
A comparison of sequencing formulations in a
constraint generation procedure for avionics

scheduling

Department of Mathematics, Linköping University

Jessika Boberg

LiTH-MAT-EX–2017/18–SE

Credits: 16 hp

Level: G2

Supervisors: Emil Karlsson, Elina Rönnberg,
Department of Mathematics, Linköping University

Andreas Stenberg,
Saab AB

Examiner: Elina Rönnberg,
Department of Mathematics, Linköping University

Linköping: December 2017





Abstract

This thesis compares different mixed integer programming (MIP) formulations
for sequencing of tasks in the context of avionics scheduling. Sequencing is a
key concern in many discrete optimisation problems, and there are numerous
ways of accomplishing sequencing with different MIP formulations.

A scheduling tool for avionic systems has previously been developed in a col-
laboration between Saab and Linköping University. This tool includes a MIP
formulation of the scheduling problem where one of the model components has
the purpose to sequence tasks. In this thesis, this sequencing component is
replaced with other MIP formulations in order to study whether the computa-
tional performance of the scheduling tool can be improved.

Different scheduling instances and objective functions have been used when
performing the tests aiming to evaluate the performances, with the computa-
tional times of the entire avionic scheduling model determining the success of
the different MIP formulations for sequencing. The results show that the choice
of MIP formulation makes a considerable impact on the computational perfor-
mance and that a significant improvement can be achieved by choosing the most
suitable one.
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integer programming.
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Chapter 1

Introduction

1.1 Background

The concept of sequencing is fundamental in many optimisation problems and
is a key concern in several problem areas such as job shop scheduling, vehicle
routing and multiprocessor scheduling. As such it has been studied a great
length and there exist numerous ways of accomplishing sequencing with different
mixed-integer problem (MIP) formulations, each with different characteristics.

This thesis is part of an ongoing research collaboration between Saab AB and
Linköping university, developing solution methods for multiprocessor scheduling
problems that are relevant for the development of future avionic systems (the
electronic devices of an aircraft). The project has created a scheduling tool
based on MIP formulations and constraint generation, aiming to find a feasible
schedule or provide information if no such exists. An important component of
this tool is the mathematical model for sequencing of tasks. This thesis will
study different sequencing formulations within the scheduling tool and evaluate
which formulation that achieves the best computational performance in this
context.

Avionic systems are often large and complex, and new software functionality
is added iteratively, which is why the scheduling tool needs to be efficient. The
instances aimed to be scheduled are of industrial relevance, provided by Saab
and contain up to 20 000 tasks. In this thesis, the mathematical model imple-
mented in the scheduling tool, presented in [1], is considered to be given and
the background of this model will therefore not be discussed in detail.

Boberg, 2017. 1



2 Chapter 1. Introduction

1.2 Purpose
The purpose of this bachelor thesis is to study if the computational performance
of a scheduling tool can be improved by using different sequencing formulations.

1.3 Method
Commonly used mathematical models for sequencing will be adapted to the
constraint generation procedure which the scheduling tool is based on, and the
sequencing component of the tool will then be replaced by the adapted models.
Different objective functions and scheduling instances of industrial relevance
will be used when performing the tests in order to evaluate the performances.
It is primarily the computational times of the entire avionics scheduling model
that will be used to determine how well the different mathematical models for
sequencing performs in this context.

1.4 Limitations
The duration of the project is set to a total of 10 weeks, which limits the
number of formulations that will be studied. Since the thesis aims to compare
the formulations with an already existing model as a base, the result of this
thesis can only be considered valid in this context. Which MIP formulation
that performs best for other scheduling problems or avionic systems remains to
be further investigated.

1.5 Chapter outline
In Chapter 2, the scheduling tool and the existing avionics scheduling model is
described. Chapter 3 is a literature review of the MIP formulations that have
been studied. Chapter 4 suggests how the MIP formulations in Chapter 3 can be
adapted to the avionics scheduling model in Chapter 2 and the computational
performance of the different formulations are presented in Chapter 5. In Chapter
6, the obtained results are discussed and a conclusion is made based on the
results and discussion.



Chapter 2

An avionics scheduling
problem

This chapter contains an overview of the solution approach and the mathe-
matical model implemented in the scheduling tool developed at Saab. It also
contains an overview of the multiprocessor scheduling problem with precedence
relations and a communication network, that the scheduling tool aims to find
a feasible schedule for. A feasible schedule is represented by a starting time for
each task and a time slot for each communication message. For a more detailed
description of the problem and solution approach, see [1].

The first section of this chapter describes the system model, including the
task system, precedence relations and communication network. An overview of
the solution approach based on a MIP formulation and constraint generation is
presented in the second and third section.

2.1 System model
In this section, the system model from [1] is described. Firstly the two types
of modules, where the tasks are executed, are introduced. Secondly, two other
parts of the system (precedence relations and a communication network) are
briefly explained.

The system consists of a set of nodes and executes periodically with period P,
where each period is called a major frame. Each node has a set of modules (pro-
cessors), consisting of one communication module (CM) and a set of application
modules (AMs). The tasks are already assigned to the modules and no migra-
tion of tasks between the modules is allowed. The set of all tasks is denoted I.

Boberg, 2017. 3



4 Chapter 2. An avionics scheduling problem

Notation Description
I set of tasks
HCM set of CMs
HAM set of AMs
Ifix set of fix tasks
pi execution requirement for task i
tri release time for task i
tdi deadline for task i
trir release time for task i in section r
tdir deadline for task i in section r
lidleij idle time between task i and task j
q̃start first task of each sequence
q̃end last task of each sequence
Sh subsets on CM h
Rh sections on CM h
Isubs tasks in subset s
I+

i all possible immediate successors of task i
I−i all possible immediate predecessors of task i
Sgen set of tasks added in generated sequences

Table 2.1: The parameters and sets introduced in Chapter 2
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Every task i is executed one time every period with an execution requirement
(duration) pi, a release time (earliest starting time) tri and a deadline (latest
completion time) tdi . Task i generate an infinite succession of instances that
execute once every period for the duration of its execution requirement. The
tasks on a specific module have to be scheduled without overlapping each other
and no pre-emption of tasks is allowed (to be interrupted and then resumed at
a later stage).

2.1.1 AM
The AMs contain a small amount of tasks with long execution requirements, all
with a period of P/64. The set of all AMs is denoted HAM and the set of tasks
assigned to AM h is denoted Ih, h ∈ HAM. Each pair of AM tasks need to
have an idle time between them, denoted lidleij for the time needed between the
completion time of task i and starting time of task j if i executes before task j
in a major frame, where i ∈ Ih, j ∈ Ih and h ∈ HAM.

2.1.2 CM
The CMs contain a large amount of tasks with short execution requirements,
and an important characteristic for the solution approach used in [1] is that a
large portion of these tasks are fixed. The set of all CMs is denoted HCM and
the set of tasks assigned to CM h is denoted Ih, h ∈ HCM. The set of fixed
tasks on CM h is denoted Ifixh , h ∈ HCM. Every task on a CM has the period
of a major frame.

2.1.3 Precedence relations
There are two sets of precedence relations, called chains and dependencies.
Tasks belonging to the same chain have to be executed in a specific cycle, where
any of them can be chosen as the first one. The dependencies restricts the time
between the start of a task instance to the start of an instance of another task.
Constraints to manage both dependencies and chains are covered in [1], in this
thesis they are referred to as "Precedence relations constraints".

