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Abstract

In this project we provide an introduction to the classical McKay correspon-
dence. After first laying out the framework for how the finite subgroups of
SU(2) are obtained from the Platonic solids, we provide summaries of the ba-
sics in the relevant mathematical fields needed to state the correspondence. In
Chapter 2, we present the foundational results of character theory, and outline
the Dixon restricted character algorithm for finding the irreducible represen-
tation matrices of finite groups. In Chapter 3, we give an introduction to
classical algebraic geometry, introducing the notions of affine and projective
algebraic sets, provide a justification for the notion of a morphism thereof, and
employ these tools to construct the blow-up of a singularity. In Chapter 4, we
provide a brief overview of the elements of classical invariant theory, includ-
ing Hilbert’s theorem for the finite generation of invariants under the action
of finite groups, and then use this information to express orbifolds formed
under the action of the finite subgroups of SU(2) as algebraic sets. Finally,
we present the McKay correspondence in the ultimate chapter, and provide
brief comments on how the McKay correspondence has been explained and
generalized in recent decades.

Populärvetenskaplig Sammanfattning

Denna avhandlingen söker ge en heuristisk introduktion till McKays överens-
stämmelse som visar p̊a en stark koppling mellan den algebraiska geometrin
och representationsteorin för undergrupperna till den speciella unitära grup-
pen av dimension tv̊a. Mer specifikt upptäckte John McKay vid slutet av
sjuttiotalet att de diagram som man f̊ar fram av upplösningen av singular-
iteterna hos varieteterna som beskriver orbifalderna av det tv̊a-dimensionella
komplexa rummet under verkan av dessa undergrupper stämmer överens med
de diagram som man f̊ar fram av att betrakta samma undergruppers irre-
ducibla representationers morfismegenskaper.

För att kunna uttala sig om detta i mer precision g̊ar vi i denna avhan-
dling igenom grunderna till karaktärsteori, algebraisk geometri, och invari-
antteori. I synnerhet s̊a ger vi en kort överblick över en algoritm för att
finna de irreducibla representationerna till ändliga grupper. Samtliga av dessa
grenar har visat sig ha stora användningsomr̊aden inom teoretisk fysik, i syn-
nerhet inom strängteori och spegelsymmetri. En bättre först̊aelse av denna
överensstämmelse, och de närliggande matematiska redskapen, hjälper oss att
utforma, och tolka, nya fysikaliska teorier.
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“Digressions, incontestably, are the
sun-shine;—they are the life, the soul
of reading;—take them out of this
book for instance,—you might as well
take the book along with them;—one
cold eternal winter would reign in
every page of it; restore them to the
writer;—he steps forth like a
bridegroom,—bids All hail; brings in
variety, and forbids the appetite to
fail.”

Rev. Laurence Sterne,
The Life and Opinions of Tristram

Shandy, Gentleman.

“A proof is a proof. What kind of a
proof? It’s a proof. A proof is a
proof. And when you have a good
proof, it’s because it’s proven.”

The Rt Hon. Jean Chrétien,
Prime Minister of Canada,

1993 – 2003.
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CHAPTER 1

Introduction

As a field of study in theoretical physics, mirror symmetry has its origin in an observation made
in the late 1980s that different couples of Calabi-Yau manifolds and Kähler classes living on
these manifolds may give rise to string theories that are physically equivalent in that all their
predictions are the same. Further investigation would soon enough establish that such couples
always appeared in pairs, soon to be termed mirror pairs. At this early stage, as is often the
case in theoretical physics, the theory was mathematically ill-defined, vague, and ambiguous,
but soon enough mathematicians were introduced to the phenomenon, and in the early 1990s,
a fully rigorous field was established in homological mirror symmetry [1].

It is in connection with mirror symmetry that the McKay correspondence (in fact discovered
long before mirror symmetry even emerged on the scene) proves itself to be of relevance for
the physicist. In fact, mirror symmetry is but one area in which algebraic geometry as a tool
and the McKay correspondence in particular demonstrate their usefulness for the same. The
specifics of this connection—Fourier-Mukai, quiver representations and quiver gauge theory,
derived category theory, the dynamics of Dirichlet branes—is of course far beond the scope of
this master thesis, however interesting they nonetheless may be. Suffice it to say that more
than ample justification exists for a physicist to want to study this seemingly entirely abstract
mathematical phenomenon. Here we will concern ourselves with the McKay correspondence in
its simplest incarnation, the one in which John McKay originally discovered it [2].

Before we may do so, however, a little background is needed to provide some solid ground on
which to stand. Above all, we need to specify in the relation to the study of what particular
constructs the McKay correspondence appears. To do so, we commence by going back to the
ancient Greeks.

1. The Platonic Solids

It is lost to history which mortal mind first conceived of the Platonic solids. Certainly it was
not Plato, for in the Platonic dialogue in which they appear, Timaeus [3], he does not lay claim
to their discovery but attributes it to others. The Platonic dialogues, when arranged in order,
form a grand narrative of the life of Plato’s master Socrates, and in this context, Timaeus takes
place just the day after Socrates has delivered his fanciful discourse on how a city-state most
ideally should be governed, which is recorded in The Republic. The philosopher has invited
over three of his guests who heard him speak last night, these being Critias, Hermocrates, and
the titular character Timaeus. As yesterday Socrates gave a grand oration on politics for the
benefit of the three gentlemen, by prior agreement they are now to give similar presentations
on their areas of expertise as repayment for the entertainment.

First out is Timaeus. A man from Locri, a Greek colony in Southern Italy, in fact just down the
coast from Croton, where Pythagoras and his disciples had lived and worked a hundred years
earlier [4], Timaeus is presented to us as “an expert in astronomy [who] has made it his main
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10 1. INTRODUCTION

business to know the nature of the universe”. Fittingly, he delivers as his discourse an account
of how the Demiurge created the cosmos, which takes up the rest of the dialogue.

It may well be said that Timaeus is one of the strangest works in the Platonic corpus, reading
like a hybrid of Euclid’s Elements and Ovid’s Metamorphoses, though lacking the former’s
clarity and the latter’s poetry. The passages that concern us appear about a thirdway through
Timaeus’ monologue, when, noting that the classical elements of earth, water, air, and fire
occupy volume, the eponymous hero ventures to assign them their ideal shapes. Arguing that
the right angled isosceles triangles and the right angled triangle whose hypotenuse is twice its
opposite are the “most excellent” two-dimensional shapes there are, Timaeus constructs from
them the equilateral triangle, the square, and the regular pentagon, and from these in turn he
constructs the five Platonic solids.

Being the least mobile of the elements, earth is assigned the cube, and being the most mobile,
fire is assigned the tetrahedron. Awkwardly in-between these two extremes, air is assigned the
octahedron and water is assigned the icosahedron. We are left with the dodecahedron, which
Timaeus informs us is the shape in which the Demiurge has created the universe. (See Fig. 1.1.)
On the basis of these axioms, Timaeus is able to derive an entire theory of geometrical alchemy,
whilst the venerable Socrates, in other dialogues ever so eager to question the seemingly most
self-evident of propositions, sits back and takes in the lecture without protest.

least
mobile

most
mobile

Earth
Cube

Water
Icosahedron

Air
Octahedron

Fire
Tetrahedron

The Universe
Dodecahedron

Figure 1.1. The Platonic solids and Timaeus’ system of geometrical alchemy.

For the most part, the overwhelming majority, Timaeus is of course as textbook an example of
sophistry as you are ever likely to find. Nonetheless, as Alfred Tarski duly noted [5], Plato may
be an enemy, but falsehood is an even greater enemy, and by pure serendipity, Plato does appear
to have stumbled upon a grain of truth when he writes that there is something transcendent
about the solids which have come to bear his name.
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2. The Finite Subgroups of SO(3)

Another “perfect shape” that figures in Timaeus—not counted among the Platonic solids as it
is a surface and not a volume—is of course the sphere. Aesthetically pleasing as it was to the
ancient philosopher, so it is too to us latter-day sophists on account of its symmetry, “its centre
equidistance from its extremities in all directions, this of all shapes the most complete and most
like itself, [...] incalculably more excellent than unlikeness” [3]. The study of symmetry being
the domain of the group theorist, it is only appropriate to express this in group theoretical
language.

Taking the sphere and rotating it by any angle around any axis, the result is a shape indistin-
guishable from what one started out with. Thus we say that the rotational symmetry group of
the sphere is SO(3), the group of all rotations in three-dimensional space. All polyhedra possess
such rotational symmetry groups—though of course in many cases, that group consists solely
of the identity transformation—and these will all be finite subgroups of SO(3), congruent with
the observation that under any rotation for which a polygon exhibits symmetry, a sphere too
exhibits the same. When one then seeks to classify these finite subgroups, the Platonic solids,
already noted for their three-dimensional symmetries, resurface.

At first glance, the task of such classification appears futile. Disregarding the trivial subgroup,
there exists a limitless number of symmetrical polyhedra, and so one would expect there to
exist a limitless number of finite subgroups of SO(3) as well, even up to isomorphism. We
approach the problem systematically however, in the fashion laid out in [6], taking an arbitrary
symmetrical polyhedron and its associated finite subgroup of SO(3) and noting that the action
of any element of the group is to rotate the solid by some angle through an axis running through
the center of the polyhedron. Since there is an finite number of elements in the group, there
is a finite number of such associated axes. It follows from the symmetry of the polyhedron
under the action of the group that the effect of the rotations on the axes will be to keep one
fixed while permuting the others. Letting these axes then traverse the sphere rather than the
polyhedron, the axes intersect the sphere exactly twice—upon entering and upon exiting—and
labelling these points, it is then clear that the effect of the group action will be to permute
them (see Fig. 1.2). The permutations thus incurred determine the finite subgroup completely.

Figure 1.2. The axes of rotation of a general polyhedron (in this case the the
snub cube) define points on the sphere that are permuted under rotation.

Our problem is thus rendered concrete and accessible: which such configurations of points on
a sphere constrained by the nature of the group action (rotation) are permissible? To answer
this question, we recall two results of elementary group theory.

Theorem 1.3. (Orbit-Stabilizer.) Let G be a finite group acting on a finite set X, of which
x is an arbitrary element. If G(x) and Gx is the orbit and stabilizer of x respectively, then

|G(x)||Gx| = |G|.
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Lemma 1.4. (Burnside.) Let G be a finite group acting on a finite set X, and let Xg for g ∈ G
be the set of elements in X stabilized or “fixed” by g, and let N be the number of orbits in X.
Then,

N =
1

|G|
∑
g∈G
|Xg|.

With this formula, the number of orbits N is then readily available. Every element g ∈ G\{e}
fixes precisely two elements (the entry and exit of the pole) and e fixes every point on the
sphere. Therefore,

N =
1

|G|
(
2(|G| − 1) + |X|

)
. (1.5)

If we pick N different points x1, . . . , xN from X, one from each orbit, then |X| =
∑N

i=1 |G(xi)|.
Plugging this into (1.5) and re-arranging, we obtain

2

(
1− 1

|G|

)
= N − 1

|G|

N∑
i=1

|G(xi)|.

Further taking into account the Orbit-Stabilizer Theorem then and rearranging, we have

2

(
1− 1

|G|

)
=

N∑
i=1

(
1− 1

|Gxi |

)
. (1.6)

Additional constraints may be placed on the values of the left and the right hand sides. Ev-
idently, the left hand side cannot be greater than 2, since 1/|G| > 0, and since G is not the
trivial subgroup of SO(3), |G| > 1, meaning (1− 1

|G|) ≥ (1− 1
2) = 1

2 , giving us

1 ≤ 2

(
1− 1

|G|

)
< 2.

Pertaining to the right hand side, each point in the orbit is fixed by the action of at least two
elements, a rotation around the axis going through the point, and the identity element. This
gives us a lower boundary. As for the higher, each orbit may at most contain the same number
of elements as the group itself, and since this number is finite, (1− 1

|Gxi |
) < 1. Therefore,

1

2
≤ 1− 1

|Gxi |
< 1, 1 ≤ i ≤ N.

If N > 3, then the right hand side of (1.6) must be equal to or larger than 2, making the
equality unbalanced. Similarly, if N = 1, then the right hand side must be less than 1, once
again making the equation unbalanced. Thus we may conclude that the subgroups of SO(2)
must at least have two orbits and may at most have three.

Assume then that N = 2. Then,

2− 2

|G|
= 2−

(
1

|Gx1 |
+

1

|Gx2 |

)
⇔ 2

|G|
=
|G(x1)|
|G|

+
|G(x2)|
|G|

⇔ 2 = |G(x1)|+|G(x2)| = X,

thus obtaining that the set X consists of solely 2 points, which then define a single axis of
rotation. The possible finite subgroups of SO(3) then obtained are those generated by rotations
in the plane. From elementary considerations, it is easy to show that these are all cyclic groups.

If N = 3, then similarly to the case above, we obtain the formula

2

|G|
+ 1 =

1

|Gx|
+

1

|Gy|
+

1

|Gz|
. (1.7)

Since 1/|Gi| < 1, and the left hand side is strictly larger than one, (1.7) is considerably con-
strained in the number of solutions that it accepts. Specifically, only the possibilities listed in
Tab. 1.8 are valid solutions.
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Stabilizers Orbits
Solution |Gx| |Gy| |Gz| |G(x)| |G(y)| |G(z)| |G|

Regular n-gon 2 2 n n n 2 2n
Tetrahedron 2 3 3 6 4 4 12
Octahedron 2 3 4 12 8 6 24
Icosahedron 2 3 5 30 20 12 60

Table 1.8. Admissible solutions to equation (1.7), listed along with the cardi-
nalities of the corresponding orbits, the symmetry groups, and the name of the
polyhedra to which the symmetry groups correspond.

From symmetry considerations, it follows that the points in an orbit must be spread isometrically
over the sphere, and through a series of similar and not too convoluted geometric and algebraic
arguments, outlined in detail in [6] it is possible to ascertain what precisely these relative
configurations of points are.

Identifying the points of the different orbits as corresponding to axes going through the vertices,
edges, and faces of polyhedra respectively, we obtain that these are the symmetry groups of the
regular n-gon; the tetrahedron; the octahedron (and/or the cube); and the icosahedron (and/or
the dodecahedron) respectively (see Fig. 1.9). Thus we have once again obtained our Platonic
solids.

Figure 1.9. The cube and octahedron, and the icosahedron and dodecahedron
respectively define the same subgroups of SO(3) as the orbits defined by their
axes of rotation coincide.

3. The Finite Subgroups of SU(2)

To bring ourselves from SO(3) to SU(2), we begin by reminding ourselves of that both those
groups are not only groups, but are also topological spaces. For this section, we draw on [7] and
[8].

Definition 1.10. (Covering space.) Let X and Y be connected topological spaces. If there
exists a continuous map ϕ : Y → X such that ϕ is surjective and for each x ∈ X there exists
an open subset U ⊂ X containing x such that ϕ−1(U) is a disjoint union of open connected
subsets in Y , each of which are mapped homeomorphically unto U by ϕ (see Fig. 1.11), Y is
said to be a covering space of X.

The connectedness criteria ensures that the number of points in the preimage of any point in
X is the same regardless of from where in X the point was chosen. We call this number the
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ϕ

U
x

XY

ϕ−1(U)

Figure 1.11. Schematic illustration of the concept of a covering space. The
style of the illustration is inspired by the figures that may be found in [9].

index of the covering space. If X and Y both are topological groups (as indeed all Lie groups
are), we may talk of Y as being a covering group of X if ϕ is additionally a continuous group
morphism. In particular, if the index of this covering is two, then Y is said to be a double cover
of X.

SU(2) does indeed provide such a double cover for SO(3) through a map of kernel {±1}, the
details of which can be found in [10]. Though the derivation of the form of this morphism
ϕ : SU(2) → SO(3), the so-called canonical mapping, certainly is an interesting procedure on
its own, as for now, for our purposes, we need only know that it exists and not precisely what
it looks like.

Lemma 1.12. Every finite subgroup of SU(2) is either the preimage of a finite subgroup of SO(3)
under the canonical mapping, or is a cyclic group of odd order.

Proof. It follows from the properties of a group morphism that every subgroup of SU(2)
must map to a subgroup of SO(3) under ϕ. Self-evidently, every finite subgroup of SU(2) must
be either of even or odd order. If a subgroup Γ < SU(2) then is of even order, 2 divides it, and
so by Cauchy’s theorem [11], it contains an element of order 2. The only such element of SU(2)
is −1, and so we may conclude that Γ is precisely the preimage of a finite subgroup of SO(3).

If, on the other hand, Γ is of odd order, ϕ then must map its elements one-to-one to an odd
order subgroup of SO(3). The only such subgroups of SO(3) are the cyclic groups of odd order.
This finishes the proof. �

As an additional note we may add that the preimage of a cyclic group of order n of SO(3) is a
cyclic subgroup of order 2n of SU(2).

Our task is then clear: find a way to construct the preimages of the subgroups of SO(3)—which
we had found earlier—and the finite subgroups of SU(2) will appear. Though in general the
derivation of the form of the preimage of any given element of SO(3) in SU(2) under ϕ is just
as tedious a procedure as deriving the form of ϕ itself, in our case we are lucky, since the cyclic
groups are each one of them generated by just a single rotation, and all other finite subgroups of
SO(3) are generated by just two. If we can find the preimages of just these at most two elements,
the entirety of the preimage of the full subgroup will be available to us. To accomplish this, we
take a look at the associated Lie algebras of SO(3) and SU(2).

Leaving aside the issue of providing a holistic definition of the Lie algebra (good examples of
such descriptions can be found in [9] and [7]), we restrict ourselves to a definition sufficient
for our particular needs. Both SO(3) and SU(2) are matrix Lie groups, and so we adopt the
following definition from [8]:
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Definition 1.13. (Exponential of a matrix.) Let X be a square matrix of finite dimension.
The matrix exponential of X, denoted eX or exp(X) is defined as

eX :=
∞∑
m=0

Xm

m!
.

Definition 1.14. (Lie algebra of a matrix Lie group.) Let G be a matrix Lie group.
The Lie algebra of G, denoted g, is the set of all matrices X such that etX ∈ G for all t ∈ R.

We need of course point out that as a function the exponential map from a Lie algebra g to its
associated Lie group G needs not be surjective. Fortunately, this is not a problem for the two
Lie groups currently under consideration. It is known that for every compact, connected Lie
group, the exponential map from the Lie algebra to the Lie group is surjective [12]. As both
SO(3) and SU(2) are compact and connected, we may conclude that every element in either
group may be expressed as exponentials of elements in the algebras so(3) and su(2) respectively.

We state without proof (though proof can be found in [13]) that bases for the Lie algebras so(3)
and su(2) may be given by the matrices

Jx =

0 0 0
0 0 −1
0 1 0

 , Jy =

 0 0 1
0 0 0
−1 0 0

 , Jz =

0 −1 0
1 0 0
0 0 0

 ,

and

σx = −1

2

(
0 i
i 0

)
, σy = −1

2

(
0 1
−1 0

)
, σz = −1

2

(
i 0
0 −i

)
,

respectively (the latter are commonly referred to as the Pauli matrices). It is a matter of
straight-forward computation to verify that the two bases obey the same commutation relations,
specifically

[Ja, Jb] = εabcJc, and [σa, σb] = εabcσc.

The two algebras then are isomorphic, with the isomorphism explicitly being given by ϕ :
su(2) → so(3), xσx + yσy + zσz 7→ xJx + yJy + zJz. To properly then be able to make use of
these tools, we add two final ingredients to the mixture.

Theorem 1.15. Let G and H be two Lie groups, with Lie algebras g and h respectively, and
let Φ : G → H be a Lie group homomorphism. Then there exists a unique linear map φ : g→ h
such that

Φ(eX) = eφ(X)

for all X ∈ g. This map has the additional property that φ(AXA−1) = Φ(A)φ(X)Φ(A)−1 for
all X ∈ g, A ∈ G.

Proof. See [8]. �

Theorem 1.16. Let G and H be two Lie groups, with Lie algebras g and h respectively, suppose
G to be simply connected, and let φ : g→ h be a Lie algebra homomorphism. Then there exists
a unique Lie group homomorphism Φ : G → H such that

Φ(eX) = eφ(X)

for all X ∈ g.

Proof. See [8]. �
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Theorems 1.15 and 1.16 then allow us to draw up the following commutative diagram,

SU(2)

su(2)

SO(3)

so(3)
∼
ϕ

ϕ

exp exp

and we may finally obtain the elements of the subgroups of SU(2) in that Lie group’s defining
representation.

Example 1.17. (Binary Octahedral Group.) The octahedral group can be generated from
two elementary operations: a rotation by π

2 in the x− y plane, and a rotation by π
2 in the x− z

plane (see Fig. 1.18). A rotation by θ in the x− y plane is given by the matrix cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ,

which have eigenvectors 1
i
0

 ,

 1
−i
0

 ,

0
0
1

 ,

with eigenvalues of e+iθ, e−iθ, and 1 respectively. Thus we may diagonalize to obtain cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 =

1 1 0
i −i 0
0 0 1

eiθ 0 0
0 e−iθ 0
0 0 1

1
2 − i

2 0
1
2

i
2 0

0 0 1

 .

The central matrix on the right hand-side equals to the exponention of the diagonal matrix
with diagonal entires iθ, −iθ, and 0, and so by Thm. 1.15, we find

log

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 =

1 1 0
i −i 0
0 0 1

iθ 0 0
0 −iθ 0
0 0 0

1
2 − i

2 0
1
2

i
2 0

0 0 1

 =

 0 θ 0
−θ 0 0
0 0 0

 = −θJz.

Similarly, a rotation by φ in the x− z plane is given by the matrixcosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 ,

and by the same method as above, we obtain

log

cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 =

0 0 −φ
0 0 0
φ 0 0

 = −φJy.

Passing these under the inverse of the isomorphism ϕ, we then obtain

−θσz =
θ

2

(
i 0
0 −i

)
, and − φσy =

φ

2

(
0 1
−1 0

)
,

respectively. Exponentiating these and plugging in θ = φ = π
2 , we then have the preimages of

the generator elements being given by

a =

(
ei
π
4 0

0 e−i
π
4

)
, and b =

1√
2

(
1 1
−1 1

)
.
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As a4 = b4 = −1, these elements then generate the entire preimage of the octahedral subgroup
in SU(2), a subgroup that is known as the binary octahedral group and is commonly denoted
BO.

π
2 π

2

Figure 1.18. Generating elements of the octahedral rotational symmetry group.

Through this method of “reverse engineering”, we obtain a complete list of all possible finite
subgroups of SU(2). These are then the cyclical groups and the so-called binary dihedral groups,
BD2n, and the binary polyhedral groups BT, BO, and BD. The representation in which we obtain
them is the defining, or natural representation of SU(2), restricted to the subgroups in question.
For the rest of this work, whenever we shall say that a subgroup of SU(2) is in the natural
representation, this is what we will be referring to.

4. The Classical McKay Correspondence

We are now finally at a position to introduce the classical McKay correspondence. Having found
the finite subgroups of SU(2), we can delve into representation theory further and find their
irreducible representations. For a given subgroup, we may take its irreducible representations
and take the tensor products of each one with the natural representation. Morphisms may
be constructed from these product representations back to the irreducible representations, and
given a product representation and an irreducible representation, the set of morphisms from
the former to the latter defines a vector space. Concerning ourselves with the dimensionalities
of these morphism spaces, for each subgroup we may encode all this information in the form of
a diagram.

On the other hand, we may consider the finite subgroups from the point of view of their action
on C2 in the natural representation. C2 being a manifold, these actions define orbifolds, and
using the tools of invariant theory, we may give these algebraic descriptions, embedding them as
surfaces in C3, thereby taking on the form of varieties—a basic construct of algebraic geometry.
The varieties thus obtained exhibit singularities, and when we resolve these through the process
known as blowing-up, we end up with webs of subspaces known as exceptional divisors. The
information of their intersections may similarly be encoded in diagrams.

When we compare the two sets of diagrams constructed, we discover that there is a close
similarity, a similarity indicative of a deep relationship between these structures seemingly
so alien to one another. This phenomenon is known as the classical McKay correspondence,
and illuminating the process so hastily summarized in yet undefined jargon in the above two
paragraphs will be the subject matter of the rest of this work.
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In the next three chapters will respectively focus on the representation theoretical; the algebro-
geometrical; and the invariant theoretical aspects of the McKay correspondence.



CHAPTER 2

Representation Theory

The subject matter of the following chapter is the construction of the irreducible representations
of the different finite subgroups of SU(2) and how morphisms may be constructed between them
and their tensor products with the natural representation. From the information contained
therein, the so-called McKay quivers are then drawn up. We will show how these morphisms
may be deduced using character theory, for which we restate the basic results. The irreducible
representations of the cyclic and binary dihedral groups will be constructed from fundamental
algebraic arguments. To find the irreducible representations of the binary polyhedral groups
however, we shall make use of a schema known as Dixon’s restricted character algorithm, which
we furthermore shall provide exposition of. Throughout, we will liberally make use of results
listed in Appendix A. Before we may start in earnest however, we need to establish what the
McKay quiver of a group actually is.

Definition 2.1. (McKay Quiver.) Given a finite group G with natural representation %Nat

and irreducible representations %i, the McKay quiver is constructed as follows:

1. For every irreducible representation of G, draw a node.

%1 %2 %3 %4 %5

%6%7

2. If the dimensionality of the homomorphism space from the representation %Nat ⊗ %i to the
representation %j is n, draw n arrows from i to j.

%1 %2 %3 %4 %5

%6%7

3. In the diagram, for every time that two arrows occur going between two nodes in the opposite
direction, replace said two arrows with a single undirected line.

%1 %2 %3 %4 %5

%6%7

The resultant figure is then the McKay quiver of the group G.

19
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1. Character Theory

We assume the reader to be familiar with the basic results of character theory within the field of
representation theory of finite groups. For the purpose of clarity, we restate the basic definitions
and some associated results, drawing on [14], [15], and [16].

As detailed in Appendix A, every representation % of a group G can be extended into a rep-
resentation %̃ of its group algebra over a field F, F[G], by having it act on a generic element

a =
∑|G|

i=1 aigi ∈ F[G] as

%̃
( |G|∑
i=1

aigi

)
=

|G|∑
i=1

ai%(gi), ai ∈ F.

We shall henceforth use % when referring to a representation of a group and %̃ when referring
to the representation of an algebra. Furthermore, as detailed in the aforementioned appendix,
every irreducible representation of a group is an irreducible representation of the group algebra
and vice versa, and so we can transfer our entire discussion back and forth without any loss of
generality.

Definition 2.2. (Character of a representation.) Let G be a finite group, and % be a
representation thereof over the field C. The character χ of the representation % is then defined
to be a function χ : G→ C given by

χ(g) := tr(%(g))

Lemma 2.3. Let χV , χW be the characters of two representations of the group G corresponding
to modules V and W over the field C. Then the following statements hold true:

(i) χV (e) = dimV ;
(ii) χV (g) = χV (h) if g, h ∈ G belong to the same conjugacy class;

(iii) χV⊕W (g) = χV (g) + χW (g), ∀g ∈ G;
(iv) χV⊗W (g) = χV (g)χW (g), ∀g ∈ G;

(v) χV ∗(g) = χV (g), ∀g ∈ G, (V ∗ being the dual vector space of V );
(vi) V ∼= W ⇒ χV (g) = χW (g), ∀g ∈ G.

Definition 2.4. (Class functions.) The set of all functions G → C, call it F [G], form an
associative algebra under addition given by (f1 + f2)(g) := f1(g) + f2(g) and multiplication by
scalars given by (λf)(g) := λf(g). A subset of these is the set of functions that are invariant on
the conjugacy classes of G. We call these the class functions on G, denoted CF [G], and note
that this subset actually forms a subalgebra of F [G].

Lemma 2.5. The dimensionality of CF [G] equals to the number of conjugacy classes of G.

Proof. If the group G in question consists of n conjugacy classes {Ki}, then a natural
basis for the algebra CF [G] is given by the class functions fi defined by

fi(g) :=

{
1, g ∈ Ki,

0, g /∈ Ki.

Thus we may conclude that CF [G] is of dimension n. �

Definition 2.6. (Inner product of class functions.) Let G be a group and let µ, ν :
G→ C be two class functions. The inner product of µ and ν is then given as

〈µ, ν〉 :=
1

|G|
∑
g∈G

µ(g)ν(g).
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Lemma 2.7. Let V and W be two modules of a finite group G. Then the set of all vector space
morphisms from V to W , denoted Hom(V,W ), is itself a module of G.

