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Abstract
This paper considers multi-stage train formation with mixed usage tracks at a marshalling
yard without departure yard. A novel integer programming model for scheduling shunting
tasks as well as allocating arrival yard tracks and classification bowl tracks is presented. By
taking a comprehensive view of the marshalling yard operations, more effective schedules
can be found, and a variety of characteristics can be optimised, including shunting work
effort, number or cost of tracks, and shunting task start times. Two different objective func-
tions are evaluated: minimising work effort in terms of wagon pull-backs and minimising
track costs. A procedure for finding a hot-start solution with few wagon pull-backs is also
presented. The proposed model is tested on real data from Sävenäs marshalling yard in Swe-
den. The results show that the method is able to return an optimal schedule for a planning
period of 4 days if the hot-start solution is optimal or the remaining problem is tractable for
the heuristics in CPLEX.

Keywords
Shunting, Marshalling, Railways, Optimisation, Integer programming

1 Introduction

Freight transportation on railways is realised by unit trains or wagonload trains. Unit trains
service origin-destination pairs whose freight volumes are large enough to fill complete
trains (point-to-point distribution), while the remaining customers are served by wagonload
trains in a hub-and-spoke network.

The hubs of the wagonload system are marshalling yards where wagons from inbound
trains are sorted into new outbound trains. Effective planning and operation of marshalling
yards is therefore a decisive factor for reliable and punctual freight transportation, and the
effectiveness of the marshalling yard also affects the overall rail system fluidity (Dirnberger
and Barkan (2007)). Unfortunately, scheduling the operations of a marshalling yard is hard
as there are different shunting tasks with complex dependencies.

In addition to generating a hard operational planning problem, marshalling yards require
expensive infrastructure. The yards consist of an arrival yard and a classification bowl with
a sophisticated braking system, and sometimes also a departure yard (see Figure 1). The
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(a) A schematic layout of a hump yard with both arrival and departure yard. The trains
depart from the departure yard.
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(b) A schematic layout of a hump yard with only an arrival yard. The trains depart from the
classification bowl.

Figure 1: Typical layout of hump yards.

arrival yard and classification bowl are often connected by a hump, and a switching system
directs the wagons to their assigned classification bowl tracks. The lay-out of the sub-yards
affects the work required to sort a given traffic, and it’s a daunting task to decide on track
investments when building or maintaining a yard. The high cost of tracks and switches must
be weighed against the yard’s ability to provide the capacity needed to effectively sort the
wagons.

In this paper, a novel mixed-integer optimisation model is used for planning the opera-
tions of a marshalling yard without a departure sub-yard. The model is based on multi-stage
train formation with mixed usage tracks (mixing tracks) and it allocates trains to tracks in
the arrival yard and in the classification bowl, and also schedules the shunting tasks. Previ-
ous models for train formation with mixing tracks have assumed a given fixed shunting task
schedule and only considered classification bowl track allocation. By taking a more com-
prehensive view of the marshalling yard operations, more effective schedules can be found,
and a variety of characteristics can be optimised, including shunting work effort, number or
cost of tracks, and shunting task start times.

1.1 Marshalling yard operations

Trains arriving to a marshalling yard are parked on the arrival yard where their wagons are
decoupled and inspected. The wagons are then rolled into the classification bowl where
they are sorted into new outbound trains. Outbound trains have fixed departure times, and
all wagons and the engine must be coupled and all departure preparations must be finished
before the departure time of an outbound train. Outbound trains depart from the classi-
fication bowl, or if the marshalling yard has a departure yard, they may be rolled to the
departure yard and depart from there. Figure 2 shows the timings of the different shunting
tasks at a marshalling yard without departure yard (corresponding to Figure 1b), as this is
the case considered in this paper.
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Figure 2: Timing requirements for shunting and work tasks for wagons at different parts
of the yard. The graph follows a wagon that arrives to the arrival yard with an inbound
train, and is pushed over the hump to a classification bowl track where its outbound train
is built. The black boxes represent time durations that have to be respected while grey
boxes are non-required occupation time. 1 = Engine decoupling and wagon inspection and
preparation. 2 = Shunt engine coupling and push preparation. 3 = Time for rolling over
hump. 4 = Coupling, brake preparation and test, time for rolling to line.

The arrival yard and the classification bowl are connected by a hump which allows
the wagons to roll from the arrival yard to the classification bowl by means of gravity. A
switching system at the end of the hump distributes the wagons on the classification bowl
tracks. Further wagon sorting can be accomplished by pulling wagons on a classification
bowl track back to the arrival yard and pushing them over the hump once more. There are
numerous tactics for sorting the wagons using roll-ins and pull-backs (see e.g. Boysen et
al. (2012) or Gatto et al. (2009) for an overview), and this paper considers the practice
used in Sweden: multi-stage train formation with mixing tracks (see next section for an
introduction, or Bohlin et al. (2015) for a more thorough description).

Multi-stage train formation with mixing tracks
There are two shunting actions for sorting wagons in a marshalling yard without departure
yard. The first action is the roll-in, which is when all wagons from an inbound train are
pushed over the hump and distributed on the classification bowl tracks. The second action is
the pull-back, which is when all wagons on a classification bowl track are pulled back to the
arrival yard and immediately pushed over the hump to be re-distributed on the classification
bowl tracks. If possible, pull-backs should be avoided as they require work and hump-time,
and wear the yard. In this paper, the number of wagon pull-backs is used as a measure for
shunting work. The number of wagon pull-backs rather than the number of pull-backs is
chosen as e.g. the coupling work effort depends on the number of wagons that take part in
each pull-back.

The operational practice considered in this paper is based on designating classification
bowl tracks as either train formation tracks or mixing tracks. The majority of the classifica-
tion bowl tracks are train formation tracks. Train formation tracks are used for compound-
ing outbound trains, and wagons that have been rolled to a train formation track will remain
there until their departure. That is, train formation tracks are never part of a pull-back. A
further restriction is that at any point in time, a train formation track may contain wagons
for one and only one outbound train. A few classification bowl tracks are designated mixing
tracks. Mixing tracks are used for temporarily storing wagons until their outbound trains



are being built. All wagons on mixing tracks have to be pulled back and rolled to their train
formation track before their departure. In reality the designation of tracks may change as
needed, but this paper assumes that tracks are in advance firmly designated as either train
formation tracks or mixing tracks.

1.2 Related Work

As marshalling yard operations are critical for an effective wagonload system, and different
yards have different operational and physical constraints, a plethora of planning problems
exists in the literature. Extensive (but non-comprehensive) classification schemes for mar-
shalling yard planning problems are found in Hansmann and Zimmerman (2008) and Ste-
fano et al. (2007). Further, Gatto et al. (2009) and Boysen et al. (2012), provide overviews
of marshalling procedures and sorting methods.