2.1.4 Communication network
The communication between the nodes is managed through a communication
network (CN), and each node is connected to the CN through its CM. The CN-
messages sent between the nodes have to be assigned to discrete CN-slots and
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each CM can only send or receive one CN-message in each CN-slot. The con-
straint handling the CN messages are referred to as "CN-scheduling constraints"
and are covered in [1].

2.2 Constraint generation
The mathematical model used to schedule the tasks on CMs is formulated in
a way that results in a huge number of constraints due to the large amount
of CM tasks. To avoid creating redundant constraints and variables, the data
input is firstly processed by a pre-processing component described in [1]. Two
different models are then used to generate constraints systematically instead of
all constraints being created at once. These models are presented in following
subsections as the α- and β-model, followed by the MIP formulations used for
AM and CM tasks.

In the α-model, sections on the CMs are created in-between the fix CM
tasks, and non-fixed tasks are assigned to these sections. The set of all sections
on CM h is denoted Rh, h ∈ HCM. The β-model then sequences the non-fixed
tasks within their given section. If some tasks cannot be sequenced without
overlaps occurring, constraints are added to both the α- and β-model ensuring
that these are forced to be sequenced without overlaps. This is illustrated in
Figure 2.1.

Pre-processing

α-model: Assign
tasks to sections

β-model: Sequence tasks
within given sections

Succeeded

Failed - no feasible schedule exists

Succeeded - schedule found

Failed - Add new generated sequences

Figure 2.1: Solution approach based on constraint generation.
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2.2.1 α-model

The α-model is a relaxation of the complete mathematical model since it might
not sequence all CM tasks. The aim of the α-model is to place non-fixed CM
tasks into sections while taking all other constraints in consideration. In this
thesis different objective functions to guide the assignment is used, these are
described in [1]. A consequence of the relaxation is that there are no generated
sequenced in the first iteration, but in later iterations the ones identified by the
β-model are included. The complete structure of the α-model can be described
as:

min/max Objective function
s.t. Objective constraints

Precedence relations constraints
CN-scheduling constraints
CM-assignment constraints

AM-scheduling (Constraint 2.1 - 2.5)
Generated sequences (Constraint 2.13 - 2.16)

2.2.2 β-model

The aim of the β-model is to sequence the CM tasks within the sections obtained
from a solution to the α-model. If sequencing of these tasks cannot be done
without overlapping for some section, "generated sequences" are added to both
the α- and the β-model.

With an objective function that maximizes the number of successfully se-
quenced tasks, the β-model sequences as many tasks as possible given a solution
from the α-model. The complete structure of the β-model can be summarized
as:

max Number of succesfully sequenced tasks
s.t. CN-scheduling constraints

Precedence relations constraints
AM-scheduling (Constraint 2.1-2.5)

Generated sequences (Constraint 2.13-2.16)
β-sequences (Constraint 2.6-2.12)
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2.3 Sequencing component
In this section, the mathematical models for the sequencing of AM and CM
tasks are presented. These are the parts of the problem that will be replaced by
different sequencing formulations later on in this thesis. The MIP formulations
presented here will be referred to as Formulation 0. In order to simplify the
notation for the sequencing of both AM and CM tasks, the two artificial tasks
q̃start and q̃end with execution requirement 0 are set to be the first and last tasks,
respectively, of all sequences. A variable for task i, i ∈ I, is also introduced:

xi = start time of task i offset its period start.

2.3.1 MIP formulation for AM tasks
In this section, the MIP formulation sequencing the AM tasks is presented.
The first part of the sequencing consists of the pre-processing, that for each
AM creates the sets I+

i and I−i , denoting all tasks that can be the immediate
successor and immediate predecessor of task i, respectively, i ∈ Ih, h ∈ HAM,
and is described in [1]. A binary variable is then introduced for h ∈ HAM,
i ∈ Ih, j ∈ I+

i :

yij =
{

1 if task i is the immediate predecessor of task j,
0 otherwise.

The following constraints then sequence the AM tasks:∑
j∈I+

i

yij = 1, i ∈ Ih \ {q̃end}, h ∈ HAM, (2.1)

∑
j∈I−

i

yji = 1, i ∈ Ih \ {q̃start}, h ∈ HAM, (2.2)

xi + pi + lidleij ≤ xj +M(1− yij), j ∈ I+
i , i ∈ Ih, h ∈ HAM, (2.3)

tri ≤ xi ≤ tdi − pi, i ∈ Ih, h ∈ HAM, (2.4)
yij ∈ {0, 1}, j ∈ I+

i , i ∈ Ih, h ∈ HAM (2.5)

The first two constraints make sure that all tasks have one immediate successor
and one immediate predecessor. The third constraint ensures that a task cannot
start until its immediate predecessor has finished and the needed idle time has
passed, and the fourth constraint ensures that all tasks are executed within their
given time window. For the sequencing of AM tasks, M = tdi − trj + lidleij .
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2.3.2 MIP formulation for CM tasks
This MIP formulation is used for the CM tasks in the β-model, when tasks have
already been assigned to sections, and aims to sequence all tasks that belongs to
the same section. For the CM tasks, the set Sh is introduced, such that each set
Isubs , s ∈ Sh, h ∈ HCM, includes non-fixed tasks on CM h that can, for at least
one section, be assigned together in the same section. The set I+

is denotes all
tasks that can be the immediate successor of task i in subset s and I−is denotes
all tasks that can be the immediate predecessor of task i in subset s, i ∈ Isubs ,
s ∈ Sh, h ∈ HCM. A binary variable is introduced, for i ∈ Isubs \ {q̃end}, j ∈ I+

is,
s ∈ Sh, h ∈ HCM:

yijs =
{

1 if task i is the immediate predecessor of task j in subset s,
0 otherwise.

The following binary variable is also introduced, for i ∈ Isubs , s ∈ Sh, h ∈ HCM:

βis =
{

1 if task i is successfully sequenced in subset s,
0 otherwise.

Let the subset of tasks assigned to section r be denoted by s̄r, r ∈ Rh, h ∈ HCM.
Each subset of tasks is then sequenced by the following constraints, with the
release time and the deadline of task i restricted to trir and tdir, respectively,
i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM.

∑
j∈I+

is̄r

yijs̄r
= βis̄r

, i ∈ Isubs̄r
\ {q̃end}, r ∈ Rh, h ∈ HCM, (2.6)

∑
j∈I−

is̄r

yjis̄r
= βis̄r

, i ∈ Isubs̄r
\ {q̃start}, r ∈ Rh, h ∈ HCM, (2.7)

xi + pi ≤ xj +M(1− yijs̄r ), j ∈ I+
is̄r
, i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM, (2.8)
trir ≤ xi ≤ tdir − pi, i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM, (2.9)
xi = tri , i ∈ Ifixh , h ∈ HCM, (2.10)
βis̄r
∈ {0, 1}, i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM, (2.11)
yijs̄r ∈ {0, 1}, j ∈ I+

is̄r
, i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM (2.12)

This formulation is referred to as β-sequences where βis̄r = 0 indicate that
task i could not be ensured not to overlap another task in subset s̄r, r ∈ Rh,
h ∈ HCM. For the sequencing of CM tasks, M = tdi − trj .
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2.3.3 Generated sequences
Following constraints are referred to as Generated sequences, with the set Sgen
containing all tasks in a section r that, for some solution of the α-model, has
generated at least one βis̄r = 0, r ∈ Rh, h ∈ HCM:∑
j∈I+

is

yijs = 1, i ∈ Isubs \ {q̃end}, s ∈ Sgen, (2.13)

∑
j∈I−

is

yjis = 1, i ∈ Isubs \ {q̃start}, s ∈ Sgen, (2.14)

xi + pi ≤ xj +M(1− yijs), j ∈ I+
is, i ∈ I

sub
s , s ∈ Sgen, (2.15)

yijs ∈ {0, 1}, j ∈ I+
is, i ∈ I

sub
s , s ∈ Sgen (2.16)

Just like for the β-sequences, M = tdi − trj . Since these constraints can be ob-
tained by setting βis̄r

= 1 in the MIP formulation in Section 2.3.2, the Generated
sequences will for the rest of this thesis be assumed to be created by doing so.
This leads to the requirement that the MIP formulations for sequencing of CM
tasks will have to include a β-variable with a corresponding variable definition
as the one in Section 2.3.2.



