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Abstract

Truck transportation is a big part of goods transportation around
the world, with over 100,000 trucks per day in Sweden alone. By us-
ing adaptive cruise control, trucks can drive very close together in a
platoon. Driving close together leads to a significant reduction in air
resistance, which in turn results in lower fuel consumption. This the-
sis investigates a global coordination system that trucks can register
with, which will plan how all the trucks should drive. This system
then has to regularly change the speed profiles of individual trucks
throughout the system to automatically have them form ’platoons’ so
that they can save as much fuel as possible.

This thesis specifically investigates what happens when a new truck
assignment is registered with the system. When this happens, the sys-
tem should take this into consideration and change the truck platoons.
This might mean breaking up existing platoon or forming new ones.
This has to be done regularly in an efficient manner as more and more
assignments are added to the system. To investigate the fuel savings
of this system, a simulation engine was created. Different parameters,
such as update frequency and the time in advance that the system is
informed of new assignments, are evaluated to see how they impact
the result. In simulations of 5,000 trucks in one day, the coordina-
tion system was able to accomplish a reduction in fuel consumption
of around 7%.
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Sammanfattning

Lastbilstransport är en viktig del av godstransportering runt om i
världen. Bara i Sverige kör över 100 000 lastbilar per dag. Genom att
använda adaptiv farth̊allare kan lastbilar köra mycket nära varann i
en konvoj. Att köra tätt ihop leder till en markant reduktion i luft-
motst̊and, vilket i sin tur leder till lägre bränsleförbrukning. Detta
examensarbete undersöker ett globalt koordineringssytem som lastbi-
lar kan registrera sig i. Detta system planerar exakt hur varje lastbil
ska köra. Systemet m̊aste sedan regelbundet ändra hastighetsprofiler-
na för de olika lastbilarna i systemet s̊a att de automatiskt formar
konvojer som sparar s̊a mycket bränsle som möjligt.

Mer specifikt undersöker detta examensarbete vad som händer när
nya lastbilsuppdrag registreras i systemet. När detta händer, bör sy-
stemet ta hänsyn till detta och potentiellt ändra konvojerna. Detta kan
innebära att man bryter upp befintliga konvojer eller bildar nya. Detta
m̊aste ske regelbundet p̊a ett effektivt sätt, allt eftersom fler och fler
uppdrag läggs till i systemet. För att undersöka bränslebesparingarna i
detta system skapades en simuleringsmotor. Olika parametrar, s̊asom
uppdateringsfrekvens och förvarning innan ett nytt lastbilsuppdrag
startar, utvärderas för att se hur de p̊averkar resultatet. I en simule-
ring av 5 000 lastbilar p̊a en dag uppn̊adde systemet en minskning i
bränsleförbrukning p̊a cirka 7%.
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1 Introduction

This section introduces the thesis. The thesis seeks to reduce fuel consump-
tion of trucks by having trucks automatically form platoons. Section 1.1
looks specifically at why we are interested in how to reduce fuel consumption
and why it is important. It also introduces the concept of platooning and
how it can be used to lower the fuel consumption.

In Section 1.2 we formulate the problem of how to create a global coordinator
system that controls the trucks in the system to form platoons efficiently. It
also looks at how this thesis differs from previous research by looking more
into how to handle new assignments.

In Section 1.3 we look at how to evaluate our solution to the problem state-
ment by creating a simulation engine. Finally, in Section 1.4 the rest of the
thesis is summarized, section by section.

1.1 Motivation

Economies around the world rely on transportation to deliver goods. Some
of the most common ways of transporting goods and wares is by using ships,
trains, trucks, and airplanes. One of the most flexible modes of transporta-
tion is using trucks. Roads are more widespread than rail-tracks and airports,
and getting trucks to transport goods from point A to point B is less of a
logistical challenge than most alternatives.