An important characteristic of marshalling yard planning methods is the number of pull-
backs allowed. Marshalling methods are either single-stage, where the wagons can be pulled
back only once, or multi-stage, where the wagons can be pulled back multiple times (Gatto
et al. (2009)). Another dividing factor is the objective function. A common objective is
to minimise the dwell-time of wagons on yards (e.g. Jaehn, Rieder and Wiehl (2015);
Haahr and Lusby (2016)). The problem formulation of this paper assumes that wagons are
pre-scheduled on departing trains and delays are not allowed. Therefore the wagon dwell-
time is given. Other common objectives are to minimise the number of tracks required for
shunting or the number of pull-backs. The model of this paper could be used to minimise
both the number of pull-backs and the number of required tracks, but our main objective is
to minimise work effort measured as the number of wagon pull-backs.

Sorting schemes are early planning methods for multi-stage train formation. The four
most commonly mentioned sorting schemes, Sorting by trains, Sorting by block, Triangular
Sorting and Geometric Sorting, are described in e.g. Gatto et al. (2009), Boysen et al.
(2012) and Jacob et al. (2011). The sorting schemes take a set of inbound wagons and sort
them into outbound trains without considering arrival or departure times. The required track
capacity and work effort differs between the schemes, and an overview of the trade-offs can
be found in Gatto et al. (2009).

There are many aspects of marshalling yard planning including e.g. track allocation,
wagon-to-train allocation, wagon ordering within trains, roll-in times, pull-back times, roll-
out times, and personnel and engine scheduling. Often one, or a few, of the aspects rather
than all are considered. For example, Jaehn, Rieder and Wiehl (2015) focuses on hump-
scheduling in a setting with given wagon-to-train assignments, no wagon ordering in trains,
and unrestricted arrival and marshalling yard capacity. Jaehn, Rieder and Wiehl (2015)
presents two heuristics and two exact branch-and-bound algorithms for finding a roll-in or-
der that minimises the weighted tardiness of outbound trains. They also model the problem
as an integer program and solve it using CPLEX 12.3. Their exact methods are faster than
CPLEX and the heuristic tabu search yields near optimal solutions.

Bohlin et al. (2015) presents three integer programming models, D-IP, GC-IP and A-IP,
for solving the multi-stage train formation problem with mixing tracks given a wagon-to-
train allocation, fixed roll-in, pull-back and roll-out times, and no wagon ordering in in-
bound or outbound trains. The models find the classification bowl track allocation that min-
imises the work effort required. The three different integer programming models are tested
using real data from Hallsberg marshalling yard for a five-month period from December



2010 to May 2011. Instances of 2 to 5 days are solved, and a rolling horizon framework is
implemented for generating schedules for even longer time periods. The best model, AI-IP,
returns optimal solutions for all instances within 340s. Gestrelius et al. (2013) introduces
an extension to GC-IP for respecting the wagon ordering in outbound trains.

Jacob et al. (2011) establishes a binary representation of a marshalling schedule and
use it to analyse various marshalling planning methods. The encoding incorporates the
ordering of wagons in the arriving and departing trains, and assumes that the roll-in order
has been pre-determined. In Maue and Nunkesser (2009) the binary encoding is used in
an integer program to generate marshalling schedules that minimise the number of extra
roll-ins. Various operational practices used at Lausanne Triage Shunting Yard are modelled,
including two separate yard sections and time-dependent use of tracks. Further, the model
can handle uniform classification bowl track capacity and a train dependent upper bound
on departure times. The model is tested on real data for one day and on a synthetic data
set. An optimal solution is found within 3 minutes for the real data set. In Marton, Maue
and Nunkesser (2009) the model is further adapted for the operational practices used at
Lausanne Triage Shunting Yard. This more detailed model took 5.75h to solve and prove
optimality for a complete day’s worth of traffic.

A paper that comprises many of the aspects of the marshalling process is Haahr and
Lusby (2016). Similarly to this paper, Haahr and Lusby (2016) considers the marshalling
yard comprehensively. However, the problem considered in Haahr and Lusby (2016) is
the hump yard block-to-track assignment (HYBA) problem, which is different from the
planning problem considered in this paper. In HYBA blocks of wagons are assigned to
classification bowl tracks. The blocks stay on the classification bowl tracks until they are
pulled out to the departure yard where outbound trains with a specific wagon ordering are
built. That is, in HYBA no pull-backs are allowed, a departure yard is required and the
wagon order in outbound trains must be respected. Further, there is no pre-determined
wagon-to-train allocation but wagons have to be assigned to departing trains going to their
destination, and the objective is to minimise the average wagon dwell-time on the yard.
Haahr and Lusby (2016) decompose the problem into three interdependent problems: the
hump sequencing problem, the block-to-track-assignment problem and the pull-out alloca-
tion problem. Heuristics are proposed for all three problems, and optimisation approaches
for the first and last. The hump sequence is decided first using rolling horizon planning and
a simplified allocation of wagons to departing trains. The hump sequence is then fixed and
the algorithm moves forward to greedily assigning blocks to tracks as the inbound trains
are rolled in, and, when the classification bowl is full, deciding on a pull-out schedule. The
pull-out schedule is either another greedy approach or a MIP that maximises the length of
wagons that are moved from the classification bowl to the departure yard. Haahr and Lusby
(2016) test different combinations of their heuristics and MIPs on three problem instances
with different classification bowl sizes (42, 59 and 58 tracks). A problem instance consists
of 42 days, and there are 702 inbound trains and 18 daily outbound trains. To gauge the
quality of the returned schedule Haahr and Lusby (2016) propose a method for calculating a
lower bound. The results show that using only heuristics gives execution times of less than
2s and yields solutions that have optimality gaps of 30-185%. By using the MIP approach
for the pull-out scheduling the solution quality is improved (optimality gaps of 5-14%) but
the execution times are prolonged (273-228s), and using both MIP approaches yields the
best results (optimality gaps from 4-13%) but takes longest time (507-570s). Haahr and
Lusby (2016) also use their model in a more strategic setting, showing that longer trains



and tracks, as well as delaying the train departure times, would improve the average wagon
dwell time.

1.3 Contributions

The contributions of this paper are summarised below.

1. A definition of the extended multi-stage train formation problem with mixing tracks
for marshalling yards with an arrival yard but no departure yard, E-MSTF(a).

2. An new integer programming model, E-IP, for the E-MSTF(a).

3. A routine for finding a hot-start solution to E-IP.

4. An evaluation of E-IP based on 12 months’ worth of data from the Sävenäs mar-
shalling yard in Sweden. Two different objective functions are tested, one for min-
imising the shunting work effort and one for minimising the cost of tracks. The
execution time and solution quality are presented.

