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Abstract

Identifying esophageal atresi associated variants from
whole genome sequencing data

Jonas Mattisson

Knowing the underlying cause of a genetic disorder could not only further our
understanding of the disease itself, and the otherwise healthy mechanism that is
disrupted. It could potentially improve people’s lives. Even if whole genome
sequencing has drastically improved the potential of discovering the cause, a
comparison of two non-related individual’s genome will find several million sequence
variations. While most variants have no significant impact, it is enough for only one to
functionally impact a gene, for it to cause a genetic disorder. This project therefore
focused on the filtering of variants, from lists of several million possible causes, to the
stage where they could feasible be manually analysed one by one. Single-nucleotide
variants, indels and structural variants were filtered, based on a dataset where
single-nucleotide variants and indels had already been called. The more difficult
process of structural variants discovery was performed, but it required the application
of four different tools to minimise the drawback of each separate discovery technique.
The same three filtering approaches were applied to all variants; the intersecting of
datasets that should contain the same variant, the removal of variants in common
with the general population and the selection of variants impacting functionality. Each
approach proved to be an efficient filtering step, with their combination reducing each
list to only a couple of variants out of the original five million. Due to lower accuracy
and sensitivity of the structural variant analysis, this data will likely require more
extensive manual analysis. 
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Populärvetenskaplig sammanfattning 

Sekunder till timmar och dagar till år är konkreta termer vi använder för att definiera tid, ändå 

blir historia som tydligast när vi använder abstrakta termer som epoker och eror. Tidigt i det 

nya milleniet, 2003, firade vetenskapsvärlden slutförandet av det då över ett decennium långa 

arbetet att kartlägga en individs fullständiga genetiska information. Idag, nästan 15 år senare, 

kunde tio humana genom analyseras i sökandet efter en ovanlig sjukdoms genetiska orsak, i 

ett examensarbete. Endast genom att se på biologi utifrån ett före och efter Next-Generation 

Sequencing (NGS) perspektiv blir denna otroligt snabba utveckling möjlig. 

En av de absolut största fördelarna med denna nya era är den mängd data som plötsligt blivit 

tillgänglig. När genetiska sjukdomar tidigare studerades krävdes stora familjer som bar på 

åkomman, för att kunna se ett mönster över hur den faktiskt ärvdes. Utifrån detta mönster 

kunde man identifiera mindre områden i arvsmassan, gemensamma för de individerna som 

bär på sjukdomen. Dessa områden undersökte man därefter närmare med andra metoder. Nu 

kan vi i stället utnyttja NGS för att först sammanställa personens fullständiga genetiska 

information, till och med hela familjens, för att sedan hitta orsaken. Detta tillvägagångsätt 

minskar signifikant analystiden, och nästan alla de krav som tidigare fanns försvinner. Dock 

kan en enda liten orsak, som att ett a blivit ett t på en enda plats i hela arvsmassan orsaka 

sjukdomen, vilket ska ses i ett sammanhang där det humana genomet består av cirka tre 

miljarder möjliga platser. Vi söker alltså efter nålen i höstacken. 

I detta projekt undersöktes tre familjer där vissa medlemmar har fötts med missbildningen 

esofagusatresi (EA), vilket innebär att matstrupen inte har bildats kontinuerligt, och därför 

inte hänger ihop hela vägen. Då dessa familjer har en ovanligt hög förekomst av sjukdomen, 

är det troligt att den underliggande orsaken är genetisk, en orsak som är intressant att hitta. 

Projektet tog därför fram hela genomet på tio familjemedlemmar, där alla bör bära på denna 

orsakande faktor. Det är dessa tio filer projektet undersöker, med det slutgiltiga målet att 

filtrera ner flera miljoner möjliga orsaker till ett markant mindre antal för vidare analys med 

andra metoder. För att uppnå detta, kombineras logiska steg som exempelvis 

uteslutningsmetoder, med bioinformatiska verktyg som kan läsa av och manipulera den 

genetiska datan. 

Vi kan tänka på vår arvsmassa som en tjock bok, där meningar, sidor och kapitel beskriver 

hur vi fungerar. De vanligaste förändringarna är att enstaka bokstäver har bytts ut, lagts till 

eller tagits bort. Så länge denna förändring inte är i en kritisk punkt, så har den ingen markant 

påverkan. Vi förstår alltså fortfarande vad meningen ska säga. Kan dock vår kropp inte längre 

korrekt tyda sammanhanget, kan detta orsaka en genetisk sjukdom. Även större förändringar 

kan självklart också ske, vilka kan ses som större mutationer där hela delar av boken har 

ändrats. Konstigt nog gör NGS det väldigt svårt att hitta dessa förändringar. En stor del av 

projektet arbetade just med att först hitta stora förändringar, för att sedan även där filtrera 

fram de mest troliga. 
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Projektet fokuserade alltså huvudsakligen på att filtrera ner de listorna på möjliga orsaker så 

långt som möjligt. Stegen som följde därefter, vilket inkluderade att faktiskt identifiera 

faktorerna som leder till missbildning, utfördes alltså inte. Resultatet blev dock en markant 

minskning av listor, där det som kan ha varit av intresse gått från flera miljoner möjligheter 

till sammanlagt några hundra som faktiskt kan vara av värde att undersöka vidare. Väldigt 

mycket data producerades i analyserna, men det är endast antalet hittade orsaker i de olika 

listorna som presenteras i den här rapporten. 
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Abbreviations 

CNV Copy-number variation 

DNA Deoxyribonucleic acid 

EA Esophageal atresi 

NGS Next-generation sequencing 

SNV Single-nucleotide variant 

SV Structural variant 

TEF Tracheoesophageal fistula 

UPPMAX Uppsala Multidisciplinary Center for Advanced Computational Science 

WES Whole exome sequencing 

WGS Whole genome sequencing 
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1 Introduction 

Sequencing technologies have been making great leaps of progress over the last couple of 

decades, especially with the development beyond Sanger sequencing into a Next-Generation 

Sequencing (NGS) era. The combination of lower cost per base pair with a considerably 

higher throughput, which NGS brought, meant that research groups could finally feasibly 

utilize whole genome sequencing (WGS). The constant improvement since then, of base pair 

throughput and reduced costs, have now lead to a stage where a human genome potentially 

could be run for less than $1,000. This is a trend of development that will hopefully continue, 

making further research on a larger scale possible in the future (van Dijk et al. 2014). 

Genetic disorders were previously much more difficult to study. Larger families were a 

necessity in order to pinpoint the location of the cause to smaller loci, as studying longer 

genetic sequences was far too expensive and time consuming (Buermans & den Dunnen 

2014). Especially complex diseases, which have multiple genetic causes, were difficult to 

examine. While single genes could be isolated, it was nearly impossible to achieve a clear 

picture without having more genetic data available (Hofker et al. 2014). Due to these previous 

difficulties, one of the most important NGS applications became the detection and diagnosis 

of genetic disorders, and as NGS is getting better and cheaper, even more data can be used to 

study these disorders (Buermans & den Dunnen 2014). 

Variants are differences in the deoxyribonucleic acid (DNA) sequence compared to what 

might be considered a reference for said sequence (Teng 2016). All of us carry a large variety 

of different variants that has either been inherited from an ancestor’s mutation or is a mutation 

that has occurred specifically in that person. While most of the variants each of us carry have 

no significant impact, those mutations with an effect that either leads to the loss, or even gain, 

of a function are the ones of interest. These variants, with a different effect than the reference, 

are the ones that are likely to be negative and have an effect which we would then consider a 

genetic disorder (Acuna-Hidalgo et al. 2016). It is in the light of finding these disease-causing 

variants where NGS introduces a new problem; too much data. Whole exome sequencing 

(WES), when only protein coding DNA is analysed, finds approximately 20,000 variants of 

which about 100-200 might be considered damaging in some way. WGS finds about 

4,000,000 variants, which means that more, potentially impactful, variants are reported. These 

numbers do vary a lot, but each genome introduces new unknown, de novo, variants that 

might not be possible to resolve, even with the help of additional resources. A substantial list 

of possible variants will therefore be likely to occur in any study using WGS, and unless 

adequate steps of filter are taken, a lot of time might have to be wasted on going through them 

by hand (Lohmann & Klein 2014). 
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In the same way that there exists an abundance of different genetic disorders, there are also 

different reasons to why they should be studied. In the case performing genetic tests to screen 

for certain disorders, the reason often depends on whether it is a birth defect developed during 

pregnancy, or if it develops later in life. Prenatal screening is used to diagnose genetic 

disorders in fetuses, before the defect develops, which is already done today for certain 

serious disorders. This brings an opportunity for medical intervention for some specific 

disorders, possibly improving the outcome. Other times it might allow the parents to make 

informed decisions, and to make preparations depending on said decision. Genetic testing of 

the parents themselves before conception might also inform them of the risks for passing 

along certain conditions. (Temming & Macones 2016). On the other side of the spectrum, 

those disorders that develop later in life can use screening to help individuals prepare for 

certain possibilities. This might enable them to make choices that minimise risks, with the 

help of knowledge that they would otherwise lack. Especially in families where a certain 

hereditary disorder is known to be present, genetic testing can say whether the causative 

variants can be found in a certain individual, removing worry or forcing them to be more 

vigilant (Ingles & Semsarian 2014). While both prenatal and adult screening revolves around 

giving predictions, as well as the possibility to prepare, just being able to provide patients and 

their families with a clear explanation of the cause of their disorder, is a justification for 

discovering said cause. 