Chapter 3

MIP formulations for
sequencing

In this chapter, the MIP formulations for sequencing that have been studied for
this thesis are presented. Section 3.1-3.3 describes the formulations that have
been adapted in order to replace the sequencing component in Section 2.3.2,
while the Section 3.4 briefly mentions the ones assessed as not suitable for this
purpose.

The first two formulations, among others, have been compared in [2], with
the statement that the first one (Completion time variables) often appears in
textbooks and other literature but does not generally perform well in practice,
while the second formulation (Assignment and positional date variables) is the
choice they prefer. It is also stated that the performances of the formulations
depend on the number of tasks, total execution time of all tasks and the objective
functions.

Different objective functions can be used for all formulations presented be-
low, some with the need to add more constraints. However, since the scheduling
problem in this thesis focuses on finding a feasible schedule rather than mini-
mizing the make span, these are not discussed any further here.

In this chapter, the same notations for parameters as in Chapter 2 is used,
meaning that pi, tri and tdi denotes the execution requirement, release time and
deadline for task i, respectively. However, since the sets and variables are specific
for each MIP formulation, these are introduced separately in each section, with
the notations in this chapter mainly inspired from [2] and [6].

Boberg, 2017. 11



12 Chapter 3. MIP formulations for sequencing

3.1 Completion time variables
This formulation, first described for single machine scheduling problems in [3]
but here written as in [2], is based on a variable representing the completion
time of each task and a binary variable deciding a predecessor and a successor
for each pair of tasks. The set N contains all tasks, numbered from 1 to n. For
i ∈ N , j ∈ N and i < j, the binary variable

rij =
{

1 if task i is executed before task j,
0 if task j is executed before task i

is introduced. For i ∈ N , the following continuous variable is also presented:

Ci = completion time of task i.

Then the following constraints are presented in order to sequence the tasks:

Ci ≥ pi + tri, i ∈ N , (3.1)
Ci + pj ≤ Cj +M(1− rij), i, j ∈ N , i < j, (3.2)
Cj + pi ≤ Ci +Mrij , i, j ∈ N , i < j, (3.3)
Ci ≥ 0, i ∈ N , (3.4)
rij ∈ {0, 1}, i, j ∈ N , i < j (3.5)

Constraint (3.1) ensures that no task can start before its release time, and (3.2)
and (3.3) states that if task i is executed before task j, the starting time of
task j is greater than or equal to the completion time of task i, and vice versa.
According to [2], M is generally set greater than the sum of all executing times
and the maximum value of release times.

3.2 Assignment and positional date variables
In the formulation presented in [4], the idea is to decide in which order the
tasks should be executed by assigning them to so-called positions, with "task i
is assigned to position k" meaning that i is the k-th task to be executed. In [5],
a similar position-based sequencing formulation is presented, but with an added
continuous variable that sorts out which tasks are the immediate successors and
predecessors of each other. It is this formulation that is presented in this section.

Let the set N contain all tasks, and the set P contain all positions numbered
from 1 to n, n being the total number of tasks. For j ∈ N , k ∈ P, following
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variable is introduced:

ujk =
{

1 if task j is assigned to position k,
0 otherwise.

The following variable is also introduced, for k ∈ P:

ϕk = completion time of the task assigned to position k.

The third variable introduced is a continuous variable, but due to the constraint
structure it will only become 1 or 0. For i ∈ N , j ∈ N and k ∈ P, introduce
following variable:

qijk =


1 if task j is assigned to position k and

task i is assigned to position k − 1,
0 otherwise.

In order to sequence the tasks, following constraints are introduced:∑
k∈P

ujk = 1, j ∈ N , (3.6)∑
j∈N

ujk = 1, k ∈ P, (3.7)

ϕ1 ≥
∑
j∈N

pjuj1, (3.8)

ϕk ≥ ϕk−1 +
∑
j∈N

pjujk, k ∈ P \ {1}, (3.9)

ϕk ≥
∑
j∈N

(pj + trj)ujk, k ∈ P, (3.10)

xj + pj ≥ ϕk −M(1− ujk), j ∈ N , k ∈ P, (3.11)∑
i∈N

qijk = ujk, j ∈ N , k ∈ P \ {1}, (3.12)∑
i∈N

qjik = uj,k−1, j ∈ N , k ∈ P \ {1}, (3.13)

ϕk ≥ 0, k ∈ P, (3.14)
qijk ≥ 0, i ∈ N , j ∈ N , k ∈ P, i 6= j, (3.15)
ujk ∈ {0, 1}, j ∈ N , k ∈ P (3.16)
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The first two constraints ensure that each tasks is assigned to exactly one po-
sition and that each position has exactly one task assigned to it. Constraints
(3.8)–(3.9) ensure that no task can be finished before the finishing time of the
previous task plus its own processing time. Constraint (3.10) ensures that no
task can start before its release time, and Constraint (3.11) is added in the cases
where the objective function is to minimize the completion time of the last task.
Constraints (3.14) and (3.15) link the q-variables to the u-variables, and will
also ensure that qijk will only become 1 or 0.

3.3 On/off event-based formulation
In [6], a formulation for resource-constrained project scheduling problems is
introduced. The idea is to have so called events on which the tasks can start,
and a binary variable indicating if a specific task starts at or is still being
executed directly after a specific event. A continuous variable then decides on
what time every event takes place.

As presented in [6], this formulation includes constraints similar to depen-
dencies. These are not included here since the dependencies are already handled
elsewhere in the scheduling tool. This formulation allows for several tasks to be
executed at once, as long as they do not exceed the limited amount of resources
that the problem specifies. The set E contains all events numbered from 0 to
n − 1 and the set N contains all tasks numbered from 0 to n − 1, n being the
number of tasks. The set R denotes all resources, the parameter Bk denotes the
available amount of resource k and the parameter bik represents how much of
resource k is used during the execution of task i, k ∈ R, i ∈ N . For i ∈ N and
e ∈ E , following binary variable is introduced:

zie =
{

1 if task i starts at and/or continues directly after event e,
0 otherwise.

For e ∈ E , following continuous variable represents the time for each event:

σe = time event e.

