
“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page i — #1

Linköping Studies in Science and Technology

Dissertations. No. 1903

Programming Abstractions and

Optimization Techniques for

GPU-based Heterogeneous Systems

by

Lu Li

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2018

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page ii — #2

Copyright c© Lu Li 2018

ISBN 978-91-7685-370-2
ISSN 0345-7524

Printed by LiU Tryck 2018

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145304

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page iii — #3

Abstract

CPU/GPU heterogeneous systems have shown remarkable advantages in
performance and energy consumption compared to homogeneous ones such
as standard multi-core systems. Such heterogeneity represents one of the
most promising trends for the near-future evolution of high performance
computing hardware. However, as a double-edged sword, the heterogeneity
also brings significant programming complexities that prevent the easy and
efficient usage of different such heterogeneous systems. In this thesis, we are
interested in four such kinds of fundamental complexities that are associated
with these heterogeneous systems: measurement complexity (efforts required
to measure a metric, e.g., measuring enegy), CPU-GPU selection complexity,
platform complexity and data management complexity. We explore new low-
cost programming abstractions to hide these complexities, and propose new
optimization techniques that could be performed under the hood.

For the measurement complexity, although measuring time is trivial by
native library support, measuring energy consumption, especially for sys-
tems with GPUs, is complex because of the low level details involved such
as choosing the right measurement methods, handling the trade-off between
sampling rate and accuracy, and switching to different measurement metrics.
We propose a clean interface with its implementation that not only hides the
complexity of energy measurement, but also unifies different kinds of mea-
surements. The unification bridges the gap between time measurement and
energy measurement, and if no metric-specific assumptions related to time
optimization techniques are made, energy optimization can be performed by
blindly reusing time optimization techniques.

For the CPU-GPU selection complexity, which relates to efficient uti-
lization of heterogeneous hardware, we propose a new adaptive-sampling
based construction mechanism of predictors for such selections which can
adapt to different hardware platforms automatically, and shows non-trivial
advantages over random sampling.

For the platform complexity, we propose a new modular platform model-
ing language and its implementation to formally and systematically describe
a computer system, enabling zero-overhead platform information queries for
high-level software tool chains and for programmers as a basis for making
software adaptive.

For the data management complexity, we propose a new mechanism to
enable a unified memory view on heterogeneous systems that have separate
memory spaces. This mechanism enables programmers to write significantly
less code, which runs equally fast with expert-written code and outperforms
the current commercially available solution: Nvidia’s Unified Memory. We
further propose two data movement optimization techniques, lazy allocation
and transfer fusion optimization. The two techniques are based on adap-
tively merging messages to reduce data transfer latency. We show that these
techniques can be potentially beneficial and we prove that our greedy fusion
algorithm is optimal.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page iv — #4

Finally, we show that our approaches to handle different complexities
can be combined so that programmers could use them simultaneously.

This research has been partly funded by two EU FP7 projects (PEP-
PHER and EXCESS) and SeRC.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page v — #5

Populärvetenskaplig Sammanfattning

Vi lever i ett samhälle där vetenskap och teknik utvecklas i allt snabbare
takt, och där datorer numera finns överallt. Människan har blivit beroende
av datorer för att kunna sköta sitt dagliga arbete och även för underh̊allning
och kommunikation. Ett modernt liv kan knappast föreställas utan da-
torer. I v̊art mycket datoriserade samhälle kommer produktiviteten och
välfärden drabbas signifikant om datorernas prestanda sviker. Snabbare da-
torer kan även öppna nya vägar i forskningen inom andra omr̊aden, s̊asom
djupinlärning-teknologin som möjliggör självkörande bilar mm. De kan även
underlätta upptäckter i andra vetenskapliga grenar. Till exempel, genom att
köra större simuleringar kan precisare experimentella data genereras, vilket
dock kräver en snabbare arbetsstation eller även en superdator. Eftersom
datorer är s̊a betydelsefulla och man fortsätter flytta mer uppgifter till dem
s̊a jobbar vi inom vetenskap och teknik h̊art för att ytterligare förbättra
datorers prestanda.

För att n̊a detta m̊al m̊aste programvaran och h̊ardvaran samarbeta p̊a
ett bättre sätt. Tidigare kunde programvaran profitera automatiskt fr̊an
snabbare h̊ardvara i varje generation och därmed själv bli snabbare. Men
dessa gamla goda tider är över. Än värre: snabbare datorer förbrukar ocks̊a
betydligt mer energi, vilket skapar nya problem för samhället. Lösningen
som h̊ardvaruindustrin tagit till sedan ca 2005 var överg̊angen till fler- och
m̊angkärniga datorarkitekturer, d.v.s. parallella, distribuerade och oftast
heterogena datorsystem där vanliga processorer (CPU) kompletteras med
grafikprocessorer (GPU) eller andra former av programmerbara h̊ardvaru-
acceleratorer. Dessa system erfordrar komplex programmering och nog-
grann, ressursmedveten optimering av programkoden för prestanda och en-
ergieffektivitet. Det är en stor utmaning för mjukvaruingenjörer att skapa
snabb kod för dessa komplexa datorarkitekturer som kan möta det mod-
erna samhällets stadigt ökande prestandakrav. Dessutom kan den snabba
utvecklingstakten i h̊ardvaran leda till inkompatibilitet eller ineffektivitet av
redan existerande programvara p̊a nya h̊ardvarugenerationer.

Sammanfattningsvis s̊a finns huvudsakligen fyra problem: (1) Det är
sv̊art att skriva effektiv programkod. (2) För existerande prestandakri-
tisk programkod är det sv̊art att garantera att den överhuvudtaget kan
köras p̊a varje ny h̊ardvarugeneration. (3) Även om själva koden är porta-
bel s̊a är det sv̊art att automatiskt bibeh̊alla effektivitetsniv̊an p̊a nästa
h̊ardvarugeneration. (4) Vi behöver metoder som kan optimera inte bara
programmets exekveringstid utan även dess energianvändning.

I denna avhandling utforskar vi programmeringsabstraktioner (t.ex. för
programvarukomponenter) och tekniker för heterogena datorsystem som tar
itu med dessa problem. V̊ara metoder och ramverk avlastar programme-
raren fr̊an flera viktiga uppgifter utan att negativt p̊averka mjukvarans pre-
standa. (A) En av ansatserna automatiserar minneshanteringen och op-
timerar dataöverföringen s̊a att programmet exekverar snabbare än h̊ard-
varutillverkarens egen automatiserade lösning. Samma ansats gör det möjligt

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page vi — #6

för programmeraren att skriva kompaktare, mer läsbar kod som dock exe-
kverar lika effektivt som expert-handskriven kod, och därmed ökar program-
merarens produktivitet. (B) Vi utvecklade ett plattformsbeskrivningsspr̊ak
som underlättar att systematiskt beskriva komplexa datorsystem med deras
h̊ardvaru- och systemprogramvarukomponenter, och som kan främja porta-
bilitet, optimering och adaptivitet av programvara till exekveringsplatt-
formen. (C) Vi utvecklade en ny mekanism för konstruktion av smarta
prediktorer som kan göra programexekveringen adaptiv till exekveringsplatt-
formen, möjliggör effektiv användning av h̊ardvaran, och visar signifikanta
förbättringar jämfört med state-of-the-art lösningen. (D) Vi överbryggar
gapet mellan prestandaoptimering och energioptimering p̊a ett sätt som
möjliggör att under vissa förutsättningar återanvända prestandaoptimerings-
tekniker för att f̊a en reduktion av programmets energiförbrukning. Slutligen
kan vi nyttja alla dessa metoder och ramverk samtidigt genom att integrera
dem p̊a ett lämpligt sätt.

Vi gör v̊ara programvaruprototyper allmänt tillgängliga med öppen käll-
kod. P̊a det sättet kan de användas (och faktiskt redan har använts) t.ex.
av andra forskare inom v̊art omr̊ade för att hantera vissa av de ovannämnda
komplexiteterna och som byggstenar i andra forskningsprototyper.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page vii — #7

Popular Science Summary

We live in a society where science and technology are evolving faster than
ever, and computers are everywhere. People rely on computers to perform
their daily jobs and get entertainment. Modern life is hard to imagine
without computers.

In the heavily computerized society where we are living, it will signifi-
cantly harm the society’s productivity and welfare if computers run slowly.
Moreover, faster computers can unlock the true power of research in other
field, like deep learning technology that enables self-driving cars. They can
also facilitate discoveries in other scientific areas, e.g., more precise experi-
mental data can be obtained by running larger simulations which requires
a faster work station or even a supercomputer. Since computers are so im-
portant and we keep putting more tasks on them, scientists and engineers
are working hard to further improve their performance. To achieve such a
goal, software and hardware must collaborate. In old times, software could
rely on faster hardware in each generation, thereby making itself run faster
automatically. But the good old days are gone, possibly forever. To make
things worse, faster computers also bring significant more energy consump-
tions. The alternative is to introduce multicore/many core designs in our
computers that lead to a scalable and sustainable energy increase but re-
quire parallel and distributed programming of often heterogeneous systems
with GPUs and careful optimizations for performance and energy efficiency.
Producing fast-running software on these complex parallel computers, to
meet the insatiable needs of society, is very challenging for software engi-
neers, not even considering that the fast-evolving hardware may break or
run very inefficiently the software already produced. In summary, there are
four main problems: 1) it is hard to produce fast software; 2) for already
produced high performance software, it is hard to guarantee that they could
still run on each generation of hardware that appears frequently; 3) it is
hard to automatically maintain its efficiency on time on each new genera-
tion of hardware; 4) we need methods to lean more towards reducing energy
consumption of software in addition to making it faster.

In this thesis, we explore new programming abstractions (for software
components) and techniques to tackle these problems. We remove four im-
portant responsibilities (handling of measurement complexity, CPU/GPU
selection, plaform complexity and data management) from software engi-
neers without sacrificing software performance. VectorPU enables software
engineers to write significantly less code still with the same efficiency as
expert-written code, resulting in a productivity boost. VectorPU allows
software to run significant faster than the current commercially available
solution. We design a new platform description language XPDL to system-
atically describe a computer system, and protect software to be broken by
different machines, and possibly by future computers. We design a new
construction mechanism for smart predictors that can make software execu-
tions adaptive to different machines and allow efficient hardware utilization,

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page viii — #8

and that shows non-trivial advantages over the state-of-the-art solution. We
bridge the gap between performance optimization and energy optimization,
thus if no metric-specific assumptions related to time optimization tech-
niques are made, we can easily reuse performance optimization techniques
to reduce energy consumption instead. Finally, we gain all those benefits
simultaneously by integrating them in meaningful ways. We make our de-
signed software framework prototypes available as open source, thus these
prototypes can (and already did) help other researchers to tackle these com-
plexities, and utilize those prototypes for new knowledge generation.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page ix — #9

ix

Acknowledgements

To finish a PhD degree is challenging and full of hard work. Fortunately
I enjoyed most of time during the long journey, learned many interesting
things and survived a few dark moments of stress and frustrations. The
thesis would not have been possible without the help from numerous persons.

First and foremost, I would like to thank my supervisor Prof. Christoph
Kessler. He offered me a precious opportunity to work on this thesis topic
and countless important help along this long journey. I can never express
enough gratitude to Christoph. My secondary supervisor Welf Löwe also
gave me valuable advices.

My wife Zhili Liu gave me indispensable support, encouraging me when
I was down, and being happier than me whenever I achieved some progress.
Thanks so much! My daughter Emma Ningxin Li was born during my PhD
years. She is a gift to me, and like an angel, she always cheered me up ever
since. I also thank my father Gechao Li and my mother Juxiang Zhang
for their remote big support even though they were in China and we were
separated by thousands of miles.

This work was financially supported by two EU FP7 projects: PEP-
PHER (www.peppher.eu) and EXCESS (www.excess-project.eu), and also
by Swedish e-Science Research Center (SeRC). I also thank the EXCESS
project members Philippas Tsigas, Phuong Ha, Anders Gidenstam, Dmitry
Khabi, Paul Renaud-Goud, Dennis Hoppe and many other people for the
constructive conversations and pleasant collaborations during the project.
Some of the jointly achieved results finally became publications and formed
the basis for the final thesis.

I thank National Supercomputer Center at Linköping University (NSC),
Scientific Computing group at the University of Vienna and Arctic Green
Computing Group at the University of Tromsø for letting me use their ma-
chines, to perform some of the experiments and some data from these ex-
periments are used in this thesis.

I got quite some practical help and pleasant conversations with my fellow
PhD students: Nicolas Melot, Usman Dastgeer, Erik Hansson and August
Ernstsson. Other colleagues I want to thank are: Kristian Sandahl, Oleg
Sysoev, Ludovic Henrio, Anne Moe, Åsa Kärrman, Mikaela Holmbäck, Eva
Pelayo Danils and Nahid Shahmehri.

Master thesis project students I co-supervised and who helped me for
some implementation work are Johan Ahlqvist and Ming-Jie Yang.

Many other people although not listed here also helped me, thank you
all! The thesis is for all of you!

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page x — #10

Contents

1 Introduction 1
1.1 Research Questions . 2
1.2 Our Work and Contributions 3
1.3 Research Methodology . 4
1.4 List of Publications and Technical Reports 6
1.5 Thesis Outline . 12

2 Background 13
2.1 Parallel Programming . 13
2.2 Programming Multicore CPUs 15
2.3 Programming GPGPUs . 15
2.4 Software Components and cesets 17
2.5 PEPPHER Composition Tool: ComPU 18
2.6 Skeleton Programming and SkePU 19
2.7 Meta-programming in C++ 22

3 Handling Measurement Complexity 25
3.1 Measurement Complexity . 26
3.2 MeterPU Design and Implementation 27

3.2.1 Library API and Example Applications 27
3.2.2 Implementation . 29
3.2.3 More Examples . 30
3.2.4 MeterPU Support for Visualization 32
3.2.5 Discussion . 32

3.3 Combining SkePU with MeterPU 33
3.4 Experimental Results and Discussion 34

3.4.1 Experimental Setup 34
3.4.2 Tuning for Individual Skeletons 37
3.4.3 Tuning for LU Decomposition 37
3.4.4 MeterPU Overhead . 39
3.4.5 Comparison to Other Alternatives 40

3.5 Related Work . 40
3.5.1 Measurement Abstraction 40
3.5.2 Skeleton Programming 41

x

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page xi — #11

CONTENTS xi

3.6 Summary and Future Work 41

4 Handling CPU-GPU Selection Complexity 43
4.1 CPU-GPU Selection Complexity 44
4.2 Adaptive Sampling . 45

4.2.1 An Motivating Example 46
4.2.2 Adaptive Sampling and Prediction 47
4.2.3 Experimental Results and Discussions 52
4.2.4 Summary and Future Work 56

4.3 Pruning Strategies of Adaptive Sampling 56
4.3.1 Three Pruning strategies 57
4.3.2 Experimental Results and Discussions 58
4.3.3 Summary . 72

4.4 TunerPU Framework Design 72
4.4.1 TunerPU Overview . 72
4.4.2 Unifying Views of a Set of Implementation Variants . 73
4.4.3 Generic Run-time Selector 74
4.4.4 Expressiveness . 75
4.4.5 Summary . 78

4.5 Related Work . 78
4.5.1 Automated Performance Autotuning 78
4.5.2 Framework Design . 80

4.6 Summary . 81

5 Handling Platform Complexity 82
5.1 Platform Complexity . 83
5.2 A Review of PEPPHER PDL 84

5.2.1 Control Relation . 85
5.2.2 Interconnect Specification 86
5.2.3 Properties Concept . 86
5.2.4 Modularity Issues . 87

5.3 XPDL Design Principles . 87
5.3.1 Basic Features of XPDL 88
5.3.2 Parameters, Constants and Constraints 89
5.3.3 Hardware Component Modeling 89
5.3.4 Power Modeling . 96
5.3.5 Hierarchical Energy Modeling 99

5.4 XPDL Compiler and Interfacing with Other Software 99
5.4.1 Query API . 100
5.4.2 Interfacing with Other Software 101
5.4.3 Portability by XPDL 102

5.5 Related Work . 102
5.6 Summary . 104

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page xii — #12

xii CONTENTS

6 Handling Data Management Complexity 106
6.1 Data Management Complexity 107
6.2 Framework Design and Evaluation 108

6.2.1 VectorPU Design . 108
6.2.2 Expressiveness of VectorPU 113
6.2.3 Experimental Results 120
6.2.4 To VectorPU or not to VectorPU? 126
6.2.5 Summary and Future Work 129

6.3 Lazy Allocation . 129
6.3.1 Lazy Allocation . 130
6.3.2 Transfer Fusion Optimization 134
6.3.3 Evaluation . 137
6.3.4 Summary and Future Work 141

6.4 Related Work . 143
6.4.1 Framework Design . 143
6.4.2 Data Transfer Optimization 144

6.5 Summary . 145

7 Put It All Together: a Case Study 146
7.1 A Meaningful Integration . 146
7.2 Case Study: Matrix-matrix Multiplication 149

7.2.1 Baseline: Manual Code 149
7.2.2 Writing a XPDL Model 151
7.2.3 Connecting XPDL to MeterPU and VectorPU 151
7.2.4 Connecting XPDL to TunerPU 152
7.2.5 First Code Rewrite Using VectorPU 153
7.2.6 Second Code Rewrite with TunerPU 153

7.3 Evaluation . 157
7.3.1 Programmability . 157
7.3.2 Portability . 159
7.3.3 Performance Portability 160

7.4 Summary . 161

8 Conclusions 162

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 1 — #13

Chapter 1

Introduction

Computers, as a key infrastructure for our modern society, are integrated
intensively with almost every aspect of human life. As we keep being in-
creasingly dependent on computers, our expectations and imaginations that
computers will do more and more for us never stops. As a consequence,
there is a constant eagerness for higher performance of computer systems,
also for improving the easiness to utilize these computers.

As an example to illustrate why high performance computers are impor-
tant, the deep learning technology, which shows remarkable power compared
to human intelligence, is mainly based on the structure and the algorithms
of artificial neural networks (ANNs). ANNs have existed for a long time,
but due to the lack of computing power, together with the lack of high vol-
umes of training data, we could not see their real power for a long time, and
support vector machines could easily beat neural networks for decades. Re-
cently with the computing power from high performance computing systems,
especially those equipped with GPUs allowing general-purpose computing,
training of deep neural networks became possible and those trained ANNs
achieve so surprisingly good results with large training data sets that their
performance is often even better in its trained area than humans. In short,
without modern computing power, deep learning’s remarkable power can
not be made visible.

It is extremely challenging for computer systems to achieve high perfor-
mance due to hardware and software reasons. One of the hardware reasons
is power consumption, because the frequency of processors can not keep in-
creasing with affordable power consumption increase. The software reasons
are mainly that computing efficient code automatically to optimally uti-
lize hardware is either statically undecidable (dependent on unknown data
input) or NP-complete1. To manually write efficient code can be time con-
suming even for experts and it is almost impossible to reach its optimal

1Taking one sub-problem of the optimal code generation, namely instruction schedul-
ing alone is already NP-complete [91].

1

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 2 — #14

2 CHAPTER 1. INTRODUCTION

performance due to a large number of tunable parameters.
In order to continue the trend of performance improvements of com-

puter systems, hardware has since 2005 evolved to the multi-core paradigm,
as using multiple low-frequency processors allows to potentially achieve the
same performance with a high-frequency processor, but the former consumes
much less power than the latter. However, the challenges of writing efficient
software are pushed to the next level of difficulty although it is already quite
difficult even to utilize sequential machines efficiently. The new challenges
for writing software include parallelism granularity, load balancing, commu-
nication, synchronization, and problems like data races and deadlocks are
visible in parallel programmers’ daily life.

In recent years, the hardware trend has moved more towards specialized
hardware to complement general-purpose hardware. GPUs have shown sig-
nificant performance advantages over CPUs. Although originally designed
to process graphics data only, the extensions to general data-parallel com-
putations (GPGPU) are remarkably successful. Additional software chal-
lenges brought by CPU/GPU heterogeneous systems include separate ad-
dress spaces, co-existence of different programming models and optimization
guidelines. CPU/GPU heterogeneous systems are the platforms that we are
targeting in this thesis.

As the cost of software development and optimization already dominates
the overall cost of high performance computer systems, program properties
like programmability, portability, and performance portability (maintained
efficiency when switching hardware) are undoubtedly important.

As a summary, the hardware evolves in a way forced by scalability, which
brought huge challenges on the software side. On the other hand, how-
ever, even given such situations, we can not stop pursuing programmability,
portability, and performance portability. In this thesis, we explore designs
of programming abstractions and optimization techniques for CPU/GPU
heterogeneous systems that will lead to improvements of those program
properties.

1.1 Research Questions

Given the software challenges of CPU/GPU heterogeneous systems, we spec-
ify our research questions in this thesis as the following:

1. How to improve programmability by software abstractions for a CPU/GPU
heterogeneous system? Does the increased abstraction come at a run-
time cost? Is it possible to design zero-cost abstractions?

2. How to improve the portability across different heterogeneous systems
with different hardware and software configurations, when applications
are already written for a specific CPU/GPU heterogeneous system?

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 3 — #15

1.2. OUR WORK AND CONTRIBUTIONS 3

3. How to improve time performance portability for programs on differ-
ent heterogeneous systems? For performance portability, we refer to
the automated adaptivity of programs when migrated to a different
heterogeneous system to reach decent performance.

4. How to take energy consumption into account as an optimization goal
when optimizing programs for heterogeneous systems?

1.2 Our Work and Contributions

Our work is mainly on two aspects: one is framework design research, ex-
ploring how to design and implement software abstractions to achieve pro-
grammability, portability and to take energy into considerations, another
explores new algorithms, optimization and performance modeling techniques
mainly for performance portability, both of them are to address our research
questions in Section 1.1.

Our contributions are summarized as follows:

1. A design and implementation of a measurement abstraction API/li-
brary to hide measurement complexity on CPU/GPU systems, and
a quantitative evaluation and comparison of our implementation and
other related work. The implementation is named as MeterPU. This
work address the Research Questions 1 (programmability) and 4 (en-
ergy optimization).

2. A design and implementation of a data abstraction to hide data man-
agement complexity on CPU/GPU systems, and a quantitative evalu-
ation including a comparison between our implementation and a com-
mercial implementation, CUDA Unified Memory. The implementation
is named as VectorPU. This work address the Research Question 1
(programmability).

3. A design and implementation of a platform description language for
modeling heterogeneous systems both for hardware and software as-
pects, and a demonstration of its usefulness by our data abstraction.
The language is named as XPDL, and the implementation of its com-
piler is named as XDPL compiler. A compiler implementation is
needed to translate the XPDL modeling language into a library that
can be directly integrated with other tool chains to address portability.
This work address the Research Question 2 (portability).

4. A design and implementation of a tuning framework that transforms
legacy programs into a tunable form, and allows the automated tun-
ing of a run-time variant selector. The implementation is named as
TunerPU. This work address the Research Question 1 (programmabil-
ity).

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 4 — #16

4 CHAPTER 1. INTRODUCTION

Name Purpose Impl. language License
MeterPU Measurement abstraction C++, CUDA GPLv3

framework
VectorPU Data abstraction C++, CUDA LGPL

framework
XPDL Platform description C++ Internal release

language and
its compiler

TunerPU Tuning framework C++ Internal release

Table 1.1: Research prototypes

5. A training space exploration technique enabling fast training, gener-
ating a decision-tree based tuner, that allows to control the trade-off
between tuning quality, run-time overhead and training overhead, and
three pruning strategies to further improve the training and prediction
efficiency. We also provide a quantitative evaluation and comparison
to other related work. The technique is tested by implementing it in
the TunerPU framework. This work address the Research Question 3
(performance portability).

6. A practical run-time optimization technique on lazy allocation, which
eliminates some data transfer latency between CPU and GPU on het-
erogeneous systems. The technique is implemented it in the VectorPU
framework and evaluated. This work address the Research Question
3 (performance portability).

7. A practical run-time optimization technique on data transfer fusion
and a proof for its optimality. The technique is implemented it in the
VectorPU framework and evaluated. This work address the Research
Question 3 (performance portability).

The basic properties of the research prototypes built are described in
Table 1.1. Together with their embedded optimization techniques, they will
be detailed in Chapters 3, 4, 5, and 6 respectively.

1.3 Research Methodology
and Knowledge Generation

As our research questions are how-to questions, the research methodology is
research through design [9], using a design as an answer, and a design itself
is a body of knowledge. The power of this knowledge is descriptive and
inspirational, rather than explanatory and predictive. As design research
implies, design itself does not enforce methodological and scientific rigor [44].

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 5 — #17

1.3. RESEARCH METHODOLOGY 5

Our design method mainly follows a case study approach: from simple
programs we learn how to generalize, and then we design a generalization
that applies to the simple programs. We add new cases to test the gen-
eralization and adjust if necessary. We continue until the generalization
stabilizes. We keep the run-time overhead as a critical design constraint.

During and after design and implementation, we are faced with the ques-
tion: is our design any better than the previous ones? This is a typical
scientific question that does require methodological rigor, therefore we use
quantitative and statistical methods for comparative analysis when alterna-
tive prototypes are available or the previous methods can be re-implemented
in a reasonable amount of time.

For evaluation methodology, we measure programmability, portability,
performance portability in the following ways:

• For measuring programmability, we use logical lines of code (LOC)
as our main metric. Logic lines of code is a metric of code size but
an arguable metric to measure programmability which indicates the
easiness to program. Obviously small code size does not necessarily
lead to easiness to program, as code with small size can have com-
plex control flow which makes it hard to write correct programs. To
the best of our knowledge, there is no consensus on how to measure
programmability [109]. Other metrics such as cyclomatic complex-
ity [105] are being used as well in the literature. Since the code we
are interested in contains little control flow complexity, we argue that
cyclomatic complexity will not add much extra information. Code
churn [93] measures the amount of code change between two code
states, indicating some quality factors of the code transition, however
we are more interested in comparing two states of the code instead of
its transitions. Other works that use LOC to measure programmabil-
ity include [89, 32, 21, 121].

• For measuring code portability, we could compile and execute the code
of interest on different machines where the key configurations differ.
We obtained a “portable” or “non-portable” answer by this measure-
ment.

• For measuring performance portability, we could measure the code of
interest using time measurement functions supported on different ma-
chines where the key configurations differ. To increase the reliability
of measurements, we measure multiple times and use the arithmetic
mean or median value.

• For measuring energy, we use the measurement method by Burtscher
et al. [18] to measure GPU energy, and Intel PCM [129] for measuring
CPU energy. Those are energy-counter-based approaches, while using
external meters such as Oscilloscope (energy measurement through
voltage) may be better in measurement accuracy. Since our main focus

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 6 — #18

6 CHAPTER 1. INTRODUCTION

is about how to model energy given measurement values, thus energy-
counter-based approaches will suffice in this purpose. To increase the
reliability of measurements, we use a similar method as for measuring
performance portability.

1.4 List of Publications and Technical Reports

In this section we list all publications in chronological order, and summarize
each author’s contributions for each paper in the list below. The first person
(I) denotes Lu Li, the author of this PhD thesis. Journal papers are prefixed
with an asterisk (*). The publications that I played a core role in are used
to form this thesis and prefixed with a †.

1. Dastgeer, U., Li, L., and Kessler, C. (2012b). The PEPPHER Com-
position Tool: Performance-Aware Dynamic Composition of Applica-
tions for GPU-based Systems. In Proc. 2012 Int. Workshop on Multi-
Core Computing Systems (MuCoCoS 2012), Nov. 16, 2012, Salt Lake
City, Utah, USA, in conjunction with the Supercomputing Conference
(SC12). IEEE

• This paper described a composition tool to increase programming
abstractions on CPU/GPU heterogeneous systems for PEPPHER
components. PEPPHER component model was developed in EU
FP7 PEPPHER project [104], which employs XML files to anno-
tate its components’ properties (e.g., function parameters) and
deployment information (e.g., compiler flags). The PEPPHER
composition tool translates the PEPPHER components into a
low-level task-based representation that utilize a run time sys-
tem StarPU [8] to handle low level details such as data transfer
and scheduling.

• The PEPPHER composition tool was implemented by me, Us-
man Dastgeer extended the tool and performed the experiments
by the suggestions from Christoph Kessler. Usman Dastgeer
wrote the paper.

2. † Li, L., Dastgeer, U., and Kessler, C. (2013). Adaptive off-line tuning
for optimized composition of components for heterogeneous many-core
systems. In High Performance Computing for Computational Science-
VECPAR 2012, pages 329–345. Springer

• This paper described a recursive decomposition method for smart
sampling of training space, which is used to train a tuner for run-
time software component implementation variant selection. The
tuner performs run-time selection and invocation of implementa-
tion variants based on run-time context such as problem size.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 7 — #19

1.4. LIST OF PUBLICATIONS AND TECHNICAL REPORTS 7

• I developed the recursive decomposition method for training space
exploration, Christoph Kessler developed the decision-tree-based
prediction mechanism, I implemented the methods, I wrote the
paper with proof-reading by Christoph Kessler.

3. Dastgeer, U., Li, L., and Kessler, C. (2013). Adaptive Implementa-
tion Selection in a Skeleton Programming Library. In Proc. of the
2013 Biennial Conference on Advanced Parallel Processing Technol-
ogy (APPT-2013), volume LNCS 8299, pages 170–183. Springer

• This paper applied recursive decomposition of training space and
the decision-tree-based prediction mechanism [79] to a skeleton
programming framework SkePU [38] and evaluate its prediction
accuracy.

• Usman Dastgeer implemented the recursive decomposition of train-
ing space and the decision-tree-based prediction mechanism [79]
designed by Christoph Kessler and me, to auto-tune SkePU, I
gave some implementation suggestions. Usman Dastgeer wrote
the paper, with proof-reading by Christoph Kessler and me.

4. † Li, L., Dastgeer, U., and Kessler, C. (2014). Pruning Strategies in
Adaptive Off-line Tuning for Optimized Composition of Components
on Heterogeneous Systems. In Proc. Seventh International Workshop
on Parallel Programming Models and Systems Software for High-End
Computing (P2S2) at ICPP. IEEE

• This paper described three techniques to further improve the ef-
ficiency of our recursive decomposition method in Item 2 [79]:
thresholding, oversampling and implementation pruning, and stu-
dy their effects and trade-offs.

• Christoph Kessler and I developed three ideas to further improve
our recursive decomposition method, I performed the implemen-
tation, experiments and wrote the paper with proof-reading by
Christoph Kessler.

5. * Dastgeer, U., Li, L., and Kessler, C. (2014). The PEPPHER Compo-
sition Tool: Performance-Aware Composition for GPU-based Systems.
Computing, 96(12):1195–1211. doi: 10.1007/s00607-013-0371-8

• This paper is an extended version of the previous paper [30] by
adding more experimental results.

• Usman Dastgeer performed the extra experiments in the eval-
uation, and wrote the paper with proof-reading by Christoph
Kessler and me.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 8 — #20

8 CHAPTER 1. INTRODUCTION

6. Kessler, C., Dastgeer, U., and Li, L. (2014a). Optimized Composi-
tion: Generating Efficient Code for Heterogeneous Systems from Multi-
Variant Components, Skeletons and Containers. In Proc. First Work-
shop on Resource awareness and adaptivity in multi-core computing
(Racing 2014), pages 43–48

• This paper is an invited survey paper based on the research work
on SkePU by Usman Dastgeer and the PEPPHER composition
tool by me.

• Christoph Kessler wrote the paper.

7. † Li, L. and Kessler, C. (2015). MeterPU: A Generic Measurement
Abstraction API Enabling Energy-tuned Skeleton Backend Selection.
In Proc. International Workshop on Reengineering for Parallelism in
Heterogeneous Parallel Platforms (REPARA-2015) at ISPA-2015, Hel-
sinki. IEEE

• This paper described a design and implementation of a measure-
ment abstraction API and library for CPU/GPU heterogeneous
systems, and study its programmability, expressiveness, extensi-
bility, run-time overhead, etc. It also included an evaluation of
the integration of the library with SkePU to allow energy-tunable
capability.

• Christoph Kessler suggested to make skeleton programming ener-
gy-tunable, and further suggested to experiment with the skeleton
programming framework SkePU. I developed a measurement ab-
straction API and library designed so that making SkePU energy-
tunable became a trivial effort. I designed and implemented Me-
terPU, further improved by Christoph Kessler’s suggestions. I
wrote the paper, which was then improved by Christoph Kessler’s
suggestions.

8. † Kessler, C., Li, L., Atalar, A., and Dobre, A. (2015a). XPDL: Ex-
tensible Platform Description Language to Support Energy Modeling
and Optimization. In 2015 44th International Conference on Parallel
Processing Workshops (ICPPW), pages 51–60. IEEE

• This paper described a design of a platform modeling framework
for CPU/GPU heterogeneous systems. It is modular, and specif-
ically tailored to support optimizations on high level middleware
on the software stack for CPU/GPU heterogeneous systems.

• Christoph Kessler and I designed the platform description lan-
guage for heterogeneous systems with modular design goal. Aras
Atalar (Chalmers University) and Alin Dobre (Movidius) con-
tributed examples of platform modeling using the language. Chri-
stoph Kessler and I wrote the paper.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 9 — #21

1.4. LIST OF PUBLICATIONS AND TECHNICAL REPORTS 9

9. * † Li, L., Dastgeer, U., and Kessler, C. (2016). Pruning Strategies in
Adaptive Off-line Tuning for Optimized Composition of Components
on Heterogeneous Systems. Parallel Computing, 51:37–45

• This paper extended a previous paper [80] by adding visualization
of the prediction process and analysis of net efficiency.

• Christoph Kessler and I discussed how to extend our pruning
strategy paper [80] to a journal paper by adding visualization
and net efficiency analysis . I implemented those changes, wrote
the extension part of the paper with proof-reading by Christoph
Kessler.

10. Sjöström, O., Ko, S.-H., Dastgeer, U., Li, L., and Kessler, C. (2015).
Portable Parallelization of the EDGE CFD Application for GPU-based
Systems using the SkePU Skeleton Programming Library. In ParCo-
2015 conference, pages 135–144. Published in: Gerhard R. Joubert,
Hugh Leather, Mark Parsons, Frans Peters, Mark Sawyer (eds.): Ad-
vances in Parallel Computing, Volume 27: Parallel Computing: On
the Road to Exascale, IOS Press, April 2016, pages 135-144. DOI
10.3233/978-1-61499-621-7-135

• This paper ported parts of a real-world application EDGE CFG
application to SkePU and evaluated the speedup.

• Soon-Heum Ko, Usman Dastgeer and I co-supervised Oskar Sjöst-
röm in a master thesis project which formed the basis of this pa-
per. Oskar Sjöström performed the implementation and experi-
ments, and wrote the paper with some texts provided by Soon-
Heum Ko and proof-reading by Soon-Heum Ko, Usman Dastgeer,
Christoph Kessler and me. Oskar Sjöström presented the paper.

11. * † Li, L. and Kessler, C. (2016). MeterPU: A Generic Measurement
Abstraction API Enabling Energy-tuned Skeleton Backend Selection.
Journal of Supercomputing, pages 1–16. Springer

• This paper extended a previous paper [82] by adding the follow-
ing: quantitative comparison on code complexity using logic LOC
(lines of code) between MeterPU and other alternatives, inline in-
vestigation for MeterPU overhead, demonstration of MeterPU’s
visualization feature, extension of MeterPU to measure time on
multiple GPUs and extension of MeterPU to measure power by
external measurement devices.

• Christoph Kessler and I planned how to extend our previous Me-
terPU paper [82] to a journal paper. I performed the imple-
mentation and experiments, and wrote the extension part with
proof-reading by Christoph Kessler.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 10 — #22

10 CHAPTER 1. INTRODUCTION

12. * Ernstsson, A., Li, L., and Kessler, C. (2016). SkePU 2: Flexible and
Type-safe Skeleton Programming for Heterogeneous Parallel Systems.
International Journal of Parallel Programming

• This paper improves significantly the programming interface of a
skeleton programming framework SkePU, and evaluated its per-
formance compared to the previous implementation of SkePU.

• Christoph Kessler and I co-supervised August Ernstsson, as a
master thesis project which forms the basis of this paper. Au-
gust Ernstsson performs the design and implementation, the ex-
periments and wrote the paper with proof-reading by Christoph
Kessler and me. This master thesis was given the best thesis
award by IDA, Linköping University in 2016.

13. Thorarensen, S., Cuello, R., Kessler, C., Li, L., and Barry, B. (2016).
Efficient Execution of SkePU Skeleton Programs on the Low-power
Multicore Processor Myriad2. In Proc. Euromicro PDP-2016 Int.
Conf. on Parallel, Distributed, and Network-based Processing. IEEE

• This paper extended SkePU to a low power processor Myriad2
and evaluated its performance.

• Christoph Kessler and I supervised a master thesis project by
Rosandra Cuello, which formed the basis for the subsequent mas-
ter thesis done by Sebastian Thorarensen, who performed the de-
sign and implementation with the help of Brendan Barry. Sebas-
tian Thorarensen wrote the paper with proof-reading by Christoph
Kessler, Brendan Barry and me.

14. † Li, L. and Kessler, C. (2017b). VectorPU: A Generic and Efficient
Data-container and Component Model for Transparent Data Trans-
fer on GPU-based Heterogeneous Systems. In Proc. 8th Workshop
on Parallel Programming and Run-Time Management Techniques for
Many-core Architectures and 6th Workshop on Design Tools and Ar-
chitectures for Multicore Embedded Computing Platforms (PARMA-
DITAM’17). ACM

• This paper describes an embedded annotation language for nor-
mal CUDA programs, that allows for automatic data manage-
ment without redundant data transfer. It also included a perfor-
mance comparison with a commercial mechanism: CUDA Unified
Memory.

• I developed an annotation language that allows to generalize the
idea of smart containers [27] from SkePU to normal CUDA pro-
grams, I designed and implemented the language with suggestions
from Christoph Kessler. I performed the experiments and wrote
the paper, with proof-reading by Christoph Kessler.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 11 — #23

1.4. LIST OF PUBLICATIONS AND TECHNICAL REPORTS 11

15. † Li, L. and Kessler, C. (2017a). Lazy allocation and transfer fusion
optimization for GPU-based heterogeneous systems. In Proc. Euromi-
cro PDP-2018 Int. Conf. on Parallel, Distributed, and Network-based
Processing. IEEE

• This paper described two memory transfer optimization tech-
niques based on merging small messages. It discussed the design
and implementation of the two techniques, and gave some initial
evaluation of performance benefits.

• I designed and implemented the two techniques, performed the
evaluation and wrote the paper with Christoph Kessler.

I also contributed to the following technical reports:

1. Dastgeer, U., Li, L., and Kessler, C. (2012a). D1.4: Research pro-
totype implementation. Technical report, c©The PEPPHER Consor-
tium. June, 2011

2. † Kessler, C., Li, L., Dastgeer, U., Tsigas, P., Gidenstam, A., Renaud-
Goud, P., Walulya, I., Atalar, A., Moloney, D., Hoai, P. H., and Tran,
V. (2014c). D1.1 Early validation of system-wide energy composition-
ality and affecting factors on the EXCESS platforms. Technical Report
FP7-611183 D1.1, EU FP7 Project EXCESS

3. † Kessler, C., Li, L., Dastgeer, U., Gidenstam, A., and Atalar, A.
(2014b). D1.2 Initial specification of energy, platform and component
modelling framework. Technical Report FP7-611183 D1.2, EU FP7
Project EXCESS

4. † Kessler, C., Li, L., Dastgeer, U., Cuello, R., Sjöström, O., Hoai,
P. H., and Tran, V. (2015b). D1.3 Energy-tuneable domain-specific
language/library for linear system solving. Technical Report FP7-
611183 D1.3, EU FP7 Project EXCESS

5. † Kessler, C., Li, L., Hansson, E., Ahlqvist, J., Thorarensen, S., and
Yang, M.-J. (2015c). D1.4 First prototype of composition tool and
multi-level energy and platform modeling framework. Technical Re-
port FP7-611183 D1.4, EU FP7 Project EXCESS

6. Dolkas, K., Sandoval, Y., Hoppe, D., Khabi, D., Umar, I., Ha, P.,
Moloney, D., Li, L., Kessler, C., Gidenstam, A., and Renaud-Goud, P.
(2015). D5.3 Report on integrating the first designs and prototypes
from technical WPs. Technical Report FP7-611183 D5.3, EU FP7
Project EXCESS

7. † Kessler, C., Li, L., Melot, N., Hansson, E., Ernstsson, A., Tho-
rarensen, S., and Barry, B. (2016). Final specification of energy, plat-
form and component modelling framework and final prototype. Tech-
nical Report FP7-611183 D1.5, EU FP7 Project EXCESS

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 12 — #24

12 CHAPTER 1. INTRODUCTION

1.5 Thesis Outline

The thesis starts by providing necessary background in Chapter 2, then
we discuss several programming challenges: the complexity to handle mea-
surement, CPU-GPU selection, platform diversity and data management.
At the same time, we present our prototype design and optimization tech-
niques: MeterPU, TunerPU, XPDL, and VectorPU in Chapter 3, 4, 5, and 6
respectively. These prototypes addresses programming complexities at dif-
ferent levels and can be combined together. In order to demonstrate how
to integrate and use these prototypes together, we provide an example in
Chapter 7. Finally Chapter 8 concludes and suggests possible future work.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 13 — #25

Chapter 2

Background

In this chapter we provide some basic background knowledge that helps to
understand the rest of the thesis, and the definitions of the terminology that
we use later on.

The thesis is partially based on the concept of software component. Be-
fore introducing this concept, we first describe various ingredients that a
component could consist of in the context of parallel programming. First we
introduce parallel programming in general without binding to a specific piece
of parallel hardware in Section 2.1, and then we introduce programming for
several popular kinds of parallel hardware, such as multicore CPUs using
OpenMP and GPGPUs using CUDA in Sections 2.2 and 2.3. With all the
ingredients at hand, we introduce the concept of a (parallel) software compo-
nent in Section 2.4, and the composition tool ComPU that utilizes existing
software components for some optimizations in Section 2.5. Afterwards, we
introduce skeleton programming as another way of parallel programming in
a higher abstraction level compared to OpenMP, CUDA etc., and a skele-
ton programming framework SkePU which we will use for some of the work
presented in this thesis. Finally we describe C++ meta-programming which
allows compile-time computations with no run-time overhead, and makes it
suitable for implementing low-overhead programming abstractions, such as
those developed in Chapters 3, 5 and 6.

2.1 Parallel Programming

Programming a sequential machine efficiently is already a very complex
problem. As CPU hardware evolved to multicore architectures, program-
mers not only need to program in parallel, but also play a critical role for
performance. As Hennessy and Patterson [51] pointed out:

“The popular version of Moore’s law—increasing performance
with each generation of technology—is now up to programmers.”

13

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 14 — #26

14 CHAPTER 2. BACKGROUND

In addition to sequential programming, parallel programming adds quite
some responsibilities to programmers’ shoulders. Foster’s PCAM method [63]
gives a conceptual method for the design of a parallel program without bind-
ing to a specific piece of parallel hardware, which illustrates a clear picture
for these new responsibilities. As the name “PCAM” implies, the method
includes four stages as follows:

1. Partitioning: this stage refers to determining how to partition the
workload into multiple pieces of work, we could call each such piece a
task. These tasks could be executed in parallel if there are no depen-
dencies among them. Two partitioning schemes are domain decompo-
sition and functional decomposition. Domain decomposition leads to
data level parallelism, and functional decomposition leads to task level
parallelism. Data level parallelism usually incurs lower overhead than
task parallelism [51].

2. Communication and synchronization: some tasks may not have de-
pendencies, but more frequently they have. Some tasks may need to
communicate with other tasks by providing data that these tasks need
to perform their intended computations. Such communications can be
performed by message passing or through shared data with appropri-
ate protections to avoid race conditions. To ensure that tasks only
execute after they obtained the data they need, synchronizations are
needed to force these tasks to wait if they are not data-ready yet.

3. Agglomeration: the whole workload can be partitioned in different
granularities. A more coarse-grained partitioning will constrain the
level of parallelism, while an overly fine-grained partitioning will lead
to excessive communications and synchronizations. Agglomeration can
increase the granularity of workload partitioning, and remove the need
of some data communications and synchronizations. Determining the
optimal granularity is usually hardware- and application-dependent,
and may require empirical tuning.

4. Mapping and scheduling: after agglomerations, we have a reduced set
of tasks that can finally be mapped to and scheduled on processing
elements. Mapping refers to determining where to execute a certain
task, and scheduling refers to determining when and where to execute
a certain task. To determine the optimal mapping and scheduling de-
pends on applications, run-time contexts, and hardware, which usually
is statically undecidable or NP-complete.

Without any programming abstractions, parallel programmers need to
handle these programming issues explicitly, and handle them properly. Some
of these aspects can however be abstracted away by more high-level parallel
programming models and their implementations.

In next two sections, we will discuss the hardware-specific parallel pro-
gramming on two popular processors.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 15 — #27

2.2. PROGRAMMING MULTICORE CPUS 15

2.2 Programming Multicore CPUs

A modern CPU consists of multiple cores that allow truly parallel execu-
tions of different programs. Different cores in a CPU could share cache at
least at its last level, and main memory. A computer system could consist of
multiple multicore-processors in different sockets, with each connected to its
own memory. A processor could be able to access another processor’s mem-
ory at a larger latency than its own, which is called non-uniform memory
access (NUMA). Many processors can execute vector (SIMD) operations,
which implements data level parallelism. Each core in a processor could run
different programs in parallel, which implements task level parallelism. The
processor itself is pipelined, and compilers can transform a loop to better
exploit pipelining, which is called software pipelining.

At programming model level, what are visible to programmers are vector
(SIMD) operator intrinsics, thread API (e.g., pthreads [19]) to implement
data level parallelism and task level parallelism. Pipelining is usually out
of programmers’ hand, but rather conspired by compilers and hardware.
Different threads could exchange messages by shared memory protected by
synchronization techniques, such as mutex locks, atomics etc. Higher level
programming models on multicore CPUs also exist, like OpenMP [25], which
only requires to annotate loops for parallelizing a sequential program.

2.3 Programming GPGPUs

A Graphics Processing Unit (GPU) is a kind of co-processor that can offload
graphics processing tasks from CPUs in a computer system. After 2001,
performing general purpose computations on some GPUs became practical
by introducing programmable shaders and floating point support on GPUs,
and more and more applications were ported to such GPUs ever since. Such
general purpose GPUs are usually called GPGPU s. In this thesis, we use
the terms GPU and GPGPU interchangeably. CUDA [98] and OpenCL [92]
is introduced afterwards, to better support general purpose programming
on Nvidia’s CUDA-enabled GPUs.

GPGPUs are usually designed for high throughput, compared with CPUs
which aim at short latency. Under such design philosophy, GPGPUs are
usually equipped with a large number of simple cores to ensure a high level
of parallelism, and those simple cores usually have limited cache size and
shallow cache hierarchy without sophisticated branch predictors, out of order
execution, speculation etc. These simple cores are organized into groups,
each group is called a streaming processor1 (SM). The programmers write
code for a large number of threads, which are also organized into groups;
each group is called a block. A block is usually mapped to a SM for execution
at run-time. A set of blocks that run the same code is called a grid.

1We use Nvidia’s terminology, for OpenCL’s terminology, please see [92].

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 16 — #28

16 CHAPTER 2. BACKGROUND

Typical GPGPUs have three levels of memories with different access
latencies that are visible to programmers: global memory that could be
accessed by every thread with a large latency, shared memory that could
only be accessed by threads within a block with a medium latency, and
private memory that could only be accessed by each individual thread with
a short latency. Within a block, threads could communicate via shared
memory. The inter-block communication is much harder, usually through
global memory and could only be done by multiple kernels.

In order to program for GPGPUs, e.g., using CUDA, programmers write
code in the SPMD (single program, multiple data) style, where the kernel
is the same for every thread, and programmers invoke GPGPU kernels by
specifying grid and block size. Programmers are recommended to target at a
relatively large block and grid size, to ensure a high degree of parallelism. In
the kernel, a thread id for each thread is calculated, and branching is neces-
sary if different threads should perform different operations. Such branching
may not be good for performance, as the code is branching to one arm, the
threads that should branch to other arms have to wait and this causes a
sequentialization, which is called control divergence. Thus GPGPUs fit data
parallel applications better performance-wise.

Programmers are also recommended to utilize scratchpad memory such
as shared memory within a block if multiple accesses to the same data from
different threads within a block make it worthwhile.