Proof. In Cor. A.24 we note that the set of all group module morphisms from V to W
has the structure of a vector space, and we may readily extend this structure to render all of
Hom(V,W ) a vector space, defining (kϕ) := k(ϕ(v)) and (ϕ+ θ)(v) := ϕ(v) + θ(v) for all ϕ, θ ∈
Hom(V,W ). To see that this vector space is a group module, simply define a group action upon
it from the predefined group actions ◦ and • on V and W by ? : G×Hom(V,W )→ Hom(V,W ),
g ? ϕ(v) := g • ϕ(g−1 ◦ v), a group action which without difficulty can be verified to endow
Hom(V,W ) with the structure of a G-module. �

Lemma 2.8. For the group action defined above, every element of HomG(V,W ) is invariant
under the action of any element of G.

Proof. We have HomG(V,W ) = {ϕ ∈ Hom(V,W )|ϕ(g ◦ v) = g • ϕ(v), ∀g ∈ G, v ∈ V }.
Therefore, g ? ϕ(v) = g • ϕ(g−1 ◦ v) = g • g−1 • ϕ(v) = ϕ(v), for all ϕ ∈ HomG(V,W ). �

Being a G-invariant subspace of Hom(V,W ), HomG(V,W ) is as such of course a submodule of
Hom(V,W ).

Lemma 2.9. As G-modules, Hom(V,W ) and V ∗⊗W are isomorphic (V ∗ being the dual vector
space of V ).

Proof. dim(Hom(V,W )) = dimV dimW = dimV ∗ dimW = dim(V ∗ ⊗W ), so the dimen-
sionalities agree. We then define the map Φ : V ∗ ⊗W → Hom(V,W ) by f ⊗ w 7→ αf⊗w such
that αf⊗w(v) := f(v)w. To demonstrate isomorphism, first we need to show that this map is
well-defined as a bilinear map. We find

Φ((f + f ′)⊗ w)(v) = (f + f ′)(v)w = f(v)w + f ′(v)w = Φ(f ⊗ w)(v) + Φ(f ′ ⊗ w)(v),

Φ(f ⊗ (w + w′))(v) = f(v)(w + w′) = f(v)w + f(v)w′ = Φ(f ⊗ w′)(v) + Φ(f ⊗ w′)(v),

Φ((λf)⊗ w)(v) = (λf)(v)w = λ(f(v)w) = Φ(λ(f ⊗ w))(v),

Φ(f ⊗ (λw))(v) = f(v)(λ)w = λ(f(v)w) = Φ(λ(f ⊗ w))(v).

Next, we verify that Φ is surjective. With a basis {v1, . . . , vn} of V and {w1, . . . , wm} of W ,
the morphisms βij defined by

βij(vk) :=

{
0, k 6= j,

wi, k = j,

provide a basis for Hom(V,W ). Let {f1, . . . , fn} be a dual basis for V ∗ such that fi(vj) = δij .
Then Φ(fi ⊗ wj) = βij , making Φ a surjective map. Finally, we show that Φ is a module
homomorphism. Let � be the group action induced on V ∗ ⊗W by ◦ and •. Then,

Φ(g � (f ⊗ w))(v) = Φ(f(g−1 ◦ v)⊗ (g • w)) = g • (f(g−1 ◦ v)w) = g ? Φ(f ⊗ w)(v),

and the proof is done. �

Corollary 2.10. The subspace (V ∗ ⊗W )G := {x ∈ V ∗ ⊗W |g � x = x, ∀g ∈ G} is isomorphic
as a G-module to HomG(V,W ).

Theorem 2.11. (The Grand Orthogonality Theorem.) The characters of the irreducible
representations of a group are orthonormal with respect to the inner product up to equivalence.
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Proof. (Mathematician’s version.1) Let χV and χW be the characters of two irre-
ducible representations corresponding to simple modules V and W . Then,

〈χW , χV 〉 =
1

|G|
∑
g∈G

χW (g)χV (g)

=
1

|G|
∑
g∈G

χV ∗(g)χW (g) (by 2.3.v)

=
1

|G|
∑
g∈G

χV ∗⊗W (g). (by 2.3.iv)

To evaluate this sum, we start by considering the element in the algebra C[G] defined by

φ =
1

|G|
∑
g∈G

g,

and consider its action on elements of V ∗ ⊗W . For x ∈ (V ∗ ⊗W )G, we find

φ � x =
1

|G|
∑
g∈G

g � x =
1

|G|
∑
g∈G

x = x,

and for generic x ∈ V ∗ ⊗W , h ∈ G, we find

h � (φ � x) = h � 1

|G|
∑
g∈G

g � x =
1

|G|
∑
g∈G

(h � g) � x =
1

|G|
∑
g∈G

g � x = (φ � x),

meaning φ � x ∈ (V ∗ ⊗W )G for all x ∈ V ∗ ⊗W . Consequently, φ acts as a projection operator
V ∗ ⊗W → (V ∗ ⊗W )G. If % then is the representation corresponding to the module V ∗ ⊗W ,
then in it, φ is represented by

%(φ) =
1

|G|
∑
g∈G

%(g),

which then has trace

tr(%(φ)) =
1

|G|
∑
g∈G

χV ∗⊗W (g) = 〈χW , χV 〉,

and so, this construction has allowed us to get closer to determining the inner product 〈χW , χV 〉.
Now given a vector space X with subspace Y , and a projection operator ϕ : X → Y , we can
always change to a basis in which the matrix representation for ϕ is of the form



n︷ ︸︸ ︷
1 . . . 0
...

. . .
...

0 . . . 1
0 . . . 0
...

. . .
...

0 . . . 0

m︷ ︸︸ ︷
0 . . . 0
... . . .

...
0 . . . 0
0 . . . 0
...

. . .
...

0 . . . 0


,

in which the first n columns correspond to the basis vectors of the subspace Y , and the latter
m columns correspond to the orthogonal complement of Y in X, thus signifying that the part
of a vector being operated upon that are in Y is left intact, while the component outside of Y
is annihilated. Since the trace of a matrix is invariant under a change of basis, tr(Mat(ϕ)) =
dim(Y ), and consequently, tr(%(φ)) = dim((V ∗ ⊗W )G).

1The physicist’s version, which may be found in [17], makes use of unitarity and is more matrix-oriented in
nature.
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As noted in Cor. 2.10, (V ∗ ⊗W )G and HomG(V,W ) are isomorphic, and since V and W are
both simple modules, by Schur’s lemma (Lems. A.38, A.39),

dim(HomG(V,W )) =

{
1, if V ∼= W,

0, if V 6∼= W,

Thus

〈χW , χV 〉 = 〈χV , χW 〉 =

{
1, if V ∼= W,

0, if V 6∼= W,

and the proof is finished. �

Lemma 2.12. The characters of the irreducible representations of a group G (up to isomorphism)
provide a basis for CF [G].

Proof. Thm. 2.11 establishes orthonormality between the characters of irreducible repre-
sentations up to isomorphism, and so all that remains is to show that these truly span all of
CF [G]. We do this by showing that any class function α ∈ CF [G] orthogonal to all characters of
irreducible representations (〈α, χV 〉 = 0 for all simple modules V and by extension 〈α, χW 〉 = 0
for all semisimple modules W ) must be the zero map.

For any β ∈ CF [G], we may define the element σβ ∈ C[G] by

σβ :=
1

|G|
∑
g∈G

β(g)g.

As β is a class function, β(g) = β(h−1gh) for any g, h ∈ G, and so

h−1σβh =
1

|G|
∑
g∈G

β(g)h−1gh =
1

|G|
∑
g∈G

β(h−1gh)h−1gh = σβ,

meaning that the action of σβ commutes with the action of any h ∈ G. Consider then a module
W . Since g · w ∈ W for each g ∈ G, w ∈ W , it follows that σβ · w ∈ W . But σβ is not just a
self-mapping W →W . By the commutativity shown above,

σβ · (g · w) = (σβg) · w = (gσβ) · w = g · (σβ · w),

meaning that the action of σβ defines a full module endomorphism W →W .

Take then σ for α mentioned before, and let it act upon a simple module V corresponding
to an irreducible representation %. As σα defines a module endomorphism, by Schur’s lemma,
%(σα) = λ · 1 for some λ ∈ C for all g ∈ G. Therefore, tr(%(σα)) = λ dimV , and so,

λ =
1

dimV
tr(%(σα)) =

1

dimV

1

|G|
∑
g∈G

α(g)χV (g) =
1

dimV

1

|G|
∑
g∈G

α(g)χV ∗(g) =
1

dimV
〈α, χV ∗〉 = 0,

as we set 〈α, χW 〉 = 0 for all semisimple modules W . Thus the action of σα on any simple
module is the zero map, and so it follows that it must also be on all semisimple modules. In
particular, this holds true for (C[G])◦ itself, giving us

0 = σα · 1 =
1

|G|
α(g)g · 1 =

1

|G|
α(g)g,

and so α(g) = 0 for all g ∈ G by the linear independence of the group elements in the group
algebra, meaning α = 0. This finishes the proof. �

Corollary 2.13. The number of inequivalent irreducible representations of a finite group
equals its number of conjugacy classes.
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Lemma 2.14. Let V ∼=
⊕

i V
mi
i be a module of a finite group G, which by Maschke’s theorem

(Thm. A.42) is isomorphic to a direct sum of simple modules Vi, each appearing with multiplicity
mi. Then,

〈χV , χVi〉 = mi.

Proof.

〈χV , χVi〉 = 〈χ⊕
j V

mj
j
, χVi〉 =

∑
j

mj〈χVj , χVi〉 =
∑
j

mjδij = mi,

the first three equalities following from Lems. 2.3.vi, 2.3.iii, and 2.11 respectively. �

Lemma 2.15. The dimensionality of the homomorphism space HomG(V, Vi) is 〈χV , χVi〉.

Proof.

HomG(V, Vi) ∼= HomG(
⊕
j

V
mj
j , Vi) (as V ∼=

⊕
i V

mi
i )

∼=
⊕
j

HomG(Vj , Vi)
mj (by Lem. A.25)

By Schur’s lemma then, dim(
⊕

j HomG(Vj , Vi)
mj ) = mi, and by Lem. 2.14, mi = 〈χV , χVi〉. �

As is outlined in Appendix A, given an semisimple algebra A and a simple A-module M , the
regular module A◦ admits at least one submodule isomorphic to M . When we are looking at a
group algebra F[G], then the representation theory of groups allows us to say more.

When we write up the representation matrix of a particular group element, what we are doing
is encoding the group action of the element upon the basis vectors of the module that the
representation corresponds to. The first column encodes the action on the first basis vector, the
second column on the second basis vector, and so on, the ith column encoding the action on the
the ith basis vector. Now when we are working with the regular representation, we are looking
at |G| × |G|-matrices, and there exists an intuitive set of basis vectors to work with—the group
elements themselves.

The reader will recall that two group elements multiplied with one another deliver a third that
is that same as one of the first two ones if and only if the other is the identity. In the languages
of modules, calling the group element whose action we are interested in g and the set of basis
vectors {gi}, this is the same as saying

g · gi = gj , where

{
i 6= j, if g 6= 1,

i = j, if g = 1.

Encoding this in the representation matrices, this means that if g 6= 1, the matrix will have
nothing but zeros in the diagonal, since no part of any basis vector is ever mapped back onto
itself, and if g = 1, the matrix will have nothing but ones in its diagonals, since every basis
vector is mapped back unaltered unto itself. Since the character of a representation is merely
the trace of the representation matrices, if we call the character of (C[G])◦ by χ we may thus
write

χ(g) =

{
|G|, if g = 1,

0, if g 6= 1.
(2.16)
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Lemma 2.17. Let G be a finite group, and let {V1, . . . , Vk} be a representative set of the
isomorphism classes of simple G-modules. Then

(C[G])◦ ∼=
k⊕
i=1

V ⊕ dimVi
i .

Proof. By Maschke’s theorem (Thm. A.42), the regular module is semisimple, and so

(C[G])◦ ∼=
⊕k

i=1 V
⊕mi
i for some mi ∈ N. By (2.16) then, if Vi is a simple module,

〈χVi , χ〉 =
1

|G|
∑
g∈G

χVi(g)χ(g) =
1

|G|
χVi(e)χ(e) =

1

|G|
dimVi · |G| = dimVi.

By Lem. 2.14 then it follows that (C[G])◦ ∼=
⊕k

i=1 V
⊕dimVi
i . �

With these results at our disposal then, finding the dimensionalities in question becomes a
matter of simple computation.

Lemma 2.18. Let G be an abelian group of order n. Then the number of conjugacy classes of
G is also n.

Proof. Two elements a, b ∈ G are conjugate if and only if there exists an element g ∈ G
such that gag−1 = b. Since G is abelian, however, for all g ∈ G, we have gag−1 = gg−1a = a,
and so the only element to which a can be conjugate is itself. From this it follows that all
conjugacy classes in G consist of single elements, and since G is of order n, so there must exist
n conjugacy classes of G. �

Example 2.19. (The cyclical group, Cn.) A cyclical group can be generated by every non-
identity element therein, so taking an arbitary a ∈ Cn\{e}, we can express any two elements
b, c ∈ Cn as b = am, c = an for some m,n ∈ N. Thus, bc = aman = am+n = an+m = anam = cb,
demonstrating the cyclical group to be abelian. By Lem. 2.18, it therefore consists of n
conjugacy classes. By Cor. 2.13, it therefore has n irreducible representations.

Cn e a a2 a3 . . . an−1

Triv. 1 1 1 1 . . . 1
%1 1 ζ ζ2 ζ3 . . . ζn−1

%2 1 ζ2 ζ4 ζ6 . . . ζ2(n−1)

%3 1 ζ3 ζ6 ζ9 . . . ζ3(n−1)

...
...

...
...

... . . .
...

%k 1 ζk ζ2k ζ3k . . . ζk(n−1)

...
...

...
...

... . . .
...

%n−1 1 ζn−1 ζ2(n−1) ζ3(n−1) . . . ζ(n−1)
2

Table 2.20. The reduced character table for the cyclic group of order n, where

ζ = ei
2π
n .

Since every mapping e 7→ 1, a 7→ ζm, ζ = ei
2π
n constitutes a distinct irreducible representation

for m ∈ {1, . . . , n}, it follows that these are all the irreducible representations of Cn. These all
being one-dimensional, it is very easy to construct the reduced character table (see Tab. 2.20).
We denote ak by k, and the representation that maps 1 7→ ζp by %p. The natural representation
%Nat in this case is given by

%Nat(k) =

(
ζk 0
0 ζ−k

)
, k ∈ {0, 1, . . . , n− 1}.
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Then, using Lem. 2.15, we find that the number of arrows from the node p to the node q is

npq =
1

n

n−1∑
k=0

χ(%Nat(k))χ(%p(k))χ(%q(k)).

For arbitrary k, we find

χ(%(k))χ(%p(k))χ(%q(k)) = (ζk + ζ−k)ζpkζ−qk

= (ζk + ζ−k)ζk(p−q)

= ζk(p−q+1) + ζk(p−q−1).

This leaves us with

npq =
1

n

n−1∑
k=0

ζk(p−q+1) +
1

n

n−1∑
k=0

ζk(p−q−1),

that is, the sum of two geometric series. Now,

n−1∑
k=0

ark = a+ ar + ar2 + ar3 + · · ·+ arn−2 + arn−1 = a
1− rn

1− r
,

for r 6= 1, of course, as one would not want to divide by zero. In the case in which r = 1, then
clearly

∑n−1
k=0 ar

k = a+ a+ · · ·+ a = na. Thus,

1

n

n−1∑
k=0

ζk(p−q+1) =
1

n

1− ζn(p−q+1)

1− ζp−q+1
, and

1

n

n−1∑
k=0

ζk(p−q−1) =
1

n

1− ζn(p−q−1)

1− ζp−q−1
.

Now, ζn = 0, and so, ζn(p−q+1) = (ζn)(p−q+1) = 1(p−q+1) = 1, and analogously for the (p−q−1)
case. Thus,

1

n

n−1∑
k=0

ζk(p−q+1) =
1

n

1− 1

1− ζp−q+1
= 0, and

1

n

n−1∑
k=0

ζk(p−q−1) =
1

n

1− 1

1− ζp−q−1
= 0,

in all cases, except when p− q+ 1 = 0 (mod n) and p− q−1 = 0 (mod n) respectively, in which

case the
∑n−1

k=0 ar
k = a+ a+ · · ·+ a = na condition kicks in, and we end up with

1

n

n−1∑
k=0

ζk(p−q+1) =
1

n
· n · 1 = 1, and

1

n

n−1∑
k=0

ζk(p−q−1) =
1

n
· n · 1 = 1,

respectively. This occurs when

p = q − 1 (mod n), and p = q + 1 (mod n),

respectively. So, for each node p, draw arrows to nodes p− 1 and p+ 1. Going through with
the procedure for all nodes, we obtain the diagram shown in Fig. 2.21.

%4%3%2%1 %n−2 %n−1

%n = Triv.

Figure 2.21. The McKay quiver of the cyclic group of order n.
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Example 2.22. (The binary dihedral group, BD2n.) The binary dihedral group BD2n is
given by the presentation

BD2n := 〈r, s|r2n = e, s2 = rn, s−1rs = r−1〉,

and it is known from group theory that it is of order 4n and consists of n+ 3 conjugacy classes,
these being {e} and {s2} with one element each, {r, r2n−1}, {r2, r2n−2}, . . . , {rn−1, rn+1} with
two elements each, and {s, sr2, . . . , sr2n−2} and {sr, sr3, . . . , sr2n−1} with n elements each.

For a one-dimensional representation, the characters are the 1× 1-matrices, and since we con-
cern ourselves with a finite group, every element taken to some power must be the identity
element. Thus every character must be a root of unity. Looking at the generators r, s then,
it is immediately clear that if we set ζ = eiπ/2n, then %(r) = ζ2k and %(s) = ζkn+2an, a ∈ Z,
satisfy the first two defining relations for all 0 ≤ k ≤ n − 1. The final relation however can
only be satisfied if ζ2k = ζ−2k, which can only be the case if ζk ∈ {1,−1, i,−i}. Consequently,
as %(s) = (−1)ζkn, the specifics of the different one-dimensional irreducible representations are
going to depend on whether n is even or odd. If n is even,

(%(r), %(s)) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

If n is odd,

(%(r), %(s)) ∈ {(1, 1), (1,−1), (−1, i), (−1,−i)}.
In either event, we obtain four one-dimensional irreducible representations, the trivial, call it
Triv. and three additional ones which we call 1A, 1B, and 1C.

In the natural representation, the generators are given by the matrices

%Nat

(
ζ 0
0 ζ−1

)
, %Nat(s) =

(
0 1
−1 0

)
.

Taking the inner product of its character with itself, we obtain unity and so may conclude that
it too is an irreducible representation of the binary dihedral group: let H be a set of elements
of BD2n, containing exactly one element from each of the different conjugacy classes. Then,

〈χNat, χNat〉 =
1

|BD2n|
∑
h∈H
|Cl(h)|χNat(h)χNat(h)

=
1

4n

2 · 2 + (−2) · (−2) + 2
n−1∑
j=1

(ζj + ζ−j)(ζ−1 + ζj) + 0 + 0


=

1

4n

8 + 2

n−1∑
j=1

(2 + ζ2j + ζ−2j)


=

1

4n
[8 + 4(n− 1)− 4] = 1,

where we have used the property that the nth roots of unity always add up to zero.

Further, we note from the defining relations that since rn = s2, r2n = e, and s−1rs = r−1,
if k is an odd number, then (rk)n = s2, (rk)2n = e, and s−1(rk)s = (rk)−1 also. This means
that for odd k, further representations of the group may be given by %k(r) := (%Nat(r))

k,
%k(s) := %Nat(s). For even k, this schema fails as (rk)n = e, and in particular, (%Nat(r)

k)n =
1 6= −1 = %Nat(s)

2. The situation can be remedied however by letting %k := ( 0 1
1 0 ), as then

%k(s)
2 = 1 while the relation %k(s

−1)%k(r)%k(s) = %k(r
−1) remains intact. Thus we have an

additional n− 2 two-dimensional representations being given by

%k(r) =

(
ζk 0
0 ζ−k

)
, %k(s) =

(
0 1

(−1)k 0

)
, 2 ≤ k ≤ n− 1.
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These, too, turn out to be irreducible representations: again, let H be a set of elements of BD2n,
containing exactly one element from each of the different conjugacy classes.

〈χk, χk〉 =
1

|BD2n|
∑
h∈H
|Cl(h)|χk(h)χk(h)

=
1

4n

2 · 2 + (−1)2k2 · 2 + 2

n−1∑
j=1

(ζjk + ζ−jk)(ζ−jk + ζjk) + 0 + 0


=

1

4n

8 + 2

n−1∑
j=1

(2 + ζ2jk + ζ−2jk)


=

1

4n
[8 + 4(n− 1)− 4] = 1,

where we have used the fact that any integer power of an nth root of unity is itself always an
nth root of unity, and so as a geometric sum, we obtain

n−1∑
j=1

(ζ2k)j =
ζ2k(1− ζ2k(n−1))

1− ζ2k
=

1− ζ−2k

ζ−2k − 1
= −1.

Having thus found n + 3 irreducible representations, the same as the number of conjugacy
classes, we conclude that we have found them all, and so draw up the reduced character table
(see Tab. 2.23).

BD2n e s2 r r2 . . . rn−1 s sr
Triv. 1 1 1 1 . . . 1 1 1
1A 1 1 1 1 . . . 1 −1 −1
1B 1 (−1)n −1 1 . . . (−1)n−1 in −in
1C 1 (−1)n −1 1 . . . (−1)n−1 −in in

Nat. 2 −2 ζ + ζ−1 ζ2 + ζ−2 . . . ζn−1 + ζ1−n 0 0

%k 2 (−1)k2 ζk + ζ−k ζ2k + ζ−2k . . . ζk(n−1) + ζk(1−n) 0 0

Table 2.23. The reduced character table for the binary dihedral group BD2n.

The McKay quiver is now found through character theory. It is immediately clear that the inner
products of the characters of both the trivial representation and 1A with the natural one yields
back the natural, while those of 1B and 1C with the same yields %n−1. The outstanding question
then is what the tensor product is of the natural and a generic two-dimensional irreducible
representation %k? The character table is readily available as a matter of computation:

e s2 r . . . rn−1 s sr

Nat.⊗ %k 4 (−1)k+14
(ζk+1 + ζ−k−1)

. . .
(ζ(k+1)(n−1) + ζ(k+1)(1−n))

0 0
+(ζk−1 + ζ1−k) +(ζ(k−1)(n−1) + ζ(k−1)(1−n))

Inspection reveals that provided 1 < k < n − 1, then Nat. ⊗ %k ∼= %k−1 ⊕ %k+1. The two
exceptions are of course the natural representation itself and %n−1, in which cases we have:

e s2 r . . . rn−1 s sr
Nat.⊗Nat. 4 4 (ζ2 + ζ−2) + 1 + 1 . . . (ζn−1 + ζ1−n) + 1 + 1 0 0

Nat.⊗ %n−1 4 (−1)n4 −1− 1 + (ζn−2 + ζ2−n) . . .
(−1)n−1 + (−1)n−1)

0 0
+(ζ(n−2)(n−1) + ζ(n−2)(1−n)

Once again, it is immediately clear that Nat. ⊗ Nat. ∼= %2 ⊕ Triv. ⊕ 1A and Nat. ⊗ %n−1 ∼=
%n−2 ⊕ 1B⊕ 1C. All that remains is drawing up the McKay quiver (see Fig. 2.24).

The cyclic and binary dihedral groups having been dispensed with, we now move on to the
binary polyhedral groups. Though the process is somewhat tedious, it is entirely possible from
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Triv.

1A

1B

1C

Nat. %2 %3 %n−2 %n−1

Figure 2.24. The McKay quiver of the binary dihedral group BD2n.

as little as only knowing the characters of the trivial and natural representations (which are
always a given) to deduce the entire reduced character table. From this in turn, using the inner
product and old-fashioned arithmetic, the full McKay quivers may be constructed.

Though we do not therefore need the actual representation matrices for any of our overarching
purposes, they could well prove to be fruitful for future endeavours, and their inclusion certainly
would satisfy our desire for completeness. Above all, the literature available on the subject is
avaricious in listing them, and the method for finding them remains, unfortunately, obscure.
As such, the author judges it prudent to present it here.

The method, which has applications ranging far beyond our particular line of inquiry, was origi-
nally developed in the 1990s by the Canadian computational mathematician John D. Dixon [18].
A very powerful algorithm, it allows one to construct the irreducible representation matrices of a
wide variety of finite groups provided one knows their multiplication tables and their restricted
character tables. In particular, it allows for the computation of all irreducible representations
of dimension less than 32 of simple groups. Beyond drawing on Dixon’s original article, we shall
also draw on the dissertation of his doctoral student Vahid Dabbaghian-Abdoly [19].

2. Dixon’s Restricted Character Algorithm

We denote the regular representation by % and its character by χ. As noted earlier in Lem.
2.17,

(C[G])◦ ∼=
k⊕
i=1

V dimVi
i , (2.25)

where the {Vi} form a representative set of the isomorphism classes of the simple group modules,
each corresponding to an irreducible representation %i, and each with the associated character
χi. From this, it further follows that

χ(g) =
k∑
i=1

χi(g)χi(1), (2.26)

for each and every element g ∈ G, denoting the identity of the group by 1. Extending this
formula to cover the algebra representations, we get that for generic element a ∈ CG, we have

χ̃(a) =
k∑
i=1

χ̃i(a)χi(1), (2.27)

where we have extended the definition of the character of a group representation to also cover
the group algebra representation, hence the tilde. Consider the central idempotent ei associated
with the Vi-homogeneous submodule Vi(C[G]). It stands to reason that it may be written as

ei =

|G|∑
k=1

ai,kgk, (2.28)
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with coefficients ai,k ∈ C. The inevitable question that arises is, what are those ai,k’s? To
answer this question, we look at C[G] as an algebra and consider what the regular character of
the element eig

−1
k is,

χ̃(eig
−1
k ) = χ̃

( |G|∑
`=1

ai,`g`g
−1
k

)
=

|G|∑
`=1

ai,`χ(g`g
−1
k ).

The only summand above that does not vanish is the case of ` = k, in which case χ(g`g
−1
k ) =

χ(gkg
−1
k ) = χ(1) = |G|. This leaves us with

ai,k =
1

|G|
χ̃(eig

−1
k ).

Next, we express the ai,k’s in terms of the characters of the irreducible representations. Since

%̃i(ej) = δij1 and since the {%̃i} are morphisms, it follows that %̃j(eig
−1
k ) = δij%(g−1k ), from

whence it in turn follows that χ̃j(eig
−1
k ) = δijχj(g

−1
k ). Then, with reference to (2.27), we obtain

ai,k =
1

|G|
∑
j=1

δijχj(g
−1
k )χj(1) =

1

|G|
χi(g

−1
k )χi(1).

Plugging this expression into (2.28), we finally obtain

ei =
χi(1)

|G|

|G|∑
k=1

χi(g
−1
k )gk. (2.29)

To recapitulate, if ei is the central idempotent associated with the irreducible representation %i
with character χi, then it may be decomposed in the basis {gk|gk ∈ G} of the algebra C[G] as
above. For the remainder of this section, we shall use di = dim(Vi) in place of χi(1).

The following lemma forms the very heart of the algorithm:

Lemma 2.30. (Dixon and Dabbaghian-Abdoly.) If a ∈ C[G] such that %̃i(a) has rank 1,
then CGeia is a submodule of CGei of dimension di which affords the character χi.

Proof. Letting ei act on the entirety of C[G] from the right delivers the Vi-homomorphic

submodule of (C[G])◦, which by Cor. A.49 is isomorphic to V ⊕dii . For any w = (vaei) ∈
C[G]aei = C[G]eia and any x ∈ C[G], xw = x(vaei) = (xv)aei ∈ C[G]aei, making C[G]eia a
submodule of C[G]ei.

