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1. Introduction  

This document gives an account of some of the work done so far on topology optimization (TO) in the ADDMAN 

project. As well as the mathematical formulations and implementations details, short discussions are presented 

on some of the nuances of the different formulations and how they should be used efficiently. 

2. Stress Constraints 
The implementation of stress constraints in Trinitas is based on the work of Le et. al. and Holmberg et. al. [1] [2].  

This section gives a short description of the stress relaxation, aggregation, clustering and correction currently 

implemented and available in Trinitas. The sensitivities for general equivalent stress constraints is derived with 

specific expressions for the von Mises equivalent stress and the maximum principle stress.  

2.1 Constraint Relaxation 

In order to avoid large stresses in areas of void the stress constraints are relaxed using the -relaxation as 

described in [3], 

   
 (2.1)  

 

where  is the stress state in Gauss point  of element ,  is the constitutive matrix,  is the strain-

displacement matrix for Gauss point  of element ,  is the displacement vector for element ,  is the 

physical design variable associated to element  and  is the penalization exponent usually set to  (with 

).    

2.2 Constraint Aggregation and Clustering 
Since the stresses are evaluated in each Gauss point of every element, the number of constraints necessary to 

enforce a stress limit in every point makes the problem computationally expensive. In order to circumvent this a 

stress aggregation function is used to approximate the maximum stress in the structure. Depending on the type 

of clustering technique used the maximum stress is approximated using either the -norm function 

   

 

 

(2.2)  

or the -mean function 

   

 

 

(2.3)  
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where  is an equivalent stress measure (either the von-Mises stress or the largest (most positive) principle 

stress),  is the number of stress evaluation points in cluster  and  is the number of clusters. The -norm 

overestimates the largest stress while the -mean underestimates it, none is especially accurate. For  values in 

the range 8-24, the error in the estimation of the largest stress is typically around 15-25%. This error can be 

reduced significantly by using a stress correction factor as described in Section 2.3. 

Three different clustering techniques are implemented in Trinitas; “element numbers”, which is basically an 

arbitrary partitioning of the stress evaluation points based on the element numbering, “stress level”, where 

elements with similar stress levels are grouped and “distributed stress”, where the elements with the largest 

stresses are placed in different clusters. 

As an example consider the following: 

 

If  “stress level” clusters are used, the first cluster would be 

. 

If  “distributed stress” clusters are used, the first cluster would be 

 

Since the stress levels change during the optimization iterations a “reclustering frequency”  can be specified in 

order to redo the clustering at a specified frequency. If  is the iteration counter, the reclustering is performed 

when . For large models with many loadcases the reclustering can be computationally expensive, 

therefor a parallel sorting algorithm is used for this task [4]. If the “element numbers” clusters are used, the 

reclustering has no effect. 

The -norm stress aggregation is used for the “element numbers” and “distributed stress” clustering methods 

and the -mean is used for “stress level” clusters. The motivation for this is that the -mean is more accurate 

when the stresses in the cluster are similar. If all the stresses are the same, the -mean would be exact [2].  

2.3 Stress Correction 

The accuracy of the -norm and -mean stress aggregation functions is quite poor for any reasonable choice of 

. However, since the actual largest stress in any cluster is easily obtainable, a correction factor can be 

calculated such that the aggregation function becomes exact. This correction factor is of course different in each 

iteration, therefore a damping factor is used to stop it from changing too much between iterations. The stress 

correction factor(s)  is calculated as follows 

   

 

(2.4)  

 

where  is the current iteration and  is the damping factor which is set to . This is similar to what is 

done in [1], with the difference that the correction is based on the stress in the current iteration and the 

damping factor is constant. The change in  seems to tend towards zero as the optimization problem converges, 

therefore the damping factor has a negligible influence on the accuracy of the maximum stress approximation.   
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I order to obtain the stress correction factor for the current iteration the aggregated stress is first computed 

according to (2.2) (or (2.3)). Then, when the correction factor has been computed, it is recomputed as 

 

2.4 Sensitivity Analysis 

The stress state in Gauss point  is given by 

 

Hence, the derivative of the stress state w.r.t. design variable  is given by 

 

The derivative of the displacement vector is obtained from the state equation   

 

This gives 

 

