heating of the sample, we measured 
an approximately linear dependence of wavelength shift of the resonance peak on temperature 
of 12.0 pm/K at ~1028.5 nm, equivalent to a relative wavelength shift of ~1.2 × 10−5 K−1, 
whereas the FWHM linewidth of the Lorentzian-shaped resonance remained unchanged. This 
is a consequence of an increase in the accumulated phase shift, whereas the total resonator 
losses remained constant. When a linear chirp profile was produced in the grating period, the 
wavelength of the resonance peak again presented a linear dependence on the estimated 
temperature at the phase-shift center (from the experiments) and on the linear chirp 
coefficient δlin (from the simulations), but the FWHM linewidth increased. 

The outcoupling, propagation, and absorption losses are the parameters responsible for the 
FWHM linewidth of the resonance. Whereas only the first changes when a chirp profile is 
imposed on the grating, it is of crucial importance to understand how the reflectivity spectrum 
provided by the gratings is experienced by the resonance peak. A chirp profile leads to 
distortions of the reflectivity spectrum provided by the gratings, and when the resonance peak 
is broad enough to experience non-constant reflectivity values, the result is an asymmetric, 
non-Lorentzian-shaped peak and, therefore, the FWHM linewidth cannot be analytically 
calculated. For situations where this effect is negligible, we have demonstrated that the 
increase in the outcoupling losses is largely responsible for the increase in the FWHM 
linewidth of the resonance. In simulations for a quadratic and exponential chirp profiles, we 
have generalized this statement, and verified that the effect is independent on the chirp 
profile. 

This work is especially valuable on the scope of the design and control of resonators with 
distributed mirrors, subject to thermal effects, where precise control of the wavelength and 
line shape of the emission is required. 
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