In order to execute GPGPU code, programming on CPU side is necessary
as well. A CPU plays the role as a master for a GPGPU in the same
system. CPUs’ main memory is also called host memory, and GPGPUs’
global memory is also called device memory. A CPU performs management
tasks such as memory allocations, memory initializations, data transfers
between host memory and device memory, and GPGPU kernel invocations
etc. Data should also be transferred from host memory to device memory
before the invocation of the kernel that will read these data. The result
data should be transferred back from device memory to host memory if host
functions need them.

Open Computing Language (OpenCL) [92] is an open standard for cross-
platform parallel computing that can provide a similar programming in-
terface with similar functionalities as CUDA for programming GPGPUs.
OpenCL is portable across many different processing element types such as
multicore CPUs, GPGPUs etc., while CUDA only support Nvidia’s CUDA-
enabled GPUs. Programming using OpenCL involves more efforts than
CUDA in general, as OpenCL’s API is more complicated. Higher level pro-
gramming models on GPGPUs also exist, like OpenACC [128], which only
requires to annotate loops for parallel execution on GPGPUs.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 17 — #29

2.4. SOFTWARE COMPONENTS AND CESETS 17

2.4 Software Components and cesets

The software component is an important concept in software engineering,
and there are many definitions for software component. The most popular
one is given by Szyperski et al. [120], which we will use in this thesis:

“A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is
subject to composition by third parties.” [120]

From this definition, we can extract a few pieces of key information of
our interest:

1. A component is only visible for its interface and dependency informa-
tion.

2. The internal structure of a component is undefined, thus programmers
could use different techniques at hand to implement a component.

• It could be implemented sequentially or in parallel.

• It could be implemented targeting multicore CPUs or GPGPUs.

• It could be implemented using low level programming models,
such as pthreads, CUDA, OpenCL etc., or high level program-
ming models, such as OpenMP, OpenACC etc.

• It could be implemented using different algorithms.

3. A component can be composed by third parties in a differently config-
ured environment.

Although a component can consist of many different elements, such as
(multiple) functions, data, images, meta-data etc, in this thesis we constrain
our components to be light-weight in component structure, each only con-
sisting of a single function, although the function can be arbitrarily complex.
We use the terms component and light-weight component interchangeably.
Using lightweight components is only for the convenience of reference. We
only consider C/C++-based programming models as they are common on
GPU-based systems, thus no heavy-weight interoperability machinery such
as stubs2 and skeletons, like in CORBA [111], is needed.

An example of lightweight component is shown in Listing 2.1. The com-
ponent consists of only one function: vector scale(). It exposes its inter-
face, its implementation is not necessarily visible even if we show it here,
the implementation may be in a binary library.

2Stubs and skeletons in this context are adapters that convert a component call to a
form that can bridge programming language difference gap.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 18 — #30

18 CHAPTER 2. BACKGROUND

1 void v e c t o r s c a l e (i n t const ∗ i n t in , i n t ∗ out ,
2 i n t const s i z e , i n t s c a l e f a c t o r){
3 f o r (i n t i =0; i<s i z e ; ++i)
4 out [i]= in [i]∗ s c a l e f a c t o r
5 }

Listing 2.1: A lightweight component

Due to the undefined internal structure of a component, we could im-
plement an interface using different design choices, which will lead to a set
of components that expose the same interface, with different implementa-
tion design choices and possibly different dependency requirements. Each of
them is called an implementation variant, and they all share the same inter-
face, which is called the interface of the ceset Note that an implementation
variant is also a component, and in this thesis we use them interchangeably.
The set of all implementation variants implementing the same functional-
ity under an interface is called a component equivalence set, abbreviated as
ceset (pronounced as /si : set/).

Each element in a ceset is implemented by different design choices, thus
its performance (and energy consumption) may differ significantly with each
other in a ceset. For example, two components implemented for the same in-
terface of a reduce operation, but programmed to run on multicore CPU and
GPGPUs can differ in performance by 647 times [83]. Furthermore, each im-
plementation variant may not outperform another across all its input range,
thus this creates a space for performance optimization by implementation
selection according to the execution of a run-time context such as its input
instance, which we call the implementation selection problem.

A component is subject to composition by third parties, thus a third
party tool could bind a call to any component in its ceset. Binding a call to
a component means to map a call to one of the component in the ceset, so
whenever such a call is encountered in program, we know which component
in the ceset the call should jump to. If such binding is fixed at compile time,
we call it static composition. If such binding is fixed at run-time, we call it
dynamic composition.

Next, we will discuss a composition tool that first utilize static compo-
sition, and then delegate the final binding choice to a run-time system for
dynamic composition.

2.5 PEPPHER Composition Tool: ComPU

Given a program consisting of calls to interfaces, each with a non-empty
ceset, we could build tools to manipulate the static and dynamic binding
from a caller to a callee (i.e., an implementation variant) from a ceset.
Tools could prepare the code to make such bindings adaptive to its run-time
context as a run-time optimization.

The composition tool ComPU [32] was developed in EU FP7 project
PEPPHER [104]. It is designed to perform static composition and prepare

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 19 — #31

2.6. SKELETON PROGRAMMING AND SKEPU 19

components for further dynamic composition. ComPU requires program-
mers to annotate their components. Compiler analysis can not determine
automatically which components belong to the same ceset, because compo-
nents that expose the same interface do not necessarily implement the same
functionality. Other annotations that programmers need to provide include
the access modes (read, write or read-write) of its parameters of a compo-
nent, which allows automatic memory management for operands, and the
dependency constraints (e.g., a component may require a specific library)
information.

ComPU parses those XML files carrying component annotations. The
static composition that ComPU performs mainly involves narrowing down
the ceset by filtering those components whose dependency constrains are
evaluated as not satisfied by ComPU. This will ensure the further compo-
sition to be always executable, leading to an executable program. ComPU
performs the dependency constraint evaluation by fetching platform infor-
mation through the XPDL query API (see Chapter 5). In short, ComPU
disables the components that can not run on a system for the further linking.

Since ComPU runs statically and the final binding requires the run-time
context of an invocation, thus a run-time system is needed to perform the
final binding. In the PEPPHER project, StarPU [8] is selected for ComPU
to pass the narrowed ceset to. StarPU requires a component to be wrapped
in its specified format, thus after narrowing, ComPU generate the wrapper
code for the remaining components, and additionally generate a makefile for
compilation. Up to this point, programmers could compile the components
with their application and run it with StarPU providing for final binding
based on its performance models. Using ComPU allows to generate some
low level code required by StarPU thus enable programmers to write less
code [32].

To summarize, ComPU reads components’ XML descriptors, narrows
down each ceset by evaluating the constraints on component dependencies,
generates wrappers for the remaining component in the narrowed ceset, and
delegates the final binding to StarPU.

2.6 Skeleton Programming and SkePU

The idea of skeleton programming comes from functional programming [54],
which encourages to write programs with immutable variables and side-effect
free functions, and treats a program execution as evaluating a mathematical
expression. Side-effect free functions can safely run in parallel, as they
do not mutate state outside their own function scope, and no data access
conflict could possibly happen. Haskell is an example of popular functional
languages.

Functional programming treats everything as a value, including func-
tions. Therefore a function can take another function as an argument, and
those functions that could take functions as arguments are called high-order

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 20 — #32

20 CHAPTER 2. BACKGROUND

functions. By utilizing high-order functions, programmers could write an
outer function, containing some control structure and pass a function value
to the outer function with the control structure to control the execution
of the function. For example, programmers could write a loop, then pass
different function values to it to loop on different functions, thus the loop
structure is reused and abstracted away. This kind of abstraction is called
control abstraction [100].

Skeleton programming utilizes the concepts of control abstraction and
side-effect free functions. Each skeleton is a high order function that has
well-defined semantics and implements a control abstraction, e.g., a high-
order function only consisting of a simple loop on an array without loop-
carried data dependencies is called a map skeleton. Programmers only need
to write one or several side-effect free functions3 to express the core compu-
tations to be performed element-wise, which are called user functions, and
combine these functions with suitable skeletons to get the correct control for
free. Since user functions are side-effect free, each skeleton has greater flex-
ibilities to execute them, compared to functions that produce side-effects.
The flexibilities include the freedom to execute them in parallel without wor-
rying about race conditions etc., which makes skeleton programming a good
fit to the parallel programming context. As each skeleton has well-defined
semantics, expert programmers could implement the synchronizations re-
quired and non-expert programmers reuse it for different user functions.

SkePU [38] is a research software framework that implements the idea of
skeleton programming on heterogeneous systems that may consist of sequen-
tial CPUs, multicore CPUs and GPGPUs. SkePU offers programmability,
as programmers only need to write one or several sequential user-functions,
and the implementation variants that are needed for execution on multicore
CPUs and GPGPUs etc. are generated automatically by SkePU. SkePU
supports automatic and adaptive CPU-GPU selection [31] by implementing
the implementation selection technique of Section 4.2. SkePU offers data
structures with automatic memory allocation and coherence management
between CPU memory and GPU memory. In recent years, SkePU has been
ported to the low-power multicore processor Movidius Myriad2 [124]. The
second generation of SkePU, SkePU 2 [40] redesigned SkePU’s programming
interface with modern C++11 language features.

SkePU has a rich support for different types of skeletons to provide the
wide expressiveness for general high performance computations. The typical
data-parallel skeletons are shown in Table 2.1. The unary map skeleton
takes every element in an array and produces a result by applying a user
function on each element in the array. The binary map skeleton does the
same as a unary map skeleton except that the input consists of two arrays,
and the user function takes two values, one of each of the two arrays. The
reduce skeleton takes an input array and produces a scalar by scanning

3These side-effect free functions return their output values instead of writing to an
pointer.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 21 — #33

2.6. SKELETON PROGRAMMING AND SKEPU 21

Skeleton type Description
Map(a, b, f) bi = f(ai), i = 1, ..., n
Map(a, b, c, f) ci = f(ai, bi), i = 1, ..., n
Reduce(a, f) d = f(a1, a2, ..., an), i = 1, ..., n
Mapreduce(a, b, f, g) d = g(f(a1, b1), ..., f(an, bn)), i = 1, ..., n
Mapoverlap(a, t, f) bi = f(ai−t, ..., ai+t), i = t, ..., n− t
Maparray(a, b, c, f) ci = f(bi, a1, ..., an), i = 1, ..., n

Table 2.1: Typical SkePU skeletons and their semantics. (a, b, c: vector. d:
scalar. t: positive integer constant. f, g: user function)

the input array by applying a user function. The mapreduce skeleton is
the combination of a map and reduce skeleton, such combination allows to
optimize away an intermediate array to store the result of the map skeleton
execution. The mapoverlap skeleton implements the stencil computation,
where the user function can access values from a specified neighborhood of
each input element in an array to compute each output value. The maparray
skeleton is similar to the mapoverlap skeleton, except that a user function
can use all elements of an input array to compute each output value.

A typical SkePU program is shown in Listing 2.2. Lines 3-6 declare a
user-function mult that performs a simple binary multiplication. Line 11
instantiates a map skeleton composed with the user function, and Line 13
invokes the skeleton instance. It could run on multicore CPUs or GPGPUs
based on automatic implementation selection which is adaptive to the run-
time context (e.g., the input vector’s size). All low level details, such as data
allocation, data transfer, hardware-specific implementation variant genera-
tion, are hidden in the skeleton implementations and reused for different
user functions for different computations.

1 #inc lude <skepu2 . hpp>
2

3 i n t mult (i n t x , i n t y)
4 {
5 re turn x ∗ y ;
6 }
7

8 i n t main (i n t argc , char ∗argv [])
9 {

10 skepu2 : : Vector<int> vector1 (100 , 3) , vector2 (100 , 7) , r e s u l t (100) ;
11 auto vecmult = skepu2 : : Map<2>(mult) ;
12

13 vecmult (r e s u l t , vector1 , vector2) ;
14 std : : cout << ”Map: r e s u l t = ” << r e s u l t << ”\n” ;
15

16 re turn 0 ;
17 }

Listing 2.2: Example code snippet for map skeleton using SkePU 2

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 22 — #34

22 CHAPTER 2. BACKGROUND

2.7 Meta-programming in C++

Meta-programming is very different from traditional programming in that
meta-programs run at compile time instead of run-time, thus meta-programs
cause no rum-time overhead. What is a meta-program? Abrahams et al. [1]
provide a definition of meta-program as follows:

“A meta-program is a program that manipulates code.”

Thus in principle a compiler could be viewed as a meta-program. A
meta-program allows to define a new language and uses programs in that
language as an input. The input language is called domain language. A
meta-program manipulates a domain language and translate it to a host
language. For example, the parser generation tool YACC [59] takes parser
specifications as its domain language, and translates to its host language,
C.

YACC illustrate a meta-program example where its domain language
and host language differ. One could also design a meta-program where its
domain language and host language are the same. In such a situation, the
domain language is defined using the host language’s syntax and semantics.
We usually call such a domain language an embedded language. The benefits
of an embedded language are three-fold: first, it does not require to learn
a new set of syntax; second, the interactions between the domain language
constructs and the host language constructs are smooth, since in essence
the domain language constructs and the host language constructs are in the
same program; third, there is no extra build step needed for the embedded
language.

In this thesis, we are targeting at GPU-based heterogeneous systems, and
the languages that are used to program GPGPUs are based on C/C++.
Since C++ has better modularity support than C (e.g., C++ allows to
modularize both functions and data compared to C), we choose C++ for
meta-programming and design embedded languages whenever it applies.

Several kinds of meta-program constructs exist, such as numerical meta-
functions, type meta-functions etc. Listing 2.3 gives an example of a numer-
ical meta-function. Lines 1-3 show a definition of a numerical meta-function.
The const keyword guarantees that the value can be used and computed
at compile time, and the static keyword allows the usage of the value
without run-time object creation. Line 6 shows how to invoke the func-
tion. Numerical meta-function is equivalent to constant values defined by
macros, except that macros are expanded at preprocessing time while Nu-
merical meta-function is expanded at compile-time, and usually numerical
meta-function allows explicit typing for its constant value.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 23 — #35

2.7. META-PROGRAMMING IN C++ 23

1 s t r u c t three {
2 s t a t i c i n t const value = 3 ;
3 }
4

5 // invoke by
6 three : : va lue

Listing 2.3: Numerical meta-function example

Listing 2.4 shows an example of a type meta-function. The input is
the type T in Line 1, and the output is the type type in line 3. Such a
computation transforms one type to another. Since template expansion is
performed at compile time, such computation is finished after compilation.

1 template <c l a s s T>
2 s t r u c t Func {
3 typede f type . . . ;
4 }
5

6 // invoke by
7 Func<Int > : : type

Listing 2.4: An general meta-function example

A C++ trait is a special case of C++ type meta-function. A metaphor
of a trait is that it is a type meta-function with multiple return values.
Listing 2.5 shows an example of a C++ trait. It allows to group a set of
types (such as type1, type2, etc. in Lines 2-4) and associate the group
with a single type (type Trait in Line 1). Since behaviors are usually
encapsulated in classes which are also types, this grouping could simplify
controlling a set of behaviors by using a single type as a parameter. C++
traits are used to implement the MeterPU Meter class in Chapter 3.2.1.

1 s t r u c t Tra i t {
2 typede f type1 . . . ;
3 typede f type2 . . . ;
4 . . .
5 }

Listing 2.5: A trait as a special case of a meta-function

C++ macros can be considered as a kind of C++ meta-program con-
structs, because they can manipulate code as well. Macros could be used to
enable or disable arbitrary segments of code, and take preprocessing-time
values. One should use macros with care, as it could decrease readability
and make debugging difficult.

For the concern of programming abstraction implementation, C++ meta-
programming for embedded languages has very interesting properties: first
it allows to define a new language easily compared to implementing a com-
piler; secondly it causes no run-time overhead, which is good as program-
ming abstraction implementation requires highly efficient execution; thirdly,
the interaction between the new language and the host code is native and
seamless, thus it allows to build language extensions such as annotations

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 24 — #36

24 CHAPTER 2. BACKGROUND

easily. On the other hand, C++ meta-programs are less powerful than a
full-fledged compiler which can perform complex analysis and optimizations
based on different intermediate representations (e.g., SSA [115]), and C++
meta-programs can only compute values with its input determined at com-
pile time.

To summarize, C++ meta-programming allows to define new embedded
languages with zero run-time cost and reasonable programmers’ efforts, and
in this thesis, we will utilize C++ meta-programming to build programming
abstractions when it applies, e.g., MeterPU in Chapter 3, XPDL library in
Chapter 5 and VectorPU in Chapter 6.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 25 — #37

Chapter 3

Handling Measurement
Complexity

This chapter is based on the following journal paper:

• Li, L. and Kessler, C. (2016). MeterPU: A Generic Measurement
Abstraction API Enabling Energy-tuned Skeleton Backend Selection.
Journal of Supercomputing, pages 1–16. Springer

Which in turn, is an extended version of the workshop paper:

• Li, L. and Kessler, C. (2015). MeterPU: A Generic Measurement
Abstraction API Enabling Energy-tuned Skeleton Backend Selection.
In Proc. International Workshop on Reengineering for Parallelism in
Heterogeneous Parallel Platforms (REPARA-2015) at ISPA-2015, Hel-
sinki. IEEE

A fundamental question in empirical science is how to measure things,
e.g., Newton’s second law can be re-discovered by measurement and simple
curve-fitting. This question is particularly important for computer science,
and it is necessary to measure some metrics (e.g., time) of programs, as in
general no perfect model can predict e.g., time of a program execution by
just static analysis of the program. The power of static program analysis is
limited, caused by statically unknown input that leads to a statically unde-
cidable path of control flow, aliasing and imprecision of data flow analysis.
To build a reasonable model to replace measurement requires measuring as
a prerequisite, and one may need to calibrate or verify such models from
time to time via measurements, especially when switching platforms. Mea-
surement is the basis for optimization, as one can not optimize what can
not be measured.

Is measurement simple or complex? How to measure energy as it be-
comes the bottleneck of HPC systems? How to deal with different kinds
of measurements? Why is unifying different kinds of measurement desired

25

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 26 — #38

26 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

and how can it be done to hide the programming complexity of measure-
ment? This chapter will explain these questions, and serves as a basis or
infrastructure to the following chapters.

Section 3.1 gives an overview of the complexity involved to measure
programs. Section 3.2 describe the design and implementation of MeterPU
to tackle such complexities. Section 3.3 shows how to integrate MeterPU
with SkePU (cf. Section 2.6) as we evaluate MeterPU through SkePU. The
evaluation is shown in Section 3.4.

3.1 Measurement Complexity

Measurement of time that programs run is simple as the existing APIs on
different kinds of operating systems already hide the complexity, allowing
programmers to mark a measurement region and to get back a human-
readable result such as ”3 microseconds”. However, measurement of energy
is still a challenge. Instead of only fetching some hardware counters im-
mediately before and after the measurement region in the code, measuring
energy requires constantly sampling power data (besides maintaining a sep-
arate thread for constant sampling, the overly high sampling frequency may
incur significant overhead which is included in a measurement), either by
built-in power sensors or by estimates. The frequency of such sampling is
usually a hard decision, as higher frequency allows better precision, while it
incurs its own energy overhead that affects the measurement accuracy. Us-
ing external measurement equipments such as oscilloscope requires careful
deployment and some physical instrumentations on the device under mea-
surement at the risk of circuit damage, with the later-on complexity of power
data analysis.

Assuming that all these complexities are properly handled, the power
data obtained may still not be what we expect. Burtscher et al. [18] studied
measurement of GPU energy using built-in sensors, and found out that
energy is still spent after the GPU kernel under measurement finishes. He
assumes there is a capacitor of some sort, and correct the power data by a
formula mimicking capacitor charging and recharging.

Some special-purpose libraries appeared to hide the complexity of mea-
surement for some hardware components, such as the Intel Performance
Counter Monitor (PCM) library [129], which allows to easily measure CPU
and DRAM energy. However, no library, as far as we know, can directly
yield energy consumption values for GPUs. NVIDIA Management Library
(NVML) [94] allows to sample the power consumption of the whole GPU
board at a low frequency (20 samples per second by microbenchmarking),
however, by the study of Burtscher et al. [18], those values are not the
true power usage and require correction. Different libraries expose different
interfaces, to use a different library requires learning the library carefully.

As a summary, measurement of energy for program executions, especially
on GPUs, are not trivial, and due to the importance of measurement, this

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 27 — #39

3.2. METERPU DESIGN AND IMPLEMENTATION 27

issue must be handled and the complexity must be hidden. In addition, non-
uniform interfaces exposed by different library make it hard to use them.

In the following section (Section 3.2), we propose a design and implemen-
tation as a generalization effort to unify measurements for different metrics
on different hardware components on GPU-based heterogeneous systems.
The benefits of such a unification are at least the following:

• The complexity of measurements for different metrics on different
hardware components is hidden.

• The gaps of different interfaces of different libraries are filled, which
gives programmers a unified view for different measurements. This
minimizes programming efforts to perform the measurements for vari-
ous purposes, such as microbenchmarking, building performance mod-
els etc.

• The switching of different metrics becomes trivial, which yields bene-
fits like easy switching optimization goals. For example, the optimiza-
tion goal could be switched from time to energy for legacy optimiza-
tion frameworks that requires measurements, if the switching does not
break goal-specific assumptions.

3.2 MeterPU Design and Implementation

MeterPU is a C++ template-based library prototype, which aims to pro-
vide an abstraction layer for measurement of various metrics on different
platforms. Currently it supports measuring time and energy spent on CPU,
on DRAM and on (single and multiple) GPU(s). It can also measure en-
ergy by different measurement techniques, such as external measurement
devices (e.g. Wattsup power meter). The library can be extended easily for
new metrics, such as FLOPS, cache misses etc., and for new measurement
techniques.

3.2.1 Library API and Example Applications

MeterPU exposes to programmers a unified API no matter which type of
supported metric is used.

Listing 3.1 shows the API that MeterPU exposes to programmers. It
consists of a class called Meter with a template parameter to specify the
Meter’s type. The Type parameter specifies which metric is used, such
as time or energy, and which hardware component to measure, such as
CPU or GPU. The generic type also has a C++ trait [15] defined with it,
where it can fetch all metric-related types. A C++ trait class is a class
that encapsulates all related types (meta-data) together. For instance, if
CPU time is used as metric (template parameter Type is CPU Time), then
typename Meter Traits<Type>::ResultType will give the time unit as the

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 28 — #40

28 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

CPU Time-related types, such as microsecond. The API consists of four main
member functions of Meter: start(), stop(), calc(), and get value(),
which are used as follows:

• start(): mark the start of a measurement phase/period.

• stop(): mark the end of a measurement phase/period.

• calc(): calculate the metric value based on the measurements taken
between start() and stop(). It is possible to merge calc() with stop(),
but here we expose the two functions to programmers1, and class Meter
can be inherited if the merge is preferred.

• get value(): return the value of the measurement between the start
and stop calls.

template<c l a s s Type>
c l a s s Meter
{
pub l i c :

void s t a r t () ;
void stop () ;
void c a l c () ;
typename Meter Traits<Type> : : ResultType const &g e t v a l u e ()

const ;
p r i v a t e :

. . .
}

Listing 3.1: Main MeterPU API

Listing 3.2 shows an example application that uses MeterPU. First a
meter is initialized with the type CPU Time, showing that it is a time meter
on CPU. Then start() and stop() are used to mark the start and end of
a time measurement by the meter, and finally calc() and get value() are
called to calculate the difference in metric value between the two program
points, and to print the meter reading on a terminal.

1Actually this separation can lead to reduced overhead if more than one meter is
measured over the same time interval, as the possibly time-consuming calc() calls can be
done outside the measurement interval for each metric.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 29 — #41

3.2. METERPU DESIGN AND IMPLEMENTATION 29

#inc lude <MeterPU . h>
i n t main ()
{

us ing namespace MeterPU ;
Meter<CPU Time> meter ;
meter . s t a r t () ;
//Do sth here
s l e e p (2) ;
meter . stop () ;
meter . c a l c () ;
my print (meter . g e t v a l u e ()) ;

}
// Result :
// [CPU Time Meter] Time consumed i s 2 .00013 e+06 micro seconds .

Listing 3.2: An example application that uses the MeterPU library

3.2.2 Implementation

The actual measurement plug-in code used with MeterPU is implemented
on top of native measurement libraries. For the CPU time measurement, it
may use the native clock gettime()2 function. For the CPU energy mea-
surement, it may use the Intel PCM library. For the GPU energy measure-
ment, it may use the Nvidia NVML library (nvmlDeviceGetPowerUsage(),
reported sampling error within 5% [94]) to get power samples, and apply nu-
merical integration to calculate energy values and compensate for the Nvidia
NVML’s capacitor-like effect3 with K20c. The Nvidia power integration is
only executed after the completion of the measurement by MeterPU of a
code region. Thus, such power integration overhead will not influence the
measurement result obtained from MeterPU.

MeterPU is not coupled with a specific measurement method, and it can
be hooked with more accurate methods or devices. So far we are not aware
of any library that offers power samples on the PCI Express bus on the
motherboard side, thus the motherboard-side energy of GPU data transfers
is not supported yet in MeterPU, and not included in the experimental
results described in Section 3.4. In the future one can consider to use an
external power meter between the correct power rails of a motherboard for
the power samples of PCIe, in this case a spare/separate computer can act as
a host for the power meters, and one can develop a library for polling samples
of PCIe power from that computer, then it will integrate with MeterPU
easily.

MeterPU uses C++ traits to encapsulate all type information related to
a meter type, e.g. for CPU time, Meter Traits<CPU Time>::ResultType

2The current parameter setting of clock gettime() makes the MeterPU’s CPU time
meter measure wall clock time.

3The approach by Burtscher et al. [18] to correct power values from the Nvidia NVML
library might give better accuracy of GPU power measurement, see Sect. 3.2.4. On the
other hand, MeterPU is not coupled with a specific compensation method.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 30 — #42

30 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

gives the unit type for the final result of a CPU time measurement. The
class Meter acts as a facade, all types related to its meter type will change
as the template expands statically.

MeterPU uses the Meter class as the interface exposed to programmers.
A class has the advantage that it can hide arbitrarily complex data struc-
tures and logic underneath, and keeps the exposed part simple and unified,
thus MeterPU has the potential and possibility to unify the API design
for all measurements of metrics of interest, and acts as an important step
towards this goal. MeterPU is designed not only to make a legacy op-
timization framework based on empirical sampling and modeling easy to
migrate to other optimization goals, but also targets at proposing a general
interface standard, thus different vendors could hook their own abstracted
measurement implementation if necessary. MeterPU is also designed to be
extensible, thus it can adapt to metrics that may appear in the future.

3.2.3 More Examples

We provide more examples of MeterPU code to show the expressiveness
of MeterPU. Listing 3.3 show how MeterPU can be used to measure CPU
energy (cpu_energy_meter) and Nvidia GPU energy (gpu_energy_meter)
with a unified API; only the template parameter to initialize a meter dif-
fers in these scenarios (other code to use these meters is the same as in
Listing 3.2). For GPU energy measurement, there is one extra template
needed, the device id of a GPU, used to distinguish between different GPUs
in a multi-GPU system. For example, to initialize a meter associated with
a GPU of device id 3, one can write: "Meter< NVML_Energy<3> > meter"

and "Meter< NVML_Energy<> > meter" for the GPU with device id 0 as
default, which is usually the case on machines with only one Nvidia GPU.

Meter<PCM Energy> cpu energy meter ;
Meter< NVML Energy<> > gpu energy meter ;
Meter<CUDA Time> nv id ia gpu t ime meter ;
Meter<CUDA Multiple Time<0,1> > gpu cuda t ime meters ;
Meter< System Energy<GPU 0> > system energy meter ;
Meter<Wattsup Energy> wattsup meter ;

Listing 3.3: Code snippets to initialize different kinds of meters

MeterPU can initialize meters not only for individual hardware compo-
nents, but also for combinations of those components, while keeping the
usage of those meters the same as individual ones. For homogeneous hard-
ware components, MeterPU can easily build a meter associated with them,
e.g. gpu_cuda_time_meters in Listing 3.3, which can measure kernels that
run on multiple GPUs, and only requires the set of GPU ids specified.
This feature allows a small constant number of lines of code (LOC) to use
MeterPU when increasing the number of homogeneous hardware compo-
nents to be measured. For heterogeneous components, we can, for exam-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 31 — #43

3.2. METERPU DESIGN AND IMPLEMENTATION 31

ple, use combinations of energy meters for CPUs, DRAM and a GPU by
system_energy_meter4 in Listing 3.3.

Allowing combinations of meters brings several benefits: first, it is easier
to use, as optimizing energy on a system or a combination of important
hardware components is usually preferred. Second, MeterPU will enforce the
sequence in which different meters start, thus possible overhead (like energy
overhead for spawning a new thread of continuous sampling) is factored out.
Third, by metaprogramming for building meters, some runtime overhead
like a for loop over many homogeneous meters is removed, which may yield
more accurate measurement values5.

One limitation of the current implementation for system meters for en-
ergy measurement is the measurement overhead in terms of energy. When
measuring energy of an Nvidia GPU, a CPU thread per meter is spawned to
periodically poll power samples from the GPU. Although the energy over-
head of thread creation and destruction is not included, the energy spent on
the CPU thread to periodically poll GPU power samples is included in the
system meter measurement, and leads to an overestimation of energy values
consumed by the CPU and the GPU. We however expect that this part
of energy is linear in the time of the polling period and can be eliminated
a-posteriori in a future version of MeterPU.

MeterPU does not force to collect pairs of time-series measurements, it
depends on its plugins. The current plugin to measure CPU energy just
return one value as it uses Intel PCM which directly returns the final en-
ergy value of our interest. Measuring GPU energy requires to poll time-
series measurements. The power integration overhead is not included in the
measurement overhead. This is why we separated calc() (this function does
power integration if needed) from stop() (this function only stops the thread
that polls the power data if we are measuring GPU energy) in our MeterPU
API design. Whether the time overhead for a thread for polling time-series
measurements is included or not depends on how one measures it, if only
GPU energy is measured, such overhead is not included in the measurement.
Such overhead only exists when we use the MeterPU system energy plugin.

The MeterPU API can also be applied for external measurement devices.
We developed a plugin for the Wattsup .Net power meter. When Wattsup is
connected to a computer that runs MeterPU, we can use wattsup_meter in
Listing 3.3 to control the measurement, and get the calculated energy value
from measured power values by numerical integration. MeterPU can also
be synchronized for device startup time6 and neglect error samplings (due
to Wattsup device hardware error) automatically.

4We call this combination system meter. So far we do not support separate measure-
ment for different CPUs; if necessary we can extend MeterPU in the future

5Metaprogramming enforces loop unrolling for initializing many homogeneous meters,
thus avoid some branch instructions when initializing every next meter in the loop.

6For Wattsup power meter, we observed a relatively long latency before obtaining the
first measurement data

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 32 — #44

32 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

●●●

●●

●●●
●●

●● ●

●

●
●

● ● ● ● ● ● ● ●

0 200 400 600 800 1000

Time (ms)

50

60

70

80

90

100

P
ow

er
 (

W
)

●

Original Data
Corrected Data

Figure 3.1: GPU power visualization by MeterPU. The vertical dashed lines
denote the time when the kernel under measurement starts and ends.

3.2.4 MeterPU Support for Visualization

MeterPU can visualize the measurement samples obtained by different plug-
ins for analysis and debugging purpose. Figure 3.1 shows a power visualiza-
tion for a GPU kernel execution wrapped by one start() and one stop().
The red curve shows the original samples by MeterPU’s NVML_Energy plugin
(internally use Nvidia NVML library), and the blue curve shows the cor-
rected power samples by Burtscher’s approach [18], with redundant power
samples removed. Based on those corrected values, the final energy value is
calculated by numerical integration in MeterPU.

3.2.5 Discussion

Energy measurement can both be performed by hardware-based measure-
ments (e.g., Wattsup power meter, shunts and A/D converters) and software
methods using models and hardware counters. Hardware-based measure-
ments can offer power samples at higher precision and sampling rate than
software methods without overestimation by the overhead of maintaining a
power-polling thread. However, from the optimization’s point of view, using
energy feedback by software methods is more practical and may dominate in
the tuning framework use cases, because usually the energy cost is hardware-
and software-dependent, and hard to predict analytically by a single gen-
eral model (also hardware evolves fast). Thus measurement at deployment
time is usually necessary, but deploying hardware instrumentations on ev-
ery machine (where due to heterogeneity, different machines’ configurations
usually differ, and deployment of hardware measurement equipment requires
understanding of each machine’s cable connections) is not very possible, and
hosting those hardware instrumentations (e.g. A/D converter) for an energy-
tuning framework with on-line training often requires a separate host com-
puter, which may cost much more energy than the savings by the tuning

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 33 — #45

3.3. COMBINING SKEPU WITH METERPU 33

framework.

3.3 Combining SkePU with MeterPU

SkePU (see Section 2.6) is an open-source C++ based skeleton program-
ming library for GPU-based systems. SkePU supports multi-platform code
generation (C, OpenMP, CUDA, OpenCL, StarPU) including support for
multi-GPU execution and hybrid execution, from the same high-level source
code.

SkePU’s adaptive off-line tuning [31] is an implementation selection method-
ology consisting of an efficient (time) sampling strategy, deployment time
offline training by smart sampling, and generation of a compact dispatch
data structure used in dynamic selection of the predicted best implementa-
tion variant for a call to a multi-variant skeleton instance. More details of
this technique can be found in Chapter 4.2 and [79, 81].

With MeterPU integrated, automatic back-end selection in SkePU can
migrate from time optimization to energy optimization easily. The auto-
matic back-end selection in SkePU is based on a predictor that predict the
fastest implementation variant. We are interested in migrating the predic-
tor so that it predicts the implementation variant that consumes the least
energy consumption instead of execution time. Usually we optimize for the
total system energy, not the energy of a specific hardware component. Even
if a CPU implementation is invoked, the GPU on the target machine is not
turned off and we can not only measure CPU energy when only a CPU im-
plementation is invoked. Thus we use a system energy meter as described
in Section 3.2.3 for each of the wrappers.

In SkePU, the time sampling for different skeleton calls with user-defined
code snippets is encapsulated in separate wrapper functions in back-ends for
different platforms (CPU, OpenMP, CUDA etc). Then we replace the time
measurement region marker code in SkePU’s off-line sampling module [31]
with MeterPU start() and stop() calls, calculate the energy value by
calc(), and finally pass the value by get value() to the tuning framework.
Now SkePU is ready to tune for reducing energy cost. Furthermore, the code
for the initialization of different types of meters can co-exist and be guarded
by macros, which makes the switching between different optimization goals
as easy as passing a different compiler flag. One can also easily make such
switching at run-time without recompiling.

It is worth mentioning that we don’t measure system power. We mea-
sure system energy by aggregating energy values from both Intel PCM and
Nvidia NVML (with power integration). Calling Intel PCM routines di-
rectly returns energy value for the Intel CPU and DRAM in the target sys-
tem, while Nvidia NVML yields time-series measurements for Nivida GPUs,
more precisely the time stamp and power value pairs. Intel PCM and Nvidia
NVML are handled as two different plugins, and a system energy meter is
constructed on top of this two primitive plugins. Our interest is to reduce

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 34 — #46

34 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

Skeleton type Description User function
Map bi = f(ai), i = 1, ..., n return a*a;

ci = f(ai, bi), i = 1, ..., n return a*b;
Reduce d = f(a1, a2, ..., an), i = 1, ..., n return a+b;
Mapreduce d = g(f(a1, b1), ..., f(an, bn)), return a*b;

i = 1, ..., n //for map
return a+b;
//for reduce

Mapoverlap bi = f(ai−t, ..., ai+t), return (a[-2]*4 +
i = t, ..., n− t a[-1]*2 + a[0]*1 +

a[1]*2 + a[2]*4)/5;
Maparray ci = f(bi, a1, ..., an), i = 1, ..., n //vector permute

int index = (int)b;
return a[index];

Table 3.1: Setup for different SkePU skeletons. (a, b, c: vector. d: scalar. t:
positive integer constant.)

total energy consumption of a computation task, so the instant power values
are less interesting in this context, although average power can be calculated
by measuring time and energy at the same time.

SkePU’s automatic backend selector is not a full-fledged scheduler, it only
predicts which back-end runs faster and invokes that back-end implementa-
tion. SkePU has some support for hybrid computing like asynchronous calls,
but it is not as general as a scheduler. Thus when we combine MeterPU
with SkePU, either CPU or GPU are busy for a component call, but not
both of them. The implementation variant selector in SkePU only requires
to predict which implementation variant performs better. Thus predicting
the absolute value, e.g., how much time or energy an implementation variant
will spend, although interesting in quite many contexts, is not necessary in
SkePU’s case.

3.4 Experimental Results and Discussion

3.4.1 Experimental Setup

In order to evaluate energy-tuned SkePU with MeterPU, we use SkePU
v1.1.1 on an Intel Xeon (E5-2630L v2) server with a Nvidia K20c GPU;
During all experiments, the same configuration for the machine is used with
all cores and the GPU switched on. We start with the training of SkePU
skeletons (the skeletons used and their user functions are listed in Table 3.1),
and the tuning framework will sample training runs by MeterPU to build
empirical models (for details on how to build such empirical models, please
see Section 4.2) for guidance of dynamic implementation switching. Then we

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 35 — #47

3.4. EXPERIMENTAL RESULTS AND DISCUSSION 35

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2e+02 1e+03 5e+03 5e+04 5e+05

Problem size for reduce

1

10

100

1000

10000
T

im
e(

us
):

 a
ve

ra
ge

 o
f 1

00
 r

un
s ●

CPU
OMP
CUDA
Selection

(a) Time tuning for reduce.

●
●

●
●

●

●

●

●

●

●

● ● ● ●

●
●

●

●

●

●

2e+03 1e+04 5e+04 2e+05

Problem size for reduce

100

200

500

1000

E
ne

rg
y(

m
ill

iJ
):

 a
ve

ra
ge

 o
f 1

00
0

ru
ns

●

CPU
OMP
CUDA
Selection

(b) Energy tuning for reduce.

Figure 3.2: Tuning SkePU skeletons with MeterPU (1)

generate test cases for different call contexts (problem sizes), and measure
the time speedups and energy savings. The dynamic selection is performed
always on CPU, even if the GPU implementation is selected, which will
cause some energy cost for dynamic implementation selection spent on CPU,
thus we use a system meter as described in Section 3.2.3 to measure CPU
and GPU energy at the same time. Meanwhile we also avoid the problem of
having to initialize the correct meter statically for dynamically-known choice
of component invocations, e.g., to initialize a MeterPU meter requires to
know statically whether the meter measures some CPU side metric or GPU
side metric, but the dynamic implementation selection choice which decides
where (CPU or GPU) to measure is not statically known.

Regarding the energy cost of CPU-GPU communications, as described
in Section 3.2.2, CPU side PCIe communication cost is not measured by
MeterPU’s currently implemented meters, only the GPU side PCIe commu-
nication cost is included. In our experiments, we ignore communication cost.
By the usage of smart containers [27], data transfer only happens at the first
execution of iterative computations over the same skeleton with the same
operands, and we discard the measurement for the first execution. Thus
in the subsequent skeleton calls, no data transfers are performed, and the
energy changes by software components are well captured by the MeterPU
system meters. For programs where the communication cost is significant,
the energy measurement plug-in needs to be extended to include CPU-side
PCIe energy.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 36 — #48

36 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2e+02 1e+03 5e+03 5e+04 5e+05

Problem size for mapreduce

5
10

50
100

500
1000

5000
10000

T
im

e(
us

):
 a

ve
ra

ge
 o

f 1
00

 r
un

s ●

CPU
OMP
CUDA
Selection

(a) Time tuning for mapreduce
skeleton.

● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

2e+02 1e+03 5e+03 5e+04 5e+05

Problem size for mapreduce

100

200

500

1000

2000

E
ne

rg
y(

m
ill

iJ
):

 a
ve

ra
ge

 o
f 1

00
0

ru
ns

●

CPU
OMP
CUDA
Selection

(b) Energy tuning for mapreduce
skeleton.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2e+02 1e+03 5e+03 5e+04 5e+05

Problem size for mapoverlap

5

10

50

100

500

1000

5000

10000

T
im

e(
us

):
 a

ve
ra

ge
 o

f 1
00

 r
un

s ●

CPU
OMP
CUDA
Selection

(c) Time tuning for mapoverlap
skeleton.

● ● ●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

2e+02 1e+03 5e+03 5e+04 5e+05

Problem size for mapoverlap

100

200

500

1000

E
ne

rg
y(

m
ill

iJ
):

 a
ve

ra
ge

 o
f 1

00
0

ru
ns

●

CPU
OMP
CUDA
Selection

(d) Energy tuning for mapoverlap
skeleton.

Figure 3.3: Tuning SkePU skeletons with MeterPU (2)

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 37 — #49

3.4. EXPERIMENTAL RESULTS AND DISCUSSION 37

3.4.2 Tuning for Individual Skeletons

Figures 3.2 and 3.3 show the results obtained by applying the user functions
of Table 3.1 on different skeletons. The left hand side shows the time for
CPU (sequential), OpenMP, CUDA and time-optimizing selection, and the
right hand side shows the energy of these scenarios with energy-optimizing
selection. We can see that in most cases the time and energy cost of the
smart selection switches to the least-cost software component as the problem
size (i.e., operand size) changes. The selection is non-optimal only in few
test cases, which is an artifact of a too shallow maximum depth of recursive
subdivision in adaptive sampling (see Chapter 4.2 and [79, 81]), and better
accuracy can be achieved by increasing the training depth [31, 81]. The time
and energy savings for large problem sizes can be remarkable, e.g. for a map
skeleton, time speedup can reach up to 647× (calculated by the time cost
of multi-threaded CPU implementation and smart selection at the largest
problem size experimented) if a more throughput-efficient processor type is
chosen, and for energy the savings can be about 10×; furthermore, the time
speedup and energy reduction factor will continue to increase as problem
size grows even larger. The overhead of smart selections for both time and
energy is negligible.

We also observe that the transition points usually differ where the most
time-efficient, respectively the most energy-efficient, implementation for the
same skeleton switches. This makes it necessary for separate training and
sampling when switching the optimization goal, and an abstraction of sam-
pling and measurement such as MeterPU is necessary to facilitate the con-
struction of different prediction models. Here the general behavior of time
and energy for the computations is not too dissimilar, especially on our K20c
GPU where the static (idle) power is already about two thirds of the full-
load power, due to power capping, and hence the majority of GPU energy
is linear in GPU time.

3.4.3 Tuning for LU Decomposition

In order to show that SkePU tuning can be applied in the area of linear alge-
bra and linear system solving for the reduction of execution time and energy,
an experiment is performed on a frequently used linear system solving com-
putation, LU decomposition, where the MapArray skeleton is heavily used.
Figure 3.4 shows that in almost all cases SkePU chooses the implementation
that has the highest available efficiency in time or energy. Tuned SkePU
provides up to 12× in time speedup and up to 21× in energy reduction
using the OpenMP implementation as a baseline, and the savings will con-
tinue to increase as problem size increases above the maximum used in our
experiments.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 38 — #50

38 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 30 40 50

Problem size for LU decomposition

200

500

1000

2000

5000

10000
T

im
e(

us
):

 a
ve

ra
ge

 o
f 3

00
0

ru
ns ●

CPU
OMP
CUDA
Selection

(a) Time tuning

● ●
●

●

●

●

●

● ●
●

●

●

●

●

5 10 20 50 100

Problem size for LU decomposition

100

200

500

1000

2000

5000

10000

E
ne

rg
y(

m
ill

iJ
):

 a
ve

ra
ge

 o
f 1

00
0

ru
ns

●

CPU
OMP
CUDA
Selection

(b) Energy tuning

Figure 3.4: Time and energy tuning of LU decomposition by SkePU and
MeterPU

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e+01 1e+03 1e+05

Number of microseconds sleeped

1e+02

1e+04

1e+06

T
im

e(
us

):
 m

ea
n

of
 4

0
ru

ns

●

MeterPU
Native API

(a) MeterPU time overhead

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

1e+01 1e+03 1e+05

Number of microseconds sleeped

5e+01

1e+02

5e+02

1e+03

5e+03

1e+04

5e+04

1e+05

E
ne

rg
y(

m
ill

iJ
):

 m
ea

n
of

 4
0

ru
ns ●

MeterPU
Native API

(b) MeterPU energy overhead

Figure 3.5: MeterPU overhead, including 95% confidence interval on mean
value.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 39 — #51

3.4. EXPERIMENTAL RESULTS AND DISCUSSION 39

EML REPARA MeterPU

0
2

4
6

8
10

12
14

EML REPARA MeterPU

0
2

4
6

8
10

12
14

#L
O

C

Figure 3.6: LOC (lines of code) comparison

3.4.4 MeterPU Overhead

MeterPU provides a software abstraction of measurement for various metrics
and various measurement techniques/methods on different hardware com-
ponents. Usually an abstraction comes at a cost; in this case, the cost may
distort the measurement values. In the MeterPU implementation, when
meter.start() is called, it delegates the call to the native API, such as
clock gettime() etc. Thus the overhead from MeterPU is just one func-
tion call, which can even be inlined for some meter types (e.g. CPU_Time

meter). Figure 3.5 shows the comparison of measurement values between
MeterPU and native API (time by clock gettime(), and energy by Intel
PCM library for CPU energy, since MeterPU runs on CPU). We can see
that for large problem sizes, the overhead is too small to be observed. For
small problem sizes (with less than 100 µs for time and 100 mJ for en-
ergy), we can observe that the native measurement facility is not accurate,
because we measure a kernel of a sleep function, thus the measured value
should be strictly linear in the problem size, but in those regions of small
problem sizes, the values are above the expected linear values. To sum up,
firstly MeterPU is a negligible-overhead abstraction, secondly, the resolution
of those native measurement facilities is limited, and below their resolution
limits the accuracy decreases to some extent.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 40 — #52

40 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

3.4.5 Comparison to Other Alternatives

An abstraction’s main purpose is to hide uninteresting details, thus we use
lines of code (LOC)7 as the main evaluation metric to compare MeterPU
with its alternatives: EML [20] and REPARA [73], which also provide an
abstraction measurement layer, described in section 3.5.1. We measure the
logic lines of code needed for the measurement of a code region, including
the calculation of a final metric value, as shown in Figure 3.6. It is clear
that MeterPU requires much less code (only half compared to the second
best). The reason why code using MeterPU is much shorter compared to
other alternatives is that the initialization and destruction of a measure-
ment is in a MeterPU meter class’s constructor and destructor, and those
code will be called automatically and completely hidden from programmers.
The code for error handling during measurement is also hidden from pro-
grammers. MeterPU’s advantage on LOC will be larger if several meters
of the same type are required, as by variadic template a complex meter
will be constructed at compile time, and MeterPU keeps its LOC constant
compared to other alternatives. This helps code transformation tools to
automatically transform legacy code to be energy-tuned or tuned towards
other user-defined metrics supported or extended by MeterPU.

3.5 Related Work

3.5.1 Measurement Abstraction

Several software libraries have been proposed to act as an abstraction of
(energy) measurement on different hardware components. EML [20] is a
C library that implements a software abstraction of measurement with low
overhead (1.54%), supporting dynamic discovery of measurement devices.
REPARA’s performance and energy monitoring library [73] implemented
in C++, provides a unified interface to support both counter-based and
hardware-based measurement methods, which can be discovered by their
hardware description language HPP-DL. Comparing to those libraries, Me-
terPU provides the simplest interface while maintaining generality, which
facilitates retargeting legacy tuning frameworks, and keeps the overhead
minimal (only one extra function call).

Monitoring frameworks, e.g. Nagios [60] and GroundWork [49], take
measurements in either intrusive or non-intrusive way while applications are
running, and store performance data to file systems or databases. However,
from the optimization’s point of view, retrieving performance data from
file systems or databases to calculate an aggregate metric value at runtime
in a feedback loop adds additional overhead compared with a light-weight
measurement abstraction such as MeterPU. Another monitoring framework,

7We also consider the metric cyclomatic complexity [105], as the control flow in this
context is simple, thus using this metric will not add extra information.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 41 — #53

3.6. SUMMARY AND FUTURE WORK 41

PowerAPI [14], is implemented in Scala language with the goal of enhanc-
ing the capabilities for monitoring programs written in different languages.
MeterPU is implemented in C++, with potentially better integration in
main-stream heterogeneous programming models such as OpenCL, CUDA,
etc.