Another aspect to consider is what could be learnt further from studying the cause behind a 

genetic disorder. Our understanding today of several physiological and molecular processes 

have been discovered by looking deeper into their related abnormities and disorders. This can 

be done by finding the causative variant and comparing it to the normal, non-disorder related 

one. Through the differences between these, as well as other related information such as 

corresponding pathways, mechanism underlying their development or function, could be 

discovered (Blüher & Mantzoros 2009). The final, and in some cases the most important, 

reason to study genetic disorders, would be so that either gene therapy, changing the actual 

variants, or some other method that negates the negative effects, could be performed. This has 

already been done on several monogenic diseases by applying viral vectors, but even more 

potential could be achieved with future development (Williams 2014). However, before any 

of the previously described reasons can be applied, we have to actually discover the causative 

variants, which will always be essential if we want to fully understand any genetic disorder. 

1.1.1 Aim 

The goal of this project is to find, or at least minimise the possible variants that might be the 

cause of EA, based on a certain set of data. While factors have previously been found for 

syndromes containing EA, this project looks at the WGS from families where EA only 

occurred as cases without any other malformations. 
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Those born today with this birth defect can live relative normal lives, suffering only from a 

small set of possible discomforts. It might still be interesting for these individuals to be given 

an explanation of why this oesophageal malformation occurred. This information could 

potentially also be used to provide prenatal screening for families where EA is hereditary, 

preparing for complications after birth. The discovered information might ultimately be used 

in future studies to examine the mechanisms and processes that mediates the formation of the 

oesophagus, as the gene affected by the variant is instrumental in that process, considering the 

malformation that occurs in EA patients. 

2 Background 

2.1 Variants 

Even if variants can be seen as locations where a genome diverge from what is considered a 

human reference genome, there are different ways that mutation events can occur, effectively 

resulting in separate types of variants. As this project analyses a genetic disorder found across 

families, variant that cannot be inheritable are not of interest. Somatic variations, only found 

in specific cells, not in the germline, will therefore not be analysed. Cell specific mutations 

can occur every time said cell replicates, and each individual has them in abundance, but most 

studies analysing somatic variants do so in relation to cancer cells, of which they are the 

cause. Compared to hereditary variants, somatic variants not only require other steps in their 

analysis, but a completely different dataset. The variants that will be analysed can be further 

separated into two categories, single-nucleotide variants (SNV) and structural variants (SV). 

Analysing these two different types of variants will require slightly different steps, but the 

general idea of filtering them will be the same (Teng 2016). 

2.1.1 Single-nucleotide variants 

Running a site by site comparison between corresponding positions in an aligned genome 

compared to its reference allows us to find a plethora of small variations. The first type of 

variant found will be SNVs. These are variations of singular nucleic bases, one nucleotide 

base exchanged for another. The second type of variants is indels, slightly larger events of 1-

50 base pair in size. This event is either an insertion or a deletion, which means that a segment 

of DNA has either been added or removed at a specific position. Even if SNVs and indels are 

different types of variants, the fact that they can be found using the same methods, while also 

being short enough to filter using the same steps, means that they from a practical point of 

view belongs to the same category (Teng 2016). 
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SNVs positioned in the coding regions of genes are commonly analysed as their impact will 

heavily depend on their synonymous or non-synonymous nature. A non-synonymous SNV 

will result in another amino acid, which might drastically affect the transcripted protein. 

However, to predict the impact of a SNV many more aspects have to be considered, not only 

within protein coding regions, as many up- and downstream regions affect the transcription of 

the related gene. Indels have the same possibilities of impacting function, with the added risk 

of causing frameshifts, moving the codon reading frame. Depending on the position of the 

frameshift, loss of function for the gene might be a very likely outcome (Cingolani et al. 

2012). 

2.1.2 Structural variants 

Genetic mutations larger than 50 bases are categorised as SV, which can occur in multiple 

ways. Insertions and deletions can also occur in the form of SVs, with larger segments added 

or removed compared to indels. A DNA sequence can also be copied into another location, 

which is called duplication. Variants due to insertions, deletions and duplications are often 

categorised as copy-number variations (CNV) as they are unbalanced, altering the length of 

genomic segments. Mutation events can also occur where DNA sequences have simply been 

moved to another location, called translocation, or partly reversed, called transversion. These 

two events are considered balanced, as genomic lengths are kept (Guan & Sung 2016). 

While SNVs can be found in the comparison between the alignment and the reference, SVs 

are much harder to detect due to the nature of NGS. By fragmenting DNA into short reads, 

and running these reads in parallel, NGS achieves a high sequencing throughput. Even if steps 

and methods vary between different NGS technologies, the fundamental idea remains the 

same. The sequenced fragments must then be reassembled, which is done in reference to 

another genome, unless additional steps are taken to produce a de novo assembly. SVs that are 

identical to other segments of the used reference, such as duplications, translocations and 

transversions will be placed in the reference location when aligned. In the alignment, 

deletions will just be empty segments, while inserts can possibly be unmapped. Additional 

sequencing runs, using longer read technologies, as well as several other steps required to 

produce a de novo assembly will therefore be necessary to achieve a more correct assembly 

regarding SVs (Guan & Sung 2016). 

Detecting SVs in genomes mapped to a reference is however not impossible. Four different 

general techniques exist for SV detection. A multitude of tools are available for this purpose, 

each caller adopting different approaches to the techniques, as well as applying several 

techniques per tool. Clustering is the most direct technique where reads that are not mapped to 

the reference correctly, are grouped together based on their proximity to each other. Groups of 

these discordant reads are then used to find the SVs that cause their disagreement to the 

reference. Split-read alignment is the second technique that looks at continuous reads that 

could be partially mapped to different positions in the reference, and tries to either find or 

redefine the breakpoint. The third technique called contig assemblies tries to assemble paired 

reads into contigs, which with enough length detects the exact SVs. The final technique tries 
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to find CNVs by statistically analysing read-depth, which is a number for how many reads 

were mapped to each position in the reference. It is therefore called statistical testing. Each 

technique has its own advantages and drawbacks, which further means that the sensitivity and 

accuracy of each SV detection tool vary significantly. Considering that each tool has its own 

approach, combined with the fact that each approach will struggle with certain SVs, means 

that a combination of different callers can achieve higher sensitivity or accuracy compared to 

each individually. It is therefore advised to use several SV detection tools, which together 

apply all four techniques. They can either be used to strengthen each other’s accuracy, 

removing false positives only found by a single caller, or to increase sensitivity by keeping all 

possible variants. The accuracy and sensitivity of SV detection will however still be lacking 

due to genetic regions that are difficult to analyse the nature of NGS, and other sequencing 

errors (Guan & Sung 2016). 

2.2 Esophageal atresi 

Esophageal atresi (EA) denotes a collection of oesophageal malformations, in all of which the 

oesophagus is in some way discontinuous. These malformations are birth defects that prevents 

the newly born from swallowing, a condition which is lethal unless surgically rectified. Even 

if the oesophagus is fixed, patients are likely to experience inconveniences for the rest of their 

lives, such as acid reflux and swallowing difficulties (Malmfors & Stenström 2015). 

In only 8 % of all EA cases can a discontinuous oesophagus be solely used to explain the 

malformation. The rest of the cases also consist of a Tracheoesophageal Fistula (TEF), where 

the oesophagus has, as a defect, formed one or two connections to the airways. The most 

common type of EA is when a TEF has formed between the lower of the disconnected 

oesophagus ends and the airways. This type occurs in 84 % of all cases (Scott 2014). A 

simple representation of different EA types can be seen in Figure 1. 

In Sweden, EA occurs approximately once in every 4,000 newly born, according to the 

National Board of Health and Welfare (Malmfors & Stenström 2015). The majority of cases 

(60 %) of EA occurs related to a syndromic diagnose. These are disorders where the patient 

suffers from several different kinds of harmful conditions, not only a disconnected 

oesophagus (Scott 2014). This project only analyses non-syndromic cases of EA. 

2.2.1 What is known so far 

While it is today unknown how many of the EA cases that occurs due to hereditary factors, 

compared to environmental causes, certain genetic anomalies have been found that occurs 

with the malformation, as well as some proposed environmental causes that slightly correlate. 