Then the sequencing requirement can be expressed with the following con-
straints.∑
e∈E

zie ≥ 1, i ∈ N , (3.17)

σe+1 ≥ σe, e ∈ E \ {n}, (3.18)
σ0 = 0, (3.19)
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σf ≥ σe + ((zie − zi,e−1)− (zif − zi,f−1)− 1)pi,

i ∈ N , e ∈ E , f ∈ E , e < f, (3.20)

e−1∑
e′=0

zie′ ≤ e(1− (zie − zi,e−1)), e ∈ E \ {0}, (3.21)

n−1∑
e′=e

zie′ ≤ (n− e)(1 + (zie − zi,e−1)), e ∈ E \ {0}, (3.22)

n−1∑
i=0

bikzie ≤ Bk, e ∈ E , k ∈ R, (3.23)

trizie ≤ σe ≤ (tdi − pi)(zie − zi,e−1) + (tdn − pn)(1− (zie − zi,e−1)),
e ∈ E , i ∈ N , (3.24)

σe ≥ 0, e ∈ E , (3.25)
zie ∈ {0, 1}, i ∈ N , e ∈ E (3.26)

The first constraint ensures that all tasks are executed at one event or more.
Constraint (3.20) ensures that if task i starts at event e and finishes before event
f , then tf ≥ te + pi. Constraints (3.21) and (3.22) ensures no pre-emption of
tasks and Constraint (3.23) limits the amount of resources used at once. Lastly,
Constraint (3.24) ensures that the starting time fore each task occurs within its
allowed time window.

3.4 Other formulations
This section briefly describes the MIP formulations that have been studied for
this thesis but were decided not to be implemented in the avionic scheduling
tool. In Chapter 4, it is further discussed why they were considered unsuitable
for this purpose.

3.4.1 Linear ordering variables
This formulation, first described for single machine scheduling problems in [7]
and one of the MIP formulations being compared in [2], is similar to the Com-
pletion time variable formulation presented in Section 3.1 since it is also based
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on a variable rij that is equal to 1 if task i precedes task j and 0 otherwise. How-
ever, its LP-relaxation is improved compared to the Completion time variable
formulation.

3.4.2 Time index variables
This formulation was first described for single machine scheduling problems in
[8], and is one of the MIP formulations being compared in [2]. It discretizes
the planning horizon into periods 1, 2, 3, ... T , where period t starts at time
t−1 and ends at time t. The sequencing is then based on a binary variable that
decides whether a task starts on a specific period or not.

3.4.3 Start/End event-based
This formulation, presented in [6] and later corrected in [9], has several similari-
ties with the On/Off event-based formulation presented in Section 3.3. However,
it has two separate binary variables - one representing the events on which tasks
can start and the other representing the events on which they can finish. The
two event-based formulations are compared in [6], with the conclusion that the
On/Off formulation outperforms the Start/End formulation on all tested in-
stance sets.



Chapter 4

Adaptation of MIP
formulations for sequencing

This chapter describes how the MIP formulations for scheduling presented in
Chapter 3 can be adapted in order to replace the sequencing component in
Section 2.3. For each formulation, two different adaptations are presented due to
the different characteristics of AM and CM scheduling. Notations from Chapter
2 are used, meaning that the set of tasks assigned to AM h is denoted Ih,
h ∈ HAM and the set of tasks assigned to CM h is denoted Ih, h ∈ HCM. The
set of all sections on CM h is denoted Rh, h ∈ HCM, and each set Isubs , s ∈ Sh,
h ∈ HCM includes non-fixed tasks on CM h that can, for at least one section,
be assigned together in the same section. Finally, the subset of tasks assigned
to section r is denoted by s̄r, r ∈ Rh, h ∈ HCM.

When adapting MIP formulations to the sequencing component, there are
two things to consider. Firstly, the following variable have to be included in
every formulation, for i ∈ I:

xi = start time of task i offset its period start.

Secondly, all CM formulations must include a binary variable, β, representing
whether a task have been successfully sequenced or not. This is due to the
structure for creating the Generated sequences presented in Section 2.3.3.

4.1 Completion time variables
In this section, the Completion time variables formulation presented in Section
3.1 is altered so it can replace the sequencing component in Section 2.3. This

Boberg, 2017. 17
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formulation is referred to as Formulation 1 in the rest of this thesis.
The Completion time variables formulation assumes that all tasks can be

sequenced without overlaps, which is why only r-variables where i < j are
created since either task i will be executed before task j or vice versa. In order
to allow for tasks to not be sequenced, r-variables for all combinations of i and
j, i ∈ Ih, j ∈ Ih, i 6= j, are created in our adaptation.

4.1.1 AM
Introduce, for h ∈ HAM, i ∈ Ih, j ∈ Ih and i 6= j, following binary variable:

rij =
{

1 if task i is processed before task j,
0 otherwise.

In the pre-processing component, let every rij where tdi < trj be set to 1 and
corresponding rji to 0. Let the set I+

i denote all tasks that are possible succes-
sors of task i, i ∈ Ih (that is, all tasks j ∈ Ih, j 6= i, where rij has not been
given a value). The following constraints sequence the tasks:

tri ≤ xi ≤ tdi − pi, i ∈ Ih, h ∈ HAM, (4.1)
xj ≥ xi + pi + lidleij −M(1− rij), i ∈ Ih, j ∈ I+

i , h ∈ H
AM, (4.2)

rij + rji = 1, i ∈ Ih, j ∈ I+
i , h ∈ H

AM, (4.3)
rij ∈ {0, 1}, i ∈ Ih, j ∈ I+

i , h ∈ H
AM (4.4)

Constraint (4.1) ensures that all tasks start after their release time and that
they are completed before their deadline. Constraint (4.4) ensures that if task
i is not executed before task j it has to be the other way around, meaning all
tasks will be sequenced despite not having the requirement that i < j, which
the Completion time variables formulation originally has. Since xj ≥ trj ≥
trj − (tdi − (xi + pi)) = xi + pi− (tdi − trj), the same value for M as in the avionic
scheduling model can be used, i.e. M = tdi − trj + lidleij .

4.1.2 CM
Introduce, for h ∈ HCM, s ∈ Sh, i ∈ Isubs , j ∈ Isubs , i 6= j, following binary
variable:

rijs =
{

1 if task i is executed before task j in subset s,
0 otherwise.
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To handle the cases where all tasks cannot be sequenced without overlaps oc-
curring, introduce following binary variable for h ∈ HCM, s ∈ Sh, i ∈ Isubs :

βis =
{

1 if task i has been sequenced succesfully in subset s,
0 otherwise.

In the same way as with AM tasks, let the pre-processing consist of setting all
rijs where tdi < trj to 1 and corresponding rjis to 0. Then let the set I+

is̄r
denote

all tasks that is a possible successor of task i in subset s̄r, meaning all tasks j
where rijs has not been given a value and i 6= j, i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM.
Let the following constraints sequence the tasks:

trir ≤ xi ≤ tdir − pi, i ∈ Isubs̄r
, r ∈ Rh, h ∈ HCM, (4.5)

xi + pi ≤ xj +M(1− rijs̄r
), i ∈ Isubs̄r

, j ∈ I+
is̄r
, r ∈ Rh, h ∈ HCM, (4.6)

βis̄r
≤ rijs̄r

+ rjis̄r
, i ∈ Isubs̄r

, j ∈ I+
is̄r
, r ∈ Rh, h ∈ HCM, (4.7)

rijs̄r
∈ {0, 1}, i ∈ Isubs̄r

, j ∈ I+
is̄r
, r ∈ Rh, h ∈ HCM, (4.8)

βis̄r
∈ {0, 1}, i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM (4.9)

Note that these constraints are similar to Constraint (4.1)–(4.4) with the ex-
ception that due to Constraint (4.7), it is no longer a requirement that task i
is either executed before task j or vice versa. With the same reasoning as in
Section 4.1.1 but without the idle time, M = tdi − trj applies on the CM tasks.