3.5.2 Skeleton Programming

Besides SkePU, there are other skeleton programming frameworks target-
ing heterogeneous systems. SkelCL [116] provides OpenCL-based high-level
skeletons and data types to ease the development of programming on het-
erogeneous systems. MueSLi [39] is a C++ template library with various
data and task parallel skeletons where the users may specify where the
skeletons are executed (CPUs or GPUs). Fastflow [46] provides layered ab-
stractions on cache-coherent shared memory multicores, with skeleton sup-
port for typical streaming patterns. Marrow [88] is a skeleton framework
for OpenCL computations, enabling combinations, nesting of skeletons and
overlapping of communication and computation. Comparing to these frame-
works, SkePU provides automated implementation (backend) selection for
both time and energy optimization.

3.6 Summary and Future Work

We developed MeterPU as a software abstraction for measurements of var-
ious metrics on different types of processors in a heterogeneous computer
system, and demonstrated that the MeterPU API can be applied for both
hardware- and software-based measurement methods, and on both single
hardware components and (homogeneous and heterogeneous) combinations
of those components. It can facilitate both the reuse of legacy tuning frame-
works and the switching among different optimization goals on those frame-
works, as shown by integrating it with SkePU. We thereby also extended
SkePU’s individual skeletons to be energy-tunable, and showed that energy-
tuned SkePU can reduce energy consumption similarly as time-tuned SkePU
accelerating execution time, e.g. for computations in the area of linear al-
gebra, as demonstrated with LU decomposition as an example.

Future work includes extending MeterPU to support measurement of
the energy of PCIe communication on the motherboard side, and testing
SkePU’s energy tunability on more complex applications. MeterPU may
also support multi-objective optimization by for example easily providing
measurements of different metrics for the analysis of the Pareto-front data
points.

MeterPU is publically available at
http://www.ida.liu.se/labs/pelab/meterpu/.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 42 — #54

42 CHAPTER 3. HANDLING MEASUREMENT COMPLEXITY

Chapter Acknowledgements

Research partially funded by EU FP7 project EXCESS and SeRC project
OpCoReS. We thank Oleg Sysoev from Linköping University for suggestions
on statistical data handling. We thank Dennis Hoppe from HLRS Stuttgart,
Erik Hansson from Linköping University, Paul Renaud-Goud from Chalmers
and all other EXCESS project members for comments on this work.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 43 — #55

Chapter 4

Handling CPU-GPU
Selection Complexity

This chapter is mostly based on the following paper:

• Li, L., Dastgeer, U., and Kessler, C. (2016). Pruning Strategies in
Adaptive Off-line Tuning for Optimized Composition of Components
on Heterogeneous Systems. Parallel Computing, 51:37–45

which is based on

• Li, L., Dastgeer, U., and Kessler, C. (2014). Pruning Strategies in
Adaptive Off-line Tuning for Optimized Composition of Components
on Heterogeneous Systems. In Proc. Seventh International Workshop
on Parallel Programming Models and Systems Software for High-End
Computing (P2S2) at ICPP. IEEE

and on

• Li, L., Dastgeer, U., and Kessler, C. (2013). Adaptive off-line tuning
for optimized composition of components for heterogeneous many-core
systems. In High Performance Computing for Computational Science-
VECPAR 2012, pages 329–345. Springer

Another complexity that we will face quite early when utilizing GPU-
based heterogeneous systems concerns the decision when to use GPU and
when not to. We know that CPU and GPU are not Pareto-optimal over each
other, GPU is advantageous in performance under at least these conditions:
the computation is data-parallel or close to data-parallel, and the problem
size is large enough. Switching to a most suitable type of processor or a set
of most suitable processors smartly can lead significant speedups.

How do we decide precisely when to use CPU or GPU? Is the selection
simple or complex? How to reuse legacy code easily? How to design the

43

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 44 — #56

44 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

selection mechanism to be performance portable? This chapter will explore
these questions.

Section 4.1 discusses the complexity of CPU-GPU selection. Section 4.2
proposes a full-phase mechanism for CPU-GPU selection, including a train-
ing mechanism and a run-time CPU-GPU selector. Section 4.3 discusses
three techniques to further improve the efficiency of the methods in Sec-
tion 4.2. Section 4.4 proposes a framework design to transform the legacy
code into a form that is tunable by CPU-GPU selectors.

4.1 CPU-GPU Selection Complexity

CPU-GPU selection is a complex problem, due to the following reasons.

• The selection is hardware-dependent. If a system is equipped with
a faster GPU (e.g., by higher clock frequency), then the threshold of
using that GPU for a performance gain becomes lower, and CPU-GPU
selection should favor selecting GPU in more cases.

• The selection is software-dependent. If the computation under consid-
eration is GPU-effective, e.g., data-parallel, then the threshold to use
GPU becomes lower, and GPU should be selected in more cases.

• The selection is run-time context dependent. Take problem size as an
example of a run-time context property, if the problem size is larger,
then better GPU occupancy [95] may be achieved, thus GPUs are likely
to outperform CPUs in this and similar cases. Another important
run-time context property is the current location of the most recent
argument data, as data transfer cost is expensive and can sometimes
dominate the CPU-GPU selection. Due to the time limit, in this thesis
we have not taken data location into consideration when performing
CPU-GPU selection.

Thus, CPU-GPU selection is complex and best delayed to run-time, when
run-time context property values are known. In the next section we propose
such a design for run-time selection which allows to reuse legacy code easily.

In order to perform CPU-GPU selection for a computation, several im-
plementation variants that can run on CPU or (and) GPU are necessary.
Thus, the CPU-GPU selection problem becomes the problem of implemen-
tation variant selection. Our main research interest is addressing how to
select the implementation variants, thus we assume that those implementa-
tion variants already exist as legacy code.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 45 — #57

4.2. ADAPTIVE SAMPLING 45

4.2 Adaptive Sampling: a Training Space Ex-
ploration Technique

We propose a machine learning approach to tackle the complexity of CPU-
GPU selection, or more precisely, implementation variant selection, for the
following reasons:

• The logic between the input (run-time context, component type, hard-
ware configuration) and output (a winner implementation variant) is
not straight-forward for humans to extract and thus hard to program
by hand. New hardware may bring new features that can affect the
implementation selection decisions which can be hidden and hard to
detect. Hardware features used in this thesis are the hardware archi-
tectural parameters that come along with each generation of GPUs,
such as number of cores, number of SMs, cache sizes etc.

• If we select a sub-optimal variant for an input configuration, there
are no catastrophic consequences (e.g. program crashes, application
failures), only leading to a slowdown of program executions.

• Although possible, it is at least time-consuming to find and program
the logic between the input and output. Considering that hardware is
evolving fast, it is arguable that the effort spent is worthwhile. Hard-
ware features changes for each generation and for different GPU prod-
ucts of the same generation. This change of such hardware changes
will impact the performance of some specific implementation variants
in a unclear way (e.g., it is hard to say how much will the same code
run faster on new generation of GPUs), where machine learning tech-
niques fit well. Since each generation brings a mix of such changes, it
is hard to say how much a implementation variant will run faster. The
speedup on each implementation variant will affect their ranking com-
pared to other variants, thus affect the final implementation selection
choice in a unclear way as well.

For the setup of our method, we ignore modeling of hardware features ex-
plicitly by assuming that hardware configurations are fixed when programs
execute, this is true for usual cases. And even if hardware configurations do
change during run-time, they tend to change regularly1, thus the execution
time of a computation with some problem size tends to be stable, which
legitimates our assumption. We are interested in components whose execu-
tion time is stable algorithmically (not necessarily linear) thus predictable,
e.g., no data-dependent time complexity algorithms and no randomized al-
gorithms inside a component.

In order to address the type of computations on which the prediction
of the best implementation variant depends, we build a predictor per ceset.

1E.g., always increase processor frequency when a certain type of workload is issued.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 46 — #58

46 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

To address the run-time context such as problem size, we use a machine
learning technique to automatically learn the function from the run-time
context to the best-performing implementation variant.

The main challenge that remains is to find a good training data set to
train our predictor. In contrast with supervised machine learning approaches
on other domains (e.g. face recognition, natural language processing), where
training data are usually labelled manually, to obtain a piece of training data
that a certain implementation is best-performing for a given input configu-
ration we could simply run all implementation variants and compare their
execution latencies. However, this is where we meet the curse of dimen-
sionality, where the training space blows up when the dimensionality of the
input space increases. In such a large training space, it is difficult to find
good training examples. Considering that the training is performed on each
component of interest, sampling a large data set for each function is likely to
be infeasible, while sampling a small proportion of the whole training space,
is feasible.

Section 4.2.1 gives a motivating example to show why implementation
selection is necessary. Section 4.2.2 describes our technique for generating
good training examples efficiently and how to predict the winner imple-
mentation variant. Section 4.2.3 presents experimental results, and finally
Section 4.2.4 concludes.

4.2.1 An Motivating Example

Consider a typical example where a component’s implementation variants
for execution on different kinds of processors show performance advantages
for different variants with respect to different input sizes, as shown in Fig-
ure 4.1. In a subrange2 of call context instance values (here, of the number
of array elements) where one implementation variant runs fastest among all
implementations variants we call that implementation variant the winner
for that range of input sizes.

The performance-related parameters for a function call can be many, let
us denote that we have n such parameters, and each parameter has a valid
range, no matter how large or small it can be. Then we have a n-dimensional
range for n such parameters. We can map such a n-dimensional range to
a n-dimensional space. A specific context instance can also be considered
as a point in a n-dimensional space. Some points or hyperplanes divide
winning ranges of different implementations, we call those the transition
points or hyperplanes. Ideally if all those points or hyperplanes can be found
effectively, we can construct a compact representation which requires small
overhead for both store and look-up, and it will provide 100 percent accuracy
of winner prediction. We define how we measure accuracy as follows: for

2For example, the range [5,8] is a subrange of the 1-dimensional space [1,10], and this
applies to multi-dimensional spaces as well, e.g., the 2-dimensional range [[3,7], [5,8]] is a
subrange of the two dimensional space [[1,10],[1,20]]

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 47 — #59

4.2. ADAPTIVE SAMPLING 47

Figure 4.1: Performance for
matrix-matrix multiplication vari-
ants

each tuple of performance-affecting context property values, the execution
time of all implementations is measured to get the winner with respect to
that parameter setting, and the prediction is run on the same vector to get
the predicted winner. The prediction counts as correct if the winner and the
predicted winner are the same. The accuracy is calculated as the percentage
of the correct predictions out of all test cases.

One may argue that the characteristics shown in Figure 4.1 may not
apply for other problems. In this section, we test three benchmark applica-
tions, and these applications surprisingly conform to the characteristics of
Figure 4.1, which shows an interesting property: The winning range for each
implementation variant is convex, i.e., if two points in the one-dimensional
space have the same winner, then this winner wins on all points between
these. Our pruning strategy is based on this convexity assumption: for a
n-dimensional space, if all vertices of a subspace have the same winner, then
it wins on all points in the subspace at least in majority cases. (For more
discussions about the safety of the convexity assumption, please see Sec-
tion 4.3.2) Based on this assumption, we construct an algorithm and data
structure to approximate and represent these transition points.

4.2.2 Adaptive Sampling and Prediction

For a concise terminology, we adopt that composition is the selection of a
specific implementation variant (i.e., callee) for a call to component-provided
functionality and the allocation of resources for its execution. Composition
is made context-aware for performance optimization if it depends on the cur-
rent call context, which consists of selected operand properties (such as size)
and currently available resources (such as cores or accelerators). Such com-
positions also depend on the locations of the involved components’ operands
which determines whether data transfer should be incurred, and whether
other tasks are also executing on some hardware resources, we haven’t con-
sidered these two factors in this thesis. The context properties to be consid-
ered and optionally their value ranges (e.g., minimum and maximum value)

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 48 — #60

48 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

are declared in the TunerPU API. We refer to a call’s arguments shortly as
a context instance, which is a tuple of concrete values for context proper-
ties that might influence callee selection. Hence, composition maps context
instances to implementation variants [70].

Composition can be done either statically or dynamically. Static com-
position selects a implementation variant at compile time with no run-time
overhead at the cost of being not run-time context-aware. Dynamic com-
position makes such decisions at run-time with run-time overhead but can
potentially make a better decision considering run-time context. The hope is
that the time saved by invoking the fastest implementation variant is larger
than the overhead of the dynamic selection process, and thus performance
portability is increased.

Dynamic composition with on-line training by the runtime system shows
some disadvantages: it requires a certain number of representative execu-
tions before it can offer acceptable selection accuracy for dynamic composi-
tion; however, it is often not guaranteed that those representative executions
will happen during a sufficiently long period of time. The online training
methods, as implemented e.g., in StarPU [8], build performance models in-
crementally at runtime when useful computations are executed and these
measurements are obtained (almost) for free. However, online tuning can
only perform well if enough well-distributed training examples are gathered,
and it may experience a relatively long period of learning with still subop-
timal selections, which we refer to as the “cold-start effect”.

As an alternative, we consider off-line training and dynamic composition.
In off-line training, measuring performance for every possible runtime con-
text instance (which would offer perfect selection and precise representation
of this information) is often not feasible, thus a dynamic composer is forced
to make predictions based on a limited set of training examples.

Next, we discuss our adaptive sampling techniques for generating good
training examples, and an example for an illustration of adaptive sampling.

4.2.2.1 Adaptive Sampling

The space C = I1 × ... × ID of context instances for a component with D
properties in the context instances is spanned by the D context property
axes with considered (user-specified or default) finite intervals Ii of discrete
values, for i = 1, ..., D. A continuous subinterval of an Ii is called a range,
and any cross product of such subintervals on the D axes is called a sub-
space of C. Hence, subspaces are ”rectangular”, i.e., subspace borders are
orthogonal to the axes of C.

We offer a accuracy-controllable offline-trainer and dynamic composer
based on ranges, i.e., the trainer tries to automatically approximate the
(usually, non-rectangular and possibly non-convex) subsets in C where one
particular implementation variant performs better than all the others, by a
set of subspaces.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 49 — #61

4.2. ADAPTIVE SAMPLING 49

Our idea is to find sufficiently precise approximations by adaptively re-
cursive splitting of subspaces by splitting the intervals Ii, i = 1, ..., D. Hence,
subspaces are organized in a hierarchical way (following the subspace inclu-
sion relation) and represented by a 2D-ary tree (cf. binary space partitioning
trees and quadtrees/octrees etc.).

Our algorithm for off-line measurement starts from a trivial tree TC that
has just one node, the root (corresponding to the whole C), which is linked
to its 2D corner points (here, the 2D outer corners of C) that are stored in
a separate table of recorded performance measurements. The implementa-
tion variants of the component under examination are run with each of the
corresponding 2D context instances, possibly multiple times for averaging,
using a context instance generator provided with the metadata of the com-
ponent; a variant whose execution exceeds a timeout for a context instance
is aborted and not considered further for that context instance. Now we
know the winning implementation variant for each corner point and store it
in the performance table, too, and TC is properly initialized.

Figure 4.2: Cutting a space recursively into subspaces, and the resulting
dispatch tree.

Consider any leaf node v in the current tree Tt representing a subspace
Sv = Rv1× ...×RvD. If the same specific implementation variant runs fastest
on all context instances corresponding to the 2D corners of Sv, we stop
further exploration of that subspace and will always select that implemen-
tation whenever a context instance at run-time falls within that subspace.
Otherwise, the subspace Sv may be refined further. Accordingly, the tree is
extended by creating new children below v which correspond to the newly
created subspaces of Sv.

By iteratively splitting the ranges in FIFO order, we generate an adaptive
tree structure to represent the performance data and selection choices, which
we call dispatch tree.

The user can specify a maximum depth (training depth) for this iterative
refinement of the dispatch tree, which implies an upper limit on the runtime
lookup time, and also a maximum tree size (number of nodes) beyond which
any further refinement is cut off. Third, the user may specify a timeout for
overall training time, after which the dispatch tree is considered final.

The prediction is a run-time lookup that searches through the dispatch
tree starting from the root and descending into subspace nodes according to

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 50 — #62

50 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

10000

0 10

5000

0

5

5000

10000

0

5

1

1 1

5001 5001

10000

6 10

6 10

2500

0 2
1

5000

0 2
2501

2500

3 5
1

5000

3 5
2501

7500

0 2
5001

10000

0 2
7501

7500

3 5
5001

10000

3 5
7501

2500

6 8

1

5000

6 8
2501

2500

9 10
1

5000

9 10
2501

QuickSort
InsertSort
MergeSort
BubbleSort

5000

0

5

5000

10000

0

5
1 1

5001 5001

10000

6 10

6 10

7500

0 2
5001

10000

0 2
7501

7500

3 5
5001

10000

3 5
7501

2500

6 8

1

5000

6 8
2501

2500

9 10
1

5000

9 10
2501

2500

0 2
1

5000

0 2
2501

2500

3 5
1

5000

3 5
2501

Non-Leaf space/node

Closed space/node
Open space/node

Figure 4.3: Tree visualization for a sorting example

the current runtime context instance. If the search ends at a closed leaf, i.e.,
a leaf node with equal winners on all corners of its subspace, the winning
implementation variant can be looked up in the node. If the search ends
in an open leaf with different winners on its conners (e.g., due to reaching
the specified cut-off depth), we perform an approximation within that range
by choosing the implementation that runs fastest on the subspace corner
with the shortest Euclidean distance from the run-time context instance.
The prediction result is an index number which we use to fetch the function
address of the winner implementation variant in our dispatch table.

A visualization of an example tree structure is shown in Figure 4.3, which
shows that a large area of the training space is pruned during the sampling
process. A tree structure is built by the adaptive sampling process with
training depth 2 for a sorting component with four implementation variants.
Two parameters are chosen for training, the array size ranging from 1 to
10000 and the discretization of (sampled) sortedness of the operand array
ranging from 0 to 10, which forms a two dimensional space. At the first
recursive division step, the space is divided into four subspaces with one
closed for further exploration. In the next recursive step, the three open
spaces are further divided and more subspaces are recognized as closed.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 51 — #63

4.2. ADAPTIVE SAMPLING 51

Figure 4.4: Execution time for dynamic composition of matrix-matrix multi-
plication with a 41-node lookup tree determined by the adaptive refinement
training algorithm with cut-off depth 3. — The hardware we use is a multi-
core system with 16 CPUs, where each CPU is an Intel(R) Xeon(R) CPU
E5520 running at 2.27GHz with 8192 KB cache. The operating system is
Linux 3.0-ARCH and the compiler is gcc 4.6.1.

The deeper the algorithm explores the tree, the better accuracy the dy-
namic composer can offer for the composition choice; however, it requires
more off-line training time and more runtime lookup overhead as well. We
give the option to let the user decide the trade-off between training time and
accuracy by setting the cut-off depth, size and time in the TunerPU API.

4.2.2.2 Example for Dynamic Composition with Adaptive Off-
line Training

Let us consider a matrix-matrix multiplication example with two imple-
mentation variants, the well-known sequential version and a parallel version
parallelized by pthreads with a fixed number of 4 threads. In the off-line
training phase, performance data is measured by one execution per context
instance; at execution time of the composed code with dynamic selection,
performance is averaged over 10 runs per context instance.

As the resources (here, number of threads for OpenMP) is fixed, a con-
text instance is just a triple consisting of the three problem sizes that define
the operand matrix dimensions. The training space of context instances is
chosen as [1 : 1000, 1 : 1000, 1 : 1000], i.e., comprising 109 possible context

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 52 — #64

52 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

Table 4.1: Platform description

Machine
name

CPU type GPU type OS Compiler

Fermi Intel(R) Xeon(R)
CPU E5520 @
2.27GHz

two Tesla M2050 ARCH
3.2.1-2

gcc 4.6.2
and nvcc
V0.2.1221

Cora Intel(R) Xeon(R)
CPU X5550 @
2.67GHz

two nVidia Tesla
C2050 and one Tesla
C1060

RHEL 5.6 gcc 4.1.2
and nvcc
V0.2.1221

instances (input sizes). As tree data structure we use an octree with simulta-
neous refinement of subspaces along all three dimensions. The cut-off depth
for the tree is set to 3. With these settings, the off-line training time (i.e.,
for the tree construction including the measurements on the target system)
takes 228 seconds and the constructed tree has 41 nodes, where the adaptive
tree refinement is done mostly for subspaces with smaller problem sizes. By
comparing the composed code at runtime with the actually fastest compo-
nent for each context measured for square test matrices (see Figure 4.4), we
find that the tree lookup yields a dynamic selection accuracy of 92%. From
Figure 4.4 we can also see that the overhead for performing dynamic selec-
tion is rather negligible. For some context instance the dynamically selected
implementation variant runs even faster than the same one without dynamic
selection; such anomalies are mostly due to the operating system’s interrup-
tions during measuring; in principle, the composed code should always run
slightly slower than the best individual component, due to run-time lookup
overhead.

4.2.3 Experimental Results and Discussions

4.2.3.1 Platforms

We use two GPU based heterogeneous systems called Fermi and Cora. A
brief description of the two platforms is shown in Table 4.1.

4.2.3.2 Benchmarks

For the evaluation we have chosen 4 benchmark problems: matrix-matrix
multiplication, sorting, and two RODINIA benchmarks: path finder and
backpropagation. A detailed description is shown in Table 4.2.

4.2.3.3 Methodology

We first train each benchmark problem with training depth from 0 to 4. If
the training time exceeds 3 hours then we terminate the training process.
Each benchmark is trained twice, with one version which prunes closed space
in the tree representation and another which performs no pruning at all.

The test points are chosen evenly from the training space so that every
subspace in the dispatch tree is used for performance prediction.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 53 — #65

4.2. ADAPTIVE SAMPLING 53

Table 4.2: Benchmark test settings

Benchmark Feature modeling Range Space
size

Implementation variants

Matrix-
matrix
multiplica-
tion

row size, column
size of first matrix;
column size of sec-
ond matrix

(1, 1, 1) to
(3000, 3000,
3000)

2.7E+10 Sequential implementa-
tion, CUDA implemen-
tation, BLAS implemen-
tation, Pthread imple-
mentation

Sorting array size; dis-
cretization of
array values distri-
bution (sampled
number of inver-
sions)

(1,0) to
(100000,10)

1E+6 bubble sort, insertion
sort, merge sort, quick
sort, CUDA Thrust sort
(only on Fermi)

Path finder row; column (1,1) to
(10000,20000)

2E+8 OMP implementation,
CUDA implementation

Back pro-
pogation

array size (1000) to
(100000)

9.9E+4 OMP implementation,
CUDA implementation

4.2.3.4 Experimental results on two machines

The test results for 4 benchmarks on Fermi is shown in Table 4.3. In par-
ticular, for backpropagation, the performance behavior for different training
depths on Fermi are shown in Figure 4.5.

The results for the 4 benchmarks on Cora are shown in Tables 4.4.
More results using adaptive sampling to make skeletons and LU decom-

position both performance- and energy-tunable are shown in Section 3.4.2
and Section 3.4.3. Matrix-matrix multiplication with more implementation
variants are tested in Chapter 7. Other benchmarking results by this tuning
approach are shown in [31], including kernels like Nbody, Taylor serious etc.

4.2.3.5 Discussion

For the sorting, pathfinder and backpropagation benchmarks, the accuracy
grows quickly with respect to the training depth. For backpropagation the
accuracy achieves 100% with only training depth 4. The result for the
matrix-matrix multiplication benchmark is a little disappointing, because
it has a relatively large training space. Most subspaces in its dispatch tree
are open ones and for the points near their corners the Euclidean distance
criterion can give a better approximation while in the large central area of
these subspaces, the accuracy can not be guaranteed. Since we train on a
large space, which means large input sizes, a single training execution may
take a long time; for this reason, deep training depths become not practical
and are not considered in this benchmark testing.

From the test results we can see that in most cases the accuracy of
prediction of the winner implementations increases with the depth of the
dispatch tree. This is expected because, as open subspaces can be partly
closed by exploring deeper levels, the accuracy increases. This trade-off is
exposed to users.

We also can see that for a relatively short training time, we get a reason-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 54 — #66

54 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

Table 4.3: Test results for 4 benchmarks on Fermi (td: Training depth; tt:
Training time; ato: average time overhead on performing dynamic selection;
nn: Number of nodes generated in the tree representation)

Matrix-matrix multiplication on Fermi, 343 test points
td pruning closed space no pruning for closed space

tt (s) Accuracy (%) ato (µs) nn tt (s) Accuracy (%) ato (µs) nn
0 85 51 17 1 88 50 15.9 1
1 755 48 21 9 762 48 20.4 9
2 6118 62 23 73 6252 62 23 73

Sorting on Fermi, 110 test points
pruning closed space no pruning for closed space

0 233 36 4 1 233 36 3.6 1
1 1035 61 4.9 5 1035 64 4.9 5
2 2485 80 5.5 17 4071 80 5.6 21

Back propagation on Fermi, 20 test points
pruning closed space no pruning for closed space

0 7 55 9 1 6 55 9 1
1 7 80 11 3 6 80 10 3
2 8 90 13.6 5 8 90 11.8 7
3 7 95 12 7 13 95 12.5 15
4 8 100 13.1 9 18 100 14 31

Path finder on Fermi, 200 test points
pruning closed space no pruning for closed space

0 36 59 12.6 1 29 59 12.7 1
1 161 77 16.5 5 122 77 14.5 5
2 371 86 16.5 17 497 86 15.8 21
3 609 95 16.8 45 1992 95 20.9 85

able prediction accuracy in total which means that pruning closed subspaces
works and the assumption that we can treat all points in a closed subspace
equally holds for those benchmarks. Another evidence for the assumption
is the comparison between two versions of test results, one which performs
closed subspace pruning and one which does not. We get almost the same
results from the two sets of tests on all benchmarks we use, thus it is con-
sidered rather safe not to explore closed space in the training phase on these
benchmarks.

The time overhead for run-time selection is acceptable, in the order of
microseconds. Since we only explore a shallow depth of a dispatch tree,
the number of nodes generated is small, too, so the memory overhead is
acceptable as well.

As for the relation between accuracy and performance, we can illustrate
it in Figure 4.5 for backpropagation. Comparing constant invocation of the
OpenMP implementation variant with dynamic selection among all avail-
able variants, we see that for subspaces where the OpenMP variant wins,
the performance of all variants only differs by a few microseconds; for the
subspace where OpenMP does not win, we gain performance. The perfor-
mance gain might be remarkable if some variant scaling badly is constantly
invoked. From the figures we can also see that wrong decisions for points
within open subspaces often happen near transition points between different
winners, and often the performance difference of implementation variants at
points near transition points is low, thus a wrong decision does not yield a

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 55 — #67

4.2. ADAPTIVE SAMPLING 55

Figure 4.5: Performance with maximum depths 0 to 4 for the backpropaga-
tion benchmark on Fermi.

performance penalty as large as in other points in the subspace.
In general, our approach can pick the best implementation variant for

most of the cases for the different platforms.
We observed an anomaly for the exploration of subspace in matrix-matrix

multiplication on Fermi. When the depth increases from 0 to 1, with more
training time, the accuracy drops. One possible explanation is that when
splitting some space where the winner on one of the corners is shared by a
minority of the other corners, the Euclidean distance criterion will cause a
majority of points to be predicted wrongly, which with the coarser dispatch
tree are predicted correctly. Continuing to refine that subspace may make
the accuracy increase again; however, continuing the exploration for matrix-
matrix multiplication on such large space is so time-consuming that we have
to postpone further investigation of this problem to future work.

To test on more benchmarks is necessary, but we are currently con-
strained practically by writing a general problem instance generator to gen-
erate an arbitrary-size problem input so that we can invoke computations
on it and extract the training examples whose sizes are required by adaptive
sampling. Writing such problem instance generator requires application do-
main knowledge and component writers are in a privileged position to write
such generators. This is addressed in more detail in the training run() bullet
in Section 4.4.2, and this motivates the design of TunerPU in Section 4.4.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 56 — #68

56 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

Table 4.4: Test results for 4 benchmarks on Cora

Matrix-matrix multiplication on Cora, 343 test points
td pruning closed space no pruning for closed space

tt (s) Accuracy (%) ato (µs) nn tt (s) Accuracy (%) ato (µs) nn
0 67 48 17.6 1 63 48 18.3 1
1 634 49 22.5 9 621 49 22.2 9
2 5115 67 26.4 73 5009 68 26.2 73

Sorting on Cora, 110 test points
pruning closed space no pruning for closed space

0 162 34 5.3 1 159 35 5.5 1
1 714 62 7.1 5 710 62 8.5 5
2 1747 80 8.6 17 2809 78 8.6 21

Back propagation on Cora, 20 test points
pruning closed space no pruning for closed space

0 3 55 11.9 1 3 60 13 1
1 4 85 12.6 3 4 90 14.7 3
2 4 95 16.1 5 5 95 14 7
3 4 100 13.4 7 7 95 15.2 15

Path finder on Cora, 200 test points
pruning closed space no pruning for closed space

0 21 39 12.5 1 21 39 12.1 1
1 97 67 14.5 5 92 67 16.1 5
2 219 82 15.6 17 400 82 16.2 21
3 367 95 15.9 45 1511 95 18.1 85

4.2.4 Summary and Future Work

We have developed an adaptive off-line training algorithm and dispatch tree
representation that allows to pick the best implementation variants for most
of the cases on different GPU-based heterogeneous machines, hence it im-
proves performance portability. Our method allows to reduce training time
and enables the user to trade off prediction accuracy, runtime overhead and
training time.

Our approach for pruning closed space is based on the assumption that,
if corners of a space show a common winner, all points in the space would
have the same winner, which holds in most of our benchmark applications.
The assumption needs to be further investigated with more applications,
and refined prediction methods for open spaces should be developed. Note
that, in cases where the user knows that the assumption does not hold, a
better accuracy could then be enforced by also refining closed space within
the given depth limit, at the expense of a larger dispatch tree and longer
training time.

Further improvements of our method are possible and will be considered
in future work. For instance, timeouts for individual measurements (appli-
cable on CPUs) and aborting variants under measurement that exceed the
current winner of a training execution can save more training time.

4.3 Pruning Strategies of Adaptive Sampling

Although adaptive sampling allows efficient generation of training examples
to train our implementation variant selector, it is desirable to make the gen-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 57 — #69

4.3. PRUNING STRATEGIES OF ADAPTIVE SAMPLING 57

eration of training examples more efficient, because the training can possibly
be performed on each ceset. As the number of such sets can potentially be
large, training all of them requires more efficiency.

As our adaptive sampling technique heavily depends on the convexity
assumption, which also can be viewed as a heuristic and brings the risk to
miss interesting training examples if the assumption does not hold in some
regions of the whole training space.

In this section we further propose three pruning strategies that allow to
enhance the adaptive sampling technique either by higher efficiency or by
more safety considering the convexity assumption. Section 4.3.1 describes
our pruning strategies. Section 4.3.2 discusses our experimental results.

4.3.1 Three Pruning strategies

Thresholding is a further refinement of our adaptive sampling strategy based
on the convexity assumption. Previously, a subspace is considered closed if
all winners on its vertices are strictly the same; let us call it a strictly closed
subspace. Now we will relax this condition by introducing a threshold, or
tolerance level, θ: If the relative performance difference of a winning variant
v1 and another variant v2 at a subspace vertex is within the tolerance, i.e.
|t1 − t2|/t1 ≤ θ (where t1 and t2 denote execution times of two variants on
the same input vector) then v1 and v2 are considered equivalent, i.e., both
are considered winners. Hence, if all winners on a subspace’s vertices are
equivalent to each other, then we call the subspace as a closed space and
thus prune it in the same way as strictly closed subspaces.

If the number of relevant context properties (i.e., space dimension) is
relatively large, then the generated subspace tree will still grow relatively fast
with increasing tree depth. Furthermore, if the number of implementation
variants is also large, the probability that a large subspace is a closed one
is deeply decreased, which increases the sampling and training cost. The
thresholding approximation allows to increase the probability for closing a
space in both cases and reduce the training time, at the expense of a small
potential performance loss limited by θ.

Oversampling addresses the convexity assumption, that it is assumed to
be statistically (but not exactly) safe to prune closed subspaces without loss
of accuracy. Oversampling will explore a subspace further to gain additional
confidence whether it is closed or not, by sampling for one or several points
in the subspace. Oversampling is expected to improve prediction accuracy
at the expense of a slight increase in sampling, training and runtime over-
head. Light-weight forms of oversampling, such as light oversampling which
only samples the point in the center of a subspace besides the vertices, can
be considered as a trade-off between training overhead and optimization
potential.

Implementation pruning is a technique that allows to prune implemen-
tation variants in the sampling process. We assume that, for a subspace,

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 58 — #70

58 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

Table 4.5: Benchmark test settings

Benchmark Feature modeling Range Implementation variants
Matrix-
matrix
multiplica-
tion (MM)

row size, column size
of first matrix, col-
umn size of second
matrix

(30, 30, 30)
to (300, 300,
300)

Sequential impl. and a variant by loop
rearrangement, CUDA impl., BLAS
impl., Pthread impl. and five of its
variants from loop rearrangement

Sorting
(ST)

array size; dis-
cretization of array
values distribution

(1,0) to
(10k,10)

bubble sort, insertion sort, merge sort,
quick sort

Path finder
(PF)

row; column (1,1) to
(10k,20k)

OpenMP impl., CUDA impl.

Backpropa-
gation (BP)

array size (1k) to
(100k)

OpenMP impl., CUDA impl.

the winners of its vertices are more likely to also win on its internal smaller
subspaces when split, thus we may consider only the winners of its vertices
for sampling on its subspaces, in order to reduce sampling and training time
further. For example, consider a one-dimensional problem with 10 imple-
mentation variants; in the first round of sampling (the two problem size
interval corners), finding the winner for a specific input vector requires at
least to run 10 implementation variants on the input vector. Since it is a
one-dimensional problem, for the whole context property space at most 2
subspaces are generated by binary split and each subspace will only have at
most 2 vertices, and hence at most 2 winners are found on the two vertices.
For the next refinement step, finding a winner for a specific input vector
within a subspace only requires to run 2 implementation variants on the in-
put vector, greatly reducing the training time. Since a winner is assumed to
have higher probability to win on subsequent refinement steps, implementa-
tion pruning may only show trivial effects on the relevance of the extracted
training examples and the prediction accuracy.

Furthermore, combining the different techniques can be interesting. Over-
sampling is designed to have a positive effect on the prediction accuracy
since it checks extra points to reduce the probability of wrongly closing a
subspace. Thresholding and implementation pruning are designed to reduce
the training time at a marginal cost of prediction accuracy. Combining
them will, theoretically, provide the benefit of improved prediction with less
training overhead.

4.3.2 Experimental Results and Discussions

All experiments are performed on a GPU-based heterogeneous system called
Cora. Table 4.1 shows a brief description.

The benchmarks that we use are: Matrix-matrix multiplication, Sorting,
and two RODINIA [22] benchmarks: Path finder and Back propagation.
Table 4.5 shows a detailed description.

The benchmarks are trained with increasing training depth (maximum
tree depth for cut-off). For a comparison, each benchmark is trained twice,
with or without thresholding resp. oversampling. In some cases, the shallow

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 59 — #71

4.3. PRUNING STRATEGIES OF ADAPTIVE SAMPLING 59

training depth does not allow for a significant difference, thus these tests are
ignored.

For testing the selection accuracy based on the training data, all test
parameters are chosen evenly from the whole training space, thus all closed
and open spaces are involved in prediction.

For each tuple of performance-affecting context property values, the ex-
ecution time of all implementations is measured to get the winner with
respect to that parameter setting, and the prediction is run on the same
vector to get the predicted winner. The prediction counts as correct if the
winner and the predicted winner are the same. The accuracy is calculated
as the percentage of the correct predictions out of all test cases.

For each test case, we measure accuracy, training cost (training time,
number of nodes which reflect space overhead) and run-time overhead. Higher
accuracy and lower overhead are desirable, especially for the run-time over-
head.

Discussion: Convexity Assumption Our convexity assumption en-
ables us to close a subspace and stop sampling on the area when its vertices
share the same winner. Later on, we predict the winner of the inner elements
of the subspace as the same as for the vertices. However, one may argue that
it may not be safe (for loss-free pruning) to close such a space. Even if it is
safe to do so, the spaces closed may only take up a small amount of the total
space. In order to investigate on the two questions, we perform a test on all
benchmarks in the following way: we choose elements from only the closed
spaces recognized by the adaptive sampling process, and test how accurate
the prediction is if we treat the inner elements the same as their vertices.
We also calculate the percentage of the number of elements in closed spaces
related to the total number of elements, as a measure of how frequently a
subspace is a closed one.

The test results are shown in Figure 4.6. For the prediction accuracy, we
can see that for most benchmarks on every training depth, the prediction
accuracy reaches 100%, and more than 90% for the remaining benchmarks.
For the very large training spaces, we can safely prune closed spaces without
or with trivial loss of optimization potential. For the percentage of the
number of elements in closed space, we can see that even for a shallow
training depth like depth 2, the ratio reaches more than 50% and we can
predict them in a simple way correctly. Thus we can save training time from
a fairly large training space.

It is interesting to visualize the real and our predicted landscape for
winner spaces as a comparison. Here we choose the path finder benchmark
with training depth 2, and the visualization is done at two scales: global
scale in Figure 4.7a and one open space (left lower corner) in Figure 4.7b.

The OpenMP-optimal and CUDA-optimal region show the real winner
landscape of the regions where OpenMP and CUDA implementation domi-
nate respectively in performance. The region outside the CUDA-predicted-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 60 — #72

60 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

BP MM

PF ST

Figure 4.6: Test result of 4 benchmarks for test cases from only closed
space (blue/left bar: accuracy, red/right bar: (number of elements in closed
space)/(number of elements in whole space), unit: %, BP: Backpropagation,
MM: Matrix multiplication, PF: Path finder, ST: Sorting)

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 61 — #73

4.3. PRUNING STRATEGIES OF ADAPTIVE SAMPLING 61

optimal one is the OpenMP-predicted-optimal region, and in this case the
CUDA-predicted-optimal region is a subset of the CUDA-optimal region.
From Figure 4.7a, we can see that even with such a shallow depth of train-
ing (and thus relatively low overhead in training time), the predicted bound-
ary is fairly close to the real boundary (with prediction accuracy 79.71%;
as the training depth grows, the predicted boundary will converge to the
real boundary as shown in the following experiments), and the convexity
assumption holds statistically for this case.

A closed space is trivial for prediction, while an open space is more
complex and interesting to visualize. Since Euclidean distance is used as the
criteria for prediction, we can see in Figure 4.7b that the predicted regions
are the sub-squares of the subspace. The real boundary is nonlinear, though
here we use a linear boundary for approximation, from which some of the
prediction inaccuracies rooted. Usually, the inaccuracies happen near the
real boundaries, and the performance difference in those points near the
boundaries are often relatively small, thus such inaccuracies will not lead
to significant performance loss. As the training depth grows, more training
efforts are used only in those open regions, and the inaccuracies will decrease
efficiently.

0 5000 10000 15000 20000

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

si_col

sa
_r

ow

OpenMP optimal
CUDA optimal
CUDA predicted optimal

(a) The whole landscape

0 1000 2000 3000 4000 5000

0
50

0
10

00
15

00
20

00
25

00
30

00

si_col

sa
_r

ow

OpenMP optimal
CUDA optimal
CUDA predicted optimal

(b) One specific open space

Figure 4.7: Overlay of real and predicted landscape for PF

Discussion: Thresholding Thresholding is designed to reduce training
time by closing spaces earlier if the user-defined threshold is met. Figure 4.8
shows the comparison of the training time for thresholding setting 0 (dis-
able thresholding), 0.02, 0.05, 0.1, 0.2 and 0.3. We can see that for most
cases the training time decreases as we enlarge the value of the threshold.
However whether thresholding can help or not to reduce the training time,
or how much it can reduce the training time, depends on the implementa-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 62 — #74

62 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

BP: Depth 4 MM: Depth 4

PF: Depth 1 ST: Depth 4

Figure 4.8: Training time (s) for thresholding with θ =0 (disable threshold-
ing), 0.02, 0.05, 0.1, 0.2 and 0.3

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 63 — #75

4.3. PRUNING STRATEGIES OF ADAPTIVE SAMPLING 63

BP: Depth 4 MM: Depth 4

PF: Depth 1 ST: Depth 4

Figure 4.9: Prediction accuracy (%) for thresholding with θ =0 (disable
thresholding), 0.02, 0.05, 0.1, 0.2 and 0.3

tion variants’ performance curves, thus different benchmarks show different
behaviors. For the Matrix multiplication benchmark, the effect is rather
obvious, but for the Path finder benchmark, the effect of thresholding is
trivial.

Figure 4.9 shows the comparison of prediction accuracy for thresholding
setting 0, 0.02, 0.05, 0.1, 0.2 and 0.3. For most cases, as we enlarge the
value of the threshold, the prediction accuracy drops, but only by a few
percent. 3 For Backpropagation, as we enlarge the value of threshold, the
prediction increases. This is because when a larger threshold is specified, less
training examples are sampled, and a simpler prediction model or hypothesis
is generated, thus sometimes the overfitting problem is avoided. Setting a
large threshold may risk generating too few training examples; although a
large amount of training time is saved, the underfitting problem happens and
we observe a deep decrease in prediction accuracy as shown in the Sorting

3For the benchmark MM and the 30% threshold, 84% accuracy is achieved, which
means that in the worst case 16% of the measurements are at 70% “efficiency” (perfor-
mance relative to the true winner had tolerance been zero), and this responds to 95.2%
average net efficiency. For the 2% and 5% tolerance, the efficiencies are about 99.8% and
99.5%, respectively.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 64 — #76

64 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

benchmark.
Setting an appropriate threshold value reflects the trade-off between the

training overhead and the prediction accuracy. It may be possible to auto-
matically learn a reasonable threshold.

Discussion: Light oversampling Light oversampling is designed to im-
prove the prediction accuracy by adding more training examples (sampling
extra points in subspaces besides their vertices). Figures 4.10 and 4.11 show
prediction accuracy and training time with and without light oversampling.
The figures show that the accuracy for each benchmark improves with light
oversampling, at the cost of increased training time.

As the training depth increases, the accuracy increase rate decreases.
When the training depth is low, only a limited number of training samples
are available, thus if some significant training samples are added, the pre-
diction accuracy will improve significantly. When more and more training
samples are added, the accuracy converges to the upper bound (100%), thus
it is difficult to find training samples that can contribute to improving the
prediction model, and adding new training samples may not make much
sense.

Meanwhile, if we increase the training depth, the number of subspaces
added increases exponentially due to the subspace tree structure’s character-
istic, thus the increase rate of training time change is increasing. (Note that
Figure 4.10 for Matrix multiplication and Path finder uses a logarithmic-
scale axis, thus the increase amounts are bigger than what the bar chart
looks like.)

Thus, it is worthwhile to use this technique for lower training depth,
which will lead to significant accuracy increase with low extra training time.

Note that in Figure 4.10, for the benchmark Back propagation, the pre-
diction accuracy decreases as the training depth increases (more training
samples are added). This is a well-known machine learning problem, over-
fitting, which means that the prediction model (the hypothesis) tries to fit
the training set in a very complex way, and may not generalize well to new
test cases. This problem is interesting for future investigation.

Discussion: Implementation pruning The implementation pruning
technique is designed to reduce training time when the number of implemen-
tation variants is large for a component. Figure 4.12 compares the training
time with and without implementation pruning. From the bar charts we can
see that for the benchmarks Matrix multiplication and Sorting, which con-
tain a relatively large number of implementation variants, the training time
decreases significantly (note that the bar charts of Matrix multiplication and
Sorting use a logarithmic scale, thus the time decrease is much larger than
it looks like from the charts), especially for the case of depth 4 in Matrix
multiplication, the training time is reduced by more than 39 times. For
depth 0 of all benchmarks, no training time is reduced because before the

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 65 — #77

4.3. PRUNING STRATEGIES OF ADAPTIVE SAMPLING 65

BP MM

PF ST

Figure 4.10: Prediction accuracy (%) for with (red/right bar) and without
(blue/left bar) light oversampling

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 66 — #78

66 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

BP MM

PF ST

Figure 4.11: Training time (s) with (red/right bar) and without (blue/left
bar) light oversampling

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 67 — #79

4.3. PRUNING STRATEGIES OF ADAPTIVE SAMPLING 67

BP MM

PF ST

Figure 4.12: Training time (s) with (red/right bar) and without (blue/left
bar) implementation pruning

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 68 — #80

68 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

first division step the sampling happens as before, and the implementation
pruning is applied afterwards. For benchmarks Back propagation and Path
finder, the effect is rather marginal because the number of implementation
variants is small. Thus it may be more worthwhile to apply this technique
when the number of implementation variants is relatively large.

When applying implementation pruning no noticeable drops on the pre-
diction accuracy are observed; thus for all benchmarks, it is safe to perform
implementation pruning.

Discussion: Combining Light oversampling and Implementation
pruning Different pruning techniques are designed for different optimiza-
tion objectives and have been shown with their effects in the experimen-
tal results. Light oversampling is designed for prediction accuracy, while
thresholding and implementation pruning are for less training or sampling
overhead. One idea is; although light oversampling enables higher prediction
accuracy, it causes more overhead, can we reduce the overhead by thresh-
olding or implementation pruning or both?

Figures 4.13 and 4.14 show the effect (accuracy and training time) of
combining light oversampling with implementation pruning. For the bench-
marks with a relatively large number of implementation variants, we see that
reduced overhead occurs together with improved prediction accuracy. This
is because the overhead caused by light oversampling is much less than the
savings by implementation pruning. On one hand, implementation prun-
ing can mitigate the overhead increase by the light oversampling; on the
other hand, implementation pruning may lead to lose of optimization po-
tential. This problem can be mitigated by light oversampling for the reason
that sampling extra points may find more winners than those obtained from
sampling the vertices.

Other combinations are also interesting to us and can be explored in the
future.

Discussion: Comparing adaptive sampling with random sampling
In order to evaluate further on the pros and cons of adaptive sampling, we
compare the training time and accuracy between adaptive sampling and
random sampling [58]. We feed the training examples generated by ran-
dom sampling and adaptive sampling to the same predictor: C5.0 [17]. For
benchmarks Matrix multiplication and Sorting which have more than two
implementation variants, we test also for adaptive sampling with imple-
mentation pruning. Figure 4.15 shows the results of the comparison for 4
benchmarks.

From the charts we can see that the trend that the accuracy increases
with increasing training time (the number of training examples). For Matrix
Multiplication, it is quite clear to notice that as the training time increases,
the accuracy quickly converges towards 100% in adaptive sampling; however,
for random sampling, the accuracy only increases marginally because the

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 69 — #81

4.3. PRUNING STRATEGIES OF ADAPTIVE SAMPLING 69

BP MM

PF ST

Figure 4.13: Prediction accuracy (%) with (red/right bar) and without
(blue/left bar) the combination of light oversampling and implementation
pruning

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 70 — #82

70 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

BP MM

PF ST

Figure 4.14: Training time (s) with (red/right bar) and without (blue/left
bar) the combination of light oversampling and implementation pruning

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 71 — #83

4.3. PRUNING STRATEGIES OF ADAPTIVE SAMPLING 71

BP MM

PF ST

Figure 4.15: Comparison of adaptive sampling with random sampling (blue
line: random sampling, red line: adaptive sampling, green line: adaptive
sampling with implementation pruning; vertical axis: accuracy; unit:%. hor-
izontal axis: training time, unit: s.)

random sampling often samples more points in the closed spaces which can
not contribute to the prediction model significantly. With implementation
pruning, the convergence speed is even much faster. For Path Finder, only in
the first subdivision step, the adaptive sampling yields worse results, because
it only samples points on the vertices of the whole context property value
space. However, in quite few subdivision steps, the accuracy converges to
100%. For Sorting, adaptive sampling with implementation pruning shows
similar advantage over random sampling. Only for Back propagation in
which sampling executions are computationally cheap and the number of
implementation variants is small, the two methods give similar results.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 72 — #84

72 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

4.3.3 Summary

We have provided thresholding, light oversampling, and implementation
pruning techniques that allow to better leverage our heuristic convexity as-
sumption for pruning the adaptive sampling process. The combination of
the different pruning techniques shows that the benefits of reducing training
time and improving prediction accuracy can even be obtained at the same
time. The comparison between adaptive sampling and random sampling
shows that our method can converge much faster and reaches a prediction
accuracy which random sampling can not reach over a sufficiently long time.