All hereditary causes found so far seem to have been discovered in patients suffering from an 

actual syndromic diagnose, not isolated cases. It is therefore generally believed that EA that is 

hereditary, but not syndrome related, is caused by multiple different factors (Scott 2014).  
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The gene SSH have previously been found to correlate to multiple malformations, among 

them EA. One study found the deletion of a locus which included the SSH gene in an EA 

patient (Busa et al. 2016). A transcription factor affecting SSH is GLI3, in which another 

study found a variant that was predicted to being harmful. This variant was found in a single 

patient with the Pallister-Hall syndrome, and further mice model tests of GLI3 actually 

showed oesophageal malformations, among other effects (Yang et al. 2014). Other syndromes 

where EA can be found as one of the defects, and where a single-gene cause has been found 

are Anophthalmia-esophageal-genital syndrome, CHARGE syndrome and Feingold 

syndrome, where SOX2, CHD7 and MYCN are the related genes found respectively. Other 

genes where causative variants also have been found are FANCA, FANCB, FANCC, ERCC4 

and MID1 (Scott 2014). Other, more general factors, have also been associated to EA in the 

form of trisomy and multiple large deletions (Felix et al. 2007), as well as uncommon CNV. 

In the case of CNV, these were only found in a small percentage out of 375 studied patients 

(Brosens et al. 2016). None of the associated factors described, explains isolated cases of EA. 

 

Figure 1: An overview representing the different types of EA. Grey is used for the 

oesophagus, while black is used for the airways. A indicates a normal oesophagus. B 

indicates the most common version of EA, where a TEF has been formed from the second, 

lower end of the disconnected oesophagus to the airways. C indicates EA without TEF. D, 

E and F represent other types of EA with TEF. All individuals analysed in this report had 

version B.  
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2.3 The families 

Whole genome sequencing data, sampled from ten Swedish individuals, was used to perform 

the analysis in this project. The ten samples originated from three different families where the 

occurrence of EA is unusually high, to such degree that hereditary factors become likely. An 

overview of the families can be seen in Figure 2. 

Consent was given by all partaking individuals, or their legal guardian, based on provided 

information regarding both the study itself, as well as their rights as participants. While the 

genetic samples are stored in a secure biobank, no other personal information was collected 

for this study. Ethical approval was obtained from the Regional Ethical committee of Uppsala 

2010-08-11 (Dnr 2010/236) and according to the declaration of Helsinki. 

All the cases of EA within the three families were of the most common kind, where a TEF has 

been formed between the airways and the second lower part of the discontinuous oesophagus. 

EA was also the only malformation found in any patient, which suggests that these are 

isolated cases of EA and not part of a more significant syndrome. 

Niklas Dahl’s group performed whole exome sequencing on four of the patients prior to this 

project. No significant variations could be found in this data, which led the group to later on 

sequence the entire genome of 10 individuals. The abbreviation WES in Figure 2 marks the 

individuals that the whole exome analysis were performed on, compared to WGS which 

marks those studied in this project. 

 

 

Figure 2: A schema representing the families analysed in this project. Squares are male individuals, 

while circles represent females. Each individual is marked by a number, which is used as an 

identifier for that individual. Black indicates individuals born with EA. Those individuals marked 

with WGS were whole genome sequenced, while those marked with WES were whole exome 

sequenced for a previous analysis. 
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3 Materials & Methods 

3.1 The Dataset 

The analysis performed in this project was done on a dataset consisting of the WGS of 10 

individuals, of which further information can be seen in Figure 2. After WGS, this data also 

underwent several steps of processing and analysis before being used in this project. These 

steps were run with National Genomics Infrastructures’ pipeline called Piper, which follows 

the best practices according to the Broad Institute (Dahlberg 2016). This meant that the 

project could start off with already aligned genomes and called SNVs. Short descriptions 

detailing the datasets pre-processing steps can be seen below in sections 3.1.1 and 3.1.2. 

3.1.1 Sequencing 

All the samples were sequenced by SNP&SEQ Technology Platform in Uppsala, using 

Illumina HiSeqX technology. The sequencing was done with paired-ends and to 30X 

coverage. 

3.1.2 Mapping & variant calling 

The entirety of the alignment, as well as, SNV and indel calling, was done with the Piper 

pipeline (Dahlberg 2016). The reference genome used in both steps was the human reference 

genome hg19, version g1k_v37 in UPPMAX. Another thing to note is that the SNV 

annotation tool snpEff was applied in the pipeline, which led to the corresponding tool snpSift 

being used in the analysis. Further information relating to the pipeline, mainly the steps taken, 

as well as tools and versions used, can be found in Supplement 1. Supplement 1 is the content 

of the version report, which came attached to the delivered data.  

3.1.3 File formats 

Three different file formats were used in the analysis steps of this project. The data produced 

from the mapping to the reference came in the form of BAM-files. The BAM format is the 

binary version of the Sequence Alignment/Map format (SAM), which is used to store 

sequence reads based on the corresponding mapped position in the reference. This element of 

presenting positions relative to the reference genome, enables other procedures, such as 

variant calling, to be done on BAM and SAM files (Zhang 2016). The SNV and indel variants 

found from the variant calling are given in the variant call format (VCF), which was 

specifically developed for said purpose. The VCF format can handle a large variety of 

annotations and information per variant, something that the tools can then utilize to better 

analyse and visualise genetic differences (Danecek et al. 2011). The last format used was 

BED, which is simply a text file where each row is a single feature, and each tab-delimited 

column shows information for said feature (Zhang 2016). This is a very flexible format that 

was used to store SV data applied in filtering steps. 

All the resulting data from this project were in the form of VCF-files, where each file 

contained a set of variants found by filtering according to certain sets of criteria. 
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3.2 UPPMAX 

Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) is the 

resource available at Uppsala University to provide the data storage and computational power 

required to run projects and problems of a certain size and complexity. It is hosted by the 

Department of information technology, and is an absolute necessity for this type of 

bioinformatics.  

All the data storage, from the alignments to the resulting variant lists, was kept at the Milou 

cluster of UPPMAX. It was also at this cluster that every step of the analysis was run. 

Through the cluster it was possible to access all except one of the tools that was used in this 

project. Accessing UPPMAX itself, to analyse the data, could be done in either one of two 

ways; interactively for smaller tests by writing shell commands through a terminal, or by 

sending a shell script through a queuing system. The latter was done for larger and longer 

runs. 

3.3 SweGen 

2017 a dataset containing all of the variants found in 1,000 Swedish genomes, accompanied 

by their frequencies in said population, was published. This was done due to the fact that 

different populations had shown to contain a significant variety of variants, especially in 

studies where a large quantity of population specific de novo variants were found. One of the 

fundamental steps of finding mutations that causes genetic disorders are to eliminate those 

variants that can also be found in the healthy part of the populations. Therefore, if we lack 

necessary knowledge regarding the variant setup of the studied population, it will weaken the 

predictive power of the analysis (Ameur et al. 2017). 

With the purpose of creating this Swedish population specific dataset, WGS were performed 

on 1,000 individuals, mainly from the Swedish Registry (Tvillingregistret), but also from the 

Northern Sweden Population Health Study. These individuals were handpicked primarily 

based on principle component analysis of SNP data in order to fully represent the Swedish 

population, north to south. 506 males and 494 females were sequenced, with the average age 

of 65.2 years. Due to the age, as well as other criterias, variants related to severe genetic 

disorders should be highly unlikely or possibly only occurring at a very small frequency 

(Ameur et al. 2017). 

The pipeline created to find the SVs in the SweGen dataset, or to call and compare SVs in 

other datasets to SweGen, was also tested in this project (Viklund 2017). The SweGen dataset 

was applied to filtering steps in the form of a VCF-file for SNVs, and as a BED file for SVs. 

The same reference was used to create both the SweGen dataset and the alignments in this 

project. 
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3.4 Tools 

A set of multiple tools were necessary in order to perform the different steps of the data 

analysis. Below follows a very brief description of each prominent tool, categorised on its 

functional usage in the project.  

3.4.1 VCF-handling 

BCFtools is a continuation of VCFtools which was originally developed for manipulating 

VCF-files (Danecek et al. 2011). The same functionality available in VCFtools is retained in 

BCFtools, with the added benefit of being able to handle the more efficient binary variant call 

format, BCF. BCFtools was primarily used to compare, manipulate and to visualise 

compressed VCF-files. 

HTSlib is a library developed for accessing a selection of common bioinformatic file formats. 

It was therefore used in the project for the bgzip and tabix functionality, which enables the 

compression and indexing of file formats like VCF. 

vt is a tool that can manipulate VCF-files in several ways, the main use being the 

normalization of variants. It is common for variant callers to inconsistently represent 

discovered variants, making comparison unnecessarily difficult. vt can rectify this by 

normalizing all variants uniformly, re-evaluating them based on certain rules (Tan et al. 

