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ABSTRACT

Improvement of the performance of organic disordered semiconductors (OSC) is
driven by the understanding of the underlying charge transport mechanisms and
systematic exploitation thereof. There exists a multitude of materials and material
systems based on polymers and small molecules with promising performance for use
in organic light emitting diodes, photovoltaics, organic field-effect transistors and
thermoelectrics. However, universal understanding of many classes of these materials
has eluded researchers, due to their broad spectrum of morphologies, molecular
structures and electrical properties. Building on the large body of existing models, this
thesis deals with charge transport phenomena from the perspective of transport
energetics, by studying the interplay between a few but important concepts
commonly accepted to play a crucial role in all OSC materials; energetic disorder,
charge carrier hopping and Coulomb interactions. The influence of these concepts on
the energetic landscape through which charge carriers move and how this translates
to experimentally observed transport phenomena are studied by a combination of
experimental work, kinetic Monte Carlo (MC) simulations and empirical and analytical
models.

The universal scaling and collapse of the temperature and electric field dependence of
the conductivity of PEDOT:PSS to a single curve is shown to be functionally equivalent
to the scaling of the effective temperature, which describes the effect of field heating
as a broadening of the charge carrier distribution. From numerical investigation of the
energy relaxation, an empirical model is developed that relates the physical meaning
behind both concepts to the heat balance between Joule heating of the carrier
distribution via the effective temperature and energy loss to the lattice. For this
universal description to be applicable a strongly energy-dependent density of states
(DOS) as well as Coulomb interactions and large carrier concentrations are needed.

Chemical doping is a common way of improving charge transport in OSC and is also
beneficial for energy transport, which combined leads to an increased thermoelectric
power factor. The ensuing thermoelectric investigations not only showed the



potential of these materials for use in thermoelectric generators but are also helpful
in unravelling charge transport mechanism as they give direct insight into the
energetics of a material. Interestingly, doped OSC exhibit the same universal power-
law relationship between thermopower and conductivity, independent of material
system or doping method, pointing towards a common energy and charge transport
mechanism. In this thesis an analytical model is presented, which reproduces said
universal power-law behaviour and is able to attribute it to Variable Range Hopping
(VRH) or a transition between Nearest Neighbour Hopping (NNH) and VRH at higher
concentrations. This model builds on an existing three-dimensional hopping
formalism that includes the effect of the attractive Coulomb potential of ionized
dopants that leads to a broadening of the DOS. Here, this model is extended by
including the energy offset between host and dopant material and is positively tested
against MC simulations and a set of thermoelectric measurements covering different
material groups and doping mechanisms.

Organic field effect transistors (OFETs) have become increasingly comparable in
electrical mobility to their inorganic (silicon) counterparts. The spatial extent of
charge transport in OFETs has been subject to debate since their inception with many
experimental, numerical and analytical studies having been undertaken. Here it is
shown that the common way of analysing the dimensionality of charge transportin
OFETs may be prone to misinterpretations. Instead, the results in this thesis suggest
that charge transport in OFETs is, in fact, quasi-two-dimensional (2D) due to the
confinement of the gate field in addition to a morphology-induced preferred in-plane
direction of the transport. The inherently large charge carrier concentrations in OFETs
in addition to the quasi-2D confinement leads to increased Coulomb interaction
between charge carriers as compared to bulk material, leading to a thermoelectric
behaviour that deviates from doped organic systems. At very large concentrations
interesting charge transport phenomena are observed, including an unexpected
simultaneous increase of the concentration dependence and the magnitude of the
mobility, the appearance of a negative transconductance, indicating a transition to an
insulating Mott-Hubbard phase. The experimental and numerical results in this thesis
relate these phenomena the intricacies of the interplay between Coulomb
interactions, energetic disorder and charge carrier hopping.
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1 INTRODUCTION

Organic disordered semiconductors (ODSCs) have shown great potential for replacing
inorganic materials in applications such as thin film transistor and photovoltaics and
are in fact already commercialised in the form of organic light-emitting diodes. The
main arguments in favour of ODSCs are that they are solution-processible from cheap,
readily available materials at a very low energy expenditure and can be used in all
manners of flexible applications. Since the start of this thesis work, the field of organic
thermoelectrics has seen an especially steep increase in research activity. Some
classes of ODSCs, such as PEDOT derivatives, have shown promising potential as
thermoelectric materials due to their high electrical conductivities combined with the
inherently large Seebeck coefficient and low thermal conductivity 2 (the
fundamentals of thermoelectricity are discussed in section 3). Due to the chemical
instability beyond 200°C, possible use for organic thermoelectric generators are
limited to room temperature applications such as powering small devices from body
heat by integrating them into clothing, to name one example.

However, the direct connection between Seebeck coefficient, which can be measured
relatively easy (see section 6), and energetic conditions in a material, make
thermoelectric investigations a simple but powerful tool in the unravelling and
understanding of charge and energy transport in the great variety of ODSCs. Thus far,
investigations of this kind have revealed interesting connections between
morphology, energetic disorder, conductivity and Seebeck coefficient, such as a wide
range of doped organic semiconductors following the same empirical relationship
between Seebeck coefficient > and the absence of this trend in organic field-effect
transistors (OFETs) &7. The quasi-universal trend of doped systems cannot be
explained by common charge transport models that were otherwise successful in
describing temperature and concentration dependence of electrical mobility and
conductivity (some of these models are described in section 2) and thus highlights the
need for new insights into charge transport and models that consider the energetic
interactions in the material.



OFETs have also demonstrated significantly improved of performance over the last
decade, while recently also exhibiting new charge transport phenomena as carrier
concentrations approach those of molecular sites in the material. At such
concentrations carrier-carrier Coulomb interactions become dominant, crucially
effecting the charge transport characteristics. Hence also here exists a need for the
inclusion of energetic interactions into charge transport models, as a recently
published work demonstrated 8.

In general, charge transport at high concentrations leads to a variety of scientifically
interesting effects that may also be controlled and used to an advantage if the
appropriate understanding exists. Thermoelectric investigations in conjunction with
electrical characterisations are thus an excellent way of achieving a deeper
understanding

1.1 AIMOF THIS THESIS

The work conducted in this thesis was aimed at gaining a deeper understanding of the
charge and energy transport mechanisms, by combining a previously developed
kinetic Monte Carlo (MC) algorithm with thermoelectric and electrical
characterisation. A special focus was set on the investigation of transport phenomena
at play predominantly under the assumption of high charge carrier concentrations
compared to those found in organic solar cells or light-emitting diodes. Hence, the
results are applicable to the situations found in organic field-effect transistors or
highly chemically doped polymer materials, such as those exhibiting good
thermoelectric behaviour. Under these conditions inter-carrier Coulomb interactions
as well as the effect of carriers on their environment play a crucial role to charge
transport and are, in fact, the red thread that connects the published works of this
thesis.

The kappa of this thesis should create the context in which the thesis is placed and
offer brief introductions to the topics treated in the scientific part of the thesis. Most
subsections include a section called “Our Contribution” that highlights the work of
this thesis within context of the subsection. Chemical abbreviations are found at the
end of the kappa.
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2 HOPPING TRANSPORT AND ENERGETICS

It is mostly assumed that the transport of charge carriers, and thus electrical
conduction, in organic disordered semiconductors (ODSC) occurs via thermally
activated tunnelling between energetically localised sites, commonly referred to as
hopping. In this chapter the physical process of hopping is discussed as well as the
properties and distribution of hopping sites, i.e. the energetic landscape on which
hopping occurs. Several widely-employed hopping transport models and formalisms
are discussed in this chapter, focussing on those relevant to the scientific work of this
thesis.

2.1 DENSITY OF STATES AND DENSITY OF OCCUPIED STATES

The overlap of p, orbitals in m-conjugated carbon atoms gives rise to the formation of
molecular orbitals, where the number of available orbital energies scales with the
number of conjugated carbon in the system. A large number of conjugated atoms
would give rise to a metallic material with no gap between the highest occupied and
lowest unoccupied state. Peierls distortion, the alternation of bond lengths between
conjugated atoms, however, leads to the formation of a band gap, the extent of which
depends on the difference between large and small bond lengths .

2.1.1 Disorder

For charge transport, typically only the highest occupied molecular orbital (HOMO) or
the lowest unoccupied molecular orbital (LUMO) is responsible for the conduction of
holes and electrons, respectively. In reality, ODSC materials consist of many polymer
chains of finite and different lengths, exhibiting kinks, twist, torsion and other
conformational defects that break up the uninterrupted pi-conjugation of the ideal
polymer chain into smaller m-conjugated chain segments. Within the context of this
thesis such an element on which conjugation is, to a large degree, uninterrupted
forms an energetic site (or more precisely a site is a collection of site energies that are
so close together in energy and real space that they become virtually
indistinguishable w.r.t the other energy scales in the system such as the thermal



energy). The energetic disorder between sites depends on the conformation of the
polymers and their orientation with respect to each other. The energy difference
between site energied in ODSCs is typically large enough to create localized sites
where the wavefunctions of charge carriers on neighbouring sites do not overlap
significantly (see section 2.2.1). Hence transport between sites is governed by
(thermally activated) tunnelling between them.

Further disorder is introduced by the morphology of the whole polymer material.
Crystallinity, polymer aggregation, dopants as well as the presence of any charged
species all have an effect on the energetic landscape of a material. Morphologically
induced disorder is often correlated in space. The energetic disorder is thus a
collective property of morphology, chemical structure, constituent atoms and
processing condition of an ODSC, rather than inherent to a particular polymer.
Importantly, the energetic disorder can in general not simply be inferred purely from
the morphology 2.

2.1.2  The Density of States

Information about the energetic distribution of localised sites in a material is
contained in the density of states (DOS) g(E), which is defined as the number of
states N per volume within an energy interval AE that is available for occupation by a
charge carrier,

Number of sites N

g(E) = (2.1)

Volume - Energy AE
The mathematical description of the energetic disorder is crucial to the development
of models that describe charge transport in ODSC. However, several decades after the
first description of organic semiconductors the mathematical shape of the DOS is still
subject to debate 3. For amorphous inorganic semiconductors # and in organic
semiconductors in field-effect transistors °, typically an exponential distribution of site
in energy E is assumed following
Nsite E

g(E) = %exp (kBT0>' (2.2)
where Ng;;. is the concentration of localised sites, Ty, is the characteristic temperature
of the distribution (related to the disorder) and kg is the Boltzmann constant. A
Gaussian distribution is believed to be the case for many bulk organic semiconductors
® and takes the form
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where & is the standard deviation (disorder) of the Gaussian DOS. For systems with a

very large disorder a constant DOS can be assumed. Figure 2.1 schematically depicts

how the site distribution relates to the DOS with the example of a Gaussian

distribution.
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Figure 2.1 Distribution of localised sites in space and energy according to a Gaussian
distribution Equation (2.3)

There is experimental evidence in favour of both distributions indicating that the
shape of the DOS might be dependent not only on the chemical properties of the
material, but also its use (e.g. as an active layer in an organic light-emitting diode
(OLED) vs. an organic field-effect transistor (OFET)), carrier concentration and
processing conditions. The work in this thesis aligns with this opinion and will treat
different materials in different device constructions with a DOS that matches
previously established opinions in literature as well as own experimental results.
However, to extend generality all applied models, numerical or otherwise, have been
checked against the "other" DOS shape to see which one delivers the better and more
appropriate description of experiments and established charge transport physics. The
width of the DOS, irrespective of the shape, varies widely, but ranges in general
between 30-50 meV for crystalline and semi-crystalline materials such as P3HT,
DPDTTT 2 and reach up to more than 100 meV for PEDOT:PSS, for which often a
constant DOS is assumed.



2.1.3  The Density of Occupied States

Unless stated otherwise, this thesis deals predominantly with the transport of holes,
rather than electrons, however, few fundamental differences in transport properties
have been found so far. Thus, conduction is facilitated in the HOMO DOS that is
usually populated by charges transferred by electron accepting dopant materials (see
Papers I, I, lll) or electrostatically by an electric field at the semiconductor-dielectric
interface of a field-effect transistor (see section 4 and Papers IV, V, VI).

In this thesis mainly high charge carrier concentrations = 1% are concerned in a
temperature range from around 5 K to around 400 K both experimentally and
theoretically. Furthermore, the interaction of charge carriers with each other in the
material are paramount to the discussions and elaborations presented here. As such,
Boltzmann statistics, often used in the description of OLED and organic photovoltaics
(OPV) due to the low carrier concentrations involved, are not considered here.
Rather, the distribution of charge carriers in the DOS is considered to be according to
the full Fermi-Dirac statistics. In this framework the density of occupied states
(DOOS), which is the distribution of charges in energy, is given by the product of the
DOS in Equation 2.2 or 2.3 and the Fermi-Dirac distribution,

1
fE)=—FF— @4
e ksT +1

where Ef is the Fermi level and T is the temperature. Inversely, one can also obtain
the Fermi level and the temperature by fitting the Fermi-Dirac distribution to the
guotient of DOOS and DOS. This procedure is used for numerical modelling as further
described in section 5. The Fermi level E is the energy at which the probability of
occupying a localised site by a charge carrier at the temperature T is 50%. In an
exponential DOS Ep is usually close to the peak of the DOOS, however, in a Gaussian
DOS at lower carrier concentrations, this is no longer the case due to the more-than-
exponential increase of the energy dependence of the DOS. Most carriers are then
located at the so-called equilibrium energy © and transport is usually considered to be
activated from the concentration independent energy E, = 62 /kgT to some
transport energy 3. However, as stated before, the work in this thesis considers
relatively high concentrations where E is larger than E, for the disorders and
temperature ranges used.



The DOS is notoriously hard to determine experimentally. Indirectly, one can make
statements about the shape of the DOS by comparing the charge carrier
concentration dependence from analytical and numerical models with experimental
results. A much-used example to show the difference in charge transport between
exponential and Gaussian distribution is the determination of the charge carrier
concentration dependence of the mobility *’. Due to the independence of E,, on
charge carrier concentration (at lower concentrations) the mobility shows no
dependence on the concentration for a Gaussian DOS, whereas an exponential
dependence of the mobility is found for an exponential DOS (due to the state-filling) °.
However, it has been argued that the exponential DOS is a good approximation of the
tail of the Gaussian DOS 2. This is advantageous because analytical solutions to
transport equations can be found for exponential DOS, whereas, due to the nature of
Equation 2.3, a closed analytical solution cannot be found for a Gaussian DOS for
many transport models, without simplifications. One method to directly determine
the width of the DOS is from the Urbach energy, which can be extracted from
absorbance or thermal deflectance measurements 2.

2.1.4 Modifications of the Density of States

Further complicating the determination of the DOS is the fact that it is subject to
change with charge carrier concentration 1. The Coulomb interactions between
charge carries put an energy penalty on sites close to a charge carrier in addition to
the original energy distribution from Equations (2.2) and (2.3).

This modification of the DOS has an appreciable influence on charge transport and
energetics if it is larger than the kgT, the thermal energy available to charge carriers.
The sphere in space where these two energies are equal and within which
modifications matters most, is characterized by the Coulomb interaction radius,

- q

=— 2.
¢ dmege kgT (2:5)

Consequently, the DOS will not retain its form from Equations (2.2) or (2.3) but will

broaden and change shape as carriers fill up the system. A numerically obtained (see
section 5) example of this can be seen in Figure 2.2 which depicts the transformation
of an initially exponential DOS to a broader and more Gaussian shape with increasing
charge carrier density, where charge carriers are introduced electrostatically. Charge
carriers can also occupy a site that is already occupied by paying the Coulomb energy



penalty associated with overcoming the on-site barrier. The possibility of multiple
occupation gives rise to an additional “DOS” following size and shape of the DOOS
and shifted in energy by the on-site repulsion energy, which is clearly visible in Figure
2.2 above approximately 10% concentration. Also, the DOOS will broaden and shift to
higher energies since charge carriers want to avoid each other. The extent to which
Coulomb interactions influence shape and width of the DOS depends on the interplay
between inter-carrier Coulomb interactions and on-site barrier and takes different
shapes for different ratios between these two.

