Postprint

This is the accepted version of a paper published in *IET Intelligent Transport Systems*. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

https://doi.org/10.1049/iet-its.2016.0263

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15727
Short-Term Traffic Forecasting Using Self-Adjusting k-Nearest Neighbours

Bin Sun¹, Wei Cheng², Prashant Goswami¹, Guohua Bai¹

¹Blekinge Institute of Technology, Karlskrona 37179, Sweden
²Kunming University of Science and Technology, Kunming 650093, China
*Corresponding author, email: wei.cheng@bth.se

Abstract: Short-term traffic forecasting is becoming more important in intelligent transportation systems. The k-nearest neighbours (kNN) method is widely used for short-term traffic forecasting. However, the self-adjustment of kNN parameters has been a problem due to dynamic traffic characteristics. This paper proposes a fully automatic dynamic procedure kNN (DP-kNN) that makes the kNN parameters self-adjustable and robust without predefined models or training for the parameters. A real-world dataset with more than one year traffic records is used to conduct experiments. The results show that DP-kNN can perform better than manually adjusted kNN and other benchmarking methods in terms of accuracy on average. This study also discusses the difference between holiday and workday traffic prediction as well as the usage of neighbour distance measurement.

1. Introduction

The paper full-text is available on [IET Digital Library](http://dx.doi.org/10.1049/iet-its.2016.0263).

The code is available on GitHub: https://github.com/SunnyBingoMe/sun2018shortterm-github

First author’s web: http://ABOUT.DMML.NU
9. References