2015). vt was used for normalization, as well as its function to deduplicate variant entries i.e. 

separating rows containing several different variants into one row per variant. Deduplication 

was a required step to ensure that BCFtools could correctly compare duplicated variants, 

which was done using vts decompose functionality. 

3.4.2 SNV filtering specific tools 

snpSift is a tool that manipulates VCF-files based on the annotation previously created by 

snpEff (Ruden et al. 2012). The annotation takes into account several factors, but mainly the 

impact that the differences between variant and reference will cause at each position 

(Cingolani et al. 2012). While all large set of functions are available to snpSift, it was used in 

this project to filter variants based on their snpEff predicted impact, the frequency in the 

SweGen dataset, and also to extract certain information from the VCF fields. 

3.4.3 SV calling tools 

Manta is a SV caller that pride itself on discovering SVs and indels, both accurately and 

quickly. It works in two phases, first by creating a graph over all related breakpoints in the 

genome, which are then analysed in order to find SVs. Manta therefore discovers and also 

scores SVs based on supporting paired and split-read evidence (Chen et al. 2016). 

Delly requires paired-end reads to call SVs, which it uses to discover all discordantly mapped 

read-pairs that are abnormal. It then clusters paired-ends that show the same pattern to use as 

breakpoints, to screen for split-read support. It is this combination of breakpoints and split-

reads that are further analysed to find SVs (Rausch et al. 2012).   
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CNVnator takes a new approach to already established read depth techniques, enabling it to 

run on much larger datasets. The focus for this tool lies on CNVs, as the name implies 

(Abyzov et al. 2011). 

TIDDIT is a SV caller that can detect any SV, but special focus is put on larger variants of 

sizes above 1,000 base pairs. This is only beaten by SV callers that employ the contig 

assembly technique, which remains far more time consuming to run. TIDDIT starts its search 

by computing coverage and insert distribution, which are used to form genomic coordinates. 

Based on these genomic coordinates, discordant reads and split-reads are analysed to find 

SVs. Neighbouring areas are searched for further evidence (Eisfeldt et al. 2017). 

3.4.4 SV filtering specific tools 

BEDTools is a tool made with the intention of manipulating BED-files. Even if the tool itself 

has a lot of possible uses, only its intersect function was applied in this project. BEDTools’ 

intersect keeps only certain genomic features depending on the pattern of features in other 

files, effectively filtering according to what options are currently chosen. The complementary 

intersect option, used in all runs for this project, removed any features in the first file that in 

any way overlapped with features in the second file. Another advantage of working with 

BEDTools is that it can also handle other file formats, such as VCF (Quinlan 2014). 

VEP is an annotation tool that can annotate both SNVs and SVs. Developed by Ensembl, it 

combines the common route of looking at each variant’s position and change, with further 

steps of going through a variety of available reference data. This additional data is partly 

specific for the reference genome used, and might have to be downloaded separately 

(McLaren et al. 2016). VEP was used to annotate all SVs, except the lists with unfiltered 

variants discovered by TIDDIT, on which it could not be successfully run. 

3.4.5 Programming language 

Python was used when no other easy solutions were available, and scripts had to be written to 

solve it. The choice of programming language was made due to personal preferences instead 

of other potential advantages, such as computational speed. Those kinds of aspects were not 

necessary to consider in this case as all computationally heavy steps are performed by 

published tools. 

3.5 SNV Filtering 

The filtering of SNVs used the VCF-files produced by the variant calling steps in the Piper 

pipeline. The goal of this analysis was to filter the lists down to a size range manageable by 

future manual steps, while still keeping as many potential causes as possible.  
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The first step was to prepare the VCF-files, as well as the SweGen data, to be correctly 

compared in later stages of the filtration. They were therefore deduplicated and then 

normalized using vt. For the deduplication, vt decompose used the smart decomposition 

option (-s) and output option (-). vt normalize was used for the normalization with the quiet (-

q) option to avoid unnecessary messages, and the same reference (-r) was used as for the 

alignments. With one core on UPPMAX, using vt with those options, it took 1 minute and 13 

seconds for a single VCF-file to be run, compared to 13 minutes and 33 seconds for the 

SweGen file. 

The second step was to only keep those variants that could be found in every member of each 

family necessary to explain the inheritance pattern of the disorders. The choice of taking this 

as the second step was twofold. First it decreased the number of files to handle in every step 

from ten to three, making the rest of the project a bit easier and clearer. Secondly, it was the 

filtering step that would bring the most certainty. If there is a hereditary cause for the disorder 

in a family, it must be present in all these individuals. This comparison between family 

members was done using the intersect (isec) function of BCFtools, which simply finds 

identical variants in different files. For each family the number of files that the variant had to 

be present in (-n) was equal to the number of family members. Only one out file was required 

since variants of interest should be found in all samples, which meant that the index of the out 

file option (-w) could be set to 1 for that specific file. The output format option (-O) was set to 

compressed VCF (z). Lastly an output directory was marked (-p). The results from this step 

can be seen in Table 1. The following steps, after joining all the family members together, 

was done in a single shell script, as previous output was unaffected by varying variables. With 

six cores, this script took about 45 minutes to run. Fewer cores might throw a memory 

exceeded error. 

The next filtering step removed those variants that were deemed too common in Swedish 

populations, more specifically the SweGen dataset. While this can be used to, more or less, 

remove all those variants that are not specific for the families, it’s important to keep in mind 

that variants causing the disorder can exist in healthy individuals without leading to 

malformations. The script for SNV filtering was therefore modified to easily allow different 

values for a cut off frequency, up to which a variant can still be allowed to remain within the 

dataset. Based on the decided frequency, snpSift was used to filter the SweGen dataset, 

keeping variants with a frequency (AF) above that threshold. This step took about 25 minutes 

with six cores. All of the three families’ lists were thereafter run against this new, filtered, 

SweGen dataset using the complementary BCFtools intersect option (-C). This 

complementary option removed any variants also found in the second file, which are all now 

above the decided frequency. This run also used the file index (-w), output file format (-O) 

and output directory (-p) options. Running each family took approximately ten minutes with 

six cores. The resulting filtering effects can be seen in Table 2. 
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The third filtering step tried to only keep variants that would cause a significant impact, which 

were decided by annotated predictions done by the snpEff tool in the Piper pipeline. While 

this step removed a lot of probably unnecessary variants, including most variants located in 

intergenic regions, the annotated impact here was still just a statistical prediction and not 

decisively true. To pick specifically those variants annotated with either high or moderate 

impact, which are those that might actually have an effect, snpSift targeted all impact 

annotations (ANN[*].impact) with the capitalized version of these words. Doing this took less 

than five minutes with six cores, per family. These can be seen in Table 3. 

Under the assumption that one or more specific variants cause this birth defect, it is likely that 

they are shared amongst the families. While it is also a possibility that each family carries 

their own mutation that leads to EA, the scenario with shared variants is still worth exploring. 

BCFtools intersect was therefore used, similarly to the second step of the SNV filtering, to 

create four different family combinations, Family 1 & 2, Family 1 & 4, Family 2 & 4, as well 

as all families combined. The resulting variants found in each set of families can be seen in 

Table 4.  

Finally, if the disorder is caused by the loss of function of a certain gene, it might not be 

necessary for all families to share exactly the same variant causing said loss of function. By 

first extracting both the gene names and their corresponding impact factor with snpSift from 

all families, as well as the family combinations, a python script was written that kept the 

impactful gene names. Another python script was thereafter written that intersected two of the 

gene name lists, as well as one script that removed variants from one script found in the other. 

These scripts could then be used to create impactful gene lists corresponding to different 

family combinations, which could later in turn be filtered toward the lists for the actual family 

combination. The resulting lists from these runs only contained genes that had not previously 

been suggested for said family combination, but where the genes function is significantly 

impacted in all members. All these scripts ran in only a couple of seconds when using six 

cores. Numbers indicated how many genes were found per family combination can be seen in 

Table 5.  

3.6 SV Calling 

All of the four SV calling tools described in section 3.4.3, were used to detect SVs. The 

combination of specifically these four tools was used in the disorder related variant calling 

pipeline developed by a group at Karolinska Institutet (Stranneheim et al. 2014), where they 

were chosen based on different benchmarks. The previously described list of SV-calling 

techniques had four different types: clustering, split-read alignment, contig assembly and 

statistic testing. This combination of tools uses different approaches to three types of 

techniques, lacking the contig assembly approach. However, due to the fact that methods 

applying contig assembly are extremely slow and that TIDDIT also has the ability to handle 

very large SVs, which otherwise usually is the advantage of those methods, this combination 

of tools should still work well. Each tool was run separately instead of applying the pipeline, 
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to avoid the difficulties of setting up the pipeline in the UPPMAX environment. All of these 

runs used the BAM-files created through the Piper mapping. A summary of the output from 

the callers can be seen in Table 6. 