4.4 TunerPU Framework Design

In order to better support the implementation variant selection method
described in the previous two sections, and also enforce component writers to
provide the extra necessary ingredients (see details in Section 4.4.2) besides
the components for the selection method, we propose a framework design
and implementation named TunerPU, which we will discuss in this section.

Different computations or software components expose different inter-
faces, and part of the parameters in their interfaces are performance-related
and worth tuning. How to view different components uniformly so that they
can be tuned uniformly? We propose the TunerPU tuning framework, which
consists of two main components: an abstraction layer and a generic API.
The abstraction layer allows to unify the view of different software com-
ponent (implementation variants) interfaces from the performance-tuning’s
angle. The generic API enables the uniform tuning of an generic implemen-
tation variant selector based on this uniform view.

Section 4.4.1 gives a brief overview of TunerPU’s main components,
which are detailed in the following sections. Section 4.4.2 describes the
design of the abstraction layer. Section 4.4.3 describes the generic API. Sec-
tion 4.4.4 gives several different examples to show the expressiveness of the
TunerPU framework.

4.4.1 TunerPU Overview

TunerPU includes three main components as shown in Figure 4.16:

• tuneit: the main struct that programmers use to train its implemen-
tation variant selector, get predictions which implementation variant
is best given a run-time context, and run an Implementation variant
using a predicted implementation variant. More details is described in
Section 4.4.3.

• tunable: the abstraction layer that unifies the view of different im-
plementation variants implementing different interfaces, different con-
crete kernels could be used uniformly by tuneit if such an abstraction

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 73 — #85

4.4. TUNERPU FRAMEWORK DESIGN 73

tuneit

+ settings : tuneit_setting

+ kd_tree : tree

+ impls : tunable

+ train()

+ predict()

+ run()

tunable

+ num_dimensions : unsigned int

+ num_variants : unsigned int

+ dispatch_table : vector<Func>

+ tunable()

+ training_run()

tuneit_setting

+ depth : unsigned int

+ mask : vector<bool>

+ implementation_pruning : bool

+ oversampling : bool

+ discard_first_measurement : bool

+ num_measure_per_point : unsigned int

+ training_range : unsigned int[][]

vector_scal_tunable

+ training_run()

+ run()

matrix_vector_mul_tunable

+ training_run()

+ run()

matrix_mul_tunable

+ training_run()

+ run()

Figure 4.16: TunerPU class diagram

layer is implemented. In Figure 4.16, three kernels inherit tunable:
vector scale, matrix-vector multiplication and matrix-matrix multipli-
cation. This component is detailed in Section 4.4.2.

• tuneit setting: provide some control on the tuning process, such as
training depth (see Section 4.2.2.1), training range etc.

4.4.2 Unifying Views of a Set of Implementation Vari-
ants

Different objects can be indistinguishable if we neglect some aspects of the
objects, which we usually achieve by abstraction. In other words, abstraction
allows a unified view on different objects.

Different implementation variants that are functionally equivalent usu-
ally share the same interface or can be converted to share the same interface
by wrappers. Remember such a group of implementation variants is a ceset.
Different cesets are usually not functionally equivalent and does not share
the same interface. If we could not unify the view on different cesets, then
we have to develop specific tuning for each set. Thus, unifying the view has
the great benefit to allow a uniform tuning on different cesets.

The unified view is achieved by an abstraction design, which is an ab-
straction class tunable implemented in C++ shown in Figure 4.16. This
class only has five elements: a constructor, a run method, and three member
variables: num dimensions, num variants and dispatch table Different
cesets now have only these five elements visible uniformly. The meanings of
the 5 elements are described below:

• constructor: initializes a tunable class with appropriate configura-
tions.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 74 — #86

74 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

• training run(): initializes the run-time environment (e.g., input ar-
rays) for all the implementation variants in a ceset, runs all its imple-
mentation variants with measurement, checks the correctness of the re-
turned results by invoking each implementation variant, and destructs
the run-time environment. Its input is a variant mask (showing if
some variants are disabled for invocation), the repeat size of runs per
each setting, and the specified run-time performance-related (not the
complete list of) arguments. Its output is a vector of tuples, each
mainly describing the run-time performance-related arguments and
the corresponding measurement value. It is a pure virtual method
and an override is enforced by component writer. The method is
the key part of the abstraction class. Each ceset requires different
initialization logic4, different measurement methods5, and different
logic to check correctness6. Thus by the training run() method,
all those differences are unified and made invisible. Implementing the
training run() method requires domain knowledge (e.g., initializa-
tion, correctness checking and selecting performance-related parame-
ters), thus component writers have the privileged position to write this
method for tuning, which is why such an override is enforced by pure
virtual syntax. Since the training run() method uses variadic tem-
plates, it is expressive for the arbitrary number of performance-related
variables.

• num dimensions: number of performance-related arguments.

• num variants: number of implementation variants.

• dispatch table: array of function pointers to the implementation
variants.

Thus, for each ceset, component writers only need to define a class that
inherits our tunable class, then all the implementation variants inside the
equivalent set are amenable to the tuning by our implementation selector
which is described next.

4.4.3 Generic Run-time Selector

Next we introduce our tuning facility, which aims to provide a tuning mech-
anism and can be seamlessly applied to different cesets. It consists of two
components: a setting and a tuner. The setting consists of a few knobs to
control the tuning, such as the training range specifying the range for each
performance related parameter a training phase might use. We can see that

4The initialization logic usually requires domain knowledge, e.g. fluid dynamic simu-
lation.

5E.g. clock gettime() for CPU (Linux) implementation variants and
cudaEventRecord() for CUDA ones, MeterPU hides this complexity, see Chapter 3.

6Checking correctness usually requires domain knowledge as well.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 75 — #87

4.4. TUNERPU FRAMEWORK DESIGN 75

our tuner class (called tuneit in Figure 4.16) integrates three constructs:
a tuneit setting, a tunable (the unified-view class of Section 4.4.2), and
a kd tree (which readers can neglect for now, it is detailed in Section 4.2).
Then the train() method can perform the training and the predict()

method can give a prediction of the expected best performing implementa-
tion variant according to the run-time context passed as arguments. The
prediction result is the index number in the dispatch table of its tunable

member variable. The connection between the tuner and the unified view
class is in the train() method, where the training run() method of its
tunable member variable is called to get training data for arbitrary context
within the range specified by the setting of the tuneit.

4.4.4 Expressiveness

We demonstrate the expressiveness of our tuning framework by several ex-
amples, a 1D (only one performance-related parameter in a function sig-
nature) component and a 2D component. A 3D component is shown in
Chapter 7. The framework uses variadic templates to handle the cardinality
of performance-related parameters of a component, so it can accommodate
arbitrary such cardinality.

Listing 4.1 shows the unified view of a vector scale component, which
simply scales a vector by a scalar. It is obvious that the performance of this
component is determined only by its vector size assuming it is already com-
piled, thus it exhibits a 1D performance tuning problem. Two implementa-
tion variants are considered: vector scale cpu and vector scale gpu (a
wrapper to its kernel function). In Listing 4.1, we pass to the tunable struct
two function pointers to the two implementation variants and implement
the training run() method.

Listing 4.2 shows the example code for training an implementation se-
lector and getting a prediction for an array size. First we initialize a
tuneit setting with appropriate control arguments. Then we initialize
a tuner with the setting object and the tunable type in Listing 4.1. After-
wards we can invoke the training and get a prediction easily.

Listings 4.3 and 4.4 show two similar pieces of code for matrix vector
multiplication as a 2D tuning problem, which only differs in the number
of parameters in training run() and predict() method and training set-
tings. This shows that the unified view does help to reuse the tuning facility.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 76 — #88

76 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

1 void v e c t o r s c a l e c p u (f l o a t ∗x , s i z e t N, f l o a t va l) ;
2 void v e c t o r s c a l e g p u (f l o a t ∗x , s i z e t N, f l o a t va l) ;
3

4 typede f void (∗ v e c t o r s c a l e) (f l o a t ∗ , s i z e t , f l o a t) ;
5

6 template <c l a s s MeasureType , c l a s s . . . Tunable Args>
7 s t r u c t v e c t o r s c a l e t u n a b l e :
8 pub l i c tunable<MeasureType , v e c t o r s c a l e , Tunable Args . . . >
9 {

10 v e c t o r s c a l e t u n a b l e () :
11 tunable<MeasureType , v e c t o r s c a l e , Tunable Args . . . >
12 (
13 //number o f dimension , 1 in t h i s case
14 VECTOR SCALE NUM DIM,
15 //number o f var iants ,
16 // c a l c u l a t e d automat i ca l l y on XPDL model
17 VECTOR SCALE NUM VARIANTS,
18 { ve c t o r s c a l e cp u , v e c t o r s c a l e g p u }
19)
20 {}
21

22 std : : vector< . . . > t r a i n i n g r u n (
23 //mask out some implementation var iants ,
24 // passed automat i ca l l y from t u n e i t s e t t i n g
25 std : : vector<bool> const& variant mask ,
26 //number o f runs per each s e t t i n g
27 s i z e t const r e p e a t s i z e ,
28 // the performance−r e l a t e d parameter ,
29 // passed automat i ca l l y by the tuner
30 s i z e t const arg1) const
31 { . . . }
32 } ;

Listing 4.1: Tunable struct for vector scale component

1 s i z e t const depth =2;
2 vector<bool> const mask (4 , t rue) ;
3

4 tune i t : : t u n e i t s e t t i n g<VECTOR SCALE NUM DIM> s t
5 {depth , mask , true , f a l s e , true , 40 , { {1 ,200} } } ;
6

7 constexpr s i z e t num vert i ces =2;
8

9 tune i t : : tune i t<
10 VECTOR SCALE NUM VARIANTS,
11 num vert ices ,
12 v e c t o r s c a l e t u n a b l e<f l o a t , s i z e t >,
13 f l o a t , s i z e t
14 > mytuner (s t) ;
15

16 mytuner . t r a i n () ;
17

18 cout<<” p r e d i c t i o n i s : ”<<mytuner . p r ed i c t (20)<<endl ; ;

Listing 4.2: Code for implementation variant selection for vector scale
component

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 77 — #89

4.4. TUNERPU FRAMEWORK DESIGN 77

1 void matr ix vector mul cpu (f l o a t const ∗ A, f l o a t const ∗b , f l o a t ∗c
, s i z e t const NY, s i z e t const NX) ;

2 void matr ix vector mul gpu (f l o a t const ∗ a , f l o a t const ∗ b , f l o a t ∗ c
, s i z e t const ha , s i z e t const wa) ;

3

4 typede f void (∗matr ix vector mul) (f l o a t const ∗ , f l o a t const ∗ ,
f l o a t ∗ , s i z e t const , s i z e t const) ;

5

6 template <c l a s s MeasureType , c l a s s . . . Tunable Args>
7 s t r u c t matr ix vec to r mul tunab l e :
8 pub l i c tunable<
9 MeasureType ,

10 matr ix vector mul ,
11 Tunable Args . . .
12 >
13 {
14 matr ix vec to r mul tunab l e () :
15 tunable<
16 MeasureType ,
17 matr ix vector mul ,
18 Tunable Args . . .
19 >
20 (
21 MATRIX VECTOR MUL NUM DIM,
22 MATRIX VECTOR MUL NUM VARIANTS,
23 {matr ix vector mul cpu ,
24 matr ix vector mul gpu }
25) {}
26

27 std : : vector <...> t r a i n i n g r u n (
28 std : : vector<bool> const&
29 variant mask ,
30 s i z e t const r e p e a t s i z e ,
31 // performance−r e l a t e d parameters
32 // passed automat i ca l l y by tune i t
33 s i z e t const HA,
34 s i z e t const WA) const
35 { . . . }
36 } ;

Listing 4.3: Tunable struct for matrix vector multiplication component

1 s i z e t const depth =2;
2 vector<bool> const mask (2 , t rue) ;
3

4 tune i t : : t u n e i t s e t t i n g<MATRIX VECTOR MUL NUM DIM> s t
5 {depth , mask , true , f a l s e , true , 40 , { {1 ,200} , {1 ,200} } } ;
6

7 constexpr s i z e t num vert i ces =4;
8

9 tune i t : : tune i t<
10 MATRIX VECTOR MUL NUM VARIANTS,
11 num vert ices ,
12 matr ix vector mul tunab le<f l o a t , s i z e t , s i z e t >,
13 f l o a t ,
14 s i z e t ,
15 s i z e t > mytuner (s t) ;
16

17 mytuner . t r a i n () ;
18

19 cout<<” p r e d i c t i o n i s : ”<<mytuner . p r ed i c t (20 ,20)<<endl ; ;

Listing 4.4: Code for implementation variant selection for vector scale
component

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 78 — #90

78 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

4.4.5 Summary

In this section we have presented our tuning framework TunerPU, which
consists of an abstraction class enabling a unified view on a set of imple-
mentation variants, and a tuner which could tune the implementation se-
lection on the unified view thus decouples with specific set of variants. We
also showed the expressiveness of our tuning framework with respect to the
number of performance-related parameters.

4.5 Related Work

4.5.1 Automated Performance Autotuning

Techniques for automated performance tuning have been considered exten-
sively in previous work; they are applied e.g. in generators of optimized
domain-specific libraries (such as basic linear algebra [127, 86, 122], reduc-
tion [130], sorting [87, 122] or signal transforms [43, 113, 106, 33]), iterative
compilation frameworks (e.g. [103]), or for the optimized composition of
general program units [72, 70, 7, 5, 126], e.g. the components in our case.

Automated performance tuning usually involves three fundamental prepara-
tory tasks: (1) searching through the space of context property values, (2)
generation of training data and measurements on the target system, (3)
learning a decision function / rule (e.g. for best variant selection, decom-
position, or settings for tunable parameters), or alternatively (3a) learning
a predictor for performance and then (3b) decide / optimize based on that
predictor among the remaining options. In our approach, these three tasks
are tightly coupled to limit the amount of measurement time and represen-
tation size required, while most other approaches decouple at least two of
these tasks.

Search, measurements and learning can each be performed off-line (i.e.,
at deployment time or compile time) or on-line (i.e., at run time), or as a
combination of both. In our approach, all tasks are done off-line at com-
ponent deployment time, while all are performed at runtime in the StarPU
runtime system by continuously recording measurements from the running
program and using these data for future decisions [7].

Kessler and Löwe [72] propose a methodology for optimized composition
of multi-variant grey-box components. The component provider offers addi-
tional knowledge such as time functions for performance prediction, which
might include data obtained from microbenchmarking, measuring, direct
prediction or hybrid prediction. Predictions are made for a regularly sam-
pled (dense) space of context instances, including composition of prediction
functions for recursive components in a dynamic programming algorithm.
Based on those predictions, a dispatch table and dynamic selection code
are generated and injected into the components for run-time selection. The
dispatch tables can be a-posteriori compressed using various machine learn-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 79 — #91

4.5. RELATED WORK 79

ing techniques such as decision tree, decision graph, Bayesian classifier and
SVM, where the decision tree was empirially found to be most effective [26].
In contrast, our current work does the compression a-priori, thus avoiding
excessive prediction or measurements. Danylenko et al. [26] compares 4
different machine-learning approaches, Decision Trees, Decision Diagrams,
Naive Bayes and SVM on sorting benchmark in the field of context-aware
composition for a-posteriori compression of the dispatch function. Results
show that Decision Diagram performs better in scalability, and almost the
same in prediction accuracy and decision overhead compared with the other
three approaches.

PetaBricks [5] provides a framework with language and compiler support
for exposing implementation variant choices. It also contains an off-line
autotuning system which starts to test with a small input size and doubles
the size of the input on each later iteration. They assume that optimal
choices for smaller subproblems are independent of the larger problem, so
they construct new composition candidates incrementally from small input
sizes to larger ones. The algorithmic choices are made off-line in the output
of the compiler.

Elastic computing [126] lets the programmer transparently utilize the
heterogeneous computing resources by providing a library of elastic func-
tions. The autotuner trains itself from measurements (which are not further
specified) and then uses a linear regression model for predicting performance
of untested input values.

Grewe and O’Boyle [48] suggested an approach for statically choosing the
best mapping between tasks and unit types (CPU, GPU). Static features
such as numbers of float operations, are extracted from a set of programs,
and and scheduling decisions are fed to a SVM classifer. Then at compile
time, the decision for distribution of work load on different kinds of proces-
sors is made.

ABCLibScript [61] is a directive system that provides autotuning func-
tionality on numerical computations within the FIBER framework. The
choice of performance-related parameters, such as unrolling depth and block
length, is specified for training execution. A performance model is also spec-
ified by the users, and generated together with training results. At run-time,
best code regions are selected.

Singer and Veloso [112] applied a back-propagation neural network for
performance prediction in the field of signal processing. Results show that
choices of different combinations of features affect remarkably the prediction
accuracy.

Thomson et al. [123] presents an unsupervised learning approach (fuzzy
clustering algorithm) for a machine learning based compiler. Significant
reduction in the training cost is achieved by grouping training programs
into clusters using the ratio of assembly instructions to the total program
instructions’ as a feature vector. After clustering, they carried out train-
ing executions on one (randomly selected) representative from each cluster,

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 80 — #92

80 CHAPTER 4. HANDLING CPU-GPU SELECTION COMPLEXITY

recording the best execution configuration for each of the selected programs.
This is an alternative approach to reduce training time.

Wang and O’Boyle [125] developed two predictor functions (data-sensitive
and data-insensitive) to predict the best OpenMP execution configuration
(number of OpenMP threads, scheduling policy) for an OpenMP program on
a given architecture. They use two machine learning algorithms (Artificial
Neural Network and Support Vector Machine) and train them using code,
data and runtime features extracted via source to source instrumentation.

Zuluaga et al. [131] provide a smart sampling strategy for multi-objective
optimization problems. The sampling process starts with extracting random
training samples to 1% of the training space. Then smart sampling coupled
with a specific prediction method, Gaussian Process, will choose the next
sampling point according to the sampled data so far. Since Gaussian Process
is a statistical model and involves uncertainty, they try to iteratively sample
the points with the largest uncertainty to improve the prediction accuracy.

Our approach can be considered as an adaptive variant of decision tree
learning. Decision tree learning, often based on C4.5 [107] or similar tools,
is also used in many other approaches, e.g. in [113, 122, 130, 33].

Analytical models have been researched for many years; [42], [52] and [53]
show analytical models that can predict performance of applications with
reasonable accuracy, but either they are coupled with specific applications
or platforms, or their applicability for a broader range of applications is not
shown.

4.5.2 Framework Design

Two main approaches are used in previous work addressing the frame-
work design for implementation selection: the first approach introduces
new programming languages with explicit support for implementation se-
lection and implement new compiler to support the new languages, such as
Petabricks [5].

Another approach is to use a library for a programming model that
supports implementation selection, and naturally this could allow reuse of
the legacy implementation variants.

OpenTuner [6] proposes a general tuning framework targeting at different
domains and using ensembles of search techniques collaboratively. It also
requires users to define a run function to evaluate the fitness of a certain
tunable configuration, which is similar to our approach. The difference
lies in that our approach is focusing on run-time parameter tuning, thus
in addition to the run function in OpenTuner which is equivalent to our
training run function in TunerPU, we also include interface in TunerPU
to support run-time tuning for production runs. We present a clear picture
to reuse the legacy code, which we call as ceset. Our facility is implemented
in C++, comparing to the choice of Python in OpenTuner, our approach
may incur less framework overhead.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 81 — #93

4.6. SUMMARY 81

Elastic computing [126] proposes an adapter to connect tuning with
legacy code. The framework also has an input/output description for a
software component, however it does not encapsulate or explicitly describe
how to produce a valid input for performance modeling, compared to our
approach. Furthermore it requires programmers to map all performance-
related parameters to a single value, which is equivalent to manual feature
engineering and usually considered difficult to perform by hand in deep
learning research [47], and our approach does not require such a mapping
from programmers.

StarPU [8] requires programmers to write explicit wrappers to their
legacy code if function signatures of the legacy code do not conform to
their unified function signature, which is usually the case, and programmers
do have to write such wrappers frequently. Our approach only requires pro-
grammers to write a struct implementing our unified view once per ceset,
instead of once per each component. SkePU [31] requires new code to be
written in their skeleton framework and variants are automatically gener-
ated, thus hard to reuse legacy implementations.

4.6 Summary

In this chapter we showed the complexity of the CPU-GPU selection prob-
lem, or more precisely, the implementation variant selection problem. We
proposed an adaptive sampling approach and further three pruning strate-
gies to enhance the selection mechanism. We designed a framework that
allows a uniform view and thus easy tuning of legacy code, and a full-phase
mechanism for implementation variant selection.

Chapter Acknowledgements

This work was partly funded by EU FP7 projects PEPPHER (www.peppher.eu)
and EXCESS (www.excess-project.eu) and by SeRC project OpCoReS. We
also thank the Scientific Computing group at the University of Vienna, Aus-
tria, for letting us use their GPU server Cora for the measurements reported
in this paper.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 82 — #94

Chapter 5

Handling Platform
Complexity

This chapter is based on the following paper and technical reports:

• Kessler, C., Li, L., Atalar, A., and Dobre, A. (2015a). XPDL: Ex-
tensible Platform Description Language to Support Energy Modeling
and Optimization. In 2015 44th International Conference on Parallel
Processing Workshops (ICPPW), pages 51–60. IEEE

and EXCESS project deliverables:

• Kessler, C., Li, L., Dastgeer, U., Gidenstam, A., and Atalar, A. (2014b).
D1.2 Initial specification of energy, platform and component modelling
framework. Technical Report FP7-611183 D1.2, EU FP7 Project EX-
CESS

• Kessler, C., Li, L., Hansson, E., Ahlqvist, J., Thorarensen, S., and
Yang, M.-J. (2015c). D1.4 First prototype of composition tool and
multi-level energy and platform modeling framework. Technical Re-
port FP7-611183 D1.4, EU FP7 Project EXCESS

• Kessler, C., Li, L., Melot, N., Hansson, E., Ernstsson, A., Thorarensen,
S., and Barry, B. (2016). Final specification of energy, platform and
component modelling framework and final prototype. Technical Re-
port FP7-611183 D1.5, EU FP7 Project EXCESS

The next level of complexity that will inevitably come is the platform
(hardware and software infrastructure) complexity. As utilizing platform
efficiently is a necessary condition to achieve high performance, we can not
treat the platform transparently as a black box, instead we must open that
box. When we open this box, the complexity is high, as the platform is
a heterogeneous set of hardware components, interconnects, and low-level

82

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 83 — #95

5.1. PLATFORM COMPLEXITY 83

software pieces. Each heterogeneous hardware component has different ca-
pabilities and requires different structures, each software piece has different
versions, usually with the same interface. To achieve portability requires
to understand if a piece of code has its dependencies (e.g., BLAS libraries)
and constraints (e.g., enough GPU memory) satisfied by a target platform.
To achieve performance portability requires to understand the hardware
capabilities (e.g., is it beneficial to use GPUs?), and the performance of de-
pendent libraries (e.g., can a library run efficiently on a machine at hand?).

Can we model the platform complexity by a unified language? How to
model enough details to support interesting optimizations at higher level?
Can we achieve a design of a platform description language that benefits
from modern language features such as modularity? What is the run-time
overhead for querying platform models? In this chapter we will explore these
questions.

Section 5.1 discusses the platform complexity which motivates and helps
understanding the design requirements of a platform description language.
Section 5.2 reviews the platform description language PDL, and discusses its
pros and cons that leads to a redesign of the language called XPDL in Sec-
tion 5.3, embedded with some examples which illustrate the expressiveness
of our language. Section 5.4 describes our compiler support for implemen-
tating the XDPL language and the interfacing for high level optimizations.

5.1 Platform Complexity

We refer to platform as the collection of hardware components and system
software that are relevant for portability and performance portability for
a computation task to run on. For a heterogeneous system, the platform
usually consists of CPUs (either single core or, most common, multicore),
GPUs and/or other accelerators, DRAM and interconnects between those
hardware components. It also includes the system software such as the
operating systems, libraries etc.

Why is modeling such systems not trivial? First of all, different systems
usually have different configurations. Whether accelerators such as GPUs
may be equipped or not depends on the kind of tasks a system is supposed
to perform, as accelerators are more specifically designed than CPUs. GPUs
are advantageous in data-parallel applications. FPGAs and ASICs are even
more application-specific, although they are out of the scope of this thesis.
Being designed for special purpose instead of general purpose allows accel-
erators to have different capabilities than general purpose processors. More
diversity makes platform modeling complex. Furthermore, hardware evolves
fast, requiring that the modeling could be adapted accordingly.

Different hardware components usually require different system software
packages to provide low level support on them, exposing different APIs, sep-
arate memory spaces, programming models etc, which greatly complicates
the code that depends on them. Considering that the hardware evolves fast,

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 84 — #96

84 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

the system software will change accordingly. For example, new CUDA ver-
sions are released fast, about two versions per year. Newer versions bring
new features, such as Nvidia’s Unified Memory added from CUDA 6.0. Dif-
ferent system software makes platform modeling complex.

The range of different classes of computers that we need to be able to
model is wide, from mobile devices with mobile processors to HPC clusters.
Those computers are designed with different instruction set architectures,
hardware organizations, technologies etc., which may show different perfor-
mance (e.g., bandwidth), and run different compilers, etc., that are related
to performance portability.

Granularity of modeling is an issue as well: one could model the hard-
ware very coarsely (only model the main components and interconnects), or
very fine-grained (to the logic level). To determine the right level of gran-
ularity and allow easy customization for different optimizations of interest
requires special care. Furthermore, the organization of roles for each hard-
ware component may change over time. For a typical system with CPUs
and GPUs, CPUs usually play the role of master which control GPUs as
slaves. CPUs could themselves be slaves controlled by one of the CPUs. If
threads running on CPUs are not pinned to them, then the roles can change
dynamically during a parallel program execution. As energy consumption
becomes a dominating factor to constrain computing performance, providing
some support of energy modeling is within our concerns.

5.2 A Review of PEPPHER PDL

PDL, described by Sandrieser et al. [110], has been developed in the EU FP7
project PEPPHER (2010-2012, www.peppher.eu), as a XML-based platform
description language for single-node heterogeneous systems, to be used by
tools to guide performance prediction, automated selection of implementa-
tion variants of annotated application software components (”PEPPHER
components”), or task mapping. In particular, it establishes naming con-
ventions for the entities in a system such that they can be referred to by
symbolic names. Beyond that, it is also intended to express so-called plat-
form patterns, reusable templates for platform organization that could be
instantiated to a complete platform specification.

PDL models the main architectural blocks and the hierarchical execu-
tion relationship in heterogeneous systems. All other entities (e.g., installed
software) are modeled as free-form properties in the form of key-value pairs.

The main architectural blocks, which distinguish between types and in-
stances, include
– Processing Units (PU), describing the processing elements in a heteroge-
neous machine;
– Memory regions, specifying data storage facilities (such as global/shared
main memory, device memories); and
– Interconnect.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 85 — #97

5.2. A REVIEW OF PEPPHER PDL 85

For PDL example specifications we refer to [110] or [66, Sec. 4.1].

5.2.1 Control Relation

The overall structure of these hardware components descriptions in a PDL
specification is, however, not organized from a hardware perspective (i.e.,
the structural organization of the hardware components in the system) but
follows the programmer perspective by formalizing the control relation be-
tween processing units as a logic tree consisting of so-called Master, Hybrid
and Worker PU. There must be one Master PU, a feature-rich general pur-
pose PU that marks a possible starting point for execution of a user pro-
gram, thus acting as the root of the control hierarchy; there are a number
of Worker PU s that are specialized processing units (such as GPUs) that
cannot themselves launch computations on other PUs and thus act as leaves
of the control hierarchy; and Hybrid PU s that can act both as master and
worker PU and thus form inner nodes in the control hierarchy. A system
might not contain all three types of PUs (i.e., control roles) simultaneously.
For instance, a standard multicore server without accelerators has no work-
ers, and the Cell/B.E., if used stand-alone (i.e., not coupled with a host
computer acting as Master), has no hybrid PUs.

In practice, which PU is or could be host and which one is a device
depends not only on the hardware but mainly on the programming model
used, which might be defined by the compiler, runtime system and/or further
system layers. The PDL control relation usually reflects the system’s native
low-level programming model used (such as CUDA).

The actual workings of the launching of computation modeled by the
control relation cannot be explicitly specified in PDL. In practice, this aspect
is typically hardcoded in the underlying operating system scheduler or the
heterogeneous runtime system, making the specification of a unique, specific
Master PU questionable, for instance in a dual-CPU server.
Discussion The motivation of emphasizing the control role in PDL was to
be able to define abstract platform patterns that can be mapped to concrete
PUs. However, we find that using the control relation as the overarching
structure of a platform description is not a good idea, especially as the con-
trol relationship may not always be fixed or even accessible to the program-
mer but might, for instance, be managed and hardcoded in the underlying
heterogeneous runtime system.

In particular, it makes more sense to adopt a hardware-structural orga-
nization of platform descriptions, because power consumption, temperature
metrics and other measurement values naturally can be attributed to coarse-
grain hardware blocks, such as CPU, memory or devices, but not to software
roles. Most often, the software roles are implicitly given by the hardware
blocks and/or the underlying heterogeneous runtime system, hence a sepa-
rate role specification is usually not necessary.

Hence, we advocate a language structure that follows the hardware com-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 86 — #98

86 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

position of the main architectural blocks, that is also more aware of the
concrete architectural block type (e.g., that some hardware component is
actually a GPU), and that allows to optionally model control relations sep-
arately (referencing the involved hardware entities) for complex systems
where the control relation cannot be inferred automatically from the hard-
ware entities alone. This should still allow the definition of abstract platform
(i.e., generic control hierarchy) patterns, but rather as a secondary aspect
to a more architecture oriented structural specification. Where appropriate,
the control relation could also be specified as a feature of the runtime system
rather than the architectural structure itself.

In the PEPPHER software stack, the mechanisms and constraints of
launching tasks to other PUs are managed entirely by the runtime system
(StarPU [8]); as a consequence, the control relation information in PDL
specifications was not needed and not used by the PEPPHER tools. If suit-
ably complemented by control code specification, it might rather become
relevant in scenarios of generating code that runs directly on the bare hard-
ware without a managing runtime system layer in between.

5.2.2 Interconnect Specification

The interconnect specification in PDL is intended to model communication
facilities between two or more PUs, in a style similar to xADML [11] inter-
cluster communication specifiers. In PEPPHER this information was not
used, as the communication to and from an accelerator is managed com-
pletely within the PEPPHER runtime system, i.e., StarPU.

5.2.3 Properties Concept

The possibility of specifying arbitrary, unstructured platform properties
(e.g., installed software) as key-value pairs1 provides a very flexible and con-
venient extension mechanism in PDL, as long as the user(s) keep(s) control
over the spelling and interpretation of introduced property names. Proper-
ties can also be used as placeholders if the actual values are not known yet
at meta-data definition time or can change dynamically, e.g. due to different
possible system configurations. The existence and, where existing, values of
specified properties can be looked up by a basic query language.
Discussion Properties allow to extend PDL specifications beyond the de-
fined tags and attributes given by the fixed PDL language syntax, in an
ad-hoc way. This is highly flexible but can also lead to inconsistencies and
confusion due to lack of standardization of naming conventions for proper-
ties.

Properties in PDL can be mandatory or optional. We think that manda-
tory properties should better be modeled as predefined XML tags or at-
tributes, to allow for static checking. For instance, a property within a

1Both keys and values are strings in PDL.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 87 — #99

5.3. XPDL DESIGN PRINCIPLES 87

CPU descriptor such as x86 MAX CLOCK FREQUENCY [110] should better be
specified as a predefined attribute.
Using Platform Descriptions for Conditional Composition In recent work on
conditional composition [28] our group used PDL specifications to guide the
dynamic selection of implementation variants of PEPPHER components. In
the PEPPHER composition tool [32], which builds an adaptive executable
program for a PEPPHER application from its annotated multi-variant com-
ponents, the target system’s PDL specification is parsed and stored in an
internal representation, which can be inspected at composition time to check
for selectability constraints that depend on static property values. In order
to also enable constraints that involve dynamic properties or property val-
ues, the composition tool also writes the PDL representation to a file that
is loaded by the PEPPHER application’s executable code on startup into a
run-time data structure. This data structure thus holds the platform meta-
data which the composition code can introspect via a C++ API, i.e. read
access property values in the evaluation of constraints that guide selectabil-
ity of implementation variants. In a case study with a sparse matrix vector
multiply component in [28], our group used this feature to let each CPU and
GPU implementation variant specify its specific constraints on availability
of specific libraries (such as sparse BLAS libraries) in the target system,
and to add selection constraints based on the density of nonzero elements,
leading to an overall performance improvement.

5.2.4 Modularity Issues

Another limitation of PDL is its semi-modular structure of system specifi-
cations. While it is generally possible to decompose any XML specification
into multiple submodules (files), PDL does not specifically encourage such
modularity and tends to produce monolithic system descriptions, which lim-
its the reuse of specifications of platform subcomponents.

5.3 XPDL Design Principles

In contrast to the PDL default scenario of a single monolithic platform
descriptor file, XPDL provides a modular design by default that promotes
reuse of submodels and thus avoids replication of contents with the resulting
risk for inconsistencies. XPDL defines a hierarchy of submodels, organized
in model libraries containing separate models for entities such as

• CPUs, cores, caches,

• Host memory,

• GPUs and other accelerators with own device memory,

• Interconnects, such as inter-node networks (e.g. Infiniband), intra-
node networks (e.g. PCIe) and on-chip networks, and

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 88 — #100

88 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

• System software installed.

In principle, a XPDL descriptor is a machine-readable data sheet of the
corresponding hardware or system software entity, containing information
relevant for performance and energy optimization. The descriptors for the
various types of CPUs, memory etc. are XPDL descriptor modules (.xpdl
files) placed in a distributed model repository: XPDL models can be stored
locally (retrieved via the model search path), but may, ideally, even be pro-
vided for download e.g. at hardware manufacturer web sites. Additionally,
the model repository contains (source) code of microbenchmarks referenced
from the descriptors.

In addition to the models describing hardware and system software com-
ponents, there are (top-level) models for complete systems, which are (like
their physical counterparts) composed from third-party provided hardware
and software components, and reference the corresponding XPDL model
descriptors by name to include these submodels.
Alternative Views of XPDL Models Generally, XPDL offers multiple views:
XML (used in the examples in this paper), UML (see [66]), and C++ (as
used for the internal and run-time representation of models). These views
only differ in syntax but are semantically equivalent, and are (basically)
convertible to each other. In the following we present the XML view.

5.3.1 Basic Features of XPDL

We distinguish between meta-models (classes describing model element types)
and concrete models of the concrete hardware components (i.e., instances)
in the modeled target system, as several concrete models can share the same
meta-model. For example, several concrete CPUs in a computer system can
share the same CPU type definition.

In principle, each XPDL model of a (reusable) hardware component
shall be specified separately in its own descriptor file, with the extension
.xpdl. For pragmatic reasons, it is sometimes more convenient to spec-
ify sub-component models in-line, which is still possible in XPDL. Reusing
and referencing submodels is done by referencing them by a unique name2,
so they can easily be retrieved in the same model or in the XPDL model
repository. Depending on whether one includes a submodel at meta-level
or base-level, the naming and referencing use different attribute names. To
specify an identifier of a model element, the attribute name is used for a
meta-model, and the attribute id is for a model. The strings used as name

and id should be unique across the XPDL repository for reference non-
ambiguity, and naming is only necessary if there is a need to be referenced.
The attribute type is used in both base-level and meta models for referenc-
ing to a specific meta-model.

Using the extends attribute, XPDL also supports (multiple) inheritance
to encourage more structuring and increased reuse by defining attributes

2The name may contain a version number (if applies) to be unique.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 89 — #101

5.3. XPDL DESIGN PRINCIPLES 89

and subcomponents common to a family of types (e.g., GPU types) in a
supertype. The inheriting type may overscribe attribute values.

The XML element group can be used to group any elements. If the
attribute quantity is used in a group element (as in Listing 5.1), then
the group is implicitly homogeneous. In such cases, to facilitate identifier
specification, attributes prefix and quantity can be used together to assign
an id to the group member elements automatically. For example, if we
specify a group with prefix core and quantity 4, then the identifiers of the
group members are assigned as core0, core1, core2 and core3.

For a metric such as static power, if specified as an attribute, its unit
should also be specified, in metric unit form such as static power unit for
static power. As an exception, the unit for the metric size is implicitly
specified as unit.

Installed software is given by installed tags; also these refer to separate
descriptors, located in the software directory.

The <properties> tag refers to other possibly relevant properties that
are not modeled separately by own descriptors but specified flexibly by key-
value pairs. This escape mechanism (which avoids having to create new tags
for such properties and allows ad-hoc extensions of a specification) was also
suggested in PDL [110].

Not all entities are modeled explicitly. For instance, the motherboard
(which also contributes some base energy cost) may not be modeled explic-
itly; its static energy share will be derived and associated with the node when
calculating static and dynamic energy costs for each (hardware) component
in the system.

5.3.2 Parameters, Constants and Constraints

By the param attribute, models can define local parameters (variables) that
can be set when instantiating a concrete model. Default values can be
specified, too. An example can be seen in Listing 5.9.

Constants, declared using the const attribute, are parameters that can-
not be reassigned an arbitrary new value on instantiation.

A constraint defines a boolean expression that involves C-style terms
of parameters and constants, and that must be fulfilled for a model to be
valid. A typical use is to describe configurable properties of an architecture
or system software, as in the example in Listing 5.8. A model can define
multiple constraints, collected in the constraints section.

5.3.3 Hardware Component Modeling

In the following we show examples of XPDL descriptions of hardware com-
ponents. Note that these examples are simplified for brevity. More complete
specifications for some of the EXCESS systems are given in [66].
Processor Core Modeling We consider a typical example of a quad-core
CPU architecture where L1 cache is private, L3 is shared and L2 is shared

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 90 — #102

90 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

by 2 cores. Listing 5.1 shows the corresponding XPDL model. The use
of attribute name in the cpu element indicates that this specifies a name of
this meta-model in XPDL, and the attribute quantity in the group element
shows that the group is homogeneous, consisting of identical elements whose
number is defined with the attribute quantity. Furthermore, the prefix

can define a name prefix along with quantity, which automatically assigns
identifiers to all group members that are built by concatenating the prefix
string with each group member’s unique rank ranging from 0 to the group
size minus one.

The sharing of memory is given implicitly by the hierarchical scoping in
XPDL. In the example, the L2 cache is in the same scope as a group of two
cores, thus it is shared by those two cores.

<cpu name="Intel_Xeon_E5_2630L">

<group prefix="core_group" quantity="2">

<group prefix="core" quantity =2>

<!-- Embedded definition -->

<core frequency="2" frequency_unit="GHz" />

<cache name="L1" size="32" unit="KiB" />

</group>

<cache name="L2" size="256" unit="KiB" />

</group>

<cache name="L3" size="15" unit="MiB" />

<power_model type="power_model_E5_2630L" />

</cpu>

Listing 5.1: An example meta-model for a specific Xeon processor

Although the element core should rather be defined in a separate sub-
metamodel (file) referenced from element cpu for better reuse, we choose
here for illustration purposes to embed its definition into the CPU meta-
model. Embedding subcomponent definitions gives us the flexibility to con-
trol the granularity of modeling, either coarse-grained or fine-grained. The
same situation also applies to the cache hierarchy.

<!-- Descriptor file ShaveL2.xpdl -->

<cache name="ShaveL2" size="128" unit="KiB" sets="2"

replacement="LRU" write_policy="copyback" />

<!-- Descriptor file DDR3_16G.xpdl -->

<memory name="DDR3_16G" type="DDR3"

size="16" unit="GB"

static_power="4" static_power_unit="W" />

Listing 5.2: Two example meta-models for memory modules

Memory Module Modeling Listing 5.2 shows example models for different
memory components, in different files.

Interconnect Modeling The tag interconnect is used to denote different

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 91 — #103

5.3. XPDL DESIGN PRINCIPLES 91

kinds of interconnect technologies, e.g. PCIe, QPI, Infiniband etc. Specifi-
cally, in the PCIe example of Listing 5.3, the channels for upload and down-
load are modeled separately, since the energy and time cost for the two
channels might be different [67].

<!-- Descriptor file pcie3.xpdl: -->

<interconnect name="pcie3">

<channel name="up_link"

max_bandwidth="6" max_bandwidth_unit="GiB/s"

time_offset_per_message="?"

time_offset_per_message_unit="ns"

energy_per_byte="8" energy_per_byte_unit="pJ"

energy_offset_per_message="?"

energy_offset_per_message_unit="pJ" />

<channel name="down_link" ... />

</interconnect >

<!-- Descriptor file spi1.xpdl: -->

<interconnect name="spi...">

...

</interconnect >

Listing 5.3: Example meta-models for some interconnection networks

Device Modeling Listing 5.4 shows a concrete model for a specific Myriad-
equipped server (host PC with a Movidius MV153 development board con-
taining a Myriad1 DSP processor), thus its name is specified with id instead
of name. This Myriad server uses several interconnections to connect the
host server to Myriad1, e.g. SPI and USB. For an instantiation of any kind
of interconnect, the connection information must also be specified, e.g. using
the head and tail attributes for directed communication links.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 92 — #104

92 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

<system id="myriad_server">

...

<socket >

<cpu id="myriad_host" type="Xeon1"

role="master"/>

</socket >

<device id="mv153board" type="Movidius_MV153" />

<interconnects >

<interconnect id="connect1" type="SPI"

head="myriad_host" tail="mv153board" />

<interconnect id="connect2" type="usb_2.0"

head="myriad_host" tail="mv153board" />

<interconnect id="connect3" type="hdmi"

head="myriad_host" tail="mv153board" />

<interconnect id="connect4" type="JTAG"

head="myriad_host" tail="mv153board" />

</interconnects >

...

</system >

Listing 5.4: A concrete model for a Myriad-equipped server

The device with the Myriad1 processor on it is a Movidius MV153 card,
whose meta-model named Movidius MV153 is specified in Listing 5.5 and
which is type-referenced from the Myriad server model.

<device name="Movidius_MV153">

<socket >

<cpu type="Movidius_Myriad1"

frequency="180" frequency_unit="MHz" />

</socket >

</device >

Listing 5.5: Example meta-model for Movidius MV153 board

The MV153 model in Listing 5.5 in turn refers to another meta-model
named Myriad1 which models the Myriad1 processor, see Listing 5.6.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 93 — #105

5.3. XPDL DESIGN PRINCIPLES 93

<cpu name="Movidius_Myriad1">

<core id="Leon" type="Sparc_V8" endian="BE" >

<cache name="Leon_IC" size="4" unit="kB"

sets="1" replacement="LRU" />

<cache name="Leon_DC" size="4" unit="kB"

sets="1" replacement="LRU"

write_policy="writethrough" />

</core>

<group prefix="shave" quantity="8">

<core type="Myriad1_Shave" endian="LE" />

<cache name="Shave_DC" size="1" unit="kB"

sets="1" replacement="LRU"

write_policy="copyback" />

</core>

</group>

<cache name="ShaveL2" size="128" unit="kB" sets="2"

replacement="LRU" write_policy="copyback" />

<memory name="Movidius_CMX" type="CMX"

size="1" unit="MB" slices="8" endian="LE"/>

<memory name="LRAM" type="SRAM"

size="32" unit="kB" endian="BE" />

<memory name="DDR" type="LPDDR"

size="64" unit="MB" endian="LE" />

</cpu>

Listing 5.6: Example meta-model for Movidius Myriad1 CPU

<system id="liu_gpu_server">

<socket >

<cpu id="gpu_host" type="Intel_Xeon_E5_2630L"/>

</socket >

<device id="gpu1" type="Nvidia_K20c" />

<interconnects >

<interconnect id="connection1" type="pcie3"

head="gpu_host" tail="gpu1" />

</interconnects >

</system >

Listing 5.7: A concrete model for a GPU server

GPU modeling is shown in Listings 5.7–5.10. The K20c GPU (List-
ing 5.9) inherits most of the descriptor contents from its supertype Nvidia-

Kepler (Listing 5.8) representing a family of similar GPU types. The 64KB
shared memory space in each shared-memory multiprocessor (SM) on Ke-
pler GPUs can be partitioned among L1 cache and shared memory in three
different configurations (16+48, 32+32, 48+16 KB). This configurability is
modeled by defining constants (const), formal parameters (param) and con-
straints, see Listing 5.8. In contrast, a concrete K20c GPU instance as in
Listing 5.10 uses one fixed configuration that overrides the generic scenario
inherited from the metamodel. Note that some attributes of K20c are in-
herited from the Nvidia Kepler supertype, while the K20c model sets some
uninitialized parameters like global memory size (gmsz), and overwrites e.g.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 94 — #106

94 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

the inherited default value of the attribute compute capability.

<device name="Nvidia_Kepler" extends="Nvidia_GPU"

role="worker">

<compute_capability ="3.0" />

<const name="shmtotalsize"... size="64" unit="KB"/>

<param name="L1size" configurable="true"

type="msize" range="16, 32, 64" unit="KB"/>

<param name="shmsize" configurable="true"

type="msize" range="16, 32, 64" unit="KB"/>

<param name="num_SM" type="integer"/>

<param name="coresperSM" type="integer"/>

<param name="cfrq" type="frequency" />

<param name="gmsz" type="msize" />

<constraints >

<constraint expr=

"L1size + shmsize == shmtotalsize" />

</constraints >

<group name="SMs" quantity="num_SM">

<group name="SM">

<group quantity="coresperSM">

<core type="..." frequency="cfrq" />

</group>

<cache name="L1" size="L1size" />

<memory name="shm" size="shmsize" />

</group>

</group>

<memory type="global" size="gmsz" />

...

<programming_model type="cuda6 .0,..., opencl"/>

</device >

Listing 5.8: Example meta-model for Nvidia Kepler GPUs

<device name="Nvidia_K20c" extends="Nvidia_Kepler">

<compute_capability ="3.5" />

<param name="num_SM" value="13" />

<param name="coresperSM" value="192" />

<param name="cfrq" frequency="706" ... unit="MHz"/>

<param name="gmsz" size="5" unit="GB" />

...

</device >

Listing 5.9: Example meta-model for Nvidia GPU K20c

<device id="gpu1" type="Nvidia_K20c">

<!-- fixed configuration: -->

<param name="L1size" size="32" unit="KB" />

<param name="shmsize" size="32" unit="KB" />

...

</device >

Listing 5.10: Example model for a concrete Nvidia GPU K20c

Cluster Modeling Listing 5.11 shows a concrete cluster model in XPDL.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 95 — #107

5.3. XPDL DESIGN PRINCIPLES 95

The cluster has 4 nodes each equipped with 2 CPUs and 2 different GPUs.
Within each node, the GPUs are attached with PCIe3 interconnect, while
an Infiniband switch is used to connect different nodes to each other.

<system id="XScluster">

<cluster >

<group prefix="n" quantity="4">

<node >

<group id="cpu1">

<socket >

<cpu id="PE0" type="Intel_Xeon_ ..." />

</socket >

<socket >

<cpu id="PE1" type="Intel_Xeon_ ..." />

</socket >

</group>

<group prefix="main_mem" quantity="4">

<memory type="DDR3_4G" />

</group>

<device id="gpu1" type="Nvidia_K20c" />

<device id="gpu2" type="Nvidia_K40c" />

<interconnects >

<interconnect id="conn1" type="pcie3"

head="cpu1" tail="gpu1" />

<interconnect id="conn2" type="pcie3"

head="cpu1" tail="gpu2" />

</interconnects >

</node>

</group>

<interconnects >

<interconnect id="conn3" type="infiniband1"

head="n1" tail="n2" />

<interconnect id="conn4" type="infiniband1"

head="n2" tail="n3" />

...

</interconnects >

</cluster >

<software >

<hostOS id="linux1" type="Linux_ ..." />

<installed type="CUDA_6 .0"

path="/ext/local/cuda6 .0/" />

<installed type="CUBLAS_ ..." path="..." />

<installed type="StarPU_1 .0" path="..." />

</software >

<properties >

<property name="ExternalPowerMeter" type="..."

command="myscript.sh" />

</properties >

</system >

Listing 5.11: Example of a concrete cluster machine

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 96 — #108

96 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

5.3.4 Power Modeling

Power modeling consists in modeling power domains, power states with
transitions and referencing to microbenchmarks for power benchmarking.
A power model (instance) is referred to from the concrete model of the
processor, GPU etc.