The derivative of the equivalent stress measure w.r.t. design variable  is given by 

 

 

The derivative of the aggregated stress measure  for cluster  w.r.t. the equivalent stress measure in stress 

evaluation point  reads 

 

where  is the number of stress evaluation points in cluster  and the -norm stress aggregation is used. The 

derivative of the aggregated stress measure with respect to design variable  reads 
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The adjoint variable  for cluster  is defined as 

   

 
(2.5)  

 

 

Solving for  and reinserting gives 

   

 

(2.6)  

 

The only explicit dependence on  in (2.6) comes from the derivative of the physical variables w.r.t. the design 

variables . The physical variables  are related to the design variables   through the filter matrix  as 

 

hence, the derivatives are  

 

The derivative of the stiffness matrix  w.r.t. design variable  now reads 

 

where  is the connectivity matrix and  the stiffness matrix for element . The second term in (2.6) can now 

be written as 

 

The above expression can be rewritten in terms of the a local adjoint variable  containing the elements of  

associated to the global degrees of freedom of element  and the local displacement vectors  as 
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The column vector(s) is defined such that 

 

Hence, the second term of (2.6) becomes  

 

where  is column  of . Similarly, the first term in (2.6) can be written as 

 

where  is the local strain displacement matrix for stress evaluation point . The column vector(s)  is 

defined such that  

   

 

(2.7)  

 

where  is the number of stress evaluation points in element . The first term in (2.6) now becomes 

 

The derivative of the aggregated stress measure w.r.t. design variable  can hence be obtained as 

   

 

(2.8)  

 

The expression in (2.8) is valid for any equivalent stress measure, the only difference is the expression for the 

derivative of the equivalent stress measure w.r.t. the stress state which appears in the definition of the adjoint 

variables in (2.5) and the definition of  in (2.7). 

For the von Mises equivalent stress, these derivatives are given by 
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And for the maximum principle stress, the associated derivatives are 

 

where  is the (normalized) eigenvector of the stress matrix associated to the largest principle 

stress [2].  

2.5 Discussion 
The implementation of the stress constraints in Trinitas has been extensively tested by the author using several 

examples in 2D and 3D and the implementation of the sensitivity analysis for the von Mises equivalent stress and 

the maximum principle stress have been verified using finite differences. This section gives an account of some 

of the authors experiences and observations during the testing of the implementation. 

2.5.1 Stress Clusters 

As mentioned in [5] the use of stress clusters is not strictly necessary in order to achieve a good approximation 

of the maximum stress when the stress correction is used. However, using clusters generally gives better results 

with moderate values of  and more “aggressive” settings can be used in the optimization solver. Figure 1 shows 

a comparison using the L-Beam example with  and . The mass is minimized using a von Mises 

stress constraint. 

 

FIGURE 1 – RESULTS FOR L-BEAM USING DIFFERENT ,  IS THE RELATIVE MASS.  
LEFT: , . MIDDLE: , . RIGHT: , . 

As seen in Figure 1 (Right) the optimization fails completely for this value of  when clusters are not used. Using 

 values this low is not recommended (even tough it does work in this case), generally  seems to give good 

results.  
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Even though using clusters makes the optimization problem seemingly simpler to solve they should be used 

moderately, especially for large problems with a large number of loadcases. Since each cluster is a separate 

constraint in the optimization problem the number of constraints can quickly become too large for the MMA (or 

GCMMA) algorithm to handle. As an example, the L-Beam in Figure 1 contains 11130 Q4 elements. Running 350 

iterations with 1 cluster takes 56.12 seconds, 32 clusters takes 135.9 seconds and 64 clusters takes 278.4 

seconds. A small part of the difference is due to the sensitivity computation since more clusters mean more 

adjoint systems to solve, however, this is negligible compared to the time consumed by the optimization solver. 

This problem is somewhat relieved by using a high reclustering frequency (low value of ) since some of the 

constraints may become inactive. Using  is however recommended since lower values of  may result in 

convergence issues.  

Of the three different implemented clustering methods in Trinitas, the only one that should ever be used in 

practise is “distributed stress” (which is also the default method in Trinitas). The “element numbers” method is 

somewhat random and may or may not give good results. The “stress level” method generally gives poor results 

since all the largest stresses are contained in the same constraint. This method was evaluated using the -norm 

as well as the -mean aggregation functions and never works as good as the “distributed stress” method.   