DOS - 1% DOS - 10%
DOOS - 1% [ DOOS - 10%

G
£ 10%}

DOS, DOOS (eV
o

1024 L

DOS - 20% DOS - 50%
I DOOS - 20% I DOOS - 509

)

@
s

10% |

DOS, DOOS (eV'm
>

1024 L

-0,6 -0.4 -0,2 0,0 0:2 0;4 0:6 -0.6 -0,4 -0,2 0,0 0;2 0:4 0..5

E-E;(eV) E-Ef(eV)
Figure 2.2 Modlification of an initially exponential DOS (light shaded area) and
corresponding DOOS (filled area) with increasing charge carrier concentration from
1% per-site concentration (top left) to 50% (bottom right). The DOS and DOOS are
plotted as a function of energy with respect to the Fermi level. The vertical solid
coloured lines indicate the position of the transport energy (see sections 2.2.4.2 and
5). DOS and DOOS have been numerically obtained using the kinetic Monte Carlo
algorithm described in section 5 and take into account full Coulomb interactions
between charge carriers and the effect on unoccupied sites.

The Coulombic influence of charged species such as dopant ions on the DOS is
discussed separately in sections 2.2.6 and 2.2.7.
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2.1.,5 Our Contribution

In Papers V and VI we have shown that the changes to DOS and DOOS as well as
increased Coulomb scattering between charge carriers have a strong effect on charge
and energy transport of OFETs and are, in fact, crucial to the numerical reproduction
of experimentally observed phenomena at very high concentrations of around 100%
site occupation.

The attractive potential of immobile ions introduced by chemical doping acts as a trap
for mobile charge carriers, which manifests itself in the development of an
exponential tail and a broadening of the main DOS as, explained in section 2.2.6. In
Paper Il we have developed an analytical model that describes charge transport in the
dopant-modified DOS and find that the analytical results reproduce well numerical
simulations and mobility measurements of F,-TCNQ-doped P3HT.

The effects of the presence of dopant ions on thermopower are studied in Paper lll,
where it was also found to be crucial in reproducing the experimentally observed
quasi-power-law relationship between thermopower and electrical conductivity (see
section 3.3.6).

Additionally, the combined findings of Papers Il, lll, V and VI show that the question
of which disorder to use depends very much on the charge carrier concentration and
may deviate significantly in shape and width from the DOS at low concentrations.

11



2.2 TRANSPORT MODELS

This section gives a concise overview of commonly employed models for describing
charge transport in organic disordered semiconductors and connecting the DOS to
charge transport properties.

2.2.1 Localisation

The localisation of energetic states has been treated by Anderson (initially for
amorphous inorganic semiconductors) by considering a three-dimensional (3D) array
of quantum wells with coordination number z. Their depths are randomly distributed
in energy leading to a Gaussian distribution characterised by a width V; around a
mean energy E},, depicted schematically in Figure 2.3 2,

Energy

DOS

Figure 2.3 Schematic depiction of Anderson localisation due to a Gaussian distribution
of quantum well depths. Red lines indicate ground-state wavefunctions.

The wave function ¥; of a charge carrier trapped in a quantum well i decays

exponentially with distance x according to
-1

pi = (Vi) ew(- ), @6

where x; is the position of the localised site and « is the localization length, i.e. the
distance at which the wave function has decayed to 1/e of its original value. For V, =
0, all wells have the same depth and the system shows no disorder. In this case the
overlap of the wave function creates a band with the band width

12



B =2z, (27)

where J is the transfer integral (sometimes also referred to as overlap integral)
between quantum wells (i.e. site energies) i and j and is given by

Jij = (i|H|w;).  (2.8)
The Hamilton operator H is taken to be

2 2
H=—h—V2 1

-, 2.9
2m dmege, T 29

with m the charge carrier mass, g the elementary charge and g, the vacuum
permittivity. The last term on the right-hand side of equation (2.9) corresponds to the
Coulomb interaction between two charge carriers on neighbouring sites, separated by
the distance r. The magnitude of the transfer integral between two hydrogen-like 1s
wavefunctions instead of two potential wells is plotted in Figure 2.4 as a function of
localization length & and inter-site distance ayy.

1,0 11 1.3 14 17 20 4z 10
o (nm)

Figure 2.4 Dependence of the transfer integral of two 1s wave functions with

localization length a and separated by the distance ay . The black line serves as an

approximate limit above which all states are localised (at V, /B = 1.6 according to

reference 3) in a system with a Gaussian disorder of 75 meV.

It is intuitive that, as V, increases, the width of the DOS increases and spreads out the
sites in energy space and leading to fewer sites with similar energies and less overlap.
The transfer integral is proportional to the localization length (Equations (2.6) and
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(2.8)), which itself is proportional to the potential depth and mass of the charge
carrier. Hence J decreases with increasing 1/, as can be seen in Figure 2.4. The
transfer integral is also proportional to the spatial separation r between the quantum
wells. However, in this simple case there is assumed to be no correlation between the
position in space and V;, and thus, r is considered constant when changing V. It has
been shown in the original work by Anderson that there exists a limit for V, w.r.t to
the band width B beyond which all states are localized. The critical ratio for total
localization was later found to be V,/B = 1.6 from numerical calculation *3. The
threshold for complete localisation of the DOS assuming a coordination number of 6
and a disorder potential corresponding to the full width half maximum of a Gaussian
distribution with a width of 75 meV is plotted as a black solid line in Figure 2.4. Since
the localization length and the average nearest neighbour distance are not necessarily
accessible experimentally (or at the very least subject to interpretation) these values
have been chosen to the best knowledge throughout the analytical and numerical
work in this thesis and lie within the localised regime on the right-hand side of the
solid line in Figure 2.4 with a ranging from 0.5 nm to 2 nm and ay ranging from 1
nm up to 15 nm (see Paper I-VI). Furthermore, it should be mentioned that complete
localisation of the DOS is not a necessary criterion for incoherent hopping to be the
dominant charge transport mechanism, as long as the typical transport energies are
below the so-called mobility edge, if it exists, that separates localised and delocalised
states (see Figure 2.5).

2.2.2  Mobility Edge

In an appropriate DOS all sites that sit below a certain energy, the so-called mobility
edge E g, are considered to be localised and act as traps for charge carriers, while
above E,, all states are delocalized (extended) and form a continuous band in which
charge transport is only disturbed by scattering. At high enough concentrations the
Fermi level is close enough to the mobility edge and electrical conduction occurs by
thermal activation of carriers from Ef to Ey5 . During band transport through the
material, charge carriers experience multiple trapping events in the lower part of the
DOS, from which they need to be (thermally) activated above E); 5 again ***°, This
type of transport is typically referred to as the multiple trapping and release (MTR),
which is schematically depicted in Figure 2.5
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B Band Transport

Mobility Edge E,

Energy
I
Energy

Space Density of States
Figure 2.5 Schematic of multiple trapping and release transport mechanism.

Due to the comparatively large disorder of organic materials, the ratio of localised to
extended states will be somewhat in favour of the former making these trapping
events more likely. Description of the transport will then be more in analogy to
conventional hopping models %78, such as the transport energy model (section
2.2.4.2). In materials where ME transport is believed to occur, however, it is likely that
band transport occurs on chain segments of the polymer or in the crystalline regions,
where the backbone is uninterrupted and the m-orbitals and the wavefunctions of the
occupying charge carriers can delocalize more, while trapping will mostly occur at
conformational defects separating chain segments or in the amorphous phase of
semi-crystalline material *°. The MTR model describes the conductivity as the
conductivity of the band transport modified by the temperature and material
dependent probability of thermal release. This formalism has been shown, in various
different forms, to, at least phenomenologically, describe the temperature and field
dependence of the mobility in OFETs with semi-crystalline or crystalline materials
such as P3HT and PQT-12, with an exponential 22! or Gaussian 17?2 distribution of

trap states.

2.2.3  Hopping Transport

Thermally activated tunnelling of charge carriers between localised sites was
simultaneously suggest by several researchers to describe transport processes in
amorphous inorganic semiconductors 2>72°, Due to the large disorder in most organic
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materials and the resulting localization of states, it is nowadays considered that
charge transport in ODSC occurs by incoherent (there is no apparent correlation
between one hop and the next) tunnelling between localized sites, referred to as
hopping. The hopping process between localised sites is thermally activated with
hopping rates between two sites i and j expressed either by the Marcus formalism 2°
or, as is done throughout the work of this thesis, by the Miller Abrahams (MA)
expression, which follows to 272

2r;;  |Ei—Ej|+|Ei— Epl + |E; — E
19ij=190€Xp<—%—|l i lleBTFl |Ej = Er|

), (2.10)

where 1;; is the spatial separation of the sites with energies E; and E;. The material-
dependent prefactor 9, is often referred to as the attempt-to-hop frequency and its
magnitude are quite a subject to discussion. Typical values are assumed to be close to
the phonon frequency ranging from 10'° s to 10 s (see the methods descriptions
in Papers I-VI). The first term of the exponent in Equation (2.10) describes the
dependence of the tunnelling rate on the spatial distribution of sites and their
wavefunction overlap, while the second term relates the energy difference between
the two sites as well as between the sites and the Fermi level Er to the hopping
probability. However, the hopping rate-limiting steps occur only when hopping from
an occupied site of lower energy to an unoccupied site of higher energy, such as
depicted in Figure 2.6. Hops downward in energy only suffer a penalty from their
spatial separation and so do “hops” between two unoccupied or two occupied sites
and are therefore not connected to a penalty in hopping rate and Equation (2.10)
takes the form

2r, 5L for E;>E

ij exp (— ) or Ej i

9;; =V exp (—7”) kT 7T (211)
1 for E; <E;,

which is the form typically encountered in literature and also throughout the scientific

work of this thesis. In Papers 1, II, IV, V and VI, an electric field Fis applied in the
kinetic Monte Carlo (kMC) simulations to induce directed charge flow in the virtual
sample. As will be described in more detail in section 2.3.3, if a positive charge carrier

moves a distance x along the direction of the field F (or against the field in case of a
negative charge), it gains energy, which reduces the energy difference E; — E;

perceived by the charge carrier by an amount qic’l3 and increases its hopping
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probability. Analogously, the difference in Coulomb potential between two sites
increases the energy barrier for hopping by

q2

AE; = ——,
¢ 4dmege,d

(2.12)

where g, is the vacuum permittivity, &, is the dielectric constant of the material and d
is the separation between two charge carriers. Including both these effects in
Equation (2.11) results in the hopping probability

21y X —Ej_Ei_qfﬁ—l—AEC = ex (—A—E) AE >0
¥;; =y exp (—7> €xp kT = exp Py (2.13)

1 AE<O0.

Energy

Space
Figure 2.6 Charge carrier hop between two sites with the Miller-Abrahams hopping
rate determined by the separation in energy and space.

Like the attempt-to-hop frequency, the localization length « is material-dependent. In
the work of this thesis, and in fact throughout similar literature, a is assumed to be
somewhere between 0.1 nm and 2 nm .

2.2.4  Percolation Model

In their original work, Miller and Abrahams calculated the current flow of charges due
to charge hopping by considering percolation through a resistor network. There,
every hopping site is replaced by an electrical node (junction or site energy)
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distributed randomly in space. A pair of neighbouring nodes i and j is connected via a
resistor R;; that is inversely proportional to the MA hopping probability as 30

Rij =, (214)

where ¥;; is the symmetric equilibrium rate of transition between sites i and j in
Equation (2.10). Only upwards hops are considered since these are connected to a
penalty in energy and thus considered to be the rate-limiting step in hopping
transport. In most percolation models, the electric field is implicitly assumed to be
small and only a perturbation to the resistances 3. The effect of a non-vanishing field
is discussed in section 2.3.

From percolation theory it follows that there exists a critical value R,;; for the
resistance that is representative for the whole system and ultimately needs to be
overcome to form an continuous percolation pathway through the sample (infinite
percolation cluster) and hence from R_,;; the conductivity can then be calculated. In
order for a current to flow in the resistor network there needs to be a continuous
path from one electrode to the other. To find R_,.;; one sequentially removes resistors
from the network, starting with the largest resistances. R, is then the value of the
resistance that is removed just before percolation stops.

Alternatively, the percolation problem can be reduced to a purely geometrical one
shown in Figure 2.7 by considering d-dimensional spheres around every site with radii
r; instead of pairs of sites separated by a resistance R;;. The threshold for percolation
is then found by increasing r until an infinite cluster is formed atr =1, i.e. a
continuous path from one end of the sample to the other.

For a constant DOS one can calculate the average number of sites within a sphere at
the percolation limit as

4 3
5 9(E)TE=Bc, (215)

where B is the average number of bonds per site necessary for the formation of an
infinite cluster, typically referred to as percolation threshold, and g(Er) is the DOS at
the Fermi level. Restricting the hops to only nearest neighbour hops (NNH), such as
depicted in Figure 2.8, in a cubic lattice leads to B, = 2.8 *.

18



Figure 2.7 Percolation criterium interpreted with spheres.

However, since hopping is a thermally activated process, at low thermal energies kgT,
compared to the characteristic energy of the DOS, it becomes energetically
favourable for carriers to tunnel to non-nearest sites with lower site energies, as
shown schematically in Figure 2.8.

5 — —
2l el
L T
i 1 " " 1
Space

Figure 2.8 Nearest neighbour hopping (green) and variable range hopping (brown) in
energy and real space.

This hopping regime is referred to as variable range hopping (VRH) and can be
implemented into the percolation formalism by assuming percolation in 4 dimensions
(3D space + 1D energy). Analogously, the percolation criterion Equation (2.15) for VRH
can be written as

4w, (Fr o
?rcf g(E"dE" = B.. (2.16)
Ej
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Assuming charge transport only around the Fermi energy as well as a constant DOS
around Ef, solving the percolation problem with VRH leads to the well-known Mott-
law for the conductivity at low temperatures 3

1
To)m

0 = 0y exp —(—

- (2.17)

The prefactor o, depends only weakly on temperature. The characteristic
temperature Ty is defined as

pat

o kpgo'

(2.18)

with 8 a numerical constant. As mentioned earlier, the DOS of most ODSC is believed
to be of exponential or Gaussian shape. The Mott-law Equation (2.17) is only valid in
the approximation of a constant DOS around E which for strongly energy-dependent
DOS distribution can only be considered to be the case at low temperatures (the
critical temperature for Mott-like VRH is dependent on the disorder and shape of the
DOS see e.g. Ref 7). Additionally, it is not straightforward to assume that the
numerical value of B, = 2.8 found for a constant DOS and NNH in a cubic lattice can
be generalized to VRH between randomly distributed sites and other DOS shapes .
The average number of bonds necessary for VRH has thus far only been solved
explicitly for an exponential DOS by considering the geometric problem of randomly
distributed spheres with exponentially distributed radii 3. Other authors usually
assume B, = 2.8, which has been shown to only lead to small deviations of the
calculated mobilities **.

2.2.4.1 Application to Exponential and Gaussian Density of States
Common to all percolation models with an exponential DOS is that the charge carrier
mobility u is activated by the transfer between Er and a critical transport energy

* 7,35
Eﬁerc

Eperc — E AE
perc F
x - = -——=], 2.19
e (~H5 ) =en(-57). @19
where Ejp,. does not depend on E and is thus independent on the charge carrier

concentration. The physical meaning of E,,. can be interpreted as the most difficult
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hop a carrier has to make in order for it to be transported through the sample.
However, E;;erc is not the energy at which transport is most likely to happen, this is
only the case for NNH.

Percolation with VRH in a Gaussian DOS has been solved explicitly only for a lattice
model and small concentrations. The model describing this transport is usually
referred to as the Gaussian disorder model (GDM) %, The mobility for a Gaussian DOS
has a stronger temperature dependence than the exponential VRH regime, namely

U o< exp(—AE/kBTZ) 6. However, in the limit of low concentrations, VRH in
exponential DOS and the GDM lead to fundamentally different concentration
dependences of the mobility due to the carriers sitting at the equilibrium energy

E, =— az/kBT, rather than the Fermi level 3.

At very large disorders, the DOS around the Fermi level can be assumed constant and
Mott-type VRH is recovered. At large temperatures (compared to the other energy
scales of the system) and large concentrations it is usually assumed that NNH is the
dominant charge transport, since thermal activation allows the carriers to find a
suitable nearest neighbour for percolation.

2.2.4.2 Application to Arbitrary DOS shape
From Equation (2.11) and Equation (2.14) it follows that the conductivity can be
written as

2R* E*—Eg
0 = 0y exp (— P kB—T)' (2.20)
where R* is the hopping distance in space and E* is the energy to which carriers hop
from the Fermi level 338, The optimal hopping distance-energy combination depends
on temperature, localization length and DOS, g(E), and can be obtained by
minimizing the exponent in Equation (2.20). For VRH the hopping distance between

two sites is given by the percolation criterion Equation (2.16) and follows to

1

41T E* 3
R* = —f g(E’)dE’] . @21
5521,
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The transport energy E™ is then the final site energy f for which the upwards hopping
rate ¥y, from an initial site i is highest by solving

dln(o(R% &, )

OE; B

0. (2.22)

The transport energy (TE), schematically depicted in Figure 2.9, is, in good
approximation, independent on the initial energy (Fermi level) and thus independent
on the carrier concentration. The position is only dependent on the shape and width
of the DOS. It has been shown, in fact, that for a Gaussian DOS, E* sits at a constant
offset from the peak of the DOS 3. The mobility and conductivity in the TE model are
activated and have thus the same functional dependence as Equation (2.19) with E*
instead of E;,‘erc. In fact, it has been shown that the transport energy is valid for every

steeply energy-dependent DOS *,

Energy
I
el
i
| Elnérg'y .