Power domains or power islands are groups of cores etc. that need to be
switched together in power state transitions. Every hardware subcomponent
not explicitly declared as (part of) a (separate) power domain in a XPDL
power domain specification is considered part of the default (main) power
domain of the system. For the default power domain there is only one power
state that cannot be switched off and on by software, i.e., there are no power
state transitions.

For each explicitly defined power domain, XPDL allows to specify the
possible power states which are the states of a finite state machine (the
power state machine) that abstract the available discrete DVFS and shut-
down levels, often referred to as P states and C states in the processor
documentation, specified along with their static energy levels (derived by
microbenchmarking or specified in-line as a constant value where known).
A power state machine has power states and transitions, and must model
all possible transitions (switchings) between states that the programmer
can initiate, along with their concrete overhead costs in switching time and
energy.

The dynamic power depends, among other factors, on the instruction
type [67] and is thus specified for each instruction type or derived automati-
cally by a specific microbenchmark that is referred to from the power model
for each instruction.

With these specifications, the processor’s energy model can be boot-
strapped at system deployment time automatically by running the micro-
benchmarks to derive the unspecified entries in the power model where nec-
essary.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 97 — #109

5.3. XPDL DESIGN PRINCIPLES 97

<power_domains name="Myriad1_power_domains">

<!-- this island is the main island -->

<!-- and cannot be turned off -->

<power_domain name="main_pd"

enableSwitchOff="false">

<core type="Leon" />

</power_domain >

<group name="Shave_pds" quantity="8">

<power_domain name="Shave_pd">

<core type="Myriad1_Shave" />

</power_domain >

</group>

<!-- this island can only be turned off -->

<!-- if all the Shave cores are switched off -->

<power_domain name="CMX_pd"

switchoffCondition="Shave_pds off">

<memory type="CMX" />

</power_domain >

</power_domains >

Listing 5.12: Example meta-model for power domains of Movidius Myriad1

<power_state_machine name="power_state_machine1"

power_domain="xyCPU_core_pd">

<power_states >

<power_state name="P1" frequency="1.2"

frequency_unit="GHz"

power="20" power_unit="W" />

<power_state name="P2" frequency="1.6" ... />

<power_state name="P3" frequency="2.0" ... />

</power_states >

<transitions >

<transition head="P2" tail="P1"

time="1" time_unit="us"

energy="2" energy_unit="nJ"/>

<transition head="P3" tail="P2" ... />

<transition head="P1" tail="P3" ... />

</transitions >

</power_state_machine >

Listing 5.13: Example meta-model for a power state machine of a pseudo-
CPU

Listing 5.12 shows an example of a power domain meta-model. It consists
of one power domain for the Leon core in Myriad 1, eight power domains for
each Shave core, etc. The setting for attribute enableSwitchOff specifies
that the power domain for the Leon core can not be switched off. The
attribute switchoffCondition specifies that power domain CMX pd can only
be switched off if the group of power domains Shave pds (all Shave cores)
is switched off.

Listing 5.13 shows an example of a power state machine for a power
domain xyCPU core pd in some CPU, with the applicable power states and
transitions by DVFS.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 98 — #110

98 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

<instructions name="x86_base_isa"

mb="mb_x86_base_1" >

<inst name="fmul"

energy="?" energy_unit="pJ" mb="fm1"/>

<inst name="fadd"

energy="?" energy_unit="pJ" mb="fa1"/>

...

<inst name="divsd">

...

<data frequency="2.8" frequency_unit="GHz"

energy="18.625" energy_unit="nJ"/>

<data frequency="2.9" frequency_unit="GHz"

energy="19.573" energy_unit="nJ"/>

...

<data frequency="3.4" frequency_unit="GHz"

energy="21.023" energy_unit="nJ"/>

</inst>

</instructions >

Listing 5.14: Example meta-model for instruction energy cost

Instruction Energy The instruction set of a processor is modeled including
references to corresponding microbenchmarks that allow to derive the dy-
namic energy cost for each instruction automatically at deployment time.
See Listing 5.14 for an example. For some instructions, concrete values may
be given, here as a function / value table depending on frequency, which was
experimentally confirmed. Otherwise, the energy entry is set to a placehol-
der (?) stating that the concrete energy cost is not directly available and
needs to be derived by microbenchmarking. On request, microbenchmark-
ing can also be applied to instructions with given energy cost and will then
override the specified values.
Microbenchmarking An example specification of a microbenchmark suite is
shown in Listing 5.15. It refers to a directory containing a microbenchmark
for every instruction of interest and a script that builds and runs the mi-
crobenchmark to populate the energy cost entries.

<microbenchmarks id="mb_x86_base_1"

instruction_set="x86_base_isa"

path="/usr/local/micr/src"

command="mbscript.sh">

<microbenchmark id="fa1" type="fadd" file="fadd.c"

cflags="-O0" lflags="..." />

<microbenchmark id="mo1" type="mov" file="mov.c"

cflags="-O0" lflags="..." />

...

</microbenchmarks >

Listing 5.15: An example model for instruction energy microbenchmarks

A power model thus consists of a description of its power domains, their

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 99 — #111

5.4. XPDL COMPILER AND INTERFACING WITH OTHER
SOFTWARE 99

power state machines, and of the microbenchmarks with deployment infor-
mation.

5.3.5 Hierarchical Energy Modeling

A concrete system model forms a tree hierarchy, where model elements such
as socket, node and cluster form inner nodes and others like gpu, cache
etc. may form leaves that contain no further modeling elements as explicitly
described hardware sub-components.

Every node in such a system model tree (e.g., of type cpu, socket, device,
gpu, memory, node, interconnect, cluster, or system) has explicitly or im-
plicitly defined attributes such as static power. These attributes are either
directly given for a node or derived (synthesized). Directly given attribute
values are either specified in-line (e.g., if it is a known constant) or derived
automatically at system deployment time by specifying a reference to a mi-
crobenchmark. Synthesized attributes3 can be calculated by applying a rule
combining attribute values of the node’s children in the model tree, such as
adding up static power values over the direct hardware subcomponents of
the node.

5.4 XPDL Compiler and Interfacing with Other
Software

The XPDL compiler, implemented in C++, runs statically with the input
of the XPDL model files in XPDL language. Its final output is a C++
header file that implements our API for interfacing with other high level
software that requires platform information to perform their optimizations
of interest, or to barely check for portability.

The compilation are performed by the following steps:

1. It browses the XPDL model repository for all required XPDL files
recursively as referenced in a concrete model tree, parses them, and
generates an intermediate representation of the composed model.

2. It then generates microbenchmarking driver code, invokes runs of mi-
crobenchmarks wherever required to derive attributes with unspeci-
fied values, filters out uninteresting values, performs static analysis of
the model (for instance, downgrading bandwidth of interconnections
where applicable as the effective bandwidth should be determined by
the slowest hardware components involved in a communication link).

3. Finally builds a light-weight data structure and meta-functions for
the composed model that is finally written into a file. Other software
can simply include the generated file as a header, and they have the
capabilities to query all kinds of platform information.

3Note the analogy to attribute grammars in compiler construction.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 100 — #112

100 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

Note that the use of meta-functions in our generated file allows zero
run-time overhead for querying platform information, and thus can activate
further compiler optimizations such as control flow simplifications (e.g., if
simplifications for constant-valued conditions) [91].

5.4.1 Query API

There are three categories of XPDL Query API functions by our design:

• Attribute-querying: allows to query an attribute value for a specified
hardware component.

• Aggregated-attribute-querying: allows to query an aggregated attribute
value that the compiler produces after static analysis of all XPDL mod-
els for a given platform, such as the total number of GPUs equipped
in a machine.

• Software-querying: allows to query if a software with a certain version
is installed, usually used for portability checking.

Listing 5.16 shows an example for each category. The first example
will give a numerical value for the number of cores in the first CPU, the
second yields a value for the total number of GPUs without knowing the
concrete name for each GPU. The last one tests if a software library called
blas with version 4.2 is installed in the system for dependency checking.
These functions look different compared to normal functions because they
are meta-functions in C++ allowing zero run-time overhead. We also ex-
tend the XDPL compiler to generate macro4 versions of the XPDL API.
Listing 5.17 gives such an example, in which it shows the number of GPUs,
and that cblas is not installed but OpenMP is.

1 // Attr ibute−query API :
2 xpdl : : cpu 1 : : num of cores
3

4 // Aggregated−a t t r i bu t e−query API :
5 xpdl : : system : : num of gpus
6

7 // Software−query API :
8 xpdl : : i s i n s t a l l e d <xpdl : : system : : l i b r a r i e s , xpd l b l a s 4 2 > : : va lue

Listing 5.16: Examples of XPDL query API by meta-functions

4C++ macro is not a good engineering practice, but in some circumstances it is
more powerful than meta-function (e.g., disable some code snippets) and more easier to
implement than its compiler-based equivalent.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 101 — #113

5.4. XPDL COMPILER AND INTERFACING WITH OTHER
SOFTWARE 101

1 #d e f i n e XPDL NUM OF GPUS 1
2

3 #d e f i n e XPDL CBLAS 0
4

5 #d e f i n e XPDL OPENMP 1

Listing 5.17: Examples of XPDL query API by C++ macro

5.4.2 Interfacing with Other Software

Next we show an example illustrating the interfacing and the usage of XPDL
platform information. Another example is shown later in Section 6.2.2.11
for enhancing data abstraction.

A previous work using ComPU with PDL is presented in Dastgeer et
al. [28], it presents the idea of conditional composition: programmers can en-
code the execution constraints of their components using ComPU’s small de-
scription language, such as ’validIf(pdl :: getIntProperty (” numCudaSM ”) >=
16)’ for a CUDA component, saying that the component can only be exe-
cuted if the number of SM on a CUDA-enabled GPU is larger or equal to 16.
Then ComPU statically queries the PDL model and disables the component
if it finds that the constraint is not satisfied on the current platform. Pro-
grammers could use logic operators such as AND and OR to express more
complicated constraints.

We implement the conditional composition by combining ComPU with
XPDL. Listing 5.18 shows how we express two selectability constraints in a
CUDA component, saying that in order for it to run there should be a GPU
and cublas 5.0 installed on the current constraints. One could also use AND
and OR. In order to conform to XML syntax constraints, we use ’{’ instead
of ’<’ in this XML descriptor.

Then the composition tool ComPU runs and inspects the constraints one
by one by short-curcuit evaluation (if one fails, neglect the evaluations of
the rest). If any of these constraints of a component are not satisfied, it will
disable the components, and only hand over those components that pass
their selectability tests as tasks to StarPU run-time systems.

1 <peppher : c on s t r a in t s>
2

3 <peppher : c o n s t r a i n t name=” GPU ava i lab i l i ty ”
4 expr=” xpdl : : system : : num of gpus > 0” />
5

6 <peppher : c o n s t r a i n t name=” C u b l a s a v a i l a b i l i t y ”
7 expr=” xpdl : : i s i n s t a l l e d
8 {xpdl : : system : : l i b r a r i e s , xp d l cu b l a s 5 0 } : : va lue != 0” />
9

10 </peppher : c on s t r a in t s>

Listing 5.18: Express contraints by XDPL API

The advantage of combining ComPU with XPDL instead of PDL is that
due to a full-phase compiler introduced for XPDL, we could query a much

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 102 — #114

102 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

wider range of information about the current platform, such as system soft-
ware, aggregated platform attributes, deployment-time known information
(e.g., achievable PCIe bandwidth), etc. Due to meta-programming API,
such queries are overhead-free and may activate further compiler optimiza-
tion.

5.4.3 Portability by XPDL

How does XPDL maintain portability when applications are ported to a dif-
ferent system? Each host system has a XPDL model defined, thus the tool
chain on top of XPDL could adapt programs to each system by utilizing
each system’s own XPDL model to gain portability. This allows program-
mers to express their portability requirements in their components, which
is judged against XPDL model by the tool chain to determine whether it is
portable on a system. Since all the components that are incompatible with
a specific system are filtered out before compilation, the components sur-
vived the filtering are guaranteed to compile and run on the target system.
Since there is at least one sequential CPU implementation available in the
ceset, it is always runnable. In this way, we gain portability. If more than
one components are checked as compatible with the current system, we can
potentially gain performance portability by TunerPU’s adaptive implemen-
tation selection.

Currently the XPDL compiler performs no cross-compiling, the XPDL
compiler runs directly on the target machine, thus the XPDL compiler’s
micro-benchmarking is invoked on the target machine as well. The data
obtained by the micro-benchmarking will reflect the characteristics of the
target machine, such data will be further used by the tool chains on top of
XPDL for further processing. An example of such further processing is: a
micro-benchmark is designed to get an energy price tag for an instruction
for a processor. When we compile a program on a target machine with such
a processor, a XPDL compiler runs first, and invokes this micro-benchmark
to extract such energy price tag for the processor of the target machine.
This value can be further used by other tools, e.g., a tool that constructs an
energy predictor for an implementation variant on top of each instruction
energy price tag, and based on that perform implementation variant selec-
tion. Notice that such micro-benchmarking is invoked by the compiler thus
performed at compile time, not run time.

5.5 Related Work

Architecture description languages (ADL) for describing hardware architec-
ture5 have been developed and used mainly in the embedded systems do-

5Note that the same term and acronym is also used for software architecture descrip-
tion languages, which allow to formally express a software system’s high-level design in
terms of coarse-grained software components and their interconnections, and from which

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 103 — #115

5.5. RELATED WORK 103

main since more than two decades, mostly for modeling single-processor
designs. Hardware ADLs allow to model, to some degree of detail, either or
both the structure (i.e., the hardware subcomponents of an architecture and
how they are connected) and the behavior (i.e., the set of instructions and
their effect on system state and resources). Depending on their design and
level of detail, such languages can serve as input for different purposes: for
hardware synthesis and production e.g. as ASIC or FPGA, for generating
(parts of) a simulator for a processor design, or for generating (parts of)
the program development toolchain (compiler, assembler, linker). Exam-
ples of such ADLs include Mimola, nML, LISA, EXPRESSION, HMDES,
ISDL, see e.g. [90] for a survey and classification. In particular, languages
used by retargetable code generators (such as HMDES, LISA, ISDL and
xADML [11]) need to model not only the main architectural blocks such as
functional units and register sets, but also the complete instruction set in-
cluding resource reservation table and pipeline structure with operand read
and write timing information for each instruction, such that a optimizing
generic or retargetable code generator (performing instruction selection, re-
source allocation, scheduling, register allocation etc.) can be parameterized
or generated, respectively; see also Kessler [71] for a survey of issues in (re-
targetable) code generation. Note that such ADLs differ from the traditional
hardware description languages (HDLs) such as VHDL and Verilog which
are mainly used for low-level hardware synthesis, not for toolchain genera-
tion because they lack high-level structuring and abstraction required from
a toolchain’s point of view. However, a HDL model could be generated from
a sufficiently detailed ADL model.

Architecture description languages for multiprocessors have become more
popular in the last decade, partly due to the proliferation of complex multi-
core designs even in the embedded domain, but also because portable pro-
gramming frameworks for heterogeneous multicore systems such as Sequoia
[41] for Cell/B.E. and PEPPHER [32, 12] for GPU-based systems respec-
tively, need to be parameterized in the relevant properties of the target
architecture in order to generate correct and optimized code. Sequoia [41]
includes a simple language for specifying the memory hierarchy (memory
modules and their connections to each other and to processing units) in
heterogeneous multicore systems with explicitly managed memory modules,
such as Cell/B.E.

MAML [74] is a structural, XML-based ADL for modeling, simulating
and evaluating multidimensional, massively parallel processor arrays.

Hwloc (Hardware Locality) [16] is a software package that detects and
represents the hardware resources visible to the machine’s operating system
in a tree-like hierarchy modeling processing components (cluster nodes, sock-
ets, cores, hardware threads, accelerators), memory units (DRAM, shared
caches) and I/O devices (network interfaces). Like XPDL, its main purpose

tools can generate platform-specific glue code automatically to deploy the system on a
given system software platform. In this section we only refer to Hardware ADLs.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 104 — #116

104 CHAPTER 5. HANDLING PLATFORM COMPLEXITY

is to provide structured information about available hardware components,
their locality to each other and further properties, to the upper layers of
system and application software in a portable way.

ALMA-ADL [118] developed in the EU FP7 ALMA project is an archi-
tecture description language to generate hierarchically structured hardware
descriptions for MPSoC platforms to support parallelization, mapping and
code generation from high-level application languages such as MATLAB or
Scilab. For the syntax, it uses its own markup language, which is extended
with variables, conditions and loop constructs for compact specifications,
where the loop construct is similar to the group construct in XPDL.

HPP-DL [108] is a platform description language developed in the EU
FP7 REPARA project to support static and dynamic scheduling of software
kernels to heterogeneous platforms for optimization of performance and en-
ergy efficiency. Its syntax is based on JSON rather than XML. HPP-DL
provides predefined, typed main architectural blocks such as CPUs, GPUs,
memory units, DSP boards and buses with their attributes, similarly to the
corresponding XPDL classes. In comparison to XPDL, the current specifica-
tion of HPP-DL [108] does not include support for modeling of power states,
dynamic energy costs, system software, distributed specifications, runtime
model access or automatic microbenchmarking.

What ADLs generally omit is information about system software such as
operating system, runtime system and libraries, because such information
is of interest rather for higher-level tools and software layers, as for com-
posing annotated multi-variant components in PEPPHER and EXCESS.
As discussed earlier, PDL [110] models software entities only implicitly and
ad-hoc via free-form key-value properties. None of the ADLs considered
puts major emphasis on modeling of energy and energy-affecting properties.
To the best of our knowledge, XPDL is the first ADL for heterogeneous
multicore systems that provides high-level modeling support also for system
software entities, and that has extensive support for modeling energy and
energy-affecting factors such as power domains and power state machines.

5.6 Summary

We proposed XPDL, a portable and extensible platform description lan-
guage for modeling performance and energy relevant parameters of comput-
ing systems in a structured but modular and distributed way. It supports
retargetable toolchains for energy modeling and optimization, and allows ap-
plication and system code to introspect its own execution environment with
its properties and parameters, such as number and type of cores and mem-
ory units, cache sizes, available voltage and clock frequency levels, power
domains, power states and transitions, etc., but also installed system soft-
ware (programming models, runtime system, libraries, compilers, ...). We
observe that, beyond our own work, such functionality is needed also in other
projects in the computing systems community, and we thus hope that this

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 105 — #117

5.6. SUMMARY 105

work will contribute towards a standardized platform description language
promoting retargetability and platform-aware execution.

Chapter Acknowledgements

This research was partially funded by EU FP7 project EXCESS (www.excess-
project.eu) and SeRC (www.e-science.se) project OpCoReS.

We thank Dmitry Khabi from HLRS Stuttgart for suggestions on cluster
modeling. We thank Jörg Keller from FernUniv. Hagen, Anders Gidenstam
from Chalmers and all EXCESS project members for comments on this
work. We also thank Ming-Jie Yang for improvements of the current XPDL
toolchain prototype.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 106 — #118

Chapter 6

Handling Data
Management Complexity

This chapter is based on the following paper:

• Li, L. and Kessler, C. (2017b). VectorPU: A Generic and Efficient
Data-container and Component Model for Transparent Data Trans-
fer on GPU-based Heterogeneous Systems. In Proc. 8th Workshop
on Parallel Programming and Run-Time Management Techniques for
Many-core Architectures and 6th Workshop on Design Tools and Ar-
chitectures for Multicore Embedded Computing Platforms (PARMA-
DITAM’17). ACM

• Li, L. and Kessler, C. (2017a). Lazy allocation and transfer fusion
optimization for GPU-based heterogeneous systems. In Proc. Euromi-
cro PDP-2018 Int. Conf. on Parallel, Distributed, and Network-based
Processing. IEEE

The final type of complexity that we will address in this thesis is data
management complexity. This is particularly important for GPU-based het-
erogeneous systems, because data transfer has long been a severe perfor-
mance bottleneck ever since the introduction of traditional sequential or
multi-CPU computer systems, For high performance GPU-based heteroge-
neous systems this issue can be a more performance-constraining factor as
data transfer on PCIe bus can be even slower than data transfer through
memory hierarchy on sequential or multi-CPU systems. Another reason is
that a large proportion of code on heterogeneous systems can be only for
data management, which put a heavy burden the programmer. Jablin et
al. [57] shows that 82% of code in a simple CUDA program is the logic
related to data allocation and coherence management.

Compared to sequential or multicore processor systems, the data man-
agement on GPU-based heterogeneous systems further complicates program-
ming on such systems. Programmers may have to allocate memory blocks

106

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 107 — #119

6.1. DATA MANAGEMENT COMPLEXITY 107

Figure 6.1: A typical GPU-based system

for operands on both sides (CPU memory and GPU memory), and deallo-
cate them when they are no longer needed. Programmers are also required
to manually transfer the data back and forth to make sure that when it is
time to invoke a kernel either on CPU or GPU, the kernel’s arguments are
most recent if read accesses to them are performed by the kernel.

Can we abstract data management away for an arbitrary kernel? Can
we achieve a design of such programming abstraction while maintaining effi-
ciency and expressiveness? How to further optimize data transfer based on
a designed data abstraction? In this chapter we will explore these questions.

Section 6.1 discusses the data management complexity in more details.
Section 6.2 describes our design of data abstraction on GPU systems, which
we name VectorPU. Section 6.3 proposes two data transfer optimizations.
Although these optimizations are orthogonal to specific frameworks, we im-
plement and evaluate them in VectorPU.

6.1 Data Management Complexity

The data management complexity on most high-end GPU systems1 can be
mainly attributed to the separate address spaces for CPUs and GPUs, with
different programming APIs for data management on the different processor
memories. This, in many cases, leads to the need to allocate and maintain at
least two copies of the same data, and transfer them explicitly to keep these
copies coherent. Figure 6.1 shows such a typical example, when we offload
computations to a GPU, operand data is transferred back and forth between
main memory and device memory. From a programmability’s point of view,
coding for GPU systems becomes harder, as programmers now have more
responsibilities in addition to coding for the kernel computations. Many
low level details are needed, such as the number of bytes for a data object.
The resulting code becomes hard to understand, as the core business logic
is hidden in the data management code, and as a result, the code is hard to

1Some GPU systems, e.g., mobile GPUs may not have their own separate address
space.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 108 — #120

108 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

maintain.
From the performance point of view, adding more responsibilities to

the programmers increases the risk of careless redundant data transfers,
which is a pure performance loss. Furthermore, there is a strong need to
optimize data transfers under the hood, as they are often the performance
bottlenecks2 of a program on a heterogeneous computer system.

6.2 Framework Design and Evaluation

A data abstraction for heterogeneous systems can greatly improve the pro-
grammability of such systems. Specifically a vector abstraction can be
preferable, as it represents a continuous chunk of memory which can be
transferred between CPU and GPU memory efficiently. And more complex
data structures can be built based on this basic building block, such as dense
matrix (e.g., represented by a vector, if flattened in row/column major or-
der) and sparse matrix (e.g. the CSR sparse matrix representation which
consists of three vectors).

Furthermore, the STL library has been a success for data abstraction on
CPU memory, and Nvidia CUDA Thrust [97] provides a STL-like data ab-
straction on the GPU side, and both provide high quality algorithms. A data
abstraction that can be easily integrated with STL and Thrust algorithms
potentially improves the programmability even further.

Therefore, we designed VectorPU, a C++ library that provides a vector
abstraction on (Nvidia) GPU based heterogeneous system, with automatic
data allocation and coherence management, and compatible with the STL
and Thrust algorithm libraries. VectorPU shows 1.40× to 13.29× speedup
compared to Nvidia’s Unified Memory [50] and no slowdown compared with
manual expert-written code.

Section 6.2.1 discusses our approach and the design of VectorPU, and
Section 6.2.2 shows the wide applicability of our approach.

6.2.1 VectorPU Design

For a general program, we can organize its main entities as data structures
and functions.

• The data structures can be arbitrarily complex, but for the interest of
memory coherence, vectors are usually beneficial for efficiency reasons
(data transfers are most efficient if the memory to be transferred is
continuous, see also Section 6.3). Data containers, like STL vector,
allow reuse of some management functionalities such as memory allo-
cation and deallocation etc., with possibly higher execution efficiency
than manual code.

2If not, then most programs can achieve or nearly achieve peak performance, which
is obviously not true.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 109 — #121

6.2. FRAMEWORK DESIGN AND EVALUATION 109

• The functions, no matter templated or not, usually have fixed access
properties (e.g., read, write or readwrite) for their parameters. For
traditional CPU programs, such properties are not vitally important
to express explicitly, because all data objects of a program are loaded
in the main memory of a system. In contrast, the access properties are
significantly more important in (GPU-based) heterogeneous systems
where different physical memory modules exist for different kinds of
processing units, and such access properties can decide if a data move-
ment is necessary. As an example, for read-only parameters of a CUDA
kernel, there is no need to move the data back after the kernel call; for
a write access to an invalid memory copy, making it up-to-date before
the write access is also unnecessary.

While there is a clear need for such access properties of parameters of
functions, unfortunately compilers are in general not able to extract such
information automatically for functions by static analysis. For example, via
pointer arithmetics two arrays a and b may intersect with each other, then
modifying a will lead to modifying b, but as a compiler can not statically
detect that b is modified, we can only expect a conservative ”may” answer
given by compilers. Furthermore, source code may not even be available.
On the other hand, these properties are not so difficult for programmers
or code readers to deduce. Therefore, some annotation language to encode
such access properties becomes a natural solution, to allow programmers
to express them while developing the software components. Furthermore,
data containers should be able to process such information and perform data
transfer only when necessary in order to improve execution efficiency.

6.2.1.1 Annotation DSEL

In VectorPU, we design a DSEL (Domain-Specific Embedded Language) to
annotate each parameter or argument. Table 6.1 lists its typical annotations.
We have pointer annotations that, when used, can translate a VectorPU
data structure (described in Section 6.2.1.3) to a pointer with necessary and
only necessary coherence for its pointee. For example, RW(x) will return
a pointer of the host memory represented by x, and also make sure that
the most recent copy is already on host memory and the memory on its
device copy is marked as invalid. We can also get iterators of VectorPU
data structures by iterator annotations such as RI(x). For a parameter or
argument that does not require coherence, such as an array size, we can use
NA to denote ”not applicable”.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 110 — #122

110 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

Access Property Host Device
Read pointer R GR
Write pointer W GW
Read and Write pointer RW GRW
Read Iterator RI GRI
Read End Iterator REI GREI
Write Iterator WI GWI
Write End Iterator WEI GWEI
Read and Write Iterator RWI GRWI
Read and Write End Iterator RWEI GRWEI
Not Applicable NA NA

Table 6.1: VectorPU’s annotations for a parameter

6.2.1.2 Flow Signature, VectorPU Component

1 void foo (const f l o a t ∗x , f l o a t ∗y ,
2 f l o a t ∗z , i n t s i z e) ;
3

4 // (alpha s i gna tu r e) : one−time annotat ions
5 //−−−−−−−Cal l VectorPU Component−−−−−−−−−
6 f oo (R(x) , W(y) , RW(z) , s i z e) ;
7

8 // (beta s i gna tu r e) : r eu sab l e
9 //−−−−VectorPU Component De f i n i t i on−−−−−−

10 #d e f i n e bar f l ow (GR) (GW) (GRW) (NA)
11 g l o b a l
12 void bar (const f l o a t ∗x , f l o a t ∗y ,
13 f l o a t ∗z , i n t s i z e){
14 . . .
15 }
16

17 // Cal l VectorPU Component with a beta s i gna tu r e
18 CALL((bar) ((<<<32,256>>>)) ((x , y , z ,N))) ;
19 CALLC((bar) ((<<<32,256>>>)) ((x , y , z ,N)) (bar f l ow)) ;
20

21 // (gamma s i gna tu r e) : r eu sab l e and natura l
22 //−−−−VectorPU Component De f i n i t i on−−−−−−
23 g l o b a l
24 void bar (const f l o a t ∗x [[GR]] , f l o a t ∗y [[GW]] ,
25 f l o a t ∗z [[GRW]] , i n t s i z e)
26 { . . . }
27

28 // Cal l VectorPU component as beta s i gna tu r e

Listing 6.1: Flow signatures

In order to denote access properties for all parameters or arguments of a
function signature or a function call, we define a concept called flow signa-
ture: an ordered sequence of annotations for every parameter’s or argument’s
access property in a function signature or a function call. As illustrated in
Listing 6.1, three forms of flow signatures can be defined:

1) α (flow) signature: we can denote the access property for each param-
eter at the call site of a function, as illustrated in Listing 6.1 line 6, where

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 111 — #123

6.2. FRAMEWORK DESIGN AND EVALUATION 111

R(x) annotates x to be used as a read-only parameter by the CPU function
foo(). R(x) also translates x to a pointer required by foo(). Although it
is simple to annotate, there is no reuse of such meta-data for another call
to the same function. Annotations such as R(x) are, under the hood, C++
macros developed on top of the Boost library.

2) β signature: in order to reuse meta-data for the same function, we can
define a flow signature separately by a C++ macro, thus there is no need
to annotate multiple calls to the same function each time. As illustrated in
Listing 6.1 line 10, the sequence of the annotations for parameters in the flow
signature is the same as those in its function signature. The naming con-
vention for a β signature is the function name suffixed by a string ”_flow”.
We use ”G” (GPU) to denote the parameter’s location, thus GW signals that
the argument to this parameter will be translated to a device pointer with
necessary coherence knowing that it will be write-only. NA(size) denotes
that no coherence is needed for the parameter size.

Line 18 shows how to call a VectorPU component with a β signature,
the CALL macro takes a three-element tuple as input: the function name,
the invocation configuration (for host function this element is empty, but
double parentheseses is still required), and the run-time arguments. The
CALL macro takes the default flow signature name, such as ”bar_flow” in
this case, thus no flow signature argument is specified. Line 19 shows another
way to call a VectorPU component with a β signature. The CALLC (Call with
a Customized flow signature) macro takes an explicit flow signature name
as one extra parameter. In cases where the default macro name already
exists or a function is overloaded (in such cases only one function can use
the default flow signature name), CALLC can be used to avoid name clashes.

3) γ signature: for a clean interface we can utilize C++11 attributes to
express a flow signature as illustrated in lines 24-25 in Listing 6.1. Each
access property is directly adjacent to its target parameter, thus readability
is improved. However, it requires a source-to-source compiler to transform γ
signatures to β signatures under the hood for the native compiler to process.
We built such a compiler called vpucc based on clang 3.9 to perform the
source-to-source transformation.

It is important to notice that α and β signatures do not require the avail-
ability of the source code, thus VectorPU allows annotations for functions
from binary libraries. We assume that a function’s return value is trivial
(e.g. a status code), and does not need coherence management, which is usu-
ally the case. If not, the function’s return value can be moved to one extra
parameter, and the transformed form can be expressed as a flow signature.
Our flow signatures ignore return value annotations.

A call or a function that is annotated by either α, β or γ signature makes
the function a VectorPU component.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 112 — #124

112 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

6.2.1.3 VectorPU Vector

A VectorPU vector is a data container to expose a single unified continu-
ous block of memory to programmers for heterogeneous programming, with
automatic memory coherence management for host and device memory on
GPU-based systems. Internally it inherits from STL and Thrust vector.

When a VectorPU vector is declared with the required number of el-
ements, the amount of memory in bytes are calculated and allocated au-
tomatically both on host and device. This is reasonable because when we
intend to use GPUs for computations, we usually first allocate host and de-
vice memory of the same size anyway, then transfer the data between them.
If a programmer intends to use only CPU memory for some vector variables
in a heterogeneous system, a STL vector can be used to avoid unnecessary
overhead.

Regarding the supported heterogeneous data structures, in principle
list etc. can also be added in the VectorPU library, but for efficiency
reasons, vector is preferred because data transfer is most efficient if the
data to be transfered is continuous. Other data structures can be converted
from a VectorPU vector after the coherence action is finished, and the con-
versions are usually much cheaper as memory transfer between device and
host is not needed anymore.

6.2.1.4 A Motivating Example

With VectorPU component and vector, one can write an accelerator appli-
cation easily without programming the data transfers. Listing 6.2 shows an
example with β signature. We can annotate a normal GPU function in line
1, and VectorPU guarantees the three arguments to be in correct coherent
states in device memory before the function call. The flow signature also
guarantees that each argument is translated to a raw device memory pointer
as required by bar().

1 #d e f i n e bar f l ow (GR) (GW) (GRW) (NA)
2 g l o b a l
3 void bar (const f l o a t ∗r , f l o a t ∗s , f l o a t ∗t ,
4 const i n t s i z e) { . . . }
5

6 i n t main () {
7 vectorpu : : vec to r x (10) , y (10) , z (10) ;
8 CALL((bar) ((<<<32,256>>>)) ((x , y , z , 1 0))) ;}

Listing 6.2: An example application with VectorPU

6.2.1.5 Coherence Management

We use a simplified MESI coherence mechanism. Each (device or host)
memory segment of VectorPU vector has only two states: invalid (not
most recent copy) or valid (most recent copy). For different combinations
of locations (CPU or GPU) and access modes (R, W, or RW), we have six

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 113 — #125

6.2. FRAMEWORK DESIGN AND EVALUATION 113

situations to consider, only three of them (GPU cases) are listed here as the
others are similar. At any time during program execution, at least one copy
is valid.

1. GR: if the coherence flag of a GPU memory copy is invalid, then we
transfer the valid copy from the CPU memory, and set the GPU co-
herence flag as valid.

2. GW: set the GPU memory coherence flag to be valid, and the CPU
memory coherence flag to be invalid.

3. GRW: the same as the GR case, additionally set the CPU memory co-
herence flag to be invalid.

The reason why we use a simplified MESI coherence mechanism is that
when we declare a VectorPU vector, it is already in a shared state in MESI.
If programmers do not intend to use a container that is already shared, which
is reasonable only in the scenario that only the CPU memory copy is needed,
then a STL vector can be defined instead. In other words, we rely on pro-
grammers to choose the right container, which allows for a simpler coherence
algorithm, and less run-time overhead. The programmers usually can decide
such choices, as they already do so in normal CUDA programs by explicit
invocations of malloc() or cudaMalloc(). Data transfer is performed only
lazily, and in case of a write-only parameter, no data transfer to device is
needed at all.

6.2.2 Expressiveness of VectorPU

In this section we show the wide range of use cases where VectorPU can
apply.

6.2.2.1 Basic and Customized Data Types

VectorPU vector can be instantiated with a basic data type as well as a
customized data type, illustrated in Listing 6.3. If it is initialized with a
customized data type, the memory is arranged as array of structs on both
host and device memory.

1 vectorpu : : vector<int> x ;
2 vectorpu : : vector<MyType> x ;

Listing 6.3: Vectors with different element data type

6.2.2.2 Smart Iterators

We can also use iterator annotations, with one extra ”I” such as GRI (GPU
Read Iterator) and GREI (GPU Read End Iterator), to get the starting
and ending iterators from a VectorPU vector. Those iterators are smart
as they guarantee lazy data movement, and they can be used either by

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 114 — #126

114 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

STL or Thrust algorithms depending on whether a host or device iterator
is returned by the annotations. Thus heterogeneous programming can be
simplified as in Listing 6.4. With only 4 lines of code, we declare a vector
with compound data type, let the CPU generate a random sequence and
the GPU sort it, and finally print it on screen. Listing 6.5 shows a hybrid
computing example. Line 4 invokes a GPU kernel asynchronously, and line 5
invokes a CPU kernel, hence the CPU and GPU kernel run simultaneously.

The VectorPU iterators allow code productivity by reuse of STL and
Thrust algorithms which hide tuning-relevant parameters such as grid and
block size. VectorPU’s annotations for translation to raw pointers allow to
develop high performance code, as these raw pointers can be used by native
device functions where all tunable parameters (e.g. block size) are exposed
for further (manual- or auto-) tuning.

It is worth mentioning that VectorPU does not either force or change
synchronizations on components. If one of a CPU and a GPU component
annotated by VectorPU is asynchronous, and the call to the asynchronous
component appears first followed by the call to the other component, then
CPU and GPU will be busy at the same time when executing the two com-
ponents.

1 vectorpu : : vector<My Type> x (N) ;
2 std : : generate (WI(x) , WEI(x) , RandomNumber) ;
3 th rus t : : s o r t (GRWI(x) , GRWEI(x)) ;
4 std : : copy (RI (x) , REI(x) , o s t r e am i t e r a t o r<My Type>(cout , ””)) ;

Listing 6.4: Heterogeneous programming

1 vectorpu : : vector<My Type> v1 (N) , v2 (N) ;
2 std : : generate (WI(v1) , WEI(v1) , RandomNumber) ;
3 std : : generate (WI(v2) , WEI(v2) , RandomNumber) ;
4 user space : : sort<<<8,256>>>(GRWI(v2) ,GRWEI(v2)) ;
5 std : : s o r t (GRWI(v1) , GRWEI(v1)) ;
6 cudaDeviceSynchronize () ;

Listing 6.5: Hybrid computation

6.2.2.3 Lambda Functions

VectorPU can not only perform coherence management for normal (host or
device) functions, but also for code snippets annotated as VectorPU lambda
functions for an analogy to C++11 lambda functions. At present this fea-
ture only applies to host code snippets, as applications usually contain such
snippets to initialize data that are to be transfered to GPU for computations.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 115 — #127

6.2. FRAMEWORK DESIGN AND EVALUATION 115

1 // alpha s i gna tu r e
2 f o r (std : : s i z e t i =0; i<N; ++i) {
3 W(z) [i]=3; }
4

5 // beta s i gna tu r e
6 #d e f i n e lambda (z) \
7 f o r (std : : s i z e t i =0; i<N; ++i) { \
8 z [i]=3; }
9 #d e f i n e VECTORPU DESCRIBE VECTORPU META DATA(

10 int , z , W)
11 VECTORPU LAMBDA GEN

Listing 6.6: VectorPU lambda functions

Listing 6.6 shows a code snippet that can be annotated by α or β sig-
natures. An α signature in lambda functions is the same as in normal
functions. Notice that in line 3 the annotation W on z performs the coher-
ence management on the whole vector, for partial coherence management
please see Section 6.2.2.8. A β signature allows to reuse the flow annotation
for a parameter. In a β signature, we first define the lambda function by
the lambda macro with all VectorPU vectors (used in the code snippet)
in the parameter list, the body of the macro is the code snippet which is
unchanged in its original form in non-VectorPU applications. Then we have
another macro to define VectorPU flow signatures, such as type, name, ac-
cess modes, and finally we have a third macro to generate necessary glue
code. In code snippets where there are repetitive uses of the same VectorPU
vector, β signatures are more compact descriptions, as only one annotation
for the vector is needed for its multiple uses.

6.2.2.4 VectorPU Algorithms

With VectorPU annotations for iterators, we can define VectorPU algo-
rithms as algorithms on heterogeneous systems that can take host or device
data arbitrarily and under the hood only transfer necessary data. VectorPU
algorithms can be implemented using VectorPU flow signatures on top of
the STL and Thrust algorithms.

Listing 6.7 shows an example using vectorpu::copy with the same se-
mantics but parameterized by heterogeneous iterators, thus allows to copy
data between host and device. In this example the host memory of x will
not be updated if it is already a valid copy, and the host memory of y will
be automatically invalidated since there is new data written to its device
memory. Although here an α signature is used, other flow signatures also
apply.

1 vectorpu : : copy (RI (x) , REI(x) , GWI(y)) ;

Listing 6.7: VectorPU algorithms

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 116 — #128

116 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

6.2.2.5 Overloaded Functions

If all overloaded functions under the same name share the same flow signa-
ture, a common flow signature can be defined and reused for these functions,
and at call sites all calls to these overloaded functions load the same flow
signature and get the same coherence state before these calls.

If all overloaded functions have different flow signatures, each function
can be equipped with its own flow signature, and at call site, callers load
their own flow signature, and get their preferred coherence states.

The namespace information can be encoded in a flow signature name to
avoid name clashes; in the future, compiler support can be developed, thus
the flow signature name can be mangled like C++ functions.

6.2.2.6 Template Functions

Usually for a template function, an instantiation for a different template pa-
rameter does not alter its access properties (such as read, write or readwrite),
and we can naturally write a reusable flow signature to all its template in-
stantiations.

For rare cases where changing template parameters does change their
access properties, different flow signatures for the same function can be de-
fined with different names, and can be loaded at different call sites whenever
necessary.

6.2.2.7 Expressing Skeletons in VectorPU

1 s t r u c t my set{
2 template <c l a s s T>
3 h o s t d e v i c e
4 void operator () (T &x) { x+=101; }
5 } ;
6

7 i n t main () {
8 vectorpu : : vector<int> x (N) ;
9 vectorpu : : f o r each<int >(GRWI(x) , GRWEI(x) , my set ()) ;

10 vectorpu : : f o r each<int >(GWI(x) , GWEI(x) ,
11 [] d e v i c e (i n t &x){x=10;}) ;
12 vectorpu : : f o r each<int >(RI (x) , REI(x) ,
13 [] (i n t const &x) {cout<<x<<” , ” ;}) ; }

Listing 6.8: Skeleton programming by VectorPU

Skeleton programming is a popular high-level programming model on
heterogeneous systems. Skeletons such as map, reduce, scan, stencil, have
well-defined semantics and access properties for their parameters. Listing 6.8
shows an example for a map skeleton by VectorPU, with three user functions
(a user function is a piece of problem-specific code that is called by skeletons
typically on each data element, similar to lambda functions in C++11), two
to set a vector variable and one to print it. For reusable user functions, a
functor can be defined (lines 1-5) that can be used for skeletons on both
CPU and GPU side. The functor is invoked in line 9. For one-time use

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 117 — #129

6.2. FRAMEWORK DESIGN AND EVALUATION 117

user functions, line 10-11 and 12-13 calls a map skeleton with a device and
host lambda function respectively. More specifically, Line 10 is a device-
side lambda (indicated by the keyword device) that set each element of
the vector x to 10. The memory coherence is transparent and the code is
compact and readable.

6.2.2.8 Partial Coherence for Vectors

VectorPU supports partial coherence for its vectors to allow flexible coher-
ence granularity and avoid unnecessary data transfer for better performance.
It provides a data container parco vector (abbreviated as pvector) which
is initialized from CPU memory iterators of a VectorPU vector. pvector

only contains iterators that point to a vector’s CPU and GPU memory.
When it is initialized with CPU memory iterators, the GPU memory it-
erators are set automatically for the same range. The coherence state of
a pvector is inherited from the vector it points to. After initialization,
programmers can use VectorPU algorithms on pvectors in the same way as
for VectorPU vectors. Then the coherence only happens at the subsection
that the pvector contains, so that only necessary data are transfered and
coherence cost becomes lower. Note that the partial array coherence is sup-
ported in previous implementation for Java JIT compiler [55] and SkePU’s
smart containers [27].

6.2.2.9 Flow Signature Switching

Even if a reusable β or γ signature is defined at function level, at any call
site, one can change the flow signature by using an α signature at call site
without loading the reusable signature. This switching makes sense when
we pass two pvectors that intersect with each other, thus the function level
flow signature becomes incorrect for this situation as it in general does not
assume such overlap in its parameters. The caller can reflect the peculiarity
by flow signature switching.

6.2.2.10 Multi-GPU Support

VectorPU supports multi-GPU systems. VectorPU’s data container big ve-

ctor can manage the allocation and coherence of the memory of CPU and
multiple GPUs. For the parameters described by the flow signature, in-
stead of returning a single pointer or iterator by the VectorPU vector in
Section 6.2.1.3, the annotations (except NA) translate each parameter to a
zip pointer or zip iterator, which is a tuple of pointers or iterators, one
per each GPU. The code to define type zip pointer or zip iterator is
generated from a model of the target system in XPDL platform description
language, from which the number of GPUs is known.

For big vector, at the declaration phase the memory on both CPU and
multi-GPU side is allocated. For the CPU side, the memory is allocated

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 118 — #130

118 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

in one big continuous chunk, thus it allows for both efficient sequential and
parallel memory operations. On the multi-GPU side, the same data of
memory is partitioned evenly or nearly evenly and allocated on the different
GPUs’ global memory by default if such as an partition is beneficial for load
balance. In the future we can expose the parameter on how to cut the input
data to application-specific tuning. XPDL (see Section 5) can be utilized to
look up how much global memory is available on each GPU. In the future,
we can also consider the global memory size on each GPU from XPDL for
memory allocation for big vector.

For memory coherence, VectorPU internally uses the same mechanism
of Section 6.2.1.5 one by one for each GPU which is already implemented
in big vector. For the internal representation of memory coherence state,
each GPU has its own state, thus in principle it is possible to have dif-
ferent coherence states for each GPU before and after each one VectorPU
component invocation, but this would require more expressiveness from the
flow signature. Whether it is worthwhile for an extension depends on if
such pattern occurs frequently in applications, and we leave it for our future
work.

Listing 6.9 shows a code example of using VectorPU’s big vector. We
initialize a big vector with specified size and constant value in line 29, use
all available GPUs as accelerators to update the vector in line 30, and print
its value on the screen from CPU-side memory in line 31. The data transfer
is automatically managed by the help of an α flow signature. From the Vec-
torPU component point of view, it catches a zip pointer, and can extract
different pointers and sizes on different GPU devices. A GPU component
can internally decide the synchronization among different GPU devices, and
perform performance tuning on the block size etc. To improve programma-
bility even more, in the future we can also develop libraries of VectorPU
components that can hide the extraction of zip iterators, cover common
computational patterns, and adapt to different numbers of GPU devices as
told by XPDL. To improve the tuning, we can also add the facility to allow
tuning the number of GPUs to use for a call, instead of using all available
GPUs.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 119 — #131

6.2. FRAMEWORK DESIGN AND EVALUATION 119

1 g l o b a l
2 void gpu kerne l (i n t ∗p , std : : s i z e t N)
3 {
4 f o r (std : : s i z e t i =0; i<N; ++i)
5 (∗p++) +=300;
6 }
7

8 void gpu func (vectorpu : : z i p po in t e r<int> &x , std : : s i z e t N)
9 {

10 cudaSetDevice (0) ;
11 gpu kerne l<<<1,1>>>(x . p0 , x . s i z e 0) ;
12 cudaSetDevice (1) ;
13 gpu kerne l<<<1,1>>>(x . p1 , x . s i z e 1) ;
14 cudaDeviceSynchronize () ;
15 }
16

17 void cpu func (vectorpu : : z i p po in t e r<int> const &x , std : : s i z e t N)
18 {
19 //programmers can proce s s a l l data from CPU memory
20 // in one loop as i t i s cont inuous
21 auto p=x . p0 ;
22 f o r (std : : s i z e t i =0; i<x . s i z e ; ++i)
23 cout<<∗(p++)<<” ” ;
24 }
25

26 i n t main ()
27 {
28 const std : : s i z e t N=100;
29 vectorpu : : b i g vec to r<int> x (N, 300) ;
30 gpu func (GW(x) , N) ;
31 cpu func (R(x) , N) ;
32 }

Listing 6.9: VectorPU on multi-GPU systems

6.2.2.11 VectorPU’s Self-adaptive Vector

From a system model in XPDL, the number of GPUs equipped in a system
can be known statically, and used to reshape VectorPU code statically as
well. VectorPU contains a generalized data container: self adaptive vect-

or.

• If no GPUs are available, self adaptive vector is barely a STL vec-
tor.

• If one GPU is available, self adaptive vector is a VectorPU vector

in Section 6.2.1.3.

• If multiple GPUs are available, self adaptive vector is a VectorPU
big vector in Section 6.2.2.10.

At present, self adaptive vector is only an experimental feature, be-
cause the different vectors above have different interfaces, so it is not pos-
sible yet to write VectorPU container-independent code. In the future we
plan to develop a library of VectorPU components to bridge the difference,
integrate our automatic back-end selection technique [81] with VectorPU,

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 120 — #132

120 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

Table 6.2: Machine configuration

Machine CPU GPU CUDA
Laptop A Intel(R) Core(TM) 1 K2100M 7.5

i7-4710MQ @ 2.50GHz (Kepler)
AGC (workstation) Intel(R) Xeon(R) 1 K620 7.5

E5-1620 v3 @ 3.50GHz (Maxwell)
Triolith n1598 Intel(R) Xeon(R) 1 K20Xm 7.5
(supercomputer) E5-2660 0 @ 2.20GHz (Kepler)

Laptop A AGC Triolith
0

1

2

3

4

S
p
e
e
d
u
p
 t
o
 u

n
if
ie

d
 m

e
m

o
ry

 b
y
 V

e
c
to

rP
U

(a) Conjugate Gradient, compared with
Nvidia’s UM.