Running Manta first required the creation of a configuration file per sample. This was done 

using the configManta.py file, with an option for the input BAM-file (--bam), reference file (-

-referenceFasta), and the working directory path (--runDir). The workflow itself was 

thereafter run, using the appropriately named file runworkflow.py. This was run quietly to 

avoid unnecessary output (--quite), with a specified number of threads (-j). As it was on 

UPPMAX, it was marked as local for that running perimeter (-m). This resulted in three 

different output, one for diploid SVs, another for small indel candidates and finally one for 

SV candidates. Both candidate files contained variants with low scores, which can easily be 

disregarded if they remain after future steps. Manta was run with twelve cores, each sample 

requiring approximately 45 minutes to run. 

The Delly caller only required a single line to run per sample, where the germline option (-g) 

was used, as we were not studying somatic variants. Other options included the output file (-

o), a list of regions to exclude (-x), as well as the option not to look for smaller SVs (-n). 

While the overall sensitivity would have increased if the last two options had not been used, 

without them running each sample would have taken several days, due to the fact that 

threading of the run in UPPMAX did not seem to work properly. With the limiting options 

applied, running the samples took approximately three hours each. 

To run CNVnator, several steps were required per sample, the first of which were to create a 

root file based on the samples input file (-tree). Secondly, a histogram (-his) had to be created, 

which required both the value for a bin size and the reference (-d), separated by chromosome. 

A very simple python script was created to split the reference genome, and 100 was chosen as 

bin size, as this was the authors recommendation for 30X coverage files (Abyzov et al. 2011). 

Thereafter statistics had to be calculated (-stat), then read-depth signal petitioned (-partition) 

which was GC-content corrected (-ngc). Finally, the root file (-root), which had been used in 

all steps so far, were called (-call) to detect variants. This step was also GC-content corrected 

and resulted in variants being printed one by one. After all these steps, the file 

cnvnator2VCF.pl had to be used to get the variants in the VCF format. Running all these steps 

took approximately an hour per sample, with four cores. 

As TIDDIT was not yet available at UPPMAX it had to be installed before being used. The 

git clone command, combined with the running of the file INSTALL.sh, was enough to set it 

up. It was thereafter run using python for SV calling (--sv), for which it required the input file 

(--bam), output directory (-o) and the reference (--ref). With eight cores, each sample took a 

bit more than an hour to run. 

The so-called WGSstructvar pipeline, developed to assist the finding of SVs and then their 

comparison to the SVs found in the SweGen dataset, was also tested in this project. It was 
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performed by exactly, step by step, following their manual, applying the SweGen SVs file to 

the mask cohorts originally called by Manta (Viklund 2017).  

3.7 SV Filtering 

The general approach behind the filtering of SVs is very similar to the one employed for 

SNVs, which means that this part of the method often will refer to previous explanations in 

the SNV filtering section (3.5). All steps below were written, and run, in a single shell script. 

The running time for this script was between eight minutes with two cores, and six hours with 

eight cores. This significant variety in execution time depended mostly on the frequency 

variable chosen for the SweGen dataset, as strict filtering left few variants for VEP to 

annotate, while no filtering meant that VEP had to annotate all discovered variants.  

Similarly, to the filtering of SNVs, an initial step of running vt on all VCF-files, both with 

decompose and normalize, was necessary. The normalization step could however not be 

performed, and therefore had to be skipped on those variants called by CNVnator and 

TIDDIT, as unexplained errors were thrown.  

In the first step of filtering, the family members were intersected using BCFtools. While this 

was executed in the same manner as for SNVs, the variants found by each tool remained 

separated, effectively resulting in six lists per family. The combining of family members, as 

well as families, were also performed on the SV files produced by the SweGen related 

pipeline. 

To frequency filter the BED-file used to store the SweGen SV data, a python script was 

written. BEDTools complementary intersect (-v) function was used to filter the variants in 

every family- & tool-specific VCF-file. An option was used to make sure headers were kept (-

header), and the first input file (-a) was the VCF-file, while the second input file (-b) was the 

BED-file. 

VEP was thereafter used to annotate the still remaining variants in each file. Compared to the 

other tools where the newest version available on UPPMAX was used, VEP version 87 was 

the latest release that I could get to work. For this run a cache (--cache) was used for 

reference, which had to be downloaded specifically and uncompressed in a folder (--

dir_cache). The merged file was used for this (--merged), where other options were quiet run 

(-q), vcf for the format (--format) and output (--vcf), a specified buffer size of 1,000 not to 

exceed memory (--buffer_size), both sift (--sift) and polyphen (--polyphen) usage set to b, and 

offline run (--offline). Annotation option also included canonical, biotype, ccds, regulatory, 

total_length, numbers and domains, which were set like the other options. For the run without 

frequency filtering, VEP could for some unknown reason not handle TIDDIT, making the 

process kill itself. It was therefore not used for that specific run, resulting in no impact 

filtering for TIDDIT without frequency filtering. 
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To at least try to remove some of the false positives reported by each separate tool, BCFtools 

intersect function was used to keep only those variants reported by a minimum of two 

different tools. As Manta had produced three files that partially contained the same 

information, these were first turned into one file using the BCFtools merge function. The 

options used for this was to first allow overlapping regions (--force-samples), then setting the 

options to how duplications should be handled (-m) to none. All other settings were the same 

as for intersect. Next the intersect was applied to the three tools, as well as the merged file. 

The number of intersection were set to two or more (-n +2), and no index was specified, 

keeping all files. BCFtools merge function was thereafter applied again to join the output files 

from the intersect, using the same options, resulting in a file with slightly more accurate 

variants.  

Different family combinations were also created with BCFtools intersect, the same way that it 

was done in the SNV filtering. This step was however done on all the separate tool files, as 

well as the tool intersection file. 

The last step of filtering was the impact filtering based on the VEP annotation. This was the 

final action for the SVs due to the large quantity of files already produced, which was further 

increased by additional files containing the impact filtering. Instead of using VEPs own 

filtering tool, which could not handle the TIDDIT files, the shell command grep was used. 

Extended grep functionality (-E) was applied, which allowed easy search for both the header 

and impact annotation simultaneously, keeping the VCF format intact. In Table 7 the result 

from a collection of SV filtering steps can be seen. A quick side by side comparison the 

quantity of Manta SVs, with or without the pipeline, is showed in Table 8.  

4 Results 

In this section of the report, numbers indicating the quantity of features remaining in the 

filtered lists are shown. Each number can therefore be thought of as the representation of one 

list, which remains accessible through UPPMAX. No actual variants or genes, only their 

quantity, are presented in this section, due to the fact that this report does not focus on the 

manual analysis of variants. 

4.1 Single-nucleotide variants 

The results from different stages of the filtering process are displayed in Tables 1-5. The 

complete table, showing all numbers simultaneously, can be found in Supplement 2. The first 

result, which can be seen in Table 1, shows the effect of working with complete families 

instead of separate individuals.   
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Family 1 Family 2 Family 4 

45595 45596 45746 46607 46608 46396 45428 45430 45524 45561 

4974238 4900293 4913483 4776653 4937813 4973004 4974715 4892805 5016778 4924784 

3886181 2515525 2492099 

 

The second filtration step, utilizing the SweGen dataset to remove common variants, is 

demonstrated in Table 2. Here the difference between varying the frequency threshold, has 

been tested for 1 %, 5 % and 10 %. Strict filtering is also included where no occurrence in the 

SweGen dataset was allowed. 

 

  Family 1 Family 2 Family 4 % Remaining 

Before Filtering 3886181 2515525 2492099 - 

10% Filtering 266462 38842 26646 3,16 

5% Filtering 143980 21886 16208 1,74 

1% Filtering 57650 12486 10429 0,80 

Strict Filtering 26919 10163 9889 0,50 

 

The effect of the functional impact filtering step can be seen in Table 3. The same frequency 

steps used for Table 2 are also demonstrated here, as it continues to provide insight into the 

effect of the frequency filtering as well as impact filtering under these conditions 

 

 

 

 

Table 1: This table represent the number of variants found in the different samples, as well as the number 

remaining when the family members were joined. The second row indicates sample identifiers in bold. The 

family above shows which family said sample belongs to. The numbers below show how many variants 

were found for that sample, where the last row indicates how many variants each family shared, out of 

those variants found per sample. 