Space Density of States
Figure 2.9 Schematic representation of the transport energy E*around which most
transport occurs.

Throughout this thesis both the VRH and NNH concepts were used with different
justifications. Due to computational restraints, numerical investigations were only
done in the NNH regime. However, justifications and the correctness of the results
have been given throughout the scientific work of this thesis.
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2.2.5 OQurContribution

Distinguishing between VRH and NNH from concentration and temperature
dependence of the conductivity is difficult, since many models give the same
gualitative dependence on temperature and carrier concentration for both types of
hopping. Additional insight into the transport mechanism can be gained by a
thermoelectric investigation as it gives direct insight into the energetics (described in
section 3). The occurrence of a quasi-universal conductivity-thermopower
relationship for many doped systems and spanning several orders of magnitude in
conductivity points towards a common transport mechanism in a wide variety of
materials. However, none of the typically employed models is able to describe such a
relation. In Paper Ill we show that VRH transport in a DOS that is broadened and
exponentially extended by the presence of ionized dopants, leads to the
experimentally observed power-law relationship. This further indicates that in most
doped systems, significant amount of hopping beyond nearest neighbours occurs at
room temperature

2.2.6  DOS Modification due to Presence of lonized Dopants

Doping is one way of increasing the density of free charge carriers, where the dopant
transfers charges to the host. What remains is an ionized dopant that sits within the
randomly distributed sites of the host material. As mentioned in section 2.1, the
presence of a charged species has an influence on the shape and width of the DOS.
The ionized dopant interacts Coulombically with sites in the vicinity and therefore
their presence modifies the DOS of the host-guest system and the energetic
landscape in which the charge carriers perform their hops and thus charge transport.

Arkhipov et al. were the first to include this effect into an analytical theory, of
percolative charge transport by VRH in an initially Gaussian DOS >, If the number of
dopants N is small compared to the number of intrinsic sites N;, the ionized dopants
will only interact with the intrinsic localized sites and not with each other (N53 <

7¢). The probability of finding an ionized dopant at a distance a from a localized site is
given by the Poisson distribution and the initially Gaussian sites energy distribution
E;ite is modified by the distribution of Coulomb energy E due to the dopant ions.
The new total site energy is then E = E + E;;.. The effect on the DOS is a shift of
site energies within 1 of the ions to lower energies which extends the tail
exponentially #%.
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Common hopping transport models only take into account an intrinsic DOS (i.e.
Equation (2.2) or (2.3)). Since the relative dielectric constant of ODSC typically ranges
between 2-4, which is relatively small compared to inorganic materials with &, around
11, the Coulomb capture radius r; = 10-20 nm and thus much larger than the average
distance between hopping sites ayy = 0.8-2 nm (see section 2.2.1). Consequently, a
single dopant ion effects several hundred hopping sites, which should have a strong
influence on charge transport.

To facilitate analytical treatment within the VRH formalism Arkhipov et al. employed
two simplifications to the physical model;

i) the Coulomb traps within 1 of a dopant ion are replaced with a single trap site and
ii) the energy of these sites is the sum of the intrinsic, disorder-dependent site energy
and the barrier between these sites modified by the presence of an external electric
field F, Etrqp = Esite + Ajon, With

q3F q°
A = — , 2.23
ton TEyE, ATE e a (2.23)

where a is the distance between a dopant ion and the nearest hopping site. The
barrier A;,,, is schematically indicated on the left side of Figure 2.10. The modified
DOS takes the form

N; — Np Np
9(E) = Tigi(E) +Figi(E —Qion),  (2.24)
where g; is the intrinsic DOS. Transport is then calculated from a percolative
transport energy model assuming VRH but can in principle be applied to any other
hopping model that takes the DOS into account. The calculated mobility follows the
Poole-Frenkel behaviour in field, yu VF, while the temperature dependence follows
Arrhenius behaviour. Interestingly, the concentration dependence of the mobility is
very sensitive on the initial disorder of the DOS. For small disorders, the mobility
exhibits a negative concentration dependence while an increasing mobility is found
for very large disorders. This can be related to the position of the majority of charge
carriers in energy, i.e. the equilibrium energy E,, which scales with disorder and
surpasses the value for activation from a Coulomb trap at a disorder of 0.15 meV. At
this point charge carriers fill the traps and the Fermi energy increases with dopant
concentration and thereby also the mobility. However, the conductivity increases also
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for small disorders, since the mobility decreases at a slower rate than the
concentration of free charge carriers, Np, increases.

At dopant concentrations above approximately 0.1% the distance between dopant
ions is smaller than their Coulomb capture radius 7 leading to the overlap of the
Coulomb wells of the ionized dopants seen on the right side of Figure 2.10. This is
beneficial for charge transport since it smoothens the energy landscape and reduces
the barrier A;,,, for de-trapping compared to the case of low concentrations without
any significant overlap depicted on the left side of Figure 2.10.
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Figure 2.10 (left) Negligible overlap of dopant ion Coulomb potentials U (x) at low
concentrations. (right) High concentration of dopant ions increases the overlap and
reduces the barrier A;,,,. The energy at maximum overlap is indicated as U,,.

The energy barrier is then expressed as

2
Aign = ngm + Uy (2.25)
where Uy, is the energy at maximum overlap. This addition explains the
experimentally observed steep increase of the mobility at higher dopant
concentrations of e.g. F,TCNQ doped P3HT %2, The effect on the DOS is paramount to
a smaller copy of the DOS that is shifted towards lower energies. The dopant DOS
increases and moves towards the main DOS with increasing dopant concentration,
however, no change to the intrinsic peak occurs.
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2.2.7  Our Contribution

In Paper Il we extend the expression for the DOS including the distribution of dopant
ions obtained by Arkhipov et al. ° to include the energy offset between the
characteristic energies of host and guest material (i.e. the HOMO of the host LUMO of
the dopant material). The effect of increasing the carrier concentration on the DOS
with this inclusion is then a simultaneous broadening of the main peak and formation
of an exponential tail of the otherwise Gaussian DOS, depicted in Figure 2.11 for
different dopant concentrations.
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Figure 2.11 Modification of the DOS due to the presence of dopant ions ranging in
relative concentration from 10° to 10 calculated with the model described in Papers
Il and Ill. The dashed line indicates the intrinsic DOS without dopants.

The transport in this model is calculated by the Mott-Martens model described in
section 2.2.4.2, by activation from the Fermi energy to a transport energy 328, The
addition to the modification of the DOS allows for a more precise description of
experiments as shown in Paper Il. In Paper Ill the Arkhipov DOS modification is used
to distinguish between VRH and NNH regime within the context of the conductivity
dependence of the thermopower (further details can be found in section 3.3.6).
Additionally, we find that the model based on the DOS described by Equations (2.25)
and (2.24) does neither reproduce the DOS modification nor the concentrations
dependence of the mobility calculated with MC simulations.
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2.2.8 Short Range Carrier-Carrier interaction and Coulomb Gap

At larger charge carrier concentrations, however, one would expect the inter-carrier
Coulomb interactions to play a (significant) role in charge transport, due to the
changes they infer on the DOS (section 2.1) and modification of the MA hopping rate
(Equation 2.11). Pollak and Ambegaokar have in fact shown that the short-range
interaction between localized charge carriers leads to a decrease of the DOS around
the Fermi energy 3043, This has strong implications on the charge transport (especially
at low temperatures) since the Mott-law, which is often used as a reference model to
classify hopping transport, requires the DOS at the Fermi level to be constant. Efros
and Shklovskii have developed a model describing the shape of the DOS around Ef in
a system of interacting charges and were amongst the first to study the influence of
the Coulomb gap on conductivity **. Assuming negligible wavefunction overlap (i.e.
assuming localization of states) the energy of a system must increase upon
transferring a carrier from a site below the Fermi energy to a site above the Fermi
energy, as depicted in Figure 2.12 %4,

Figure 2.12 Transfer of charge carrier from an occupied site below the Fermi level to
an unoccupied site above the Fermi level E.

Thus, the inequality

2
Aijj =E; —E; —#% >0 (2.26)

must be fulfilled for every possible hop from below E to above Er. The last term in
the middle part of Equation (2.22) takes into account the reduction of the hopping
energy by the attractive potential between the hopping charge carrier type (electron
or hole) and the vacancy it leaves behind (hole or electron). Imagining a small energy
interval 6E, indicated by the dashed lines in Figure 2.12, around the Fermi level and
assuming sites to be randomly distributed in space with an average concentration of
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Ngite, One can assume the average spatial separation  between these sites to be (per
Equation (2.1))

W=

1
&= <—) , 2.27
gEnoE) D
where g(EF) is the DOS at the Fermi level. In order for inequality (2.26) to be
satisfied, sites must be separated by a distance of at least

q2

> = . .
¢z 4mege, OF Sc (2.28)

This also puts a constraint on the site density N around E, which in three dimensions
may not be larger than fc'?’ or

SE3(4meye, )3
- = %_ (2.29)
q
This constriction leads to a decreasing DOS around E and ultimately to the formation

of a soft Coulomb gap, depicted schematically in Figure 2.13.

Figure 2.13 Efros-Shklovskii Coulomb gap with width A forming around the Fermi level
Er of an otherwise constant DOS.

The width A of the gap follows from equating the unperturbed DOS g, with the gap
DOS, g(E), which in 3D follows to

dN, SE?(4meye,)?

9gE) =—7 = CT (2.30)

with the numerical constant € = 3/m and the gap width

28



3 [~
A= q—gog. (2.31)
(4’7-[‘5081")E
Due to the inherent spread of site energies (i.e. disorder), the Coulomb gap for most
ODSCs does not open completely at Er.

The effect of the Coulomb gap on transport is only important if the gap width is of the
same order as kgT, then the presence of the gap leads to a conductivity dependence
in two and three dimensions that is similar to the Mott-law in one dimension,
however, with different prefactor and constants,

1

Tgs\2

2
0 = Opg €Xp _(T) ,  (2.32)

where Tgg = frsq?/4Tey s, With Bgs a numerical coefficient.
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2.3 NON-OHMmIC CHARGE TRANSPORT

At field energies that are large compared to the available thermal energy, i.e.
qFx/kgT > 1, the often referred to Mott-law is not valid anymore. It is quite clear,
however, that study and description of the high field and high temperature regimes
are of importance not only for applications but also for gaining a deeper
understanding of the charge transport mechanisms. To that end, Pollak & Riess
extended the original percolation formalism to higher fields leading to a temperature
and field-dependent expression of the conductivity for VRH in a constant DOS that is
valid at intermediate fields 3!

qFL(T)
kpT

o(F,T) = g, exp (c ), (2.33)

where gy, is the (temperature dependent) ohmic conductivity, c is a constant related
to the angle between electric field and hopping direction (typically chosen to be 0.17
4546) and L(T) is the length scale characteristic for the hopping process. The precise
connection of L(T) to the material is dependent on the specific morphology and
should not be taken too literal. However, study of this length scale can give
interesting insights into charge transport and indicate changing hopping behaviour.

2.3.1 The Reduced Activation Energy
At low temperatures ODSCs with an approximately constant DOS at the Fermi level
exhibit a Mott-like temperature dependence of the conductivity

0 X exp (— (%)y), (2.34)

where the exponent y = 1/(1 + d) ranges between % - % depending on the number
of dimensions in which charge transport occurs and thus indicating VRH in 1 to 3
dimensions (section 2.2.4). The exponent, and thereby the dimension of this type of
charge transport, is often determined by the temperature dependence of the so-
called reduced activation energy ¥

din(o)

W) = Ty

(2.35)
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An early study of the ohmic conductivity of doped polyaniline showed a metal-
insulator transition at sufficiently low temperatures *. By application of a magnetic
field, an insulating behaviour with a Mott-VRH temperature dependence was created,
while reducing the energetic disorder created metallic conduction. The “untreated”
films, however, fall into a critical regime, characterized by a power-law temperature
dependence, o « T%, with the exponent « typically between 0.26 and 0.4 ©2.

Mott-VRH in 3D leads to a slope of -%, the metallic state has a positive slope and the
reduced activation energy of the critical regime is constant in temperature. A
transition from semiconducting to critical behaviour has also been observed for
PEDOT doped with PSS upon treatment with different solvents #°. The temperature
dependence of the reduced activation energy of DMSO treated PEDOT:PSS is in the
critical regime, while pristine, DMF and THF-treated PEDOT:PSS exhibits
semiconducting behaviour with different slopes, i.e. different dimensionalities
according to the Mott model. The pristine sample exhibits a slope of -% indicating
one-dimensional VRH charge transport. This was subsequently confirmed by further
investigations of the reduced activation energy, which attributed this behaviour to
quasi-1D charge transport in PEDOT:PSS in parallel, weakly interacting one-
dimensional fibres %, A metallic temperature dependence was found for PEDOT:Tos
and was attributed to a semi-metallic state *°.

For activated transport, 0 < exp(—AE /kgT), the reduced activation energy takes the
form,

AE dAE 1
oC
kgT dT  T%act’

wW(T) = (2.36)

where a,.+ depends on the choice of the energy from which most carriers are
activated from. In the GDM (i.e. Boltzmann limit and Gaussian DOS) AE = E* — E,,
with E; = — 02 /kgT introducing an additional temperature dependence leading to
Aget = 2, While AE = E* — Ep leads to ag s = 1.

2.3.2  Universal Scaling

In the Ohmic regime, highly conducting systems close to the metal-insulator transition
often exhibit a power-law dependence of the current on the temperature, rather than
the stretched exponential behaviour expected from hopping transport;

jo T (kgT >>qV), (2.37)
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while for the non-ohmic regime (at large voltages) a power-law dependence on
voltage V is observed

joc VB (kgT < qV), (2.38)
where the exponents a and [ are often found to be related as
f=a+1. (2.39)

The combined influence of field and temperature has been shown to collapse to a
universal line that transitions from ohmic to non-ohmic behaviour when plotted as
J/T1*% vs. V /T and can be described by the expression ¢

, , qv 1+8 i eV
= pT1t¢ h( )|F( — ) , (24
J = b sinh (v~ 2 7V, (240)

where b is a scaling parameter, y a parameter describing the transition between
ohmic and non-ohmic regime such that 2/y = qV /KT and I is the complex Gamma
function. An example of the collapse to a universal line of experimental data obtained
from PEDOT:PSS is seen in Figure 2.14. From conductivity measurements on the left
side of Figure 2.14 the temperature dependence of the ohmic conductivity (i.e. field
independent) the exponent « is obtained and the data of the complete field range
plotted in rescaled units on the right side of Figure 2.14.
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Figure 2.14 (left) Conductivity vs. applied bias for a 1:2.5 (w/w) PEDOT:PSS thin film,
measured at different temperatures indicated by the color scale. (right) Same data as
in (left), rescaled according to the universal scaling procedure discussed in the text.
The red and blue dotted lines on the right side indicate power laws with slope 1 and 6,
respectively; a = 1. Reproduced with permission from Paper I.
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The universal scaling of temperature and field dependence has been observed for
various inherently one-dimensional systems (e.g. nanotubes) as well as amorphous
polymeric semiconductors such as PBTTT (as active layers in OFETs as well as doped
films) or PEDOT:PSS and is mostly attributed to be a characteristic of transport in a
Luttinger liquid. However, the large variety of materials in which this behaviour is
observed has sparked discussions about the universal validity of the LL theory, leading
to at least five mutually exclusive models leading to Equation 2.40 or qualitatively
equivalent expressions as briefly discussed in Paper |

2.3.3 Effective Temperature

An electric field F, as was argued by Marianer & Shklovskii, has a similar effect on
charge hopping as the lattice temperature T °7, allowing similarities to be drawn to
thermal activation of hopping transport. To a charge carrier, the energetic landscape
is shifted by an energy AEg;,;4 = qFx to lower energies (w.r.t. what is considered
lower for a hole or an electron) when hopping a distance x with (against) the electric
field. This situation is schematically depicted on the left side of Figure 2.15 with the
example of electrons in an exponential DOS.