Laptop A AGC Triolith
0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p
 o

ve
r

h
a
n
d
w

ri
tt
e
n
 d

a
ta

 t
ra

n
s
fe

r

(b) FFT, compared with handwritten
CUDA code.

Figure 6.2: Benchmark results

thus programmers can use self adaptive vector and more general func-
tions which dynamically select CPU, GPU etc. under the hood, and let
VectorPU perform data transfer when necessary.

6.2.3 Experimental Results

We use three machines of different hardware configurations for performance
evaluation, ranging from a laptop, a workstation to a node in a supercom-
puter, and from Kepler GPUs to Maxwell GPUs, shown in Table 6.2.

We use MeterPU (see Section 3) for measurement of evaluation metrics
such as time. We perform 100 repetitions of executions for each setting, and
plot the arithmetic mean of the measured times.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 121 — #133

6.2. FRAMEWORK DESIGN AND EVALUATION 121

6.2.3.1 Conjugate Gradient, Comparison to UM3

For performance evaluation, we use the code for a conjugate gradient solver4

from the CUDA 7.5 SDK using Nvidia’s unified memory. We rewrote it using
VectorPU vector and component model (8 VectorPU vectors, 6 VectorPU
components, 12 component invocations and 3 VectorPU lambda functions),
and compared the performance with the code using Nvidia’s unified memory.
We use β signatures to annotate cuBLAS functions to reuse the annotations,
and the lambda function feature of VectorPU to annotate the code snippets
that initialize CPU-side memory of VectorPU smart vectors; thus, rewriting
is trivial and not error-prone.

We observe that with VectorPU, we can gain significant speedup over
Nvidia’s Unified Memory in Figure 6.2a. The speedup is purely obtained
from the data movement part, as this is the only difference for the two ver-
sions of the conjugate gradient solver code. As our profiling result shows, the
inefficiency of unified memory lies in the page-based data transfer mecha-
nism: transferring data page by page suffers from numerous communication
setup and destruction cost.

The information on data access modes for cuSPARSE and cuBLAS func-
tions used in the conjugate gradient solver such as read or write, on host
or device memory etc., is well documented in Nvidia’s online documenta-
tion [96, 99], and VectorPU enables those documentations to play an impor-
tant role as executable meta-data to boost performance.

6.2.3.2 Reduction, Sorting, Comparison to UM

We use a typical GPU parallel reduction code which recursively reduces
the second half of the data elementwise by a sum operator to its first half
until one element is left, and write two versions using unified memory and
VectorPU. We achieved 1.40× to 8.66× speedup on three different machines
in Table 6.2. We also obtained 13.29× speedup on a sorting benchmark on
1M element which internally uses Thrust sort(), by rewriting its memory
management with VectorPU instead of Nvidia’s Unified Memory.

6.2.3.3 FFT, Comparison to Manual Code

We choose another code example, FFT, from CUDA 7.5 SDK with program-
mer-managed coherence by explicit calls to cudaMemcpy(). It is reasonable
to assume that the FFT code from the SDK is expert-written, and no unnec-
essary data transfer is performed. Then we rewrite the code with VectorPU
by removing all data transfer code and adding annotations for functions
with α and β signatures (2 VectorPU vectors with compound data type, 4
VectorPU components and 9 component invocations).

3An abbreviation for Nvidia’s Unified Memory
4In fact, this is the only benchmark using unified memory available with source code

in the CUDA 7.5 SDK.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 122 — #134

122 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

Figure 6.2b shows that VectorPU-managed coherence is as efficient as
programmer-managed coherence, even though the programmer is an expert.
Figure 6.2b also shows that the overhead for VectorPU’s automatic memory
coherence is at the noise level and negligible. The overhead only consists of
checking and updating some boolean variables as coherence flags.

6.2.3.4 Programmability Improvement, Comparison to Manual
Code and UM

From programmability’s point of view, using VectorPU removes many re-
sponsibilities from programmers to write normal CUDA programs, such as
allocating memory on both host and device, explicit moving data with the
calculation of the memory size and carefulness to avoid unnecessary move-
ments, freeing those memory copies and freeing them only once etc. The
number of lines of code for the simple example vectorAdd from the CUDA
SDK drops from 75 to 24 after rewriting with VectorPU (the lines that only
contain a printf or brackets are not counted). The number of lines of code
for a parallel reduction by unified memory drops from 21 to 17 after rewrit-
ing with VectorPU, as for a VectorPU vector, only one line of code can
perform the allocation and initialization of both host and device memory,
and there is no need to free those memories explicitly.

Thus with VectorPU it is much easier to program for heterogeneous archi-
tectures, giving the programmers the options to code for either productivity
or high performance with both iterators and raw pointers at hand. With a
read-only argument, a const pointer or iterator will be returned, thus it is
less error-prone.

6.2.3.5 Comparison to OpenACC

We study the code overhead for annotating coherence by a comparison
among VectorPU, OpenACC and StarPU. We annotate a convolution kernel
and its caller as a case study. All kernels and their calls are annotated in
a similar way for OpenACC, StarPU and VectorPU. The code size of the
kernel code is not interesting and thus we don’t take the kernel code size
into considerations, no matter how big or small it is. We study the code
overhead that integrate the kernel with each of the three frameworks.

The code overhead for annotating coherence (not including annotations
for computations in the OpenACC case) is on par for the cases of VectorPU
and OpenACC, as shown in the Listing 6.10 for the VectorPU case and
Listing 6.11 for the OpenACC case.

VectorPU’s advantage in code style is that OpenACC’s annotations em-
ploy command-like style, e.g., copy, create, while VectorPU’s annotations
employs a property-like style. In short, using VectorPU’s access properties
such as read or write, the OpenACC’s command annotations like copy can
be automatically deduced. Access properties (like read or write) can be im-
mutable for a region of code or a component, but commands for the code

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 123 — #135

6.2. FRAMEWORK DESIGN AND EVALUATION 123

region or the component does not necessarily have this property depending
on the memory organizations used, e.g., for a distributed memory system,
such copy command for a code region or a component makes sense as we do
need to copy, but for shared memory systems, copy is not needed anymore for
the code region or component. However, the code region’s or component’s
access properties like read or write will remain the same for both distributed
and shared memory systems. This immutability usually encourages reuse
of annotations. VectorPU’s β signature allows such reuse of the data access
properties for a function. data access patterns with pointer arithmetics.

1 #d e f i n e convo lu t i on f l ow (GR) (GW) (NA) (NA)
2 s t a t i c g l o b a l void convo lut ion (
3 const f l o a t ∗A, f l o a t ∗Anew , i n t n , i n t m)
4 {
5 i n t j=threadIdx . x+1;
6 f o r (i n t i = 1 ; i < m−1; i++) {
7 Anew [j ∗n + i] = 0 .25 ∗ (A [j ∗n+i +1] + A [j ∗n+i −1]
8 + A [(j−1)∗n+i] + A [(j +1)∗n+i]) ;
9 }

10 }
11

12 CALL((convo lut ion) ((<<<1, n−2>>>)) ((A, Anew , m, n))) ;

Listing 6.10: VectorPU code

1 #pragma acc data copy (A) c r ea t e (Anew)
2 whi le (i t e r < i t e r max) {
3 #pragma acc k e r n e l s {
4 #pragma acc loop independent c o l l a p s e (2)
5 f o r (i n t j = 1 ; j < n−1; j++) {
6 f o r (i n t i = 1 ; i < m−1; i++) {
7 Anew [j] [i] = 0 .25 ∗ (A [j] [i +1] + A [j] [i −1] +
8 A [j −1] [i] + A [j +1] [i]) ;
9 }

10 }
11 }
12 }

Listing 6.11: OpenACC code

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 124 — #136

124 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

1 s t a t i c g l o b a l void convo lut ion (const f l o a t ∗A, f l o a t ∗Anew , in t n , i n t m){
2 in t j=threadIdx . x+1;
3 f o r (i n t i = 1 ; i < m−1; i++) {
4 Anew [j ∗n + i] = 0.25 ∗ (A [j ∗n+i +1] + A [j ∗n+i −1]
5 + A [(j−1)∗n+i] + A [(j +1)∗n+i]) ;
6 }
7 }
8
9 void convolut ion gpu (const f l o a t ∗A, f l o a t ∗Anew , in t n , i n t m){

10 convolut ion <<<1, n−2>>>(A, Anew , n , m) ;
11 cudaThreadSynchronize () ;
12 }
13
14 void conv gpu wrapper (void ∗ bu f f e r s [] , void ∗ a rg s) {
15 convolut ion gpu (
16 (f l o a t ∗)STARPU VECTOR GET PTR((s t ru c t s t a r pu v e c t o r i n t e r f a c e ∗) bu f f e r s [0]) ,
17 (f l o a t ∗)STARPU VECTOR GET PTR((s t ru c t s t a r pu v e c t o r i n t e r f a c e ∗) bu f f e r s [1]) ,
18 ((ROA convolution ∗) a r g s)−>n , ((ROA convolution ∗) a r g s)−>m) ;
19 }
20
21 typedef s t r u c t {
22 in t n ;
23 in t m;
24 } ROA convolution ;
25
26 typedef s t r u c t {
27 s t ru c t s t a rpu code l e t c l c onvo l u t i on ;
28 in t c l c o n v o l u t i o n i n i t ;
29 } s t r u c t c onvo l u t i on ;
30
31 void convo lut ion (const f l o a t ∗ A, f l o a t ∗ Anew , in t n , i n t m)
32 {
33 s t a t i c ROA convolution arg convo lu t i on ;
34
35 arg convo lu t i on . n=n ;
36 arg convo lu t i on .m=m;
37
38 s t a t i c s t r u c t c onvo l u t i on ∗ ob jS t convo lu t i on = NULL;
39
40 i f (ob jS t convo lu t i on == NULL)
41 {
42 ob jS t convo lu t i on=(s t ru c t c onvo l u t i on ∗) malloc (s i z e o f (s t r u c t c onvo l u t i on)) ;
43 memset(&(objSt convo lut ion−>c l c onvo l u t i on) ,0
44 , s i z e o f (ob jSt convo lut ion−>c l c onvo l u t i on)) ;
45 ob jSt convo lut ion−>c l c o n v o l u t i o n i n i t = 0 ;
46 }
47
48 // code l e t e i n i t i a l i z a t i o n only once , at f i r s t invocat ion
49 i f (! ob jSt convo lut ion−>c l c o n v o l u t i o n i n i t)
50 {
51 objSt convo lut ion−>c l c onvo l u t i on . where =0|STARPU CPU|STARPU CUDA;
52 objSt convo lut ion−>c l c onvo l u t i on . cpu funcs [0]= conv cpu wrapper ;
53 ob jSt convo lut ion−>c l c onvo l u t i on . cpu funcs [1]=NULL;
54 objSt convo lut ion−>c l c onvo l u t i on . cuda funcs [0]= conv gpu wrapper ;
55 ob jSt convo lut ion−>c l c onvo l u t i on . cuda funcs [1]=NULL;
56
57 objSt convo lut ion−>c l c onvo l u t i on . nbu f f e r s = 2 ;
58 ob jSt convo lut ion−>c l c onvo l u t i on . modes [0] = STARPU R;
59 objSt convo lut ion−>c l c onvo l u t i on . modes [1] = STARPU W;
60
61 objSt convo lut ion−>c l c o n v o l u t i o n i n i t = 1 ;
62 }
63
64 s ta rpu data hand l e t arr handle1 , a r r hand le2 ;
65
66 s t a r pu v e c t o r d a t a r e g i s t e r (&arr handle1 , 0 ,
67 (u i n t p t r t)A, n∗m , s i z e o f (A[0])) ;
68 s t a r pu v e c t o r d a t a r e g i s t e r (&arr handle2 , 0 ,
69 (u i n t p t r t)Anew , n∗m, s i z e o f (Anew [0])) ;
70
71 s t ru c t s ta rpu ta sk ∗ task = s t a rpu t a s k c r e a t e () ;
72
73 task−>synchronous = 1 ;
74
75 task−>c l = &(objSt convo lut ion−>c l c onvo l u t i on) ;
76
77 task−>handles [0] = arr hand le1 ;
78 task−>handles [1] = arr hand le2 ;
79
80 task−>c l a r g = &arg convo lu t i on ;
81 task−>c l a r g s i z e = s i z e o f (ROA convolution) ;
82
83 /∗ execute the task on any e l i g i b l e computational r e s s ou r c e ∗/
84 in t r e t = starpu task submit (task) ;
85
86 s t a rpu da t a un r e g i s t e r (a r r hand le1) ;
87 s t a rpu da t a un r e g i s t e r (a r r hand le2) ;
88
89 }

Listing 6.12: StarPU Code

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 125 — #137

6.2. FRAMEWORK DESIGN AND EVALUATION 125

6.2.3.6 Comparison to StarPU

The mechanism employed by StarPU requires significantly more (for the ex-
ample, more than 20 times) coding than VectorPU if we only consider the
code to use both VectorPU and StarPU, although both of them are using a
run-time approach. As shown in the Listing 6.10 for the VectorPU case and
Listing 6.12 for the StarPU case, VectorPU requires 2 lines of code for anno-
tations, while StarPU requires 43 lines of code. Here we neglect kernel code
size, only compare the code or annotations to use StarPU and VectorPU.
course, one can argue that StarPU offers data-flow driven scheduling by
the significant annotation overhead, which VectorPU does not. This is true.
However, VectorPU is advantageous on a category of applications where ker-
nels are large with strong dependencies on each other and the parallelism
mainly exists inside each kernel code. such applications, scheduling will not
play a key role, and using VectorPU can be significantly advantageous in
programmability. There are important applications in this category, such
as deep learning applications, where there is massive parallelism within its
forward and backward passes, while the two passes must run in order, thus
there is little freedom for scheduling such component calls.

Another important difference between StarPU and VectorPU is that Vec-
torPU allows skeleton programming5 that is popular in HPC domain. Skele-
tons are higher-order functions to express common data access patterns, such
as map, reduce etc. Such skeletons can compose different kernels to express
different computations. VectorPU’s α signature is particularly important
in this context. Depending on which kernels these higher order functions
compose, the access properties change, thus the annotations must happen
at each call to these higher-order functions, an example is demonstrated in
Listing 6.8. As far as we know, there is no other frameworks offers such level
of flexibility, including StarPU.

Some other difference is that StarPU’s data structure is C-style, while
VectorPU’s data structures are C++-style, and more specifically STL-style.
In this way, VectorPU encourages and amplifies STL programming to the
CPU/GPU heterogeneous systems, thus allows programmers get many data
structure functions for free, such as size(), clear() etc. VectorPU also allows
seamless integration with STL and Thrust algorithms, so that programmers
get even more functionalities for free as components to build their applica-
tions.

5Skeleton programming is an important category of programming models in HPC do-
main, because it abstracts the low level parallelization details away and has wide-spread
expressive power. There are numerous skeleton programming models in HPC domain, in-
cluding SkePU, SkelCL [116], MueSLi [39], Fastflow [46], Marrow [88], Lift [117], Google’s
Mapreduce [34] etc.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 126 — #138

126 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

6.2.4 To VectorPU or not to VectorPU?

One may ask in a practical sense when programmers should use VectorPU’s
vectors and annotations. Due to the idea-proving nature of this prototype
implementation, VectorPU’s programming model may be further improved.
We perform an analysis for this question based on the current VectorPU
implementation.

“Annotations are structured information added to program source code”
[100]. VectorPU’s annotations such as R, W, and GW are structured for its
vectors and affect the underlying code generation, even though the code
generation is performed by macro expansion instead of a separate compiler.
So they conform to the definitions of “annotation”. On the other hand,
these annotations can be equivalently viewed as operators, as they transform
a VectorPU vector to some other forms. For example, R transforms a
VectorPU vector to a pointer with minimal coherence actions required to
guarantee program execution correctness, and RI transforms it to a const

iterator with the same coherence actions.
The transform starts from a VectorPU vector, because such a vector

carries information of the size of memory that should be managed for co-
herence as a whole. Compared to the units of other hardware mechanisms,
like page in Nivida’s Unified Memory and cache line in cache systems, the
VectorPU’s unit is a VectorPU’s vector defined by programmers, and thus
is variable and more naturally reflects the different coherence units needed
for different programs, and thus it is also more efficient. The target form of
VectorPU’s operators are either a pointer or an iterator. A pointer is the
most fundamental data type to guarantee the generality of VectorPU. In
addition, the target form can also be an iterator to integrate with high level
programming libraries, such as STL and Thrust, for productivity.

Now we introduce two guidelines of programming with VectorPU: one
guarantees the correctness of program executions, and one focuses on the
efficiency of program executions.

6.2.4.1 VectorPU Programming Guideline For Correctness

The first guideline requires to understand when to use VectorPU’s anno-
tations safely, which means to understand which cases these annotations
can express safely. We consider three dimensions to organize different cases
to access data, as shown in Table 6.3. The first dimension is the control
flow uncertainty, represented as “may” or “must”. A “must” access is a
unconditional access, while a “may” access is a conditional one depending
on its run-time conditions, as in the example shown in Listing 6.13. The
second dimension is the access mode, here we only consider read and write,
since read-write is only a shorthand for “write after read”, thus can be ex-
pressed by a combination of the basic access modes read and write. Since
host memory and device memory are symmetric in this context, we only
show an analysis on host memory. The same analysis applies for the device

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 127 — #139

6.2. FRAMEWORK DESIGN AND EVALUATION 127

memory. The last dimension is the access granularity represented as “full”
or “partial”. Although a VectorPU vector specifies the unit of coherence,
it may not always be accessed on every elements in the vector, which results
in a partial access to it.

1 void f (f l o a t ∗x)
2 {
3 // c o n d i t i o n a l read
4 i f (. . .)
5 f o r (. . .)
6 . . . = x [. . .]
7

8 // c o n d i t i o n a l wr i t e
9 i f (. . .)

10 f o r (. . .)
11 x [. . .] = . . .
12 }

Listing 6.13: Conditional read and write

For the cases of read accesses, the rules to use VectorPU annotations
are simple, no matter what values are in the other two dimensions, we
use R uniformly. However, only the Case 1 in Table 6.3 causes no definite
performance penalties as R is initially designed for this case.

For the cases of write accesses, the only case where we can safely use W

is the Case 5, when we know that we must write a full VectorPU vector.
For the Case 6, if we only know that we may write the full vector, we need
RW for safety instead of W. Let us abbreviate “valid” as V, and “invalid” as
I, then three possible coherence states for a VectorPU vector exist before
the full vector may be written: (V,V), (V,I) and (I,V), where the first
element in the pair denotes the coherence state of a vector’s host memory
copy, and the second denotes that of its device memory copy. Note that R,
W and RW only apply to host memory, which is the first element in the pair.
For the coherence states like (V,V) and (V,I), W is enough, as no matter
the write access happens or not the coherent state on host memory should
always be valid and preserved by W. But for the state (I,V), using W when
the host memory copy is not written will flip the state I and V, and result
to be (V,I) which leads to the wrong coherence state and data loss. Using
RW in this case can fix the issue at the cost of a performance penalty by
redundant data transfer.

For Case 7, if partial data is written on the host memory copy while the
device memory copy holds the most recent data in the vector, a single W will
mark the whole device memory copy as invalid but only write parts of the
host memory copy, this leads to loss of data for the part that are not written
on the host memory. For Case 8, if the host memory is even not partially
written, the whole data is lost.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 128 — #140

128 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

Case no. Control flow Access Access VectorPU
uncertainty mode granularity annotation

1 must read full R

2 may read full R

3 must read partially R

4 may read partially R

5 must write full W

6 may write full RW

7 must write partially RW

8 may write partially RW

Table 6.3: Expressing different cases using VectorPU annotations

6.2.4.2 VectorPU Programming Guideline For Efficiency

Using VectorPU efficiently can be achieved by transforming the cases in
Table 6.3 where VectorPU’s annotations may lead to a performance penalty
to those that will not. Two sources that lead to the inefficiency are control
flow uncertainty and partial access.

For control flow uncertainty, we could transform ”may” cases to ”must”
cases by refactoring the conditionals out of a component. Listing 6.14 shows
the refactored code using VectorPU from the basic C code in Listing 6.13.
Line 15 shows that when an execution hit that line, we know we “must” read
the array instead of a “may” read case. Using the corresponding annotations
in Cases 1 and 5 in Table 6.3 guarantees no redundant data transfer, and
thus ensures efficiency.

1 void f r (f l o a t ∗x){
2 f o r (. . .)
3 . . . = x [. . .]
4 }
5

6 void f w (f l o a t ∗x){
7 f o r (. . .)
8 x [. . .] = . . .
9 }

10

11 void f (vectorpu : : vec to r &x)
12 {
13 // c o n d i t i o n a l read
14 i f (. . .)
15 f r (R(x)) ;
16

17 // c o n d i t i o n a l wr i t e
18 i f (. . .)
19 f w (W(x)) ;
20 }

Listing 6.14: Transforming components with conditional access in
Listing 6.13 into ones without them.

For partial access, it might be hard in general to guarantee efficiency by

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 129 — #141

6.3. LAZY ALLOCATION 129

ensuring no redundant data transfer6. For some cases, we could transform
the partial-access cases into full-access ones. For example, if a partial access
covers a continuous segment of a full vector, we could initialize a pvector

(see Section 6.2.2.8) on the full vector, and use annotation on the pvector

instead. Although the access the vector is partial, the access to the pvector
is full. The creation of a new pvector transforms a partial access to a full
access, and such creation only involves initializing two pointers thus its
overhead is low. In the future, more specialized VectorPU vector types can
be designed to cover more partial access patterns used in real applications.

6.2.5 Summary and Future Work

Data movement is usually the main bottleneck for many applications, thus
efficient data movement management plays an important role in software
optimizations on multicore systems. In this paper we show how VectorPU
allows a unified memory view in the programming model, but performs much
more efficiently than Nvidia’s unified memory, and shows no slow-down com-
paring to expert-written code with manual coherence. We demonstrated the
wide applicability of VectorPU. Although in this paper we used GPU, the
annotation language and coherence mechanism also applies to other com-
puting systems with the need of keeping multiple data copies and software-
managed coherence. Future work includes more performance evaluation and
extending the annotation language to also manage the coherence between
the shared memory and the global memory on a GPU.

Section Acknowledgements

We thank NSC (National Supercomputer Center at Linköping University)
and University of Tromsø for letting us use their supercomputer and work-
station for part of our experiments. We also thank Ludovic Henrio from In-
ria, France, for constructive discussions which forms the basis of discussions
of VectorPU programming guide. We thank Wen-mei Hwu from University
of Illinois and David Kirk from Nvidia for their constructive comments on
this work. We finally thank Timothy Lanfear at Nvidia for suggestions of
benchmarks to use.

6.3 Lazy Allocation and Transfer Fusion Op-
timization

As mentioned earlier, for GPU-based heterogeneous systems, data transfer
can be a more performance-constraining factor as data transfer on PCIe
bus can be even slower than data transfer through memory hierarchy on

6Sometimes it might even be better for efficiency to transfer redundant data, see
Section 6.3.2.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 130 — #142

130 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

sequential or multi-CPU systems. Therefore, techniques that improve PCIe
data transfer efficiency are important to achieve better performance on GPU
systems.

In this section, we propose two techniques to improve data transfer ef-
ficiency on GPU systems: lazy allocation and transfer fusion optimization.
The former delays dense memory allocations when memory allocation in-
structions are met until a kernel invocation is encountered in a program,
when we know which set of array variables are used together as operands.
Then we allocate those array variables of the same kind (host or device)
together with one continuous memory chunk, and they can be transferred
at once instead of one by one. Merged data transfer yields performance
gains over the case that they are transferred separately one by one for two
main reasons: less overhead and higher transfer throughput by larger pay-
load. The latter technique merges data transfers of array variables if they
are already allocated and their distance is close enough. In order for correct
execution we might need to backup the data between array variables, but if
they are close enough, the benefit by merging data transfer might be larger
than the backup and restore overhead, and a performance increase is gained.

Section 6.3.1 proposes the design of the lazy allocation technique. Sec-
tion 6.3.2 describes the transfer fusion technique. Section 6.3.3 gives the
initial evaluation of the two techniques. Finally Section 6.3.4 concludes.

6.3.1 Lazy Allocation

We illustrate our technique for lazy allocation by a simple GPU computing
program with pseudo-code in Listing 6.15. In this program, we borrow
some syntax from CUDA, and we also implement the technique in CUDA,
but the lazy allocation technique itself is not restricted to CUDA and could
likewise be used with other types of accelerators and programming models
that expose the distributed memory to the programmer.

In Listing 6.15, the program demonstrates the normal steps to implement
a ternary vector addition, summing three operand vectors elementwise and
storing the results into the third vector. We first allocate three vectors on
CPU side and three vectors on GPU side, initialize the three CPU vectors
(here we assume the initialization functions of such vectors, such as init()
in Line 9, do not depend on some volatile global variables), transfer their
data to the three GPU memory vectors which initializes them, and finally
we invoke the GPU kernel function.

From this example we can see that data are transferred in three separate
transfers as there is no guarantee that the three vectors are allocated con-
tinuously. On the contrary, if we can guarantee that the three vectors are
allocated in one continuous block of memory, we can transfer them at once,
which will save us two message overheads, according to the delay model [102].
Measuring merged data transfer alone on this program yields 3.75× speedup
against transferring them separately on Laptop A in Table 6.5. For such a

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 131 — #143

6.3. LAZY ALLOCATION 131

guarantee, we need to build up some run-time facilities for such analysis at
run time, which will take some overhead. The hope is that the performance
benefit of merged allocation and fusion will be larger than the overhead, so
we gain a speedup. We propose a technique called lazy allocation, which
will overwrite the malloc and cudaMalloc operations and not perform the
allocation until data transfer time or kernel invocation time when the need
of continuous memory arrangement for those vectors is known.

1 f l o a t ∗v1 = mal loc (50) ;
2 f l o a t ∗v2 = mal loc (50) ;
3 f l o a t ∗v3 = mal loc (50) ;
4

5 cudaMalloc (&g v1 , 50) ;
6 cudaMalloc (&g v2 , 50) ;
7 cudaMalloc (&g v3 , 50) ;
8

9 i n i t (v1) ;
10 i n i t (v2) ;
11 i n i t (v3) ;
12

13 cudaMemcpy(v1 , g v1 , cudaMemcpyHostToDevice) ;
14 cudaMemcpy(v2 , g v2 , cudaMemcpyHostToDevice) ;
15 cudaMemcpy(v3 , g v3 , cudaMemcpyHostToDevice) ;
16

17 vector add3 (g v1 , g v2 , g v3) ;

Listing 6.15: Pseudo-code for a typical GPU program for vector addition

The main challenge for implementing lazy allocation is that there are
more than one steps from allocation points to data transfer points or in-
vocation points. This determines that a simple temporary data structure
will not be able to record the multiple previous actions until the merging
allocation requirement for vectors is known. Thus we design a set of data
structures for such purpose.

The main design constraint is the efficiency of the run-time analysis on
the set of data structures. It must be efficient enough so that the run-time
overhead is less than the benefit obtained by merging the data transfers,
summed with the possible benefit of merging data allocation cost.

On the other hand, delaying the allocation also deprives the rights of
compilers to arrange the arrays to possibly utilize locality if such arrays
are statically allocated, but considering the expensive cost of PCIe data
transfer, favoring PCIe data transfer at the cost of CPU side data locality is
reasonable. Furthermore, most of the (large) arrays are dynamic arrays that
compilers can not know in advance, which further legitimates our technique.

Next, we discuss our design of the auxiliary data structures for lazy
allocation analysis and the process of the run-time analysis.

First we discuss two sub-problems that need to be solved for our lazy
allocation technique. The first problem is the run-time overhead constraint.
As the run-time overhead should be as low as possible, we choose static

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 132 — #144

132 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

array allocation when an array is needed, which is less flexible as we can not
change its capacity at run-time, but it is allocated on stack which runs much
faster than dynamic arrays that are allocated on heaps. We could reasonably
assume that there exists a limit for the amount of information that we want
to store, like the maximum number of variables of array type in a program,
thus we could fix the array length and use static arrays as our data structure
type. There is a limit on the maximum number of formal variables that a
function could take in C (128) or C++ (256), but this number is usually
too large for good programming practices. So we could assume a reasonably
small number as the capacity of our static auxiliary arrays.

The second problem is how to map a variable name to a static array index
at run-time for run-time analysis. We consider the beauty of syntax to be
less important, as our primary concern is to design a working implementation
of lazy allocation and investigate its performance benefit. Thus we directly
declare a variable name as an index number instead of a string.

From Listing 6.15 we can see that there are four main stages for a typical
CUDA call, namely memory allocation, initialization, transfer and kernel
invocation. For multi-calls some of the stages may be optional as some of
the variables are reused. This work serves as an exploratory study for a more
mature future design of this technique, thus we only consider one function
call at present. We could use four static arrays to represent the activities for
all variables at each stage. A variable name is represented by an index into
these static arrays, allowing easy addressing of information for each variable.
Table 6.4 shows the four static arrays used in our lazy allocation technique.
The first two arrays serve as implicit key-value pairs, where the key is the
variable name represented by its index in those arrays. The other two arrays
serve as containers that store the variable names (indexes) involved in the
process that each array represents. In the Example column of Table 6.4, the
first example shows that three CPU memory variables are allocated for 50
elements each, their variable names are their indices: 0, 1, 2. Then three
GPU memory variables are allocated also for 50 elements each; their indices
start from the second half, which are 10 (assuming the maximum number
of variables on one side, either CPU or GPU, is 10), 11, 12. The second
row shows that variables 0, 1 and 2 should be initialized by 1, 3 and 5

respectively. The third row shows three data transfers: from variable 0 to
10, from variable 1 to 11 and from variable 2 to 12. Finally, the last row
shows an invocation that passes variables 10 (the GPU memory variable),
11 and 12 as (kernel) function arguments.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 133 — #145

6.3. LAZY ALLOCATION 133

Table 6.4: Data structures for lazy allocation, MAX NUM VARS: config-
urable maximum number of variables in a function

Array name Array content Array size Description Example

Allocation allocation size 2*MAX NUM VARS first half for [50,50,50,...,
CPU memory, 50,50,50,...]
second half
for GPU memory

Initialization value for MAX NUM VARS only for [1,3,5,...]
initialization CPU memory

Transfer source and 2*MAX NUM VARS first half for [0,1,2,...,
destination transfer src, 10,11,12,...]
variables second half

for transfer dst
Invocation variables used MAX NUM VARS only for [10,11,12,...]

for invocation GPU memory

1 vectorpu : : a c t i o n r e c o r d e r <f l o a t > x ;
2

3 x . c p u a l l o c (0 ,50) ;
4 x . c p u a l l o c (1 ,50) ;
5 x . c p u a l l o c (2 ,50) ;
6 x . g p u a l l o c (10 ,50) ;
7 x . g p u a l l o c (11 ,50) ;
8 x . g p u a l l o c (12 ,50) ;
9

10 x . c p u i n i t (0 , 1) ;
11 x . c p u i n i t (1 , 3) ;
12 x . c p u i n i t (2 , 5) ;
13

14 x . t r a n s f e r (0 , 10) ;
15 x . t r a n s f e r (1 , 11) ;
16 x . t r a n s f e r (2 , 12) ;
17

18 x . c a l l (vector add3 , 1 , 50 , 10 , 11 , 12) ;

Listing 6.16: Example code for vector addition with lazy allocation

The main process of lazy allocation is straight-forward: from the transfer
array we can see which arrays from CPU side and GPU side are about to
be transferred together, then we can decide if all the variables that form
the transfer source should be preferably allocated together, and the same
for all the variables that form the destination. Furthermore, from the table
the bindings of variables are determined, but the layout or the order that
variables should be arranged in are not fixed. For the convenience of im-
plementation, we use the order from the invocation array as the layout
of the binding for the destination variables, the layout source variables are
determined accordingly. In this way, we can use variadic templates to auto-
matically extract arguments and expand them as argument list to pass to the

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 134 — #146

134 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

target function of the invocation. After this decision is made, we can fetch
from the allocation table the size to allocate, from the initialization

table how to initialize array variables, and transfer all these source arrays
to their destination arrays at once.

An example of the vector addition program tailored for lazy allocation is
shown in Listing 6.16. The first line initializes an action recorder which will
only record actions for floating point numbers until an invocation is met.
Lines 3-8 record actions that allocate 3 CPU memory chunks (variable name
0,1,2 with 50 elements each), and 3 GPU memory chunks. Lines 10-12 record
actions that initialize three CPU array variables (variable name 0,1,2) with
specified values. Lines 14-16 record three data transfers, each with a source
and a destination variable, e.g., from variable 0 to 10. Until now, nothing
is performed but recording. The last line records the function pointer for
the invocation target, the kernel invocation configuration (number of blocks
and block size), and variables used as arguments. More interestingly, the
last line also performs the lazy allocation analysis to get allocation decisions,
performs the allocation, initialization, and merged data transfer, and passes
the appropriate pointers to the kernel function pointer and invokes it. The
code in Listing 6.16 may also be generated by source-to-source compilation
from normal CUDA programs.

6.3.2 Transfer Fusion Optimization

First we define a partial vector or pvector to be a continuous memory seg-
ment of an existing vector container. A vector is a STL-like generic data
container for elements stored continuously in memory. A pvector is useful
in denoting segments used as an operand in memory coherence scenarios.
For example, in a tiled matrix multiplication computation, a matrix may
be represented by a 1D array, each tile consists of a small matrix which is
further decomposed as a few pvectors, one per each line in its 2D interpreta-
tion. Consider that such a computation could be performed on both CPUs
and GPUs, there might be a need for partial coherence (copying part of the
vector or pvectors back and forth)

In contrast to kernel fusion optimizations, transfer fusion optimization
(TFO) merges several data transfers of multiple pvectors into one, which
can be beneficial too. Consider the scenario where there are multiple pvectors
initialized on the same vector. If they all share the same state (stale or
most recent), whether to perform coherent data transfer on them one by
one or to group them as one data transfer is a run-time optimization choice.
For any two pvectors, if we merge them as one data transfer, on one hand
we save the cost of one communication initialization; on the other hand we
pay the cost of transferring more data between the two pvectors if not con-
tinuous, as one data transfer only applies to a continuous chunk of memory.
We also pay the cost to backup these values in between on the data transfer
target memory side and recover those values after the data transfer, since

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 135 — #147

6.3. LAZY ALLOCATION 135

these values are not supposed to be transferred in the normal settings.
Although it is a run-time choice, we can derive a formula statically for

such decisions which takes the run-time information as its input.
Consider that the cost of transferring n extra bytes of data is Ctr(n),

and the cost of backup and restoration for these values is Cbk(n). The two
costs are monotonically increasing functions in the data size n between two
arbitrary pvectors. The saving by merging data transfer is the time for
communication initialization and usually constant, we denote it as Sinit.

Cbk(n) + Ctr(n) < Sinit (6.1)

Thus, as long as Inequality 6.1 holds, we can gain performance by merg-
ing two pvectors. It is obvious that if two pvectors are adjacent to each
other, then Inequality 6.1 always holds, as Cbk(0) = 0 and Ctr(0) = 0 and
the TFO should always be performed.

By micro-benchmarking on a target system we can derive the limit prob-
lem size Lmax. Since Cbk(n) and Ctr(n) are assumed to be monotonically
increasing, there will be only one Lmax obtained by micro-benchmarking.
Thus, as long as the data size between two pvectors is smaller than Lmax,
it is worthwhile to perform the TFO.

Now the general problem is: if we have p pvectors, how to choose
which pvectors should be fused and which should not? The Greedy-is-good
Lemma 6.3.1 yields a method to derive the optimal solution:

Lemma 6.3.1. Given a sequence V of pvectors {v1, v2, ..., vp} sorted by
memory addresses, merging adjacent pvectors in a greedy way from either
direction whenever it satisfies Inequality 6.1 will lead to an optimal solution.

Proof: By contradiction. Let us assume that Lemma 6.3.1 does not hold.
Then there exists an optimal solution that chooses some elements in V ,
denoted as Sopt: {..., vk, ..., vm, ...}, where at least one vi that is immediately
after vk or immediately before vm in V exists that is not selected in Sopt,
and either {vk, vi} or {vi, vm} satisfies Inequality 6.1.

If {vk, vi} satisfies Inequality 6.1, we can merge them to obtain a better
solution, thus Sopt is not optimal, a contradiction. The same holds for the
case that {vi, vm} satisfies Inequality 6.1. By contradiction we prove that
Lemma 6.3.1 holds. �

As long as the value Lmax is determined statically, the code to decide
transfer fusion is simple and only consists of a greedy scan of all pvectors.
We assume that the sorting of pvectors is done by the programmer via a
user-friendly API. The number of pvectors is usually much smaller than
the number of elements in a vector, thus we can assume a nearly constant
time complexity for computing TFO decisions, and thus it is suitable to be
performed at run-time.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 136 — #148

136 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

CPU memory

GPU memory

{ { {{{{p1 p2(1)

...

...

...

...
Figure 6.3: Two pvectors on a vector

6.3.2.1 State-Aware Analysis

Furthermore, in some cases the overhead and thus the threshold to apply
TFO becomes lower than that in Inequality 6.1, or a TFO can bring ad-
ditional benefits. Figure 6.3 shows a general case where two non-adjacent
pvectors (p1 and p2) are initialized on a vector with a memory chunk (1)
in between. Suppose that we want to fuse the data transfers for p1 and
p2 from the GPU memory to the CPU memory into one single coherence
(transfer) action. Depending on the coherence states of the memory chunk
(1) in the CPU and GPU memory, we have several cases as detailed in the
following. The same analysis also applies to the other transfer direction.

1. If the coherence states of the memory chunk (1) in the CPU and GPU
memory are the same, then there is no need to backup and restore the
original memory values in (1). If both of them are valid and shared,
then the values are the same; they can not be all invalid, as at least
one copy should be valid. Thus Cbk = 0 in Inequality 6.1, and Lmax
becomes larger. This lowers the threshold to apply TFO.

2. Otherwise,

(a) If the coherence state of the memory chunk (1) on the CPU mem-
ory is invalid and the other is valid, then there is no need to
backup and restore its values, and Cbk = 0. Furthermore, the
TFO has additional benefit: it brings the most recent data to the
CPU side. If later (1) is used on the CPU side, the coherence is
already done as a side effect of the TFO and thus considered for
free.

(b) Otherwise, we have the only case where we need to backup and
restore the values in (1).

Thus a more efficient TFO algorithm can be designed accordingly, taking
the coherence information into consideration.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 137 — #149

6.3. LAZY ALLOCATION 137

Table 6.5: Machine configuration

Machine CPU GPU CUDA
Laptop A Intel(R) Core(TM) 1 K2100M 7.5

i7-4710MQ @ 2.50GHz (Kepler)
Server B Intel(R) Xeon(R) 1 K20Xm 7.5
(supercomputer node) E5-2660 0 @ 2.20GHz (Kepler)

Table 6.6: Times and speedup on Laptop A for Allocation and Transfer in
Ternary Vector Add

Elements Baseline Optimized Speedup
50 43.203 µs 13.131 µs 3.307

100 43.976 µs 234.816 µs 0.187
1,000 260.623 µs 232.151 µs 1.123

10,000 316.461 µs 256.257 µs 1.235
100,000 1009.43 µs 696.911 µs 1.448

1,000,000 5510.280 µs 4295.785 µs 1.283
10,000,000 35246.25 µs 35190.65 µs 1.002

6.3.3 Evaluation

6.3.3.1 Machine configuration

The machines that we use for evaluation are listed in Table 6.5, and Me-
terPU [83] is used for time measurement.

6.3.3.2 Lazy Allocation

We measure the time to execute the whole code in Listing 6.15 and 6.16. Due
to the abnormally expensive first call to cudaMalloc(), we put a dummy
cudaMalloc() before time measurement. We use O2 for the nvcc compiler
optimization level. We run 1000 times and report the median: 69.807µs
obtained for the normal case and 24.46µs for lazy allocation, thus 2.85×
speedup is achieved.

Table 6.6 and the corresponding diagram in Figure 6.4a show, for the
ternary vector add example of Section 6.3.1, the time for allocation and
transfer (but not kernel invocation) in microseconds on Laptop A for differ-
ent problem sizes (50, 100, 1000, 10000, 100000, 1M, 10M) and the resulting
speedup by transfer fusion based on lazy allocation. Note the logarithmic
scale on the vertical axis. The shown values are the median of 100 runs for
each problem size, in order to deal with variation in time, yet the variation
is fairly low, especially for the larger problem sizes. Results show that our
optimization is (almost) always beneficial, even for fairly large problem sizes,
e.g. still 28% performance improvement for 1 million elements as can be seen
in Table 6.6. We observed one anomaly, for problem size 100, which occurs
for both platforms; we assume that this phenomenon is based on CUDA

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 138 — #150

138 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

Table 6.7: Times and speedup on Server B for Allocation and Transfer in
Ternary Vector Add

Elements Baseline Optimized Speedup
30 65.112 µs 38.623 µs 1.69
50 67.8715 µs 37.2895 µs 1.82

100 68.704 µs 170.905 µs 0.402
200 69.941 µs 172.106 µs 0.406

1,000 239.722 µs 205.617 µs 1.166
10,000 354.166 µs 301.9295 µs 1.173

100,000 1543.385 µs 1229.525 µs 1.26
1,000,000 10589.4 µs 10032.3 µs 1.06

10,000,000 100928.5 µs 100104.5 µs 1.008

internally switching between different allocation mechanisms depending on
data size; the fused version exceeds this threshold towards the slower mecha-
nism already for slightly smaller problem sizes than the non-fused one. The
observed behavior on Server B is very similar, see Table 6.7 and Figure 6.4b.

In order to further investigate where the speedup comes from for the
lazy allocation technique, we measure the time separately for the four main
stages (host and device memory allocation, host memory initialization and
data transfer from host memory to device memory) of the lazy allocation
technique. Figure 6.5 shows that for the case of 100K, the speedup comes
from three stages: host and device memory allocation, and data transfer.
The biggest time saving is from the device memory allocation, secondly
the data transfer. The speedup on host memory allocation, although high,
only contributes insignificantly to the total speedup as the time spent on
host memory allocation is too small compared to the time spent on device
memory allocation and data transfer. However, since the time savings on
the device memory allocation and data transfer are non-trivial compared to
the total execution time of the whole four phases, a decent overall speedup
(1.448×) is achieved. For the 10M case in Figure 6.5, there are still similar
speedups compared to the 100K case on the device memory allocation, but
there is no noticeable speedup on the data transfer, since the time for the
data transfer time and the host memory initialization dominate the total
time, thus there is only 0.2% improvement on the total execution time.

Furthermore, Figure 6.6 shows the screenshots from Nvidia’s Visual Pro-
filer on the two cases in Figure 6.5 on the data transfer stage. The brown
bars in the screenshots are the time period for the data transfer from host
memory to device memory in the two cases of Figure 6.5. The three suc-
cessive brown bars on the left part of each screenshot show the baseline of
each case of Figure 6.5 where the three data transfers are not fused, and
the single and bigger brown bar on the right part of each screenshot shows
the fused data transfer of the three separate data transfers on its left. We
can see that when the data size is at 100K, the latency of data transfer still

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 139 — #151

6.3. LAZY ALLOCATION 139

● ●

●
●

●

●

●

●

● ● ●

●

●

●

100 10000 1000000

Vector Size

1

10

100

1000

10000 ●

Baseline
Lazy Allocation
Speedup

(a) Execution times on Laptop A

● ● ● ●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

100 10000 1000000

Vector Size

1

100

10000

●

Baseline
Lazy Allocation
Speedup

(b) Execution times on Server B

Figure 6.4: Execution times on Laptop A and Server B for allocation and
transfer in microseconds for the baseline CUDA (red) and Lazy Allocation
(blue) versions of elementwise ternary vector addition, and the resulting
speedup (purple curve), for vector sizes ranging from 50 to 10 million. Note
the logarithmic vertical axis.

takes a non-trivial portion of total data transfer time, thus merging those
data transfers is still quite profitable. When the data size is large (10M),
such benefits of merging data transfers become trivial compared to the total
time of the four stages.

6.3.3.3 Transfer Fusion Optimization

In order to test the validity of the Transfer Fusion Optimization (TFO),
we design a micro-benchmark to derive the Lmax value in Inequality 6.1
by binary search sampling on different machines, and implement a TFO
algorithm that can fuse data transfers for arbitrary number of pvectors.
The Lmax value differs depending on the data transfer direction (host to
device or device to host) and on which of the conditions Cbk = 0 or Cbk >
0 holds as described in different cases in Section 6.3.2.1. In this micro-
benchmark we consider the data transfer direction from device to host, and
Cbk = 0 (as it holds for the majority of cases in the analysis in Section 6.3.2.1,
which may not necessarily be the majority of cases in practice). We observe
that Lmax is constant in the lengths of the pvectors; the value of Lmax is
different on different machines (on Laptop A, it is 10528 (integers) while 4473
(integers) on Server B, where integers are 4 bytes large on both systems).

We then use 4 pvectors of equal size (2000 integers), keep the lengths
of the gaps between these pvectors equal and gradually increase the gap
lengths. As shown in Figure 6.7, below the Lmax value on each machine we

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 140 — #152

140 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

to
ta

l

m
al

lo
c

gm
al

lo
c

cp
u_

in
it

tr
an

sf
er

0

200

400

600

800

1000
Baseline
Lazy allocation

(a) Breakdown of time for lazy alloca-
tion of size 100K in Table 6.6

to
ta

l

m
al

lo
c

gm
al

lo
c

cp
u_

in
it

tr
an

sf
er

0

5000

10000

15000

20000

25000

30000

35000 Baseline
Lazy allocation

(b) Breakdown of time for lazy alloca-
tion of size 10M in Table 6.6

Figure 6.5: Breakdown of time for the main stages in lazy allocation on
Laptop A. (total: total execution time, malloc: time for memory allocation
on the host memory, gmalloc: time for memory allocation on device memory,
cpu init: time for host memory initialization, transfer: time for data transfer
from host memory to device memory, y-axis unit: µs)

(a) Profiling for data transfer of size 100K in Table 6.6

(b) Profiling for data transfer of size 10M in Table 6.6

Figure 6.6: Screenshot from Nvidia Visual Profiler for data transfer scenarios
in Figure 6.5 on Laptop A

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 141 — #153

6.3. LAZY ALLOCATION 141

0 3K 6K 9K 12K 15K
0

20

40

60

80

100
T

im
e

(m
ic

ro
se

co
nd

)
Non−TFO
TFO

Min, max
Standard deviation

(a) Speedup on Laptop A: 1.01-2.8×
(Lmax = 10528 integers)

0 3K 6K 9K 12K 15K
0

20

40

60

80

100

120

140

T
im

e
(m

ic
ro

se
co

nd
)

Non−TFO
TFO

Min, max
Standard deviation

(b) Speedup on Server B: 1.05-1.98×
(Lmax = 4473 integers)

Figure 6.7: TFO microbenchmark speedups on 2 systems. The x-axis labels
show gap lengths between pvectors.

observe significant speedups, while above these values the TFO algorithm
did not fuse any data transfers thus no speedup is observed. The overhead
in this case is negligible, which implies that the TFO may be switched on
all the time.

For the two platforms Laptop A and Server B respectively, Figures 6.8a
and 6.8b show the allocation and transfer times and speedup for the transfer
fusion optimization of Section 3, applied to three pvectors of exponentially
increasing size separated with gaps of size 10 integers; here, the backup
and restore cost is included in the measurements. On both platforms, the
observed pattern is the same; in absolute times every setting runs slower on
Server B because the transfer latency is larger on Server B.

Figures 6.9a and 6.9b show the corresponding times and speedup with
backup and restore cost excluded for the same experiment. This experi-
ment models scenarios where backup and restore is not necessary as the
transmitted gap contents is valid for the coherence protocol. Comparing
the times and speedups to Figures 6.8a and 6.8b we see that backup and
restore cost accounts for a significant overhead in TFO and that the effect
of TFO increases by up to one order of magnitude for small pvectors when-
ever backup and restore is not required. For medium-sized vectors (around
100000 elements) the backup/restore overhead is insignificant and we still
see considerable speedup.