Table 2: This table represents the filtering effect from using the SweGen dataset to frequency 

filter each family, to an allowed percentage in the general population. Each row represents a 

frequency level from before any filtering was applied, to strict filtering where any variant also 

found in the SweGen dataset was removed. The last column shows the percentage of remaining 

variants for that frequency filtering, compared to the Before Filtering row. 
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  Strict Filtering 1% Filtering 5% Filtering 10% Filtering % Remaining 

Family 1 26919 57650 143980 266462 - 

Family 1, Impactful 103 269 649 1113 0,43 

Family 2 10163 12486 21886 38842 - 

Family 2, Impactful 6 30 75 128 0,24 

Family 4 9889 10429 16208 26646 - 

Family 4, Impactful 4 5 36 73 0,15 

 

The number of variants that remain when combinations of families were formed can be seen 

in Table 4. Both the effects of the frequency filtering and the functional impact filtering were 

displayed to give a more complete picture. Another thing to note is that the variants in the list 

for a combination of families, Family 1 & 2 for example, were unique for that family 

combination. If this was not the case, the variants found in all families, would also be found in 

every other family combination. These lists were created with the purpose of avoiding 

unnecessary cluttering of data, making the cells content clearer with the unique aspect. This is 

the only dataset in this project with which the unique approach was applied. 

 

 

 

Family Combination Unique Variants 
Strict 

Filtering 
1% 

Filtering 
5% 

Filtering 
10% 

Filtering 

Family 1 & 2 1278 1289 1443 3037 

Family 1 & 4 1012 1021 1217 1909 

Family 2 & 4 409 409 413 597 

All Families 7459 7459 7459 7463 

Family 1 & 2, Impactful 2 2 2 8 

Family 1 & 4, Impactful 0 0 1 2 

Family 2 & 4, Impactful 0 0 0 0 

All Families, Impactful 0 0 0 0 

 

Table 3: This table represent the filtering effect when filtering is based on functional impact. Each 

family has a row, as well as another separate row for after having been filtered. Different population 

filtering frequencies are shown in each column. Strict indicate that no variants found in the SweGen 

dataset was allowed to remain after filtering. The last column indicates the effect of the filtering per 

family, in the form of the average percentage remaining between the two rows. 

Table 4: This table shows the results from combining the families into different combinations. 

It also accounts for both impact filtering, as well as frequency filtering, like in table 2 & 3. 

Important to note is that the number of variants for each family combination is unique. This 

means that, those variants found in all families have been removed from the other 

combinations to make the remaining result in those groups clearer. 
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The number of genes with impactful variants, where the variants themselves are not shared in 

different family combinations, but where a certain set of families still have an impactful 

variant for said gene, are shown in Table 5. These lists have not been made unique, like the 

ones in Table 4, but it was not deemed necessary considering the low quantity of features. 

 

  Strict Filtering 1% Filtering 5% Filtering 10% Filtering 

Family 1 & 2, Impactful Genes 0 0 3 5 

Family 1 & 4, Impactful Genes 1 1 1 5 

Family 2 & 4, Impactful Genes 0 0 1 1 

All Families, Impactful Genes 0 0 1 1 

4.2 Structural variants 

Due to the number of files produced during the SV calling and filtering stages of this analysis, 

the SV result section is more condensed than that of SNVs. Complete tables, displaying all 

the various feature quantities, can be found in Supplement 3-7. The first result displayed in 

Table 6 lists the number of variants found per tool for each sample. 

 

 

 

 

 

 

  Family 1 Family 2 Family 4 

  45595 45596 45746 46396 46607 46608 45428 45430 45524 45561 

Manta: Small 
Indels 108070 103960 107927 109530 92563 104404 108730 105273 113179 107766 

Manta: 
Candidate SV 126642 121621 126302 128474 106082 122182 126985 122288 133854 126454 

Manta: 
Diploid SV 11063 10456 10950 11225 8026 10469 10775 10278 12291 11144 

Delly 7357 6814 6876 6472 5212 6830 6823 6817 7005 6450 

CNVnator 5143 4677 2098 4647 3754 5044 4575 4536 5130 4609 

Tiddit 76732 67959 68483 71897 46739 68384 66664 63307 77920 66041 

Table 5: This table shows how many genes that can be found in the analysis of impacted genes 

found in family combinations, without having shared variants for said genes in those families. 

These are not unique like in table 4, but still shows the frequency filtering. 

Table 6: This table represents how many variants were found per tool for each sample. The 

second row indicates sample identifiers in bold. The family above it represents which family 

said sample belongs to. Each row shows a single output file. 
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The filtering effect from allowing different frequencies in the SweGen dataset, predicting the 

functional impact by creating different family combinations, can be seen in Table 7. This was 

shown on the CNVnator dataset, which was chosen as it resulted in the clearest progression of 

filtering. To get the clearer picture, as well as to avoid potential tool bias, the other tools can 

be seen in the supplements. 

 

CNVnator 
Strict 

Filtering 
1% 

Filtering 
5% 

Filtering 
10% 

Filtering 
Non-

filtered 

Family 1 94 175 262 339 1170 

Family 2 49 79 103 114 280 

Family 4 53 83 114 131 398 

Family 1 & 2 47 74 94 103 224 

Family 1 & 4 49 76 95 109 259 

Family 2 & 4 43 68 87 97 196 

All Families 43 67 85 94 182 

Family 1 Moderate Impact 5 10 18 19 37 

Family 2 Moderate Impact 2 6 9 9 14 

Family 4 Moderate Impact 5 9 12 12 20 

Family 1 & 2 Moderate Impact 2 5 7 7 12 

Family 1 & 4 Moderate Impact 3 6 7 7 14 

Family 2 & 4 Moderate Impact 2 6 9 9 13 

All Families Moderate Impact 2 5 7 7 12 

Family 1 High Impact 11 23 35 44 148 

Family 2 High Impact 6 12 18 20 53 

Family 4 High Impact 8 13 19 20 65 

Family 1 & 2 High Impact 5 9 13 14 40 

Family 1 & 4 High Impact 7 11 13 14 44 

Family 2 & 4 High Impact 6 11 15 16 36 

All Families High Impact 5 9 12 13 32 

 

The same type of dataset, but where the tools have been intersected to increase accuracy, can 

be seen in Table 8. Table 7 and Table 8 tries to show as much relevant filtering data as 

possible, while keeping information only of interest for someone planning to work further 

with this dataset, as supplements. 

 

Table 7: This table combines the result from all types of filtering the CNVnator dataset. It is 

therefore separated according to frequency filtering, from strict where no overlap with 

SweGen data is allowed, to the non-filtered column. Rows indicate what family combinations 

are used, as well as if they have been impact filtered. Impact is here divided into two levels, 

as each variant could be either moderate (potentially impactful) or high (likely impactful). 
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Merged Tools 
Strict 

Filtering 
1% 

Filtering 
5% 

Filtering 
10% 

Filtering 
Non-

filtered 

Family 1 0 2 6 7 370 

Family 2 0 1 2 2 220 

Family 4 0 1 3 3 208 

Family 1 & 2 0 1 2 2 154 

Family 1 & 4 0 1 2 2 152 

Family 2 & 4 0 1 2 2 139 

All Families 0 1 2 2 118 

Family 1 Moderate Impact 0 0 0 0 9 

Family 2 Moderate Impact 0 0 0 0 6 

Family 4 Moderate Impact 0 0 0 0 6 

Family 1 & 2 Moderate Impact 0 0 0 0 1 

Family 1 & 4 Moderate Impact 0 0 0 0 1 

Family 2 & 4 Moderate Impact 0 0 0 0 2 

All Families Moderate Impact 0 0 0 0 0 

Family 1 High Impact 0 0 0 0 16 

Family 2 High Impact 0 0 0 0 12 

Family 4 High Impact 0 0 0 0 11 

Family 1 & 2 High Impact 0 0 0 0 6 

Family 1 & 4 High Impact 0 0 0 0 7 

Family 2 & 4 High Impact 0 0 0 0 8 

All Families High Impact 0 0 0 0 5 

 

The difference between using Manta as a stand-alone tool, compared to the output produced 

by the WGSstructvar pipeline, can be seen in table 9. The stand-alone approach filtered 

discovered variants through the steps described in this report, while the WGSstructvar 

pipeline both called SVs and filtered them towards the SweGen SV dataset directly. 

 

 

 

 

 

 

Table 8: The same type of table as Table 7, which is used to show the effect of all the 

filtering. This is done on the merged dataset, where an intersection between the tools 

was made. 
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5 Discussion 

The first thing to note in Table 1 is that each sample has consistently about five million 

variants, which were discovered through the Piper pipeline. For those numbers that should be 

consistent to actually be so, is a good first sign. The fact that Family 1 contains a significantly 

higher quantity of variants is due to the reality that fewer and closer family members were 

being used than for the other two families (Figure 2). In the case when having only one parent 

and one child, many of the rare germline mutations, specific for the mother in this case, will 

still remain in the son. This can be seen further in Table 2, where the difference factor 

between Family 1 and the other two families, increases the more of the SweGen dataset is 

used, which is most likely due to the fact that Family 1 has a larger fraction of de novo 

mutations remaining. The impact filtering in Table 3, also supports this, partially due to the 

fact that more variants were kept from the frequency filtering step, but those kept were also 

more likely to be impactful. This is indicated by the much higher fractions of variants in the 

strict frequency with functional impact cells of the table in Family 1. This shows that those 

absent in the SweGen dataset are also especially high of impact, a pattern that would match 

that of entirely new mutations. All of this could mean that larger families, with more distant 

family members, drastically increase the efficiency of the filtering, not only for the initial step 

where shared variants are found. 