3,0
F
9(E)
9(E) 25
=20
qFx ;_%
1,5F
1,0 F
575K
o] 1 2 3 4 5 6
VIT (107 V/K)

Figure 2.15 (left) Electron hop against the electric field F. Due to positive energy
dependence of the DOS a higher concentration of localized sites is available for the
electron. The shaded area represents the occupied states. (right) Scaled dependence of
Tesf on the field F, reproduced with permission from reference Paper |I.
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Hence, hopping under the influence of a field and temperature is paramount to
hopping without a field, but activated by an effective temperature T s that includes
the combined effect of field and temperature. The validity of T, s at finite
temperatures has subsequently been shown by comparing measurements on

amorphous Silicon to a numerical study assuming an exponential DOS and the
Boltzmann limit of low concentrations *’.

Numerically, T is obtained by fitting the Boltzmann or Fermi-Dirac distribution
function to the numerically obtained charge carrier distribution. This process is
schematically shown in Figure 2.16. Plotting these T, ¢ values as a function of the
ratio between field and temperature yields a universal line as seen on the right side of
Figure 2.15 that is described by the empirically expression

¢

TS (T, F) =T +( : ) (2.41)
B

which describes the combined effect of lattice temperature T and electric field F on

the charge carrier distribution. The exponent ¢ was originally found to be 2, however,
no physical interpretation was given *’,
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Figure 2.16 Numerical determination of T,z by division of the numerically obtained

DOOS by the DOS and fitting of the resulting occupation probability to the Fermi-Dirac
distribution.

Experimentally, T sf is obtained by comparing the temperature and field dependent

conductivity o (T, F) to the field independent ohmic conductivity a(T, 0) and finding
the temperature at which the latter is equal to the former.
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Interestingly, if the conductivity is plotted as a function of T¢¢ a collapse to one line
is obtained following the relation

o(F,T) x TS, (2:42)

The concept of describing temperature and field dependence combined via Tes¢ has
subsequently been shown to be valid experimentally and numerically also for
Gaussian disorders and Fermi-Dirac statistics as well as beyond the Boltzmann limit 5%
®1, The scaling of the conductivity to a universal curve is rather reminiscent of the
previously described universal scaling, not least if one considers the equivalent axes
units in both types of scaling on the right side of Figure 2.14 and 2.15.

2.3.4  Our Contribution

In Paper I, we show that the universal scaling and T sy frameworks describe the same
functional dependence of the conductivity in F and T in Ohmic and non-Ohmic limit.
Both scaling phenomena are observed for PEDOT:PSS out-of-plane via devices and
kinetic Monte Carlo simulations. From physical insight obtained via numerical
investigations, we find that the physical background of both types of scaling can be
related to a simple heat balance between Joule heating of the current and
temperature dependent relaxation to the lattice. Finally, by solving the heat balance
equation, we develop an empirical model that consistently describes both scaling
phenomena.

35



24

10.

11.

12.

36

BIBLIOGRAPHY

Brédas, J. L. Relationship between band gap and bond length alternation in
organic conjugated polymers. J. Chem. Phys. 82, 3808—-3811 (1985).

Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility
conjugated polymers. Nature 515, 384—-388 (2014).

Baranovskii, S. D. Theoretical description of charge transport in disordered
organic semiconductors. Phys. Status Solidi 251, 487-525 (2014).

Grinewald, M., Thomas, P. & Wirtz, D. Simple calculation of the hopping
conductivity for an exponential band tail. Phys. Status Solidi 94, K1-K4 (1979).

Vissenberg, M. C. J. M. & Matters, M. Theory of the field-effect mobility in
amorphous organic transistors. Phys. Rev. B 57, 13 (1998).

Bassler, H. Charge Transport in Disordered Organic Photoconductors. Phys.
Status. Solidi. B, Basic Res. 175, (1993).

Baranovskii, S. D. Theoretical description of charge transport in disordered
organic semiconductors. Phys. Status Solidi Basic Res. 251, 487-525 (2014).

Tanase, C., Meijer, E. J., Blom, P. W. M. & De Leeuw, D. M. Unification of the
hole transport in polymeric field-effect transistors and light-emitting diodes.
Phys. Rev. Lett. 91, 216601 (2003).

Arkhipov, V. I., Heremans, P., Emelianova, E. V. & Bassler, H. Effect of doping
on the density-of-states distribution and carrier hopping in disordered organic
semiconductors. Phys. Rev. B 71, 45214 (2005).

Arkhipov, V. I., Heremans, P., Emelianova, E. V. & Bassler, H. Effect of doping
on the density-of-states distribution and carrier hopping in disordered organic
semiconductors. Phys. Rev. B 71, 45214 (2005).

Di Pietro, R. et al. Coulomb Enhanced Charge Transport in Semicrystalline
Polymer Semiconductors. Adv. Funct. Mater. 26, 8011-8022 (2016).

Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev.
109, 1492-1505 (1958).



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Elyutin, P. V., Hickey, B., Morgan, G. J. & Weir, G. F. Diffusion and Localisation
in Random Systems. Phys. Status Solidi 124, 279-286 (1984).

Arkhipov, V. I. & Rudenko, A. I. Drift and diffusion in materials with traps.
Philos. Mag. Part B 45, 189-207 (1982).

Rudenko, A. I. & Arkhipov, V. I. Drift and diffusion in materials with traps.
Philos. Mag. Part B 45, 177-187 (1982).

Nenashev, A. V et al. Effect of electric field on diffusion in disordered
materials. {llI}. Two- and three-dimensional hopping transport. Phys. Rev. B 81,
(2010).

Nenashev, A. V. et al. Effect of electric field on diffusion in disordered
materials. I. One-dimensional hopping transport. Phys. Rev. B - Condens.
Matter Mater. Phys. 81, (2010).

Street, R. A., Northrup, J. E. & Salleo, A. Transport in polycrystalline polymer
thin-film transistors. Phys. Rev. B - Condens. Matter Mater. Phys. 71, 1-13
(2005).

Noriega, R. et al. A general relationship between disorder, aggregation and
charge transport in conjugated polymers. Nat. Mater. 12, 1038-44 (2013).

Salleo, A. et al. Intrinsic hole mobility and trapping in a regioregular
poly(thiophene). Phys. Rev. B 70, 115311 (2004).

Horowitz, G., Hajlaoui, R. & Delannoy, P. Temperature Dependence of the
Field-Effect Mobility of Sexithiophene. Determination of the Density of Traps.
J. Phys. Il 5, 355-371 (1995).

Nenashev, a. V. et al. Effect of electric field on diffusion in disordered
materials. Il. Two- and three-dimensional hopping transport. Phys. Rev. B 81,
1-11 (2010).

Conwell, E. M. Impurity Band Conduction in Germanium and Silicon. Phys. Rev.
103, 51-61 (1956).

Pines, D. ELECTRON INTERACTION IN SOLIDS. Can. J. Phys. 34, 1379-1394
(1956).

37



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38

Mott, N. F. ON THE TRANSITION TO METALLIC CONDUCTION IN
SEMICONDUCTORS. Can. J. Phys. 34, 1356-1368 (1956).

Marcus, R. a. Electron Transfer Reactions in Chemistry: Theory and Experiment
(Nobel Lecture). Angew. Chemie Int. Ed. English 32, 1111-1121 (1993).

Miller, A. & Abrahams, E. Impurity conduction at low concentrations. Phys.
Rev. 120, 745-755 (1960).

Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 45, 574-588
(1973).

Larkin, A. I. & Khmel’nitskii. Activation conductivity in disordered systems with
large localization length. Sov. Phys. JETP 56, 647—652 (1982).

Ambegaokar, V., Halperin, B. |. & Langer, J. S. Hopping Conductivity in
Disordered Systems. Phys. Rev. B 4, 2612-2620 (1971).

Pollak, M. & Riess, I. A percolation treatment of high-field hopping transport. J.
Phys. C Solid State Phys. 9, 2339-2352 (1976).

Lorenz, C. D. & Ziff, R. M. Precise determination of the critical percolation
threshold for the three-dimensional ‘Swiss cheese’ model using a growth
algorithm. J. Chem. Phys. 114, 3659-3661 (2001).

Mott, N. F. Conduction in non-crystalline materials. Philos. Mag. 19, 835-852
(1969).

Nenashev, A. V. et al. Advanced percolation solution for hopping conductivity.
Phys. Rev. B - Condens. Matter Mater. Phys. 87, 1-9 (2013).

Cottaar, J., Koster, L. J. a, Coehoorn, R. & Bobbert, P. a. Scaling Theory for
Percolative Charge Transport in Disordered Molecular Semiconductors. Phys.
Rev. Lett. 107, 136601 (2011).

Hartenstein, B. & Bassler, H. Transport energy for hopping in a gaussian
density-of-states distribution. J. Non. Cryst. Solids 190, 112—-116 (1995).

Martens, H. C. F. et al. Understanding the doping dependence of the
conductivity of conjugated polymers: Dominant role of the increasing density
of states and growing delocalization. Phys. Rev. B 67, 121203 (2003).



38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Coehoorn, R., Pasveer, W., Bobbert, P. & Michels, M. Charge-carrier
concentration dependence of the hopping mobility in organic materials with
Gaussian disorder. Phys. Rev. B 72, 155206 (2005).

Baranovskii, S. D., Faber, T., Hensel, F. & Thomas, P. The applicability of the
transport-energy concept to various disordered materials. J. Phys. Condens.
Matter 9, 2699-2706 (1997).

Arkhipov, V. I., Emelianova, E. V., Heremans, P. & Bassler, H. Analytic model of
carrier mobility in doped disordered organic semiconductors. Phys. Rev. B 72,
235202 (2005).

Silver, M., Pautmeier, L. & Bassler, H. On the origin of exponential band tails in
amorphous semiconductors. Solid State Commun. 72, 177-180 (1989).

Pingel, P. & Neher, D. Comprehensive picture of p-type doping of P3HT with
the molecular acceptor FA,TCNQ. Phys. Rev. B 87, 115209 (2013).

Pollak, M. Effect of carrier-carrier interactions on some transport properties in
disordered semiconductors. Discuss. Faraday Soc. 50, 13—19 (1970).

Efros, a L. & Shklovskii, B. I. Coulomb gap and low temperature conductivity of
disordered systems. J. Phys. C Solid State Phys. 8, L49-L51 (1975).

Van De Ruit, K. et al. Quasi-one dimensional in-plane conductivity in
filamentary films of PEDOT:PSS. Adv. Funct. Mater. 23, 5778-5786 (2013).

Nardes, A. M., Kemerink, M. & Janssen, R. A. J. Anisotropic hopping conduction
in spin-coated PEDOT:PSS thin films. Phys. Rev. B - Condens. Matter Mater.
Phys. 76, 1-7 (2007).

Zabrodskii, A. G. & Zinov’eva, K. N. Low-temperature conductivity and metal-
insulator transition in compensate n-Ge. Zh. Eksp. Teor. Fiz. 86, 727742
(1984).

Menon, R., Yoon, C. O., Moses, D., Heeger, A. J. & Cao, Y. Transport in
polyaniline near the critical regime of the metal-insulator transition. Phys. Rev.
B 48, 1768517694 (1993).

39



49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

40

Kim, J. Y., Jung, J. H., Lee, D. E. & Joo, J. Enhancement of electrical conductivity
of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of
solvents. Synth. Met. 126, 311-316 (2002).

Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190-4 (2014).

Aleshin, A. N., Lee, H. J., Park, Y. W. & Akagi, K. One-Dimensional Transport in
Polymer Nanofibers. Phys. Rev. Lett. 93, 196601 (2004).

Kronemeijer, a.J. et al. Universal Scaling in Highly Doped Conducting Polymer
Films. Phys. Rev. Lett. 105, 156604 (2010).

Kim, K. H. et al. Apparent Power Law Scaling of Variable Range Hopping
Conduction in Carbonized Polymer Nanofibers. Sci. Rep. 1-8 (2016).
doi:10.1038/srep37783

Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature
397, 598 (1999).

Rodin, a.S. & Fogler, M. M. Apparent power-law behavior of conductance in
disordered quasi-one-dimensional systems. Phys. Rev. Lett. 105, 1-4 (2010).

Grabert, H. & Weiss, U. Quantum Tunneling Rates for Asymmetric Double-Well
Systems with Ohmic Dissipation. Phys. Rev. Lett. 54, 1605—1608 (1985).

Marianer, S. & Shklovskii, B. |. Effective temperature of hopping electrons in a
strong electric field. Phys. Rev. B 46, 13100-13103 (1992).

Arkhipov, V. I., Emelianova, E. V. & Adriaenssens, G. J. Field-dependent
effective temperature and variable range hopping: Application to dark dc
conductivity in doped a-Si:H. J. Appl. Phys. 93, 6150-6153 (2003).

Baranovskii, S. D., Cleve, B., Hess, R. & Thomas, P. Effective temperature for
electrons in band tails. J. Non. Cryst. Solids 164-166, 437—440 (1993).

Jansson, F., Baranovskii, S. D., Gebhard, F. & Osterbacka, R. Effective
temperature for hopping transport in a Gaussian density of states. Phys. Rev. B
77,195211 (2008).

Preezant, Y. & Tessler, N. Carrier heating in disordered organic
semiconductors. Phys. Rev. B - Condens. Matter Mater. Phys. 74, 1-5 (2006).



62.

Larkin, A. I., & Khmel'nitskii, D. E. Activation conductivity in disordered
systems with large localization length. Sov. Phys. JETP, 56(3), 647—652 (1982).

41






3 THERMOELECTRICITY

3.1 THE SEEBECK AND PELTIER EFFECT

Thermoelectricity is the direct conversion of thermal energy to electrical energy or
vice-versa via the Seebeck and Peltier effects, respectively. By keeping two ends of a
slab of material at different temperatures, a temperature gradient arises that changes
the distribution of charge carriers shown in Figure 3.1, where the redistribution of
charge carriers from states below the Fermi level to states above E increases with
temperature T (note that the “definition” of below and above is opposite for
electrons and holes). This creates a gradient in electrochemical potential along the
material, which, in open circuit condition, is counteracted by an electric field. The
strength of this electric field F is proportional to the temperature gradient AT and the
Seebeck coefficient S.

Jn

@ @ @@@@ ©

@@@
@ 9@ @

‘Ar —

® @

Temperature

Figure 3.1 Redistribution of charge carriers due to a thermal gradient and build-up of
thermal voltage under open circuit condition.

From thermodynamic considerations, the heat flux density § and charge flux density
(current density) j are given by the temperature and electric potential gradients VT
and Vo, respectively, and their proportionality constants as follows

g=xkVT +1I (3.1)
j=SoVT +aVe, (3.2)
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where k is the thermal conductivity, o is the electrical conductivity, I is the Peltier
coefficient and S is the Seebeck coefficient. The sign of Peltier and Seebeck coefficient
depends on the type of majority carrier of the material and is positive for holes.
Under the condition that there is no net charge flow (no current) and hence the
potential difference, i.e. the thermal voltage V;;, along the direction of the
temperature gradient, follows to

Vin =S-AT.  (3.3)

The Peltier coefficient, on the other hand, is the material dependent proportionality
constant for the heat transported per unit time Q for a given current I,

Q=TI (34

It is important to note that the transported heat is not due to Joule heating, which
contrary to the Peltier effect, is an irreversible process. The Seebeck and Peltier
coefficients are related to each other via the first and second Thomson relations
(sometimes also referred to as Kelvin relations), which are, respectively,

dIl

K="omS (35

and
I1=ST, (3.6)

where X is the Thomson coefficient. From Equation (3.4) it follows that the Peltier
coefficient is the amount of transported heat per electric charge. Using the second
Thomson relation this makes the Seebeck coefficient the entropy transported per
electric charge and hence it follows from the Boltzmann equation that

kg
S = 71n(ﬂ), (3.7)

where () is the number of equally possible configurations of the charge carriers and
kg /q is referred to as the natural unit of the Seebeck coefficient. The total energy flux
density E is the sum of the heat and energy transported by the charge carriers, which
at steady state (and under the assumption of a constant current) becomes

E =V{+jVe. (3.8)
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Inserting Equations (3.1) and (3.2) into Equation (3.8) leads to

P2
E = V(kVT) +jVII +]; — jSVT. (3.9

Using the definition of the Thomson coefficient K, Equation (3.9) can be simplified to

P2

J

E =V(kVT) + -~ JKVT, (3.10)

where the first term describes the heating of the material (Fourier law), the second
term describes the Joule heating (resistance) and the third term the combined
thermoelectric effect.
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3.2 APPLICATIONS OF THE SEEBECK EFFECT

From the energy flux density in Equation (3.10) it becomes clear that in order for a
material to have a high thermoelectric efficiency, the thermal conductivity Kk must be
small in order to minimize heat transport, while the electrical conductivity ¢ must be
large to reduce Joule heating in addition to a large Seebeck and Peltier coefficient.
Since solving and comparing Equation (3.10) for different materials is rather
cumbersome, comparison of the thermoelectric performance is done by means of the
dimensionless figure of merit ZT defined as

S%a
Zr=T-—, (311

which increases with both increasing Seebeck coefficient and electrical conductivity
and is inversely proportional to the thermal conductivity. Unfortunately, there exists
and empirical inverse relationship between the Seebeck coefficient and the electrical
conductivity, so that if one increases the other decreases. The thermal conductivity
has a lattice and an electronic contribution. The latter is connected to the electrical
conductivity o via the Wiedemann-Franz law and cannot be greatly influenced. The
former can typically be engineered to be as low as possible.