5. A comparison of schedule quality when optimising the roll-in order in combination
with the track allocation and when using a first-come first-served roll-in order.

1.4 Limitations

The model presented in this paper is for multi-stage train formation with mixing tracks on a
marshalling yard without departure yard. It has been developed for the typical practice used
in Sweden, and assumes that the wagon-to-train assignment is given in advance by the train
bookings and must not be changed in the marshalling process.

In reality, outbound trains often have an internal wagon ordering that should be re-
spected, but this is not included in the current model. Further, shunting task times are as-
sumed to be constant rather than dependent on the number of wagons handled. The model
can handle preparation and roll-times that depends on the number of wagons for arriving
and departing trains. However, making pull-back times depend on the number of mixed
wagons would require further modelling.

Another simplification when it comes to the mixing track modelling is that all wagons
on all mixing tracks are assumed to be pulled-back at the same time. In reality only one or
a few of the mixed wagons may have to be pulled back. The number of wagon pull-backs
reported in this paper is therefore an upper bound on the number of wagon pull-backs that
would have to be executed in real life operations. Further, a pull-back moving wagons to a
departing train is assumed to have to start after a train formation track has been allocated to
the train. In reality the pull-back may start earlier as long as the wagons are not rolled to the
train formation track before it is available. Also, as stated before, the designation of tracks
as train formation tracks or mixing tracks is assumed to be predetermined and fixed.

When it comes to track lengths, the arrival yard tracks are assumed to be long enough
to accommodate any arriving train, and the classification bowl tracks are split into track
groups. A track group consists of tracks of similar length, and the shortest track length is
used to decide if a train can be allocated to the track group or not. Using track groups instead
of individual tracks makes the allocation problem easier, but may result in less effective
marshalling schedules as some track capacity is relinquished.



Finally, engine and personnel resources are assumed to be non-restrictive, and all trains
are assumed to depart from the classification bowl without requiring hump or arrival yard
capacity.

1.5 Outline of paper

The remainder of the paper is structured as follows. In Section 2, a definition of the prob-
lem, E-MSTF(a), is provided, and Section 3 introduces E-IP, a mixed-integer program-
ming model for solving E-MSTF(a). Notably, two different objective functions, one that
minimises the number of wagon pull-backs and one that minimises the cost of tracks, are
presented in Sections 3.3 and 3.4 respectively. Section 4 outlines the experimental runs, in-
cluding a procedure for finding a hot-start solution and a procedure for generating schedules
with first-come first-served roll-in order. The results are presented and discussed in Section
4.5, and the paper ends with conclusions and suggestions for future work in Section 5.

2 Problem definition

In this section the extended multi-stage train formation problem with mixing tracks for a
marshalling yard without a departure yard, E-MSTF(a), is defined. The aim is to schedule
all shunting tasks and also allocate trains to arrival yard tracks and classification bowl tracks.
The original multi-stage train formation problem was presented in Bohlin et al. (2015).

There are five important event types during marshalling. First of all, there are arrival
events and roll-in events of arriving trains. An arrival is a fixed event as it has pre-planned
time that the marshalling schedule should respect. On the other hand, a roll-in is a shunting
task that should be scheduled, and it doesn’t have a pre-planned fixed time but rather a time
period during which it can be executed. Let ai and ri denote the arrival and roll-in of an
inbound train i. For the departing trains there are two important event types. The first type
is build events, which is when a train formation track is allocated to a departing train, and
the compounding of the train can start. Builds are variable events. The second event type
is departure events. A departure is a fixed event with a pre-planned time that should be
respected. Let bj and dj denote the build and departure of an outbound train j. The fifth
type of event, which is not connected to any specific train, is pull-back events. Pull-backs
are variable events, denoted p ∈ P .

Events have timing constraints that must be fulfilled (see Figure 2). The time required
between an event e1 and e2 is given by ∆e1e2 . For a marshalling schedule to be feasible
it must provide a time feasible ordering of events that allows for all departing trains to be
compounded before their departure time. For example, if wagons for a departing train j are
rolled in before the build of j, then there must be a pull-back after the build of j but before
its departure.

But from a feasible event schedule a complete marshalling plan also requires track al-
locations. Assume a marshalling yard with an arrival yard and a classification bowl. The
arrival yard consists of T a number of tracks that are of sufficient length to accommodate
any arriving train. The classification bowl consists of g ∈ G train formation track groups
with unique lengths lg . Each track group g ∈ G consists of Ng tracks, and all tracks have
a length of at least lg . A train formation track is included in one and only one track group,
notably the one with the largest length lg that is smaller or equal to the track length. There
are also nmix number of mixing tracks with a combined total length of lmix.



The shunting problem consists of sorting wagons from arriving trains, i ∈ A, to depart-
ing trains, j ∈ D. The set of arriving trains that a departing train j receives wagons from is
given by A(j), and we call the set of wagons from i to j a wagon association, denoted sij .
The length of a wagon association is given by lij and the number of wagons by |sij |.

Let lj denote the length of a departing train j. A departing train has to be scheduled on
a train formation track that is long enough to accommodate the train, i.e. a departing train j
can be scheduled in a train formation track group g if lj ≤ lg . Let G(j) be the set of track
groups that train j fits on.

A train pair (j, k) is trivially schedulable if tdj + ∆dd ≤ tdk
, where tdq is the departure

time of train q and ∆dd is the time required between two departures. The set of all trivially
schedulable train pairs is denoted C. Let E(j) and F (j) be the set of trains that are trivially
schedulable before respectively after departing train j. Note that if a train exists in E(j) it
can not exist in F (j) and vice versa, and any set of trains that can be scheduled on a track
will be totally ordered. For a train j to be scheduled before a train k in the final solution
trivial schedulability is only the base requirement, and more requirements on the roll-in
times and/or pull-back times must also be fulfilled (see Section 3.3).

3 Optimisation model, E-IP

The optimisation model E-IP is an extension of the model A-IP previously presented in
Bohlin et al. (2015). E-IP has three cores: the ordering of events, the allocation of train
formation tracks, and the mixing and pull-back scheduling. Section 3.1 presents the event
ordering model, including how the order variables are used to ensure that the arrival yard
capacity is respected. The modelling of formation track allocation is then presented in
Section 3.2. Finally, Section 3.3 presents the mixing and pull-back model which interacts
with both the event ordering and the classification bowl track allocation.

3.1 Ordering of events

The events included in E-IP are arrivals a ∈ A, roll-ins r ∈ R, pull-backs p ∈ P , builds
b ∈ B and departures d ∈ D. Build events are only necessary for detailed mixing track
modelling and will be discussed in Section 3.3 rather than here. Likewise, the ordering
of pull-backs is intrinsically connected with the pull-back modelling and will therefore be
handled in Section 3.3. This leaves arrivals, roll-ins and departures to be considered in this
section.