6.3.4 Summary and Future Work

We demonstrated the feasibility of two optimization techniques for data
transfer over PCIe bus for GPU-based heterogeneous systems, and showed
that these techniques are possibly beneficial (significant speedups) with ini-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 142 — #154

142 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

● ● ●

●

●

●

●

● ● ●

●

●

●

●

10 1000 100000 10000000

Vector Size

1

10

100

1000

10000
●

Baseline
TFO
Speedup

(a) TFO including backup/restore on
Laptop A

● ● ●

●

●

●

●

● ● ●

●

●

●

●

10 1000 100000 10000000

Vector Size

1

10

100

1000

10000 ●

Baseline
TFO
Speedup

(b) TFO including backup/restore on
Server B

Figure 6.8: Execution times on Laptop A (a) and Server B (b) for allocation
and transfer in microseconds for the baseline CUDA (red) and Transfer
Fusion optimized (blue) versions of a computation using 3 pvectors of varying
size, separated by gaps of 10 integers, and the resulting speedup (purple
curve). The backup and restore cost is included in the measurements. Note
the logarithmic vertical axis.

● ● ●

●

●

●

●

●

●

●

●

●

●

●

10 1000 100000 10000000

Vector Size

1

10

100

1000

10000
●

Baseline
TFO
Speedup

(a) TFO excluding backup/restore on
Laptop A

● ●
●

●

●

●

●

●

●

●

●

●

●

●

10 1000 100000 10000000

Vector Size

1

10

100

1000

10000 ●

Baseline
TFO
Speedup

(b) TFO excluding backup/restore on
Server B

Figure 6.9: Execution times on Laptop A (a) and Server B (b) for allocation
and transfer in microseconds for the baseline CUDA (red) and Transfer
Fusion optimized (blue) versions of a computation using 3 pvectors of varying
size, separated by gaps of 10 integers, and the resulting speedup (purple
curve). The backup and restore cost is excluded in the measurements. Note
the logarithmic vertical axis.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 143 — #155

6.4. RELATED WORK 143

tial experiments. We showed the optimality of transfer fusion optimization.
We proposed our initial design of lazy allocation, which can serves as a basis
for more mature designs that can work for multiple component invocations.

Our future work includes a thorough evaluation of the two techniques,
a more mature design of lazy allocation, exploratory extension of the two
techniques into general scratchpad memory transfer optimization, and inte-
gration of those techniques into our smart containers [85].

Section Acknowledgements

This work was partly funded by SeRC. We thank NSC (National Supercom-
puter Center at Linköping University) for letting us use their supercomputer
for part of our experiments.

6.4 Related Work

6.4.1 Framework Design

In general, the related work for automatic data transfer management be-
tween CPU and GPU consists of three approaches: compiler-only approach,
run-time approach and hybrid compiler/runtime approach.

Pure compiler approaches may remove the need to annotate the code in
many cases, but can not capture runtime information, and compiler anal-
ysis can be imprecise and conservative, which may lead to redundant data
transfer, such as OpenMPC [76].

Pure run-time approaches allow to capture runtime information but bur-
den the programmers with annotations. ADSM [45], DyManD [56] and
Nvidia’s unified memory [75] provides a vector abstraction with automatic
coherence management, but the data migration is performed page by page
thus the low performance prevents its practical usage. Some works, such
as SemCache [2] and SemCache++ [3], are designed for some specific high
level constructs, such as matrix, although handy for matrix applications,
are less generic than vector abstraction as one can build matrices on top of
vectors but not vice versa. Dastgeer et al. [27] supports automatic coherence
management in skeleton programming. StarPU [8] uses API calls to inform
access properties instead of annotations, thus it requires more LOC (lines
of code) for this purpose besides manual allocation of host memory.

Hybrid approaches that combine compiler and runtime techniques can
obtain the benefits of both. Works using hybrid approaches are listed as
follows: CGCM [57] is the first work that fully automates the data trans-
fer between CPU and GPU without programmer’s annotations, it inserts
communication code into the source code and runs optimizations of alloca
promotion, glue kernel, and map promotion in sequence. X10+AMM [101]
removes the redundant data transfers for three cases: non-stale data, eager

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 144 — #156

144 CHAPTER 6. HANDLING DATA MANAGEMENT COMPLEXITY

transfer data and GPU-only data. OpenARC [77] further removes redun-
dant transfers for more situations like user-defined data clause, and dead
variables, by using interactive directive-based memory transfer verification
to involve programmers iteratively in selecting the optimization proposals of
data transfers given by the framework, such interactiveness overcomes some
limitations of compiler analysis such as dead variable detection. Ishizaki
et al. [55] adds the compiler analysis for sub-array coherence. SAC [36]
supports data movement management for its purely functional array pro-
gramming language.

Comparing to previous work, none of them considered the case that the
source code may not be available, such as cuFFT, cuBLAS, cuSPARSE
etc, thus the compiler-only approach and hybrid approach can not remove
the need of manual annotations. Even compared to the library-based ap-
proach, VectorPU formalizes the flow properties at function level as flow
signature, thus it allows easy annotation of functions from binary libraries.
Furthermore, VectorPU allows flow signature switching which is necessary in
cases where run-time arguments change flow properties of a function. Other
unique features include smart iterators that let programmers to use STL
and Thrust algorithms naturally, and lambda functions enabling coherence
management for code snippets in addition to functions. By using VectorPU,
it is guaranteed that no redundant data is transferred assuming the annota-
tions provided by programmers are correct. Compared to compiler-only or
hybrid approaches, VectorPU enforces a check for the need of data transfer
at every use (either read or write) of variables, thus may check at more
points than necessary, however, such checks are at the granularity of the
whole or sub-array and cheap [101], and show negligible overhead in our
examples.

6.4.2 Data Transfer Optimization

Most of previous related work to reduce or hide the memory transfer over-
head between CPU and GPU are divided into the following three categories.
The first method is to hide data transfer overhead by overlapping data
transfer and computation using the streaming feature of CUDA program-
ming model, such as [119, 10]. The second method is to reduce unnecessary
data transfers by keeping track of data read and write accesses, either by
static analysis such as data flow analysis [78], or by run-time analysis such as
[85, 27]. The third approach is to re-design an algorithm so that less memory
transfer is needed, such as [4], who designs such a communication-avoiding
QR factorization algorithm. Other similar work includes [35].

Data cache optimizations performed by compilers, such as tiling, that
change the loop structure to sequence the memory accesses so that some
of them can be in the same cache line and those transfers across the mem-
ory hierarchy are merged. This approach is more similar to our approach,
while it differs with our approach in that compiler transformations are per-

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 145 — #157

6.5. SUMMARY 145

formed at compile time, while our lazy allocation and TFO are performed
at run-time without suffering the compiler challenges, e.g., the aliasing and
imprecision of data flow analysis. Thus our data structures in Section 6.3.1
can also be viewed as a run-time IR.

6.5 Summary

In this chapter we discussed the complexity of data management on GPU-
based systems. We proposed a framework to abstract the complexity away
without noticeable run-time overhead, and further proposed two data trans-
fer optimization techniques which can potentially run under the hood.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 146 — #158

Chapter 7

Put It All Together: a
Case Study

In the previous four chapters we discussed our approaches to tackle different
complexities that programmers typically face on GPU-based heterogeneous
systems, and demonstrate their benefits. To serve as a foundation or as
building blocks, for further research or for practical programming situations,
we are interested in how we could combine or integrate those approaches, or
more specifically, those frameworks together, by which the benefits of each
framework could co-exist and integrating them possibly gives synergies.

These four frameworks are implemented as either libraries (stateless
across calls: MeterPU1, XPDL, TunerPU) or run-time systems (stateful
across calls, VectorPU), in the same language (C++). They all exist as
header files, and in principle an application could arbitrarily compose them
by C++ inclusion: e.g., "include <meterpu.h>". In this chapter, we de-
scribe a meaningful integration in detail in Section 7.1, hoping that it can
serve as an inspiration for more ones. Then we illustrate this integration by a
simple case study of matrix-matrix multiplication in Section 7.2. Section 7.3
evaluates the combined benefits.

7.1 A Meaningful Integration

Starting with a GPU-based system with some native programming modle
and software (e.g., CUDA), we could directly start programming on the
platform. In addition to program the kernel code, we could manually handle
the measurement complexity, non-portability, data management complexity,
and hard-code the computation on GPUs, which we usually do as daily
programming tasks.

1A MeterPU meter is stateful inside one measurement instance, but it is not for
multiple measurement instances, so we consider it as stateless.

146

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 147 — #159

7.1. A MEANINGFUL INTEGRATION 147

Instead, we could use different prototypes built based on our approaches
described in Chapter 3, 4, 5 and 6, to handle each complexity. Figure 7.1
shows a possible way to combine these approaches together. We describe
each kind of interaction as follows:

• XPDL on top of hardware and system software: XPDL is designed to
model hardware and system software with the purpose to support high
level optimizations, thus this interaction is straightforward. XPDL
support modular features, thus one could write a XPDL model for
a given platform, and let the XPDL compiler fetch the model’s de-
pendent models recursively, from the XPDL central repository. Note
that a XPDL model is only needed to be written once, and usable for
all applications. It only requires to be revised if hardware or system
software changes, which are considered to be less frequent.

• TunerPU, MeterPU and VectorPU on top of XPDL: we could make
TunerPU, MeterPU and VectorPU portable based on XPDL compiler
translated information, e.g., if no GPUs are found in the XPDL plat-
form model, TunerPU could disable components based on CUDA, Me-
terPU could disable GPU time and energy meters, and VectorPU could
disable memory allocation and coherence on GPUs.

• TunerPU on top of MeterPU and VectorPU: at training time, TunerPU
uses VectorPU to manage data transfer necessary for CPU components
to execute, and uses MeterPU to measure the run-time of CPU or GPU
components.

• Programmers on top of TunerPU, VectorPU and XPDL: programmers
write data structures2 using VectorPU and write implementation vari-
ants using the TunerPU framework with a unified view3 implemented.
Optionally, component writers can encode their knowledge for their
software components, e.g., portability requirements by binding them
to the XPDL API.

• At run-time: TunerPU select which implementation variant to use
given context arguments, and VectorPU ensures that the most recent
data is transferred to the memory that the particular implementation
variant will use as arguments.

Next, we use this integration configuration to perform a matrix-matrix
multiplication.

2More data structures could be added to VectorPU for programmability and execution
efficiency.

3See Section 4.4.2

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 148 — #160

148 CHAPTER 7. PUT IT ALL TOGETHER: A CASE STUDY

MeterPU

XPDL

VectorPU

TunerPU

Hardware and
system software

Programmers

Figure 7.1: A meaningful integration.
Black straight line: interaction by execution.
Red (medium) dashed line: XPDL interactions.
Blue (big) dashed lines: TunerPU interactions.
Purple (small) dashed line: interactions by programmers.
The Arrows here denote the relation ”used by”.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 149 — #161

7.2. CASE STUDY: MATRIX-MATRIX MULTIPLICATION 149

7.2 Case Study: Matrix-matrix Multiplication

In this section, we will describe in detail how to apply the framework in-
tegration discussed in Section 7.1 to a concrete case: matrix-matrix mul-
tiplication, which is a widely used kernel in HPC. We will illustrate how
to combine the benefits of each framework to handle multiple complexities
together.

We first show the baseline code used in this case study, then we write a
XPDL model, and compile it by our XPDL compiler. Afterwards we connect
MeterPU, VectorPU and TunerPU to the translated platform information
by the XPDL compiler. Finally we describe the two rewrites of the baseline
code, which connect it to the network of these prototypes like VectorPU,
TunerPU and XPDL.

7.2.1 Baseline: Manual Code

Our baseline CUDA code is straightforward as shown in Listing 7.1, we
briefly explain the code as follows:

• Lines 1-18: the matrix-matrix multiplication component to run on a
CUDA-enabled GPU, which is a wrapper to NVIDIA’s Cublas library.

• Lines 25-36: declare handles for host and device memory, and calculate
their sizes.

• Lines 38-44: memory allocation on host and device memory.

• Lines 46-47: memory initialization on host memory.

• Lines 49-50: transfer the initialized data from host memory to device
memory.

• Line 52: GPU component invocation.

• Line 54: transfer the computed data from device memory to host.

• Line 56: verify the correctness of computation

• Lines 59-65: memory de-allocation on host and device memory.

This program can be compiled and executed on a CUDA-enabled GPU.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 150 — #162

150 CHAPTER 7. PUT IT ALL TOGETHER: A CASE STUDY

1 void matr ix mul cublas (f l o a t const ∗ const a , f l o a t const ∗ const b ,
f l o a t ∗ const c , s i z e t const ha , s i z e t const wa , s i z e t const wb)

2 {
3

4 const f l o a t a l f = 1 .0 f ;
5 const f l o a t bet = 0 .0 f ;
6 const f l o a t ∗alpha = &a l f ;
7 const f l o a t ∗beta = &bet ;
8

9 cub l a sS t a tu s t s t a t ;
10 cub lasHandle t handle ;
11

12 s t a t = cublasCreate (&handle) ;
13 a s s e r t (s t a t == CUBLAS STATUS SUCCESS) ;
14

15 cublasSgemm (handle , CUBLAS OP N, CUBLAS OP N, s t a t i c c a s t<int >(wb)
, s t a t i c c a s t<int >(ha) , s t a t i c c a s t<int >(wa) , alpha , b ,
s t a t i c c a s t<int >(wb) , a , s t a t i c c a s t<int >(wa) , beta , c ,
s t a t i c c a s t<int >(wb)) ;

16

17 cublasDestroy (handle) ;
18 }
19

20 i n t main ()
21 {
22

23 a s s e r t (cudaDeviceReset () == cudaSuccess) ;
24

25 const s i z e t ha=300 , wa=300 , wb=300;
26

27 f l o a t ∗a h , ∗b h , ∗ c h ;
28 f l o a t ∗a d , ∗b d , ∗ c d ;
29

30 const s i z e t s i z e a=ha∗wa ;
31 const s i z e t s i z e b=wa∗wb;
32 const s i z e t s i z e c=ha∗wb;
33

34 const s i z e t r a w s i z e a=ha∗wa∗ s i z e o f (f l o a t) ;
35 const s i z e t r aw s i z e b=wa∗wb∗ s i z e o f (f l o a t) ;
36 const s i z e t r a w s i z e c=ha∗wb∗ s i z e o f (f l o a t) ;
37

38 a h=(f l o a t ∗) mal loc (r a w s i z e a) ;
39 b h=(f l o a t ∗) mal loc (r aw s i z e b) ;
40 c h=(f l o a t ∗) mal loc (r a w s i z e c) ;
41

42 cudaMalloc(&a d , r a w s i z e a) ;
43 cudaMalloc(&b d , r aw s i z e b) ;
44 cudaMalloc(&c d , r a w s i z e c) ;
45

46 std : : f i l l (a h , a h+s i z e a , 1 .0 f) ;
47 std : : f i l l (b h , b h+s i z e b , 1 .0 f) ;
48

49 cudaMemcpy(a d , a h , raw s i z e a , cudaMemcpyHostToDevice) ;
50 cudaMemcpy(b d , b h , raw s i ze b , cudaMemcpyHostToDevice) ;
51

52 matr ix mul cublas (a d , b d , c d , ha , wa , wb) ;
53

54 cudaMemcpy(c h , c d , r aw s i z e c , cudaMemcpyDeviceToHost) ;
55

56 std : : f o r e a c h (c h , c h+s i z e c , [] (f l o a t const i){ a s s e r t (i ==300.0 f)
;}) ;

57

58

59 f r e e (a h) ;
60 f r e e (b h) ;
61 f r e e (c h) ;
62

63 cudaFree (a d) ;
64 cudaFree (b d) ;
65 cudaFree (c d) ;
66

67 re turn EXIT SUCCESS ;
68 }

Listing 7.1: Baseline code for matrix-matrix multiplication

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 151 — #163

7.2. CASE STUDY: MATRIX-MATRIX MULTIPLICATION 151

7.2.2 Writing a XPDL Model

Instead of writing such a program in Listing 7.1, we could use the approaches
described in this thesis. First we can express our target platform as a XPDL
model in Listing 7.2.

1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>
2 <xpdl :model xmlns : xpdl=” http ://www. xpdl . com/system” xmlns : x s i=” http

://www. w3 . org /2001/XMLSchema−i n s t ance ” x s i : schemaLocation=” http
://www. xpdl . com/system system . xsd”>

3 <xpdl : component type=”system”/>
4 <xpdl : cpu id=” xpdl cpu 0 ” type=” Inte l i7 4710MQ ”/>
5 <xpdl :gpu id=” xpdl gpu 0 ” type=”Nvidia Quadro K2100M”/>
6 <xpdl :memory id=”xpdl mem00” type=”DDR3 32G” />
7 <xpdl : software id=” xpdl matlab ” type=”matlab”></xpdl : software>
8 <xpdl : interconnect id=” xpd l i n t e r connec t0 ” type=” pc i e3 ” head=”

xpdl cpu 0 ” t a i l=” xpdl gpu 0 ” />
9 <xpdl : interconnect id=” xpd l i n t e r connec t1 ” type=” pc i e3 ” head=”

xpdl gpu 0 ” t a i l=” xpdl cpu 0 ” />
10 <xpdl : l ibrary id=” xpd l cb l a s ” type=” cb l a s ” />
11 <xpdl : l ibrary id=”xpdl openmp” type=”openmp” />
12 <xpdl : l ibrary id=” xpd l cub la s ” type=” cublas ” />
13 <xpdl : os id=” xpdl ubuntu ” type=”ubuntu” />
14 </xpdl :model>

Listing 7.2: The XPDL model for our target platform example

Next we use our XPDL compiler to translate4 the model into a C++
header file. The header file is a set of C++ meta-functions and macros that
implement our XPDL Query API. For the interest of this chapter, the C++
macros are more interesting in connecting XPDL to MeterPU, VectorPU
and TunerPU, thus we show the macro part of the header file generated in
Listing 7.3.

1 . . .
2

3 #d e f i n e XPDL NUM OF GPUS 1
4

5 #d e f i n e XPDL CBLAS 1
6

7 #d e f i n e XPDL OPENMP 1
8

9 #d e f i n e XPDL CUBLAS 1
10

11 . . .

Listing 7.3: The part of XPDL compiler translated C++ header file

7.2.3 Connecting XPDL to MeterPU and VectorPU

Connecting XPDL to MeterPU and VectorPU is straightforward. By the
macros generated by the XPDL compiler, the relevant MeterPU meters and
VectorPU vectors can be disabled and enabled accordingly depending on the

4The command to use the XPDL compiler to translate a XDPL model with file name
system.xml is xpdl compiler system.xml

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 152 — #164

152 CHAPTER 7. PUT IT ALL TOGETHER: A CASE STUDY

satisfaction of their dependencies, such as the existence of relevant hardware
and system software. For example, if no GPUs are equipped in the target
platform implied by XPDL, the VectorPU vector is downgraded to barely a
STL vector.

7.2.4 Connecting XPDL to TunerPU

TunerPU’s tuning is be portable, as it is pure C++ code, the selection is per-
formed at run-time on the CPU side, and every GPU-based heterogeneous
platform is equipped with at least one CPU.

For the abstraction class mentioned in Section 4.4.2, it needs some spe-
cial care besides the implementation variants (which could simply be dis-
abled or enabled depending on the macro interface by XPDL). We use a
preprocessing-time vector to model dependencies for each implementation
variant shown in line 1 of Listing 7.4. As an example, assuming we have
four implementation variants, and each element in line 1 show the each
implementation variant’s dependency:

• The first implementation variant is the sequential implementation of
matrix-matrix multiplication, thus its dependency value is always 1,
as the sequential implementation of matrix-matrix multiplication can
always can run without dependencies.

• The second is BLAS implementation of matrix-matrix Multiplication,
thus we express its dependency as XPDL GSL CBLAS5 using XPDL API.

• The third is OpenMP implementation of matrix-matrix Multiplication,
thus we express its dependency as XPDL OPENMP using XPDL API

• The fourth is cuBLAS implementation of matrix-matrix Multiplica-
tion, thus we express its dependency as XPDL CUBLAS using XPDL
API

From this vector we could deduce summary information (line 3) like the
total number of implementation variants with their dependencies satisfied,
as another macro by a macro call from Boost library6 [13] which allows
to further reshape the abstraction class for portability, such as the size of
dispatch table7 etc.

5Here we neglect version number, but in practice one can easily add it.
6The Boost library API BOOST PP SEQ FOLD LEFT can sum the number of 1s in a

preprocessing-time vector
7As the number of implementation variants with their platform dependencies satisfied

changes, the size of the dispatch table for dynamically binding a caller to one of these
implementation variants needs to change as well.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 153 — #165

7.2. CASE STUDY: MATRIX-MATRIX MULTIPLICATION 153

1 #d e f i n e DEPENDENCE (1) (XPDL GSL CBLAS) (XPDL OPENMP) (XPDL CUBLAS)
2

3 #d e f i n e MATRIX MUL NUM VARIANTS BOOST PP SEQ FOLD LEFT(SUM,
BOOST PP SEQ HEAD(DEPENDENCE) , BOOST PP SEQ TAIL(DEPENDENCE))

Listing 7.4: Code snippet to connect XPDL to TunerPU

7.2.5 First Code Rewrite Using VectorPU

After the first code rewrite using VectorPU for the code in Listing 7.1, we
obtain the code in Listing 7.5, in which the matrix-matrix multiplication
component in Lines 1-18 in Listing 7.1 is not repeated.

We use a VectorPU vector and annotations to manage the allocation/deal-
location, and memory coherence management without redundant data trans-
fer. We can directly observe a huge code size drop by this rewrite in List-
ing 7.5 compared to the code in Listing 7.1, which we will evaluate quanti-
tatively in Section 7.3.

1 #inc lude < l i b / vectorpu . h>
2 . . .
3 i n t main ()
4 {
5 const s i z e t ha=300 , wa=300 , wb=300;
6 vectorpu : : vector<f l o a t> a (wa∗ha , 1) , b (wa∗wb, 1) , c (ha∗wb, 0) ;
7 matr ix mul cublas (GR(a) , GR(b) , GW(c) , ha , wa , wb) ;
8 std : : f o r e a c h (RI (c) , REI(c) ,

[] (f l o a t const i){ a s s e r t (i ==300.0 f) ;}) ;
9 re turn EXIT SUCCESS ;

10 }

Listing 7.5: Code after first rewrite using VectorPU

7.2.6 Second Code Rewrite with TunerPU

Next, we rewrite the code with TunerPU from the code rewritten using
VectorPU from Listing 7.5. There are three main steps for this rewrite:

1. First we add more software components, which gives the CPU-GPU
selector more freedom to select a most suitable implementation variant
to use based on run-time context. Notice that we always provide a
sequential CPU implementation with no dependencies, thus it could
always run on any target platform. Some of them can be easily written
by annotating the sequential code, like OpenMP, and some of them can
be easily written by wrappers to high quality libraries, such as BLAS
and cuBLAS. The resulting code snippet is shown in Listing 7.6, and
we use the XPDL interface and macros to express its dependencies for
running on a given platform, e.g., in Line 18.

2. Second, we implement an abstraction class to present a unified view of
the ceset to the TunerPU generic selector. The resulting code snippet

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 154 — #166

154 CHAPTER 7. PUT IT ALL TOGETHER: A CASE STUDY

is shown in Listing 7.7. Lines 6-30 encode the components’ writers’
knowledge about how to initialize data structures for a component run
etc. Notice that we add an extra method run() (Lines 41-61) which
takes an implement selection decision represented by a index value, and
calls the selected implementation variant with the minimum coherence
guaranteed by the flow signature. This method is used for production
runs, as another interaction between TunerPU and VectorPU. There
are some boilerplate code (such as the for loop and measurement code
in Lines 14-21) in this class, which in the future could be generated
automatically.

3. Third, we add several lines (Lines 5-7) of code to configure and train
the TunerPU CPU-GPU selector, and then change the invocation
(Line 10) of the hard-coded implementation variant to the invocation
of TunerPU CPU-GPU selected implementation variant. The result-
ing code is shown in Listing 7.8.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 155 — #167

7.2. CASE STUDY: MATRIX-MATRIX MULTIPLICATION 155

1 void matrix mul cpu (f l o a t const ∗ const a , f l o a t const ∗ const b ,
f l o a t ∗ const c , s i z e t const ha , s i z e t const wa , s i z e t const wb)

2 {
3 f o r (s i z e t i = 0 ; i < ha ; ++i)
4 f o r (s i z e t j = 0 ; j < wb; ++j)
5 {
6 double sum = 0 ;
7 f o r (s i z e t k = 0 ; k < wa ; ++k)
8 {
9 double d = a [i ∗ wa + k] ;

10 double e = b [k ∗ wb + j] ;
11 sum += d ∗ e ;
12 }
13 c [i ∗ wb + j] = (f l o a t)sum ;
14 }
15 }
16

17

18 #i f XPDL GSL CBLAS == 1
19

20 void matr ix mul b las (f l o a t const ∗ const a , f l o a t const ∗ const b ,
f l o a t ∗ const c , s i z e t const ha , s i z e t const wa , s i z e t const wb)

21 {
22 cblas sgemm (CblasRowMajor ,
23 CblasNoTrans , CblasNoTrans , s t a t i c c a s t<int >(ha) , s t a t i c c a s t<

int >(wb) , s t a t i c c a s t<int >(wa) ,
24 1 .0 f , a , s t a t i c c a s t<int >(wa) , b , s t a t i c c a s t<int >(wb) , 0 .0 f ,

c , s t a t i c c a s t<int >(wb)) ;
25 }
26

27 #e nd i f
28

29 #i f XPDL OPENMP == 1
30

31 void matrix mul openmp (f l o a t const ∗ const a , f l o a t const ∗ const b ,
f l o a t ∗ const c , s i z e t const ha , s i z e t const wa , s i z e t const wb)

32 {
33

34 omp set dynamic (0) ;
35

36 #pragma omp p a r a l l e l f o r num threads (XPDL NUM OF HW THREADS)
37 f o r (s i z e t i = 0 ; i < ha ; ++i)
38 f o r (s i z e t j = 0 ; j < wb; ++j)
39 {
40 double sum = 0 ;
41

42 f o r (s i z e t k = 0 ; k < wa ; ++k)
43 {
44 double d = a [i ∗ wa + k] ;
45 double e = b [k ∗ wb + j] ;
46 sum += d ∗ e ;
47 }
48

49 c [i ∗ wb + j] = (f l o a t)sum ;
50 }
51 }
52 #e nd i f
53

54

55 #i f XPDL CUBLAS == 1
56

57 #inc lude <cuda runtime . h>
58 #inc lude <cub las v2 . h>
59

60 void matr ix mul cublas (f l o a t const ∗ const a , f l o a t const ∗ const b ,
f l o a t ∗ const c , s i z e t const ha , s i z e t const wa , s i z e t const wb)

61 {
62 . . .
63 }
64

65 #e nd i f

Listing 7.6: More components for matrix-matrix multiplication added

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 156 — #168

156 CHAPTER 7. PUT IT ALL TOGETHER: A CASE STUDY

1 template <c l a s s MeasureType , c l a s s . . . Tunable Args>
2 c l a s s matr ix mul tunable : pub l i c tunable<MeasureType ,

matrix mul func , Tunable Args . . . >{
3 pub l i c :
4 . . .
5

6 std : : vector<std : : tuple<s i z e t , s i z e t , MeasureType , Tunable Args
. . . > > t r a i n i n g r u n (std : : vector<bool> const& variant mask ,
s i z e t const r e p e a t s i z e , s i z e t const HA, s i z e t const WA,
s i z e t const WB) const {

7 . . .
8

9 vectorpu : : vector<f l o a t> A(WA∗HA, 1) , B(WA∗WB, 1) , C(HA∗WB, 0) ,
C re f (HA∗WB,WA) ;

10

11 . . .
12

13 i f (var iant mask [i]) {
14 f o r (s i z e t r =0; r<r e p e a t s i z e ; ++r){
15 cpu meter . s t a r t () ;
16 // encapsu la te the d i f f e r e n c e o f c o r r e c t invoke
17 (∗ th i s−>d i s p a t c h t a b l e [i]) (R(A) , R(B) , W(C) , HA, WA, WB) ;
18 cpu meter . stop () ;
19 cpu meter . c a l c () ;
20 va l=cpu meter . g e t va lu e () ;
21 r e s u l t s . emplace back (r , i , val ,HA,WA,WB) ;
22 }
23 }
24 ++i ;
25

26 #i f XPDL GSL CBLAS == 1
27 . . .
28 #e nd i f
29

30 #i f XPDL OPENMP == 1
31 . . .
32 #e nd i f
33

34 #i f XPDL CUBLAS == 1
35 . . .
36 #e nd i f
37

38 . . .
39 }
40

41 template <c l a s s T>
42 void run (s i z e t pred i c t ed index , vectorpu : : vector<T> &a ,

vectorpu : : vector<T> &b , vectorpu : : vector<T> &c , s i z e t const ha ,
s i z e t const wa , s i z e t const wb) const

43 {
44 s i z e t i =0;
45 i f (p r ed i c t ed index==i)
46 (∗ th i s−>d i s p a t c h t a b l e [i]) (R(a) , R(b) , W(c) , ha , wa , wb) ;
47 i ++;
48

49 #i f XPDL GSL CBLAS == 1
50 . . .
51 #e nd i f
52

53 #i f XPDL OPENMP == 1
54 . . .
55 #e nd i f
56

57 #i f XPDL CUBLAS == 1
58 i f (p r ed i c t ed index==i)
59 (∗ th i s−>d i s p a t c h t a b l e [i]) (GR(a) , GR(b) , GW(c) , ha , wa , wb) ;
60 #e nd i f
61 }
62

63 } ;

Listing 7.7: The abstraction function for a unified view of the ceset of
matrix-matrix multiplication

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 157 — #169

7.3. EVALUATION 157

1 i n t main ()
2 {
3 const s i z e t ha=300 , wa=300 , wb=300;
4

5 tune i t : : t u n e i t s e t t i n g<MATRIX MUL NUM DIM, MATRIX MUL NUM VARIANTS
> s t {2 , std : : vector<bool >(4 , t rue) , true , f a l s e , true , 40 ,
{{1 ,200} , {1 ,200} , {1 ,200}} } ;

6 tune i t : : tune i t< MATRIX MUL NUM VARIANTS, 8 , matr ix mul tunable<
f l o a t , s i z e t , s i z e t , s i z e t >, f l o a t , s i z e t , s i z e t , s i z e t>
mytuner (s t) ;

7 mytuner . t r a i n () ;
8

9 vectorpu : : vector<f l o a t> a (wa∗ha , 1) , b(wa∗wb, 1) , c (ha∗wb, 0) ;
10 mytuner . run (mytuner . p r e d i c t (ha , wa ,wb) , a , b , c , ha , wa , wb) ;
11

12 std : : f o r e a c h (RI (c) , REI(c) , [] (f l o a t const i){ a s s e r t (i ==200.0 f)
;}) ;

13 re turn EXIT SUCCESS;
14 }

Listing 7.8: Main function after the second rewrite

7.3 Evaluation

Next we quantitatively evaluate the rewritten code that utilize the integrated
prototypes, using the normal CUDA code in Listing 7.1 as a baseline. We
are interested in programmability, portability, performance portability and
energy optimization, which are our main research questions (see Section 1.1).

7.3.1 Programmability

Rewriting the legacy code using the integration of frameworks as described
in this chapter requires first writing a XPDL model to describe the target
platform under use as in Section 7.2.2, and connecting these frameworks by
code in Section 7.2.3 and 7.2.4. Since these efforts are done only once (e.g.,
the code connecting frameworks) or updated infrequently (e.g., a XPDL
model), we do not include the code in these processes in our programmability
evaluation.

Thus we are interested in comparing the baseline code (Listing 7.1) with
the code from the first rewrite (Listing 7.5) and second rewrite (Listings 7.6,
7.7 and 7.8). We measure the logical lines of code (LOC), where we neglect
lines consisting of only include or curly brackets.

Figure 7.2 shows the quantitative comparison on code size among the
baseline code and its rewrites. We could see that for the first rewrite the code
size drops significantly, by a factor of 2.47 compared to the base line code, as
data allocation/deallocation and data transfers are managed automatically.
For the second rewrite, we observe a significant code size increase by a
factor of 3.35 compared to the base line code. 21% of the second rewrite
code is for adding new implementation variants, which could usually be
written conveniently by wrapping existing libraries, such as OpenMP, BLAS

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 158 — #170

158 CHAPTER 7. PUT IT ALL TOGETHER: A CASE STUDY

ba
se

lin
e

re
w

rit
e_

v1

re
w

rit
e_

v2

re
w

rit
e_

v2
x

0

20

40

60

80

100

120

140
ba

se
lin

e

re
w

rit
e_

v1

re
w

rit
e_

v2

re
w

rit
e_

v2
x

0

20

40

60

80

100

120

140

V
al

ue

Figure 7.2: Code size comparisons among the baseline and its rewrite ver-
sions. (Rewrite v1: code size for the first rewrite in Listing 7.5, Rewrite v2:
the total sum of the code size from the second rewrite in Listings 7.6, 7.7
and 7.8, Rewrite v2x: the code size for the ideal solution explained in detail
in this section’s discussions)

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 159 — #171

7.3. EVALUATION 159

and cuBLAS. 63% of the second rewrite code is for writing the abstraction
class encoding component writers’ knowledge for our implementation variant
selector to use. Together with some coding required to allow to measure the
execution time for an arbitrary run-time context, the code size increase
is expected, this is a one-time effort and easy to extend to accommodate
new implementation variants for the same functionality. The main function
increases trivially only to invoke the training process.

If we adopt some ideas of elastic computing [126] for a library of elastic
functions, and apply it to our context, where we assume a pre-trained library
of components, then we would only need to write the following code in
Listing 7.9 (Line 5 construct a tuner by loading its training results), and its
code size is shown as rewrite v2x in Figure 7.2 which is the shortest among
all versions. This is the ideal case which however requires to write a library
of predefined functions (like skeletons in skeleton programming [24, 23])
expressive enough for general computations.

1 i n t main ()
2 {
3 const s i z e t ha=300 , wa=300 , wb=300;
4 vectorpu : : vector<f l o a t> a (wa∗ha , 1) , b(wa∗wb, 1) , c (ha∗wb, 0) ;
5 tune i t : : t une i t matrixmul ;
6 matrixmul . run (matrixmul . p r ed i c t (ha , wa ,wb) , a , b , c , ha , wa , wb) ;
7

8 std : : f o r e a c h (RI (c) , REI(c) , [] (f l o a t const i){ a s s e r t (i ==200.0 f)
;}) ;

9

10 re turn EXIT SUCCESS;
11 }

Listing 7.9: Ideal code rewrite

7.3.2 Portability

Obviously the baseline code is not portable, as it can only run on CUDA-
enabled GPUs. Now we test if the rewritten code could run on a CPU-only
platform.

1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>
2 <xpdl :model xmlns : xpdl=” http ://www. xpdl . com/system” xmlns : x s i=” http

://www. w3 . org /2001/XMLSchema−i n s t ance ” x s i : schemaLocation=” http
://www. xpdl . com/system system . xsd”>

3 <xpdl : component type=”system”/>
4 <xpdl : cpu id=” xpdl cpu 0 ” type=” Inte l i7 4710MQ ”/>
5 <xpdl :memory id=”xpdl mem00” type=”DDR3 32G” />
6 <xpdl : os id=” xpdl ubuntu ” type=”ubuntu” />
7 </xpdl :model>

Listing 7.10: The XPDL model for our target platform example

We first write a XPDL model8 shown in Listing 7.10 to describe a CPU-
only machine. Then we compile the model. The key snippet of the generated

8The model is written to describe a CPU-only node in the supercomputer Triolith.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 160 — #172

160 CHAPTER 7. PUT IT ALL TOGETHER: A CASE STUDY

code is shown in Listing 7.11. Now, without further source code modifi-
cation, the rewritten matrix-matrix multiplication runs and yields correct
results on the CPU-only machine.

1 . . .
2

3 #d e f i n e XPDL NUM OF GPUS 0
4

5 #d e f i n e XPDL CBLAS 0
6

7 #d e f i n e XPDL OPENMP 0
8

9 #d e f i n e XPDL CUBLAS 0
10

11 . . .

Listing 7.11: Code snippet in the generated code from the model in
Listing 7.10 by the XPDL compiler

The key for portability is the existence of a sequential CPU implementa-
tion variant for a ceset. This variant must not have any dependencies except
on an appropriate compiler. Every heterogeneous platform is assumed to
have at least one CPU that can run sequential code.

One could argue that if a component is written in OpenCL, then it is
automatically portable and why do we need the software stack here? The
power of implementation variant selection depends on the number and the
quality of implementation variants, thus to have a framework that allows
to use components in multiple programming models increase the number of
available components, and thus increase the potential power of implemen-
tation variant selection.

7.3.3 Performance Portability

Since the baseline code is not even portable, it will not be performance
portable in general. In order to make the comparison possible, we choose
two platforms both equipped with CUDA-enabled GPUs, thus the baseline
code could run on both platforms: one laptop and one node with CUDA-
enabled GPUs on the supercomputer Triolith. The machine configuration
is shown in Table 6.5.

We measure the baseline code and the rewritten code on three problem
sizes 100 times each, and plot their median values and speedup in Figure 7.3.
TunerPU is trained at depth 2 with the training range from 1 to 1000 on each
of the three dimensions. We can see on the two platforms that the rewritten
code is adaptive to the run-time contexts: it shows performance advantages
on some problem sizes while on others it is equally good. This also shows
the overhead of our facility in most cases is quite low and unnoticeable in
this specific setting.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 161 — #173

7.4. SUMMARY 161

10
0

25
0K 1M

0.01

1.00

100.00

10000.00
Baseline
Rewritten_v2
Speedup

(a) Laptop A

10
0

25
0K 1M

0.01

1.00

100.00

10000.00
Baseline
Rewritten_v2
Speedup

(b) Server B

Figure 7.3: Performance results on two GPU-based systems.
X-axis: the number of elements in a square matrix.

7.4 Summary

In this chapter we discussed and implemented a meaningful integration of
the approaches and framework prototypes that are covered in the previous
four chapters. Our concern was to answer the question on how to com-
bine those approaches and prototypes for the desired combined benefits.
We then applied the integration to an example with an important kernel,
matrix-matrix multiplication, for an illustration and evaluated the combined
benefits.

For the matrix-matrix multiplication, rewriting a program with Vec-
torPU leads to a significant code size drop compared to the original CUDA
code. Rewriting with TunePU leads to a significant code size increase, how-
ever, the majority of the increased code is to encode the component’s own
knowledge for tuning, and thus worthwhile. The code written on top of the
integrated frameworks is portable, and also shows performance advantages,
compared to the non-portable original optimized code. Such performance
advantages are also shown to be portable at least across two different GPU-
systems.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 162 — #174

Chapter 8

Conclusions

GPU-based heterogeneous systems have shown remarkable performance ad-
vantages, and such heterogeneity represents one of the most promising trends
for the future high performance computing hardware evolvement. However,
as a double-edged sword, we have seen various types of complexities which
prevent the easy and efficient usage of different GPU-based heterogeneous
systems. Our proposed abstractions and techniques in this thesis are ex-
plored to tackle these complexities.

• For the measurement complexity, we can hide it without noticeable
abstraction overhead on runtime in a unified way, not only for dif-
ferent metrics, but also on different kinds of devices under measure-
ment. Such a unification makes it easy for autotuning software to
easily switch to different optimization goals, assuming that no goal-
specific assumptions are violated. With MeterPU, we propose a clean
design that shows advantage over other alternatives in the size of the
code that uses our API.

• The CPU-GPU selection complexity, which is related to how to utilize
the available hardware heterogeneity better, is a special case of the im-
plementation variant selection problem. We have seen the complexity
of this problem and machine learning techniques can naturally fit for
this problem. We propose an adaptive sampling approach to achieve a
controllable and efficiently growing prediction accuracy. We do so by
extracting representative training examples in the impractically large
training space. We propose three pruning strategies to further prune
the search space, and by the right combination of those strategies,
we could achieve better accuracies with less training time for a large
ceset. We also show that the adaptive sampling approach is better
than random sampling in our benchmarking test. We argue that there
is a need to encode the component writer’s domain knowledge on the

162

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 163 — #175

163

component’s data structures1 only once per ceset, not only to make
tuning the implementation variant selector possible, but also to of-
fer a unified view to the tuning framework TunerPU thus each ceset
can be tuned for this purpose uniformly without any modification of
TunerPU.

• We have seen that heterogeneous platforms are complex and modeling
them requires special care. We propose the platform modeling lan-
guage XPDL with modern language features (e.g., modularity), which
includes system software as a model element, and decouples hardware
components with their software roles. We show the expressiveness of
our language by modeling different kinds of computers ranging from
single node servers to clusters, and with different kinds of heterogene-
ity which consists of accelerators ranging from mobile processors to
GPGPUs. The language also includes support for energy modeling.
We build compiler support for XPDL, and demonstrate how to inter-
face XPDL to other software for meaningful exploitation of platform
information. The runtime overhead of querying platform information
is zero by meta-programming.

• In order to handle the data management complexity, we propose a
design of a data management system including an embedded domain
specific language, and data containers with run-time coherence man-
agement. We show that our design can abstract away explicit data
management for an arbitrary kernel, no matter on CPU or GPU. We
show the expressiveness of our approach. Considering performance,
our approach is much faster than Nvidia’s Unified Memory, and shows
no noticeable slowdown even compared to expert handwritten code.
We propose two data transfer optimizations: lazy allocation and trans-
fer fusion optimization, based on merging messages between CPU and
GPU over PCIe bus on typical GPU-based heterogeneous systems. We
also propose prototype designs and implementations, and show that
they are potentially beneficial even for large data sizes, particularly
in the context of memory coherence. Our greedy transfer fusion algo-
rithm is optimal, as shown by mathematical proof.

Our approaches and frameworks to handle different complexities are not
standing alone, and they could be integrated meaningfully so that program-
mers can enjoy those abstractions altogether. Although we only describe
one possible way to integrate our prototypes, this could play an inspira-
tional role and by no means limits the possibilities for other ways. Possibly
our frameworks could be integrated to other software packages written in
C/C++/CUDA, or potentially re-implemented in other programming lan-
guages as long as some necessary language features are supported.

1As all elements of a ceset are equivalent to each other, thus their input and output
data structures are the same, so any programmer that contributes an element in the ceset
are in privileged position to encode such information.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 164 — #176

164 CHAPTER 8. CONCLUSIONS

Last but not least, we revisit our research questions of Section 1.1, and
provide our answers that can be supported by the results from the previous
chapters.

1. How to improve programmability by software abstractions

for a GPU-based heterogeneous system? Does the increased

abstraction come at a run-time cost? Is it possible to

design zero-cost abstractions?

• In this thesis we have offloaded a few responsibilities from the
programmers’ shoulders, thus programming for these heteroge-
neous systems becomes easier. Such responsibilities include de-
ciding when to select CPU or GPU to use, or even when to use
which algorithm, managing data transfers between host and de-
vice memories, maintaining code for portability from the com-
ponent’s point of view, and platform-specific coding to measure
time or energy and to optimize it.

• Abstractions usually come at a cost. However, we managed
to make the prorgramming abstractions discussed in this the-
sis quite low, e.g., XPDL shows strictly zero overhead by meta-
programming, MeterPU and VectorPU show unnoticeable over-
head, and TunerPU’s overhead is controllable as a trade-off be-
tween training time, runtime overhead and prediction accuracy.

2. How to improve the portability across different heterogen-

eous systems with different hardware and software configu-

rations, when applications are already written for a spec-

ific GPU-based heterogeneous system?

• We propose XPDL as a systematic way to encode platform infor-
mation and its queries. It serves as a basis to improve portability
for both the tool chains and programmers by making platform
dependencies explicit. For example, we could connect our data
structure abstraction to XPDL to make it self-adaptive to differ-
ent platform configuration, and we could do so to our component
selector which controls which algorithms and computing device
to use. Whenever programmers feel restricted by the tool chain,
they could directly encode their components’ portability require-
ments on the target platforms directly by interfacing with XPDL
query API.

3. How to improve performance portability for programs on di-

fferent heterogeneous systems? For performance portabili-

ty, we refer to the automated adaptivity of programs when

migrated to a different heterogeneous system to reach dec-

ent performance.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 165 — #177

165

• In this thesis, we are interested in implementation variant selec-
tion in a ceset, and therefore in making implementation variant
selection performance-portable. The performance portability is
guaranteed by re-training the implementation variant selector on
each different platform or an existing platform whenever a rel-
evant configuration change happens on that platform. The re-
training can be expensive due to the impractically large training
space of a component, the large number of cesets required for re-
training, and the (possibly) frequent changes in relevant configu-
rations on a platform, which is the main challenge. Our answer is
the adaptive sampling approach with further pruning techniques,
which allow efficient extraction of representative examples for re-
training. More research can be directed in this direction from the
author’s point of view.

• Furthermore, the TFO optimization has been made performance-
portable by simply re-running the microbenchmark to find the
possibly different Lmax value on a new platform, thus our fusion
algorithm can merge messages adaptively. The lazy allocation
optimization could be made performance-portable in the same
way, and we are interested in improving its implementation and
evaluation in future work.

4. How to take energy consumption into account as an optimiz-

ation goal when optimizing programs for heterogeneous sys-

tems?

• We answer this question by first introducing a unified view on
measurements of different metrics on different devices, and then
hook the unified view with our implementation selector, thus the
selector can be easily re-trained to select components in favor of
reducing energy consumption instead of execution time.

Finally, we would like to point out that these research questions are
open-ended, hence the abstractions and techniques presented in this thesis
are by no means considered optimal (unless proved) or marking the end of
these questions. Due to the mysterious nature of design, we will probably
observe better designs for both abstractions and optimizations in the future,
and hopefully the work in this thesis can play an inspirational role.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 166 — #178

Bibliography

[1] Abrahams, D. and Gurtovoy, A. (2004). C++ Template Metaprogram-
ming: Concepts, Tools, and Techniques from Boost and Beyond, Portable
Documents. Pearson Education.

[2] AlSaber, N. and Kulkarni, M. (2013). SemCache: Semantics-aware
Caching for Efficient GPU Offloading. ICS ’13, pages 421–432.

[3] AlSaber, N. and Kulkarni, M. (2015). SemCache++: Semantics-Aware
Caching for Efficient Multi-GPU Offloading. ICS ’15, pages 79–88.

[4] Anderson, M., Ballard, G., Demmel, J., and Keutzer, K. (2011).
Communication-avoiding QR decomposition for GPUs. In Parallel & Dis-
tributed Processing Symposium (IPDPS), 2011 IEEE International, pages
48–58. IEEE.

[5] Ansel, J., Chan, C. P., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman,
A., and Amarasinghe, S. P. (2009). PetaBricks: A language and compiler
for algorithmic choice. In Proc. Conf. Progr. Lang. Design Impl. (PLDI
2009), pages 38–49. acm.

[6] Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom,
J., O’Reilly, U.-M., and Amarasinghe, S. (2014). Opentuner: An ex-
tensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation, pages
303–316. ACM.

[7] Augonnet, C., Thibault, S., and Namyst, R. (2009). Automatic cali-
bration of performance models on heterogeneous multicore architectures.
In Euro-Par Workshops 2009 (HPPC 2009), volume 6043 of lncs, pages
56–65. sv.

[8] Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. (2011).
StarPU: A unified platform for task scheduling on heterogeneous multicore
architectures. Concurrency and Computation: Practice and Experience,
Special Issue: Euro-Par 2009, 23:187–198.

166

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 167 — #179

BIBLIOGRAPHY 167

[9] Bardzell, J., Bardzell, S., and Koefoed Hansen, L. (2015). Immodest
proposals: Research through design and knowledge. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems,
pages 2093–2102. ACM.

[10] Bastem, B., Unat, D., Zhang, W., Almgren, A., and Shalf, J. (2017).
Overlapping data transfers with computation on GPU with tiles. In 2017
46th International Conference on Parallel Processing (ICPP), pages 171–
180.

[11] Bednarski, A. (2006). Integrated Optimal Code Generation for Digital
Signal Processors. PhD thesis, Linköping University, The Institute of
Technology.

[12] Benkner, S., Pllana, S., Träff, J. L., Tsigas, P., Dolinsky, U., Augonnet,
C., Bachmayer, B., Kessler, C., Moloney, D., and Osipov, V. (2011).
PEPPHER: Efficient and productive usage of hybrid computing systems.
IEEE Micro, 31(5):28–41.

[13] Boost Community. Boost C++ libary. http://www.boost.org/. Ac-
cessed: 2017-12-04.

[14] Bourdon, A., Noureddine, A., Rouvoy, R., and Seinturier, L. (2013).
PowerAPI: A Software Library to Monitor the Energy Consumed at the
Process-Level. ERCIM News, 2013(92).