While the figure of merit is an excellent way of comparing thermoelectric
performances, it is relatively hard to determine the thermal conductivity of the
typically thin organic films of only several hundreds of nanometres thickness. Thus,
often only the power factor

PF=5S%c  (3.12)

is considered, with the implicit assumption that k does not vary significantly among
organic materials. It might however become a dominating influence in composite
blends, which can often also be produced in thicker films allowing for an easier
thermal conductivity measurement 1.

In principle, organic disordered semiconductors have a great potential for
thermoelectric application due to their inherently low thermal conductivity of
between 0.1 — 0.3 W/mK, high Seebeck coefficient and a relatively high conductivity.
ZT for the best performing inorganic semiconducting materials is around 1 - 1.2
whereas values of up to 0.25 have been reported for organic materials (PEDOT:Tos) 2.
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Most high performing inorganic materials reach their maximum ZT at temperatures
exceeding 100°C, making them useful for recovering waste heat from exhaust systems
in automotive and industrial applications where high temperatures are found. ODSCs,
however, are not stable at temperatures significantly higher than around 80°C, which
limits their use to room temperature applications such as powering small devices
from body heat, cooling from room temperature as well as for thermal sensing and
temperature controlling. At the same temperature range, the inorganic
semiconductor alloy Bi;Tes shows the highest ZT of around 1 3. However, the solution
processability and flexible nature of ODSCs in principle allows them to be mass-
produced at a very low cost thus landing a cost-advantage over inorganic materials,
which often contain exotic and/or toxic materials and are difficult to produce. This
explains the surge of thermoelectric investigations of organic materials #, which lead
to many new material systems such as polymer-carbon nanotube (CNT) blends and
nano-structuring that are believed to improve charge and energy transport, while
simultaneously decreasing the lattice contribution of the thermal conductivity by
phonon scattering at CNT interfaces .

Apart from practical applications, the thermoelectric effect can aid charge transport
investigations by giving unique insights into the energetics of the material and directly
coupling it to charge transport, which is evident from Equations (3.4) and (3.7).
Furthermore, thermoelectric data is relatively easy to obtain experimentally, as
described in section 6.
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3.3 THERMOELECTRIC TRANSPORT MODELS — CONDUCTIVITY AND TEMPERATURE
DEPENDENCE

3.3.1 General Expression for the Seebeck Coefficient

Many models describing charge transport of organic disordered semiconductors
assume some type of activation from around the Fermi level E to another energy
E (or energy band above) where transport occurs (see section 2.2.2 and 2.2.4). As
mentioned before, the Peltier coefficient IT is the amount of energy transport per
charge.

The contribution of a charge carrier sitting at an energy E to Il is proportional to the
conductivity contribution o (E) of the same carrier within the interval dE to the total
conductivity o ¢, i.e. proportional to o (E)dE /o, where

o(E) = qg(BE)u(E)f(E)(1 - f(E)),  (3.13)

and the total conductivity follows to
o= f o(E)dE, (3.14)

with g(E) the density of states, u(E) the mobility and f(E) the distribution function,
which is typically chosen to be the Boltzmann distribution function for low
concentration and the Fermi-Dirac distribution function for other cases (see section
2.1). Summing up all contributions, the Peltier coefficient becomes

o(E)dE
—

1
1= af(E —Ep) (3.15)
With the second Thomson relation it follows for the Seebeck coefficient

S

ZE_k_B (E—EF)O'(E)dE.

= 1
T ¢q kgT (3.16)

In good approximation, the conductivity DOS from Equation (3.15), shown in Figure
3.2, can assumed to be symmetric and to exhibit a narrow peak at which the
transport energy E™ sits, which is then defined as

o fEa(E)dE_

- (3.17)
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Substituting Equation (3.17) into the expression for the Seebeck coefficient, Equation
(3.16), gives,

kg E* — Ep

=2 T (3.18)

Hence, the Seebeck coefficient proportional to the difference between Fermi level
and transport energy as shown in Figure 3.2. Apart from the assumption of the
presence of a transport energy E*, Equation (3.18) is universal and can lead to various
different temperature and conductivity dependences of the Seebeck coefficient
depending on how E* is calculated and what the energetic landscape looks like. An
investigation of this type was undertaken in Paper Ill by means of the analytical
model described in section 2.2.7. The kinetic Monte Carlo Algorithm used in Papers V
and VI uses Equation (3.18) for the thermopower calculations as well but does not
implicitly rely on any of the assumptions leading to Equation (3.18), since the MC
algorithm allows to directly measure the mean transported energy from the positions
of the charge carriers in energy.

a(E)dE DOS

AE

Energy

Figure 3.2 (left) Distribution of the differential conductivity. (right) Schematic depiction
of the DOS with Fermi level Er and transport energy E* indicated.
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3.3.2  Seebeck Coefficient from Statistical Mechanics

The identification of the Seebeck coefficient as the transported entropy per charge
allows to give a first order approximation of the dependence of S on ¢ from statistical
mechanics . Assuming a system with a relative charge carrier concentration of

L 319
c=—, .
N
with n non-interacting charge carriers and N possible sites for the carriers to occupy,
the Seebeck coefficient from Equation (3.7) then shows a logarithmic dependence on
concentration 112

s=-'In (%C) (3.20)

which changes sign above half-filling of the available states. Equation (3.20) is the
Mott-Heike formula which is used to describe the thermopower in inorganic
semiconductors 1°. Note that this expression of the thermopower lacks a temperature
dependence. However, it might still be a good first order approximation due to the
typically small linear temperature dependence of the thermopower expected in
systems where charge transport is mainly due to hopping and concentrations are
small (contrary to the temperature dependence of the conductivity) #**!2, One can
define a maximum conductivity g,,,4,, from Equation (3.13) for small concentrations
¢ < 1 by extrapolating to ¢ = 1 and express the conductivity with respect to 0,4
leading to ’

Omax = q9gU (3-21)
and
0 = Omaxc(1 —0), (3.22)

or

o

=c K1 (3.23)

Umax

Inserting Equation (3.23) into the expression for the thermopower Equation (3.20)
results in a logarithmic dependence of the thermopower on the conductivity,

S—kBlln( id ) (3.24)

q Gm ax
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similar in functional dependence to the mobility edge model discussed below and

plotted on the right side of Figure 3.3, where the temperature and conductivity

dependence for various models is plotted together. The prefactor [ is defined by the

maximum conductivities of holes and electrons as

r+1
-1 ’

B = (3.25)

r

With r the ratios between the conductivities of the two types of carriers,

Omax(hole)

" Oy (electron) (3.26)

Hence, if only one type of carrier is responsible for conduction, as is the case in
chemical doping where the free charge carrier is introduced by a dopant molecule
that remains ionized and immobile, the conductivity of the free species will be far
greater than of the immobile dopant ion and consequently r > 1 and 8 = 1 for hole
conduction and r = 0 and 8 = —1 for electron conduction. In the case of § = |1],
Equation (3.24) transforms into the Mott-Heike formula Equation (3.20).

In Ref.” Mateeva et al. found that Equation (3.24) fits the conductivity dependence of
the thermopower measured for doped polyaniline and polypyrrole and gives § = 9
implying that ambipolar charge and energy transport is present in these materials.
Doped polyacytelene, on the other hand, exhibits values of § = 1 and overall much
higher Seebeck coefficients.

In Ref. 8, Emin considered charge transport by hopping of bipolarons (quasi particles
comprised of two bound charges in spatial vicinity and their combined effect on the
structure around them). Taking into account the possibility of bipolaron splitting, the
authors derived an expression similar to Equation (3.24) extended by the change in
entropy caused by polaron splitting. In Ref. ° it was assumed that most carriers form
bipolarons and Equation (3.24) was recovered and used to qualitatively explain the
logarithmic conductivity dependence of the thermopower of PFs. doped P3HT. This
material exhibits a weak T~ temperature dependence, where the slope was found to
decrease with doping concentrations. While Equation (3.24) does not explicitly
contain a temperature dependence, the experimental results can be fitted by adding
a term that takes into account phonon drag as discussed in section 3.4.
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Figure 3.3 (left) Functional shape of temperature dependence of the Seebeck
coefficient obtained from various models. (right) Functional shape of conductivity
dependence obtained from the same models. The grey line indicates the empirical -1/4
power law. The model curves have been shifted vertically for improved readability and
do not present any absolute trends of Seebeck coefficient or conductivity.

3.3.3  Seebeck Coefficient from Percolation in a Gaussian DOS

The expression for the Peltier coefficient in Equation (3.15) is easily adopted to
percolation transport models by exchanging the mobility in Equation (3.13) for the
number of electrical bonds per site energy B(E) so that Equation (3.15) becomes **

o _1J(E—E)g(E)B(E)E
YT g [g(B)B(E)IE
For a Gaussian DOS and assuming low temperatures this gives for the Seebeck

coefficient a logarithmic ¢~ concentration dependence and includes the effect of the
initial energetic disorder 6 3

(3.27)

kg 1N 176\ Eperc 362
Spere = ——2|—1 (—) —( ) - . (328
pere =~ 1T Y 2GT) T I T ER, T (3.28)

Also, this model predicts a logarithmic dependence on the inverse concentration that
is offset by the energetic disorder and the transport energy. By extension it can be

assumed that the conductivity dependence roughly follows Sp,;..  In G) or at least
1
SPerc « In (\/_E)
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Depending on disorder ¢ and transport energy Ep,,.., the thermopower from
Equation (3.28) changes sign at some concentration. The temperature dependence is
close to the T~ ! relationship found for band-like transport, plotted on the left side of
Figure 3.3. The inclination of the temperature dependence mainly depends on the
amount of energetic disorder and increases with it.

3.3.4 Seebeck Coefficient from the Mobility Edge Model

The mobility edge model assumes transport to occur in a band of extended states
above a certain energy (see section 2.2.2). Consequently the expression of the
thermopower in Equation (S) includes a term A to account for the distribution of
states beyond the mobility edge 1124

kg E* — Ep

Sug = — A. 3.29
we = tA (329)

The parameter A is generally taken to be temperature independent and thus the
Seebeck coefficient is proportional to T~ 1.

Glaudell et al. approximated the energy difference between Fermi level and transport
energy with the Arrhenius activation energy of the conductivity E,.; = BIn(o) + C,
where B and C are fit constants °. This substitution results in a logarithmic
dependence of the Seebeck coefficient on the electrical conductivity,

_Bln(o)+C
Sup = ——m—— (330

The functional shape temperature and conductivity dependence is plotted in Figure
3.4 together with the predictions from other models.

3.3.5 Seebeck Coefficient from Mott’s Variable Range Hopping Model
From Mott’s 3D variable range hopping in a constant DOS (see section 2.2.4) the
Seebeck coefficient follows as *#*°

ki 1 dIn(g(E))
OF

S =— (T .T)2 , 3.31
ven = 5 (To) (3:31)
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with T, the characteristic temperature, which can be obtained from fitting the
temperature dependence of the conductivity to the Mott law. Mott 3D VRH leads to a
square root temperature dependence of the Seebeck coefficient and a logarithm-like
conductivity dependence °. Especially the latter is not observed experimentally for
doped systems, which is not surprising considering that this model requires a constant
DOS at the Fermi energy with variation of charge carrier concentration, which has
been shown not to be the case in Paper Il and Ill as well as in previously published
literature %718 and sections (2.2.6) and (2.2.7).

3.3.6  Power-law Relationship between Seebeck Coefficient and Electrical Conductivity
The thermopower from models describe thus far shows a logarithmic dependence on
conductivity and is linear in temperature,

SolIn(c) and So«T71. (3.32)

Both dependencies have been found experimentally for acid-doped polyaniline,
propyrrole and perchlorate-doped polyacytelene 7 and PFs. doped P3HT (0 —34 %
relative dopant concentration) %, all of which exhibit variations of the inclination upon
doping or stretching of the polymer film. While exhibiting a distinct S « In(o)
relationship, FaTCNQ-doped VOPc (0.2 - 2 mol-% ) only shows weak T ™! temperature
dependence, with little to none inclination change *°. Thermopower investigations of
OFETs reveal a logarithmic conductivity dependence and very little temperature
dependence, irrespective of the material used, including experimental and numerical
results in Paper V as well as measurements in Refs. 292,

Interestingly, many doped ODSCs show a quasi-power-law relationship between the
Seebeck coefficient and electrical conductivity that appears to be universal for several
different host-guest material combinations and doping methods %°, The relation and
several data taken from literature as well as data from this thesis is plotted in Figure
3.4 and the power-law can be seen to roughly follow

[y

1
Sxo 4 or S?xo 2. (3.33)

Hence, in order to increase the power factor PF and thereby the figure of merit ZT it
is advantageous to increase the electrical conductivity rather than the Seebeck
coefficient, despite the quadratic dependence on the thermopower in Equations
(3.11) and (3.12).
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Figure 3.4 Compilation of experimental data from references 1°?? of the conductivity

dependence of the Seebeck coefficient exhibiting a universal -1/4 power-law
relationship as indicated by the grey line. Solid and dotted lines are calculated with the
analytical model described in Paper Il and Ill with VRH and NNH, respectively.

The quasi-power-law relationship was first observed by Kaiser, however, without
commenting on it > and later by Glaudell et al. who were unsuccessful in fitting any of
the existing transport models (Equations (3.28) (3.30) (3.31) ) to the experimental
data and argued that the thermoelectric properties are dominated by the polymer
and not the dopant °. Dongmin Kang et al. presented a model that describes Seebeck
coefficient and conductivity by an empirically obtained general transport function
that is discussed in the next paragraph . In Paper lll we were able to explain the
power-law in Equation (3.33) by variable range hopping in a DOS that is modified by
the presence of dopant ions using the model developed in Paper Il

3.3.7 Seebeck Coefficient from a General Transport Function

In Ref. 22 Dongmin Kang et al. developed a generalized charge transport model where
the conductivity is characterized by a single transport function and the Fermi-Dirac
distribution f
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with

E—E s
0 (E,T) = 0, (1) (™) (B> Bypans)  (339)
B

og(E,T) =0 (E < Etrans)- (3.36)

Hence, carriers sitting below the transport edge E;,4,s do not contribute to the
conductivity and the exponent s characterizes the distribution of states in energy
above the transport edge. The Seebeck coefficient is then described by the energy
dependence of the transport function in analogy to Equation (3.16)

1kB E_EF af)
=_-= ——)dE. .
Ser =57 f( kT )UE( 3E) ¢ (337)

The temperature-dependent transport coefficient oz, (T) is obtained from comparing
temperature dependence measurements of conductivity and thermopower and using
Equations (3.33) and (3.35) and has the form of an activated conductivity

w.o\Y
05, (T) «x exp [— (hfl;,) ] (3.38)

Here W, depends on the polymers morphology and is related to the choice of y,
which itself is related to the connectivity of a polymer 24. The connections of the
various parameters and exponents in this model to material properties is empirical
and not founded on physical models. However, the general nature of the
mathematics allows various other charge transport models to be expressed via the
generalized transport function gz (E, T) as shown in the supplementary information
of Ref. 2. Different classes of polymers are then identified by combinations of s and
0, values based on their thermopower-conductivity relationship rather than being
connected to any one type of charge transport mechanism.