Since ker(%̃) = (1 − ei)C[G], by Thm. A.37, there exists an isomorphism C[G]/(1 − ei)C[G] ∼=
Matdi×di(C), where, specifically, the isomorphism may be given in terms of %̃i as %̃i(c) = %̃i(c)
for c ∈ C[G] and c ∈ C[G]/(1− ei)C[G],

C[G]

C[G]/(1− ei)C[G]

Mat|G|×|G|(C)

Matdi×di(C)
∼
%̃i

%̃i

By the quotient C[G]/(1 − ei)C[G] we mean that all elements in the algebra C[G] that differ
by a term in (1 − ei)C[G] are counted as the same element. For any element b ∈ C[G] we can
always write

b = 1b = (1− ei + ei)b = eib+ (1− ei)b = bei + (1− ei)b,
and so it becomes readily apparent that C[G]/(1−ei)C[G] ∼= C[G]ei, and C[G]ei ∼= %̃i(C[G]ei) =
Matdi×di(C), the last equality following from Cor. A.55.
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It thus being established that there exists an isomorphism between C[G]ei and %̃i(C[G]ei), it
follows by necessity that there must exist an isomorphism between every subalgebra of C[G]ei
and the image of the subalgebra under %̃i. Additionally, we recall that %̃i is a morphism, and
thus, for c, d ∈ C[G] we have %̃i(cd) = %̃i(c)%̃i(d). If a ∈ C[G], we may then write,

C[G]eia ∼= %̃i(C[G]eia) = %̃i(C[G]ei)%̃i(a) = Matd×d(C)%̃i(a).

Further, if a is of rank 1, that means that there must exist invertible matrices C,D such that

%i(a) = CE11D,

where Eij is the matrix with entry 1 at position (i, j) and 0 everywhere else. This then means
that

C[G]eia ∼= Matd×d(C)%̃i(a) = Matd×d(C)CE11D = Matd×d(C)E11D.

The action of E11 on the matrices Matd×d(C) from the left becomes the next focal point for
our attention in proving this lemma. Ei1E11 = Ei1 and EijE11 = 0 for j ≥ 2. Since {Eij |1 ≤
i, j ≤ d} is a basis for Matd×d(C), {Ei1|1 ≤ i ≤ d} is a basis for Matd×d(C)E11. Now consider
the morphism φ : Matd×d(C)E11 → Matd×d(C)E11D, A 7→ AD. The morphism is self-evidently
surjective, and since D is invertible, the kernel is trivial. Thus it is an isomorphism, and
Matd×d(C)E11

∼= Matd×d(C)E11D, and Matd×d(C)E11D has dimension di. Ergo, C[G]eia has
dimension di.

Finally, we need to show that C[G]eia truly yields character χi. From character theory, we
know that two representations yield the same character if and only if they are isomorphic.
Since C[G]eia is isomorphic to a submodule of M⊕dii , we look at submodules of M⊕dii . C[G]eia

is of dimension di, and the only submodules of M⊕dii of dimension di are isomorphic to Mi itself.
Mi has character χi, and so C[G]eia has character χi as well. �

In order for us to make use of this lemma for finding irreducible representations with the
characters we want, we need to find a good general way for finding such suitable rank-1 elements
a. Though Dixon leaves open the question of how to construct rank-1 elements for general groups
and irreducible representations (although such elements must by necessity exist for every group
and irreducible representation), he makes the observation that if one can find a subgroup H of
G such that the restriction of χi to H, χi,H contains a constituent irreducible character θ of H
of degree 1 and multiplicity 1, then a rank-1 element is given by

a :=
∑
h∈H

θ(h−1)h.

Dabbaghian-Abdoly refers to such subgroups H as χi-subgroups. Let us show that a in the
formula above truly is a rank-1 element. First, take the product of a by itself. Since θ is of
degree one, θ(h1h2) = θ(h1)θ(h2) for every h1, h2 ∈ H, and thus

a2 =
∑
h1∈H

∑
h2∈H

θ(h−11 )h1θ(h
−1
2 )h2 =

∑
h1∈H

∑
h2∈H

θ(h−12 h−11 )h1h2 = |H|
∑
h∈H

θ(h−1)h = |H|a.

Consequently, a/|H| is idempotent. Further,

tr(%i(a)) = tr

(
%i

(∑
h∈H

θ(h−1)h

))
=
∑
h∈H

θ(h−1)tr (%i (h)) =
∑
h∈H

θ(h−1)χi(h) = |H|〈θ, χi,H〉 = |H|,

since for any character γ and group element g, we have γ(g−1) = γ(g). This means that
%i(a/|H|) has trace 1. Since the trace of an idempotent matrix equals to the rank of the matrix,
it follows that %i(a/|H|) has rank 1, and so by extension does %i(a) have.
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Multiplication by scalars does not affect the rank of a matrix, so we may multiply it by a
prefactor of (|G|/d), then f := eia where ei is defined as in (2.29) becomes

f =
∑
h∈H

∑
g∈G

θ(h−1)hχi(g
−1)g =

∑
g∈G

∑
h∈H

θ(h−1)χi(g
−1)hg =

∑
g∈G

∑
h∈H

θ(h−1)χi(hg
−1)g,

or, f =
∑

g∈G α(g)g, where

α(g) :=
∑
h∈H

θ(h−1)χi(hg
−1)

By Lem. 2.30, we then have a desired module of C[G] in C[G]f . Now we just need to make a
set of matrices out of it.

To do that we first of all seek to establish a basis for C[G]f . That is easy, the {gi} is a complete
basis of C[G], so among the {gif} we must necessarily be able to find di linearly independent
elements which then form a basis for C[G]f . Find di elements gi, . . . , gd then such that the
{gif} are linearly independent. Then, for every x ∈ G, we can find a representation matrix by
calculating the components ξij when we consider the left action of x on every (gif),

x(gif) =
d∑
j=1

ξij(gjf).

That is ∑
t∈G

α(g−1i t)xt =
d∑
j=1

ξij
∑
t∈G

α(g−1j t)t

∑
t∈G

α(g−1i x−1t)t =
∑
t∈G

d∑
j=1

ξijα(g−1j t)t

⇒ α(g−1i x−1gk)gk =
d∑
j=1

ξijα(g−1j gk)gk, for 1 ≤ k ≤ d

writing A(x)ab = α(x−1a x−1xb), we have

A(x)ik =
d∑
j=1

ξijA(1)jk, for 1 ≤ k ≤ d

Rewriting this as a matrix equation,

A(x) = [ξij ]A(1),

meaning that the mapping x 7→ A(x)A(1)−1 gives us the desired representation it being easy to
check that A(x) is non-singular for every x ∈ G.

Thus armed with the formidable tool of the restricted character algorithm, we may finally find
the full sets of irreducible representations for each of the remaining subgroups BT, BO, and
BD. This was accomplished through the authoring of a Python script that implemented the
algorithm outlined above.

Example 2.31. (Binary tetrahedral group, BT.) In the natural representation, two
generator elements (call them a and b) are given by

%Nat(a) =
1

2

(
1 + i

√
3 0

0 1− i
√

3

)
, %Nat(b) =

1

2
√

3

(√
3− i −i2

√
2

−i2
√

2
√

3 + i

)
.
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The group consists of 24 elements, which come in 7 conjugacy classes, which in terms of a and
b are given as

Cl(e) = {e = a6},
Cl(a) = {a, b, a2b2, b2a2},

Cl(a2) = {a2, b2, a4b, a3ba},
Cl(ab) = {ab, ba, a5, a3b2},
Cl(a3) = {a3},

Cl(a2b) = {a2b, aba, ab2, ba2, b2a, a4ba},
Cl(a4) = {a4, a3b, a2ba, aba2}.

Character theory allows us to conclude that the natural representation is an irreducible repre-
sentation of BT. The trivial representation is always a given, and two more one-dimensional
irreducible representations may be found by algebraic means. As a, b are in the same con-
jugacy class, for any representation they have the same character, and in particular, in any
one-dimensional representation, they must be represented by the same single-entry matrix. As
a6 = e, and the identity is represented by unity in any one-dimensional representation, we
conclude that %one-dim. : a, b 7→ ζm for ζ = ei

π
3 and some m ∈ {1, 2, 3, 4, 5} must define the

representation(s). If %one-dim. 6= %Triv., character theory then informs us that we must have
〈χone-dim., χTriv.〉 = 0. This in conjunction with our knowledge of the form of the conjugacy
classes then allows us to set up the equation,

1

24
(1 + 4ζm + 4ζ2m + 4ζ2m + ζ3m + 6ζ3m + 4ζ4m) = 0,

which we find has two solutions in m = 2, 4, which we call 1A and 1B, and which are defined
by %1A : a 7→ 1

2(−1 + i
√

3) and %1B : a 7→ 1
2(−1 − i

√
3) respectively. Having thus found four

of the seven irreducible representations of the group, we have sufficient information to find the
characters of the remaining three, to draw up the reduced character table (see Tab. 2.32), and
finally to draw the associated McKay quiver (see Fig. 2.33).

As we may deduce from thence, %1A ⊗ %Nat.
∼= %2A and %1B ⊗ %Nat.

∼= %2B, and so the generator
elements are given by

%2A(a) =
1

2

(
−2 0

0 1 + i
√

3

)
, %2A(b) =

1

2
√

3

(
2i

√
6 + i

√
2√

6 + i
√

2 i−
√

3

)
,

and

%2B(a) =
1

2

(
1− i

√
3 0

0 −2

)
, %2B(b) =

1

2
√

3

(
−
√

3− i −
√

6 + i
√

2

−
√

6 + i
√

2 −2i

)
,

in representations 2A and 2B respectively.

Finally, we have the irreducible representation 3A. The element a generates a subgroup of
BT that is isomorphic to the cyclic group of order 6, Z6

∼= 〈a〉 < BT, and when we consider
the restriction of %3A to 〈a〉, we find that the trivial representation of 〈a〉, θTriv., occurs with
multiplicity 1 in the decomposition of %3A|〈a〉,

e a a2 a3 a4 a5

%3A|〈a〉 3 0 0 3 0 0
θTriv. 1 1 1 1 1 1

〈%3A|〈a〉, θTriv.〉 =
1

6
(3 + 0 + 0 + 3 + 0 + 0) = 1.

We may thus use the subgroup 〈a〉 to find a rank-1 element, and, using Dixon’s restricted
character algorithm, find the matrices making up the representation 3A. With

α(g) =
∑
a∈〈a〉

θTriv.(a
−1)χ3A(ag−1) =

5∑
k=0

χ3A(akg−1),
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and choosing a basis of {a, b, ab}, we obtain

A(1) =

 6 −2 −2
−2 6 −2
−2 −2 6

 , A(a) =

 6 −2 −2
−2 −2 6
−2 −2 −2

 , A(b) =

−2 6 −2
−2 −2 −2
−2 −2 6

 ,

and consequently,

%3A(a) =

 1 0 0
0 0 1
−1 −1 −1

 , %3A(b) =

 0 1 0
−1 −1 −1
0 0 1

 .

e a a2 ab a3 a2b a4

Triv. 1 1 1 1 1 1 1

1A 1 1
2(−1 + i

√
3) 1

2(−1− i
√

3) 1
2(−1− i

√
3) 1 1 1

2(−1 + i
√

3)

1B 1 1
2(−1− i

√
3) 1

2(−1 + i
√

3) 1
2(−1 + i

√
3) 1 1 1

2(−1− i
√

3)
Nat. 2 1 −1 1 −2 0 −1

2A 2 1
2(−1 + i

√
3) 1

2(1 + i
√

3) 1
2(−1− i

√
3) −2 0 1

2(1− i
√

3)

2B 2 1
2(−1− i

√
3) 1

2(1− i
√

3) 1
2(−1 + i

√
3) −2 0 1

2(1 + i
√

3)
3D 3 0 0 0 3 −1 0

Table 2.32. The reduced character table of the binary tetrahedral group.

3D

Nat.

Triv.

2A1A 2B 1B

Figure 2.33. The McKay quiver of the binary tetrahedral group.

Example 2.34. (Binary octahedral group, BO.) In the natural representation, we have
generator elements being represented by

%Nat(a) =
1√
2

(
1 + i 0

0 1− i

)
, and %Nat(b) =

1√
2

(
1 −i
−i 1

)
.

The group consists of 48 elements in 8 conjugacy classes,

Cl(e) = {e = a8},
Cl(a) = {a, b, a7, a4b3, a3b3a, ab3a3},

Cl(a2) = {a2, b2, a2b2, b2a2, a6, a4b2},
Cl(ab) = {ab, ba, a3b3, a2b3a, ab3a2, ba3b2, b2a3b, b3a3},
Cl(a3) = {a3, b3, a5, a4b, a3ba, aba3},

Cl(a2b) = {a2b, aba, ab2, ba2, b2a, a3b2, a2b3, ab3a, ba3b, b2a3, b3a2, a5ba},
Cl(a4) = {a4},

Cl(a3b) = {a3b, a2ba, aba2, ab3, ba3, b3a, a5b, a4ba}.
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The trivial representation, %Triv., which maps a, b 7→ 1 is a given, and similarly to the case
above, since a and b belong to the same conjugacy class, another one-dimensional irreducible
representation may be found by solving the equation

1

48
(1 + 6ζm + 6ζ2m + 8ζ2m + 6ζ3m + 12ζ3m + ζ4m + 8ζ4m) = 0,

where ζ = ei
π
4 for m ∈ {1, 2, 3, 4, 5, 6, 7}. The solution occurs when m = 4, and so we have

our second one-dimensional irreducible representation 1B being given by a, b 7→ ζ4 = (−1).
This information is all we need in order to deduce the complete reduced character table of BO,
displayed in Tab. 2.35, and the McKay quiver which may be found therefrom, displayed in Fig.
2.36.

Character theory immediately gives us that %1B⊗%Nat
∼= %2B, and so our second two-dimensional

irreducible representation is given by

%2B(a) =
1√
2

(
−1− i 0

0 −1 + i

)
, and %2B(b) =

1√
2

(
−1 i
i −1

)
.

Next is the irreducible representation 3A. This time the element a generates a subgroup iso-
morphic to the cyclic group of order 8, Z8

∼= 〈a〉 < BO, and when we consider the restriction of
%3A to 〈a〉, we find that the trivial representation θTriv. of 〈a〉 occurs with multiplicity 1 in the
decomposition of %3A|〈a〉, nicely in line with the case of BT,

e a a2 a3 a4 a5 a6 a7

%3A|〈a〉 3 1 −1 1 3 1 −1 1
θTriv. 1 1 1 1 1 1 1 1

〈%3A|〈a〉, θTriv.〉 =
1

8
(3+1−1+1+3+1−1+1) = 1.

Again, we use the subgroup 〈a〉 to find a rank-1 element, and, using Dixon’s restricted character
algorithm, find the matrices making up the representation 3A. With

α(g) =
∑
a∈〈a〉

θTriv.(a
−1)χ3A(ag−1) =

7∑
k=0

χ3A(akg−1),

and choosing a basis of {a, b, ab}, we obtain

A(1) =

8 0 0
0 8 0
0 0 8

 , A(a) =

8 0 0
0 0 8
0 −8 0

 , A(b) =

 0 8 0
−8 0 0
0 0 8

 ,

and consequently,

%3A(a) =

1 0 0
0 0 1
0 −1 0

 , %3A(b) =

 0 1 0
−1 0 0
0 0 1

 .

Character theory further informs us that %1B ⊗ %3A ∼= %3B, and so we may right away give the
representation 3B by the matrices

%3B(a) =

−1 0 0
0 0 −1
0 1 0

 , %3B(b) =

0 −1 0
1 0 0
0 0 −1

 .

For the representation 2C, we are once more in luck, as the trivial representation θTriv. of 〈a〉
occurs with multiplicity 1 in the decomposition of %2C|〈a〉,

e a a2 a3 a4 a5 a6 a7

%3A|〈a〉 2 0 2 0 2 0 2 0
θTriv. 1 1 1 1 1 1 1 1

〈%2C|〈a〉, θTriv.〉 =
1

8
(2+0+2+0+2+0+2+0) = 1.
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With a basis of {a, b}, we find

A(1) =

(
8 −4
−4 8

)
, A(a) =

(
8 −4
−4 −4

)
, A(b) =

(
−4 8
8 −4

)
,

and consequently,

%2C(a) =

(
1 0
−1 −1

)
, %2C(b) =

(
0 1
1 0

)
.

As %Nat ⊗ %2C ∼= %4A, we get the final irreducible representation by

%4A(a) =
1√
2


1 + i 0 0 0

0 1− i 0 0
−1− i 0 −1− i 0

0 −1 + i 0 −1 + i

 , %4A(b) =
1√
2


0 0 1 −i
0 0 −i 1
1 −i 0 0
−i 1 0 0

 .

e a a2 ab a3 a2b a4 a3b
Triv. 1 1 1 1 1 1 1 1
1B 1 −1 1 1 −1 −1 1 1

Nat. 2
√

2 0 1 −
√

2 0 −2 −1

2B 2 −
√

2 0 1
√

2 0 −2 −1
2C 2 0 2 −1 0 0 2 −1
3A 3 1 −1 0 1 −1 3 0
3B 3 −1 −1 0 −1 1 3 0
4A 4 0 0 −1 0 0 −4 1

Table 2.35. The reduced character table of the binary octahedral group.

4A

2C

3ANat.Triv. 3B 2B 1B

Figure 2.36. The McKay quiver of the binary octahedral group.

Example 2.37. (Binary dodecahedral group, BD.) Finally then is the binary dodec-
ahedral group. In the natural representation, we have generator elements being represented
by

%Nat(a) =

(
ζ 0
0 ζ9

)
, %Nat(b) =

1

10

(
5(ζ − ζ4)−

√
5(ζ + ζ4) −2

√
5(ζ + ζ4)

−2
√

5(ζ + ζ4) 5(ζ − ζ4) +
√

5(ζ + ζ4)

)
,

(2.38)

where ζ = ei
π
5 . The group consists of 120 elements, which come in 9 conjugacy classes. This

is all the information we need to deduce their reduced character table (see Tab. 2.39), and the
associated McKay quiver (see Fig. 2.40).

Restricting the natural representation to the subgroup Z4
∼= 〈a3b〉 < BD, we find that %Nat|〈a3b〉 ∼=

θ1⊕ θ3, where θ1, θ3 are the first and third irreducible representations of Z4 (listed as %1 and %3
in Tab. 2.20). Then, using a basis of {a, b}, we can apply Dixon’s restricted character algorithm
on the natural representation itself, to obtain it in a much cleaner form, the end result being
equivalent to an appropriate change of basis:

%Nat(a) =

(
0 i

i 1
2(1 +

√
5)

)
, %Nat(b) =

(
−i i

−1
2(1 +

√
5) 1

2(1 +
√

5) + i

)
.

This actually turns out to be of great use to us, as the Python script written by the author treats
the group from the point of view of the faithful representation that the natural representation
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is. Writing the generator elements in this new form is a far less computationally expensive
approach than that of (2.38). To illustrate, whereas in the latter case, it takes the author’s
laptop 9 minutes and 33 seconds to generate the entire group, in this new form, the same is
accomplished in merely 2 minutes and 32 seconds. Changing from one to the other, then, we
have greatly reduced the time it will take us to complete the example.

We are further fortunate in that restricting the representation 2B to 〈a3b〉, we again obtain a
representation isomorphic to θ1 ⊕ θ3. Thus, again choosing {a, b} for our basis, we find

%2B(a) =

(
0 i

i 1
2(1−

√
5)

)
, %2B(b) =

(
−i i

−1
2(1−

√
5) 1

2(1−
√

5) + i

)
.

The next subgroup of interest is BD2·3 ∼= 〈ab2, a3b〉 < BD. The isomorphism being given by the
mapping ab2 7→ r, a3b 7→ s, we find that the representation θ1B of BD2·3 (listed as %1B in Tab.
2.20) occurs once as a summand in the representation 6A restricted to 〈ab2, a3b〉. Choosing a
basis of {a, b, ab, ba, ab2a, ababa}, we obtain

%6A(a) =
1

5


0 −5i 0 0 0 0
0 0 5 0 0 0

2− i −5i −4− 3i 3− 4i −1− 2i −2 + 6i
−4 + 2i 5i −2 + i −1 + 3i −3− i −1− 2i

0 0 0 −5 0 0
0 0 0 0 −5 0

 ,

%6A(b) =
1

5


0 0 0 5 0 0

−1− 2i −5 −3 + 4i −4 + 3i −2 + i 6 + 2i
0 0 0 0 5 0
0 0 0 0 0 −5
−5i 0 0 0 0 0

0 0 5i 0 0 0

 .

Restriction of the representation 4A to 〈ab2, a3b〉 also features the irreducible representation θ1B
occurring only once as a summand in its decomposition. Picking a basis of {a, b, ab, ba}, we find

%4A(a) =


0 −i 0 0
0 0 1 0
2 1 + 2i −i −2− i
−1 −1− 2i 1 + i 1 + i

 , %4A(b) =


0 0 0 1
−2i 2− i −1 −1 + 2i
−1− 2i 1− 2i i 2i

1− i 2 + i −1− i −1

 .

Restricting the representation 4B to 〈ab2, a3b〉 on the other hand features the trivial represen-
tation of BD2·3 as a lone constituent component. Picking a basis of {a, b, ab, ba}, we find

%4B(a) =


0 1 0 0
0 0 1 0
0 −1 1 1
−1 1 −2 −2

 , %4B(b) =


0 0 0 1
0 −1 1 1
1 −1 1 0
−2 1 −2 −1

 .

Finally, we turn to the subgroup Z10
∼= 〈a〉 < BD. We find that its trivial representation occurs

precisely once in the restrictions of the representations 3A, 3B, and 5A to 〈a〉. With a basis of
{a, b, ab}, then, we find

%3A(a) =
1

2

 2 0 0
0 0 2

−1 +
√

5 −2 −1 +
√

5

 , %3A(b) =
1

2

 0 2 0

1−
√

5 2 1−
√

5

−2 −1 +
√

5 −1 +
√

5

 ,

and

%3B(a) =
1

2

 2 0 0
0 0 2

−1−
√

5 −2 −1−
√

5

 , %3B(b) =
1

2

 0 2 0

1 +
√

5 2 1 +
√

5

−2 −1−
√

5 −1−
√

5

 ,
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and using a basis of {a, b, ab, a2b, a3b}, we find

%5A(a) =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 −1 −1 −1 −1

 , %5A(b) =


0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0

 .

Finally, there is of course the trivial representation, which is (trivially) given by the mapping
%Triv. : a, b 7→ 1.

e a a2 a3 a2b a4 a3b a5 a4b
Triv. 1 1 1 1 1 1 1 1 1

Nat. 2 1
2(1 +

√
5) −1

2(1−
√

5) 1
2(1−

√
5) 1 −1

2(1 +
√

5) 0 −2 −1

3A 3 1
2(1 +

√
5) 1

2(1−
√

5) 1
2(1−

√
5) 0 1

2(1 +
√

5) −1 3 0
4A 4 1 −1 1 −1 −1 0 −4 1
5A 5 0 0 0 −1 0 1 5 −1
6A 6 −1 1 −1 0 1 0 −6 0

2B 2 1
2(1−

√
5) −1

2(1 +
√

5) 1
2(1 +

√
5) 1 −1

2(1−
√

5) 0 −2 −1
4B 4 −1 −1 −1 1 −1 0 4 1

3C 3 1
2(1−

√
5) 1

2(1 +
√

5) 1
2(1 +

√
5) 0 1

2(1−
√

5) −1 3 0

Table 2.39. The reduced character table of the binary octahedral group.

4A

3C

3ANat.Triv. 5A 6A 4B 2B

Figure 2.40. The McKay quiver of the binary dodecahedral group.



CHAPTER 3

A Crash Course in Algebraic Geometry

For being a highly abstract area of mathematics, the basic idea underlying all of algebraic
geometry is actually simple enough. Namely, it is possible to describe geometric shapes and
structures by algebraic equations. As a friendly example, a circle of radius unity can be described
by the set of points which are the solutions of the equation x2 + y2 = 1. In this vein, we may
describe a wide range of shapes, curves, surfaces, volumes, and set of points as being the
simultaneous equations for a system of algebraic equations.

An appealing property of algebraic equations is that for every one of them, we may find a
polynomial function whose roots cover all the solutions of that algebraic equation. For example,

the solutions to y =
√

1−x2
1+x2

can all be found among the roots of the polynomial f(x, y) =

y2x2 + y2 +x2−1. Therefore, rather than discussing points as being the simultaneous solutions
to systems of algebraic equations, we may just as well discuss them as being zero loci of a set of
polynomials. In fact, it is more than just as well. The set of polynomials over a base field forms
a ring, and in particular, the set of polynomials that are zero at a specific set of points form an
ideal, and so we may begin to use tools from ring theory to explore geometric constructs.

This insight then gently opens the gates to classical algebraic geometry, which in its generalized
and abstracted form of modern algebraic geometry allows for the study of far more sophisticated
structures than the ones mentioned heretofore. Lofty ambitions of understanding that, however,
is of course far beyond the scope of this thesis1, and in this introductory chapter on the subject
we shall be satisfied with tracing the outlines of the basic building blocs of classical algebraic
geometry which we will make use of, and endeavour to provide exposition for what purposes
these building blocs serve. The important point that the author wishes for the reader to take
away from these opening remarks is that algebraic geometry is the study of geometric structures
through the lens of polynomials.

In the following, we will rely mainly on [20] and [21]. We will also draw on [22], [23], and [24].

1. The Mathematics of Zero Loci

We begin by codifying the points outlined in the opening remarks in clear terminology, and
start our journey by working in the simplest type of space which we can conceive of for a given
field F, which we will take to be algebraically closed2.

Definition 3.1. (Affine space.) We define the affine space of dimension n over a field F to
simply be the vector space Fn. This is denoted AFn, or more commonly just An,

An := {(a1, . . . , an)|a1, . . . , an ∈ F}.

1Not to mention the author’s own knowledge!
2Meaning that though the results all apply to C, they may not necessarily apply to R.

39
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Definition 3.2. (Polynomial ring.) Given a field F, the polynomial ring of n variables,
F[z1, . . . , zn], is the set of all functions Fn → F that are of polynomial form,

F[z1, . . . , zn] := {
∑
I

aIz
I |aI ∈ F},

where I is a multi-index, I = (i1, . . . , in) and zI = zi11 . . . z
in
n .

Definition 3.3. (Zero locus on an affine space.) Let T be a subset of F[z1, . . . , zn]. Then
the zero locus of T , denoted Z(T ) is defined as

Z(T ) := {(a1, . . . , an) ∈ An|f(a1, . . . , an) = 0, ∀f ∈ T}.

Definition 3.4. (Affine algebraic set.) Let X be a subset of An. If there exist a subset
T ⊂ F[z1, . . . , zn] so that X = Z(T ), then X is called an affine algebraic set.

The intersection of two algebraic sets is itself an algebraic set. Further the union of two algebraic
sets is itself also an algebraic set. This means that we can define a topology on An in terms of
the algebraic sets.

Definition 3.5. (Zariski topology.) Let An be an affine space. The Zariski topology of An
is the topology whose closed sets are the algebraic sets of An.

Definition 3.6. (Affine variety.) Let V be an algebraic subset of An. If V cannot be
expressed as the union of two distinct proper algebraic subsets, then V is called an affine
(algebraic) variety. An open subset of an affine variety is called a quasi-affine variety.

Some writers (c.f. Harris), refer to all algebraic sets as varieties, and refer to the construct in
the definition above specifically as an irreducible variety, seeing it is an irreducible subset of the
Zariski topology.

Being a collection of points at which a set of polynomials vanish, it is apparent that one can
often define the same algebraic set in a large number of ways. For example, letting our base
field be C, the algebraic set A = Z(x) is the same as Z(x2) and again the same as Z(x3). In
fact, given two polynomials f and g which are zero at a point p, f + g must also be zero at p,
and if f is zero at p and h is any other polynomials, fh must also be zero at p. In other words,
not just can there exist a plurality of polynomials which vanish at a given point, or a given set
of points, these points form an ideal:

Definition 3.7. (Ideal of an affine algebraic set.) Let X ⊂ An be an algebraic set.
Then the set of all polynomials in F[z1, . . . , zn] which vanish at every point in X form an ideal
of F[z1, . . . , zn], called the ideal of X, which we will denote by I(X).

Lemma 3.8. X is a variety if and only if I(X) is prime.

Proof. If X = X1 ∪X2, then I(X) = I(X1) ∩ I(X2). If I(X) is prime, from ring theory
we know that it cannot be the intersection of two ideals both properly containing I(X), and so
we must have either I(X) = I(X1) or I(X) = I(X2). This in turn means that either X = X1

or X = X2. That is, X is a variety.

