Upgrading of freight railways to meet operational and market demands
Björn Paulsson and Anders Ekberg, Chalmers Univ. of Technology, Gothenburg, Sweden
Lennart Elfgren, Luleå University of Technology, Luleå, Sweden

Upgrading of railway lines is the economical way to support rail freight traffic. Some highlights are given below from a guideline from the EU FP7 Project Capacity4Rail

- Globally, new railway lines are built for high speed operations while existing lines are left for freight
- The existing lines were built for old traffic demands
- Railways now have to upgrade lines to meet new demands
- This is key to a modal shift of freight transports to railways within reasonable limits for economy, environment and time.
- There are challenges and limitations, but also possibilities to upgrade freight lines to improve performance!
- Upgrading guidelines based on research and development are lacking. This study fills this gap.
- The table below shows the influence improvements of different parts of the track has on upgraded operations.

<table>
<thead>
<tr>
<th>Structure / Upgrading scenario</th>
<th>Substructures</th>
<th>Bridges</th>
<th>Tunnels</th>
<th>Culverts</th>
<th>Retaining walls</th>
<th>Track</th>
<th>Switches & crossings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longer trains</td>
<td>Some</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Increased train weight</td>
<td>Some</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Increased axle and meter loads</td>
<td>Great</td>
<td>Great</td>
<td>No</td>
<td>Great</td>
<td>Some</td>
<td>Great</td>
<td>Great</td>
</tr>
<tr>
<td>Higher speeds of freight trains</td>
<td>Some</td>
<td>Little</td>
<td>No</td>
<td>Little</td>
<td>Little</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Increased loading gauges</td>
<td>No</td>
<td>No</td>
<td>Great</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

The study is based on results of European projects now reaching TRL8–TRL9.

Substructure
Assess substructure conditions and effects of subgrade improvements.
Left: Tamping operations associated to sudden track stiffness variations.
Right: Injections in an in-service track.

Bridges
Work processes and most bridge types are described. A structured approach of upgrading to meet new demands is proposed.

Forso bridge in Sweden after strengthening from 22.5 to 30 tonnes axle load.

Strengthening areas of trough

Track and Switches & Crossings
Two-stage assessment of consequences of upgrading on increased deterioration including proposals for improved maintenance.