Roll-ins are variable events that can take place any time within a predefined time range.
For example, the earliest possible time for a roll-in of arriving train i is tai

+ ∆ar, where
tai

is the arrival time of train i and ∆ar is the time required for preparations before roll-in
(inspection and decoupling). Further, if train j is the train with the earliest departure time
that train i is associated with, train i must be rolled in at latest at time tdj − ∆rd where
tdj is the departure time of train j and ∆rd the minimum time required between roll-in and
departure (time for rolling, coupling, and brake preparation and test). The earliest and latest
time of a variable event v is denoted T e

v and T l
v respectively. Arrivals and departures are

fixed events with fixed times. Let Tv denote the fixed time of event v. The fixed events are
totally ordered, while the roll-ins are partially ordered among themselves and also partially
ordered with fixed events. Due to the partial ordering some events have a predefined order.
The set of unordered event pairs is given by (v, q) ∈ U , and the set of ordered event pairs by



(v, q) ∈ O. Note that (v, q) is an ordered pair. That is, for unordered events both (v, q) ∈ U
and (q, v) ∈ U .

Now, the work time requirements from Figure 2 are ensured by timing limits and timing
constraints, and if required a binary order variable and big-M modelling is used to acti-
vate the appropriate constraint. In big-M modelling a large constant that dominates the
constraint, denoted M , is used together with decision variables to active and de-active con-
straints. The timing constrains are as follows,

tv + ∆vq −Mxqv ≤tq (v, q) ∈ U (1)

xqv + xvq =1 (v, q) ∈ U (2)

tv + ∆vq ≤tq (v, q) ∈ O (3)
tv =Tv v ∈ A ∪ D (4)

T e
v ≤ tv ≤ T l

v v ∈ R. (5)

Arrival yard capacity
All tracks on the arrival yard are assumed to be long enough to accommodate any train.
Therefore the arrival yard capacity constraint is reduced to ensuring that no more than T a

trains are parked on the arrival yard at any point in time. Recall that T a was the number of
arrival yard tracks. Let Np+d

arr (i) be the number of trains that might be on the arrival yard
when train i arrives. Some trains will definitely be on the arrival yard as their arrival times
are so close in time to the arrival of i that their roll-in preparations are not yet finished. For
other trains the roll-in preparations are finished but they may still be on the arrival yard as
their latest roll-in times have not yet passed. Call this second type of trains overlapping
ready trains. An overlapping ready train will have a roll-in event that is unordered with the
arrival event of i. Given that the arrival event of i is denoted ai let the set of roll-ins that are
unordered with ai be denoted U(ai). Now, if train i is to fit on the arrival yard there must be
at least one available arrival yard track, i.e. at least Np+d

arr (a) − T a + 1 of the overlapping
ready trains must have been rolled in before the arrival of train i,

Np+d
arr (i)− T a + 1 ≤

∑
r∈U(ai)

xrai
i ∈ A. (6)

3.2 Train formation track allocation

The core of the train formation track allocation model is the AI-IP model presented in
Bohlin et al. (2015) but with track groups. The model is based on binary variables that
define direct successors on tracks. The binary variable xg

jk encodes the decision of putting
departing train k directly after departing train j on a train formation track in track group g,
i.e. xg

jk = 1 if train k directly follows train j on a track in g. A train must directly follow
one and only one train, and may be directly followed by one and only one train. This will
sort the departing trains into trivially schedulable chains that are allocated to specific tracks.
Note that the total ordering provided by the trivial schedulability requirement will prevent
cycles. Dummy trains u are used to mark the start of a chain. At most Ng train chains can
be allocated to a track group g, where Ng is the number of tracks in the track group. That
is, at most Ng dummy start trains can be used for a track group g. Further, a dummy train
representing the end of a chain is included in the set of trains that can follow a departing



train. The constraints are as follows,∑
g∈G(j)

∑
k∈{E(j):lk≤lg}

xg
kj =1 j ∈ D (7)

∑
g∈G(j)

∑
k∈{F (j):lk≤lg}

xg
jk =1 j ∈ D (8)

∑
j∈{D:lj≤lg}

xg
uj ≤Ng g ∈ G (9)

∑
(k,j)∈{C:lk≤lg}

xg
kj =

∑
(j,k)∈{C:lk≤lg}

xg
jk j ∈ D, g ∈ G(j). (10)

Constraints (7) ensure that one and only one train is scheduled before departing train j.
Note that this may be a dummy train if train j is the first train on a track. Constraints (8)
ensure that one and only one train is scheduled after departing train j. Once again, this may
be a dummy train if train j is the last train in a chain. Constraints (9) ensure that the number
of train chains built in each track group are fewer or equal to the number of tracks available
in the track group. Finally, constraints (10) ensure that the number of trains preceding a
train j in a track group g is the same as the number of trains following it. That is, if train j
follows a train on a track in track group g, then there will also be a train following train j
in the same track group g. Contrarily, if train j does not follow any train on a track in track
group g, then no train will follow j in track group g. This ensures that all trains in a chain
are allocated to one and only one track group.

3.3 Modelling mixing and pull-backs

Knowing which wagons that are mixed
If a departing train a is scheduled directly before a train j on a train formation track, then
wagons to train j will need to be mixed if they are rolled in before the departure of train a.
Let zij be a binary variable that takes value 1 if wagons from arriving train i to departing
train j are mixed. Then,∑

g∈G(j)∩G(a)

xg
aj ≤xdari + zij (a, j) ∈ C, i ∈ A(j). (11)

Note that zij can be used in an objective function together with |sij | to minimise the
number of mixed wagons.

Scheduling pull-backs
The time-feasibility of the pull-back schedule has to be ensured. That is, roll-ins and pull-
backs must be scheduled without time overlap on the hump.

A total ordering of pull-backs can be assumed without loss of generality, and integer
variables for counting the number of executed pull-backs are used to represent the pull-back
schedule. Every roll-in and departure is assigned an integer variable, Nv, v ∈ R ∪ D. The
variable defines the number of pull-backs that have started before the event v. The Nv

variables are constrained to be less than or equal to the maximum number of allowed pull-
backs, NM . Whenever the pull-back variable count value increases between two subsequent
events a pull-back must be scheduled to start after the first event start but before the second.