Suppose then that I(X) is not prime. Then, there exists two polynomials f1, f2 /∈ I(X) such
that f1f2 ∈ I(X). Since we are working over a field, if f1(p)f2(p) = 0 at any p, then either
f1(p) = 0 or f2(p) = 0. Consequently, we may write X = (X ∩ Z(f1)) ∪ (X ∩ Z(f2)). Since
Z(f1) 6⊃ X and Z(f2) 6⊃ X either, (X ∩Z(f1)) and (X ∩Z(f2)) are both proper closed subsets
of X, meaning that X is not a variety. �
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From the definition of the ideal of an algebraic set, it follows that given an algebraic set X ⊂
An, we could well describe it as Z(T ), where T is any generating subset of I(X). Returning
to the particular example of the algebraic set A, we could well have written it Z(T ), where
T = {xn|n ∈ Z+}, which is an infinitely large set of polynomials. While such a cumbersome
definition is clearly unnecessary to give a complete description of A, the question does arise:
Are there any algebraic sets which can only be written as Z(T ) for infinitely large T? The
answer is no, and we shall now prove it.

Definition 3.9. Let R be a ring. If every infinitely ascending chain of ideals in R is stationary,
that is, if I1 ⊂ I2 ⊂ I3 ⊂ . . . is a chain of ideals in R, we always eventually reach a point where
Im = Im+1 = Im+2 = . . . , R is said to be Noetherian.

Lemma 3.10. A ring is Noetherian if and only if every ideal in it can be generated by finitely
many elements.

Proof. Let R be a ring in which every ideal can be generated by finitely many elements.
Take an infinite ascending chain of ideals in R, I1 ⊂ I2 ⊂ I3 ⊂ . . . , and consider the union of
all these ideals, I := ∪iIi. Being a union of a chain of ideals, I itself must be an ideal as well,
and so it can be generated by finitely many elements. This means that there must exist Im
such that every generating element is contained within it. This then means that I = Im, and
in turn, Im = Im+1 = Im+2 = . . . . Consequently R must be Noetherian.

Now instead let R be a Noetherian ring, and assume it contains an ideal that cannot be finitely
generated. Then, there must exist an infinite set of distinct elements {ri} such that the ascending
chain of ideals

(r1) ⊂ (r1, r2) ⊂ (r1, r2, r3) ⊂ . . .

is non-stationary. But this would then mean that R is not Noetherian! By contradiction, a
Noetherian ring must then by necessity allow for every ideal in it to be finitely generated. �

Theorem 3.11. (Hilbert’s Basis Theorem.) Let R be a Noetherian ring. Then the ring of
polynomials in one variable over R, R[z], is also a Noetherian ring.

Proof. The proof consists of making use of the knowledge that every ideal in R is finitely
generated to demonstrate that every ideal in R[z] must also be finitely generated. The standard
way of doing this is through proof by contradiction, and we will replicate it here.

Pick an arbitrary ideal I in R[z], and assume it not to be finitely generated. The elements
of this ideal are then polynomials of the form f(z) = anz

n + · · · + a1z + a0. Given a generic
polynomials fi ∈ I, denote its leading term by ai. For the set of polynomials {fi} in R[z] we
have a corresponding set of elements {ai} in R. Since the {fi} form an ideal in R[z], the {ai}
must form an ideal in R, call it J .

In I, we may then pick a set of distinct polynomials fi after the following scheme. For f1, we
pick a polynomials of minimal degree. For f2, pick a polynomial of minimal degree in I\(f1), for
f3 pick a polynomial of minimal degree in I\(f1, f2), and so on, for fi picking any polynomial
of minimal degree in I\(f1, . . . , fi−1).

We then turn our attention back to J . Since R is Noetherian, J is finitely generated, and so in
our course of picking fi’s, we will eventually each an fm such that (a1, . . . , am) = J . We claim
then that {f1, . . . , fm} similarly generates I, and to demonstrate this, we arrive at the proof by
contradiction.
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Pick fm+1 according to the scheme above, and assume that fm+1 /∈ (f1, . . . , fm). Since
(a1, . . . , am) = J , it follows that for the leading coefficient of fm+1 we have

am+1 =
m∑
i=1

riai, for some ri ∈ R.

Consider then the polynomial

g = fm+1 −
m∑
i=1

rifiz
deg(fm+1)−deg(fi).

Since the second term clearly is in (f1, . . . , fm), g cannot be in (f1, . . . , fm), as otherwise fm+1

would have to be in (f1, . . . , fm) as well. However, since both terms in g have the same leading
coefficient, the degree of g is strictly smaller than that of fm+1, meaning that fm+1 is not
minimal with the property of not being in (f1, . . . , fm). We have arrived at a contradiction, and
may thus conclude that I = (f1, . . . , fm). �

Corollary 3.12. If F is a field, then its only ideals are {0} and F itself, which are generated
by 0 and 1 respectively. Consequently, F is Noetherian, and so is F[z1], F[z1, z2], F[z1, z2, z3],
and by extension F[z1, . . . , zn] for any n ∈ Z+.

Closely related to the Noetherian ring is the Noetherian topological space.

Definition 3.13. (Noetherian topological space.) Let T be a topological space. If every
infinitely descending chain of closed subsets of T is stationary, that is, if S1 ⊃ S2 ⊃ S3 ⊃ . . . is a
chain of closed subsets of T , we always eventually reach a point where Sm = Sm+1 = Sm+2 = . . .
, T is said to be a Noetherian topological space.

Lemma 3.14. An is a Noetherian topological space in the Zariski topology.

Proof. By Cor. 3.12, F[z1, . . . , zn] is a Noetherian ring. Given an infinitely descending
chain S1 ⊃ S2 ⊃ S3 ⊃ . . . of An then, I(S1) ⊂ I(S2) ⊂ I(S3) ⊂ . . . is an infinitely ascending
chain of F[z1, . . . , zn] and so there exists m such that I(Sm) = I(Sm+1) = I(Sm+2) = . . . . Since
X = Z(I(X)) for any algebraic set X, Sm = Sm+1 = Sm+2 = . . . , and so An is Noetherian. �

Theorem 3.15. Every algebraic set in An may be expressed uniquely as a finite union of affine
varieties, no one containing another.

Proof. Assume that there exists algebraic sets in An which cannot be expressed as a finite
union of affine varieties. Collect all such then in a set A. Since An is a Noetherian topological
space, there must in A exist minimal elements, algebraic sets which do not contain proper
algebraic subsets. Let X be such a minimal element. X cannot be an affine variety, as then it
would be trivial to write it as a finite union of affine varieties, disqualifying it from membership
in A. This means that there exists proper algebraic subsets X1, X2 of X such that X = X1∪X2.
But this then means that X is not minimal. The only way to avoid a contradiction is to conclude
that all algebraic sets in An may be expressed as finite unions of affine varieties. For an algebraic
set X then, given a set of varieties {Xi} whose union is X, we may always discard all elements
in {Xi} that are proper subsets of other elements in {Xi}, obtaining a finite union of affine
varieties whose union is X, no one containing another.

Finally we prove uniqueness. Let {Y1, . . . , Yn} and {Z1, . . . , Zm} be two such sets whose unions
make up the algebraic set X, none of the Yi containing another and none of the Zj containing
another. Then Y1 ⊂ Z1 ∪ · · · ∪ Zm. Since the intersection of a set of algebraic sets is itself
always an algebraic set, Y1 must be found in precisely one of the Zj , otherwise it would be
possible to express it as a union of proper algebraic subsets, meaning it wouldn’t be a variety.
Thus there exists Zk such that Y1 ⊂ Zk. Relabel the Zj then so that Zk becomes Z1. Since
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Z1 ⊂ Y1 ∪ · · · ∪ Yn, by the same reasoning, there exists Y` such that Y1 ⊂ Z1 ⊂ Y`. But since
none of the Yi contain one another, we must have ` = 1, and then Y1 = Z1. Then simply
remove Y1 from X and consider X\Y1. By repeating this procedure for all Yi ∈ {Y1, . . . , Yn},
uniqueness then follows. �

Given an algebraic set X then, seeing that X = Z(I(X)), and I(X) is finitely generated, we
can always write X = Z(f1, . . . , fm), where {f1, . . . , fm} is the generating set of I(X). This
does certainly seem a neater and more complete way of expressing things. After all, why write
Z(x6, x9, x42) when you can write Z(x)? And this leads us to our next point of inquiry, what
is the most complete way of expressing algebraic sets?

As we’ve noted thus far, given an algebraic set X = Z(T ), then X = Z((T )) also, where
(T ) is the ideal generated by T , self-evidently a subset of I(X). Further, if f ∈ (T ), then
fk ∈ (T ) for k ∈ Z+, for example, since x6 ∈ (x6, x9, x42), so x12 = (x6)2 ∈ (x6, x9, x42) as
well. The reverse, however, is plainly not true, for example, x3 /∈ (x6, x9, x42), even though
x6 = (x3)2 ∈ (x6, x9, x42). However, x3 ∈ (x), and we are led to make the following definition.

Definition 3.16. (Radical of an Ideal.) Given an ideal I of a ring R, the set of all elements
r ∈ R such that rk ∈ I for some k ∈ Z+ themselves form an ideal, known as the radical of I,
denoted

√
I.

With this definition, we may write (x) =
√

(x6, x9, x42). Returning to our specific discussion of
zero loci of polynomials, as we noted that any algebraic set X may be expressed as X = Z(T )
where T is any subset of polynomials in I(X) which vanish at X and nowhere else, we make
the following statement:

Theorem 3.17. (Hilbert’s Nullstellensatz.) Given any algebraic set X = Z(T ), X ⊂ An,
T ⊂ F[z1, . . . , zn], the ideal of functions vanishing on X is the radical of the ideal generated by
the set of polynomials T ,

I(Z(T )) =
√

(T ).

Consequently, there exists a bijective correspondence between radical ideals in F[z1, . . . , zn] and
algebraic subsets of An.

On the face of it, this statement may seem perfectly obvious, but actually proving it is not
a trivial feat. Nevertheless, not just for completeness, but also because the Nullstellensatz
will provide light for us as we explore the foundations of algebraic geometry further down this
chapter, we will furnish a proof of it.

First we prove the Nullstellensatz in a very special case, namely when (T ) is the entirety of
F[z1, . . . , zn]. Since this contains the constant polynomials, which are zero nowhere, Z(T ) = ∅.
Further, the radical of F[z1, . . . , zn] is F[z1, . . . , zn] itself. We are thus looking at proving the
following:

Theorem 3.18. (Weak Nullstellensatz.) The only ideal I ⊂ F[z1, . . . , zn] for which Z(I) =
∅ is I = F[z1, . . . , zn].

Proof. It is known that in a commutative ring with unity, every proper ideal is contained
within a maximal ideal. Seeing that F[z1, . . . , zn] is a commutative ring with unity, if we can show
that every maximal ideal in F[z1, . . . , zn] has a non-empty zero locus, the weak Nullstellensatz
follows. �

This, in turn, will be guaranteed if the following lemma is proven to hold:
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Lemma 3.19. Every maximal ideal m in the ring F[z1, . . . , zn] is a point ideal, that is, it is of
the form (x1 − a1, . . . , xn − an) for some ai ∈ F.

The reason why (x1 − a1, . . . , xn − an) is called a point ideal is because the effect of taking
the quotient F[z1, . . . , zn]/(x1 − a1, . . . , xn − an) is equivalent to evaluating the polynomial at
(a1, . . . , an) ∈ An. Specifically, if ϕ is the quotient map F[z1, . . . , zn] → F[z1, . . . , zn]/(x1 −
a1, . . . , xn − an) and f(z1, . . . , zn) ∈ F[z1, . . . , zn], then ϕ(f(z1, . . . , zn)) = f(a1, . . . , an) + (x1 −
a1, . . . , xn − an), and we may write F[z1, . . . , zn]/m ∼= F[a1, . . . , an].

From ring theory, it is known that an ideal a of a ring R is maximal if and only if R/a is a field,
and so since m is maximal, it follows that F ⊂ F[z1, . . . , zn]/m is a field extension. Since we had
at the beginning established that F was algebraically closed, its only algebraic field extension is
F ⊂ F. This means that Lem. 3.19 in turn will follow from the following:

Lemma 3.20. (Zariski’s Lemma.) If an integral domain over a field F of the form F[ξ1, . . . , ξn],
is itself also a field, then F ⊂ F[ξ1, . . . , ξn] is an algebraic field extension.

There are different ways in which to prove Zariski’s lemma. Harris [20] begins by proving the
Noether normalization lemma, and then shows how Zariski’s lemma follows as a consequence.
One may also prove it within the context of Jacobson rings (see [25]). Zariski himself in his
original paper [26] relied on nothing other than mathematical induction, and in the interest of
elegance, that is the version of the proof we shall replicate here.

Proof. First we prove the base case. If F[ξ1] is a field, then there exist an inverse to every
nonzero element in it. In particular, there exists f(ξ1) ∈ F[ξ1] such that ξ1f(ξ1) = 1. Then
evidently ξ1 is a root of the polynomial xf(x)− 1, and F ⊂ F[ξ1] is an algebraic field extension.

Next, assume it has been proven that if F[ξ1, . . . , ξn−1] is a field, then it is an algebraic extension
of F. Then consider F[ξ1, . . . , ξn−1, ξn]. If it is a field, then every nonzero element in it has an
inverse, and in particular there exists an element (ξ1)

−1 therein. Thus, F(ξ1) is a subfield
of F[ξ1, . . . , ξn]. Since F(ξ1)[ξ2, . . . , ξn] ⊂ F[ξ1, . . . , ξn] and F(ξ1)[ξ2, . . . , ξn] ⊃ F[ξ1, . . . , , ξn], it
follows that F(ξ1)[ξ2, . . . , , ξn] = F[ξ1, . . . , ξn]. Since we had already proven that the lemma held
true for n−1 ξi’s over any field, it follows that F[ξ1, . . . , ξn] must be an algebraic field extension
of F(ξ1). All that remains to show is that the element ξ1 in particular is algebraic over F and
we are done.

First, F[ξ1, . . . , ξn] = F[ξ1][ξ2, . . . , ξn], and it is further easy to see that given any ω ∈ F[ξ1][ξ2, . . . , ξn]
and β ∈ F[ξ1], for sufficiently large ρ, we have ωβρ ∈ F[ξ1][βξ2, . . . , βξn].

Since F(ξ1) ⊂ F(ξ1)[ξ2, . . . , ξn] is an algebraic extension, each ξi, 2 ≤ i ≤ n is the root of some
polynomial gi(z) ∈ F(ξ1)[z]. Let vi be the product of the denominators of all the coefficients in
gi(z), and set fi(z) = vigi(z). Then fi has all its coefficients in F[ξ1], and furthermore, ξi is a
root of fi. Setting mi = deg(fi) then have

fi(ξi) = amiξ
mi
i + ami−1ξ

mi−1
i + · · ·+ a1ξi + a0 = 0,

where all ai ∈ F[ξ1]. Denoting ami , the leading coefficient of fi by bi and rearranging, we have

biξ
mi
i = −ami−1ξ

mi−1
i − · · · − a1ξi − a0. (3.21)
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As before mentioned, given any ω and β, there exists a ρ such that ωβρ ∈ F[ξ1][βξ2, . . . , βξn].
Let then β = b2 . . . bn. This then means that we can express ωβρ as

ωβρ =
∑

j2,...,jn

ωj2,...,jn(βξ2)
j2 . . . (βξn)jn

=
∑

j2,...,jn

ωj2,...,jnβ
j2+···+jnξj22 . . . ξjnn ,

all ωj2,...,jn ∈ F[ξ1]. Viewing this strictly as a sum of power products ξj22 . . . ξjnn , we may sim-
plify it further: Any time a factor of ξmii appears in a term, we may break out a bi from
βj2+···+mi+···+jn , couple it with ξmii and substitute for (3.21). To recapitulate, what this all
means is that given any element ω ∈ F[ξ1, . . . , ξ2], there exists an integer ρ such that ω(b2 . . . bn)ρ

can be expressed as a linear combination of the power products ξj22 . . . ξjnn , 0 ≤ ji ≤ mi − 1, all
coefficients being in F[ξ1].

Next, let ν be the relative degree of the field extension F(ξ1) ⊂ F(ξ1)[ξ2, . . . , ξn], and let ω1 =
1, ω2, . . . , ων be an F(ξ1)-basis of F(ξ1)[ξ2, . . . , ξn]. Then every element g ∈ F(ξ1)[ξ2, . . . , ξn] can
be expressed uniquely as a linear combination of the form

g = a1 + a2ω2 + · · ·+ aνων , ai ∈ F(ξ1).

Further, we may always find h ∈ F[ξ1] such that the first coefficient in the expansion of gh is
in F[ξ1], and by extension, given any collection of elements {g1, . . . , gk}, we may always find
an element h such that the first coefficients of all linear expansions {g1h, . . . , gkh} are in F[ξ1].

This applies to the power products ξj22 . . . ξjnn we just recently discussed as well, of course. Let
us denote the element we choose to accomplish this particular task for the power products by
b1.

Now then, we may consider the expression ωbρ where b = b1b2 . . . bn. It follows from the
definition of b1 that in the expansion ωbρ = a1 +a2ω2 + · · ·+aνων , a1 ∈ F[ξ1]. This now applies
for any element ω ∈ F[ξ1][ξ2, . . . , ξn], so let us pick ω = (ζ)−1 where ζ is an arbitrary element
of F[ξ1]. This then means that ωbρ ∈ F(ξ1), and so in the expansion

ωbρ = a1 + a2ω2 + · · ·+ aνων

since the ωi’s are all linearly independent, ai = 0 for all i ≥ 2. In other words, (ζ)−1bρ = a1, or
ζa1 = bρ, all of ζ, a1, b

ρ ∈ F[ξ1]. Now we may finally prove that ξ1 is algebraic over F.

If ξ1 weren’t algebraic, then it would have to be transcendental, and F[ξ1] ∼= F[z]. F[z] is a unique
factorization domain, being a principal ideal domain, and so b may be factorized into a finite
product of irreducible elements {φi}, b =

∏
i φi. We have just shown that for every ζ ∈ F[ξ1],

there necessarily exists ρ ∈ N such that ζ|bρ. This must then hold true if ζ is irreducible as
well. However, since the set {φi} is finite and there exists an infinite number of inequivalent
irreducible elements in F[z], clearly if F[ξ1] ∼= F[z] we arrive at a contradiction, and we conclude
that ξ1 is algebraic over F. From that, Zariski’s lemma in its entirety follows. �

With Zariski’s lemma proven, as outlined above, the weak Nullstellensatz follows. We now
prove the full Nullstellensatz by showing how it follows from the weak version of it.

Proof. (Rabinowitsch’ Trick.) First, it is clear that
√

(T ) ⊂ I(Z(T )). After all, given

any fk ∈ (T ) and p ∈ Z(T ), fk(p) = 0, and so f(p) = 0 as well since we are working over a field

F, and fields do not allow for the existence of zero-divisors. To prove that I(Z(T )) ⊂
√

(T ),

what we need to prove is that for every f ∈ I(Z(T )), there exists an integer k such that fk ∈ (T ).
Let us write out the generating polynomials of I(Z(T )) as {f1, . . . , fm}.



46 3. A CRASH COURSE IN ALGEBRAIC GEOMETRY

Let us then take an arbitrary f ∈ I(Z(T )). By definition, f(z1, . . . , zn) = 0 for all (z1, . . . , zn) ∈
Z(T ) ⊂ An. Rabinowitsch’ famous trick then consists of “moving up a dimension”, and look
at our system from the point of view of An+1 and F[z1, . . . , zn+1]. We may then consider the
ideal generated by the polynomials {f1, . . . , fm, 1 − zn+1f(z1, . . . , zn)}. At all points at which
{f1, . . . , fm} all vanish, f = 0, and so evidently, the final polynomial must yield the value of
1. In other words, this algebraic set does not have any common zero points, and so the weak
Nullstellensatz applies—the ideal they generate is F[z1, . . . , zn+1] in its entirety. This means
that 1 is contained within (f1, . . . , fm, 1−zn+1f(z1, . . . , zn)), and we may thus find polynomials
g0, g1, . . . , gm ∈ F[z1, . . . , zn+1] such that

1 = g0(z1, . . . , zn+1)(1− zn+1f(z1, . . . , zn)) +
m∑
i=1

gi(z1, . . . , zn+1)fi(z1, . . . , zn).

This equality must hold true for all values of {z1, . . . , zn, zn+1}, so we are at liberty to set
zn+1 = 1/f(z1, . . . , zn). Then we obtain the equation,

1 =
m∑
i=1

gi(z1, . . . , zn, 1/f(z1, . . . , zn))fi(z1, . . . , zn).

gi will then be of the form

gi(z1, . . . , zn, 1/f(z1, . . . , zn)) =
∑

j1,...,jn+1

γj1,...,jn+1z
j1
1 . . . zjnn

f(z1, . . . , zn)jn+1
,

all γj1,...,jn+1 ∈ F. This means that for sufficiently large k, we may write

gi(z1, . . . , zn, 1/f(z1, . . . , zn)) =
hi(z1, . . . , zn)

f(z1, . . . , zn)k
, hi ∈ F[z1, . . . , zn],

for all gi. This means that we end up with the equation

1 =
m∑
i=1

hi(z1, . . . , zn)fi(z1, . . . , zn)

f(z1, . . . , zn)k
,

which, after re-arranging, is

f(z1, . . . , zn)k =
m∑
i=1

hi(z1, . . . , zn)fi(z1, . . . , zn).

In other words, fk ∈ I(Z(T )). The proof is finished. �

Corollary 3.22. If f is an irreducible polynomial, then Z(f) is a variety.

Proof. Since f is irreducible, (f) is prime, and further, (f) =
√

(f). By the Nullstellensatz,
we then have (f) = I(Z(f)). Since I(Z(f)) then is prime, Lem. 3.8, Z(f) is a variety. �

Definition 3.23. (Products of affine varieties.) We may endow An×Am with the struc-
ture of the affine space An+m by the map τ : (x1, . . . , xn)×(y1, . . . , ym) 7→ (x1, . . . , xn, y1, . . . , ym).
If X,Y are algebraic sets, then τ(X × Y ) is an algebraic set in An+m, given by τ(X × Y ) =
Z({fi(x1, . . . xn)}∪{gj(y1, . . . , ym)}), as F[x1, . . . , xn] ⊂ F[x1, . . . , xn, y1, . . . , ym] ⊃ F[y1, . . . , ym].

Having studied affine algebraic sets in some detail, we now turn our eyes on a different type
of algebraic set—projective ones. To do that however, we first need to define the concept of a
projective space.

Definition 3.24. (Projective space.) Given a field F, we create the affine space An+1.
The set of equivalence classes of vectors in An+1\{0} which are related by (z1, . . . , zn+1) ∼
(λz1, . . . , λzn+1), λ ∈ F\{0} forms projective space of dimension n over the field F, which is
denoted FPn, or more commonly just Pn.
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While it would be possible to work in n+ 1 affine coordinates in An+1 to describe Pn, it is more
commonly swifter to work in n + 1 homogeneous coordinates. By [Z0, . . . , Zn] ∈ Pn we would
then refer to the equivalence class which contains all non-zero scalar multiples of the vector
(Z0, . . . , Zn) in An+1.

In general, the values that a polynomial F ∈ F[Z0, . . . , Zn] assume on Pn are not well-defined.
Since [Z0, . . . , Zn] ≡ [λZ0, . . . , λZn], we would have to require F (Z0, . . . , Zn) = F (λZ0, . . . , λZn)
for all λ ∈ F. Unless F happens to be a constant polynomial, this is not the case.

However, if F happens to be homogeneous of some degree d, that is

F (λZ0, . . . , λZn) = λdF (Z0, . . . , Zn),

we can still in a meaningful sense talk about its zero locus, as if F (a0, . . . , an) = 0 at some
point (a0, . . . , an), then F (λa0, . . . , λan) = 0 for all values of λ still. Thereby, we may make the
following definition.

Definition 3.25. (Projective algebraic set.) Let X be a subset of Pn. If there exist a
subset of homogeneous polynomials T ⊂ F[Z0, . . . , Zn] so that X = Z(T ), then X is called an
projective algebraic set.

The reader may be inclined to protest, and argue that this is too narrow a definition. Homoge-
neous polynomials vanishing at a point (a0, . . . , an) are not the only polynomials F such that
if F (a0, . . . , an) = 0, then F (λa0, . . . , λan) = 0 for all λ ∈ F. Any and all sums of homogeneous
polynomials of arbitrary degrees that vanish at (a0, . . . , an) also vanish at (a0, . . . , an), and they
need not be homogeneous. For example, f(x, y) = x− 1

2y+ x2− 1
4y

2 vanishes not just at (1, 2),
but vanish at (λ, 2λ) for any λ ∈ C, and yet f is not homogeneous. The reader need not worry
however, since if F is the sum of a set of homogeneous polynomials Fi of degrees di, then the
zero locus of F [Z0, . . . , Zn] =

∑
i Fi[Z0, . . . , Zn] is equivalent to the common zero locus of all

the homogeneous polynomials Fi, and so it is seen that this definition of a projective set does
indeed encapsulate all polynomials vanishing on (λa0, . . . , λan) for every λ ∈ F if they vanish
at (a0, . . . , an).

In line with our discussion earlier regarding affine algebraic sets, we may define the Zariski
topology on Pn, and introduce the notions of projective varieties and quasi-projective varieties.
We may also define the notion of the homogeneous ideal associated with a projective variety.

Definition 3.26. (Homogeneous ideal of a projective algebraic set.) Let X ⊂ Pn
be an algebraic set. Then the homogeneous ideal generated by all homogeneous polynomials
in F[Z0, . . . , Zn] which vanish at every point in X form an ideal of F[Z0, . . . , Zn], called the
homogeneous ideal of X, which we will denote by I(X).

Do note that despite its name, not all elements in a homogeneous ideal are homogeneous.
For example, the ideal generated by x2 contains the polynomial x2(y − 1) which clearly isn’t
homogeneous. It is possible to derive the analogue of the Nullstellensatz for projective algebraic
sets, though for lack of space, we will not do so here. The reader is encouraged to look up
Andreas Gathmann’s online lecture notes on algebraic geometry on the matter, as he does so
in a very elegant way involving cones.

On the subsets Ui ⊂ Pn defined by all points [Z0, . . . , Zn] at which Zi 6= 0, the ratios Zj/Zi
are well defined for all 0 ≤ j ≤ n. We may therefore construct bijective maps on these subsets
ϕi : Ui → An by [Z0, . . . , Zn] 7→ (Z0/Zi, . . . , Zi−1/Zi, Zi+1/Zi, . . . , Zn). Not just are these maps
bijective, as now follows, they also preserve the Zariski topology, making them homeomorphisms.
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Example 3.27. Let X ⊂ Pn be a projective algebraic set defined by the homogeneous polyno-
mials {Fα}. Then ϕi(X ∩ Ui) will be exactly the zero locus of the polynomials defined by

fα(z1, . . . , zn) = Fα(Z0, . . . Zn)/Zdi

= Fα(Z0/Zi, . . . , 1, . . . , Zn/Zi),

where d is the degree of Fα. Conversely, if Y ⊂ An is an affine algebraic set defined by
the polynomials {fα}, then we find that the points on ϕ−1(Y ) are exactly described by the
homogeneous polynomials defined by

Fα(Z0, . . . , Zn) = Zdi f(Z0/Zi, . . . , Zn/Zi)

= Zdi
∑

aj1,...,jn

(
Z0

Zi

)j1
. . .

(
Zn
Zi

)jn
=
∑

aj1,...,jnZ
d−

∑
j`

i Zj10 . . . Zjnn .

Consequently, ϕi maps projective algebraic sets to affine algebraic sets and vice versa for ϕ−1i .
To be as specific as possible, since the Ui provides a covering for Pn, a projective space may be
regarded as a union of affine spaces, and a subset X ⊂ Pn is a projective algebraic set if and
only if ϕi(X ∩ Ui) are affine algebraic sets for all i.

Still, one key ingredient is missing before we may access all our above results for affine algebraic
sets when dealing with projective varieties, by regarding simply them through the lens of the
maps ϕi. We need to establish that the bijection ϕ truly gives an isomorphism of algebraic sets,
and defining what that is will be the topic of our next section.