4.2 Assignment and positional date variables
In this section, the MIP formulation presented in Section 3.2 is adapted to
the avionic scheduling problem. While this is the preferred sequencing method
according to [2], it differs more from the MIP formulations in Section 2.3.1
and 2.3.2 than the Completion time variables formulation does. For example,
this formulation does not result in the starting time of each task, which is a
requirement for a feasible schedule in this context. From now on, the AM and
CM formulations presented below will be referred to as Formulation 2.

4.2.1 AM
Based on the model in Section 3.2, we here assume that on each AM, there
exists as many positions as tasks. The idea is to, instead of arranging the tasks
relatively to each other, assign the tasks to these positions where the starting
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times are yet to be decided. Let the set Ph denote all positions on AM h,
numbered from 1 to n, with n being the number of tasks on AM h, h ∈ HAM.
Introduce, for i ∈ Ih, k ∈ Ph, h ∈ HAM:

uik =
{

1 if task i is assigned to position k,
0 otherwise.

For k ∈ Ph, h ∈ HAM, introduce following variable:

ϕk = completion time of the job assigned to position k.

To handle the idle time, it is necessary to identify which tasks are consecutive,
which causes the need of a variable similar to the extra variables in [5]. Following
variable is introduced for this purpose, for i ∈ Ih, j ∈ Ih, k ∈ Ph, h ∈ HAM:

qijk =


1 if task j is assigned to position k

and task i is assigned to position k − 1,
0 otherwise.

The following constraints then assign the tasks to positions:

∑
k∈Ph

uik = 1, i ∈ Ih, h ∈ HAM, (4.10)

∑
i∈Ih

uik = 1, k ∈ Ph, h ∈ HAM, (4.11)

ϕ0 = 0, (4.12)

ϕk ≥
∑
i∈Ih

(pi + tri )uik, k ∈ Ph, h ∈ HAM, (4.13)

ϕk ≤
∑
i∈Ih

tdi uik, k ∈ Ph, h ∈ HAM, (4.14)

ϕk ≥ ϕk−1 +
∑
j∈Ih

pjujk +
∑
i∈Ih

∑
j∈Ih

lidleij qijk,

k ∈ Ph, h ∈ HAM, (4.15)
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xi + pi ≥ ϕk −M1(1− uik), i ∈ Ih, k ∈ Ph, h ∈ HAM, (4.16)
xi + pi ≤ ϕk +M2(1− uik), i ∈ Ih, k ∈ Ph, h ∈ HAM, (4.17)∑
i∈Ih

qijk = ujk, j ∈ Ih, k ∈ Ph, h ∈ HAM, (4.18)

∑
i∈Ih

qjik = ujk−1, j ∈ Ih, k ∈ Ph, h ∈ HAM, (4.19)

uik ∈ {0, 1}, i ∈ Ih, k ∈ Ph, h ∈ HAM (4.20)

Constraint (4.10)–(4.11) ensures that every task is assigned to a position and
every position has a task assigned to it. Constraint (4.13) ensures that no task
start before its release time, Constraint (4.14) that no task is finished after its
deadline and Constraint (4.15) that there is enough time between consecutive
places. In order to obtain the starting time of every task, Constraints (4.16)
and (4.17) together ensures that xi + pi = ϕk if task i is assigned to position
k. Constraint (4.18)–(4.19) connect the q-variables to the u-variables. M1 and
M2 will in this formulation be large enough if M1 = maxi∈Ih

{tdi } − trj − pj and
M2 = maxi∈Ih

{tdi }.

4.2.2 CM
Since there is no idle time to take in consideration for the CM tasks, there is no
need for a q-variable here. However, a β-variable is needed to handle the case
where not all tasks can be sequenced without overlaps. For this formulation, let
βis represent whether or not task i has been assigned to a position in subset s.
Let Ps denote all positions in subset s, numbered from 1 to n, with n being the
number of tasks in subset s, s ∈ Sh, h ∈ HCM. Introduce a binary variable, for
i ∈ Isubs , k ∈ Ps, s ∈ Sh, h ∈ HCM:

uiks =
{

1 if task i is assigned to position k in subset s,
0 otherwise.

For k ∈ Ps, s ∈ Sh and h ∈ HCM, introduce following continuous variable:

ϕks = completion time of the task assigned to position k in subset s

For i ∈ Isubs , s ∈ Sh, h ∈ HCM, let:

βis =
{

1 if task i has been assigned a position in subset s,
0 otherwise.
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The sequencing requirements can then be formulated as∑
k∈Ps̄r

uiks̄r
= βis̄r

, i ∈ Isubs̄r
, r ∈ Rh, h ∈ HCM, (4.21)

∑
i∈Isub

s̄r

uiks̄r ≤ 1, k ∈ Ps̄r , r ∈ Rh, h ∈ HCM, (4.22)

ϕ0s̄r
= 0, r ∈ Rh, h ∈ HCM, (4.23)

ϕks̄r ≥ ϕk−1,s̄r +
∑

i∈Isub
s̄r

piuiks̄r , k ∈ Ps̄r , r ∈ Rh, h ∈ HCM, (4.24)

ϕks̄r
≥

∑
i∈Isub

s̄r

(pi + trir)uiks̄r
, k ∈ Ps̄r

, r ∈ Rh, h ∈ HCM, (4.25)

ϕks̄r
≤

∑
i∈Isub

s̄r

tdiruiks̄r
+M2(1−

∑
i∈Isub

s̄r

uiks̄r
),

k ∈ Ps̄r , r ∈ Rh, h ∈ HCM, (4.26)

xi + pi ≥ ϕks̄r
−M1(1− uiks̄r

),
i ∈ Isubs̄r

, k ∈ Ps̄r , r ∈ Rh, h ∈ HCM, (4.27)

xi + pi ≤ ϕks̄r
+M2(1− uiks̄r

),
i ∈ Isubs̄r

, k ∈ Ps̄r , r ∈ Rh, h ∈ HCM, (4.28)

ϕks̄r
≥ 0, k ∈ Ps̄r

, r ∈ Rh, h ∈ HCM, (4.29)
uiks̄r

∈ {0, 1}, i ∈ Isubs̄r
, k ∈ Ps̄r

, r ∈ Rh, h ∈ HCM, (4.30)
βis̄r ∈ {0, 1}, i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM (4.31)

Since it is not a requirement that all tasks are sequenced, all tasks will not nec-
essarily be assigned to a position and all positions will therefore not necessarily
have a task assigned to them. This is expressed in Constraints (4.21)–(4.22).
Also, allowing a position to not have a task assigned to it creates the need for
the added term in Constraint (4.24), ensuring that ϕks is not automatically
set to 0 if there is no task assigned to position k in subset s. The rest of the
constraints above are similar to the ones in Section 4.2.1, with the value of M1
and M2 being the same as in Section 4.2.1.
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4.3 On/off event-based formulation
In this section, the formulation that will be referred to as Formulation 3 in the
rest of this thesis is presented. It is based on the formulation from Section 3.3,
but since this formulation is created with a slightly different problem in mind,
several alterations need to be made in order to be comparable to the avionic
scheduling problem. For example, Constraint (3.23) that restricts the usage of
resources have to be changed to only allow for one resource with the maximum
capacity of 1, with the interpretation that only one task can be executed at
once.

