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We study the influence of collisions on the dynamics of a cold non-relativistic plasma. It is shown

that even a comparatively small collision frequency can significantly change the large amplitude

wave solution. Published by AIP Publishing. https://doi.org/10.1063/1.5011299

The theory of weakly nonlinear plasma waves has been

developed during more than half a century (e.g., Refs. 1–3).

Nowadays, increasing interest is therefore instead paid to

strongly nonlinear plasma waves (e.g., Refs. 4–14). In order

to avoid too many mathematical difficulties, one then has to

focus on very simple and basic plasma phenomena. One typi-

cal example concerns the simple large amplitude solutions

for electron plasma waves. In the present brief communica-

tion, we shall thus reconsider this case in order to illustrate

the very significant effects of collisions on the singularities

which appear in the collisionless case.

The electrostatic oscillations in a cold one-component

(electron) plasma are governed by the electron continuity and

momentum equations together with the Poisson equation.

Considering the simple one-dimensional case with oscillations

along the x-axis, we write these basic equations in the form

@tnþ @xnv ¼ 0; (1)

@tvþ v@xv ¼
qe

me
E� �v; (2)

and

@xE ¼ qe

e0

ðn� n0Þ; (3)

where n is the electron density, v is the electron fluid veloc-

ity, n0 is the density of the heavy (here immobile) ions,

qe=me is the electron charge to mass ratio, and � is the elec-

tron collision frequency. We can here easily eliminate the

electric field by applying @x on both sides of the momentum

equation. What then remains is the electron continuity equa-

tion (1) together with the electron velocity equation

@x @tvþ v@xvþ �v½ � ¼ x2
p

n� n0ð Þ
n0

; (4)

where xp ¼ ðn0q2
e=e0meÞ1=2:

Instead of the variables n and v, we now choose to use

the two dimensionless variables Nðx; tÞ ¼ n=n0 and Vðx; tÞ
¼ @xv=xp, which are governed by the two coupled equations

(1) and (4).

Let us next first reconsider the collisionless case (�¼ 0)

and look for the simple solutions where both N and V are

only functions of time. Using Eq. (1) to eliminate V in Eq.

(4), we then obtain the simple, and EXACT, solution12

NðtÞ ¼ 1

1þ D cos ðxptÞ (5)

and

VðtÞ ¼ � D sin ðxptÞ
1þ D cos ðxptÞ ; (6)

where D is a constant amplitude. An arbitrary phase factor u
can, of course, be added to the solution, i.e., xpt! xptþ u,

but this is not needed here.

The solutions (5) and (6) are obviously not valid if

D � 1, as n cannot be infinitely large. In Ref. 5, the authors

kept a finite collision frequency � in the momentum equa-

tion, but assumed that � was constant. This modified the sol-

utions to some extent, although the singularities of (5) and

(6) remained.

However, as the collision frequency increases signifi-

cantly when the density approaches infinity, it is necessary to

use another model where � is a function of n. The density

dependence of the collision frequency is usually given by

�ðnÞ ¼ 2:9� 10�6T�3=2nlnK in cgs-units. Here, lnK is the

Coulomb logarithm, which has a rather complicated depen-

dence on the cut-off angle for weak collisions, but for most

practical applications15 can be put equal to 10. In addition to

a density dependent collision frequency, one may also con-

sider the effect of a finite pressure in the momentum equa-

tion. However, it turns out that such a term will not stabilize

divergent solutions of the type displayed in (5) and (6). In

Ref. 16, the thermal influence on the nonlinear oscillations

was studied for the constant collision frequency case. It was

found that the shape of the periodic solutions can be fairly

sensitive to a finite pressure,16 although the conditions for

the divergences were essentially unaffected. By contrast, as

will be demonstrated below, even a small collision frequency

can be sufficient to remove the divergence, although only if

that frequency is density dependent. Thus, we stress that the

cold plasma approximation can still be useful when a density

dependent collision frequency is considered.

For the remainder of this brief communication, we will

focus on the linear dependence of � on n. Hence, we shall

represent � as � ¼ �0n=n0, where the constant �0 is the colli-

sion frequency for n ¼ n0. With these preliminaries, we can

improve the collisionless case by again looking for solutions

where N and V depend only on time. Using (1) to express V
in terms of n, we then rewrite Eq. (4) as
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d2

dt2

n0

n

� �
¼ �x2

p

n0 � nð Þ
n

þ �0

n

dn

dt
: (7)

Equation (7) can easily be solved numerically. Our main pur-

pose is to demonstrate that a finite collision frequency

removes the singularities present in (5) and (6), but only if

the density dependence is included. Thus, we compare three

cases. Firstly, we let �0 ¼ 0 in Eq. (7). Secondly, we solve

Eq. (7) with a finite collision frequency, but ignoring the

density dependence [i.e., letting �0=n! �0=n0 in (7)].

Finally, Eq. (7) is solved with the full density dependence of

� as it stands. In Fig. 1, we thus plot three versions of the

temporal evolution of n for the same initial conditions using

these three different models. As can be seen in both the

upper and middle panels, the density diverges after a finite

time. The middle panel is almost identical to the upper panel.

The only effect of the constant collision frequency is thus to

marginally adjust the time of divergence. By contrast, in the

lower panel (with the density dependent collision frequency),

we see a nonlinear oscillation with a damping that is initially

strong, but then reduces when the amplitude of the oscilla-

tion is diminished. The removal of the divergence clearly

demonstrates the necessity to include a finite, although very

small, collision frequency, in order to significantly improve

the collisionless case.

Similar effects occur due to ionization and attachment

phenomena. In that case, we replace the right hand side in

the continuity equation with a term c which is a function of

the magnitude of the electric field.17 Using Eq. (3), we then

instead consider a simple model where c ¼ cðnÞ. The solu-

tion will then turn out to be analogous to that where a model

collision frequency �ðnÞ has been included. Surface effects

can also play a similar role (e.g., Refs. 13 and 18–20) and

lead to an equation related to Eq. (7).
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FIG. 1. The normalized density nðtÞ=n0 plotted as a function of xpt for three different models. In all panels, we have used the same initial conditions, namely

nðt ¼ 0Þ=n0 ¼ 0:49 and dnðt ¼ 0Þ=dt ¼ 0. The upper panel concerns the collisionless case �0=xp ¼ 0. In the middle panel, we have �0=xp ¼ 0:05, but the

density dependence of � is ignored. Finally, in the lower panel, the solution is based on the full model with a density dependent collision frequency and

�0=xp ¼ 0:05.
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