Definition 3.28. (Segre embedding.) As we noted earlier in Def. 3.23, it is easy to endow
An × Am with the structure of an affine variety through a mapping An × Am → An+m. We
cannot do the same thing for projective space and projective varieties though, as Pn × Pm and
Pn+m are not homeomorphic as spaces. Nonetheless, it is still possible to give the space Pn×Pm
the structure of a projective variety through the so-called Segre embedding, σ : Pn × Pm →
P(n+1)(m+1)−1, given by

[X0, . . . , Xn]× [Y0, . . . , Ym] 7→ [X0Y0, . . . , XiYj , . . . , XnYm].

Do note that the image of σ is not the entirety of P(n+1)(m+1)−1, but merely a subset of it.
Nonetheless, this image is indeed a projective variety. If we denote the values assumed along
the vectors Xi by ai and denote the values assumed along the vectors Yi by bi, then since we
must have aibjakb` = aib`akbj , it follows that the image of Pn × Pm may be given as the zero
locus of the polynomials Zi,jZk,` = Zi,`Zj,k. With this, along with the fact that An may always
be embedded in Pn, we may always discuss An × Pm and Pn × Pm as varieties.

Ex. 3.27 taken together with Thm. 3.15 determines that all algebraic sets may be expressed
as finite unions of varieties. With this in mind, we can henceforth focus our attention entirely
on varieties without having to consider the more general notion of algebraic sets, secure in the
knowledge that all definitions we make regarding the former can always be extended to cover
the latter.

2. Morphisms of Varieties

So far we have discussed in much detail the algebra of varieties, but we have yet to actually
have touched on their geometry. We need to develop a notion for when two varieties “look like
one another” in a rigorous sense, that is, we need to establish what it means for two varieties to
be isomorphic. To do that, we need to establish what a morphism from one variety to another
in the first place is, and that is what this section is intended to cover.
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It is often the case in mathematics that when we study a class of objects that we wish to
develop a notion of a structure-preserving map, or a morphism, between objects in that class.
If we know how to construct such a map, then, upon having studied the properties of one
object, we may apply our map and deduce properties of the other object. Hence, for example,
we have our notions of group morphisms in group theory (which ensures that the structure
of group multiplication is preserved) and smooth manifold morphisms in differential geometry
(which ensures that smooth curves on one manifold are mapped to smooth curves on another
manifold). Algebraic geometry is no different.

The reader might initially be a bit confused by the prompt that we have to develop a definition
for morphisms between varieties. A variety is just a collection of points, they might say, they
have no structure, any mapping from a collection of points to another another collection of
points should be equally valid as an example of a morphism.

Not quite so. We recall our original definition. A variety is not just a collection of points, but
a collection of points which may be expressed as the zero locus of a set of polynomials. The
properties of a variety will be described in terms of polynomials that live on this variety, and so
a morphism between two varieties must be defined in such a way as to reflect this polynomial
structure. Let us restrict ourselves to the affine case for now, and begin by making the following
definition.

Definition 3.29. (Coordinate ring of a variety.) Let X ⊂ An be an affine variety. We
define the coordinate ring of X, denoted F[X], to be the polynomial ring F[z1, . . . , zn] restricted
to the coordinates of X,

F[X] = F[z1, . . . , zn]
∣∣
X
.

If two polynomials f, g ∈ F[z1, . . . , zn] are the same everywhere in X, then they may be regarded
as being the same element in F[X].

It makes sense then, that we begin our line of inquiry in attempting to define a morphism
between varieties by looking at morphisms between their coordinate rings. If we briefly re-
turn to the entirety of F[x1, . . . , xn] and F[y1, . . . , ym], we have that a morphism between them
maps every element of one to the other, and particular, this applies to the generating ele-
ments {xi}, so the morphism is completely determined by the maps xi 7→ fi(y1, . . . , ym), where
fi ∈ F[y1, . . . , ym]. This then, in turn, induces a unique map Am → An by (x1, . . . , xm) 7→
(f1(y1, . . . , ym), . . . , fn(y1, . . . , ym)), which in turn of course uniquely induces back to the orig-
inal morphism F[x1, . . . , xn] → F[y1, . . . , ym]. In line with established nomenclature, let us
denote the map Am → An by φ and the map F[x1, . . . , xn]→ F[y1, . . . , ym] by φ#.

If we then restrict φ so that the domain is only Y ⊂ Am, and the codomain is only X ⊂ An by
letting the {fi} only be elements of F[X], we obtain a corresponding morphism F[X] → F[Y ].
We denote the former by ϕ and the latter by ϕ#. We find that the morphism Y → X is in fact a
continuous map in the Zariski topology—in other words, a topological morphism—from Y to X.
If V ⊂ X is an algebraic set, then it is the zero locus of a set of polynomials {gi(x1, . . . , xn)} in
F[X], and so ϕ−1(V ) is the intersection of the zero locus of polynomials {ϕ#(gi(x1, . . . , xn)) =
gi ◦ϕ(y1, . . . , ym) = gi(f1(y1, . . . , ym), . . . , fn(y1, . . . , ym))} ∈ F[y1, . . . , ym] with Y itself, making
it a closed subset of Y , i.e. the zero locus of some polynomials {hi(y1, . . . , ym)} ∈ F[Y ].

While it does not escape us that such a definition may be seen as “backwards” as Y → X corre-
sponds to F[X]→ F[Y ], polynomial maps Am → An restricted to Y and X clearly encapsulate
the structure preservation that we would like to see in a morphism between algebraic varieties
Y → X. In particular, we would have that X ∼= Y if and only if F[X] ∼= F[Y ].



50 3. A CRASH COURSE IN ALGEBRAIC GEOMETRY

One key ingredient is still missing, however, as it is after all the points in the variety that we
ultimately are interested in, and polynomial maps are defined globally, for all points in the
source variety. We need to devise a local version of this definition, and so, we bring forth the
heavy machinery.

Lemma 3.30. (Coordinate ring of an affine variety, Redux.) Let X ⊂ An be an affine
variety. Then the quotient ring A(X) defined by

A(X) := F[z1, . . . , zn]/I(X),

is isomorphic to the coordinate find F[X].

Proof. We construct the morphism ψ : A(X)→ F[X] by f + I(X) 7→ f |X . If f + I(X) ≡
g+ I(X) in A(X), then they may only differ by an element of I(X), and as such, are the same
everywhere on X, meaning they may be regarded as the same element in I(X). Furthermore,
if f |X ≡ g|X , then they may only differ by a polynomial that vanishes everywhere on X, that
is, an element in I(X), and as such correspond to the same element in A(X). This makes the
mapping well-defined. Further, since ϕ(f + g) = ϕ(f) +ϕ(g) and ϕ(fg) = ϕ(f)ϕ(g) it is indeed
a morphism. It is clearly both surjective and injective, that is, it is an isomorphism. �

This isomorphism is so useful, that many authors tend to define A(X) itself to be the coor-
dinate ring. This is regrettable, since then the etymology of the term coordinate ring is lost.
Nonetheless, in keeping with changing winds of mathematical terminology, henceforth, when
referring to the coordinate ring of X, we will be referring to A(X) rather than F[X], and as
such, we will be looking at morphisms A(Y ) → A(X) rather than F[Y ] → F[X], as they are,
indeed, equivalent.

Before we move on, as a final note, since we are only concerned with X being a variety, the
ideal I(X) is prime, and then, by Lem. 3.8, A(X) is an integral domain.

Definition 3.31. (Localization.) Let R be a commutative ring with unity and S ⊂ R a
multiplicatively closed subset of R, and define an equivalence relation ∼ on R × S by letting
(r, s) ∼ (r′, s′) if there exists u ∈ S such that u(rs′ − r′s) = 0. Denoting the equivalence class
of the pair (r, s) be r

s , we define the localization of R to the subset S, S−1R, to be the ring of
equivalence classes

S−1R :=
{r
s

∣∣∣r ∈ R, s ∈ S} ,
where addition and multiplication is defined as for fractions. Note that if R contains no zero
divisors, it can easily always be embedded into its localization S−1R by the map r 7→ r

1 , and
we may just as well say that R is a subring of its localization.

An immediate question might be why this is called the localization of R at S and not the
“fractionalization” of R at S. We now answer that question.

Example 3.32. (Total ring of fractions.) Let R be a commutative ring with unity and
let S be the set of all elements of R which are not zero divisors. Then the total ring of fractions
of R is defined to be the localization of R at S. This may be viewed as the generalization of
the field of fractions which are defined for integral domains.

Example 3.33. (Localization at a prime ideal.) Let R be a commutative ring with unity,
and let p be a prime ideal thereof. Then R\p is multiplicatively closed, and p−1R is a localization
denoted Rp.

Example 3.34. (Localization at a maximal ideal.) Let R be a domain. Then, all maximal
ideals of R are prime. We have the relation

R =
⋂
m

Rm,
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where m runs over all maximal ideals in R. To see that this is the case, note that since R ⊂ Rm

for all m, R ⊆
⋂

mRm trivially. Next, conceive of an element z ∈ Rm for all m such that z /∈ R.
Then we may construct the ideal n := {a ∈ R|az ∈ R}. It is easy to verify that this is in fact an
ideal, and furthermore, since z /∈ R, 1 /∈ n, meaning that it must be a proper ideal of R. This
proper ideal must be contained within some maximal ideal q in R. Since we have established
that z ∈ Rm for all m, it follows that z ∈ Rq, and so is a fraction z = x

y for some x ∈ R, y ∈ R\q.

Then yz ∈ R. But if yz ∈ R, then y ∈ n, and since n ⊆ q, y ∈ q. We thus have a contradiction
and (3.34).

Next, let X ⊂ An be an affine or quasi-affine variety. We now have four further definitions that
at first glance appear to be totally unrelated to anything we have done so far.

Definition 3.35. (Regularity on a (quasi-)affine variety.) A function f : X → F is
said to be regular at the point p is there exists an open neighbourhood U , p ∈ U ⊆ X and
polynomials g, h ∈ F[z1, . . . , zn], h being nowhere zero on U , such that f = g/h on U .

Definition 3.36. (Ring of regular functions.) The ring of regular functions on X is the
set of all functions that are regular at every point in X. We denote it by O(X).

Definition 3.37. (Local ring of a point.) Let p be a point on X. We define the local ring
of p on X to be the ring of equivalence classes 〈U, f〉, where U is an open subset of X containing
p, and f is a regular function on U , and two pairs 〈U, f〉, 〈V, g〉 are defined to be equivalent if
f = g on U ∩ V . We denote it by Op.

Definition 3.38. (Rational functions.) A rational function on X is an equivalence class
of pairs 〈U, f〉 where U is a nonempty open subset of X and f is a regular function on U , and
two pairs 〈U, f〉 and 〈V, g〉 are equivalent if f = g on U ∩ V .

From simple topological considerations, on an irreducible set, two open subsets cannot have
an empty intersection. It they did, then the union of their complements would be the original
set, which would contradict its irreducibility. As such, given any representative pairs 〈U, f〉
and 〈V, g〉 of rational functions on X, there is always an intersection U ∩ V 6= ∅, and on this
intersection we may define addition and multiplication as usual, giving the set of all rational
functions on X, K(X), the structure of a ring. Furthermore, any nonzero pair 〈U, f〉 has an
inverse in 〈U\Z(f), 1/f〉, meaning K(X) has the structure of a field, called the function field
of X.

Remark 3.39. O(X) ⊆ Op ⊆ K(X) for every p ∈ X, and in particular, O(X) =
⋂
p∈X Op.

Remark 3.40. If two globally regular functions f1, f2 are equal on a non-empty open subset U ⊂
X, then by definition, they correspond to the same element of K(X), and so must correspond
to the same element in O(X). That is, they are equal everywhere in X.

We define the injective map α : A(X)→ O(X) by f + I(X) 7→ f
1 , and finally we tie everything

together in a few short, but extremely powerful, theorems.

Theorem 3.41. There exists a one-to-one correspondence between points of X and maximal
ideals of A(X).

Proof. By Lem. 3.19, it follows that there must be a one-to-one-correspondence between
points in X and maximal ideals in F[z1, . . . , zn] containing I(X). Then by the correspon-
dence theorem for rings, there exists a one-to-one correspondence between maximal ideals in
F[z1, . . . , zn] containing I(X) and maximal ideals in A(X) = F[z1, . . . , zn]/I(X). The reader
need not be concerned about if I(X) itself is one of those maximal ideals of F[z1, . . . , zn]. True,
then it corresponds to the zero ideal in A(X), but since I(X) is maximal, we also have that
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A(X) is a field, and in a field, the zero ideal is maximal. Putting one-to-one to one-to-one
together, the theorem follows. Specifically, we have mp = {f ∈ A(X)|f(p) = 0}. �

Theorem 3.42. For each p ∈ X, Op ∼= A(X)mp .

Proof. The aforementioned injective ring morphism α induces a ring morphism α′ : A(X)mp →
Op, by f+I(X)

g+I(X) 7→
f
g . It is seen that since g + I(X) /∈ mp,

f
g is always regular at p. This map

inherits its injectivity from α, and as can plainly be seen, is surjective. �

Theorem 3.43. O(X) ∼= A(X).

Proof. Using α′, embed A(X) and A(X)mp for every p in K(X). Then we have the tower,

A(X) ⊆ O(X) ⊆
⋂
p∈X
Op =

⋂
mp

A(X)mp = A(X),

where the final equality follows from Example 3.34. We conclude O(X) ∼= A(X). �

Corollary 3.44. If f
g ∈ O(X), then there exists h+ I(X) ∈ A(X) such that h = f

g .

This isomorphism between the ring of regular functions O(X) and the coordinate ring A(X)
is truly remarkable. For one thing, the name localization is justified. Just as A(X) gives a
description of the global regular functions on X, so A(X)mp gives a description of the local
regular functions at p. But more importantly, it allows us to finally give a definition for what
a morphism between varieties should look like, and allows us to do so locally.

Definition 3.45. We define a continuous map (in the Zariski topology) ψ : X → Y between
varieties to be a morphism, if for every open set U ⊂ Y , and every regular function f : U → F,
f ◦ ψ : ψ−1(U)→ F is a regular function.

Definition 3.46. Let ϕ : X → Y be a morphism of varieties. If ϕ admits an inverse morphism
ϕ−1 : Y → X such that ϕ ◦ ϕ−1 = 1X and ϕ−1 ◦ ϕ = 1Y , then ϕ is said to be an isomorphism
and X and Y are said to be isomorphic.

Lemma 3.47. Let X be any variety, and let Y be an affine variety. Then ψ : X → Y is a
morphism if and only if yi ◦ ψ is a regular function for each and every i.

Proof. Since the yi are trivially regular functions on Y , it follows by definition that the
yi ◦ ψ are regular functions on X. Proving the converse, since all regular functions on Y are
quotients of polynomial functions of the yi, it follows that if a function f is regular on Y , then
f ◦ ψ is regular on X. In particular, if f is a polynomial on Y , then f ◦ ψ is a regular function
on X which we may denote g/h. Since any closed subset V of Y is the zero locus of a set of
polynomials fi, it follows that on X, ψ−1(V ) the zero locus of the regular functions gi/hi. But
since hi are nowhere zero on X, it follows that it is the zero locus of the polynomials gi, meaning
that ψ−1(V ) is itself a closed subset of X. Thus ψ is continuous. Thus ψ is a morphism. �

We now show that the definition given in 3.45 really does encapsulate what we want it to
encapsulate, namely that for affine varieties, there is a bijection between variety morphisms
X → Y and ring morphisms A(Y )→ A(X).

Proposition 3.48. Let X and Y be affine varieties. Then there is a natural bijection

Hom(X,Y ) →̃ Hom(A(Y ), A(X)).
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Proof. For affine varieties X,Y we have A(X) ∼= O(X) and A(Y ) ∼= O(Y ). In proving
the bijection left-to-right, it therefore suffices to show that every morphism X → Y induces a
unique morphism O(Y )→ O(X). This follows from that a morphism ϕ : X → Y carries locally
regular functions on each open subset V ⊂ Y to locally regular functions on each open subset
ϕ−1(V ), and so induces a morphism ϕ# : O(Y )→ O(X) of the globally regular functions.

A concern might be that there is no apparent guarantee that a global regular function f on Y
is carried back to the same global regular function for every open subset U ⊂ Y . However, a
closer look reveals that the mathematics has already provided that guarantee for us. Let f be
a regular function on Y and let U and V be open subsets on Y . Let g1 be the pullback of f
to X on U and let g2 be the pullback of f to X on V . Since Y is a variety, U and V have a
non-empty intersection, and so on the open subset ϕ−1(U ∩V ), we should at least have g1 = g2.
Since ϕ−1(U) and ϕ−1(V ) are open subsets of X, they have nonempty intersection, and since
ϕ−1(U)∩ϕ−1(V ) = ϕ−1(U ∩V ), it follows that ϕ−1(U ∩V ) is non-empty. By Remark 3.40, we
then have that g1 = g2 everywhere on X, ensuring that ϕ# is well-defined.

This mapping is furthermore injective, since if ψ# = φ#, then yi ◦ ψ = yi ◦ φ for all i, and so
since the morphisms ψ and φ are defined by the regular functions yi ◦ ψ and yi ◦ φ, it follows
that ψ = φ.

For right-to-left, again make use of A(X) ∼= O(X), and consider a generic morphism h : A(Y )→
O(X). Let yi be the image of yi under the quotient morphism F[y1, . . . , yn]→ A(Y ), and let us
denote ξi = h(yi). These ξ are then globally regular functions on X, and so, by Lem. 3.47, the
map ψ : X → Am given by p 7→ (ξ1(p), . . . , ξm(p)) constitutes a morphism. All that remains is
proving that the image truly is contained in Y . This is done by noting that Y = Z(I(Y )), and
so if we can prove that if f is any polynomial in I(Y ) and p is any point in X, that f(ψ(p)) = 0,
then we are done.

Here then comes the sneaky part. If β is a polynomial function, for any ring morphism θ we
have β(θ(r1), . . . , θ(r`)) = θ(β(r1, . . . , r`)). Therefore,

f(ψ(p)) = f(ξ1(p), . . . , ξm(p))

= f(h(y1)(p), . . . , h(ym)(p)) = (f(h(y1), . . . , h(ym))(p)

= (h(f(y1, . . . , ym)))(p),

but, as established, f ∈ I(Y ), meaning that h(f(y1, . . . , ym)) = h(0) = 0, so trivially, f(ψ(p)) =
0. The proof is finished. �

Example 3.49. Consider the affine varieties X = Z(z−x2− y2) and Z(z−2(x2 + y2− 1
2)2− 1

2)
(see Fig. 3.50). One can then construct a morphism ϕ : X → Y by the tuple of regular functions
(x, y, z) 7→ (x, y, 2(x2 + y2− 1

2)2− 1
2). This is an isomorphism, and an inverse function ϕ−1 can

be given by (x, y, z) 7→ (x, y, x2 + y2).

The reader will have noted that in Def. 3.45, we did not specify that the variety X had to be
affine. This is because the definition had already been extended to cover all sorts of varieties,
be they quasi-affine, projective, or quasi-projective. We did however not give a definition of the
regularity of a function in projective space, something which we will now remedy.

Definition 3.51. (Regularity on a quasi-projective variety.) Let X ⊂ Pn be a quasi-
projective variety. A function f : X → F is said to be regular at the point p is there exists
an open neighbourhood U , p ∈ U ⊆ X and homogeneous polynomials of the same degree
g, h ∈ F[Z0, . . . , Zn], h being nowhere zero on U , such that f = g/h on U . The requirement
that g, h are of the same degree is necessary for f to be well-defined on X.
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ϕ

Z(z − x2 − y2)
⊂ C3

Z(z − 2(x2 + y2 − 1
2)2 − 1

2) ⊂ C3

ϕ−1

Figure 3.50. The real parts of the isomorphic varieties Z(z − x2 − y2) and
Z(z − 2(x2 + y2 − 1

2)2 − 1
2).

Regular rings of a projective variety and local rings are defined in a similar fashion. By this def-
inition, the bijection in Example 3.27 is easily verified to indeed be an isomorphism. Continuing
on, we may also define the homogeneous coordinate ring of a projective variety.

Definition 3.52. Let X ⊂ Pn be a projective variety, and let I(X) be its corresponding
homogeneous ideal. We define

S(X) := F[Z0, . . . , Zn]/I(X)

to be the homogeneous coordinate ring of X. The homogeneous elements of it correspond to
the set of homogeneous polynomials in F[Z0, . . . , Zn] restricted to X.

The reader may be wondering if in lieu of Prop. 3.48, the exists a similar correspondence
between morphisms between projective varieties X → Y and homogeneous coordinate rings
S(Y )→ S(X). It turns out there isn’t. Even more worryingly, it turns out that two isomorphic
projective varieties need not necessarily have isomorphic homogeneous coordinate rings. Still,
all is not lost. The correspondence still exists locally after a fashion in that an analogue of
Thm. 3.42 can still be constructed for the local ring. If we by S(X)(mp) denote the ring formed
by elements of S(X)mp that are of degree 0 (that is, the denominator and numerator are of the
same degree), then we do in fact find that Op ∼= S(X)(mp). I will not include a proof of it here,
but for reference, one such may be found in [21] (Theorem I.3.4 (b)).

3. Blowing Stuff Up: A Map of the Problematique

As the reader no doubt will have deduced by now from simply looking at the pictures, it is
entirely possible for a variety to also be a manifold. Again, just consider the complex circle
which may be given as the zero locus of the polynomial x2 + y2 = 1. As the reader no doubt
also will have realized, this is not always necessarily the case, as the curves, or surfaces, or
hypersurfaces that a variety may define need not be smooth, that is, they need not have well-
defined tangent spaces. Just consider the variety defined by the polynomial x2 + y2 + 1

5z
3 (see

Fig. 3.53), where the tangent space is ill-defined at (0, 0, 0). We encapsulate this distinction in
the following definition.

Definition 3.54. (Nonsingularity.) Let Y = Z(f1, . . . , f`) ⊆ An be an affine variety. We
say that Y is nonsingular at a point p ∈ Y if the Jacobian matrix [(∂fi/∂xj)(p)] 1≤i≤`

1≤j≤n
is of rank

n− r, where r is the dimension of Y . We say that Y is singular at a point if at that point Y is
nonnonsingular. If Y is nonsingular at every point p ∈ Y , we say that Y is a nonsingular affine
variety.
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(0, 0, 0)

Figure 3.53. The zero locus of the polynomial x2+y2+ 1
5z

3 = 0 defines a cusp,
which has an ill-defined tangent space at the point (x, y, z) = (0, 0, 0).

To borrow Hartshorne’s expression [21], “over the complex numbers, [...] nonsingular varieties
are [then] those which in the ‘usual’ topology are complex manifolds”. Without going into
specifics, suffice to say that working with varieties with singularities can be very problematic
indeed, and so we do not want to do it. Of course, this does not mean that the laws of
mathematics will acquiesce to our requests and make every variety nonsingular, so if we want
the singularities to go away, we have to find a way around the laws of mathematics.

Fair enough, but how does one actually do it? Well, these varieties, they will be embedded in
some affine or projective space, so if we could find some other variety in some other space, and
a morphism such that the image of the morphism is the entirety of the first space, then, since a
morphism is a continuous map, we could simply do our work in the preimage of the first variety
which will also be an algebraic set.

Fair enough again, but how then would one always be able to systematically construct such a
space, such a variety, and such a morphism?

Let us restrict ourselves once again to affine varieties, and consider an illustrative example, the
Maclaurin trisectrix, x2(a− y)− y2(y + 3a) = 0, which has a singularity at the origin (see Fig.
3.55). The most fundamental clue we can take from it is that as the curve intersects itself, it
does so from different directions. It would therefore make sense to look at a space which is
formed by the points in A2 but with the origin replaced by the directions running through the
origin. Since the lines through the origin are the elements of P1, this would then have to be the
space A2 × P1. However, the specific variety we are interested in constructing will not be the
entirety of A2 × P1, as after all, it only is the origin that is problematic. In line with this, we
make the following definition.

Definition 3.56. (Blow-up of the affine space at the origin.) We define the blowing
up of An at the origin to be the closed subset X of An×Pn−1 defined by the equations {xiyj =
xjyi|1 ≤ i, j ≤ n}, where the xi are the affine coordinates of An and the yi are the homogeneous
coordinates of Pn+1.

Being a closed subset, X is an algebraic set, and what is more, it can in fact be shown to be a
full-fledged variety. Furthermore, it invites a natural morphism to An, call it ϕ, by

(a1, . . . , an)× [b1, . . . , bn] 7→ (a1, . . . , an).

We now claim that the blow-up is exactly the variety that we have been looking for.
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(0, 0)

x2(a− y)− y2(y + 3a)

Figure 3.55. The Maclaurin trisectrix in blue which has a singularity at the
origin. The lines in orange gives the tangent of the curve as it enters and leaves
the origin both times.

Proposition 3.57. There exists a one-to-one correspondence between points in An\{0} and
points in ϕ−1(An\{0}).

Proof. At first glance, this injectivity seems unlikely, seeing the morphism ϕ is defined
entirely in terms of the ai, and that the bi may assume whatever values they like and still lead
to the same point in An. This would be true if we were working in the entirety of An × Pn−1,
but remember, we are restricted to X, and so aibj = ajbi. As such, since we are not looking at
the preimage of the origin, there exist at least one ai 6= 0, and so we are looking at a morphism

(a1, . . . , an)×
[
bi
ai
a1,

bi
ai
a2, . . . ,

bi
ai
an

]
7→ (a1, . . . , an).

and since [a1, . . . , an] ∼ [λa1, . . . , λan] for homogeneous coordinates, we see that ϕ when re-
stricted to ϕ−1(An\{0}) truly is injective. �

Definition 3.58. (Exceptional divisor.) Given a blow-up of the affine space X ⊂ An×Pn−1
with associated morphism ϕ, we call the preimage of the origin in An the exceptional divisor.

Proposition 3.59. There is a one-to-one correspondence between points in the exceptional
divisor and lines running through the origin.

Proof. To see this, we need to consider what elements in X that are mapped to the origin.
That is plainly all elements (0, . . . , 0) × [b1, . . . , bn] for which 0 · bi = 0 · bj for all bi, bj . This
is true for all values of bi, bj , and so we have that the points of the exceptional divisor are
{0} × Pn−1 ∼= Pn−1. But as we will recall from the definition, Pn−1 is the set of lines running
through the origin in An, and so the proposition holds. �

If we let L be any line in An running through the origin, we may then create the punctated
line L′ = L\{0}, and consider its preimage in X. The closure of ϕ−1(L′) will then be found
to be precisely the point in the exceptional divisor corresponding to the line L through the
origin, and so since every point in An lies along a line running through the origin, we may write
X = ϕ−1(An\{0}) where the overline denotes topological closure. We therefore may further
make the following definition.
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Definition 3.60. (Blow-up of an affine variety in a point.) Let Y ⊆ An be a variety,
and let ϕ be the morphism associated with the blowing-up of An at the origin. We define the
blowing-up of Y are the origin to be Ỹ = ϕ−1(Y \{0}). Its associated morphism is ϕ restricted

to Ỹ , often also denoted ϕ.

This is of course not a definition so much as it is a corollary. The use of a tilde to denote that it
is a blow-up is conventional. To consolidate our understanding, let us consider three illustrative
(and illustrated) examples.

A2

CC̃

X

X ⊂ A2 × P1 ϕ

E

Figure 3.61. The blow-up of the affine plane A2 and the variety C defined
by the Maclaurin trisectrix, at the origin. The blow-ups are denoted X and
C̃ respectively. The exceptional divisor of the former is the red line running
through X, which we denote E. The exceptional divisor of the latter consists of
the two points where C̃ intersects E.

Example 3.62. (The Maclaurin Trisectrix.) We return to the aforementioned Maclaurin
trisectrix, which is given by the equation x2(a− y)− y2(y+ 3a) = 0, which we denote by C. As

we move up to X to study C̃ that basic equation remains intact, but we have also now added
two new homogeneous coordinates u, t which relate to the affine x, y by xu = yt. Picking a
chart where t 6= 0, we may use the fact that u and t are homogeneous to set u = 1, and treat t
as an affine coordinate. We are then looking at the system of equations describing C̃,

x2(a− y)− y2(y + 3a) = 0,

xt = y,

The second equation in particular is telling of what we are doing here—we are making the slope
through the origin itself into a variable. Plugging the second equation into the first, we obtain
t2y2(a−y)−y2(y+3a) = 0 which may be simplified into y2(y(t2 +1)−a(t2−3)) = 0, which has
two irreducible factors, which give us two possible sets of solutions. Either x, y = 0 and t may
assume any values—this corresponds to all of the exceptional divisor E—or y(t2+1) = a(t2+3),

y = xt—which corresponds to what we are looking for, C̃. The two curves intersect at two points,
at t =

√
3 and t = −

√
3 respectively. these two points, (0, 0)× [

√
3, 1] and (0, 0)× [−

√
3, 1] then

form the exceptional divisor of the blow-up of C.