 

 

 

  WGSstructvar Pipeline Manta: DiploidSV 

Family 1 17 240 

Family 2 11 80 

Family 4 8 78 

Family 1 & 2 9 46 

Family 1 & 4 7 48 

Family 2 & 4 5 36 

All Families 5 27 

Impactful 0 0 

Table 9: This table compares the difference between the pipelined 

Manta calling in WGSstructvar, and the one from just running the 

tool. The Manta diploid SV dataset was chosen as it was supposed to 

have the highest accuracy. The table shows all the different family 

combinations, and also the number of impactful variants found in 

each dataset. 
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The comparison between the results in Table 2 to the results in Table 3 shows that filtering 

based on impact removed a higher fraction of variants than the frequency filtering. Even if the 

result in these cases looks more efficient, impact filtering makes more assumptions, and it 

might just be more efficient when frequency filtering has already been applied. The initial 

step of combining family members (Table 1) is arguably the weakest of the filtering steps as it 

keeps about half, for both Family 2 and Family 4, of the initial five million variants per 

sample. As each consecutive filtering step is more effective for Family 2 and Family 4 than 

for Family 1, I would argue that having these large families to begin with is very effective. 

This is also the only step, which we with absolute certainty can say, does not remove any 

crucial variants, as long as the disorder actually follows an inheritance pattern within the 

family. Creating different sets of family combinations also proved effective (Table 4) leaving 

only a few impactful variants. This test does however only work under the assumption that the 

families might share the defects cause, which might not be the case. The same can be said for 

Table 5, showing the impactful genes without shared variants, which was a quick test looking 

into patterns that might be more difficult to see under manual circumstances.  

Even if we cannot conclude anything with full certainty without further analysing the variants 

actually found for either SNVs or SVs, the SNV list should be considered probably more 

consistent and analysed first. While many pipelines and tools have been fully developed to 

analyse SNVs, SVs remains lacking in both the calling and the filtering aspects of disorder 

discovery. This is simply due to the fact that SVs are so much more difficult to find with 

today’s technology, and therefore also bring a lot of uncertainty to the following steps, where 

tools often developed for straightforward SNVs are applied. People working further with this 

dataset, should therefore keep in mind that the callers will have missed some of the SVs, 

while also having added false positives. Looking at the caller output in Table 6, Manta still 

finds the most variants, but both the candidate files partially overlap and contain low score 

variants. In this project, all the filtering steps still removed enough variants making an 

additional step of filtering low-quality SVs unnecessary. Someone will have to keep this in 

mind when looking at each remaining variant. As most of the tools for VCF-files were 

developed for SNVs, it is likely that they might have been unable to handle some variants in 

the SV-files. Each caller practically had their own way of indicating SVs, to such degree that 

normalization with vt did not work for all tools, introducing uncertainties to the filtering. VEP 

also struggled with TIDDIT for some unknown reason, which hopefully will be fixed, seeing 

as TIDDIT probably found the most high-quality variants (Table 6). In the future all these 

problems might be fixed with new or updated tools, both for calling and filtering, if better 

sequencing with longer reads is not yet developed. Until that time, we will have to keep the 

drawbacks in mind when going through SV-files, as luck might actually be on our side. 

However, as I never trust in luck and therefore did not want to throw anything of interest 

away due to the workings of a single tool, almost all combinations were created and stored, 

which resulted in Supplement 3-7. 
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Looking at the content of Table 7, both the impact and frequency filtering steps seem to 

perform decently and corresponding more or less to what could be seen for SNVs. The 

combining of families into different sets seems to be the weakest filtering step by far, which 

might be caused by population shared CNVs not being filtered properly in the frequency step. 

The SweGen dataset was only run with Manta, leaving variants found by CNVnators 

approach undiscovered. However, the main weakness of the entire analysis is how BEDTools 

intersect, which is found by just examining if features overlap position wise, not necessarily if 

they are actually the same variants. This means that it might also be worth to take a closer 

look at the non-frequency filtered column, in those cases where these contain a feasible 

quantity of variants. Compared to SNVs, where impact filtering was done for highly and 

moderately impactful variants being combined, high and moderate was separated as a test for 

SVs. Considering that both the moderate and high files should be checked, one might argue 

that the separation is either unnecessary or in fact clearer, depending on personal preferences. 

If we end by comparing Table 7 to Table 8, we see the effect of trying to increase accuracy at 

the expense of sensitivity. One should keep in mind that the intersected files contain variants 

from all tools, not just CNVnator, which means that many variants, especially when 

frequency filtering is applied, are removed. Even if close to nothing remains after the 

frequency filtering in Table 8, taking into account how BEDTools operates, the non-filtered 

column is worth analysing further. If a more extensive picture is sought, this can be found in 

Supplement 3-7. 

While it was just a quick comparison, Table 9 shows that more SVs remained in the diploid 

SV file, than in the pipeline output. No impactful variants were found by either tool, but with 

the independent Manta call other files were also given. It was however much easier to use the 

pipeline. Following the description step by step, it simply did not provide enough variants for 

this analysis.  

What is worth to remember is that the field of bioinformatics is currently developing at an 

incredible speed, with new sequencing methods and tools available yearly. I consider this 

both a blessing and a curse. In the next couple of years, new technologies might trivialize this 

entire problem. This could be achieved by longer sequencing reads being able to find all SVs 

and finished pipelines that successfully handles this process from start to finish. It is at the 

same time these advances with new formats that the tools cannot handle, and a sea of different 

tools to wade through to find the right one and the specific version you need for your file, 

which was the most time-consuming part of this project. With this development also comes 

the issue of security, as the whole genome is basically the most private information possible. 

As we do not know what the future will entail, a good first step is to focus on a more secure 

storage for this type of information. This is where we are today. While it might feel 

restricting, it gives us the opportunity to later adapt regulations, which would not be possible 

if all information was already publicly available.  
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In this project, precautions were taken to ensure the security and integrity of the dataset. First 

and foremost, the stored genomic information was only identified using assigned numbers, 

ensuring that no individual could be directly linked to one dataset. Secondly, all the actual 

data was always kept at UPPMAX, minimising the risk of released personal information. The 

entire project was also recently relocated to an even more secure cluster at UPPMAX, 

following new stricter guidelines. 

Most of the remaining work that need to be done to identify a candidate variant that could 

explain the malformation in EA, is the manual analysis of potential variants. There are still 

many other steps that can be performed, like using the genes previously discovered to relate to 

EA and running a comparison between those and lists of variants, or other types of pathway 

analysis. I would also have liked to further analyse each filtration step, comparing how 

effective they could be under different circumstances, but there was no time left to do either 

the filtration comparison or to further analyse the dataset. Another step I would have liked to 

perform if time had allowed me to, would have been to redo the entire project after remapping 

the dataset to the newer hg39 reference genome, which should have decreased the number of 

contigs.  
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8 Supplements 

8.1 Version Report 

The version report, included with the delivered files can be seen below. The main use of this 

report would be if someone wants to replicate the steps without the pipeline, or to see what 

version was used to create this dataset. 

****** 

README 

****** 

Data has been aligned to the reference using bwa. The raw alignments have then been 

deduplicated, recalibrated and indel realigned using GATK. For deduplication 

PicardMarkDuplicates, available in the Picard version that is bundled with the current version 

of GATK, has been used. Quality control information was gathered using Qualimap. SNVs 

and indels have been called using the GATK HaplotypeCaller. These variants were then 

functionally annotated using snpEff. The pipeline used was Piper, see below for more 

information. 

The versions of programs and references used: 

piper: unknown 

bwa: 0.7.12 

samtools: 0.1.19 

qualimap: v2.2 

snpEff: 4.1 

snpEff reference: GRCh37.75 

gatk: 3.3-0-geee94ec 

reference: human_g1k_v37.fasta 

db_snp: gatk-bundle/2.8 

hapmap: gatk-bundle/2.8 

omni: gatk-bundle/2.8 

1000G_indels: gatk-bundle/2.8 

Mills_and_1000G_golden_standard_indels: gatk-bundle/2.8 

indel resource file: {Mills_and_1000G_gold_standard.indels.b37.vcf version: gatk-

bundle/2.8} 

indel resource file: {1000G_phase1.indels.b37.vcf version: gatk-bundle/2.8} 

piper 

----- 
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Piper is a pipeline system developed and maintained at the National Genomics Infrastructure 

build on top of GATK Queue. For more information and the source code visit: 

www.github.com/NationalGenomicsInfrastructure/piper 
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8.2 Complete SNV results 

In the table below, the complete results from the SNV filtration can be seen. Each cell is a list 

in UPPMAX containing that many variants, or genes. 