Big-M modelling and the same ordering binaries as in Constraints (1) are used to correctly
order and constrain the pull-back count variables,

Nv −Mxqv ≤Nq (v, q) ∈ U , v, q ∈ R ∪D (12)

Nv ≤Nq (v, q) ∈ O, v, q ∈ R ∪D. (13)

Now, both roll-ins and pull-backs use the hump, so a pull-back must be scheduled at
least ∆rp time after a roll-in, and a roll-in must be scheduled at least ∆pr time after a pull-
back. If two roll-ins have a pull-back between them, there must be at least ∆rp + ∆pr time
between them. Further, for any additional pull between the two roll-ins ∆pp time is needed.
In our case, ∆pp < ∆rp + ∆pr. Let d1 = ∆rp + ∆pr −∆pp. Then,

tr1 + (∆rp + ∆pr) (Nr2 −Nr1)− d1 (Nr2 −Nr1 − 1) ≤tr2 + Mxr2r1 (14)
(r2, r1) ∈ U , r1, r2 ∈ R

tr1 + (∆rp + ∆pr) (Nr2 −Nr1)− d1 (Nr2 −Nr1 − 1) ≤tr2 (15)
(r1, r2) ∈ O, r1, r2 ∈ R.

Note that the constraints assume that d1 ≤ ∆rr, and that big-M modelling is used for
the unordered events in Constraints (14).

If there is a pull-back between a roll-in and a departure, or between a departure and a
roll-in, timing constraints for ensuring hump-time feasibility are also needed. Note that in
this case the time required for any extra pulls is larger than the time required for the first
pull. This is because the time required between a pull-back and a roll-in, or between a roll-in
and a pull-back is smaller than the time required between two pull-backs. For example, let
∆rp be the time required between a roll-in and a pull-back, and let d2 = ∆pp −∆rp. Then,

tr + ∆rp (Nd −Nr) + d2 (Nd −Nr − 1) ≤td + Mxdr (16)
(d, r) ∈ U , r ∈ R, d ∈ D

tr + ∆rp (Nd −Nr) + d2 (Nd −Nr − 1) ≤td (17)
(r, d) ∈ O, r ∈ R, d ∈ D.

Similar constraints are included for pull-backs between departures and roll-ins.
Finally, a pull-back start between two departures don’t affect the departure times. How-

ever, if n pull-backs are scheduled between two departures, and n > 1, then there must be
time for at least n − 1 full pull-backs between the departures as only one pull-back can be
carried out at a time. Let ∆pp be the time required to perform a full pull-back. Then,

tv + ∆pp (Nq −Nv − 1) ≤tq (v, q) ∈ O, v, q ∈ D. (18)

But from being internally time feasible the pull-back schedule should also provide a feasible
pull-back for all mixed wagons. A mixed wagon must be moved from the mixing track to its
assigned train formation track at least a time ∆pd before its departure time to allow time for
the pull-back and departure preparations, including rolling the train from the train formation
track to the line.

Assume that train m has mixed wagons, then a pull must be scheduled after a formation
track has been made available for train m. Assume that train a directly precedes train m on
its allocated train formation track, i.e. the pair (a,m) is trivially schedulable, (a,m) ∈ C,



and has been scheduled xg
am = 1 on some track group g ∈ G(a) ∩ G(m). Then a pull-back

has to be scheduled after the departure of train a but before the departure of train m. In other
words, the number of pulls scheduled before the departure of m must be one more than the
number of pulls scheduled before the departure of a. Let xam be a variable that takes value
1 if a is not allocated directly before m and let zm be a variable that takes value 1 if m is
not mixed. The variables xam and zm are constrained using the allocation variables from
Constraints (7) to (10) and the mixing variables from Constraints (11) respectively. Now,
once again using big-M modelling,

Nda + 1 ≤ Ndm + Mxam + Mzm (a,m) ∈ C. (19)

The pull-back that moves wagons to m must be early enough to move the wagons to
the train formation track before the departure preparations of m starts. That is, the pull-
back time must be earlier than tdm − ∆pd. A trivial case for when train m can not have
mixed wagons is when the departure time of train a is too late for a pull to be carried out,
tdm
− ∆pd < tda

. If this is the case the allocation of the train combination (a,m) will
forbid wagons of train m to be mixed,∑

g∈G(a)∩G(m)

xg
am = zm (a,m) ∈ {C : tdm

−∆pd < tda
} . (20)

On the other hand, if wagons for train m are indeed mixed the pull moving wagons to m
will be pull Nda

+ 1. Any event v before pull Nda
+ 1 must therefore be scheduled earlier

than tdm − ∆pd − ∆vp, where ∆vp is the time required between event v and a pull. The
model proposed in this paper will ensure that all events that happen after pull Nda but before
pull Nda

+ 1 are scheduled early enough to allow pull Nda
+ 1 to move the mixed wagons.

However, if pulls are scheduled back-to-back and the pull time of pull Nda
restricts the start

time of pull Nda
+1 rather than any event, then it may not be enough to only consider events

between pull Nda and Nda + 1. However, as this is rarely the case this problem is ignored
and the final schedules checked to ensure there are no trains with problematic pulls. In our
problem instances there were no problematic pulls, but if there are, further constraints are
required to handle pulls before pull Nda

as well.
Now, let v ∈ S(a,m) be the set of events that may have Nv = Nda

and a time that may
be late enough to be problematic; T l

v > tdm
− ∆pd − ∆vp. Such potentially problematic

events are dealt with in two different constraint sets. First of all, potentially problematic
events that happens after the departure of a are considered. To deal with this situation timing
constraints are included. The constraints use big-M modelling to cancel the constraint if 1)
m is not allocated after a, 2) m is not mixed, 3) Nv > Nda

or 4) event v is before the
departure of a. In cases 1-2 the constraint does not need to be respected as the event is not
problematic for the combination (a,m), in case 3 the event happens after the pull moving
the mixed wagons, and finally in case 4 the event happens before the departure if a and is
dealt with in a different way. This results in the constraints,

tv + ∆vp + ∆pd ≤tdm
+ M

(
xam + zm + (Nv −Nda

) +
(
NM + 1

)
xvda

)
(21)

(a,m) ∈ C, v ∈ S(a,m), (v, da) ∈ U ,

if da and v are unordered. Equivalent constraints are used if they are ordered.
The constraints above only handle potentially problematic events that happen after the

departure of a. However, roll-ins that happen before da may also be problematic as it takes



more time to perform a roll-in and a pull-back than a departure and a pull-back. Therefore
constraints for potentially problematic roll-ins that take place before the departure of a are
included,

tr + ∆rp + ∆pd ≤ tdm
+ M

(
xam + zm + (Nda

−Nr) +
(
NM + 1

)
xdar

)
(22)

(a,m) ∈ C, r ∈ S(a,m) ∩R, (da, r) ∈ U ,

if da and r are unordered. Equivalent constraints are used if they are ordered.