In Fig. 3.61 we illustrate this blow-up of the Maclaurin trisectrix and the affine plane. Owing
to the problem of graphing projective space, the figure is more conceptual than it is exact.

Example 3.64. (The Double Cone.) The double cone is given by the equation Y = Z(x2 +
y2 − z2) ⊂ A3. Calling the homogeneous coordinates a, b, c, we then look at the system of
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ϕ

E

Ỹ Y

Figure 3.63. The blow-up Ỹ of the double cone Y defined by x2 + y2− z2 = 0.
The exceptional divisor E is shown in red.

equations

x2 + y2 − z2 = 0,

xb = ya,

yc = zb,

za = xc.

Picking c = 1 for our chart, we may treat a, b as affine coordinates. We then obtain z2(a2 + b2−
1) = 0, which has two irreducible components, corresponding to x, y, z all being zero and a, b
assuming whatever values they wish—this corresponds to the exceptional divisor of the blow-up
of the entirety of A3—and a2 + b2 = 1 and za = x, y = zb—which gives us Ỹ . The exceptional
divisor of the blow-up of Y , denote it E, is where these two intersect, at x, y, z = 0, a2 + b2 = 1.
This means that E is in fact homeomorphic to the unit circle in A2, and so we may draw this
blow-up as a “blown-up double-cone” (see Fig. 3.63).

Figure 3.65. The variety defined by the polynomial xy+ z4, here plotted with
the origin at the centre.

Example 3.66. To finally give a more interesting example, one which will be of value to our
later investigations, we will turn now to the surface Z(xy + z4) ⊂ A3 (see Fig. 3.65), which we
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will treat in a little more detail than we did the earlier two examples. Of particular interest is
going to be the irreducible components of the exceptional divisor. Further, as this example will
illustrate, sometimes one blow-up is not enough for the resolution of a singularity.

As before, we start by picking three homogeneous coordinates s1, s2, s3, related to the affine
coordinates x, y, z by

xs2 = ys1, ys3 = zs2, zs1 = xs3.

Let us view the blowup B in each of the three different charts B1, B2, B3, determined by
s1 = 1, s2 = 1, s3 = 1 respectively, where in each case we may regard the other two homogeneous
coordinates as affine. In B1, we then obtain, by substitution, that x2(s2 + s23x

2), with an
irreducible component E1 of the exceptional divisor of the variety being given by s2 = 0, s3
being free, and x = 0, y = 0, z = 0, that is (x, s2, s3) = (0, a, 0), where a ∈ C, or, to express it
in fullness, it is given by (0, 0, 0)× [1, 0, a].

By symmetry of the x, y coordinates, in B2, we obtain by substitution the condition y2(s1+s23y
2),

with an irreducible component of the exceptional divisor being given by (s1, y, s3) = (0, 0, a),
a ∈ C, or, to express it in all fullness (0, 0, 0)× [0, 1, a]. This is clearly different than E1, so we
call this second irreducible component by E2.

We now consider the chart B3, in which s3 = 1. We then obtain z2(s1s2 + z2), where we
find the part of exceptional divisor of the variety to be given by s1s2 = 0, (x, y, z) = (0, 0, 0).
This part then has two irreducible components in turn, being given by (s1, s2, z) = (a, 0, 0)
and (s1, s2, z) = (0, a, 0) respectively. In fullness, we are then looking at (0, 0, 0) × [a, 0, 1]
and (0, 0, 0) × [0, a, 1], a ∈ C, which we recognize as E1 and E2 respectively, and these two
components intersect in at (0, 0, 0)× [0, 0, 1].

But all is not well in paradise, for by evaluating the Jacobian of B3, we unravel a new singularity
at the origin. This means that we have to perform yet another blowup to get a complete reso-
lution of the singularity, and this we do in the affine coordinates s1, s2, z. Picking homogeneous
coordinates t1, t2, t3 obeying relations

s1t2 = s2t1, s2t3 = zt2, zt1 = s1t3,

we obtain in the chart C3, in which t3 = 1, the expression z4(t1t2 + 1), from which we obtain a
third irreducible component of the irreducible divisor (t1, t2, z) = (a,−1/a, 0), or, (s1, s2, z) ×
[t1, t2, t3] = (0, 0, 0)× [a,−1/a, 1]. Given any curve (s1(λ), s2(λ), z(λ)) in B3, it corresponds to
a curve (t1(λ), t2(λ), ξ(λ)) = (s1(λ)/z(λ), s2(λ)/z(λ), z(λ)) in C3 for which t1t2 + 1 = 0. It can
thus be seen that in the chart C3, neither E1 nor E2 can be seen. Therefore, we consider the
charts C1 and C2 instead, for which t1 = 1 and t2 = 1 respectively.

In C1, we obtain s41t
2
3(t2 + t23) = 0, with the irreducible component of the exceptional divisor

being given by (0,−a2, a), or in fullness as (0, 0, 0)× [1,−a2, a], a ∈ C. We find

(0, 0, 0)× [1,−a2, a] ∼ (0, 0, 0)× [1/a,−a, 1] ∼ (0, 0, 0)× [b,−1/b, 1], b ∈ C,
and so recognize this as being the same as E3. In this chart, we can in fact see E1, here being
given by (0, a, 0), and we find that it intersects with E1 at the origin. By symmetry, in the chart
B2, we once again recover E3, and can now see E2 and that it too intersects with E3, again in
the origin. All of this is graphed out in the affine charts in Fig. 3.67.

We may schematically draw the irreducible components of the exceptional divisors. Drawing
from [27], eeeing each irreducible component is isomorphic to CP1, we depict them as circles.
When two circles touch, that is to indicate an intersection. The result is displayed in Fig. 3.68.
As can already be seen, the result is eerily reminiscent of the McKay diagrams from before,
something we will revisit in the final chapter.
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ϕθ

xy + z4
chart B3

z2(s1s2 + z2)

chart B1

x2(s2 + s23)
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y2(s1 + s23)
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Figure 3.67. The blow-up of the affine variety Z(xy + z4) ⊂ A3. Each step of
the way, we have drawn graphs in suitable affine charts of the blown-up space
to illustrate the intersections of the irreducible components of the exceptional
divisor.

E1 E2E3

Figure 3.68. Schematic of the irreducible components of the exceptional divisor
of the blown-up variety Z(xy + z4) ⊂ A3.



CHAPTER 4

Invariant Theory

Given a group G, an n-dimensional vector space V , n being finite, and a group action G×V → V
on that space, a new action is induced on the set of functions on V , F [V ], as G×F [V ]→ F [V ],
g ·f(~v) = f(g−1 ·~v). In particular, if V is a G-module, and if we restrict outselves to considering
polynomials on V , the group action induces automorphisms on the polynomial ring F[z1, . . . , zn]
by

σg : F[z1, . . . , zn]→ F[z1, . . . , zn]; f(z1, . . . , zn) 7→ f(g−1 · z1, . . . , g−1 · zn).

With automorphisms induced for each and every element in the group, the fundamental problem
of classical invariant theory is to find the subring of polynomials that are invariant under the
action of the entire group, denoted F[z1, . . . , zn]G.

While this task is of course an interesting and worthwhile endeavour in its own right, for our
purposes it becomes relevant in that we want to give an algebraic description of the orbit spaces
C2/G, where G are the finite subgroups of SU(2) acting on C2 as per the natural representations.
Before we can show how the ring of invariant polynomials allows us to do this, however, we need
to establish a few foundational results of invariant theory, which is the topic of the following
chapter.

1. The Problem of Finite Generation

The task of cataloging the set of invariant polynomials on a given space under the action of a
group is made significantly easier if the ring which these polynomials form is finitely generated.
Let us illustrate this with a classical example [28].

Example 4.1. (Symmetric polynomials.) A friendly group action on a vector space is given
by how the symmetric group Sn acts on Cn in the natural representation. Given a basis of Cn,
the action of elements of Sn is to permute the basis vectors, and so in the induced action on
C[z1, . . . , zn], the action translates into the permutation of the variables {zi}. For example,

(1 2 4) · (z1 + z2z3 + z24z1) = z2 + z4z3 + z21z2.

It does not take the reader long to realize that the only polynomials in C[z1, . . . , zn] that are
invariant under this action of Sn are those that are symmetric in all its variables {zi}. Basic
examples are those provided by the kth elementary symmetric polynomials, which are those of
the form sk :=

∑
i1<···<ik zi1 . . . zik , those are

s1 = z1 + z2 + · · ·+ zn,

s2 = z1z2 + z1z3 + · · ·+ z1zn + z2z3 + · · ·+ zn−1zn,

...

sn = z1 . . . zn.

We claim that all symmetric polynomials C[z1, . . . , zn]Sn are generated by the kth elementary
symmetric polynomials. To prove it, we first define the leading monomial of any polynomial p
to be term czα1 . . . z

αn
n , c ∈ C of it such that the tuple (α1, . . . , αn) is lexicographically larger

than all other analogous tuples associated with all other terms of p.

61
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Given any f ∈ C[z1, . . . , zn]Sn , we have that its leading monomial czα1 . . . z
αn
n is such that

α1 ≥ · · · ≥ αn, as otherwise a permutation of the variables {zi} would result in a monomial
with strictly larger lexicographical order, meaning that either czα1 . . . z

αn
n is in fact not the leading

monomial of f , or f /∈ C[z1, . . . , zn]Sn . In either eventuality, we would have a contradiction.

Let us then look at the polynomial g := csαnn s
αn−1−αn
n−1 . . . sα2−α3

2 sα1−α2
1 . Its leading monomial

is equal to that of f . Since the difference of two symmetric polynomials is a symmetric poly-
nomial, f ′ := f − g is a symmetric polynomial of leading coefficient that is lexicographically
strictly smaller than that of f . We may continue algorithmically to repeat this procedure, but
seeing that it is impossible to construct an infinite lexicographically strictly decreasing chain
of monomials, we will eventually reach a step where the difference is a constant term. Thus it
follows that f is a polynomial in the {si}, and seeing that the choice of f ∈ C[z1, . . . , zn]Sn was
arbitrary, the symmetric polynomials are indeed generated by the kth elementary symmetric
polynomials.

As the reader may have noted above, the kth elementary symmetric polynomials are all homo-
geneous polynomials. This does in fact set up a regular pattern, as polynomial ring morphisms
are all induced by the group action on the underlying vector space in its capacity as a group
module, they will always be such that they transform the variables {zi} linearly,

zi 7→
n∑
j=1

ajzj , aj ∈ F.

Consequently a monomial of order m entering into a polynomial will always, under the group
action, be rendered into a sum of monomials of order m. From this it follows that every invariant
polynomial will always be expressible as a sum of invariant homogeneous polynomials, and so
we may focus on them exclusively, thereby simplifying the task before us.

When first charting the waters of invariant theory at the turn of the twentieth century, math-
ematicians found that finite groups did not satisfy their appetites, but gave themselves the
far more Sisyphean task of looking at polynomials invariant under the much broader class of
algebraic groups. What Hilbert and his contemporaries conjectured was that all such rings of
invariant polynomials were indeed finitely generated, and Hilbert considered the need to formu-
late a formal proof of this proposition to be of such paramount importance that he included it
as number fourteen on his famous list of twenty-four problems [29]. Unfortunately for him, the
question was settled conclusively and rather anticlimactically in 1958 when Japanese algebraist
Nagata Masayoshi devised a counter-example, demonstrating that the conjecture was in fact
wrong [30].

As disheartening as this result might well be, all is not lost, for in his own day, Hilbert had a
lot more success with a special case of his fourteenth problem. Specifically, when he restricted
himself to the polynomials in two variables being acted upon by elements of the special linear
group of dimension two, Hilbert was able to prove that the ring of invariant polynomials was
indeed finitely generated. This more than well covers all the rings we have to concern ourselves
with, and seeing that his proof if not just supremely witty, but also provides a good opening of
an introduction to classical invariant theory, we shall furnish a recount of it here.

Prior to Hilbert, invariant theory had been ruled supremely by Paul Gordan, as evangelical a
believer in constructive mathematics as they came, and his approach, and the approach of all
his disciples, had been to try to devise algorithms for constructing the generators in the case
of each and every group [29]. It goes without saying that constructing a generalized algorithm
was quite a task.
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Hilbert took an entirely different approach [31]. His first ingredient was the basis theorem,
which we have already treated in detail in our chapter on algebraic geometry (see Thm. 3.11).
His second ingredient was the so-called Reynolds operator, which maps elements of F[x1, . . . , xn]
to elements of F[x1, . . . , xn]G. For continuous groups, the Reynolds operator can be a bit of a
problem, nonetheless, for finite groups, it has a very neat definition.

Definition 4.2. (Reynolds operator for finite groups.) Let F be a field of characteristic
zero, and let G be a finite group. Then the Reynolds operator φ : F[x1, . . . , xn]→ F[x1, . . . , xn]G

is defined as

φ(f) :=
1

|G|
∑
g∈G

g · f.

It is easy to see that if f ∈ F[x1, . . . , xn]G, then φ(f) = f , and that if f, g are any polynomials
in F[x1, . . . , xn], then φ(f + g) = φ(f) + φ(g). Finally, and this is important, the Reynolds
operator preserves degree.

Now then comes Hilbert’s famous finiteness theorem, which, being an existence theorem, caused
quite some furore in its day. Tradition has it that Paul Gordan at first exclaimed, “This is not
mathematics, it is theology!” but at heart a man who valued mathematical truth more than he
valued his own pride, a little later, he graciously admitted that “I have convinced myself that
even theology has its advantage” [32]. Without further ado, here is the proof.

Theorem 4.3. (Hilbert’s finiteness theorem.) Let G be a finite group acting on a ring
of polynomials F[x1, . . . , xn]. Then the ring of invariant polynomials F[x1, . . . , xn]G is finitely
generated.

Proof. Let I be the ideal of F[x1, . . . , xn] generated by all homogeneous elements of
F[x1, . . . , xn]G of degree greater than zero. Since F is Noetherian, F[x1, . . . , xn] is also Noe-
therian (by Thm. 3.11), and so all ideals contained therein are finitely generated, and in
particular I. Since each homogeneous part of a polynomial in I must also belong to I, we
note that the generators must themselves be homogeneous and that they must also be invari-
ants. Thus we have a finite set {f1, . . . , fk} of invariant homogeneous generators of I. We
now prove that F[x1, . . . , xn]G = F[f1, . . . , fk]. Since each generator is invariant, it is clear that
F[f1, . . . , fk] ⊆ F[x1, . . . , xn]G. We prove that F[x1, . . . , xn]G ⊆ F[f1, . . . , fk] by induction. Let
f be a homogeneous invariant polynomial of degree d. If d = 0, then f ∈ F[f1, . . . , fk] trivially.
Now assume that all invariant homogeneous polynomials of degree d < ` are in F[f1, . . . , fk].
Assume then that f is an invariant homogeneous polynomial of degree d = `. Then, it is
expressible as

f =

k∑
i=1

gifi

for some gi ∈ F[x1, . . . , xn]. Since f ∈ F[x1, . . . , xn]G, applying the Reynolds operator yields

f = φ(f) =
k∑
i=1

φ(gifi) =
k∑
i=1

φ(gi)fi.

Since every φ(gi) ∈ F[x1, . . . , xn]G and since deg(gi) < deg(f), by the induction hypothesis,
φ(gi) ∈ F[f1, . . . , fk] for every i. Thus f ∈ F[f1, . . . , fk]. Since every polynomial in F[x1, . . . , xn]G

is expressible in terms of homogeneous invariants, the theorem is proven. �

Having established the finite generation of the ring of invariants, we now explain how this is of
interest to us in studying orbifolds from an algebro-geometric point of view.
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Definition 4.4. (The quotient map [28].) Let G be a finite group and let W be a finite-
dimensional G-module. By Hilbert’s finiteness theorem, the ring C[W ]G is then finitely gener-
ated by some set of polynomials {f1, . . . , fk}. The quotient map is then defined as the map of
spaces

π : W → Ck, w 7→ (f1(w), . . . , fk(w)).

The image of this map will then be the set of points in Ck which satisfy the relations of the
generators {f1, . . . , fk}. Specifically, if they satisfy the relations {hi(f1, . . . , fk) = 0}, then
imπ = {(x1, . . . , xk)|hi(x1, . . . , xk) = 0}. Furthermore, we observe that the pre-image of any
point in imπ is an orbit of G in W , making the induced map

π̃ : W/G→ im (π), w 7→ (f1(w), . . . , fk(w))

a homeomorphism. Consequently, we may realize orbifolds as algebraic sets. This then justifies
our search for the generators of the rings of invariants, and the algebraic relations between
them.

2. Down to the Basics: Grundformen

The following section draws heavily on Felix Klein’s classic work Lectures on the Icosahedron
[33], which in recent times has been elaborated upon by Igor Dolgachev in his book on the
McKay correspondence [34].

Lemma 4.5. Any finite subgroup of SL2(C) is isomorphic to a finite subgroup of SU(2).

Proof. SL2(C) consists of all special linear matrices over the complex numbers of dimension
two, and SU(2) is a subgroup of this, with the additional restraint that the matrices must also
be unitary. The proof consists of showing that given a finite subgroup G < SL2(C), we can
always perform a change of basis to render all matrices making up G unitary.

G consists of 2 × 2-matrices Ai. A hermitian matrix is a matrix M such that M† = M.
Self-evidently then, AiA

†
i is hermitian for all 1 ≤ i ≤ |G|, and by extension

H :=

|G|∑
i=1

AiA
†
i

is a hermitian matrix. We recall from linear algebra that any hermitian matrix may be diago-
nalized by a change of basis by unitary matrices with the eigenvalues of the matrix being the
diagonal entires. Thus,

d = U−1HU =

|G|∑
i=1

U−1AiA
†
iU =

|G|∑
i=1

U−1AiUU−1A†iU =

|G|∑
i=1

A′iA
′†
i ,

for some unitary matrix U and A′i := U−1AiU. While it is known from linear algebra that
the eigenvalues of a hermitian matrix are by necessity real, here we can say more. Consider a
generic diagonal entry [d]jj ,

[d]jj =

2∑
k=1

|G|∑
i=1

[A′i]jk[A
′†
i ]kj =

|G|∑
i=1

2∑
k=1

[A′i]jk[A
′
i]
∗
jk =

|G|∑
i=1

2∑
k=1

|[A′i]jk|2 ≥ 0,

where we may in fact dismiss the equality as an impossibility, as it would imply that the
matrices A′i have determinant zero, meaning Ai could not be special linear. Since d then only
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has positive real diagonal entires, d
1
2 and d−

1
2 are well-defined and diagonal too, giving us

d = d
1
2 d

1
2 =

|G|∑
i=1

A′iA
′†
i ⇔ 1 = d−

1
2

|G|∑
i=1

A′iA
′†
id
− 1

2 .

Then defining a new set of matrices by the change of basis A′′i := d−
1
2 A′id

1
2 , we find the {A′′i}

all to be unitary.

A′′jA
′′†
j = d−

1
2 A′jd

1
2

[
d−

1
2

|G|∑
i=1

A′iA
′†
id
− 1

2

]
d

1
2 A′

†
jd
− 1

2

= d−
1
2

|G|∑
i=1

A′jA
′
iA
′†
iA
′†
jd
− 1

2

= d−
1
2

|G|∑
i=1

A′jA
′
i(A

′
jA
′
i)
†d−

1
2

= d−
1
2

|G|∑
i=1

A′kA
′†
kd
− 1

2 = 1.

Thus the change of basis incurred by Ai 7→ d−
1
2 U−1AiUd

1
2 does indeed isomorphically map

any subgroup of SL2(C) to one of SU(2). �

The lemma and proof above are taken from [17], supplemented by [35], where it is presented in
a slightly more general form, and where it forms a key step in the physicist’s proof of the grand
orthogonality theorem mentioned in Chap. 2. An immediate consequence of this lemma is that
it is equivalent to talk about irreducible representations of finite subgroups of SU(2) and finite
subgroups of SL2(C), and as we shall now see, for the rest of this chapter it is more profitable
to regard our problem from the latter point of view.

Let C2 be a natural G-module for some finite subgroup G < SL2(C), and let F be a homogeneous
polynomial in two variables. F then defines a projective variety, which is a set of points in CP1.
Writing C∗ = C\{0}, the elements of CP1 are equivalence classes of the form

[z] = {λz ∈ C2\{0}|λ ∈ C∗},

and the action of the special linear group on C2 induces an action of CP1 by g · [z] = [g ·z]. Since
g · λz = λ(g · z) for all λ ∈ C∗, g ∈ G, the action is not dependent on choice of representative
and is as such well-defined. If we let K be the kernel of the special linear group’s action on CP1
(a set which contains only the elements 1 and −1), we may equivalently regard the action as
one of the group PSL2(C) = SL2(C)/K on CP1, where denoting g as the equivalency class in
PSL2(C) to which g belongs, g · [z] = g · [z]. PSL2(C) is called the projective special linear group
over the complex numbers of degree 2, and it is natural to look at the action on CP1 through
this lense. As such, we shall study the action of the finite subgroups of PSL2(C) to which the
finite subgroups of SL2(C) correspond.

In Chap. 1, however, we noted that the kernel of the canonical morphism ϕ : SU(2) → SO(3)
was just {±1}, and so this fact, taken in conjunction with that every finite subgroup of SL2(C) is
isomorphic to a finite subgroup of SU(2), that the kernel of the projection morphism SL2(C)→
PSL2(C) is also {±1}, and Noether’s first isomorphism theorem, allows us to deduce that the
finite subgroups of PSL2(C) are isomorphic to the finite subgroups of SO(3). This then means
that the finite subgroups of PSL2(C) are our old friends, the rotational symmetry groups of
the Platonic solids! It goes without saying that this comes in quite handy. Denoting the finite
subgroups of PSL2(C) by G and their elements by g, we continue.
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Since

z ∈ g · Z(F ) ⇔ g−1 · z ∈ Z(F ) ⇔ F [g−1 · z] = 0

⇔ (g · F )[z] = 0 ⇔ z ∈ Z(g · F ),

we have that
g · Z(F ) = Z(g · F ). (4.6)

Definition 4.7. (Relative invariant.) A homogeneous polynomial F is called a relative
invariant of G if for every g ∈ G,

g · Z(F ) = Z(F ).

Two homogeneous polynomials F,H ∈ C[t0, t1] only define the same variety in CP1 if they differ
by a multiplicative factor, and so from (4.6), it follows that F is a relative invariant if and only
if for every g ∈ G, g ·F = agF for some ag ∈ C∗. The set R = {f ∈ C[t0, t1]|g ·f = agf, ∀g ∈ G}
(containing not just homogeneous polynomials) form a one-dimensional module of G under the
group action G × R → R, (g, f) 7→ agf . As a representation, we have the group element g
corresponding to the matrix [ag]. This justifies the following naming convention:

Definition 4.8. (Character of a relative invariant.) Let the homogeneous polynomial
F be a relative invariant of the group G. The group morphism χ : G → C∗, g 7→ ag is then
called the character of F .

In our case, since G is a finite group, for every g there exists n ∈ N such that gn = e, and so we
may conclude that the characters may only ever yield roots of unity.

Seeing that the absolute invariants form a subset of the relative invariants, if we can find the
general form of the relative invariants, then we may narrow it down to find the general form of
the absolute invariants, and from that, we may find the finite generators.

Given any relative invariant F , if [z] ∈ Z(F ), then g−1 · [z] ∈ Z(F ) too for every g ∈ G. From
this it follows that the entire G-orbit to which [z] belongs must lie in Z(F ), and so we deduce
that Z(F ) must be a union of G-orbits in CP1. Specifically, given two relative invariants F,H,
we have Z(FH) = Z(F ) ∪ Z(H).

Lemma 4.9. Every homogeneous polynomial f of degree n in two variables x, y may be uniquely
factorized as

f(x, y) = (a1x− b1y)(a2x− b2y) . . . (anx− bny),

where the {[bi, ai]} are the set of zeroes of f in CP1.

Proof. Since f is homogeneous, we may write f(x, y) = ynf(xy , 1). f(s, 1) is a polynomial

in one variable of degree n, and so by the fundamental theorem of algebra, we can factorize it
uniquely as

f(s, 1) = (a1s− b1)(a2s− b2) . . . (ans− bn).

Set s = x
y and multiply by yn. We then obtain

f(x, y) = (a1x− b1y)(a2x− b2y) . . . (anx− bny).

Clearly every [bi, ai] is a solution to f(x, y) = 0. Further, since C lacks zero divisors, if f(bi, ai) =
0, then there must exist a factor that is a multiple of (aix− biy) for the polynomial to evaluate
as zero. The lemma follows. �

Consequently, we may surmise that all relative invariants may be factorized uniquely into ho-
mogeneous polynomials of minimal degree corresponding to the specific orbits. This prompts
the following definition.
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Definition 4.10. (Grundformen, General and Special.) A Grundform (plural Grund-
formen) is a relative invariant of minimal degree whose set of zeroes correspond to a single orbit.
If the orbit is non-exceptional (its stabilizer is trivial), we say that it is a general Grundform.
If the orbit is exceptional (its stabilizer is non-trivial), we say that it is a special Grundform.1

It is clear then from Lem. 4.9 that a general Grundform must be of degree |G| and a special
Grundform must be of degree |G|/ei, where ei is the cardinality of the stabilizer of the orbit in
question. At first glance, this does not seem to help us much in finding the general form of the
relative invariants, since it would take forever to list the general Grundformen. Simply pick any
point you like in CP1 that is not in an exceptional orbit, operate on it with all the elements of
G, and construct the corresponding homogeneous polynomial using Lem. 4.9. However, Klein
[33] noticed something truly important that Dolgachev [34] distilled in form of the following
lemma.

Lemma 4.11. (Klein, Dolgachev.) If there exist distinct special Grundformen F1 and F2

corresponding to exceptional orbits of cardinalities |G|/e1 and |G|/e2 respectively and their
characters χ1 and χ2 obey the relationship

χe11 = χe22 ,

then every general Grundform may be expressed as a linear combination of F e11 and F e22 .

Proof. Let F be an arbitrary general Grundform corresponding to an exceptional orbit O,
and let Φ = aF e11 + bF e22 . Since χe11 = χe22 , g ·Φ = a(g ·F1)

e1 + b(g ·F2)
e2 = aχe11 F

e1
1 + bχe22 F

e2
2 =

χe11 (aF e11 +bF e22 ) = χe11 Φ, confirming Φ to be a relative invariant. It is furthermore of order |G|,
making it a Grundform. Let now (x, y) be a point in the orbit O. Any relative invariant of order
|G| which is zero at (x, y) must then be a scalar multiple of F , since all its other zeroes too must
lie in O. Though neither F1 nor F2 may be zero at (x, y) since O is non-exceptional, we can
always choose a, b such that the linear combination Φ is zero at (x, y), specifically, let simply
b = −aF1(x, y)/F2(x, y). Then Φ is simply a scalar multiple of F , and the lemma follows. �

If we can prove that special Grundformen of that property exist for every finite subgroup of
PSL2(C), then all we need to do is to find the special Grundformen, and from them we may
write down the form of a general relative invariant. This must be done for each and every case,
and can be quite tedious. Dolgachev does present all the computations in [34], but we will
satisfy ourselves with a single example.

Example 4.12. Let G = BO, so that G = O. As stated earlier in Chap. 2, in the natural
representation, the binary octahedral group may be expressed as being generated by

%(a) =
1√
2

(
1 + i 0

0 1− i

)
, and %(b) =

1√
2

(
1 −i
−i 1

)
.

To find the exceptional orbits, we start by searching for the fixed points of each g ∈ G, that is,
the points of CP1 that are invariant under the action of g. These points then belong to orbits
whose stabilizer includes g and thus are exceptional. By then operating on those points with
all other elements of G, we obtain the full orbits. Seeing that g · p = [g · p], and two non-zero
points p, q ∈ C2 correspond to the same point in CP1 if p = λq for some non-zero λ ∈ C∗, the
task of finding the fixed points of g amounts to finding the eigenvectors of the matrix %(g).