2.5.2 MMA Parameters 

When stress constraints are used, the optimization problems become highly sensitive to the MMA parameters. 

Specifically the asymptote widening  and narrowing  coefficients.  

If no clusters are used conservative values have to be specified, otherwise the optimization will simply fail and 

the result is modern art instead of an optimized structure. Typically  and  seems to work well 

for a single global stress constraint with . Unfortunetly these parameteras are also somewhat 

problem size dependent so what works well for 6,000 elements may not work so well for 600,000 elements. 

If clusters are used (typically  is recommended) the problems tend to be more stable and more aggressive 

parameters can be used. Typically  and   should be used for  and . Using clusters 

also seem to relieve the problem size dependence of the MMA parameters. The previously specified values have 

been used successfully for problems of widely varying size and complexity, from 2D problems with 4,000 

elements with a single loadcase to 3D problems with 500,000 elements and several load cases. Note that 

“successfully” in this context does not imply a low tolerance one the objective function value. 

Perhaps MMA is not the most suitable optimization solver for these types of problems, a more modern and 

robust solver, e.g. IPOPT, may give better results.  

3. Additive Manufacturing & Topology Optimization 
Two different specific aspects of additive manufacturing (AM) and TO have been considered in the ADDMAN 

project so far. The first is how to deal with the anisotropic material properties which may result from the 

manufacturing process. And the second is manufacturing constraints for AM in order to limit or eliminate 

support structures when printing the optimized structures. Anisotropic material properties is covered 

extensively in [5] and is therefore omitted here. 

3.1 Overhang Filter 
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There are several different approaches when it comes to limiting the need for support structures in TO 

optimized structures. The most promising approach was developed by Langlaar who uses a filtering technique in 

order to eliminate overhangs in the optimized structures [5].  

In Langelaars approach an additional “blueprint” density field  is added to the formulation of the TO problem 

and the value of the physical densities  is gven by 

   
 (3.1)  

 

where  is the set of nearby finite elements in the AM build layer underneath element , see Figure 2. 

 

FIGURE 2 – ILLUSTRATION OF THE SET . FIGURE REPRODUCED FROM [5] 

In order for (3.1) to be differentiable the min and max operators are approximated using the smooth functions 

   

 

(3.2)  

where  is a small positive real number, and 

 

 

(3.3)  

where  and  are positive real numbers. Langelaar suggests the following values for these parameters 

 

where  for 2D problems,  for 3D problems and .  

A drawback with Langelaars approach is that the finite element mesh has to be partitioned into layers in the 

build direction which limits its use for general unstructured meshes or meshes with varying element sizes. 

Hoffarth et. al. seem to get around this problem by defining the set  as the elements contained in a conical 

volume underneath the element of interest [6]. The mathematical details are however scarce and it is unclear 

whether layers have to be defined or not.   

3.1.1 Sequence Based AM Filter 
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The AM filter implemented in Trinitas is heavily based on the one by Langelaar. However no layers have to be 

defined and the method works well for general meshes and build directions. A “blueprint” density field is used 

and the physical densities are defined in the same way as in Langelaars method using (3.1) with the smooth 

approximations given by (3.2) and (3.3). Two sets of element sets are used, one for the filtering process, , and 

one for the sensitivity analysis, . A conical volume is used to defined the elements in the sensitivity sets, see 

Figure 3. 

 

FIGURE 3 - CONICAL VOLUME USED TO DEFINED THE SETS .  
THE DOTS INDICATE THE CENTRE OF MASS OF THE ELEMENTS. 

The filtering set for blueprint variable  is defined as 

 

 

(3.4)  

 

where  is the position vector of the centre of mass of element  relative to element ,  is the radius of the 

cone,  is a unit vector in the build direction and  is the maximum allowed overhang angle. In the filtering 

process, the set  replaces  in (3.1). 

Even though no layers are defined, the filter application (3.1) has to be done in a sequence going from the 

lowest to the highest element in the build direction. This sequence is obtained by projecting the centres of mass 

of all the elements onto the build direction and arranging them in order from lowest to highest. If two or more 

elements share the same height in the build direction, the ordering between them does not matter. 