3.3.8  OQur Contribution

In Paper Il we have developed a charge transport model, based on a previously
developed model by Arkhipov et al. 12>, that describes charge transport by
percolation in a DOS that is broadened and exponentially extended to lower energies
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by the presence of immobile dopant ions. In Paper Il we used this model to
distinguish between variable range hopping and nearest neighbour hopping based on
the temperature and conductivity dependence of the experimentally obtained
thermopower. The details of this model are described in in Paper Il (for the nearest
neighbour hopping case only) and Paper Ill (and the supplementary information of
the latter two). The calculation of the Seebeck coefficient follows Equation (3.18),
however, a crucial difference arises between NNH and VRH in the calculation of the
transport energy E* as can be seen on the left side of Figure 3.5.

Transport Energies

«+++ Nearest Neighbour Hopping ¥_
Variable Range Hopping E 102
j=
8
i)
>
S :
2l xS o
w x
< — &)J
C sl Fermi Level o
% Nearest Neighbor Hopping
w Variable Range Hopping
3 | i i 3 i 104 1 1 1 L 1 1
108 108 10 102 102 10! 10 10 10" 10° 107 10"
Relative Carrier Concentration Relative Carrier Concentration

Figure 3.5 (left) Fermi and Transport energy as a function of charge carrier
concentration in the case of NNH (dashed lines) and VRH (solid lines). (right) Distinct
difference between NNH and VRH in the concentrations dependence of the Seebeck
coefficient. Adopted with permission from Paper Ill.

The effect on the Seebeck coefficient is that at larger concentrations VRH leads to a
faster drop of the Seebeck coefficient than NNH as can be seen on the right side of
Figure 3.5. The functional shape of the concentration dependence of the conductivity,
however, is similar for VRH and NNH. As can be seen in Figure 3.4 the stronger

concentration dependence of VRH at higher concentrations leads to the
1
experimentally observed S « ¢ 4, which is not reproduced by NNH. This suggests that

there is substantial amount of VRH for doped ODSCs even at room temperature.
Without the dopant-induced modifications to DOS, the differences between VRH and
NNH vanish and a stretched logarithmic behaviour is recovered for the conductivity
dependence of the thermopower, such as predicted by the previously described
models. Agreement of this model to the data compiled in Ref. 1° was obtained by
using reasonable material parameters for hopping frequency (v, = 10! Hz),
localization length (@ = 2 nm), nearest neighbour distance (ayy = 1.8 nm), dielectric
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constant (&g = 3.6) and disorder (6" = 50 meV). Within reasonable parameter changes,
the main result of Paper Ill could not be changed and especially the initial disorder
seems to have little influence on the curve in Figure 3.4 as shown in the Sl of Paper lll.
This agrees with the universal experimental trend in Figure 3.4 for several different
types of materials exhibiting different morphologies and energetic disorders.
Additionally, no parameter combination was found that would create a -1/4 power-
law dependence of the thermopower for the case of NNH, which instead showed a
much flatter (approximately -1/10) power-law. Further evidence for the consistency
of the model in Paper lll is given by the fact that the measured temperature
dependence of the conductivity could only be reproduced by assuming VRH in a
modified DOS.

3.4 FINAL REMARK

All of the models described above implicitly assume (typically via Equation (3.16)) that
charge carriers only take their “own” energy with them and do not carry along any
energy from carrier-phonon exchanges that might have occurred during hopping. This
is typically referred to as phonon drag and the energy associated with it is
proportional to a fraction f of the charge carriers activation energy of the mobility

E,, and enters the Seebeck (and Peltier) coefficient by addition of a temperature

dependent term &°%7

E
S = Suoder + ka—”T. (3.39)

58



3.5

10.

11.

BIBLIOGRAPHY

Yu, C., Kim, Y. S., Kim, D. & Grunlan, J. C. Thermoelectric behavior of
segregated-network polymer nanocomposites. Nano Lett. 8, 44284432
(2008).

Bubnova, O. et al. Optimization of the thermoelectric figure of merit in the
conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429—
433 (2011).

Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7,
105-114 (2008).

Lu, N., Li, L. & Liu, M. A review of carrier thermoelectric-transport theory in
organic semiconductors. Phys. Chem. Chem. Phys. 18, 19503-19525 (2016).

Cho, C. et al. Outstanding Low Temperature Thermoelectric Power Factor from
Completely Organic Thin Films Enabled by Multidimensional Conjugated
Nanomaterials. Adv. Energy Mater. 6, 1-8 (2016).

Fritzsche, H. A general expression for the thermoelectric power. Solid State
Commun. 9, 1813-1815 (1971).

Mateeva, N., Niculescu, H., Schlenoff, J. & Testardi, L. R. Correlation of Seebeck
coefficient and electric conductivity in polyaniline and polypyrrole. J. Appl.
Phys. 83,3111-3117 (1998).

Emin, D. Pair breaking in semiclassical singlet small-bipolaron hopping. Phys.
Rev. B 53, 1260-1268 (1996).

Xuan, Y. et al. Thermoelectric properties of conducting polymers: The case of
poly(3-hexylthiophene). Phys. Rev. B 82, (2010).

Glaudell, A. M., Cochran, J. E., Patel, S. N. & Chabinyc, M. L. Impact of the
Doping Method on Conductivity and Thermopower in Semiconducting
Polythiophenes. Adv. Energy Mater. 5, 1401072 (2015).

Emin, D., Seager, C. H. & Quinn, R. K. Small-polaron hopping motion in some
chalcogenide glasses. Phys. Rev. Lett. 28, 813—816 (1972).

59



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

60

Park, Y. W., Denenstein, A., Chiang, C. K., Heeger, A. J. & MacDiarmid, A. G.
Semiconductor-metal transition in doped (CH)x: Thermoelectric power. Solid
State Commun. 29, 747-751 (1979).

Baranouvskii, S. D., Zvyagin, I. P., Cordes, H., Yamasaki, S. & Thomas, P.
Percolation approach to hopping transport in organic disordered solids. Phys.
Status Solidi Basic Res. 230, 281-287 (2002).

Mott, N. F. & Davis, E. A. Electronic processes in non-crystalline materials.
(Oxford University Press, 2012).

Kaiser, A. B. Electronic transport properties of conducting polymers and carbon
nanotubes. Reports Prog. Phys. 64, 1 (2001).

Arkhipov, V. I., Heremans, P., Emelianova, E. V. & Bassler, H. Effect of doping
on the density-of-states distribution and carrier hopping in disordered organic
semiconductors. Phys. Rev. B 71, 45214 (2005).

Arkhipov, V. I., Emelianova, E. V., Heremans, P. & Bassler, H. Analytic model of
carrier mobility in doped disordered organic semiconductors. Phys. Rev. B 72,
235202 (2005).

Efros, a L. & Shklovskii, B. I. Coulomb gap and low temperature conductivity of
disordered systems. J. Phys. C Solid State Phys. 8, L49-L51 (1975).

Pfeiffer, M., Beyer, A., Fritz, T. & Leo, K. Controlled doping of phthalocyanine
layers by cosublimation with acceptor molecules: A systematic Seebeck and
conductivity study. Appl. Phys. Lett. 73, 3202 (1998).

Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility
conjugated polymers. Nature 515, 384—-388 (2014).

Pernstich, K. P., Réssner, B. & Batlogg, B. Field-effect-modulated Seebeck
coefficient in organic semiconductors. Nat. Mater. 7, 321-325 (2008).

Kaiser, A. B. Electronic transport properties of conducting polymers and carbon
nanotubes. Reports Prog. Phys. 64, 1-49 (2001).

Dongmin Kang, S. & Jeffrey Snyder, G. Charge-transport model for conducting
polymers. Nat. Mater. 1, 1-7 (2016).



24.

25.

26.

27.

Urban, J. J. Organic electronics: One model to rule them all. Nat. Mater. 16,
157-159 (2016).

Arkhipov, V. I., Heremans, P., Emelianova, E. V. & Bassler, H. Effect of doping
on the density-of-states distribution and carrier hopping in disordered organic
semiconductors. Phys. Rev. B 71, 45214 (2005).

Abdalla, H., Zuo, G. & Kemerink, M. Range and energetics of charge hopping in
organic semiconductors. Phys. Rev. B 96, 241202 (2017).

Emin, D. Thermoelectric Power Due to Electronic Hopping Motion. Phys. Rev.
Lett. 35, 882—-885 (1975).

61






4 ORGANIC FIELD EFFECT TRANSISTORS

4.1 \WORKING PRINCIPLE

Embedding an organic semiconducting material into a field effect structure such as in
Figure 4.1 allows for the film to be doped electrostatically without the introduction of
dopant ions and the effects associated with it (see sections 2.2.6 and 2.2.7 and 3.3.8).
While FETs with inorganic active layers find wide commercial use, OFETs are still
mainly used for the purpose of research. One of the reasons for this is the field effect
mobility ugr which until recently lagged behind amorphous Silicon, but is catching up
with mobilities of more than 1 cm?/Vs reported consistently *. However, for many
application higher mobilities are still needed.

Front-view ide-vi
0 e Gate—___Side-view
B
4
Insulator tins
Active Material ~ Y
Source f -
Drain ; ]
Substrate
LC L WC .

Figure 4.1 Top-gate bottom contact OFET on top of a substrate. The width and length
of the channel as well as the thickness of the insulator are indicated.

A top-gate bottom-contact OFET is shown in Figure 4.1, however, other device
structures are possible. In each case, the active layer is contacted by a source and a
drain contact. The gate contact is electrically separated from the rest of the structure
by an insulating layer, which is typically PMMA or Cytop in top-gate configuration or
SiO; in bottom-gate configuration.

Since intrinsic ODSCs have only very few inherent free charge carriers, the generation
of mobile charges in OFETs occurs via accumulation of charges in the channel. The
application of a gate voltage V; between the gate contact and the source or drain
contact accumulates mobile charges in the channel between the contacts. The charge
accumulation density decreases with distance from the semiconductor/insulator
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interface as shown on the left side of Figure 4.2. Especially at large gate fields and if
morphology is favourable, most charge carriers will be confined to a quasi-two-
dimensional (quasi-2D) layer at the interface, as we have shown numerically and
experimentally in Paper Il. However, in some literature a 3D distribution is assumed.

Ve > Ven

Linear regime ISD

| |

Nina =
Ve > Vin

Saturation regime
I ]l

s
Vsp =V = Vin

3D
Ve > Ve Pinch-off point I
) ) l SD
Saturation regime

Distance from interface i ’_// i

f‘iﬂ-—-—’—"" JEON——
Vsp >V — Ven

Gate
Dielectric
1f
T

Figure 4.2 (left) Three- and two-dimensional distribution of charge carriers in the
channel of a FET. (right) Different modes of operation and corresponding transfer
characteristics.

The total induced areal charge carrier density assuming 2D charge distribution is
calculated from Gauss's law and is a function of V; and the gate capacitance Cg;

with the gate field F; = V; /t;s and t;,s the thickness of the insulating layer,
indicated in Figure 4.1. The induced carrier density n,4 is typically limited to 10'® m™
to 10 m2 due to the relatively small gate capacitance achievable with polymeric
materials and the limitation of breakthrough voltage of the same. Higher gate
capacitances and thus charge carrier concentrations can be achieved by using an
electrolyte as gate insulator °. However, in-diffusion of ions from the electrolyte to
the semiconductor can lead to electrochemical doping of the film ©. While this may be
intended in some cases, it is generally avoided by using single crystalline molecular
materials as active layer such as rubrene that prevent in-diffusion ’.

ODSCs often have some density of deep traps (deep w.r.t to the available thermal
energy to activate the hopping process) that need to be filled before any transport
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can occur. Hence, mobile carriers are only accumulated once V; is above a threshold
voltage Iy, the magnitude of which depends on the material and device structure.
Another cause for the presence of a threshold voltage are ionic effects of the
dielectric interface that offset the gate voltage.

The field effect mobility ygg can be extracted from the transfer characteristics of
source-drain current I as a function of source-drain voltage Vs, and gate voltage
V. Depending on the magnitude of Vp, two charge transport regimes are
distinguished. In the linear regime, plotted on the right side of Figure 4.2, Vg, <<

V; — Vr and the effect of the source-drain field on the gate field is small, leading to a
uniformly distributed charge carrier concentration throughout the channel
(distribution perpendicular to the interface may still vary with distance). The current
is then calculated as

) w
Iégl = ﬂFETCG Ve =Vp) Vsp  (4.2)

where W and L are the width and length of the channel, respectively. In the
saturation regime, depicted in Figure 4.2, where Vg, > V; — Vp, the channel is
partially pinched-off by the source-drain field and the current begins to saturate and
to become independent on the source-drain voltage

w
Issgt = .uFETCG Vg — VT)Z- (4.3)

At high enough Vs, the channel is pinched-off completely at the source electrode and
the current is saturated, seen in Figure 4.2. Increasing Vs, shifts the pinch-off point
closer to the drain electrode and hence, care must be taken in designing the channel
length in a FET structure to not make it too small. The corresponding field-effect
mobilities can then be extracted from the transfer characteristics,

.
plin = L olg" (4.4)
FE ™ Cc.WVp aV;
t
sat __ L 1 a]éa

= , 4.5
HEE = oWy e — Vo) oV )

where azf;'"/avg is the transconductance. The threshold voltage is determined by

plotting /I in the saturation regime as a function of V; and finding the intersection
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with the x-axis by interpolation of the linear fit. In numerical simulations the
threshold voltage is zero by definition.

4.2 CHARGE TRANSPORT IN OFETS

Early on, the concentration dependence of ODSCs at high concentrations was
successfully described with a multiple trap and release (MTR) model where transport
occurs by thermal excitation of a carrier from a trap to a mobility edge above which
states are extended, such as described in section 2.2.2. The trap distribution was
originally assumed to be double exponential and was successful in describing
temperature and gate field dependence of various oligothiophene films® and was later
shown to also reproduce transfer characteristics for P3HT and poly(thiophenes) films,
where a single exponential distribution of traps was assumed °. While the MTR model
is well suited to describe charge transport in (semi-)crystalline organic
semiconductors, where evidence for the existence of extended states has been found
1011 it does not necessarily apply to amorphous films, where transport can occur
between trap states alone *? (see also section 2.2.3).

To address this issue Vissenberg-Matters (VM) developed a model that describes
transport in OFETs with percolation theory by 3D variable range hopping in an
exponential DOS 2. Hopping is activated from the Fermi level E to a transport energy
E*. A key assumption of the VM model is that carriers are distributed, per the Fermi-
Dirac distribution, mainly at low energy sites in the strongly energy-dependent tail of
the DOS, so that the DOOS has a Fermi level

Ep < kgT,,  (4.6)

with kT, the characteristic energy of the trap distribution. In this scenario carriers
prefer to hop to higher energies (rather than larger distances) due to the
exponentially larger number of available states further up in the DOS. This limits the
validity of this model to temperatures T < T,. Above this limit the energy
dependence of the DOS is too weak and Mott-type behaviour is observed. The
derivation of the conductivity o follows percolation theory and leads to an activated
temperature behaviour and a super-linear dependence on induced carrier
concentration c,
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R
CRC) .

o(c,T) = o, 2a)°B, cT,

with g, being a prefactor to the conductivity. The increase in conductivity with
concentration is due to state-filling of the tail states and thus dependent on the
characteristic width of the DOS w.r.t. to the temperature.

4.2.1 Dimensionality of Charge Transport

The VM model explicitly assumes a 3D distribution of carriers in the film (see left side
of Figure 4.2) and thus also a distribution of conductivities along the thickness t of the
material. This changes the expression for the linear current in Equation (4.2) to

t
Isp _ Whso j dzo(c(2),T). (4.8)
0

L
If Equations (4.7) and (4.8) are explicitly solved for a 3D distribution of carriers and
the result expanded to a Taylor series, the source-drain current can be approximated
as having a power-law dependence in gate voltage 3
2To_q
IR o< (Ve =Ve)T . (4.9)
Assuming a two-dimensional (2D) charge carrier distribution in form of a step function
with a certain width (left side of Figure 4.2), the current shows a different power-law,

2D T
I&y < Ve, = V)T,  (4.10)

Brondijk et al. used the difference in exponents between the 3D and 2D case to
analyse the extent of carrier confinement in OFETs, by fitting a power-law to the gate
voltage dependence of the source-drain current measured at different temperatures,
depicted on the left side of Figure 4.3 3. On the right side of Figure 4.3, the obtained
exponent ¥ is then plotted as a function of the inverse temperature 1000/T, which
allows to determine the intersection with the y axis by extrapolationto T — oo. Per
Equation (4.9), an intersection at -1 indicates 3D transport while an intersection at
zero indicates 2D transport (Equation 4.10). In this way the charge transport in OFETs
with a single-monolayer of T6 and self-assembled monolayer FETs (SAMFETSs), which
are inherently 2D, was found to be 2D while the transport in thicker films of P3HT,
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MDMO-PPV and PTV was found to be 3D. The slope on the right side of Figures 4.3
gives the characteristic width T, of the exponential DOS.
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Figure 4.3 (left) Experimental transfer curves of a SAMFET measured as a function of
temperature, at a drain bias of Vi, =-2 V. The red lines are a power-law fit at high gate
bias, for each temperature. (right) The exponent extracted from (left) versus inverse
temperature. Adapted with permission from Brondijk et al 3,

This extended-VM method of analysing charge transport dimensionality has
subsequently been adopted to the saturation regime with T values extracted in this
way corresponding to the Urbach energy from absorbance measurements 4.