With this in mind, we may start by considering the fixed points of a, which turn out to be [1, 0]
and [0, 1]. Operating on these points by the other elements of G, we find that they belong to

1These definitions of Grundformen are taken from Felix Klein’s Lectures on the Icosahedron. It is worth to
point out that they are at odds with the traditional definition of a Grundform, which is an element of a minimal
set of generators of the rings of invariants [29]. This motivates the German name Grundformen, which in English
may be rendered as base-forms or ground-forms.
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the same orbit, which also includes the points [1, 1], [−1, 1], [i, 1], and [−i, 1]. Thus we have an
orbit of cardinality 6 and stabilizer of cardinality 4, and the special Grundform corresponding
to this orbit is

Ψ1 = t0t1(t0 + t1)(t0 − t1)(t0 + it1)(t0 − it1)
= t0t1(t

4
0 − t41).

Next, we may consider the element ab, whose fixed points are [1+
√

3, 1− i] and [1+
√

3,−1+ i].
Operating on these with the other elements of G, we obtain [1 +

√
3, 1 + i], [1 +

√
3,−1 − i],

[1 + i, 1 +
√

3], [1− i, 1 +
√

3], [−1 + i, 1 +
√

3], and [−1− i, 1 +
√

3]. Thus we have an orbit of
cardinality 8 and stabilizer of cardinality 3, and the corresponding special Grundform is

Ψ2 = (t40 + 2
√

3i t20t
2
1 + t41)(t

4
0 − 2

√
3i t20t

2
1 + t41).

Finally, we consider the element abb, whose fixed points are [1 + i,
√

2] and [−1 − i,
√

2]. The
other points in the orbit are [1 − i,

√
2], [−1 + i,

√
2], [1 +

√
2, 1], [1 −

√
2, 1], [−1 +

√
2, 1],

[−1 −
√

2, 1], [1 +
√

2, i], [1 −
√

2, i], [−1 +
√

2, i], and [−1 −
√

2, i]. Thus we have an orbit of
cardinality 12, stabilizer of cardinality 2, and a corresponding Grundform of

Ψ3 = (t40 + t41)(t
4
0 − 6t20t

2
1 + t41)(t

4
0 + 6t20t

2
1 + t41)

= (t40 + t41)((t
4
0 + t41)

2 − 36t40t
4
1).

All fixed points of all elements then being accounted for, we have by exhaustion found all
exceptional orbits of G and their corresponding special Grundformen. We find

χ1(a) = −1, χ2(a) = 1, χ3(a) = −1,

χ1(b) = −1, χ2(b) = 1, χ3(b) = −1,

from which it follows that χ4
1 = χ3

2 = χ2
3, and so every general Grundform may be expressed in

terms of the special Grundformen.

Subgroup of
Special Grundformen Order of stabilizer

PSL2(C)

Cn/K
Ψ1 = t0 n if n is odd,

Ψ2 = t1 n/2 if n is even

Dn

Ψ1 = t20 + t21 2

Ψ2 = t20 − t21 2

Ψ3 = t0t1 n

T
Ψ1 = t0t1(t

4
0 − t41) 2

Ψ2 = t40 + 2
√

3i t20t
2
1 + t41 3

Ψ3 = t40 − 2
√

3i t20t
2
1 + t41 3

O
Ψ1 = t0t1(t

4
0 − t41) 4

Ψ2 = t80 + 14t40t
4
1 + t81 3

Ψ3 = (t40 + t41)((t
4
0 + t41)

2 − 36t40t
4
1) 2

D
Ψ1 = t300 + t301 + 522(t250 t

5
1 − t50t251 )− 10005(t200 t

10
1 + t100 t

20
1 ) 2

Ψ2 = −(t200 + t201 ) + 228(t150 t
5
1 − t50t151 )− 494t100 t

10
1 3

Ψ3 = t0t1(t
10
0 + 11t50t

5
1 − t101 ) 5

Table 4.13. The sets of Grundformen for the relative invariants of each G ⊂
PSL2(C).
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The full set of special Grundformen for each G is given in Tab. 4.13, and by exhaustion, it is
obtained that for each of them χe11 = χe22 = χe33 . Therefore, any relative invariant must be of
the form

Ψα
1Ψβ

2Ψγ
3

∏
i

(aiΨ
e1
1 + biΨ

e2
2 ), (4.14)

for some α, β, γ ∈ N and ai, bi ∈ C. (With the minor exception of the cyclical group, which
only admits two special Grundformen, but still exhibits χe11 = χe22 , and so the analogue of
(4.14) is obtained by simply discarding the factor of Ψγ

3 .) Since absolute invariants are always
relative invariants, it follows that they too can always be written in the form 4.14, that is, as a
polynomial in Grundformen. The question then becomes, what restrictions need we impose for
a polynomial in Grundformen to be an absolute invariant?

Lemma 4.15. Relative invariants of different characters are linearly independent.

Proof. The proof is by induction over the number of relative invariants of different charac-
ter, and contradiction. For our base case, we choose a set consisting of a single relative invariant,
which is clearly linearly independent. We now take it to be proven that k−1 relative invariants
of different characters must be linearly independent, and assume the kth case to be different.

Then there exists a linear combination A =
∑k

i=1 ciΦi = 0, not all ci being zero. We may always
reorder the terms such that c2 6= 0, and take a generic element g ∈ G such that χ1(g) 6= χ2(g),
and element that must exist since χ1 6= χ2. Then,

0 = g ·A− χ1(g) = c2(χ2(g)− χ1(g))Φ2 + · · ·+ ck(χk(g)− χ1(g))Φk = 0.

This then implies that the k− 1 relative invariants {Φ2, . . . ,Φk} must be linearly independent,
giving us our contradiction. The lemma follows. �

Lemma 4.16. Any linear combination of a set of relative invariants, all having the same char-
acter, is itself a relative invariant of that very character.

Proof.

g ·
k∑
i=1

ciΦi =
k∑
i=1

ci(g · Φi) =
k∑
i=1

ciχ(g)Φi = χ(g)
k∑
i=1

ciΦi.

�

Lemma 4.17. No linear combination of a set of two or more relative invariants, all having
different characters, may be an absolute invariant.

Proof. Assume the converse. Then there exist relative invariants of different characters
Φi and ci ∈ C such that

0 =
k∑
i=1

ciΦi − g ·
k∑
i=1

ciΦi =
k∑
i=1

ciΦi −
k∑
i=1

ciχi(g)Φi =
k∑
i=1

ci(1− χi(g))Φi.

But this would then imply that the Φi are linearly dependent, which by Lemma 4.15 they may
not be. The lemma follows. �

Lemma 4.18. A polynomial in special Grundformen is an absolute invariant if and only if every
monomial term in it is an absolute invariant.

Proof. All monomials in a polynomial F (Ψ1, . . . ,Ψn) of the same character may by Lem.
4.16 be lumped together into a new relative invariant of that character. Thus F can be expressed
as a linear combination of a set of invariants, all of different characters. If this set is greater
than one, by Lem. 4.17, F may not be an absolute invariant, so if we want that to be the case,
all monomials must have the same character. If this character is anything other than one for
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every element in the group, F may not be an absolute invariant. Thus we conclude that F is an
absolute invariant if and only if every monomial is of trivial character, that is, every monomial
is an absolute invariant. �

With that established, to find the minimal generating set of the rings of invariant polynomials,
we simply need to find the absolute invariant monomials in the special Grundformen that may
not be expressed as products of other absolute invariant monomials.

Example 4.19. Let G = BO, so that G = O. Inspecting the characters we found earlier, we
note that Ψ2

1, Ψ2, Ψ1Ψ3, and Ψ2
3 are all absolute invariants under the action of the octahedral

group. We do however find that

Ψ3
2 − 108Ψ4

1 = (t80 + 14t40t
4
1 + t81)

3 − 108(t0t1(t
4
0 − t41))4

= t240 − 66t200 t
4
1 + 1023t160 t

8
1 + 2180t120 t

12
1 + 1023t80t

16
1 − 66t40t

20
1 + t241

= ((t40 + t41)((t
4
0 + t41)

2 − 36t40t
4
1))

2 = Ψ2
3,

so multiples of Ψ2
3 may always be expressed in terms of multiples of Ψ2 and Ψ2

1. Let then
Ψa

1Ψb
2Ψ

c
3 be a monomial entering an invariant polynomial under O. We may factor out Ψb

2

entirely since Ψ2 is invariant to find that Ψ1Ψ
c
3 must be invariant. If a is even, then we may

factor our Ψa
1 entirely, and find Ψc

3 to be invariant, which may only be the case if c too is even,
meaning that Ψc

3 is expressible as a power of Ψ2
3, making it expressible in turn in terms of Ψ4

1

and Ψ3
2. If a is odd, then we may factor out Ψa−1

1 , leaving us with Ψ1Ψ
c
3, from which we may

factor out Ψ1Ψ3. Ψc−1
3 is only invariant if c is odd, and so we are left with some power of

(Ψ3
2−108Ψ4

1). We then conclude that the monomials Ψ2
1, Ψ2, and Ψ1Ψ3 generate the entire ring

of invariant polynomials under O. Setting x = 3
√

108Ψ2
1, y = − 1

9√108
Ψ2, z = Ψ1Ψ3, we see that

{x, y, z} is a minimal generating set of the ring of invariant polynomials, and that they further
obey the relation

z2 = Ψ2
1Ψ

2
3 = Ψ2

1(Ψ
3
2 − 108Ψ4

1)

=
x

3
√

108
(− 3
√

108y3 − 3
√

108x2)

= −x(y3 + x2),

and so we obtain
C[t0, t1]

BO ∼= C[x, y, z]/(z2 + x(y3 + x2)).

In this fashion, we find generating sets for the rings of invariants for all finite subgroups of
SL2(C). Again the details may be found in [34]. They are listed in Tab. 4.20.
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Subgroup of
Generating set Relation between generators

SL2(C)

Cn

x = Ψn
1

xy + zn = 0y = Ψn
2

z = Ψ1Ψ2

BDn

x = n
√

4Ψ2
3

z2 + x(y2 + xn) = 0y = 1
2n√4

Ψ1Ψ2

z = Ψ3Ψ
2
2

BT
x = Ψ1

z2 + x4 + y3 = 0y = 3
√

4Ψ2Ψ3

z = i(Ψ3
2 + Ψ3

3)

BO
x = 3
√

108Ψ2
1

z2 + x(y3 + x2) = 0y = − 1
9√108

Ψ2

z = Ψ1Ψ3

BD
x = Ψ1

x2 + y3 + z5 = 0y = Ψ2

z = 5
√
−1728Ψ3

Table 4.20. The sets of generators for the ring of invariants of each G ⊆ SL2(C).





CHAPTER 5

Conclusion and Prospects

The time has come to gather up our results. In Chap. 4, we found a way to express the
orbifolds that are defined by the action of the finite subgroups of SU(2) on C2 in the natural
representation as algebraic varieties, surfaces embedded in C3. These varieties (listed in Tab.
4.20) are far from trivial, and in fact, all of them are singular, something that we may observe
the moment we plot out their real parts (see Fig. 5.1).

xy + z4

z2 + x(y2 + x3)

z2 + x4 + y3 z2 + x(y3 + x2)

x2 + y3 + z5

Figure 5.1. The real parts of the varities defined by the different orbifolds.

Using the tools then that we have so carefully constructed in Chap. 3, we resolve these singu-
larities with blow-ups. While doing so, we do of course keep track of the irreducible components
of the exceptional divisors and note how these intersect one another. Schematically, the result
is displayed in Fig. 5.2, and the result is quite telling: they look very familiar to a result we
observed earlier in our quest. To make this more clear, we change our schematic way of illus-
trating the intersection of the irreducible components of the exceptional divisor—we draw each
irreducible component as a node, and when two nodes intersect, we draw a line between their
nodes. The result is displayed in Tab. 5.3.
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Cn . . .

BDn . . .

BT

BO

BD

Figure 5.2. Schematic of the irreducible components of the exceptional divi-
sors of the blown-up varieties of the different orbifolds. Seeing each irreducible
component is isomorphic to CP1, they are depicted as circles. When two circles
touch, that is to indicate an intersection.

What we have uncovered appears to be the same diagrams we obtained for the morphism spaces
between the different groups’ irreducible representations when the tensor product is taken with
the natural representation in Chap. 2, but with one crucial difference—one node is missing.
There very clearly appears to be a deep connection between the two, a connection that is further
illuminated when we turn to Lie theory, which we for brevity’s sake hitherto have sought to
treat to a minimum. The diagrams we obtain when blowing up the singularities of the orbifolds
are the so-called Dynkin diagrams of finite-dimensional semisimple Lie algebras [13], whereas
the diagrams obtained from the representation theoretical treatments are their counterparts
obtained in the infinite-dimensional case, the affine Dynkin diagrams [36]. With this branching
into Lie theory establishing its third leg, we have thus, finally, outlined the classical McKay
correspondence.

There is much more to be said of the McKay correspondence, of course. All we’ve done in this
treatment is to explain what part of it is, as we have not even touched upon the Lie theory
needed to properly establish its third leg. We certainly have not explained why it comes about,
which would require much more algebraic geometry as well as much more module theory and
homological algebra. Nonetheless, the author would be amiss if he did not at the very least give
reference to where such explanations may be found.

González-Sprinberg and Verdier were able, shortly after McKay had published his original pa-
per, to establish the connection between the algebro-geometrical and representation theoretical
aspects, which they published (in French) in [37] and [38]. In [39], Slodowy gives a qualitative
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summary of their argument. A more informal treatment of the same in the context of skew
group algebras may be found in [40].

For the connection between the algebro-geometrical and the Lie theoretical aspects, the works
of Steinberg [41], Kostant [42], and in particular, Brieskorn [43] are instructive. Brieskorn
(whose discovery actually predates McKay’s observation by a decade), has been able to show
that from the simply connected simple complex Lie groups to which the aforementioned Dynkin
diagrams correspond, one may construct the Kleinian singularities, which when blown up give
the original diagrams, thus “closing the circle” in the words of my supervisor [44]. For a review
of Brieskorn’s method, see [45], and for a more extensive treatment of the same, see [46].

And still this only establishes the McKay correspondence in two dimensions. Generalizations to
dimensions three and higher have been made in the decades since McKay’s original discovery,
see for example the work of Ito Yukari and Miles Reid in [47]. Of particular interest is the work
of Tamar Friedmann in [48], where in treating the three-dimensional case, she is able to develop
a connection to the “n-ary Lie algebras” or “Lie algebras of the n-th kind” originally developed
by Filippov in the 1980s [49]. Friedmann further elaborates on how this phenomenon can be
useful in the study of Yang-Mills theory.

The aforementioned Miles Reid’s work on the topic goes even further, and in collaboration with
Tom Bridgeland and Alastair King [50], treatment of the phenomenon has been made within the
context of derived category theory, and further points of contact have been found with Hodge
theory and string theory [51].

At present, there is little more the author can add on the topic. In fine, suffice to say that John
McKay was right on the money when he said [2] “If this approach is to be successful, its merit
will lie in its unifying power and its elegance. Would not the Greeks appreciate the result that
the simple Lie algebras may be derived from the Platonic solids?”
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Subgroup
Algebraic Geometry Representation Theory

of SU(2)

Cn . . . . . .

BDn . . . . . .

BT

BO

BD

Table 5.3. The intersection diagrams for the irreducible representations of the
exceptional divisor, listed next to the homomorphism dimensionality diagrams
of the irreducible representations.



APPENDIX A

Algebra

The following appendix is intended to provide the reader with an introduction to a number of
algebraic structures and results that are referenced and applied in the text of Chap. 2. The
author draws heavily on the basic structure of [52], and the appendix as a whole may well be
regarded as the author’s reworking of that text’s first and second chapters. The reader is of
course welcome (if not outright encouraged) to check out the book for themselves and so to say,
“drink from the source”.

I will assume that the reader has a basic understanding of group and representation theory,
including an understanding of the concept of the module of a group and how this correspond
to a representation. If so happens not to be the case however, I would refer them to sections
1.1−1.5 of [14], which cover all of these topics (and more) in a brief yet thoroughly comprehensive
manner.

Other structures I will assume knowledge of are those of rings and fields. All the concepts which
we will draw on are more than well contained within sections III.1− III.4 of [11].

1. Algebras, Modules, and Homomorphisms: The Basic Definitions

Definition A.1. (Vector space.) Let V be a set and F be a field. If V is endowed with an
additive operation V × V → V obeying

v + w = w + v,

(v + w) + u = v + (w + u),

for all u, v, w ∈ V ; a scalar multiplicative operation F× V → V obeying

λ(v + w) = λv + λw,

(λ+ µ)v = λv + µv,

λ(µv) = (λµ)v,

for all v, w ∈ V , and all λ, µ ∈ F; a null vector 0 ∈ V such that

v + 0 = 0

for all v ∈ V ; the unity element 1 ∈ F operates as

1v = v

for all v ∈ V ; and for every v ∈ V there exists a vector −v such that

v + (−v) = 0,

then V is said to be a vector space over the field F.

The most natural example of a vector space is of course the standard three-dimensional space
we all live in, which is a vector space over R where the real numbers scale vectors in space in
the intuitive way. However, the point that is important to bring across is that a vector space is
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generalized to cover so much more than that. We may choose many other fields beyond R, and
the space need not be of the nature we intuitively conceive of when we hear the word “space”.
All it really needs to be is a set conforming to the aforementioned conditions. For the rest of
this appendix, we will only concern ourselves with F ∈ {R,C} and vector spaces that are of
finite dimension.

Definition A.2. (Linear dependence and linear independence.) Let V be a vector
space over a field F. A set of vector {v1, v2, . . . , vk} ∈ V are said to be linearly dependent if
there exists a set {a1, a2, . . . , ak} ∈ F, not all of them 0, such that

a1v1 + a2v2 + · · ·+ akvk = 0.

If no such not-all-zeroes set of elements of F can be found, the vectors {v1, v2, . . . , vk} are said
to be linearly independent.

Definition A.3. (Basis.) Let V be a vector space over a field F. A basis of V is a set of
vectors {v1, v2, . . . , vn} ∈ V that are linearly independent and such that every vector in V may
be expressed as a linear combination of {v1, v2, . . . , vn}.
Definition A.4. (Hermitian inner product.) A Hermitian inner product (or just inner
product or Hermitian form) is an operation 〈·, ·〉 : V × V → F (F ∈ {R,C}) defined such that
for every u, v, w ∈ V , α ∈ F:

(i) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 ,
(ii) 〈αv,w〉 = α〈v, w〉 ,

(iii) 〈v, w〉 = 〈w, v〉 ,
(iv) 〈v, v〉 ≥ 0, where the equality applies if and only if v = 0.

If F = R, then x = x, and if F = C, then x is the complex conjugate of x. If for two vectors
v, w ∈ V we have 〈v, w〉 = 0, we say that the two vectors are orthogonal.

Dot product, such as we know it when working in conventional three-dimensional space, is
merely one example of such an inner product. Do note, and this is very important, that two
vectors that are orthogonal with respect to one inner product defined over the vector space, may
very well be non-orthogonal under another inner product. And just as there are innumerable
ways to pick a basis, there are innumerable ways to pick an inner product.

Another concept that follows from the concept of a vector space is that of a direct sum.

Definition A.5. (Sum of vector spaces.) Let U and W be subspaces of a vector space V .
The sum of U and W (denoted U + W ) is then defined as the set of all vectors that may be
written as linear combinations of vectors in U and W ,

U +W = {u+ w|u ∈ U,w ∈W}.
Definition A.6. (Direct sum of vector spaces.) Let U and W be two vector spaces. The
direct sum of U and W (denoted U ⊕W ) is then defined as the set of ordered pairs of vectors
in U and W , and is itself a vector space,

U ⊕W = {(u,w)|u ∈ U,w ∈W}.
It is easy to verify that the direct sum vector space U ⊕W posses subspaces isomorphic to U
and W respectively. In literature, it is often written that if V = U ⊕W , then U ⊆ V and
W ⊆ V .

These two definitions, though at first glance similar, are not the same, and the reader is advised
to take special note of this. Specifically, in the case where U and W are subspaces of the same
vector space V , while it is a given that U +W ⊆ V , it is not a given that U ⊕ V is isomorphic
to any subspace of V .
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Example A.7. Consider the vector space V ∼= R4 endowed with a basis {~x, ~y, ~z, ~w}. The spaces
U = {a~x+ b~y|a, b ∈ R} and W = {b~y + c~z + d~w|b, c, d ∈ R} are both subspaces of V . We then
have

U +W = {a~x+ b~y + c~z + d~w|a, b, c, d ∈ R} = V,

which as expected is in line with U +W ⊆ V . However, U ⊕W ∼= R5, which evidently cannot
be isomorphic to any subspace of V .

Definition A.8. (Complementary subspaces.) Let V be a vector space with subspaces W
and U . If U + W = V , and U ∩W = {0}, then U ⊕W ∼= V , and U and W are said to be
complementary subspaces, or just complements, of one another.

Example A.9. Let V be a vector space with basis {v1, v2, v3, v4}. Then V is the direct sum of
the vector space spanned by {v1, v2}, call it V1, and the vector space spanned by {v3, v4}, call
it V2. It is of course to be noted that in deciding on a basis for V in this example, even after
pinning down {v1, v2} as our first two basis vectors, we still have considerable liberty with which
to choose our third and fourth basis vectors. Indeed, the third and fourth basis vectors need
not even be linear combinations solely of v3 and v4 above. vIII := 2v1 + v3 and vIV := 5v2 + 4v4
would do the trick just as well. In other words, given a subspace W ∈ V , there are innumerable
ways in which to choose a complementary subspace U such that W ⊕ U ∼= V . This leads us to
our next definition.

Definition A.10. (Orthogonal complement.) Let V be a vector space, W be a subspace
of V , and let 〈·, ·〉 be an inner product on V . Then

W⊥ := {v ∈ V |〈v, w〉 = 0, ∀w ∈W}
is a complement of W in V called the orthogonal complement of W .

Do note that an orthogonal complement is only defined with respect to an inner product, and
as such the former is no less arbitrary than the latter. Nonetheless, as will be seen when we
revisit it soon, it is nonetheless a very useful construct.

Definition A.11. (Quotient space.) Let V be a vector space and let W be a subspace
thereof. Let ∼ be an equivalence relation on V defined by v1 ∼ v2 if and only if v1 − v2 ∈ W .
Then the quotient space V/W is the set of all equivalence classes under this relation. It is easily
verified that if V is a vector space, then so is V/W . Elements of V/W are commonly denoted
v +W , where v ∈ V .

Definition A.12. (Algebra over a field.) Let F be a field, and A be a vector space over
F that is furthermore a unitary ring. Then A is called an algebra over F if

c(xy) = (cx)y = x(cy)

For all x, y ∈ A, and all c ∈ F.

Example A.13. Let V be a vector space over a field F. The set of vector space homomorphisms
from V to itself, Hom(V, V ), or, End(V ), then can be endowed with the structure of an algebra
by letting addition be defined by standard addition of functions, (ϕ+ θ)(v) = ϕ(v) + θ(v), and
letting multiplication be defined by composition of functions (ϕθ)(v) = ϕ(θ(v)).

Another basic example of an algebra, and one we will look closer into both in this appendix
and in the main text, is that of the algebra of a group.

Definition A.14. (The group algebra over a field.) Let G be a group. We may then
construct its group algebra over a field F, whose elements are formal linear combinations of the
group elements. These are of the form

|G|∑
i

aigi, ai ∈ F, gi ∈ G.
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It is easy to verify that this fits the definition of an algebra: As a vector space, its basis vectors
are the group elements {gi}, and as a ring, the additive operation is formal summation in
conjunction with the additive operation of the field,

|G|∑
i

aigi +

|G|∑
i

bigi =

|G|∑
i

(ai + bi)gi

multiplication is inherited from as it is defined for the group in conjunction with how it is
defined for the field,  |G|∑

i

aigi

 |G|∑
j

bjgj

 =

|G|∑
i

|G|∑
j

(aibj)(gigj),

and the unital element is the unital element of F multiplied by the identity of the group. For
given group G and field F, this structure is denoted F[G].

Definition A.15. (Subalgebra.) Let B be a subset of A that is a vector space over F in its
own right, and is furthermore closed under ring addition and multiplication. Then B is called
a sub algebra of A.

Definition A.16. (Algebra homomorphism.) Let A and B be two F-algebras. If the map
ϕ : A→ B satisfies

(i) ϕ(cx) = cϕ(x)
(ii) ϕ(x+ y) = ϕ(x) + ϕ(y)

(iii) ϕ(xy) = ϕ(x)ϕ(y)
(iv) ϕ(1A) = 1B

for all x, y ∈ A, c ∈ F, then ϕ is called an algebra homomorphism over the field F.

Note that since A, B, in their capacities as being algebras, are rings, ϕ is also a ring homomor-
phism, and so the result that kerϕ is an ideal in A and imϕ is an ideal in B follows.

The reader will recall from group theory the notion of the group action. In a very similar vein,
one develops the notion of an action of an algebra. Specifically, given a set S and an algebra
A, an action is a map · : A× S → S, (a, s) 7→ a · s. With this tool at our disposal, we may now
construct another concept very similar to one found in group and representation theory.

Definition A.17. (Module of an algebra.) Let A be an F-algebra, V be a vector space
over F, and · be an action of A on V . V is then called a module of A, or an A-module if the
following structural properties are obeyed for all x, y ∈ A, v, w ∈ V , and c ∈ F:

(i) x · (v + w) = x · v + x · w
(ii) (x+ y) · v = x · v + y · v
(iii) (xy) · v = x · (y · v)
(iv) c(x · v) = (cx) · v = x · (cv)
(v) 1 · v = v.

It is easy to verify that an algebra A itself is an A-module, where the elements of the algebra are
viewed as vectors in a vector space, and the action of the algebra upon the vectors are those of
the algebra’s standard left-multiplication. When discussing A in this context, it is conventional
(and convenient) to denote it by A◦ instead to remind readers that it is now treated from the
point of view of modules. A◦ is formally called the regular module of the algebra A. Less
immediately clear is that all ideals of A are also A-modules, but it too can be swiftly and easily
verified as following from the definition that if x ∈ I, I being an ideal of A, then a · x ∈ I.
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Example A.18. Let V be an A-module. Then for each x ∈ A, we may construct a homomor-
phism xV : V → V , v 7→ x · v. We noted earlier in A.13 that the set End(V ) was an F-algebra,
and so we may construct an algebra homomorphism αV : A→ End(V ) by x 7→ xV . We call the
image of αV in End(V ) AV , something which we will revisit later.

Comparing the structure of an algebra module with the structure of a group module, a rela-
tionship readily becomes apparent: every module of a group is a module of its group algebra
as defined above, and every module of a group algebra can be seen to be a module of the
original group by just considering the actions of the elements in the algebra that are elements
of the group. We may therefore without any loss of generality jump between G-modules and
F[G]-modules.

Definition A.19. (Representation of an Algebra.) Let V be a vector space of dimension
d over a base field F, and A be an algebra. A representation of A on V is an algebra homo-
morphism ϕ : A→ Matd×d(F) ∼= End(V ). Two representations ϕ, θ are said to be equivalent if
there exists a nonsingular matrix D such that θ(a) = Dϕ(a)D−1, ∀a ∈ A.

It is immediately observed that as in the case of group modules and group representations, every
algebra module corresponds to an algebra representation and vice versa. Further, in line with
Def. A.14, every group module and representation extends to a module and a representation of
the group algebra, and all of the latter restrict to the former.

Definition A.20. (Submodule.) Let V be a module of an algebra A. A subspace of V ,
W ⊆ V , is called a submodule if it is invariant under the action of the algebra in that for every
a ∈ A, w ∈ W , a · w lies in W . Inheriting the structural properties A.17 (i)-(v) from V , W
itself is an A-module.

Lemma A.21. (Quotient module.) Let V be an A-module and W be a submodule of V .
Then V/W is a A-module called a quotient module under the algebra action ? defined by

a ? (v +W ) = (a · v) +W.

Just as we may construct homomorphisms between algebras, so one can construct homomor-
phisms between modules of the same algebra.

Definition A.22. (Module homomorphism.) Let V and W be A-modules. A module ho-
momorphism is a linear transformation ϕ : V →W obeying

ϕ(x · v) = x · ϕ(v),

for every v ∈ V and every x ∈ A.

It can readily be checked that both the kernel and image of a module homomorphism are closed
under the action of the algebra. From this, we may conclude that if ϕ : V → W is a module
homomorphism, then kerϕ is a submodule of V and imϕ is a submodule of W.