Which wagons are in which pull-back
The pull-back modelling presented so far will generate a schedule for infinite mixing track
capacity. However, if the mixing track capacity is likely to be constraining, or if the number
of wagon pull-backs is to be minimised, further modelling for assigning wagons to pulls is
required.

Assume that train m may have mixed wagons from arriving train i. That is, the associ-
ation sim may be mixed. Recall that the pulls are totally ordered. Binary variables zpi are
used to determine the first pull p that sim may take part in, i.e. the first pull after the roll-in
of i. Let np be the index number of pull p ∈ P , i.e. the first pull has n1 = 1. Then,∑

p∈P
npz

p
i = Nri + 1 i ∈ A (23)

∑
p∈P

zpi = 1 i ∈ A. (24)

Another binary variable, zpm, is included to determine the first pull that association sim
can not be part of, i.e. the second pull after the build of m. Note that the first pull after
the build of m will move all wagons from the mixing track to the train formation track. Let
Nbm be an integer pull-back count variable for the build of train m equivalent to the ones
used for roll-ins and departures in Constraints (12) - (13). Then, big-M modelling can be
used to set Nbm ,

Nda −Mxam ≤ Nbm (a,m) ∈ C (25)
Nbm −Mxam ≤ Nda (a,m) ∈ C, (26)

and using the same type of constraints as in (23)-(24) the first pull that association sim may
not be present in, i.e. the second pull after the Nbm pull, can be identified,∑

p∈P
npz

p
m = Nbm + 2 m ∈ D (27)

∑
p∈P

zpm = 1 m ∈ D. (28)

Note that we require two more pulls in P than the maximum number of allowed pulls,
but these extra pulls will never be used.

Now, for an association to be present in pull p three conditions need to be fulfilled. First
of all the association must be mixed. Secondly, pull p must be after the roll-in of i, i.e. some
zqi = 1, q ≤ p. If this is not true the wagons would still be on the arrival yard during pull p.



Finally, pull p must be before the second pull after the build of m, i.e. zqm = 0,∀q ≤ p. Let
zpim be a binary variable that takes value 1 if association sim is present in pull p, then,

p∑
q=1

zqi −
p∑

q=1

zqm + zim − 1 ≤ zpim m ∈ D, i ∈ A(m), p ∈ P.

The capacity constraint of the mixing tracks can now be included by using the binary
variables zpim and the length of the association lim. As the number of wagons on mixing
tracks increases until a pull-back is carried out it is sufficient to constrain the length of
associations taking part in each pull-back. Let lmix be the total length of the mixing tracks,
then, ∑

m∈D

∑
i∈A(m)

limzpim ≤ lmix p ∈ P.

Similarly, if |sim| is the number of wagons in an association, the objective function for
minimising the number of wagon pull-backs is,

min
∑
p∈P

∑
m∈D

∑
i∈A(m)

|sim|zpim.

3.4 Evaluating track capacity requirements

The number, or cost, of tracks required in the arrival yard and the classification bowl could
be minimised. The number of arrivals tracks can be included in the objective function by
making T a a variable. To minimise the number of classification bowl tracks the number of
tracks in each track group, Ng , can be made variable and included in the objective function.
Assume that the relative cost for building and maintaining an arrival track (classification
bowl track) is carr (cgclass). The objective function that minimises the track cost is then,

min carrT
a +

∑
g∈G

cgclassNg. (29)

Note that different classification bowl track groups can have different costs. Further, as the
number of pull-backs is limited the shunting work effort will be limited. However, it may
be sensible to include additional constraints to limit the increase in work when minimising
the track cost.

4 Experiments

4.1 Data

The experiments are based on data provided by Green Cargo AB, the operator of the Sävenäs
marshalling yard. All wagon assignments for a year in combination with the yearly timetable
were used as input data. However, the data had some inconsistencies caused by e.g. mul-
tiple bookings of the same wagon and wagons being re-booked on trains that were running
late or early in real operation. Therefore the data had to be cleaned.

The problem instances consist of 4 days each, and the wagons of all departing trains
whose first wagon arrives to the marshalling yard during that time period are included.



The yard is assumed to be empty at the start of each problem instance. For minimising
the number of wagon pull-backs the entire year is divided into 4 day instances, while for
minimising the track costs (which takes longer time) a four day instance starting every 27
days was included. A step size of 27 days was used as this returns instances for different
week-day combinations approximately once per month. The number of allowed pull-backs
was set to 8, i.e. on average two per day.

The classification bowl track lengths varied from 360m to 829m. If each track is rep-
resented by its length, the track groups were as follows: {360, 362, 394}, {434, 472, 479,
481}, {522, 593, 597}, {601, 603, 609, 611, 628, 658, 685, 687, 695, 695, 695, 697}, {711,
712, 741, 741}, {806} and {829}. Two tracks of length 541m each were used as the mixing
tracks.

Finally, timing estimates were taken from Alzén (2006), where the timings of shunting
tasks have been measured for another Swedish marshalling yard, Hallsberg marshalling
yard.

4.2 Optimisation Set-up

CPLEX 12.2 was used to solve the optimisation problems. The problems consisted of the
constraints presented in this paper and some extra valid inequality constraints. The Net-
work optimiser was used for solving the root node, while the automatic method option of
CPLEX was used for the other nodes. For minimising the number of wagon pull-backs
an execution time of 30 minutes was set for E-IP, and when minimising the track cost
60 minutes was used. All classification bowl tracks were assumed to have the same cost
cclass, and experimental runs were made for three different combinations of arrival and
classification track costs: {carr = 10, cclass = 20}, {carr = 10, cclass = 0}, and finally
{carr = 0, cclass = 10}.

4.3 Generating a hot-start solution

As it sometimes takes over an hour for CPLEX to find the first feasible solution to E-IP, a
routine for finding a hot-start solution was devised. The routine starts by solving a reduced
problem, R-IP, that consists of Constraints (7) to (10), and where a fixed cost c(k,j) is used
for scheduling a train k directly before train j. The aim of R-IP is to find a classification
bowl allocation with few mixed wagons, and the cost used was the smallest number of
wagons that have to be mixed if the train pair is scheduled. That is, all trains were assumed
to be rolled in as late as possible. This problem is very similar to the one solved in Bohlin
et al. (2015), but with track groups and unrestricted mixing track capacity. Further, the time
limit used to decide if a train pair is schedulable or not was increased from 44 minutes to
156 minutes to improve the chance of finding a feasible solution to E-IP using the R-IP
classification bowl track allocation.

The classification bowl track allocation from the solution of R-IP may not be feasible
when the complete E-IP problem is considered. To find a feasible hot-start solution to E-IP
the track allocations from R-IP were softly constrained by penalising track changes, and the
number of track changes minimised. Call this problem SE-IP. CPLEX was set to return the
first feasible solution found, and the optimisation was then terminated.