3.1.2 Sensitivity Analysis 

The sensitivity set  is defined as the set of all physical variables with explicitly depend on blueprint variable  

in (3.1), i.e. if  then . The sensitivity analysis is performed in the opposite order compared to the 

application of the filter. For a given constraint or objective function , adjoint variables  are defined as 

 

 

(3.5)  
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where  if element   has no higher neighbours, and 

 

 

(3.6)  

 

The sensitivities for the function of interest w.r.t. the blueprint variables is the obtained as  

 

where  

 

 

(3.7)  

 

Note that the sensitivities in (3.6) and (3.7) do not depend on the function of interest and therefore only has to 

be computed once. Furthermore, the adjoint variables for different objective and constraint functions can be 

computed in parallel for large problems with a large number of constraints, e.g. stress constrained problems 

with a large number of clusters and loadcases.  

3.1.3 Numerical Example 

The AM filter is evaluated using an industrially representative 3D geometry with a structured mesh of varying 

element sizes. Figure 4 shows the design domain (light brown), the functional areas (blue) and the boundary 

extension used to achieve a consistent filtering of internal and external boundaries (green). The build direction is 

defined to be parallel to the axis of the four vertical holes. 

 

FIGURE 4 – EXAMPLE PROBLEM FOR EVALUATION OF AM FILTER. 

The mass is minimized with a constraint on the maximum von Mises stress using three loadcases. The 

discretization used in the optimization is shown in Figure 5 and contains a mix of 459,872 1st order brick, wedge 

and tetrahedral elements. The maximum overhang angle is set to . 
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FIGURE 5 – DISCRETIZATION USED IN THE TOPOLOGY OPTIMIZATION. 

Figure 6 shows the results from the topology optimization. As seen in the figure there are no horizontal 

overhangs in the optimized structure. 

 

 

FIGURE 6 – RESULTS FROM TOPOLOGY OPTIMIZATION USING AM FILTER 

3.1.4 Discussion 

In this section a few of the issues and nuances of the method is discussed, as well as some extensions, 

modifications and alternative use cases. 

3.1.4.1 Filter Parameters 

The behaviour of the AM filter depends to a large extent on the values of the parameters ,  and . The reason 

why the conventional -norm is not used is that it overestimates the maximum value of the approximated set 

which may lead to gradual build-up of material from void. The specific value of  is motivated by the number of 

lower neighbours for 2D and 3D problems which is fixed to 3 in 2D problems and 5 in 3D problems in Langelaars 

formulation [7] [5]. In the modified formulation the number of lower neighbours depend on the mesh, chosen 

radius and overhang angle. Therefore a suitable value is hard to specify. One option, which was chosen for the 

implementation is to set  
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i.e.  is set to the largest cardinality of the filtering sets . Figure 7 shows an MBB-Beam optimized for 

maximum stiffness with all parameters equal except for the value of , . 

 

FIGURE 7 – MBB-BEAM OPTIMIZED FOR MAXIMUM STIFFNESS WITH AN OVERHANG CONSTRAINT.  
LEFT:  RIGHT:  

Another option is to use the conventional -norm with larger values of . However, for the values of  

necessary to give a good approximation of the maximum, numerical issues occur and the problem becomes 

difficult to solve. One may also consider using correction factors similar to what is done for stress constraints, 

however, since the approximated functions don’t tent towards any particular value this approach does not work 

in this case. 

The issue of material build-up from void does not seem to be as pronounced for 3D problems as it is in 2D since 

one more spatial dimension is available to fulfil the overhang restriction making the problem in some sense 

easier. And since 2D problems are exclusively used for evaluation purposes this issue may not require any 

further attention.  

Another parameter that needs consideration is the radius of the filter cone, . Ideally the filtering set  for a 

particular element should only contain the adjacent elements underneath. However, since the elements may 

vary in shape and size a suitable value for  may be hard to specify. One option is to set the cone radius equal 

to the density filter radius, , however, if a small density filter radius is used the filtering set may only contain a 

single element, effectively restricting the overhang angle to 0, see Figure 8 (Left). In this case the cone radius 

should be larger than the density filter radius, see Figure 8 (Right).  