4.3.1 AM
Since all tasks will be sequenced without overlaps, there will never be more
than one task being executed on the same event which means that every task
will start at one event and end before the next event. This leads to the basic
idea of this formulation becoming quite similar to the AM part of Formulation
2 presented in Section 4.2.1. With this in mind, a variable similar to the q-
variable presented in [5] can be used in order to find out which tasks that are
consecutive. For h ∈ HAM, let the set Eh denote all events on AM h numbered
from 0 to n − 1, n being the number of tasks on AM h. For e ∈ Eh, i ∈ Ih,
h ∈ HAM, introduce a binary variable:

zie =
{

1 if task i starts at or still continues directly after event e,
0 otherwise.

For e ∈ Eh, h ∈ HAM, introduce following continuous variable:

σe = time for event e

Also, introduce following variable for e ∈ Eh, i ∈ Ih, j ∈ Ih and h ∈ HAM:

qije =
{

1 if task j starts at event e and task i starts at event e− 1,
0 otherwise.

An extra variable zi,−1 = 0 is also added, i ∈ Ih, h ∈ HAM, in order to handle
the cases where zi,e−1 occurs in a constraint where the case e = 0 is included.
The following constraints then sequence the tasks:∑
e∈E

zie ≥ 1, i ∈ Ih, h ∈ HAM, (4.32)

σe+1 ≥ σe, e ∈ Eh \ {nh − 1}, h ∈ HAM, (4.33)
σ0 = 0, (4.34)
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σf ≥ σe + ((zie − zi,e−1)− (zif − zi,f−1)− 1)pi +
∑
i∈Ih

∑
j∈Ih

lidleij qijf ,

i ∈ Ih, e ∈ Eh, f ∈ Eh, e < f, h ∈ HAM, (4.35)

e−1∑
e′=0

zie′ ≤ e(1− (zie − zi,e−1)), i ∈ Ih, e ∈ Eh, h ∈ HAM, (4.36)

n−1∑
e′=e

zie′ ≤ (n− e)(1 + (zie − zi,e−1)), i ∈ Ih, e ∈ Eh, h ∈ HAM, (4.37)

n−1∑
i=0

zie ≤ 1, e ∈ Eh, h ∈ HAM, (4.38)

trizie ≤ σe ≤ (tdi − pi)(zie − zi,e−1) +M1(1− (zie − zi,e−1)),
i ∈ Ih, e ∈ Eh, h ∈ HAM, (4.39)

xi ≥ σe −M1(1− (zie − zi,e−1)), i ∈ Ih, e ∈ Eh, h ∈ HAM, (4.40)
xi ≤ σe +M2(1− (zie − zi,e−1)), i ∈ Ih, e ∈ Eh, h ∈ HAM, (4.41)∑
i∈Ih

qije = zie, i ∈ Ih, e ∈ Eh, h ∈ HAM, (4.42)

∑
i∈Ih

qjie = zi,e−1, i ∈ Ih, e ∈ Eh, h ∈ HAM, (4.43)

σe ≥ 0, e ∈ Eh, h ∈ HAM, (4.44)
qije ≥ 0, i ∈ Ih, j ∈ Ih e ∈ Eh, h ∈ HAM, (4.45)
zie ∈ {0, 1}, i ∈ Ih, e ∈ Eh, h ∈ HAM (4.46)

Constraints (4.32)–(4.34) and (4.36)–(4.37) are practically the same as Con-
straints (3.17)–(3.19) and (3.21)–(3.22) in Section 3.3, and Constraint (4.35)
corresponds to Constraint (3.20) but with the added idle time. Constraint
(4.38) is a version of Constraint (3.23) but with only one resource with a maxi-
mum capacity of one, meaning that there can at most be one task processed on
each event. Constraint (4.39) ensures that the starting time for each task occurs
within its allowed time window. Constraints (4.40)–(4.41) gives values to the
x-variables in a similar way as in Section 4.2.1 and Constraints (4.42)–(4.43) con-
nects the q-variables to the z-variables. For this formulation,M1 = maxi∈Ih

{tdi }
and M2 = maxi∈Ih

{tdi − pi} is used.
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4.3.2 CM
Let the events in subset s be numbered from 0 to n − 1, and let the set of
these be denoted Es, where n is the total amount of tasks in subset s, s ∈ Sh,
h ∈ HCM. For e ∈ Es, i ∈ Isubs , s ∈ Sh, h ∈ HCM, introduce following binary
variable:

zies =
{

1 if task i starts at or still continues directly after event e in subset s,
0 otherwise.

For e ∈ Es, s ∈ Sh, h ∈ HCM, introduce the continuous variable

σes = time for event e in subset s

For e ∈ Es, s ∈ Sh, h ∈ HCM, also introduce a binary variable

βes =


1 if there is at most one task that executes

during event e in subset s,
0 otherwise.

Just like for the AM tasks, zi,−1,s = 0 is added for i ∈ Isubs , s ∈ Sh, h ∈ HCM.
The following constraints can then be stated to sequence the tasks:∑
e∈Es̄r

zies̄r
≥ 1, i ∈ Isubs̄r

, r ∈ Rh, h ∈ HCM, (4.47)

σe+1,s̄r
≥ σes̄r

, e ∈ Es̄r
, r ∈ Rh, h ∈ HCM, (4.48)

σ0s̄r
= 0, r ∈ Rh, h ∈ HCM, (4.49)

σfs̄r
≥ σes̄r

+ ((zis̄r
− zi,e−1,s̄r

)− (zifs̄r
− zi,f−1,s̄r

)− 1)pi,

i ∈ Isubs̄r
, e, f ∈ Es̄r , e 6= f, r ∈ Rh, h ∈ HCM, (4.50)

e−1∑
e′=0

zie′ s̄r
≤ e(1− (zies̄r − zi,e−1,s̄r )),

i ∈ Isubs̄r
, e ∈ Es̄r

, r ∈ Rh, h ∈ HCM, (4.51)

n−1∑
e′=e

zie′ s̄r
≤ (n− e)(1 + (zies̄r

− zi,e−1,s̄r
)),

i ∈ Isubs̄r
, e ∈ Es̄r

, r ∈ Rh, h ∈ HCM, (4.52)



26 Chapter 4. Adaptation of MIP formulations for sequencing

n−1∑
i=0

zies̄r
≤ n(1− βes̄r

) + 1, e ∈ Es̄r
, r ∈ Rh, h ∈ HCM, (4.53)

trirzies̄r ≤ σe ≤ (tdir − pi)(zie − zi,e−1) +M1(1− (zie − zi,e−1)),
i ∈ Isubs̄r

, e ∈ Es̄r
, r ∈ Rh, h ∈ HCM, (4.54)

xi ≥ σes̄r −M1(1− (zies̄r − zi,e−1,s̄r )),
i ∈ Isubs̄r

, e ∈ Es̄r
, r ∈ Rh, h ∈ HCM, (4.55)

xi ≤ σes̄r +M2(1− (zies̄r − zi,e−1,s̄r )),
i ∈ Isubs̄r

, e ∈ Es̄r
, r ∈ Rh, h ∈ HCM, (4.56)

σes̄r
≥ 0, e ∈ Es̄r

, r ∈ Rh, h ∈ HCM, (4.57)
zies̄r ∈ {0, 1}, i ∈ Isubs̄r

, e ∈ Es̄r , r ∈ Rh, h ∈ HCM (4.58)

The main difference between the AM formulation in Section 4.3.1 and this for-
mulation is that here, no q-variables are needed since there is no idle time to
take in consideration, but a β-variable is added just like for the other CM for-
mulations. In this case, βes indicates whether there is more than one task being
executed at event e in subset s or not. M1 and M2 here has the same values as
in Section 4.3.1.