  
Strict 

Filtering 1% Filtering 5% Filtering 10% Filtering 

Family 1 26919 57650 143980 266462 

Family 2 10163 12486 21886 38842 

Family 4 9889 10429 16208 26646 

Unique Family 1 & 2 1278 1289 1443 3037 

Unique Family 1 & 4 1012 1021 1217 1909 

Unique Family 2 & 4 409 409 413 597 

All Families 7459 7459 7459 7463 

Family 1, Impactful 103 269 649 1113 

Family 2, Impactful 6 30 75 128 

Family 4, Impactful 4 5 36 73 

Unique Family 1 & 2, Impactful 2 2 2 8 

Unique Family 1 & 4, Impactful 0 0 1 2 

Unique Family 2 & 4, Impactful 0 0 0 0 

All Families, Impactful 0 0 0 0 

Impactful Genes, Family 1 & 2 0 0 3 5 

Impactful Genes, Family 1 & 4 1 1 1 5 

Impactful Genes, Family 2 & 4 0 0 1 1 

Impactful Genes, All Families 0 0 1 1 
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8.3 Complete SV Manta: Candidate Small Indels results 

In the table below, the complete results connected to Mantas small indel candidate files can be 

found. The same setup was used here as in Table 7 and Table 8. Each cell is a list in 

UPPMAX containing that many variants. 

Manta: Candidate Small Indels 
Strict 

Filtering 
1% 

Filtering 5% Filtering 10% Filtering 
Non-

filtered 

Family 1 1179 8423 17333 22056 61067 

Family 2 545 3730 7654 9712 26597 

Family 4 510 3774 7688 9713 26734 

Family 1 & 2 377 2429 4794 6112 16863 

Family 1 & 4 333 2495 5008 6309 17225 

Family 2 & 4 278 1951 3783 4802 13203 

All Families 234 1614 3105 3927 10832 

Family 1 Moderate Impact 1 11 15 24 54 

Family 2 Moderate Impact 1 6 8 11 31 

Family 4 Moderate Impact 1 7 8 9 26 

Family 1 & 2 Moderate Impact 1 4 5 7 19 

Family 1 & 4 Moderate Impact 0 4 5 6 19 

Family 2 & 4 Moderate Impact 0 5 5 6 17 

All Families Moderate Impact 0 3 3 4 14 

Family 1 High Impact 1 4 10 12 25 

Family 2 High Impact 1 1 3 3 9 

Family 4 High Impact 0 0 2 2 11 

Family 1 & 2 High Impact 1 1 3 3 9 

Family 1 & 4 High Impact 0 0 2 2 8 

Family 2 & 4 High Impact 0 0 1 1 5 

All Families High Impact 0 0 1 1 5 
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8.4 Complete SV Manta: Candidate SV results 

In the table below, the complete results connected to Mantas SV candidate files can be found. 

The same setup was used here as in Table 7 and Table 8. Each cell is a list in UPPMAX 

containing that many variants. 

Manta: Candidate SV 
Strict 

Filtering 
1% 

Filtering 5% Filtering 10% Filtering 
Non-

filtered 

Family 1 1259 8686 17837 22712 61067 

Family 2 579 3834 7837 9934 26597 

Family 4 539 3872 7867 9933 26734 

Family 1 & 2 401 2500 4910 6249 16863 

Family 1 & 4 355 2571 5128 6459 17225 

Family 2 & 4 295 2005 3867 4902 13203 

All Families 250 1664 3178 4012 10832 

Family 1 Moderate Impact 1 11 15 24 64 

Family 2 Moderate Impact 1 6 8 11 31 

Family 4 Moderate Impact 1 7 8 9 26 

Family 1 & 2 Moderate Impact 1 4 5 7 19 

Family 1 & 4 Moderate Impact 0 4 5 6 19 

Family 2 & 4 Moderate Impact 0 5 5 6 17 

All Families Moderate Impact 0 3 3 4 14 

Family 1 High Impact 1 4 10 12 24 

Family 2 High Impact 1 1 3 3 9 

Family 4 High Impact 0 0 2 2 11 

Family 1 & 2 High Impact 1 1 3 3 9 

Family 1 & 4 High Impact 0 0 2 2 8 

Family 2 & 4 High Impact 0 0 1 1 5 

All Families High Impact 0 0 1 1 5 
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8.5 Complete SV Manta: Diploid SV results 

In the table below, the complete results connected to Mantas diploid SVs files can be found. 

The same setup was used here as in Table 7 and Table 8. Each cell is a list in UPPMAX 

containing that many variants. 

Manta: Diploide SV 
Strict 

Filtering 
1% 

Filtering 5% Filtering 10% Filtering 
Non-

filtered 

Family 1 36 108 240 334 5148 

Family 2 14 40 80 103 2508 

Family 4 14 41 78 103 2701 

Family 1 & 2 8 24 46 58 1807 

Family 1 & 4 8 30 48 66 1914 

Family 2 & 4 8 22 36 46 1490 

All Families 4 17 27 35 1282 

Family 1 Moderate Impact 0 0 0 0 36 

Family 2 Moderate Impact 0 0 0 0 13 

Family 4 Moderate Impact 0 0 0 0 17 

Family 1 & 2 Moderate Impact 0 0 0 0 7 

Family 1 & 4 Moderate Impact 0 0 0 0 7 

Family 2 & 4 Moderate Impact 0 0 0 0 6 

All Families Moderate Impact 0 0 0 0 3 

Family 1 High Impact 0 0 0 0 137 

Family 2 High Impact 0 0 0 0 57 

Family 4 High Impact 0 0 0 0 67 

Family 1 & 2 High Impact 0 0 0 0 33 

Family 1 & 4 High Impact 0 0 0 0 39 

Family 2 & 4 High Impact 0 0 0 0 30 

All Families High Impact 0 0 0 0 21 
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8.6 Complete SV Delly results 

In the table below, the complete results connected to the Delly files can be found. The same 

setup was used here as in Table 7 and Table 8. Each cell is a list in UPPMAX containing that 

many variants. 

Delly 
Strict 

Filtering 
1% 

Filtering 5% Filtering 10% Filtering 
Non-

filtered 

Family 1 23 53 236 259 1589 

Family 2 5 13 109 115 619 

Family 4 8 16 102 106 625 

Family 1 & 2 4 11 85 87 429 

Family 1 & 4 4 11 78 82 420 

Family 2 & 4 3 9 64 65 337 

All Families 2 8 60 61 291 

Family 1 Moderate Impact 0 0 1 1 130 

Family 2 Moderate Impact 0 0 1 1 31 

Family 4 Moderate Impact 0 0 0 0 34 

Family 1 & 2 Moderate Impact 0 0 1 1 22 

Family 1 & 4 Moderate Impact 0 0 0 0 13 

Family 2 & 4 Moderate Impact 0 0 0 0 6 

All Families Moderate Impact 0 0 0 0 6 

Family 1 High Impact 0 3 8 9 191 

Family 2 High Impact 0 0 3 3 62 

Family 4 High Impact 0 0 2 2 56 

Family 1 & 2 High Impact 0 0 2 2 39 

Family 1 & 4 High Impact 0 0 2 2 28 

Family 2 & 4 High Impact 0 0 2 2 20 

All Families High Impact 0 0 2 2 19 
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8.7 Complete SV TIDDIT results 

In the table below, the complete results connected to the TIDDIT files can be found. The 

same setup was used here as in Table 7 and Table 8. Each cell is a list in UPPMAX 

containing that many variants, except those marked with a dash; these are the ones that could 

not be run. 

TIDDIT 
Strict 

Filtering 
1% 

Filtering 5% Filtering 10% Filtering 
Non-

filtered 

Family 1 109 301 803 980 331 

Family 2 16 35 150 175 598 

Family 4 13 47 178 212 734 

Family 1 & 2 8 17 83 98 358 

Family 1 & 4 8 22 105 123 398 

Family 2 & 4 7 14 73 84 249 

All Families 4 9 54 61 186 

Family 1 Moderate Impact 0 0 0 0 - 

Family 2 Moderate Impact 0 0 0 0 - 

Family 4 Moderate Impact 0 0 0 0 - 

Family 1 & 2 Moderate Impact 0 0 0 0 - 

Family 1 & 4 Moderate Impact 0 0 0 0 - 

Family 2 & 4 Moderate Impact 0 0 0 0 - 

All Families Moderate Impact 0 0 0 0 - 

Family 1 High Impact 2 2 102 105 - 

Family 2 High Impact 0 0 32 32 - 

Family 4 High Impact 1 1 38 38 - 

Family 1 & 2 High Impact 0 0 16 16 - 

Family 1 & 4 High Impact 1 1 21 21 - 

Family 2 & 4 High Impact 0 0 13 13 - 

All Families High Impact 0 0 10 10 - 

 

 

 

 