If a feasible classification bowl track allocation was found the hot-start solution can
be further improved. This is done by fixing the feasible track allocation and starting an



optimisation with the original objective function. In this paper, hot-start solutions were
improved for minimising the number of wagon pull-backs, but not for minimising the track
cost, as minimising the track cost requires the track allocation to change. A maximum time
limit of 500s was set for improving the hot-start solution.

4.4 First-come first-served roll-in order

In order to gauge the effects of comprehensive marshalling yard planning the results from
solving E-IP are compared to a marshalling yard schedule where the roll-in order is the
same as the arrival order. The exact times are not fixed, but rather the event order variables.
Hot-start solutions were generated using the procedure in Section 4.3, but an execution time
limit of an hour was set for SE-IP. If no feasible solution to SE-IP had been returned within
an hour E-IP was started without a hot-start.

4.5 Results

Finding a hot-start solution
Table 1 shows the number of trains, wagons and associations of each problem instance, as
well as how many CPU seconds it took to solve R-IP and SE-IP for an unrestricted roll-
in order. As can be seen R-IP was solved in less three seconds for all problem instances.
Further, solving SE-IP took less than 54 CPU seconds for all instances but from one that
took 1296 CPU seconds.

Minimising the work effort
E-IP returned a proven optimal solution within 30 minutes in 70 out of 91 instances when
minimising the number of wagon pull-backs. Figure 3a shows the number of wagon pull-
backs in the returned solutions, and as can be seen E-IP is generally solved very quickly
for problem instances that require no or little mixing. This is often due to the hot-start
solution being optimal. The hot-start solution was optimal in 43 instances, and it took
7.3 CPU seconds on average for CPLEX to prove that a hot-start solution was optimal.
For the remaining 48 instances E-IP failed to return a proven optimal solution within 30
minutes for 21 instances, and for the other 27 instances the average execution time was 160
CPU seconds. In general, the lower bound of the model seems to be tight with respect to
the number of wagon pull-backs but it takes too long to solve the problem in the nodes
of the branch-and-bound tree, and few nodes are solved before the time limit is reached.
Therefore we conclude that E-IP might be effective for proving optimality, but is too slow
to find solutions on its own. Further, the procedure for generating a hot-start solution is
very effective for producing schedules of high quality with respect to the number of wagon
pull-backs.

The results from minimising the number of wagon pull-backs given a first-come first-
served roll-in order are shown in Figure 3b. The results are remarkably worse than for an
unrestricted roll-in order. Note that the scale on the right hand axis measuring the number
of wagon pull-backs is 10 times larger for the first-come first-served bar chart than for the
unrestricted case. Also, no solution was found for 14 instances when restricting the roll-in
order. The poor solution quality can be explained by inadequate hot-start solutions, but even
the lower bounds of the restricted roll-in order problem was higher than the solution returned



Table 1: The number of arriving trains (Arr.), departing trains (Dep.), wagons (W.) and
associations (A.) in each problem instance, and also much time it took to solve R-IP and
SE-IP. The instance name is the start day of the instance, counted from 1 January 2014.

Inst. Arr.
(#)

Dep.
(#)

W.
(#)

A.
(#)

R-IP
(CPU s)

SE-IP
(CPU s)

Inst. Arr.
(#)

Dep.
(#)

W.
(#)

A.
(#)

R-IP
(CPU s)

SE-IP
(CPU s)

1 42 62 845 217 0.5 1.3 185 59 77 1048 295 0.4 8.0
5 62 85 1292 331 0.5 6.2 189 94 117 1834 468 1.5 8.3
9 69 92 1434 404 0.7 17.3 193 55 70 999 260 0.4 4.9
13 118 123 2051 566 2.0 7.2 197 73 98 1342 354 0.6 7.5
17 61 80 1089 323 0.3 9.0 201 56 88 1136 280 0.6 8.3
21 119 137 2276 635 3.6 25.2 205 51 65 992 243 0.3 2.7
25 66 87 1306 356 0.5 4.8 209 90 109 1552 408 1.2 12.1
29 93 109 1726 498 1.3 7.6 213 50 63 833 211 0.2 2.5
33 94 111 1689 476 1.4 6.2 217 93 121 1830 497 1.6 1295.6
37 66 83 1303 367 0.5 3.1 221 62 90 1204 310 0.4 4.1
41 117 125 2290 601 1.4 15.1 225 91 115 1841 483 1.4 12.3
45 60 77 1226 330 0.5 3.5 229 89 114 1761 480 1.4 26.0
49 118 131 2183 559 2.2 8.1 233 70 87 1199 350 0.6 6.4
53 67 87 1153 343 0.5 5.3 237 108 128 1904 532 2.2 16.0
57 94 106 1871 493 0.9 11.3 241 62 77 1186 337 0.3 6.9
61 89 112 1753 494 1.4 7.9 245 115 132 2257 632 2.0 21.3
65 62 87 1383 362 0.6 9.1 249 66 86 1301 344 0.5 4.1
69 113 123 2216 576 1.5 7.7 253 92 110 1831 519 1.2 8.1
73 58 81 1223 327 0.4 4.0 257 92 107 1731 481 1.1 9.4
77 111 133 2179 592 2.3 7.8 261 65 92 1302 380 0.7 6.7
81 67 94 1347 387 0.8 5.6 265 114 132 2205 613 2.3 53.1
85 93 114 1871 514 1.7 11.5 269 63 82 1157 331 0.5 4.0
89 87 111 1745 465 1.0 13.4 273 106 127 1946 551 2.1 26.1
93 63 87 1266 354 0.7 6.1 277 54 79 891 247 0.4 3.6
97 112 122 2207 589 1.4 8.5 281 87 111 1745 468 1.7 12.2
101 60 81 1252 349 0.4 13.1 285 86 115 1636 447 2.0 6.4
105 92 112 1856 537 1.1 20.1 289 65 89 1258 348 0.6 6.1
109 29 53 569 152 0.1 18.8 293 115 128 2125 571 1.7 10.9
113 92 113 2039 570 1.3 11.2 297 61 77 1107 316 0.4 3.6
117 89 116 1774 496 1.4 26.6 301 109 128 1954 553 1.9 16.3
121 37 65 818 237 0.3 5.2 305 63 79 1109 313 0.4 4.0
125 119 127 2293 634 2.3 45.3 309 88 109 1545 465 1.3 9.6
129 60 80 1298 358 0.5 8.5 313 88 112 1621 456 1.5 11.3
133 113 134 2131 602 2.4 11.7 317 65 88 1221 346 0.6 5.5
137 65 79 1225 356 0.7 12.2 321 115 125 2175 566 1.7 15.6
141 89 105 1798 486 1.0 8.5 325 58 69 1058 303 0.3 3.1
145 82 109 1563 450 1.0 8.1 329 115 133 2076 597 2.2 17.0
149 36 56 787 220 0.1 4.2 333 66 83 1156 322 0.4 8.0
153 114 121 2154 590 1.4 7.5 337 91 104 1608 468 0.9 9.6
157 38 61 728 215 0.1 2.7 341 87 111 1745 475 1.3 11.2
161 113 132 2264 608 2.0 20.2 345 70 91 1376 404 0.8 12.0
165 67 86 1265 355 0.4 8.3 349 112 132 2047 591 2.3 39.2
169 60 82 1254 360 0.5 7.8 353 59 72 1064 304 0.2 2.8
173 85 106 1629 433 0.8 13.8 357 36 48 604 173 0.2 1.3
177 65 89 1401 379 0.6 6.0 361 48 48 698 160 0.1 2.3
181 109 123 2191 601 1.4 5.5