4.4 Other formulations
In this section, it is briefly discussed why some of the MIP formulations from
Chapter 3 were not adapted to the sequencing component of the scheduling tool.

4.4.1 Linear ordering variables
Since this formulation is created with the objective to minimize the makespan,
tasks will be placed as early as possible without additional restrictions, which
is the reason for why this formulation has not been applied to this problem.

4.4.2 Time index variables
The scheduling tool executes with a time precision of about 109, meaning that
this formulation would lead to 109 periods. This would create far too many
variables to handle, which is why this formulation was considered not suitable
to apply to this specific problem.
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4.4.3 Start/End event-based
Since the On/off event-based formulation outperforms the Start/end event-
based one according to [6], this formulation was not implemented in the schedul-
ing tool. Moreover, this formulation would have to been even more altered than
the On/off even-based formulation, to the extent that the formulation was un-
recognisable, which also affected the decision to not implement it.





Chapter 5

Results

In this chapter, the computational performances of the different formulations are
presented and evaluated. In order to obtain well-founded results, the tests have
been run using eight different objective functions and three different scheduling
instances named Instance I, II and III, introduced in [1]. Instance I has 2 nodes
and a total of about 6500 tasks, Instance II has 5 nodes and a total of about 14
000 tasks and Instance III has 7 nodes and about 20 000 tasks. The portions of
fixed tasks on these instances are 65%, 54% and 53%, respectively. On all three
instances, 8 different objective functions have been tested for each combination
of one AM formulation and one CM formulation. All tests have been carried
out on a computer with two Intel Xeon E5-2640-v3 Processors (8 cores, 2.6
GHz) and a 64 GB RAM. The implementation of the scheduling tool have been
made in Python Version 3.6.0 and the MIP models have been solved by Gurobi
Optimizer Version 7.5 beta. If a feasible schedule has not been found within 24
hours, the scheduling tool has been interrupted.

The formulations presented in Section 2.3, 4.1, 4.2 and 4.3 will here be re-
ferred to as Formulation 0, 1, 2 and 3, respectively. The notation X/Y indicate
that the AM tasks are sequenced using Formulation X, and the CM tasks are
sequenced using Formulation Y. For a complete account of the results, see Ap-
pendix A.

5.1 Main computational result
This section illustrates the main computational result of Formulation 0, 1, 2 and
3 in Figure 5.1, 5.2 and 5.3. This is done by, for each point in time, illustrating
for how many of the objective functions a feasible schedule have been obtained
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Formulation Presented in Section Notation used
Current formulation

implemented in the tool 2.3 0
Completion time

variables 4.1 1
Assignment and positional

date variables 4.2 2
On/off event-

based formulation 4.3 3

Table 5.1: Notations used for the formulations presented in Chapter 2 and 3.

for the combinations 0/0, 1/1, 2/2 and 3/3, respectively. Thereafter, Table 5.2
shows which combinations of AM and CM formulations that resulted in the
single fastest completion time for the different instances.

For Instance I, a feasible schedule was obtained within 5 minutes for all
objective functions when using either combination 0/0 or 1/1. The same was
achieved within 10 and 40 minutes when using combination 2/2 and 3/3, re-
spectively, see Figure 5.1.

For Instance II, a feasible schedule was obtained within 24 hours for all
objective functions when using combination 1/1. Using combination 3/3 did
not result in any feasible schedules, while 0/0 and 2/2 both performed worse
than 1/1 but better than 3/3, see Figure 5.2.

For Instance III, neither combination 2/2 or 3/3 could produce any feasible
schedule within 24 hours. When using combination 1/1, a schedule was obtained
within 40 minutes for all 8 objective functions. When using combination 0/0,
6 of the objective functions led to a feasible schedule within 120 minutes, see
Figure 5.3.

Regarding which combination that, for its best choice of objective function,
can produce a schedule the fastest, 3/1 is the best on Instance I, 2/1 on Instance
II and 1/1 is the fastest on Instance III, see Table 5.2.
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Figure 5.1: For how many of the objective functions a feasible schedule has been
obtained on Instance I.
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Figure 5.2: For how many of the objective functions a feasible schedule has been
obtained on Instance II. Between 90 minutes and 24 hours, no more schedule
was obtained.
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Figure 5.3: For how many of the objective functions a feasible schedule has been
obtained on Instance III. Between 125 minutes and 24 hours, no more schedule
was obtained.

Instance Fastest formulation (AM/CM) Time (mm:ss)
I 3/1 02:24
II 2/1 07:47
III 1/1 10:17

Table 5.2: Combinations that resulted in the single fastest completion times for
the different instances.

5.2 Comparison of all AM/CM combinations
In this section, we want to compare the computational performance for all com-
binations of formulations for AMs and CMs. For this purpose, we look at the
median completion times of all objective functions since only half of them need
to lead to a feasible schedule in order to obtain a median time.

The three figures in this section show the median time for every combination
of formulations on the three instances, respectively. On Instance I, the median
times for CM formulation 0 combined with AM formulations 0-3, as well as CM
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formulation 1 together with AM formulations 0-3, are all around 160 seconds.
Median time for CM formulation 2 is just over 210 seconds regardless of which
AM formulation it is combined with, and when using CM formulation 3 all
median times become around 300 seconds.

On Instance II, the three best median times are obtained using CM formu-
lation 1 combined with AM formulation 0-2. The next three best times are
obtained using CM formulation 0 together with AM formulation 0-2. No com-
bination using AM formulation 3 result in an obtained median time, meaning
that a feasible schedule was found for less than half of the objective functions.
Using CM formulation 3 only results in a median time when combining it with
AM formulation 1. However, this median time is almost 150 minutes, which is
considerably higher than the other obtained median times, that are all between
10 and 70 minutes.

On Instance III, no combination using AM or CM formulation 3 results
in an obtained median time. The four best median times were obtained by
Formulation 1/1 followed by 0/1, 1/0 and 0/0.
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Figure 5.4: Median runtimes on Instance I
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Figure 5.5: Median runtimes on Instance II

* indicates the cases where no median time could be obtained (i.e. a schedule
was found within 24 hours for less than half of the objective functions).
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Figure 5.6: Median runtimes on Instance III

* indicates the cases where no median time could be obtained (i.e. a schedule
was found within 24 hours for less than half of the objective functions).
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To summarize the results, combination 0/0 and 1/1 are the fastest when
only comparing the combinations 0/0, 1/1, 2/2 and 3/3 on all three instances.
When comparing all AM/CM formulations, 0/0, 1/0, 0/1 and 1/1 have the
smallest median completion times when looking at the overall performances on
the different instances.