[15] Breymann, U. (1998). Designing Components with the C++ STL.
Addison-Wesley.

[16] Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B.,
Mercier, G., Thibault, S., and Namyst, R. (2010). hwloc: A generic
framework for managing hardware affinities in HPC applications. In Pro-
ceedings of the 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing (PDP), pages 180–186. IEEE Computer Soci-
ety.

[17] Bujlow, T., Riaz, T., and Pedersen, J. M. (2012). A method for clas-
sification of network traffic based on c5. 0 machine learning algorithm.
In Computing, Networking and Communications (ICNC), 2012 Interna-
tional Conference on, pages 237–241. IEEE.

[18] Burtscher, M., Zecena, I., and Zong, Z. (2014). Measuring GPU power
with the K20 built-in sensor. In Proc. Workshop on General Purpose
Processing Using GPUs (GPGPU-7). ACM.

[19] Butenhof, D. R. (1997). Programming with POSIX threads. Addison-
Wesley Professional.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 168 — #180

168 BIBLIOGRAPHY

[20] Cabrera, A., Almeida, F., Arteaga, J., and Blanco, V. (2015). Energy
Measurement Library (EML) Usage and Overhead Analysis. In 23rd Eu-
romicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP), pages 554–558.

[21] Cantonnet, F., Yao, Y., Zahran, M., and El-Ghazawi, T. (2004). Pro-
ductivity analysis of the UPC language. In 18th International Parallel
and Distributed Processing Symposium, 2004. Proceedings.

[22] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S., and
Skadron, K. (2009). Rodinia: A benchmark suite for heterogeneous com-
puting. In Workload Characterization, 2009. IISWC 2009. IEEE Inter-
national Symposium on, pages 44–54. IEEE.

[23] Cole, M. (1991). Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press, Cambridge, MA, USA.

[24] Cole, M. I. (1989). A ”skeletal” approach to the exploitation of paral-
lelism. In Proceedings of the Conference on CONPAR 88, pages 667–675,
New York, NY, USA. Cambridge University Press.

[25] Dagum, L. and Menon, R. (1998). OpenMP: an industry standard
API for shared-memory programming. IEEE computational science and
engineering, 5(1):46–55.

[26] Danylenko, A., Kessler, C., and Löwe, W. (2011). Comparing ma-
chine learning approaches for context-aware composition. In Proc. 10th
Int. Conference on Software Composition (SC-2011), Zürich, Switzerland,
volume 6703 of LNCS, pages 18–33. Springer.

[27] Dastgeer, U. and Kessler, C. (2016). Smart containers and skeleton
programming for GPU-based systems. International Journal of Parallel
Programming, 44(3):506–530.

[28] Dastgeer, U. and Kessler, C. W. (2014). Conditional component com-
position for GPU-based systems. In Proc. MULTIPROG-2014 workshop
at HiPEAC-2014 conference, Vienna, Austria.

[29] Dastgeer, U., Li, L., and Kessler, C. (2012a). D1.4: Research prototype
implementation. Technical report, c©The PEPPHER Consortium. June,
2011.

[30] Dastgeer, U., Li, L., and Kessler, C. (2012b). The PEPPHER Composi-
tion Tool: Performance-Aware Dynamic Composition of Applications for
GPU-based Systems. In Proc. 2012 Int. Workshop on Multi-Core Com-
puting Systems (MuCoCoS 2012), Nov. 16, 2012, Salt Lake City, Utah,
USA, in conjunction with the Supercomputing Conference (SC12). IEEE.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 169 — #181

BIBLIOGRAPHY 169

[31] Dastgeer, U., Li, L., and Kessler, C. (2013). Adaptive Implementa-
tion Selection in a Skeleton Programming Library. In Proc. of the 2013
Biennial Conference on Advanced Parallel Processing Technology (APPT-
2013), volume LNCS 8299, pages 170–183. Springer.

[32] Dastgeer, U., Li, L., and Kessler, C. (2014). The PEPPHER Com-
position Tool: Performance-Aware Composition for GPU-based Systems.
Computing, 96(12):1195–1211. doi: 10.1007/s00607-013-0371-8.

[33] de Mesmay, F., Voronenko, Y., and Püschel, M. (2010). Offline library
adaptation using automatically generated heuristics. In Int. Parallel and
Distr. Processing Symp. (IPDPS’10), pages 1–10.

[34] Dean, J. and Ghemawat, S. (2010). Mapreduce: a flexible data pro-
cessing tool. Communications of the ACM, 53(1):72–77.

[35] Demmel, J., Grigori, L., Hoemmen, M., and Langou, J. (2012).
Communication-optimal parallel and sequential QR and LU factoriza-
tions. SIAM Journal on Scientific Computing, 34(1):A206–A239.

[36] Diogo, M. and Grelck, C. (2013). Towards Heterogeneous Comput-
ing without Heterogeneous Programming. In Proc. TFP 2012, Springer
LNCS 7829, pages 279–294.

[37] Dolkas, K., Sandoval, Y., Hoppe, D., Khabi, D., Umar, I., Ha, P.,
Moloney, D., Li, L., Kessler, C., Gidenstam, A., and Renaud-Goud, P.
(2015). D5.3 Report on integrating the first designs and prototypes from
technical WPs. Technical Report FP7-611183 D5.3, EU FP7 Project
EXCESS.

[38] Enmyren, J. and Kessler, C. W. (2010). SkePU: A multi-backend
skeleton programming library for multi-GPU systems. In Proc. 4th
Int. Workshop on High-Level Parallel Programming and Applications
(HLPP-2010), Baltimore, Maryland, USA, pages 5–14. ACM. doi:
10.1145/1863482.1863487.

[39] Ernsting, S. and Kuchen, H. (2012). Algorithmic skeletons for multi-
core, multi-GPU systems and clusters. Int. Journal of High Performance
Computing and Networking, 7:129–138.

[40] Ernstsson, A., Li, L., and Kessler, C. (2016). SkePU 2: Flexible and
Type-safe Skeleton Programming for Heterogeneous Parallel Systems. In-
ternational Journal of Parallel Programming.

[41] Fatahalian, K., Horn, D. R., Knight, T. J., Leem, L., Houston, M.,
Park, J. Y., Erez, M., Ren, M., Aiken, A., Dally, W. J., and Hanrahan,
P. (2006). Sequoia: Programming the memory hierarchy. In ACM/IEEE
Supercomputing, page 83.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 170 — #182

170 BIBLIOGRAPHY

[42] Fraguela, B. B., Voronenko, Y., and Püschel, M. (2009). Automatic
tuning of discrete Fourier transforms driven by analytical modeling. In
Parallel Architectures and Compilation Techniques (PACT), pages 271–
280.

[43] Frigo, M. and Johnsson, S. G. (1998). Fftw: An adaptive software
architecture for the FFT. In Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, volume 3, pages 1381–1384.

[44] Gaver, B. and Bowers, J. (2012). Annotated portfolios. interactions,
19(4):40–49.

[45] Gelado, I., Stone, J. E., Cabezas, J., Patel, S., Navarro, N., and Hwu,
W.-m. W. (2010). An Asymmetric Distributed Shared Memory Model for
Heterogeneous Parallel Systems. SIGPLAN Not., 45(3):347–358.

[46] Goli, M. and Gonzalez-Velez, H. (2013). Heterogeneous algorithmic
skeletons for FastFlow with seamless coordination over hybrid architec-
tures. In Euromicro PDP Int. Conf. on Par., Distrib. and Netw.-Based
Processing, pages 148–156.

[47] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning.
MIT press.

[48] Grewe, D. and O’Boyle, M. F. P. (2011). A static task partitioning
approach for heterogeneous systems using opencl. In Proc. 20th int. conf.
on Compiler construction, CC’11/ETAPS’11, pages 286–305. Springer-
Verlag.

[49] GroundWork Inc. GroundWork—Unified Monitoring For Real.
http://www.gwos.com/. Accessed: 2015-01-21.

[50] Harris, M. (2013). Unified memory in cuda 6.
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/.
Accessed: 2017-11-26.

[51] Hennessy, J. L. and Patterson, D. A. (2011). Computer architecture: a
quantitative approach. Elsevier.

[52] Hoefler, T., Gropp, W., Kramer, W., and Snir, M. (2011). Performance
modeling for systematic performance tuning. In State of the Practice
Reports, page 6. ACM.

[53] Hoisie, A., Lubeck, O., Wasserman, H., Petrini, F., and Alme, H.
(2000). A general predictive performance model for wavefront algorithms
on clusters of smps. In Proc. Int. Conf. on Parallel Processing, pages
219–228. IEEE.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 171 — #183

BIBLIOGRAPHY 171

[54] Hudak, P. (1989). Conception, evolution, and application of functional
programming languages. ACM Computing Surveys (CSUR), 21(3):359–
411.

[55] Ishizaki, K., Hayashi, A., Koblents, G., and Sarkar, V. (2015). Com-
piling and optimizing Java 8 programs for GPU execution. In PACT’15,
pages 419–431.

[56] Jablin, T. B., Jablin, J. A., Prabhu, P., Liu, F., and August, D. I.
(2012). Dynamically Managed Data for CPU-GPU Architectures. CGO
’12, pages 165–174.

[57] Jablin, T. B., Prabhu, P., Jablin, J. A., Johnson, N. P., Beard, S. R.,
and August, D. I. (2011). Automatic CPU-GPU Communication Man-
agement and Optimization. SIGPLAN Not., 46(6):142–151.

[58] Jia, W., Shaw, K. A., and Martonosi, M. (2012). Stargazer: Automated
regression-based GPU design space exploration. In 2012 IEEE Interna-
tional Symposium on Performance Analysis of Systems Software, pages
2–13.

[59] Johnson, S. (1979). YACC: Yet Another Compiler-Compiler, Unix Pro-
grammer’s Manual. Holt, Reinhart, and Winston.

[60] Josephsen, D. (2007). Building a Monitoring Infrastructure with Nagios.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

[61] Katagiri, T., Kise, K., Honda, H., and Yuba, T. (2006). Abclibscript: a
directive to support specification of an auto-tuning facility for numerical
software. Parallel Computing, 32(1):92–112.

[62] Kessler, C., Dastgeer, U., and Li, L. (2014a). Optimized Composition:
Generating Efficient Code for Heterogeneous Systems from Multi-Variant
Components, Skeletons and Containers. In Proc. First Workshop on Re-
source awareness and adaptivity in multi-core computing (Racing 2014),
pages 43–48.

[63] Kessler, C. and Keller, J. (2007). Models for parallel computing: Review
and perspectives. Mitteilungen-Gesellschaft für Informatik eV, Parallel-
Algorithmen und Rechnerstrukturen, 24.

[64] Kessler, C., Li, L., Atalar, A., and Dobre, A. (2015a). XPDL: Ex-
tensible Platform Description Language to Support Energy Modeling and
Optimization. In 2015 44th International Conference on Parallel Process-
ing Workshops (ICPPW), pages 51–60. IEEE.

[65] Kessler, C., Li, L., Dastgeer, U., Cuello, R., Sjöström, O., Hoai, P. H.,
and Tran, V. (2015b). D1.3 Energy-tuneable domain-specific language/li-
brary for linear system solving. Technical Report FP7-611183 D1.3, EU
FP7 Project EXCESS.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 172 — #184

172 BIBLIOGRAPHY

[66] Kessler, C., Li, L., Dastgeer, U., Gidenstam, A., and Atalar, A. (2014b).
D1.2 Initial specification of energy, platform and component modelling
framework. Technical Report FP7-611183 D1.2, EU FP7 Project EX-
CESS.

[67] Kessler, C., Li, L., Dastgeer, U., Tsigas, P., Gidenstam, A., Renaud-
Goud, P., Walulya, I., Atalar, A., Moloney, D., Hoai, P. H., and Tran,
V. (2014c). D1.1 Early validation of system-wide energy compositionality
and affecting factors on the EXCESS platforms. Technical Report FP7-
611183 D1.1, EU FP7 Project EXCESS.

[68] Kessler, C., Li, L., Hansson, E., Ahlqvist, J., Thorarensen, S., and
Yang, M.-J. (2015c). D1.4 First prototype of composition tool and multi-
level energy and platform modeling framework. Technical Report FP7-
611183 D1.4, EU FP7 Project EXCESS.

[69] Kessler, C., Li, L., Melot, N., Hansson, E., Ernstsson, A., Thorarensen,
S., and Barry, B. (2016). Final specification of energy, platform and
component modelling framework and final prototype. Technical Report
FP7-611183 D1.5, EU FP7 Project EXCESS.

[70] Kessler, C. and Löwe, W. (2012). Optimized composition of
performance-aware parallel components. Concurrency and Computation:
Practice and Experience, 24(5):481–498.

[71] Kessler, C. W. (2013). Compiling for VLIW DSPs. In Bhattacharyya,
S., Deprettere, E., Leupers, R., and Takala, J., editors, Handbook of Signal
Processing Systems, 2nd edition. Springer.

[72] Kessler, C. W. and Löwe, W. (2007). A framework for performance-
aware composition of explicitly parallel components. In Parallel Com-
puting: Architectures, Algorithms and Applications, (ParCo 2007), vol-
ume 15 of Advances in Parallel Computing, pages 227–234. IOS Press.

[73] Kiss, A., Danelutto, M., Herczeg, Z., Molnar, P., Sipka, R., Torquati,
M., and Vidacs, L. (2015). D6.4: REPARA performance and energy
monitoring library. Technical report, c©The REPARA Consortium.

[74] Kupriyanov, A., Hannig, F., Kissler, D., Teich, J., Schaffer, R., and
Merker, R. (2006). An architecture description language for massively
parallel processor architectures. In GI/ITG/GMM-Workshop - Methoden
und Beschreibungssprachen zur Modellierung und Verifikation von Schal-
tungen und Sytemen, pages 11–20.

[75] Landaverde, R., Zhang, T., Coskun, A. K., and Herbordt, M. (2014).
An investigation of Unified Memory Access performance in CUDA. In
HPEC’14, pages 1–6.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 173 — #185

BIBLIOGRAPHY 173

[76] Lee, S. and Eigenmann, R. (2010). OpenMPC: Extended OpenMP pro-
gramming and tuning for GPUs. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA. IEEE
Computer Society.

[77] Lee, S., Li, D., and Vetter, J. S. (2014). Interactive Program Debug-
ging and Optimization for Directive-based, Efficient GPU Computing.
IPDPS’14, pages 481–490.

[78] Lee, S., Min, S.-J., and Eigenmann, R. (2009). OpenMP to GPGPU:
a compiler framework for automatic translation and optimization. ACM
Sigplan Notices, 44(4):101–110.

[79] Li, L., Dastgeer, U., and Kessler, C. (2013). Adaptive off-line tuning
for optimized composition of components for heterogeneous many-core
systems. In High Performance Computing for Computational Science-
VECPAR 2012, pages 329–345. Springer.

[80] Li, L., Dastgeer, U., and Kessler, C. (2014). Pruning Strategies in
Adaptive Off-line Tuning for Optimized Composition of Components on
Heterogeneous Systems. In Proc. Seventh International Workshop on Par-
allel Programming Models and Systems Software for High-End Computing
(P2S2) at ICPP. IEEE.

[81] Li, L., Dastgeer, U., and Kessler, C. (2016). Pruning Strategies in
Adaptive Off-line Tuning for Optimized Composition of Components on
Heterogeneous Systems. Parallel Computing, 51:37–45.

[82] Li, L. and Kessler, C. (2015). MeterPU: A Generic Measurement Ab-
straction API Enabling Energy-tuned Skeleton Backend Selection. In
Proc. International Workshop on Reengineering for Parallelism in Het-
erogeneous Parallel Platforms (REPARA-2015) at ISPA-2015, Helsinki.
IEEE.

[83] Li, L. and Kessler, C. (2016). MeterPU: A Generic Measurement Ab-
straction API Enabling Energy-tuned Skeleton Backend Selection. Jour-
nal of Supercomputing, pages 1–16. Springer.

[84] Li, L. and Kessler, C. (2017a). Lazy allocation and transfer fusion
optimization for GPU-based heterogeneous systems. In Proc. Euromicro
PDP-2018 Int. Conf. on Parallel, Distributed, and Network-based Pro-
cessing. IEEE.

[85] Li, L. and Kessler, C. (2017b). VectorPU: A Generic and Efficient
Data-container and Component Model for Transparent Data Transfer on
GPU-based Heterogeneous Systems. In Proc. 8th Workshop on Paral-
lel Programming and Run-Time Management Techniques for Many-core

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 174 — #186

174 BIBLIOGRAPHY

Architectures and 6th Workshop on Design Tools and Architectures for
Multicore Embedded Computing Platforms (PARMA-DITAM’17). ACM.

[86] Li, X. and Garzarán, M. J. (2005). Optimizing matrix multiplication
with a classifier learning system. In Proc. workshop on Languages and
Compilers for Parallel Computing (LCPC’05), pages 121–135.

[87] Li, X., Garzarán, M. J., and Padua, D. (2004). A dynamically tuned
sorting library. In Proc. ACM Symp. on Code Generation and Optimiza-
tion (CGO’04), pages 111–124.

[88] Marques, R., Paulino, H., Alexandre, F., and Medeiros, P. D. (2013).
Algorithmic skeleton framework for the orchestration of GPU computa-
tions. In Euro-Par 2013 Parallel Processing, volume LNCS 8097, pages
874–885. Springer.

[89] Memeti, S., Li, L., Pllana, S., Kolodziej, J., and Kessler, C. (2017).
Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: Programming
productivity, performance, and energy consumption. In Proceedings of
the 2017 Workshop on Adaptive Resource Management and Scheduling
for Cloud Computing, ARMS-CC ’17, pages 1–6, New York, NY, USA.
ACM.

[90] Mishra, P. and Dutt, N. (2005). Architecture description languages
for programmable embedded systems. IEE Proc.-Comput. Digit. Tech.,
152(3):285–297.

[91] Muchnick, S. S. (1997). Advanced compiler design and implementation.
Morgan Kaufmann.

[92] Munshi, A. (2009). The OpenCL specification. In Hot Chips 21 Sym-
posium (HCS), 2009 IEEE, pages 1–314. IEEE.

[93] Munson, J. C. and Elbaum, S. G. (1998). Code churn: A measure for
estimating the impact of code change. In Proceedings of International
Conference on Software Maintenance, pages 24–31. IEEE.

[94] NVIDIA Corp. NVML API reference guide.
http://docs.nvidia.com/deploy/nvml-api/index.html. Accessed:
2017-12-04.

[95] NVIDIA Corp. (2010). GPU occupancy calculator. CUDA SDK.

[96] NVIDIA Corp. (2012). Cuda toolkit 4.2 cublas library.
https://developer.download.nvidia.com/compute/DevZone/docs/html/-
CUDALibraries/doc/CUBLAS Library.pdf. Accessed: 2017-11-26.

[97] NVIDIA Corp. (2013). Thrust quick start guide.

[98] NVIDIA Corp. (2017a). CUDA C programming guide.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 175 — #187

BIBLIOGRAPHY 175

[99] NVIDIA Corp. (2017b). Cusparse library.
http://docs.nvidia.com/cuda/pdf/CUSPARSE Library.pdf. Accessed:
2017-11-26.

[100] Odersky, M., Spoon, L., and Venners, B. (2008). Programming in
Scala. Artima Inc.

[101] Pai, S., Govindarajan, R., and Thazhuthaveetil, M. J. (2012). Fast
and Efficient Automatic Memory Management for GPUs Using Compiler-
assisted Runtime Coherence Scheme. PACT ’12, pages 33–42.

[102] Papadimitriou, C. H. and Yannakakis, M. (1990). Towards an
architecture-independent analysis of parallel algorithms. SIAM journal
on computing, 19(2):322–328.

[103] Park, E., Kulkarni, S., and Cavazos, J. (2011). An evaluation of
different modeling techniques for iterative compilation. In Proc. Int.
Conf. on Compilers, Architectures and Synthesis for Embedded Systems
(CASES’11).

[104] PEPPHER consortium. Performance portability and pro-
grammability for heterogeneous many-core architectures - PEPPHER.
http://www.peppher.eu/. Accessed: 2017-12-04.

[105] Pfleeger, S. L. and Atlee, J. M. (1998). Software engineering: theory
and practice. Pearson.

[106] Püschel, M., Moura, J. M. F., Johnson, J. R., Padua, D., Veloso,
M. M., Singer, B. W., Xiong, J., Franchetti, F., Gacic, A., Voronenko,
Y., Chen, K., Johnson, R. W., and Rizzolo, N. (2005). Spiral: Code
generation for DSP transforms. Proceedings of the IEEE, 93(2).

[107] Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[108] Sanchez, L. M. (2014). D3.1: Target platform description specification,
EU FP7 REPARA project deliverable report. Technical Report FP7-
611183 D1.2, EU FP7 Project REPARA.

[109] Sandahl, K., Li, L., and Kessler, C. Personal communication. 2017-
12-19. Linköping University, Sweden.

[110] Sandrieser, M., Benkner, S., and Pllana, S. (2012). Using explicit
platform descriptions to support programming of heterogeneous many-
core systems. Parallel Computing, 38(1-2):52–65.

[111] Siegel, J. and Frantz, D. (2000). CORBA 3 fundamentals and pro-
gramming, volume 2. John Wiley & Sons New York, NY, USA.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 176 — #188

176 BIBLIOGRAPHY

[112] Singer, B. and Veloso, M. (2000). Learning to predict performance
from formula modeling and training data. In Proc. 17th Int. Conf. on
Machine Learning, pages 887–894.

[113] Singer, B. and Veloso, M. (2002). Learning to construct fast sig-
nal processing implementations. Journal of Machine Learning Research,
3:887–919.

[114] Sjöström, O., Ko, S.-H., Dastgeer, U., Li, L., and Kessler, C. (2015).
Portable Parallelization of the EDGE CFD Application for GPU-based
Systems using the SkePU Skeleton Programming Library. In ParCo-2015
conference, pages 135–144. Published in: Gerhard R. Joubert, Hugh
Leather, Mark Parsons, Frans Peters, Mark Sawyer (eds.): Advances in
Parallel Computing, Volume 27: Parallel Computing: On the Road to Ex-
ascale, IOS Press, April 2016, pages 135-144. DOI 10.3233/978-1-61499-
621-7-135.

[115] Srinivasan, H., Hook, J., and Wolfe, M. (1993). Static single assign-
ment for explicitly parallel programs. In Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 260–272. ACM.

[116] Steuwer, M., Kegel, P., and Gorlatch, S. (2011). SkelCL - A portable
skeleton library for high-level GPU programming. In 16th Int. Workshop
on High-Level Parallel Programming Models and Supportive Environments
(HIPS’11).

[117] Steuwer, M., Remmelg, T., and Dubach, C. (2017). Lift: a func-
tional data-parallel IR for high-performance GPU code generation. In
Code Generation and Optimization (CGO), 2017 IEEE/ACM Interna-
tional Symposium on, pages 74–85. IEEE.

[118] Stripf, T., Oey, O., Bruckschloegl, T., Koenig, R., Goulas, G., Ale-
fragis, P., Voros, N. S., Potman, J., Sunesen, K., Derrien, S., Sentieys, O.,
and Becker, J. (2012). A compilation- and simulation-oriented architec-
ture description language for multicore systems. In 2012 IEEE 15th In-
ternational Conference on Computational Science and Engineering, pages
383–390.

[119] Sunitha, N. V., Raju, K., and Chiplunkar, N. N. (2017). Performance
improvement of CUDA applications by reducing CPU-GPU data transfer
overhead. In 2017 International Conference on Inventive Communication
and Computational Technologies (ICICCT), pages 211–215.

[120] Szyperski, C., Gruntz, D., and Murer, S. (1998). Component software:
Beyond object-oriented programming. Addison-Wesley.

“lu˙phd˙thesis˙draft˙v0.1” — 2018/2/23 — 14:51 — page 177 — #189

BIBLIOGRAPHY 177

[121] Teijeiro, C., Taboada, G. L., Touriño, J., Fraguela, B. B., Doallo, R.,
Mallón, D. A., Gómez, A., Mouriño, J. C., and Wibecan, B. (2009). Eval-
uation of UPC programmability using classroom studies. In Proceedings
of the Third Conference on Partitioned Global Address Space Programing
Models, PGAS ’09, pages 10:1–10:7, New York, NY, USA. ACM.

[122] Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Amato, N. M.,
and Rauchwerger, L. (2005). A framework for adaptive algorithm selec-
tion in STAPL. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 277–
288. acm.

[123] Thomson, J., O’Boyle, M. F. P., Fursin, G., and Franke, B. (2009).
Reducing training time in a one-shot machine learning-based compiler. In
Gao, G. R., Pollock, L. L., Cavazos, J., and Li, X., editors, LCPC, volume
5898 of Lecture Notes in Computer Science, pages 399–407. Springer.

[124] Thorarensen, S., Cuello, R., Kessler, C., Li, L., and Barry, B. (2016).
Efficient Execution of SkePU Skeleton Programs on the Low-power Mul-
ticore Processor Myriad2. In Proc. Euromicro PDP-2016 Int. Conf. on
Parallel, Distributed, and Network-based Processing. IEEE.

[125] Wang, Z. and O’Boyle, M. F. (2009). Mapping parallelism to multi-
cores: a machine learning based approach. SIGPLAN Not., 44(4):75–84.

[126] Wernsing, J. R. and Stitt, G. (2010). Elastic computing: A framework
for transparent, portable, and adaptive multi-core heterogeneous comput-
ing. In Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on
Languages, compilers, and tools for embedded systems (LCTES), pages
115–124. ACM.

[127] Whaley, R. C., Petitet, A., and Dongarra, J. (2001). Automated em-
pirical optimizations of software and the ATLAS project. pc, 27(1-2):3–35.

[128] Wienke, S., Springer, P., Terboven, C., and an Mey, D. (2012).
OpenACC–first experiences with real-world applications. Euro-Par 2012
Parallel Processing, pages 859–870.

[129] Willhalm, T., Dementiev, R., and Fay, P. (2016). Intel per-
formance counter monitor - a better way to measure CPU uti-
lization. https://software.intel.com/en-us/articles/intel-performance-
counter-monitor. Accessed: 2017-12-19.

[130] Yu, H. and Rauchwerger, L. (2006). An adaptive algorithm selection
framework for reduction parallelization. IEEE Trans. on Par. and Distr.
Syst., 17(10):1084–1096.

[131] Zuluaga, M., Krause, A., Milder, P., and Püschel, M. (2012). Smart
design space sampling to predict pareto-optimal solutions. SIGPLAN
Not., 47(5):119–128.

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

Linköping Studies in Arts and Science
Linköping Studies in Statistics

Linköping Studies in Information Science

Linköping Studies in Science and Technology
No 14 Anders Haraldsson: A Program Manipulation System

Based on Partial Evaluation, 1977, ISBN 91-7372-144-1.
No 17 Bengt Magnhagen: Probability Based Verification of

Time Margins in Digital Designs, 1977, ISBN 91-7372-
157-3.

No 18 Mats Cedwall: Semantisk analys av processbeskrivningar
i naturligt språk, 1977, ISBN 91- 7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compiler and
its Implications for Ideal Hardware, 1978, ISBN 91-7372-
188-3.

No 33 Tore Risch: Compilation of Multiple File Queries in a
Meta-Database System, 1978, ISBN 91- 7372-232-4.

No 51 Erland Jungert: Synthesizing Database Structures from a
User Oriented Data Model, 1980, ISBN 91-7372-387-8.

No 54 Sture Hägglund: Contributions to the Development of
Methods and Tools for Interactive Design of Applications
Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in a Well-
Structured Pattern Matcher through Partial Evaluation,
1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981, ISBN
91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial Evaluation,
1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques and
Tools for Expert Systems, 1981, ISBN 91-7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in large
Software Systems, 1982, ISBN 91- 7372-527-7.

No 94 Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation, 1984,
ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning Systems.
An Experimental Operations Planning System for
Turning, 1984, ISBN 91-7372- 805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-133-3.

No 165 James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for Design
of Distributed Systems, 1988, ISBN 91-7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an Object
Oriented Knowledge Base, 1989, ISBN 91-7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-7870-
546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support and
Discourse Management in User Interface Management
Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991, ISBN
91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic Formalism
with Explicit Defaults, 1991, ISBN 91-7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic Debugging,
1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-Cognitive
and Computational Aspects, 1992, ISBN 91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-7870-
858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-bound
Object References, 1992, ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data Path
Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause Logic
with External Polymorphic Functions, 1992, ISBN 91-
7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Management
Systems with an Active Expert Methodology, 1992, ISBN
91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural Language
Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing with
Applications to Debugging and Testing, 1993, ISBN 91-
7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using Classifi-
cation and Defaults, 1993, ISBN 91-7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Natural Lan-
guage Interfaces - An Empirical Approach, 1993, ISBN
91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Framework
for Verification, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision Support and
Learning. A Study of Discrete-Event Manufacturing
Simulation at Asea/ABB 1968-1993, 1995, ISBN 91-
7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode Switching
Physical Systems, 1995, ISBN 91-7871-516-4.

No 383 Andreas Kågedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Control
Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics, 1995,
ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN 91-
7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996, ISBN 91-
7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial Training
from an Organisational Learning Perspective -
Development and Evaluation of the SSIT Method, 1996,
ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Algorithms
and Complexity, 1996, ISBN 91-7871-704-3.

No 437 Johan Boye: Directional Types in Logic Programming,
1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in Description
Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-857-
0.

No 462 Lars Degerstedt: Tabulation-based Logic Programming:
A Multi-Level View of Query Answering, 1996, ISBN 91-
7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning - En
studie av hur ekonomiska styrsystem utformas och
används efter företagsförvärv, 1997, ISBN 91-7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Requirements-
Driven Impact Analysis in Object-Oriented Software
Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management Systems for
Monitoring and Control, 1997, ISBN 91-7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in a
CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity for
Temporal and Spatial Formalisms, 1997, ISBN 91-7219-
019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for Data-Parallel
Programming Languages from Two-Level Semantics
Specifications, 1997, ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-
munikationsmönster i satellitkontor och flexibla kontor,
1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a Parallel
Data Server for Telecom Applications, 1998, ISBN 91-
7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Prevention - An
Empirical Study in Software Engineering, 1998, ISBN 91-
7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-7219-
184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-X.

No 555 Jonas Hallberg: Timing Issues in High-Level Synthesis,
1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion, 1999,
ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and Evaluation
of a Distributed Mediator System for Data Integration,
1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating Inhibitory
Mechanisms in Mental Image Reinterpretation - Towards
Cooperative Human-Computer Creativity, 1999, ISBN 91-
7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting Agents,
1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999, ISBN
91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the Design
of Information Systems and Services in the Public Sector:
A Methods Approach, 1999, ISBN 91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology: From
Case Studies in Health-Care towards General Models and
Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-547-
9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory data,
1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive Systems: A
Generic Layered Architecture Perspective, 1999, ISBN
91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken - En
studie av logiker i fyra projekt, 1999, ISBN 91-7219-657-
2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented Models
in Scientific Computing, 2000, ISBN 91-7219-709-9.

No 637 Esa Falkenroth: Database Technology for Control and
Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy and
Control in Command Work, 2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution Monitoring,
2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action Logic,
2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Provision -
Managing Mandatory and Discretionary Use of
Information Technology, 2001, ISBN 91-7373-126-9.

No 724 Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91-7373-207-9.

No 725 Tim Heyer: Semantic Inspection of Software Artifacts:
From Theory to Practice, 2001, ISBN 91-7373-208-7.

No 726 Pär Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91-7373-212-5.

No 732 Juha Takkinen: From Information Management to Task
Management in Electronic Mail, 2002, ISBN 91-7373-
258-3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in the
Swedish Public Sector, 2002, ISBN 91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for Non-Profit
Organisations - Extended Participatory Design of an
Information System for Trade Union Shop Stewards,
2002, ISBN 91-7373-318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory of use
quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for Locating
Errors in Constraint Logic Programs, 2002, ISBN 91-
7373-422-5.

No 758 Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-7373-
440-3.

No 793 Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie av den
Internetbaserade encyklopedins bruksegenskaper, 2003,
ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-7373-
604-X.

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av
informationssystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics - programming of
social agents by children, 2003, ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of Information
Systems with GIS Functionality in Public Health
Informatics: A Requirements Engineering Approach,
2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of Communication-
Intensive Heterogeneous Real-Time Systems, 2003, ISBN
91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour of Large
Distributed Systems to Improve Development and Testing
– An Empirical Study in Software Engineering, 2003,
ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineering Tool
Data Representation and Exchange, 2004, ISBN 91-7373-
929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for Digital
TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on Travel
and Travel Patterns, 2004, ISBN 91-7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Organising
when Implementing and Using Enterprise Systems, 2004,
ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of Ontologies
in Information-Providing Dialogue Systems, 2004, ISBN
91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-Based
Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5.

No 882 Robert Eklund: Disfluency in Swedish human-human
and human-machine travel booking dialogues, 2004, ISBN
91-7373-966-9.

No 887 Anders Lindström: English and other Foreign Linguistic
Elements in Spoken Swedish. Studies of Productive
Processes and their Modelling using Finite-State Tools,
2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy and
Management Control - Theoretical Framework and
Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-85297-
14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-85295-
42-6.

No 920 Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as Constructing
and Opposing Customer Focus: Three Case Studies on
Management Accounting and Customer Relations, 2005,
ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other Extensions to
Temporal Action Logic, 2005, ISBN 91-85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005, ISBN
91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Information
Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for Constraint
Satisfaction and Related Problems - Methods and
Applications, 2005, ISBN 91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of Resource
Allocation for Wireless Networks, 2005, ISBN 91-85457-
07-8.

No 972 Björn Johansson: Joint Control in Dynamic Situations,
2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability Analysis
for Interacting Finite State Systems, 2005, ISBN 91-
85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-54-
X.

No 983 Sorin Manolache: Analysis and Optimisation of Real-
Time Systems with Stochastic Behaviour, 2005, ISBN 91-
85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application Integration
for Business-to-Business Communications, 2005, ISBN
91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for Automated
Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects and
Components, 2006, ISBN 91-85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending the
design and development agenda, 2006, ISBN 91-85497-
42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling and
Simulation of Mechanical Systems with Detailed Contact
Analysis, 2006, ISBN 91-85497-43-X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level Language
for Modeling with Partial Differential Equations, 2006,
ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation, 2006,
ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code Generation
for Digital Signal Processors, 2006, ISBN 91-85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of Equation-
Based Simulation Programs, 2006, ISBN 91-85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-85523-
35-6.

No 1034 Jon Edvardsson: Techniques for Automatic Generation
of Tests from Programs and Specifications, 2006, ISBN
91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data, 2006,
ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian Algorithms for
Dimensionality Reduction in Natural Language
Processing, 2006, ISBN 91-85643-88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which cannot be
seen - A Cognitive Systems Engineering perspective on
requirements management, 2006, ISBN 91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for Semantic Web
Technology, 2007, ISBN 91-85643-31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.

No 1075 Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and upper
bounds for Satisfiability and related problems, 2007, ISBN
978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-hensible
Data Mining Models - An Evolutionary Approach, 2007,
ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of Distributed
Embedded Systems with Heterogeneous Scheduling
Policies, 2007, ISBN 978-91-85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-related
Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-91-
85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Management in
Conversational Recommender Systems, 2007, ISBN 978-
91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time Data
Consistency and Transient Overloads in Embedded
Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN 978-
91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation and
Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-91-
85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with Forward
Conflict Resolution in Distributed Real-Time Databases,
2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN 978-
91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to Xcerpt,
2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies - Ethnographic
Studies of End-users and Social Media Sharing, 2008,
ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for De-
scription and Reconstruction of Object Configurations
Based on Qualitative Relations, 2008, ISBN 978-91-7393-
823-5.

No 1222 Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-ledge
Processing Middleware Framework, 2009, ISBN 978-91-
7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-Time
Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Construction
based on Patterns, 2009, ISBN 978-91-7393-683-5.

No 1249 Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

No 1260 Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

No 1262 AnnMarie Ericsson: Enabling Tool Support for Formal
Analysis of ECA Rules, 2009, ISBN 978-91-7393-598-2.

No 1266 Jiri Trnka: Exploring Tactical Command and Control: A
Role-Playing Simulation Approach, 2009, ISBN 978-91-
7393-571-5.

No 1268 Bahlol Rahimi: Supporting Collaborative Work through
ICT - How End-users Think of and Adopt Integrated
Health Information Systems, 2009, ISBN 978-91-7393-
550-0.

No 1274 Fredrik Kuivinen: Algorithms and Hardness Results for
Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

No 1281 Gunnar Mathiason: Virtual Full Replication for Scalable
Distributed Real-Time Databases, 2009, ISBN 978-91-
7393-503-6.

No 1290 Viacheslav Izosimov: Scheduling and Optimization of
Fault-Tolerant Distributed Embedded Systems, 2009,
ISBN 978-91-7393-482-4.

No 1294 Johan Thapper: Aspects of a Constraint Optimisation
Problem, 2010, ISBN 978-91-7393-464-0.

No 1306 Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of Augmented
Reality Applications, 2010, ISBN 978-91-7393-416-9.

No 1313 Christer Thörn: On the Quality of Feature Models, 2010,
ISBN 978-91-7393-394-0.

No 1321 Zhiyuan He: Temperature Aware and Defect-Probability
Driven Test Scheduling for System-on-Chip, 2010, ISBN
978-91-7393-378-0.

No 1333 David Broman: Meta-Languages and Semantics for
Equation-Based Modeling and Simulation, 2010, ISBN
978-91-7393-335-3.

No 1337 Alexander Siemers: Contributions to Modelling and
Visualisation of Multibody Systems Simulations with
Detailed Contact Analysis, 2010, ISBN 978-91-7393-317-
9.

No 1354 Mikael Asplund: Disconnected Discoveries: Availability
Studies in Partitioned Networks, 2010, ISBN 978-91-
7393-278-3.

No 1359 Jana Rambusch: Mind Games Extended: Understanding
Gameplay as Situated Activity, 2010, ISBN 978-91-7393-
252-3.

No 1373 Sonia Sangari: Head Movement Correlates to Focus
Assignment in Swedish, 2011, ISBN 978-91-7393-154-0.

No 1374 Jan-Erik Källhammer: Using False Alarms when
Developing Automotive Active Safety Systems, 2011,
ISBN 978-91-7393-153-3.

No 1375 Mattias Eriksson: Integrated Code Generation, 2011,
ISBN 978-91-7393-147-2.

No 1381 Ola Leifler: Affordances and Constraints of Intelligent
Decision Support for Military Command and Control –
Three Case Studies of Support Systems, 2011, ISBN 978-
91-7393-133-5.

No 1386 Soheil Samii: Quality-Driven Synthesis and Optimization
of Embedded Control Systems, 2011, ISBN 978-91-7393-
102-1.

No 1419 Erik Kuiper: Geographic Routing in Intermittently-
connected Mobile Ad Hoc Networks: Algorithms and
Performance Models, 2012, ISBN 978-91-7519-981-8.

No 1451 Sara Stymne: Text Harmonization Strategies for Phrase-
Based Statistical Machine Translation, 2012, ISBN 978-
91-7519-887-3.

No 1455 Alberto Montebelli: Modeling the Role of Energy
Management in Embodied Cognition, 2012, ISBN 978-91-
7519-882-8.

No 1465 Mohammad Saifullah: Biologically-Based Interactive
Neural Network Models for Visual Attention and Object
Recognition, 2012, ISBN 978-91-7519-838-5.

No 1490 Tomas Bengtsson: Testing and Logic Optimization
Techniques for Systems on Chip, 2012, ISBN 978-91-
7519-742-5.

No 1481 David Byers: Improving Software Security by Preventing
Known Vulnerabilities, 2012, ISBN 978-91-7519-784-5.

No 1496 Tommy Färnqvist: Exploiting Structure in CSP-related
Problems, 2013, ISBN 978-91-7519-711-1.

No 1503 John Wilander: Contributions to Specification,
Implementation, and Execution of Secure Software, 2013,
ISBN 978-91-7519-681-7.

No 1506 Magnus Ingmarsson: Creating and Enabling the Useful
Service Discovery Experience, 2013, ISBN 978-91-7519-
662-6.

No 1547 Wladimir Schamai: Model-Based Verification of
Dynamic System Behavior against Requirements: Method,
Language, and Tool, 2013, ISBN 978-91-7519-505-6.

No 1551 Henrik Svensson: Simulations, 2013, ISBN 978-91-7519-
491-2.

No 1559 Sergiu Rafiliu: Stability of Adaptive Distributed Real-
Time Systems with Dynamic Resource Management,
2013, ISBN 978-91-7519-471-4.

No 1581 Usman Dastgeer: Performance-aware Component
Composition for GPU-based Systems, 2014, ISBN 978-
91-7519-383-0.

No 1602 Cai Li: Reinforcement Learning of Locomotion based on
Central Pattern Generators, 2014, ISBN 978-91-7519-313-
7.

No 1652 Roland Samlaus: An Integrated Development
Environment with Enhanced Domain-Specific Interactive
Model Validation, 2015, ISBN 978-91-7519-090-7.

No 1663 Hannes Uppman: On Some Combinatorial Optimization
Problems: Algorithms and Complexity, 2015, ISBN 978-
91-7519-072-3.

No 1664 Martin Sjölund: Tools and Methods for Analysis,
Debugging, and Performance Improvement of Equation-
Based Models, 2015, ISBN 978-91-7519-071-6.

No 1666 Kristian Stavåker: Contributions to Simulation of
Modelica Models on Data-Parallel Multi-Core
Architectures, 2015, ISBN 978-91-7519-068-6.

No 1680 Adrian Lifa: Hardware/Software Codesign of Embedded
Systems with Reconfigurable and Heterogeneous
Platforms, 2015, ISBN 978-91-7519-040-2.

No 1685 Bogdan Tanasa: Timing Analysis of Distributed
Embedded Systems with Stochastic Workload and
Reliability Constraints, 2015, ISBN 978-91-7519-022-8.

No 1691 Håkan Warnquist: Troubleshooting Trucks – Automated
Planning and Diagnosis, 2015, ISBN 978-91-7685-993-3.

No 1702 Nima Aghaee: Thermal Issues in Testing of Advanced
Systems on Chip, 2015, ISBN 978-91-7685-949-0.

No 1715 Maria Vasilevskaya: Security in Embedded Systems: A
Model-Based Approach with Risk Metrics, 2015, ISBN
978-91-7685-917-9.

No 1729 Ke Jiang: Security-Driven Design of Real-Time
Embedded System, 2016, ISBN 978-91-7685-884-4.

No 1733 Victor Lagerkvist: Strong Partial Clones and the
Complexity of Constraint Satisfaction Problems:
Limitations and Applications, 2016, ISBN 978-91-7685-
856-1.

No 1734 Chandan Roy: An Informed System Development
Approach to Tropical Cyclone Track and Intensity
Forecasting, 2016, ISBN 978-91-7685-854-7.

No 1746 Amir Aminifar: Analysis, Design, and Optimization of
Embedded Control Systems, 2016, ISBN 978-91-7685-826-
4.

No 1747 Ekhiotz Vergara: Energy Modelling and Fairness for
Efficient Mobile Communication, 2016, ISBN 978-91-
7685-822-6.

No 1748 Dag Sonntag: Chain Graphs – Interpretations,
Expressiveness and Learning Algorithms, 2016, ISBN
978-91-7685-818-9.

No 1768 Anna Vapen: Web Authentication using Third-
Parties in Untrusted Environments, 2016, ISBN 978-
91-7685-753-3.

No 1778 Magnus Jandinger: On a Need to Know Basis: A
Conceptual and Methodological Framework for
Modelling and Analysis of Information Demand in
an Enterprise Context, 2016, ISBN 978-91-7685-713-7.

No 1798 Rahul Hiran: Collaborative Network Security:
Targeting Wide-area Routing and Edge-network
Attacks, 2016, ISBN 978-91-7685-662-8.

No 1813 Nicolas Melot: Algorithms and Framework for
Energy Efficient Parallel Stream Computing on
Many-Core Architectures, 2016, ISBN 978-91-7685-
623-9.

No 1823 Amy Rankin: Making Sense of Adaptations:
Resilience in High-Risk Work, 2017, ISBN 978-91-
7685-596-6.

No 1831 Lisa Malmberg: Building Design Capability in the
Public Sector: Expanding the Horizons of
Development, 2017, ISBN 978-91-7685-585-0.

No 1851 Marcus Bendtsen: Gated Bayesian Networks, 2017,
ISBN 978-91-7685-525-6.

No 1852 Zlatan Dragisic: Completion of Ontologies and
Ontology Networks, 2017, ISBN 978-91-7685-522-5.

No 1854 Meysam Aghighi: Computational Complexity of
some Optimization Problems in Planning, 2017, ISBN
978-91-7685-519-5.

No 1863 Simon Ståhlberg: Methods for Detecting Unsolvable
Planning Instances using Variable Projection, 2017,
ISBN 978-91-7685-498-3.

No 1879 Karl Hammar: Content Ontology Design Patterns:
Qualities, Methods, and Tools, 2017, ISBN 978-91-
7685-454-9.

No 1887 Ivan Ukhov: System-Level Analysis and Design
under Uncertainty, 2017, ISBN 978-91-7685-426-6.

No 1891 Valentina Ivanova: Fostering User Involvement in
Ontology Alignment and Alignment Evaluation,
2017, ISBN 978-91-7685-403-7.

No 1902 Vengatanathan Krishnamoorthi: Efficient HTTP-
based Adaptive Streaming of Linear and Interactive
Videos, 2018, ISBN 978-91-7685-371-9.

No 1903 Lu Li: Programming Abstractions and Optimization
Techniques for GPU-based Heterogeneous Systems,
2018, ISBN 978-91-7685-370-2.

Linköping Studies in Arts and Science
No 504 Ing-Marie Jonsson: Social and Emotional Characteristics

of Speech-based In-Vehicle Information Systems: Impact
on Attitude and Driving Behaviour, 2009, ISBN 978-91-
7393-478-7.

No 586 Fabian Segelström: Stakeholder Engagement for Service
Design: How service designers identify and communicate
insights, 2013, ISBN 978-91-7519-554-4.

No 618 Johan Blomkvist: Representing Future Situations of
Service: Prototyping in Service Design, 2014, ISBN 978-
91-7519-343-4.

No 620 Marcus Mast: Human-Robot Interaction for Semi-
Autonomous Assistive Robots, 2014, ISBN 978-91-7519-
319-9.

No 677 Peter Berggren: Assessing Shared Strategic
Understanding, 2016, ISBN 978-91-7685-786-1.

No 695 Mattias Forsblad: Distributed cognition in home
environments: The prospective memory and cognitive
practices of older adults, 2016, ISBN 978-91-7685-686-4.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments Designed to

Explore and Approximate Complex Deterministic Models,
2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-792-
4.

No 11 Oleg Sysoev: Monotonic regression for large multivariate
datasets, 2010, ISBN 978-91-7393-412-1.

No 13 Agné Burauskaite-Harju: Characterizing Temporal
Change and Inter-Site Correlations in Daily and Sub-daily
Precipitation Extremes, 2011, ISBN 978-91-7393-110-6.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering- att skapa

samstämmighet mellan informationssystem-arkitektur och
verksamhet, 1998. ISBN 9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet - en
studie av datorstödd metodbaserad systemutveckling,
1998, ISBN 9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN 91-7219-606-
8.

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affärsprocesser, 2000, ISBN 91-7219-
811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001, ISBN
91-7373-067-X.

No 6 Ulf Melin: Koordination och informationssystem i företag
och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for
Business Action and Communication, 2003, ISBN 91-
7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra system-
utvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN 91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden –
 Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-963-4.
No 10 Ewa Braf: Knowledge Demanded for Action - Studies on

Knowledge Mediation in Organisations, 2004, ISBN 91-
85295-47-7.

No 11 Fredrik Karlsson: Method Configuration method and
computerized tool support, 2005, ISBN 91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp av
effektiva förvaltningsobjekt, 2005, ISBN 91-85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese Christiansson:
Mötet mellan process och komponent - mot ett ramverk
för en verksamhetsnära kravspecifikation vid anskaffning
av komponent-baserade informationssystem, 2006, ISBN
91-85643-22-X.

	Abstract
	Populärvetenskaplig Sammanfattning
	Popular Science Summary
	Acknowledgements
	Contents
	Introduction
	Background
	Handling Measurement Complexity
	Handling CPU-GPU Selection Complexity
	Handling Platform Complexity
	Handling Data Management Complexity
	Put It All Together: a Case Study
	Conclusions
	Bibliography