In fact, the spatial extent of the charge carrying channel in OFETs has been subject to
discussion since their inception. Experimental studies often focus on the thickness
dependence of the mobility of active layers exhibiting long range order mostly found
that it saturates after 2 to 5 monolayers (MLs) ¥>28, Other studies find that charge
transport transitions from 2D to 3D after a thickness of about 10 nm by providing an
alternative transport path through the upper layer of the film ° or that charge
transport is inherently 3D altogether 23,

4.2.2  Our Contribution

In Paper IV we have investigated the dimensionality of OFET transport by means of
kinetic Monte Carlo simulations and mobility investigation of individual 3 nm
Langemuir-Schafer (LS) MLs of (P(NDI20D-T2) (N2200) stacked to a thickness of 1 to 5
MLs. N2200 is a high-mobility n-type polymer with predominantly face-on orientation
of the individual polymer backbones and is thus particularly well suited for the
assembly into a well-defined ML. We find that the dimensionality tends to be
inherently quasi-2D at high gate voltages due to the confinement of the charge
carriers by the gate field. In the case of LS N2200 layers, this confinement is
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morphologically enhanced by the smaller inter-site distance in the direction of charge
transport compared to the direction perpendicular to it.
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Figure 4.4 (left) Intercepts of y as a function of number of monolayers for experiments
on N2200 OFETs and kinetic Monte Carlo simulations. (right) Percentage of carriers in
the first monolayer as a function of gate voltage and total number of MLs in the
device for a rectangular lattice. Adapted with permission from Paper IV.

By using the extended VM dimensionality analysis proposed by Brondijk et al. we find
that unbiased linear fitting of the temperature dependence of y does not lead to a
change of the interception from 2D (y(0) = 0) to 3D (y(0) =-1) when increasing the
number of MLs from 1 ML to 5 ML. Rather, the intercept changes between 1 and 1.5,
values that indicate sub-2D transport (left side of Figure 4.4). The transport in MC-
simulated OFETs is found to be quasi-2D, independent of the number of MLs as
indicated by the VM-type analysis and by simply looking at the position of the carriers
in the simulation on the right side of Figure 4.4. The extracted values for the width of
the DOS are, however, inconsistent with the input to the simulations. The disorder
values for the experiments were found to be unphysically low, which has previously
been observed for other materials fitted with the VM model %°.
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4.3 CONCENTRATION DEPENDENCE OF THE MOBILITY

The field-effect mobility is expressed according to the VM model (Equation (4.3)) as %

To

To\* . (mT\\ T
wpp(c,T) = % M C%—l (4.11)
g @B L

Note that the concentration dependence of the mobility increases with disorder (see
Figure 4.5). This equation was initially used to describe the temperature and
concentration dependence of PTV and pentacene '? and has later been shown to also
describe transport in P3HT and a PPV-derivative 2. Interestingly, if the same materials
are characterized at low concentrations, in a diode configuration, the mobility was
found to be orders of magnitude lower and constant in carrier concentration. The
transition between these two regimes is plotted in Figure 4.5 and has been studied
first by Tanase et al. 2%,
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Figure 4.5 Mobility as a function of hole density p in a diode and field-effect transistor
for P3HT and OC:C1o-PPV [measurements (symbols) and Equation (4.11) (lines)]. The
dashed line is a guide to the eye. Inset: The activation energy of the mobility in the
OC:C10-PPV based FET as a function of gate voltage (triangles), together with the
activation energy of 0.46 eV as obtained from the diode at low densities (square).
Adapted with permission from Tanase et al. ..
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The inset in Figure 4.5 shows the activation energy of the field-effect mobility
obtained from Equation (4.11), which extrapolates remarkably well to the activation
energy obtained with the correlated Gaussian disorder model (cGDM) at low
concentrations. Additionally, by comparing T,y values obtained from fitting the VM
model to the high concentration regime to the disorder obtained from the cGDM, it
was argued that the main reason between the discrepancy in mobility between diode
and FET configuration is the large difference in carrier concentration and that the
exponential DOS is a good approximation of the tail states of the Gaussian DOS. The
apparent concentration independence at small concentration might be related to
experimental and device-related factors playing a larger role in this regime.

Later experimental investigations of semi-crystalline polymer materials P3HT and
PQT-12 showed a reduced concentration dependence and fits with the VM model
resulted in unphysically small disorders. It was found that the results were better
described by the ME model with an exponential DOS 22, Like in the VM model, in the
ME model a smaller energetic disorder relates to a smaller concentration dependence
and was attributed to a more crystalline morphology °. The same correlation between
mobility, concentration dependence and disorder also follows from a variety of other
disorder models 23?4, In general, most models predict functionally equivalent
concentration and temperature dependencies of the field-effect mobility and
justification for choosing one model over another are usually done by correlating the
material parameters (foremost the energetic disorder) extracted from model fits to
experimental data to morphological investigations (usually crystallinity), allowing for
some unavoidable degree of freedom in determining the charge transport mechanism
or shape of DOS.
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4.4 TRANSPORT AT HIGH RELATIVE CONCENTRATIONS

Di Pietro et al. studied how different degrees of crystallinity effect the field-effect
mobility of N2200 OFETs 2°. By varying the polarity of the solvent and post-processing
treatments, the size of crystallites could be controlled. The measured concentration
dependence of the mobility increases with increasing magnitude of the mobility,
which is typically not observed in other literature. Furthermore, the increase in
mobility correlates with crystallite size, i.e. degree of crystallinity. Since the
simultaneous increase of both aspects of the mobility cannot be explained with
classical disorder-based models, such as the VM model (Equation (4.11)), the ME
model or any GDM, the authors suggested a model where Coulomb repulsion
between charge carriers in doubly occupied crystallites dominates over disorder. In
films with higher degree of crystallinity (and hence overall fewer number of
crystallites), the charge carrier concentration at high gate voltages is in the order of
the number of crystallites, which may then have a finite possibility of being occupied
by two carriers, as shown schematically in Figure 4.6. The Coulomb repulsion between
carriers in a doubly occupied domain raises their energy and allows one of them to
easier overcome the energy barrier associated with amorphous regions in-between
crystalline regions, thus improving charge transport. The inclusion of the Coulomb
interaction effectively modifies the DOS of the material and may result in a disorder
that is different from the inherent value of the material.

single double
occupancy occupancy
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Figure 4.6 Single and double occupation of crystallites surrounded by an amorphous
matrix. Adapted with permission from Di Pietro et al. %°.
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Using electrolytes with high ionic but low electronic conductivities as gate insulators
increases the gate capacitance, and thereby the induced carrier concentration by the
formation of an electric double layer at the semiconductor/insulator interface that
locally increases the gate capacitance, as schematically depicted on the left side of
Figure 4.7. In the work of Xia et al. this effect was used to investigate the mobility
dependence of rubrene single crystals gated by [(EMIM)*(TFSI)7] ’. Varying the gate
voltage led to a peak in the source-drain current, shown in the upper panel of the
right side of Figure 4 .7 and a subsequent negative transconductance above a certain
gate voltage, despite a linearly increasing hole concentration. Consequently, the
mobility exhibits a peak sitting at a concentration corresponding to approximately
0.15 holes per rubrene molecule (assuming a molecular density of 1.9x10%**
molecules/cm?). To explain their findings the authors proposed a model in which the
negatively charged immobile ions in the electrolyte trap mobile charges in the
semiconductor layer thereby reducing percolation and forcing carriers to take
alternative and less efficient paths through the 2D channel.
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Figure 4.7 (left) Scheme of the channel charge and ion distribution. (right) Electrical
characterization of a rubrene single- crystal EDLT. (a) ID-VG characteristics for three
consecutive VG sweeps, acquired at the rate of 75 mV/s, at a fixed drain bias. (b)
Gate-induced hole density versus V, determined from capacitance-voltage
measurements. (c) Mobility versus V. The inset in (b) shows the molecular structure
of the ionic liquid used as the gate dielectric. Adapted with permission from Xia et al.
7
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4.4.1 Our Contribution

In Paper VI we study a range of transport phenomena related to the interplay
between inter-carrier Coulomb interactions and multiple occupation in OFETs at high
charge carrier concentrations. Two effects, however, stand out since they offer
alternative but related explanations to the two phenomena discussed in section 4.4.

1) At a certain ratio between strength of inter-carrier Coulomb interaction and size of
the on-site barrier Eg for double occupation, we find an increase in magnitude and
concentration dependence of the mobility, where concentration dependence
decreases with smaller on-site barriers. This is similar to the results obtained by Di
Pietro et al. for different degrees of crystallinity. From an investigation of the DOS and
DOOS, we found the decreasing concentration dependence to be related to an
increase of double occupation of low-energy tail states which reduces state-filling and
its positive effect on the mobility. In fact, upon inspecting the modifications of the
DOS it becomes clear that the deviating magnitude-concentration dependence
relationship of the mobility concurs with the opening of a soft Coulomb gap, following
the form suggested by Efros and Shklovskii described in section 2.2.8. The Coulomb
gap decreases with decreasing inter-carrier Coulomb interactions (increasing inter-
site distance) as does the effect of a decreasing magnitude and concentration
dependence of the mobility.
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Figure 4.8 Increasing concentration dependence and magnitude of the mobility for

increasing on-site barrier Eg calculated with the kinetic Monte Carlo algorithm

described in section 5.

2) For larger unit cells, where inter-carrier Coulomb interactions are smaller, the
numerical simulations show a collapse of the mobility at per-site concentrations of
integer multiples of 100% followed by a subsequent recovery. This is attributed to the
formation of a Mott-Hubbard Coulomb gap. With increasing strength of Coulomb
interactions (smaller inter-site distances) or decreasing on-site barrier the mobility
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peak shifts to smaller concentrations and is furthermore characterized by a later
recovery of the mobility or absence of it. Using the lattice parameters from Xia et al.
as input parameters to the MC simulations, we were able to accurately reproduce the
mobility peak observed in their work, thus offering a different explanation to the one
given in Ref.’.

45 THERMOELECTRIC PROPERTIES OF OFETS

Contrary to doped materials, only little literature exists on thermoelectric
investigations of OFETs, with the first report on the Seebeck coefficient of Pentacene
FETs in 2007 2°.

Nonetheless, thermoelectric investigations can of course also give additional insight in
to charge transport of OFETs by providing information about the transport energetics
and thus aid identification of the transport mechanism (section 3.2). This approach
was taken by Pernstich et al. who measured the Seebeck coefficient of Rubrene single
crystal and Pentacene thin film FETs as a function of induced concentration and
temperature ?’. The Seebeck coefficient showed a logarithmic dependence on the
concentration and by fitting the temperature dependence to the expression for the
Seebeck coefficient in the ME model (Equation (3.31)) the transport constant A was
obtained (The values for Er and E* have been obtained by a different model). The
values for the constant A, which essentially describes the DOS above the ME, were
found to be within the range of those found for inorganic crystalline semiconductors,
thus indicating band-like transport characterized by scattering processes. An
investigation of the mobility was, however, absent.

As discussed in section 4.3 there was believed to be a strong correlation between
crystalline morphology, low energetic disorder and high field-effect mobility. This
correlation, however, was interrupted by the discovery of donor-acceptor co-
polymers with near amorphous morphologies and mobilities in the range of or even
higher than (semi-) crystalline polymers 28, This apparent contradiction of previous
results was subsequently resolved by Venkateshvaran et al. through a combined
thermoelectric and morphological study comparing the structurally unordered
polymers IDTBT, PSeDPPBT and DPPTTT to PBTTT, a semi-crystalline reference system
2 The Seebeck coefficient showed a logarithmic dependence on induced charge
carrier concentration, where the slope was found to be related to the density of traps,
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with less energetically disordered systems exhibiting smaller slopes. This prediction
was corroborated by measurements of the Urbach energy by thermal deflectance
measurements, which showed that the crystalline polymer PBTTT exhibits the highest
energetic disorder (40 meV), while IDTBT was found to have the smallest energetic
disorder (20 meV) despite the absence of long-range order, thus restoring the
relationship between high mobility and low energetic disorder. A combination of
molecular dynamics simulation and Raman spectroscopy related this finding to a
strong resilience of the polymer backbone to conformational deformations.

All available literature data to date on the Seebeck coefficient of OFETs, including
data in Paper V, shows a negative logarithmic dependence on charge carrier
concentrations and conductivity, as predicted by most charge transport models
discussed in chapter 3 23931, However, as discussed in section 3.3.6 many doped
organic polymers, including materials that have been investigated in OFET geometries
such as P3HT and PBTTT, exhibit a power-law relationship between Seebeck
coefficient and conductivity 3233, One report directly compares thermoelectric
properties of P3HT, PBTTT as well as of two n-type naphthalene diimides derivatives
in OFET geometry and chemically doped films 3L The authors find a logarithmic
dependence on the conductivity in both cases, contrary to previously published
results for doped P3HT and PBTTT. However, in this study PBTTT was doped using
NOPF¢ that has previously been shown to behave differently than other dopants and
to deviate from the power-law and instead create an S « In(o) relationship when
used to chemically dope P3HT 3334,

4.5.1 Our Contribution

OFETs generally exhibit charge carrier concentrations in the range of 10> m2 to 10
m2 leading to pairwise inter-carrier Coulomb energies ranging from 17 meV to 127
meV. These energies are greater than or at least in the range of the typical values for
the width of the DOS of around 30 meV to 50 meV and 25 meV thermal energy at
room temperature. Hence, these Coulomb interactions should have an influence on
the energetics and thus also on charge transport and cannot be ignored in the
description thereof. In Paper V we investigate the effect of Coulomb interactions on
charge and energy transport by MC simulations and compare our results to own
experiments and all available literature data. We find that also simulated OFETs
exhibit a logarithmic dependence of the Seebeck coefficient on induced charge carrier
density and conductivity. The slope of both dependencies increases with the initial
energetic disorder of the material, which qualitatively agrees with the findings of
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Venkateshvaran et al.>° rather than Pernstich et al.?’” . Upon removing inter-carrier

Coulomb interactions in the simulations, conductivity as well as Seebeck coefficient
are increased, contrary to the common inverse relationship between these two
parameters. By investigating the variations of the energy levels involved (Equation
(3.20)) we find that the reason for this behaviour is that broadening of the DOOS
move the Fermi level closer to the transport energy, thereby reducing the Seebeck
coefficient. At significantly higher concentrations, the effects of Coulomb interactions
also lead to modifications of the DOS, which are further described in section 2.1 and
Paper VI. The conductivity, on the other hand, is largely dominated by Coulomb
scattering between charge carriers and benefits from the absence of Coulomb
interactions. The magnitude of these effects scales with the disorder of the
unperturbed DOS leading to a spread and thus a non-universal S « In(a) relationship
for materials of different disorder seen on the left side of Figure 4.9. The spread
between different materials is also observed in literature, seen on the right side of
Figure 4.9. Note that this contrasts with the material independent power-law

1
relationship S o< ¢~ + relationship for doped polymers described in section 3.3.6. A
practical implication of this finding is that OFETs are, in general, not a suitable testbed
for thermoelectric investigations of doped ODSCs.
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Figure 4.9 (left) Seebeck coefficient as a function of conductivity calculated with the
Monte Carlo algorithm described in section 5. Black filled symbols are calculated
including full Coulomb interactions, while calculation of the red open symbols excluded
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5 KINETIC MONTE CARLO ALGORITHM

In all Papers of this thesis, with the exception of Paper Ill, we used a kinetic Monte
Carlo (MC) algorithm developed by Martijn Kemerink to simulate charge transport by
thermally activated nearest-neighbour-hopping on a regular lattice ¥3. The MC
algorithm has been positively benchmarked against a wide variety of applications,
ranging from solar cells to high concentration OFETs and has continuously proven to
be a valuable tool in the investigation of transport, energetics and position of charge
carriers in organic semiconductors®>.