by E-IP with no roll-in restriction for all instances but from two. The lower bound when
enforcing a first-come first-served roll-in order is on average 11.5 wagon pull-backs higher
than the one for an unrestricted case. This indicates that it is beneficial to comprehensively
plan marshalling yards.
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(a) Results for minimising the number of wagon pull-backs with unrestricted roll-in
order.
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(b) Results for minimising the number of wagon pull-backs given a first-come first-
served roll-in order. Red bars reaching the 300 mark indicates that no solution was
found.

Figure 3: Results for minimising the number of wagon pull-backs. The line is the execution
time (left axis) and the bars show the number of wagon pull-backs (right axis). The grey
bar shows the lower bound after 30 minutes of optimisation and the black bar the returned
solution. If the optimal solution is returned the black bar is not visible. Note that the right
hand axis scale is 10 times larger for the (b) chart. The time for finding a hot-start solution
is not included.

Evaluating track costs
When minimising the track cost with costs {carr = 10, cclass = 20} the optimal solution
was never returned within the time limit of 60 minutes. The average gap was 66%, with the
smallest being 57% and the largest 69%.

In Figure 4 the number of arrival tracks (dark grey bar), the number of classification
bowl tracks (light grey bar) and the execution times (black line) are shown for the different
problem instances. The dashed red lines show the number of available tracks. In 9 instances
all tracks are used in the returned schedule, while in 5 instances the schedule uses fewer
arrival and/or classification bowl tracks. Note that as the solution was never proven optimal,
the execution time is always the time limit of 60 minutes. Experimental runs were also
made for minimising either the number of arrival tracks (classification bowl tracks have
a cost of 0) or the number of classification bowl tracks (arrival tracks have a cost of 0).
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Figure 4: Results from minimising the tracks cost. The light grey bar represents the clas-
sification bowl tracks (right axis) and the dark grey the number of arrival yard tracks (right
axis). The black line shows the execution time (left axis). The dotted red lines show the
number of available arrival and classification bowl tracks.
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Figure 5: Number of arrival tracks required when minimising different objective functions.

When minimising the number of arrival tracks the optimal solution was returned within 60
minutes for 10 out of 14 problem instances. When minimising the number of classification
bowl tracks no optimal solution was returned, and the instances had an optimality gap of on
average 70%, with the smallest gap being 63% and the largest 75%.

Figure 5 shows the number of arrival tracks utilised in the final schedules when min-
imising the track cost (black), the number of arrival tracks (dark grey) and the number of
classification bowl tracks (light grey). Figure 6 shows the number of classification bowl
tracks for the same objective functions. As can be seen, the choice of objective function
does affect the number of tracks, and especially minimising the number of arrival yard
tracks yields schedules with different track usage. Although all tracks are often required in
the schedules returned, there are some time periods when the traffic can be shunted using
fewer tracks. Identifying such periods may be useful for e.g. maintenance planning.

The inability of E-IP to return an optimal solution when minimising the track cost is
in line with the reasoning above regarding the model’s effectiveness. Very few nodes are
solved before the execution time limit, so either a good hot-start solution must be provided
or the remaining problem must be tractable for the heuristics in CPLEX. As the hot-start
solutions were generated with the aim of limiting the number of mixed wagons, and no
improvements were done before submitting them to E-IP, they are poor with respect to the
track cost. For minimising the number of arrival tracks the optimal solution is often returned
in very few iterations despite the poor hot-start. However, the solution is often returned by
the heuristics in CPLEX rather than the branch-and-bound optimisation.
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Figure 6: Number of classification bowl tracks when minimising different objective func-
tions.

5 Conclusion and future work

This paper introduced an integer programming model (E-IP) for multi-stage train formation
with mixing tracks in a marshalling yard without departure yard. The model schedules all
shunting tasks and allocates arrival and classification bowl tracks to arriving and departing
trains. The paper considered two different objective functions: one for minimising the work
effort in terms of wagon pull-backs and one for minimising the track costs.

Comprehensively planning a marshalling yard is hard but beneficial. If all aspects of
the marshalling yard planning can be handled in unity, the schedule quality and consistency
can be improved. Allowing any roll-in order rather than enforcing a first-come first-served
order decreased the lower bound from 14.6 to 3.1 wagon pull-backs, indicating that com-
prehensive planning is indeed beneficial.

Further, the results showed that while E-IP seems to provide a tight lower bound for
minimising the number of wagon pull-backs, it takes a very long time to solve and hot-
starting is favourable. Therefore, a procedure for generating a hot-start solution with few
mixed wagons was designed and presented. For a schedule with unrestricted roll-in order,
the hot-start solution was optimal in 43 out of 91 cases when minimising the number of
wagon pull-backs. In 27 of the remaining 48 cases an optimal solution could still be returned
within 30 minutes.

When it comes to minimising the track cost, the hot-start solutions were poor. For min-
imising the number of arrival tracks the problem was tractable for the heuristics in CPLEX,
and an optimal solution was returned within 60 minutes for 10 out of 14 problem instances.
However, when minimising the cost for classification bowl tracks the optimal solution was
never returned within 60 minutes.

There are a few remaining issues that would be interesting to pursue. First of all, extend-
ing the model such that back-to-back pull-backs are handled is an important step towards
completeness. Further, investigating the extent to which the track-group simplification de-
creases schedule effectiveness would be interesting. More substantial extensions would be
to include a departure yard and more detailed mixing track modelling, and also to allow for
wagon-orderings in inbound and outbound trains.

A different area that calls for work is the question of how to generate high quality hot-
start solutions for different objective functions, as well as designing other solution proce-
dures for evaluating the number of tracks required. For example, minimising the number
of wagon pull-backs for hypothetical yards with different but fixed track set-ups might be a
more apt way to gauge track requirements.
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