 

FIGURE 8 – AM FILTER CONE RADIUS. LEFT: CONE RADIUS EQUAL TO DENSITY FILTER RADIUS.  
RIGHT: CONE RADIUS LARGER THAN DENSITY FILTER RADIUS. 
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Using a large cone angle may however result in other issues. If several “layers” of elements are contained in the 

cone, the optimized structure may contain small void patches in the supporting material since the overhang 

restriction is fulfilled by elements a few “layers” beneath, see Figure 9. 

 

FIGURE 9 – MBB-BEAM WITH . 

Choosing a suitable cone radius requires consideration of the chosen density filter radius, the discretization used 

and possible some trial and error. Another consideration is the orientation of the mesh w.r.t. the chosen build 

direction, a cone radius which works well for a certain direction may not work equally well for another, see 

Figure 10. 

 

FIGURE 10 – DIFFERENT BUILD ORIENTATIONS FOR A STRUCTURED MESH. 

Perhaps there is a better definition of the filter region than the one in (3.4), e.g. see Figure 11. An issue with the 

one used at present is that for a structured mesh with the build direction parallel to the element sides and a 

maximum overhang angle of , the element centres lie on the surface of the cone which means that they may 

or may not be included in , see Figure 10 (Left). Therefore, the maximum overhang angle has to be set slightly 

larger than the desired in some cases. The shape of the filter region only determines the elements of  and  

and can be modified without any other changes to the implementation. 
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FIGURE 11 – DIFFERENT SHAPE OF FILTER REGION. 

4. Boundary Extension 
Using the standard linear density filter, the physical design variables are given by 

 

 

(4.1)  

 

where  is the filter region and the weights  are given by 

 

 

(4.2)  

 

where  is the position vector of element  w.r.t. element . From (4.2) it follows that 

 

 

(4.3)  

 

Now consider an inner boundary  and an outer boundary , where the outer boundary is also the boundary 

of the design space, see Figure 12. For simplicity we say that the design variables have the value 1 in the region 

 and 0 elsewhere, hence  and  are both external boundaries to the structure and should be treated equally 

by the filter.  
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FIGURE 12 – FILTER OPERATION AT AN INTERNAL AND EXTERNAL BOUNDARY. 

Since  outside  it holds that 

 

and  

 

However, the boundaries are not treated equally since 

 

and therefore 

 

Since   it follows that  on  and  on . This effectively makes the length scale 

control different for external and internal boundaries. It also makes the external boundaries preferable in the 

optimization problems since the filter has a smaller effect there. 

For a structured mesh with equal sized elements there is a simple fix to this problem, namely letting 

 
 

(4.4)  

This would result in external and internal boundaries being treated in the same way, assuming the lower bound 

on the design variables is small. For a general discretization with elements of different shapes and sizes using the 

definition of the weights in (4.4) is not ideal. For a density variable with , where  is the design space,  

(4.3) must hold. This may be violated if (4.4) is used for general discretizations. 
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Another option is to extend the finite element mesh with void elements outside the design space, which was 

proposed in [9]. These elements are assigned pseudo design variables at the lower bound and used in the filter 

operation to represent the void outside the design space, see Figure 13.   

 

FIGURE 13 – BOUNDARY EXTENSION. 

The boundary extension should be at least one filter radius in order to achieve an equal treatment of internal 

and external boundaries. Since the boundary extension reduces the density of the elements on the external 

boundaries it should not be used in the vicinity of boundary conditions.  

Figure 14 shows a comparison of the L-beam optimized for minimum mass with a stress constraint with and 

without the boundary extension applied. Some minor differences can be seen in the optimized structures. Most 

noticeable is the smoother transition in the left vertical member as it leaves the outer boundary.  

 

FIGURE 14 – L-BEAM WITH AND WITHOUT BOUNDARY EXTENSION. 

Figure 15 shows a comparison of the bracket from Section 3.2.3 with and without the boundary extension 

applied. In this case the difference is more pronounced. The use of the boundary extension leads to a smoother 

structure without the sharp transitions as the material “sticks” to the outer boundaries. 
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FIGURE 15 – BRACKET WITH AND WITHOUT BOUNDARY EXTENSION. 
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