Chapter 6

Discussion

From the results in Section 5.1, it is clear that when using the same formulation
for both the AMs and the CMs, Formulation 1 and Formulation 0 are as good
as equal on the smallest instance. For larger instances, however, Formulation
1 performs considerably better than Formulation 0. Formulation 2 performs
better than Formulation 3, but they both perform clearly worse than the first
two formulations on all three instances.

When comparing all different combinations of AM and CM formulations,
there is a pattern indicating that the CM formulation makes a bigger impact
on the computational runtime than the AM formulation does. For example, the
single best computational time for all instances are achieved by using Formula-
tion 1 for the CM tasks but different formulations for the AM tasks. However,
the choice of AM formulation seems to matter since Formulation 3 obtains no
schedule on larger instances regardless of which CM formulation is used.

This result is not in keeping with the study made in [2], that concluded that
the Completion time variable formulation does not perform well in practice while
the Assignment and positional date variables formulation performs better. An
explanation for this could be that, even though the instances contain up to 20
000 tasks, there is generally not a particularly large amount of tasks assigned
to each section on the CMs. Therefore, it is not necessarily better with a
formulation that is efficient on many tasks.

One possible reason why Formulation 2 and 3 are considerably worse than
Formulation 1, is that there is a greater difference between these and Formula-
tion 0, which means that major adaptations had to be made and the efficiency
of the original MIP formulations can have been lost by doing this. Also, unlike
Formulation 0 and 1, there was no pre-processing done for the last two formu-
lations which also may have impacted their computational times negatively.

Boberg, 2017. 37
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In further studies, it could be investigated whether some sort of pre-processing
could improve Formulation 2 and 3. Since this study only covers sequencing in
a very specific context, another subject for future research would be to compare
these formulations in other contexts as well.

To conclude, it can be stated that the choice of mathematical model for
the sequencing component in the scheduling tool makes a considerable impact
on the computational times, especially the formulation used for CM tasks. By
replacing the sequencing component with Formulation 1, it is possible to improve
the computational time of the scheduling tool significantly.
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Appendix A

Computational results

On the following pages, all computational times are presented, meaning a total
of 16 different combinations of AM and CM formulations. The notation 3/0
indicates that the AM tasks are sequenced using Formulation 3 and the CM
tasks are sequenced using Formulation 0. "x" indicates that the time limit of
24 hours was reached without a feasible schedule being found. A table that, for
each instance, shows the median times for each combination of formulations is
also presented, with "x" indicating that no mean time was obtained (i.e. less
than half of the objective functions were completed within 24 hours).

Boberg, 2017. 41
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Table A.1: Computational times (mm:ss)
Formulations used (AM/CM)

Data instance Objective function 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3

Instance I

1 2:39 2:36 2:49 2:42 2:40 2:38 2:50 2:44
2 2:29 2:25 3:30 5:43 2:25 2:26 3:30 5:47
3 2:31 2:28 3:24 5:08 2:30 2:28 3:25 5:12
4 2:44 2:41 3:42 4:49 2:44 2:40 3:44 4:48
5 2:58 2:43 5:58 20:37 2:55 2:42 6:01 21:01
6 3:05 2:51 6:36 33:33 3:04 2:53 6:31 33:43
7 2:41 2:37 3:37 3:00 2:40 2:39 3:36 3:02
8 2:43 2:45 3:23 3:59 2:43 2:42 3:22 4:04

Table A.2: Computational times (mm:ss)
Formulations used (AM/CM)

Data instance Objective function 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3

Instance I

1 2:39 2:36 2:48 2:41 2:38 2:38 2:49 2:39
2 2:26 2:30 3:28 5:39 2:26 2:24 3:32 5:43
3 2:28 2:29 3:24 5:10 2:30 2:27 3:25 5:07
4 2:43 2:41 3:42 4:52 2:40 2:41 3:42 4:49
5 2:58 2:43 5:52 20:44 2:56 2:41 5:57 20:52
6 3:03 2:53 6:28 34:48 2:59 2:50 6:32 36:14
7 2:39 2:38 3:40 3:00 2:41 2:38 3:39 2:59
8 2:42 4:42 3:23 3:59 2:42 2:46 3:24 4:01
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Table A.3: Computational times (hh:mm:ss / mm:ss)
Objective Formulations used (AM/CM)

Data instance function 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3

Instance II

1 23:50 17:07 35:22 x 23:33 23:06 29:01 x
2 01:26:29 01:19:25 03:46:33 x x 01:20:35 06:25:42 x
3 14:17 10:22 x x 13:40 10:19 04:59:48 x
4 16:01 14:59 30:47 55:14 14:54 12:37 59:56 01:28:23
5 39:10 35:39 46:07 54:42 25:59 25:15 53:25 01:18:01
6 x 10:50 37:03 x 38:36 10:56 53:04 03:01:47
7 11:22 10:35 33:49 42:35 10:02 9:35 21:17 19:52
8 12:06 10:43 26:44 x 13:20 10:59 30:05 01:40:57

Table A.4: Computational times (hh:mm:ss / mm:ss)
Formulations used (AM/CM)

Data instance Objective function 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3

Instance II

1 17:43 17:37 19:33 19:30 x x x x
2 8:43 7:47 22:27 01:00:28 x x x x
3 16:17 10:06 x x x x x x
4 20:40 19:37 x x x x x x
5 18:24 16:12 37:33 x x x x x
6 13:04 9:58 x x x x x x
7 12:17 9:38 01:02:05 x x x x x
8 15:45 9:56 01:11:19 x x x x x
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Table A.5: Computational times (hh:mm:ss / mm:ss)
Formulations used (AM/CM)

Data instance Objective function 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3

Instance III

1 33:49 x x x 29:22 28:50 x x
2 02:04:34 01:45:06 x x 13:07 10:17 07:52:14 x
3 17:01 12:36 01:34:37 x 23:18 13:02 x x
4 x 01:03:54 01:41:25 05:58:05 x 31:02 01:20:45 x
5 x 01:03:05 01:35:30 x x 30:30 02:57:16 x
6 35:28 21:40 x x x 21:13 x x
7 38:58 18:38 01:21:50 01:05:15 22:56 19:21 02:03:30 x
8 23:57 19:49 01:08:12 x 44:17 20:22 02:03:49 x

Table A.6: Computational times (hh:mm:ss)
Formulations used (AM/CM)

Data instance Objective function 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3

Instance III

1 x x x x x x x x
2 x x x x x x x x
3 x x x x x x x x
4 x x x x x x x x
5 x x x x x x x x
6 x x x x x x x x
7 x x x x x x x x
8 x x x x x x x x
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Table A.7: Median completion times

AM/CM Instance I Instance II Instance III
0/0 0:02:42 0:19:55 0:37:13
0/1 0:02:39 0:12:55 0:24:07
0/2 0:03:34 0:36:13 1:38:27
0/3 0:04:59 x x
1/0 0:02:41 0:19:13 0:36:50
1/1 0:02:39 0:11:48 0:20:48
1/2 0:03:33 0:53:15 5:24:45
1/3 0:05:00 2:21:22 x
2/0 0:02:40 0:16:01 x
2/1 0:02:40 0:10:02 x
2/2 0:03:34 1:06:42 x
2/3 0:05:01 x x
3/0 0:02:40 x x
3/1 0:02:40 x x
3/2 0:03:35 x x
3/3 0:04:58 x x
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