Do note that a module homomorphism is more than just a homomorphism between vector
spaces, but is in fact a vector space homomorphism that preserves the module structure. The
set of module homomorphisms from V to W is denoted by HomA(V,W ), and the set of vector
space homomorphisms from V to W is denoted by just Hom(V,W ). It goes without saying that
HomA(V,W ) ⊆ Hom(V,W ).

Example A.23. (HomA(V,W ) as a vector space.) We may endow the set HomA(V,W ) with
the structure of an F-space by defining multiplication by scalars k ∈ F by (kϕ)(v) = k(ϕ(v)),
and addition by (ϕ+ θ)(v) = ϕ(v) + θ(v).
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Corollary A.24. In line with earlier discussion on the relationship between a group G and its
group algebra F[G], the set HomG(V,W ) may also be endowed with the structure of a vector
space over F.

Lemma A.25. Let U, V,W be modules of the algebra A. Viewing the set of module morphisms
from U , V , and U ⊕ V to W as vector spaces,

HomA(U ⊕ V,W ) ∼= HomA(U,W )⊕HomA(V,W ).

Proof. Let ϕ : U ⊕V →W , (u, v) 7→ ϕ(u, v) be an arbitrary element of HomA(U ⊕V,W ).
ϕ then induces homomorphisms ϕ1 ∈ HomA(U,W ), ϕ2 ∈ HomA(V,W ) by ϕ1(u) := ϕ(u, 0),
ϕ2(v) := ϕ(0, v). The mapping HomA(U ⊕V,W )→ HomA(U,W )⊕HomA(V,W ), ϕ 7→ (ϕ1, ϕ2)
is then both linear and bijective. �

Earlier, in A.13, we noted that End(V ) was an F-algebra, and it turns out that so is HomA(V, V ),
the latter being a subalgebra of the former. In fact, looking at HomA(V, V ) as a subset of
End(V ),

HomA(V, V ) = {ϕ ∈ End(V )|ϕ(x · v) = x · ϕ(v), ∀x ∈ A, v ∈ V },

we see that it is identical to the centralizer of AV from A.18 in End(V ),

CEnd(V )(AV ) = {ϕ ∈ End(V )|ϕ(xV (v)) = xV (ϕ(v)), ∀xV ∈ AV , v ∈ V }.

If one, like the author, happens to have a fondness for the movie Inception, one would be inclined
to ask the question, what is the centralizer of this centralizer, CEnd(V )(CEnd(V )(AV ))? It follows
from fundamental algebra that if the subalgebra R is the centralizer of the subalgebra S, then
S must form at least part of the centralizer of R. After all, since R is the set of all elements
commuting with every element of S, clearly every element of S commutes with every element of
R. Of course, we may not rule out that there exists elements outside of S that also commutes
with every element of R. Applied to our particular case, this establishes that

AV ⊆ CEnd(V )(CEnd(V )(AV )).

As we shall eventually see in a powerful result known as the Double Centralizer Theorem, if
certain conditions on A and V are met, this ⊆ does in fact become an =.

Earlier we introduced the concepts of sums and direct sums of subspaces. These notions apply
to modules and submodules as well. If U and W are submodules of an A-modules V , we can
establish two things immediately.

Lemma A.26. Let W and U be two submodules of V . Then their sum and their intersection
are both submodules of V .

Proof. First we prove that U +W is a submodule of V , that is that it is closed under the
action of the algebra. Let v be a vector in U +W . Then it may be written as v = u+w, u ∈ U
and w ∈W . Since U,W are submodules, a · u ∈ U and a ·w ∈W , and so a · (u+w) ∈ U +W .
Thus, U ⊕W is a submodule of V .

Next we prove that W ∩ U also is closed under the action of the algebra. Let v be a vector in
W ∩ U . Since W and U are submodules, a · v lies in W as well as in U . This holds true for all
v ∈W ∩ U . Thus, W ∩ U is a submodule of V . �

This simple lemma turns out to be surprisingly useful as we go on.
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Further, if U and W are both A-modules (denote their algebra actions by • and ◦ respectively),
then U ⊕W is an A-module under the algebra action ? defined by

a ? (u,w) := (a • u, a ◦ w).

From this construction, it follows that the module U ⊕W must have subspaces U ′ ∼= U and
W ′ ∼= W such that U ′ +W ′ = U ⊕W . Conversely, if an A-module V can be written as U +W
for two submodules U and W such that U ∩W = {0}, then V ∼= U ⊕W .

Lemma A.27. Let V be an A-module that is the direct sum of two A-modules U and W . Then
U ∼= V/W ′, where W ′ is a submodule of V such that W ′ ∼= W .

Proof. Since V = U ⊕W , there exists W ′ ⊆ V such that W ∼= W ′. Since V = U ⊕W ,
for every v in V there exists unique u ∈ U and w ∈ W such that v = (u,w). Without loss
of generality we may denote the elements of V/W by their parts in U ′ plus W ′. Then it is
self-evident that the map ϕ : V/W ′ → U , (u, 0) +W ′ 7→ u is an isomorphism. �

To say something about the relationship between sums of submodules and direct sums of sub-
modules, we introduce a new construct.

Definition A.28. (Simple module.) Let V be an A-module. If the only submodules of V
are V itself and the zero module {0}, V is said to be a simple module.

Example A.29. Let V be a one-dimensional A-module. Since V only permits two subspaces,
itself and {0}, it follows that it may only permit those as submodules as well. That is, every
one-dimensional A-module is simple.

Lemma A.30. Let V be an A-module that can be expressed as a finite sum of its simple
submodules. Then V must be isomorphic to a direct sum of some of those simple submodules.

Proof. We write V =
∑

α Vα, Vα ⊆ V all being simple modules. Then, since the number
of submodules in this sum is finite, we may pick a maximal submodule W ⊆ V such that W
is isomorphic to a direct sum of some of the Vα. If for every Vα we have Vα ⊆ W , then, since
V =

∑
α Vα, it follows that W = V , and we are done. Consequently, if W ( V , then there must

exist an Vα such that Vα *W . However, since Vα is simple, by Lem. A.26, its intersection with
W must be zero. By A.27, W ′ = W + Vα is then isomorphic to W ⊕ Vα. Then W is evidently
not maximal and we have obtained a contradiction. The lemma follows. �

Definition A.31. (Semisimple module.) Let V be an A-module. If for every submodule
W ⊆ V there exists a submodule U ⊆ V such that W ⊕ U ∼= V , then V is said to be a
semisimple module.

Lemma A.32. Every submodule of a semisimple module is itself semisimple.

Proof. Let V be a semisimple A-module, and W be a submodule of V . If W is simple,
then evidently, W is semisimple. If W is non-simple, then let X be a submodule of W . X
must also be a submodule of V , and so there exists a submodule Y ⊆ V such that X ⊕ Y ∼= V .
The intersection W ∩ Y must also be a submodule of W . Furthermore, since X ⊕ Y ∼= V ,
dim(X) + dim(Y ) = dim(V ), we have dim(X ∩Y ) = 0 by necessity, meaning that X ∩U = {0},
from which it follows that X ⊕ (W ∩ Y ) ∼= W . Thus W is semisimple. �

Simple and semisimple modules are related in an interesting way.

Lemma A.33. Let V be a A-module. Then V is semisemiple if and only if it is isomorphic a
direct sum of simple modules.
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Proof. It is clear that if V is isomorphic to a direct sum of simple modules Vi, then it may
be written as a sum of simple submodules V ′i , where for each i, Vi ∼= V ′i . By A.30, if V is a sum
of its set of simple modules, then it follows that it must be isomorphic a direct sum of some of
those simple modules. Consequently, we only need to prove that V is semisimple if and only if
it is a sum of simple modules.

Let V be a sum of simple modules, which we write V =
∑

i Vi. Pick an arbitrary submodule
W ⊆ V . Since V is of finite dimension, we may then pick a submodule U ⊆ V which is maximal
in the property that U ∩W = 0. Then U ⊕W = V . After all, if not, then there must exist
Vi ⊆ V such that Vi * (U + W ). Since Vi is simple, it may not have a non-zero overlap with
either U or W because such an overlap would be a submodule of Vi. Then, we can construct the
module Vi+U ⊆ V which is strictly larger than U and which is such that (Vi+U)∩W = 0. But
we had established that U was maximal with that very property, and so we have a contradiction.
Thus, U +W = V , and V is semisimple.

Conversely, let V be semisimple. Then, let W be the sum of all simple submodules of V .
Assume that W ( V . Since V is semisimple, there must then exist a submodule U ⊆ V such
that U ⊕W ∼= V , meaning that U ∩W = {0}. Since V is semisimple, so too must U be. We
may take submodules of U , and further submodules of submodules of U , but since V is of finite
dimensionality, so too is U , and eventually, we must reach simple submodules, if not before we
reach one-dimensional submodules, then when we reach them. These simple submodules must
then also, by definition, be in W . But U ∩W = {0}, and so we have arrived at a contradiction.
Thus V = W . �

Corollary A.34. If V is a semisimple A-module, then it is isomorphic to a direct sum of a
set of distinct simple submodules of V .

Definition A.35. (Semisimple algebra.) An algebra A is said to be semisimple if its regular
module A◦ is a semisimple module.

With that, we have now assembled enough building blocks to start building things with them.

2. The Foundational Results: Noether, Schur, and Maschke

The first important theorem we visit is Emmy Noether’s celebrated First Isomorphism Theorem.
The isomorphism theorem exists for a wide variety of structures—groups, semigroups, rings,
etc.—but here we will concern ourselves with the two structures that are immediately of interest
to us.

Theorem A.36. (The First Isomorphism Theorem for Algebras.) Let ϕ : A → B be
an algebra homomorphism. Then A/ kerϕ ∼= imϕ.

Proof. As established, kerϕ is an ideal in A, and imϕ is a subalgebra of B. Furthermore,
A/ kerϕ is an algebra. Obviously, the restricted map ϕ|A : A → imϕ, a 7→ ϕ(a) is surjective,
and we may create maps µ : A → A/ kerϕ and ν : A/ kerϕ → imϕ such that ϕ|A = ν ◦ µ, by
µ(a) = a + kerϕ ad ν(a + kerϕ) = ϕ(a). To show that this functional composition is indeed
legitimate, let us look closer.

It is readily apparent that both maps are surjective: For every a+kerϕ ∈ A/ kerϕ there exists a
pre-image under µ in a, and for every ϕ(a) ∈ imϕ, there exists a pre-image under ν in a+kerϕ.
It is easy to further see that µ is well-defined, though it might not be immediately obvious that
ν is well-defined as well. However, if ϕ(a) = ϕ(b), then 0 = ϕ(b − a), and so b − a ∈ kerϕ.
Then, a+ kerϕ = a+ b− a+ kerϕ = b+ kerϕ, and so well-definedness follows.
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All that is left is showing that ν is an isomorphism. It is already established that it is an
epimorphism, so let us establish that it is a monomorphism by determining its kernel to be
trivial. This is immediately obvious since ker ν = 0 + kerϕ which indeed is trivial. Thus,
A/ kerϕ ∼= imϕ. �

Theorem A.37. (The First Isomorphism Theorem for Modules.) Let ψ : V →W be a
module homomorphism. Then V/ kerψ ∼= imψ.

Proof. Similar to the proof of A.36. �

Next, there is the topic of Schur’s Lemma, and the author should begin by pointing out that
in the literature, there is some ambiguity as to what Schur’s Lemma actually is. Depending
on where you look, Schur’s Lemma is one of the following two which are always presented in
conjunction with one another, with the other either being a lemma you need for proving Schur’s,
or a corollary which one immediately concludes from Schur’s.

Lemma A.38. (Schur’s Lemma I.) Let V and W be simple modules of some algebra A, and let
ϕ be a homomorphism from V to W . Then, either ϕ is the zero-map, or ϕ is an isomorphism.

Proof. That the zero-map is a homomorphism from V to W is immediately obvious. All
that remains to prove is that if ϕ : V →W is not the zero-map, then ϕ must be an isomorphism.

Every homomorphism has a kernel, and since ϕ is not the zero-map, its kernel cannot be all
of V . Since the kernel of a module homomorphism is itself a module and V as established is
a simple module, the only other available option is that the kernel is trivial. The image of a
module homomorphism too must be a module, and since W is simple and ϕ is not the zero-map,
the only available option is that the image is all of W . Then, by A.37,

V/{0} ∼= V ∼= W,

and ϕ is an isomorphism. �

Lemma A.39. (Schur’s Lemma II.) Let V be a simple module of an algebra A over C. Then
HomA(V, V ) (= CEnd(V )(AV )) consists solely of scalar multiplications.

Proof. It goes without saying that multiplication by scalars are homomorphisms from V
to V itself. Given ϕ ∈ HomA(V, V ), it follows from the fact that ϕ by definition must be a
linear transformation of a vector space unto itself that ϕ has an eigenvalue λ with a non-zero
eigenvector v such that

ϕ(v) = λv.

This then means that ψ := ϕ − λ is a homomorphism from V to itself that is not invertible,
because ψ(v) = 0. Since it’s not invertible, by Lem. A.38, it must be the zero-map. Then
0 = ϕ(w)− λw and ϕ(w) = λw. This finishes the proof. �

Next, we wish to look more specifically at group algebras. As promised, we now finally revisit
the notion of the orthogonal complement.

Lemma A.40. LetG be a finite group and let V be an F[G]-module. If V admits an inner product
〈·, ·〉 which is invariant under the action of every g ∈ G (G-invariant), then V is semisimple.

Proof. We show that for every submodule W ⊆ V , its orthogonal complement with respect
to 〈·, ·〉, W⊥, is a F[G]-submodule. This is done by showing that if u ∈ W⊥, then a · u ∈ W⊥
as well for every a ∈ F[G].
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If a = 0, then av = 0, which evidently is in W⊥. If a 6= 0, then we are looking at an element of
the form

a =

|G|∑
i=1

aigi.

We now need to show that 〈au,w〉 = 0 for every u ∈W⊥ and every w ∈W . From the definitions
of inner product and the module of an algebra, we have

〈a · u,w〉 = 〈
|G|∑
i=1

aigi · u,w〉 =

|G|∑
i=1

ai〈gi · u,w〉.

Thus, if we can show that for every g ∈ G, 〈g · u,w〉 = 0, the proof is complete. From G-
invariance of the inner product, it follows that

〈g · u,w〉 = 〈g−1g · u, g−1 · w〉 = 〈u, g−1 · w〉 = 0,

where the final equality follows from u ∈ W⊥, and W being an F[G]-module, so g−1 · w ∈ W .
We are done. �

Unfortunately, not every group G is such that it admits a G-invariant inner product for all
F[G]-modules. However, if G is a finite group, things are different.

Lemma A.41. If G is a finite group, then every F[G]-module admits a G-invariant inner product.

Proof. Let V be F[G]-module, and let 〈·, ·〉 be an inner product on V that is not necessarily
G-invariant. Then the inner product 〈·, ·〉′ defined by

〈v, w〉′ =
∑
g∈G
〈g · v, g · w〉

is G-invariant. It is easily verified that 〈·, ·〉′ obeys each of the conditions A.4 (i)-(iv). Further-
more, given g, h, k ∈ G, hg = kg if and only if h = k, it follows that

〈g · v, g · w〉′ =
∑
h∈G
〈hg · v, hg · w·〉 =

∑
`∈G
〈` · v, ` · w〉 = 〈v, w〉′, ∀g ∈ G.

�

The results of Lems. A.40 and A.41 taken together forms Maschke’s theorem, which lies at the
foundation of (as we shall see) the representation theory of finite groups.

Theorem A.42. (Maschke’s Theorem.) Let G be a finite group. Then every F[G]-module
is semisimple.

Corollary A.43. The group algebra of every finite group is semisimple.

3. M-homogeneous submodules, Central Idempotents, and Wedderburn

We now construct yet another structure.

Definition A.44. (M-homogeneous submodule.) Let V be a semisimple A-module and let
M be a simple A-module. Then the sum of all simple submodules of V isomorphic to M is
called the M -homogeneous submodule of V , denoted M(V ).

In line with [52], when we are looking at the specific case of V = A◦, we shall denote the
M -homogeneous submodule of A◦ by M(A) rather than M(A◦) for notational economism.
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Lemma A.45. Let V be an A-module, and let M be an arbitrary simple A-module. Then M(V )
is a CEnd(V )(AV )-submodule of V .

Proof. Given V , it has the structure of a CEnd(V )(AV )-module under the action that for
every ϕ ∈ CEnd(V )(AV ) = HomA(V, V ), ϕ · v = ϕ(v). What we need to show is that given
θ ∈ CEnd(V )(AV ), θ(M(V )) ⊆ M(V ). Since M(V ) is the sum of all simple submodules of V
isomorphic to M , if we can show that given an M -isomorphic submodule W or V , θ(W ) ⊆M(V )
we are done. While θ acts on all of V , since we’re only interested in its action of W , we may,
without fearing running into problems later, restrict its domain to W and instead focus on
θW ∈ HomA(W,V ). Being a module homomorphism, its kernel and image must be submodules
of its domain and co-domain. Since W is simple, ker θ ∈ {{0},W}. If it is the latter, then θ
maps every element of W to 0, which lies in M(V ) and we are done. If it is the former, then
by the first isomorphism theorem, W (the domain) is isomorphic to the image, that is, θ(W ).
By transitivity of isomorphisms, θ(W ) is then isomorphic to M , and so is contained in M(V ).
Thus, M(V ) is closed under the action of CEnd(V )(AV ), and so a CEnd(V )(AV )-module. �

Lemma A.46. Let V be a semisimple A-module. As such, by Cor. A.34, it may be written as
V ∼=

⊕
iWi, where Wi are distinct simple submodules of V . Let M be any simple A-module.

M(V ) consists solely of the sum of those Wi that are isomorphic to M .

Proof. By definition,
∑

Wi
∼=M Wi ⊆ M(V ). Since the Wi are distinct,

∑
iWi = V . Take

a generic module W ⊆ V such that W ∼= M . Then, since W = W ∩ V = W ∩ (
∑

iWi) =∑
i(W ∩Wi), W ∩Wi cannot be zero for all i. If W ∩Wj 6= 0, then, since both W and Wj are

simple modules, their intersection must contain both all of W and all of Wj . In other words,
W = Wj , and so Wj

∼= M . By extension, W ⊆ {
∑

iWi|Wi
∼= M}. Since M(V ) is the sum of

all such W , it follows that M(V ) ⊆
∑

Wi
∼=M Wi. Thus, the lemma holds. �

Corollary A.47. Let V be a semisimple A-module, and let M and N be two non-isomorphic
A-modules. Then M(V ) ∩N(V ) = {0}.

Definition A.48. Let M (A) be a set of simple A-modules such that every conceivable simple
A-module is isomorphic to exactly one element in the set. M (A) is then called a representative
set of modules for the algebra A.

With this definition, we may extend A.47 into a more all-encompassing form.

Corollary A.49. Let V be a semisimple A-module. Then it is isomorphic to a direct sum of
its M -homogeneous parts, varying M over M (A),

V ∼=
⊕

M∈M (A)

M(V ).

Lemma A.50. Let A be a semisimple algebra. Then every simple A-module is isomorphic to a
submodule of A◦.

Proof. Let V be a simple A-module and let v be a nonzero element of V . Then, we may
construct the module homomorphism θ : A◦ → V by a 7→ a · v. The image of θ must be all of
V since V is a simple module and the image cannot be zero, since evidently 1A◦ ∈ A◦ maps to
v ∈ V which as established is nonzero. Thus, by A.37,

A◦/ ker θ ∼= V.

ker θ is a submodule of A◦, and since A◦ is a semisimple module, there exists U ⊆ A◦ such that
ker θ ⊕ U ∼= V . By A.27, A◦/ ker θ ∼= U . Thus U ∼= V , and the lemma is proven. �

Corollary A.51. Given any semisimple algebra A, M (A) is a finite set.
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Proof. Every simple A-module M is isomorphic to a submodule of A◦, and so M(A) 6= 0
for all M . Since A◦ ∼=

⊕
M∈M (A)M(A) is finite dimensional, it follows that M (A) must be a

finite set. �

We now have enough background to prove Wedderburn’s theorem, which we state and prove in
the form it is presented in [52].

Theorem A.52. (Wedderburn.) Let A be a semisimple algebra, and let M be a simple
A-module. Then,

(a) M(A) is an ideal of A;
(b) If W is a simple A-module, then it is annihilated by M(A) unless W ∼= M , that is, for every

w ∈W and every m ∈M(A), m · w = 0;
(c) The map φ : M(A)→ AM , x 7→ xM is injective;
(d) M(A) is a minimal ideal.

Proof. (a) To accomplish this part of the proof, we need to demonstrate that for every
a ∈ A, a ·M(A) ⊆ M(A) and M(A) · a ⊆ M(A). Since M(A) is an A-module, for every
m ∈ M(A), a ·m ∈ M(A), and so multiplication from the left is thus handled. Pertaining
to multiplication from the right, let us for each a ∈ A◦ create a map θa : A◦ → A◦,
b 7→ b · a. Evidently, this map belongs to HomA(A◦, A◦) = CEnd(A◦)(AA◦). Now, we
have already established that M(A) is a CEnd(A◦)(AA◦)-module in A.45, so it follows that
M(A) · a = θa(M(A)) ⊆M(A). Thus, M(A) is indeed an ideal in A.

(b) It has already been established in A.47 that if W � M , then W (A) ∩M(A) = {0}. Since
M(A) and W (A) are both ideals of A by the previous point, their multiplication by every
element of one with every element of the other must lie in both of them. The only way this
is possible is if m · w = w ·m = 0 for every m ∈M(A), w ∈W (A). Thus M(A) and W (A)
annihilate one another. By A.50, if W is a simple A-module, then there exists a submodule
W◦ ⊆ A◦ such that W◦ ∼= W . This means there is an isomorphism map ϕ : W◦ → W .
Given m ∈M(A), w ∈W , we then have

0 = ϕ(0) = ϕ(m · w) = m · ϕ(w),

that is, M(A) annihilates all of W .
(c) From the above, it follows that xW maps every element x ∈ M(A) to 0 if W � M . Con-

sequently, from the sum decomposition A ∼=
⊕

M∈M (A)M(A), it follows that the only part

of yM that actually maps to anything nonzero (for y ∈ A) is the component of y that lies
in M(A). We call this xM . Thus we may write yM = xM . Thus, φ maps M(A) unto AM .
To prove injectivity, we show that the kernel of φ is trivial. If x ∈M(A) and xM = 0, then
by (b), x annihilates not just every element in every module isomorphic to M , but every
module non-isomorphic to M as well, and thus all of A◦. Consequently, x ·A◦. This is only
possible if x = 0, and so the kernel is indeed trivial.

(d) We prove this by proving that every subideal of M(A) that is not M(A) itself must be
the zero ideal. Take an ideal I ⊂ M(A). This ideal is, as noted at the beginning of the
appendix, an A-module. Since M(A) is a sum of A-modules isomorphic to M , then there
must exist at least one nonzero A-module M0 ⊂ M(A), M0

∼= M such that M0 * I. Since
M0 is a simple module, M0 * I implies that M0 ∩ I = {0}. Since I is an ideal, then for
every i ∈ I, m ∈ M0, we must have i ·m = m · i = 0. That is, I annihilates M0. By (b) it
must then annihilate every module isomorphic to M0 as well, that is, the entirety of M(A).
By (c), this means that I = {0}, and we are done.

�
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The annihilation bit is of interest, as it implies that the unity element in a semisimple algebra
A can be partitioned up into a set of “subunities” so to speak, each one being the unity element
in their particular submodule Mi(A),

1A =

|M (A)|∑
i=1

ei.

These “subunities” are central idempotents in A. Central, in that they commute with every
element in the algebra and so are in the centre, and idempotent in that each and every ei obeys
ei = e2i = e3i = . . . . They turn out to be of significant interest to us in the main text.

Finally, we have enough understanding of the basic structures of algebras to tackle the question
we raised earlier in this appendix, given an algebra A and an A-module V , what is the centralizer
of this centralizer, CEnd(V )(CEnd(V )(AV ))?

4. The Double Centralizer Theorem

Theorem A.53. (Double Centralizer Theorem.) Let A be a semisimple algebra and M
a simple A-module. Then CEnd(M)(CEnd(M)(AM )) = AM .

Proof. By A.50, every simple A-module is isomorphic to a submodule of A◦, and so we
might just assume that M in this case is a submodule of A◦, since due to isomorphism, the
results we derive for such a submodule would apply to any other module isomorphic to it.

As noted way back, AM ⊆ CEnd(M)(CEnd(M)(AM )) due to the definition of what a centralizer is,
so that is already taken care of. All that remains it to prove that CEnd(M)(CEnd(M)(AM )) ⊆ AM .
That is, that for every ϕ ∈ CEnd(M)(CEnd(M)(AM )), there exists an element u ∈ A such that
ϕ(m) = u ·m.

Let θ be an arbitrary element in CEnd(M)(CEnd(M)(AM )), meaning that

θ(α(m)) = α(θ(m)), ∀α ∈ CEnd(M)(AM ), m ∈M.

Given m ∈ M , we define the vector space endomorphism αm : M → M by n 7→ n ·m. This
vector space endomorphism actually turns out to be a full-fledged module homomorphism, as
for every a ∈ A,

αm(a · x) = (a · x) ·m = a · (x ·m) = a · αm(x),

so we can safely assert that αm ∈ HomA(M,M) = CEnd(M)(AM ). Therefore, since θ ∈
CEnd(M)(CEnd(M)(AM )), given m,n ∈M , it follows that

θ(n ·m) = θ(αm(n)) = αm(θ(n)) = θ(n) ·m. (A.54)

Now, taking an arbitrary nonzero element n ∈ M , we can form a principal ideal AnA. Since
n ∈ M and M ⊆ M(A), M(A) being an ideal in its own right by A.52 (a), AnA ⊆ M(A).
However, by A.52 (d), M(A) is minimal, and so AnA = M(A). This leads to a remarkable
insight: Given any non-zero vector n ∈ M , every element x ∈ M(A) may be expressed as
x =

∑
i ai · n · bi for some set of ai’s and bi’s. In particular, this holds true for the central

idempotent associated with M(A), which acts as the identity within M(A). Call this eM .
Then, eM =

∑
i ai · n · bi for some {ai, bi}. This in turns means that given arbitrary m ∈ M ,

we have

m = eM ·m =

(∑
i

ai · n · bi

)
·m =

∑
i

(ai · n) · (bi ·m).
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Noting that M is an A-module, (ai · n), (bi ·m) ∈ M for all ai, bi ∈ A. We can then make use
of (A.54) to get

θ(m) = θ

(∑
i

(ai · n) · (bi ·m)

)
=
∑
i

θ ((ai · n) · (bi ·m))

=
∑
i

θ ((ai · n)) · (bi ·m)

=

(∑
i

θ ((ai · n)) · bi

)
·m,

that is θ(m) = u · m where u =
∑

i θ ((ai · n)) · bi. The inclusion is proven and the Double
Centralizer Theorem follows. �

Corollary A.55. Let C[G] be a group algebra of some finite group, and let M be a simple
module of this group algebra. Then (F[G])M , the set of all maps φx : M →M , φx(m) = x ·m,
x ∈ F[G], is isomorphic to the set of dim(M)× dim(M)-matrices over F, Matdim(M)×dim(M)(F).

Proof. By Maschke’s theorem (see Thm. A.42), F[G] is a semisimple algebra. By the
Double Centralizer theorem (see Thm. A.53), (F[G])M = CEnd(M)(CEnd(M)((F[G])M )). By
Schur’s lemma (see Lem. A.39), CEnd(M)((F[G])M ) = HomF[G](M,M) = F · 1. By definition,
multiplication by scalars commutes with every other element of End(M), and so CEnd(M)(F·1) =
End(M). By elementary linear algebra, End(M) ∼= Matdim(M)×dim(M)(F). The corollary is
proven. �

Specifically, this means that an n-dimensional irreducible representation of a group algebra F[G]
consists of the entire set of n× n-matrices over the field F. This is actually a fairly well-known
result, and is often used without any justification given for it. As the reader can see, however,
it’s actually far from trivial to prove it. Indeed, this entire appendix was just added to prove
that very specific thing.
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[37] Gerardo González-Sprinberg and Jean-Louis Verdier. “Points doubles rationnels et représentations

de groupes”. In: CR Acad. Sci. Paris Sér. I Math 293.2 (1981), pp. 111–113.
[38] Gerard Gonzalez-Sprinberg and J-L Verdier. “Construction géométrique de la correspon-
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