While there are many input parameters to the simulations, only surprisingly few have
a significant influence on the calculation output (within reasonable limits). Within the
context of this thesis, the three basic physical principles that govern movement of the
simulated charge carriers are:

e Nearest neighbour hopping on a regular lattice
e Energetically disordered hopping sites
e Full Coulomb interaction between all charges and influence on site energies

Hence, throughout the work in this thesis the varied parameters are related to either
of these three concepts and centre around

e Attempt-to-hop frequency and electric field
e The shape and width of the disorder
e Dielectric constant, inter-site distance and charge carrier concentration

These simple assumptions are sufficient to coherently investigate charge and energy
transport. The detailed workings the used kinetic MC technique are described in the
following
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5.1 GEOMETRIES AND HOPPING MECHANISM

In principle, our kMC simulations mimic real-world experiments, with the added
benefit of being able to control every aspect of the virtual sample. However, to
facilitate reasonable computation times, the sample to be simulated must be
simplified and translated to a mathematical model. In the present case the biggest
simplification is the assumption of hopping sites being arranged on a regular lattice
depicted in Figure 5.1 with a unit cell of volume

Vye = (aNNx X ayny X Anpz )'

rather than following the disordered morphology of many ODSCs. The lattice
constants in x-, y-, and z-direction are ayyy, Ayyy and ayy;,, respectively. However,
the influence of the morphology mostly plays out in energetic disorder and
furthermore, the latter is dominating charge transport as has been extensively
discussed throughout the thesis. This makes the assumption of a regular lattice a
reasonable assumption. The size of the virtual sample (box size) is determined by the
number of unit cells in x-, y-, and z-direction. Throughout the work of this thesis it
was assured that the box size was large enough to not create size-related artefacts in
the output of the simulations. However, in view of higher calculation speed a smaller
box is desirable.

Figure 5.1 Geometric relations of a rectangular lattice model as used in e.g. Papers IV,
Vand VI.

Initially, site energies E are distributed randomly according to either a Gaussian,
exponential or constant distribution function (see Equations (2.2) and (2.3)).
Transition rates between sites i and j are calculated by the Miller Abrahams
expression (Equation (2.13)) and since hopping in the algorithm is limited to nearest
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neighbour sites, the hopping distance ﬁ-]- is constant and so is the first exponent in
Equation (2.13) and it follows

E.—E —q#F
J] i ij
X exp| — E; > E;
9y = 95 p< kg T ) i h s
1 E <E.

To induce directed hopping and thereby net charge flow, an electric field Fis applied.
When simulating FETs, a field in the z-direction is applied that populates the system
with charge carriers according to Equation (4.1). As discussed in section 2.2.3, the
term q?ijﬁ accounts for the increased hopping rate in the direction of the field. In the
case of a non-cubic lattice, such as in Figure 5.1, hopping rates are modified by the
ratio a;/ag between a, the lattice constant in the direction of the hop and g a
reference lattice constant according to

2(ag — ap)
T) (5.2)

94 X exp <—

with a the localization length (see section 2.2.1). The choice of which of the 6 possible
hops actually occurs follows a random selection process with the hopping rate used as
a weighing factor. The time T between two hopping events is calculated as

_In(9)

X9’
where ¢ is a randomly generated number in the interval ]0,1[ and the denominator is
the sum of all possible hopping rates. The movement of charges is tracked individually

and the sum of transported charge q over a distance Ar per time t gives the current
density in the direction of r as a function of time

d|1
j® == EEqArk], 5.4
k

with A the cross section of the simulation box and L the length of the box along which
the current is calculated.

T= (5.3)

The charge carriers are initially distributed at random energies and positions before
thermalizing to their thermal equilibrium positions and energies by penalty-free hops
to lower energies. This process was used in Paper | to find an empirical expression for
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the relaxation rate of the effective temperature T, (see also sections 2.3.3 and
2.3.4). Hence, the current at small times is high and “relaxes” to a constant value at
larger times. Since this thesis considers equilibrium charge transport (except Paper 1)
convergence of the current density was assured in all cases before the calculation of
transport parameters. The mobility is obtained from the drift equation

qnF
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5.2 CALCULATION OF DENSITY OF STATES AND DENSITY OF OCCUPIED STATES

As was mentioned multiple times in previous sections, the DOS is heavily influenced
by the Coulomb potential of charge carriers. This is especially true at high
concentrations, the regime which this thesis mostly deals with, and hence Coulomb
interactions must be considered in the MC algorithm. Coulomb interactions are
included between all charge carriers and their corresponding twin charges due to
periodic boundary conditions at each end of the box up to a cut-off length of 5 box
sizes. In the case of a FET structure (Papers IV, V and VI) the interaction of charges
with their image charges due to the gate contact and dielectric contrast between the
semiconductor layer and the gate dielectric are included as well.

The energy Esiite of a carrier occupying site i and Coulombically interacting with all N
other charge carriers is calculated as the sum of the site energy E; of the input
distribution, and the Coulomb energy between the two charges as

Jj#i JE2!

N N
i q i,j
Blee=Ei+ ) ———=E+ Y BY (56

site i 47T£05rRij i C ( )
where R;; is the distance between two charge carriers. To avoid the problem of
divergence in the Coulomb term on the right-hand side of Equation (5.6) when two
charges occupy the same site, E is truncated at an energy Eg, which serves the
function of an on-site barrier to be overcome for multiple occupation. Throughout
this thesis Ez was chosen to be 0.5 eV which is comparable to the binding energy of a
Frenkel exciton in organic semiconductors. In Paper VI the effect of the on-site barrier

on multiple occupation and charge transport was investigated and Ezwas varied
between 0.05 eV, 0.1 eV and 0.5 eV.

The same energy modification applies to all sites a charge carrier can move to and so
also the DOS seen by the charge i is modified by the Coulomb potentials of all other
charge carriers. For this, the final site energies Esiite,f as experienced by a carrier on

the initial site i with energy Esiite by hopping to all other sites f, is calculated in
analogy to Equation (5.6)

N
Biey =FBp+ ) B (57)

Jj#i
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All these changes are implicitly included in the calculation of the hopping rate via the
term E; — E; in Equation (5.1) and have therefore also significant influence on charge
transport. After every hopping event all Coulomb energies are updated to reflect the
new situation after the hop. Due to the interdependencies between the current
position of a charge and its next position, also the DOS experiences a thermalisation
process, which needs to be completed before an analysis can be made. The DOS is
calculated as explained in section 2.1 by creating a histogram of all final site energies
Esiite‘f averaged over all particles in the simulation and moving to all possible sites in
the simulation box. Analogously, the DOOS is the histogram of the site energies

EL,, of all N particles.

The Fermi level Er and the effective temperature T, s are obtained by fitting the
Fermi-Dirac distribution to the quotient of DOOS and DOS (see also Figure 2.22). As
described in Paper I, the value of T, can deviate significantly from the lattice
temperature at high electric fields.

In Paper VI we show that significant multiple occupation of individual sites (> 2
charges per site) can occur already at low concentrations if the on-site barrier is small
compared to the typical Coulomb energy between charges. To retain meaning of the
Fermi level a hopping site is added in energy space to the total DOS for every
occupied site of the empty DOS, with an energy according to Equations (5.6) and (5.7)
plus a shift by Ez towards higher energies. This ensures the per-site occupation
remains below-or-equal to 1 and Fermi-Dirac statistics are valid, allowing the
calculation of meaningful Fermi levels. Since we place no restrictions on the number
of charge carriers that can occupy an individual site in space, our MC algorithm does
not treat the particles as Fermions with spin but rather as classical particles. Multiple
occupation is then paramount to filling up a large number of sub-sites, which are
close in energy space compared to the other energy scales in the system.
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5.3 THERMOELECTRIC COEFFICIENTS

Seebeck coefficient is calculated according to the general expressions in Equations
(3.18) where the transport energy E* is accordingly calculated as

. [Eo(E)dE

= TdEeE) (5.8)

The electrical conductivity is calculated as the quotient of the current density j(E)
and the electric field F,

i(E
o (E) ZJ(T)' (5.9)
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6 EXPERIMENTAL TECHNIQUES

This chapter briefly describes the experimental techniques used to measure
conductivity, mobility and Seebeck coefficient. Numerical methods are described in
section 5 and analytical models are introduced in sections 2-4. All papers also include
a section on the methods and materials used.

6.1 ELECTRICAL CHARACTERISATION

Room temperature measurements of the conductivity for Paper Il were obtained in
air while in Paper Il all samples were measured in a glove box under dry nitrogen
atmosphere. Voltage V and current I are recorded during a voltage sweep in a Kelvin
(4 point) arrangement. The conductivity is then calculated from the device geometry
and the thickness of the conductive channel t-, measured with a profilometer, by

_ el
*=rwy D

where W, and L. are the width and length of the channel, respectively. Typical film
thicknesses are in the 100nm range and thus the assumption that charge transport
takes place through the whole sample is valid.

To obtain the temperature dependence of the electrical conductivity for Papers | and
lll, the previously described measurement was done in a temperature-controlled
vacuum probe station, where good thermal contact was ensured by application of a
thin layer of thermal paste. After settling of the temperature after every temperature
step, the sample was allowed to thermalize for 5-10 minutes before a measurement
was taken.

The electrical characterization of OFETs in Papers IV and V was done externally by
Simone Fabiano and follows the methods described in sections 4.1 and 4.2.
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6.2 DETERMINATION OF THE SEEBECK COEFFICIENT

Experimentally, the Seebeck coefficient S is obtained per Equation (3.3) by measuring
the thermovoltage V;; and the temperature difference AT
Vin

S = AT (6.2)
Vin can either be measured directly upon applying a temperature gradient between
two contacts and measuring the voltage that arises between them or, as was done in
Paper lll by successive current-voltage (IV) measurements, shown in Figure 6.1 and
described in the following. The latter method has the added benefit of removing

constant offsets from the measurement system.

Temperature

5
E
=1
o

Ohmic
contacts

Silicon diodes

Voltage

A
ATsample, ATcontacts

Temperature
Thermovoltage

Distance

AT

Figure 6.1 (top left) Rendering of the Seebeck measurement setup. (bottom left)
Temperature gradient along the sample and between electrical contacts. (top right)
Current-voltage characteristics obtained at different temperatures as indicated by the
colours. Thermovoltages are indicated by the red circles. (bottom right)
Thermovoltage plotted as a function of temperature difference between contacts. The
inclination corresponds to the Seebeck coefficient.

The sample is sandwiched between Peltier elements and silicon temperature sensors.
While one Peltier element heats up the other cools down according to the sign of the
current applied to them. This creates a temperature gradient along the sample and
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the temperature difference between the ohmic contacts can be calculated from the
geometric proportionalities, assuming a linear temperature gradient as shown in the
left part of Figure 6.1. After the temperature at the temperature sensors has settled
and the sample had time to fully thermalize (typically 300 seconds) an IV
measurement is taken and the whole process is repeated for different temperature
differences.

After a number of IV curves have been taken at different temperatures, seen in the
top right part of Figure 6.1, the intercepts with the voltage axis are determined from
linear fits to the IV data. These intercepts correspond to the thermovoltages and if
plotted against AT and fitted with a linear model, give the Seebeck coefficient as the
inclination of the linear fit as can be seen in the bottom right part of Figure 6.1.

To suppress the creation of a thermovoltage between the ohmic contacts and the
probe needles, both were chosen to be of the same material, namely gold. However,
no correction has been made to account for the possibility of a thermovoltage
between the sample material and the contacts, due to the relatively small Seebeck
coefficient of gold (1.5 uV/K) compared to the materials studied in this thesis (> 30
uVv/K).

Figure 6.2 shows a picture of the setup used in Paper lll for room temperature
measurements under Nitrogen atmosphere. The overall sample length was 27 mm,
with a channel length L = 0.5 mm and a channel width W, =7 mm. The small
channel length was needed due to the small conductivities for most samples
measured in Paper lll. The temperature differences between the two contacts was
varied from 0 K to around +1 K. For temperature dependent measurements a smaller
setup was used, pictured in Figure 6.3, to be able to accommodate the setup in the
vacuum probe station.
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Figure 6.2 Photograph of the setup used to measure the Seebeck coefficient in Paper
Il at room temperature under nitrogen atmosphere.

- viR D h—A (a¥ . 4
Figure 6.3 Setup used for temperature dependence measurement of the Seebeck
coefficient in the vacuum probe station.
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6.3 DETERMINATION OF THE SEEBECK COEFFICIENT OF OFETS

The Seebeck coefficient of OFETs in Paper V were measured by Simone Fabiano in the
laboratory of organic electronics at the Norrképing campus of Linképing University.
The measurements follow the same principle as described above for the thin film
samples and follows the measurement and calibration routines described by
Venkateshvaran et al. in Ref. 1. The experimental setup is schematically shown in
Figure 6.4 with a channel length L. between 20-50 um and channel width W, = 1000
pum. Due to the small length scales involved, the source and drain contacts act also as
temperature sensors. After calibration, the change in resistance of these gold
contacts indicates their temperature. All contacts have a width of 20 um. The heater
is another gold strip separated from the closest contact by a distance of 20 um, which
heats the sample via resistive heating upon application of a current. The active layer
and gate electrode do not overlap with the heating wire to avoid cross-talk between
them.

Gate
—

Dielectric

Heater L Lc

A

»
»

Temperature

»

ATI

Figure 6.4 Experimental setup to measure the Seebeck coefficient of OFETs at the
laboratory of organic electronics at the Norrképing campus.
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7 CONCLUSION

The main conclusion to be taken away from this thesis is that the broadened DOS that
arises from the disordered nature of ODSCs and is so characteristic for the field of
organic electronics, is not constant with charge carrier concentration, regardless of
doping mechanism. Further broadening and modifications of the shape of the DOS
occur with increasing concentration and, importantly, the changes to the DOS and the
increasing inter-carrier Coulomb interactions have a noticeable effect on charge and
energy transport and become dominant at high concentrations.

Due to these changes, the resulting conductivity, mobility and Seebeck coefficient
behaviour cannot be explained by “classical” models that assume an unvarying DOS
but require the inclusion of the Coulomb-induced effects, such as described in this
thesis. The intricacies of these effects are rather complex and implicit in their nature
and thus hard to infer just from experimental measurements alone, but insights can
be gained by adequate numerical methods that account for the dominant effects,
such as the kinetic Monte Carlo algorithm used in this thesis. Predictions from
numerical simulations can also be used to test analytical models and serve as a
starting point for new experimental investigations, based on interesting phenomena
observed numerically.

The work of this thesis also raises new questions and promotes further investigations
of the high-carrier density regime.

One example is the still unexplained conductivity — Seebeck coefficient behaviour of
PEDOT derivatives, which generally do not follow the empirical trend observed by
nearly all other doped polymer systems. This is especially interesting since PEDOT:PSS
and PEDOT:Tos are considered to be the most promising polymer materials for p-type
thermoelectric applications, exhibiting high power factors and good mechanical and
chemical stability.

Another topic of further investigation would be the Seebeck coefficient of organic
field-effect transistors at high charge carrier concentrations. Numerically, we expect a
sign change of the Seebeck coefficient at much lower concentrations than expected
from other models, due to the Coulomb-induced changes of the DOS. However, no
such investigations have been published to date.
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CHEMICAL ABBREVIATIONS

[(EMIM)*(TFSI)]
1-ethyl-3-methylimidazoliumbis(trifluoromethylsulfonyl)imide
DMF
dimethyl formamide
DMSO
dimethyl sulfoxide
DPPTTT
poly-[2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-
dionel-alt-thieno[3,2-b]thiophene
F,TCNQ
2,3,5,6-tetrafluoro- 7,7,8,8-tetracyanoquinodimethane
IDTBT
indacenodithiophene-co-benzothiadiazole
MDMO = OC,Cy0- PPV
poly(2-methoxy-5-(30; 70-dimethyloctyloxy)-p-phenylene vinylene)
P(NDI20D-T2)
poly{[N,N"-bis(2- octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-
5,5-(2,2"-bithiophene)}
P3HT
poly(3-hexylthiophene)
PBTTT
Poly(2,5-bis(3- n -alkyl-2yl)thieno[3,2- b Jthiophene)
PEDOT
poly(3,4-ethylenedioxythiophene)
PFe.
Hexafluorophosphate
PMMA
poly methyl-methacrylate
PPV
Polyphenylenevinylene
PQT-12
Poly[5,5 ’ -bis(3-dodecyl-2-thienyl)-2,2 * -bithiophene]
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PSS
poly(4-styrenesulfonate)
PTV
poly(2, 5-thienylene vinylene)
T6
sexithiophene
THF
tetrahydrofuran
Tos
tosylate
VOPc
vanadyl-phthalocyanine
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