The fuel consumption of trucks is an important issue, not just for the compa-
nies using them, but for society. While reducing the fuel consumption means
reduced cost (leading to a higher profit) for the companies, it also implies
lower emissions and therefore less pollution. At this time, governments are
increasingly aiming to cut down on CO2 emissions [7] [19]. Reducing fuel
consumption is therefore a topical and important issue.

To reduce fuel consumption on a large scale, the concept of platooning is
used. A platoon in this context is a set of trucks driving close together in a
line. The front truck is called the platoon leader and the rest are the platoon
followers. The trucks in the platoon can then use cooperative adaptive cruise
control to drive close to each other.
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Figure 1: A truck platoon of Scania trucks. [4]

When the platoon drives closely together, it causes a slipstream effect,
reducing the air resistance for the trucks in the back [11]. This can be seen
in Figure 2. Moving the truck forward requires energy. As air resistance
increases [9] the truck has to spend more energy to move forward. Since
more energy means spending more fuel to move forward, this technique can
be used to reduce fuel consumption. To fully take advantage of this, trucks
can slow down or speed up at certain points to meet up with other trucks
for parts of their trip.

Figure 2: The air flow for three trucks driving in a platoon. [5]

1.2 Problem Statement

To make this concept a reality, a system is needed to calculate the best way
for trucks to form platoons that minimize fuel consumption. In this system,
a global coordinator would receive requests from truck companies detailing
assignments for trucks to go from point A to point B. Using the knowledge
of all the active assignments, the coordinator system can decide how the dif-
ferent trucks should drive to form platoons that minimize fuel consumption.
The coordinator system can control the trucks using a concept of ”truck
plans”. A truck plan specifies how a truck will move from the start to the
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destination. A truck plan consists of a route to the destination and speed
information, detailing the speed to drive at at any given point of time. A
truck also has an assignment describing where it starts, where it needs to go,
and the deadline by which it has to arrive.

Previous research [35] has considered the problem of truck platooning where,
given a set of trucks with assignments, the system assigns them each a plan.
The system starts with full information of every assignment that will enter
the system. The system calculates the plans once, and never changes any of
the plans. However, this is not compatible with a real-world system where
new truck assignments come in regularly. Since this system only calculates
the plans once, it will eventually be done when all the initial trucks stop
platooning.

This thesis seeks to investigate a long-running system that handles truck
platooning in a fuel efficient manner while being able to handle new as-
signments. A long-running system is here defined as a system that runs
continuously, receiving and executing request after request, while keeping its
internal state up-to-date. This would run as a coordination system on the
Internet. As trucks start their journey, they send a request to the coordi-
nation system, registering with the system. The coordination system keeps
track of the position of all the trucks, and has the ability to update the plans
in the system.

Figure 3: The system communicates back and forth with registered trucks.
When a new assignment comes in, the new truck registers with the system.
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A long-running system brings a lot of new challenges that has to be dealt
with. Instead of running a one-time calculation to generate plans for a set
of trucks, the algorithm needs to run continuously. As more trucks enter
the system, new platoons may have to be formed and added to the system.
Existing platoons may have to split up as trucks joins different platoons.

For example, imagine three trucks driving in a platoon when a fourth truck
gets registered to the system. The system may come to the conclusion that
one of the platooning trucks would save more fuel if it split up from the
platoon and sped up to meet the new truck to form another platoon.

The main question that this thesis seeks to answer is: What percentage
of fuel saving is possible to achieve with this kind of long-running system
when running with larger, realistic amounts of trucks in the system? What
are the parameters that impact the fuel saving results, and finally how long
does simulations take and are they feasible for a real-time system?

1.3 Evaluation

A simulation engine was created to investigate the viability of a long-running
system, and the performance of different algorithms used in the system. For
evaluation, several large test sets of truck assignments were randomly gen-
erated to model real world transport assignments. These truck assignments
were then used in the simulation to investigate the effect of systematic pa-
rameter variations on the obtained fuel consumption reduction.

To calculate the efficiency of this system, we needed to calculate how much
fuel is saved by following the plans calculated by the coordination system
compared to driving like normal and following their default plans. Since it is
easy to judge the performance of a system, it also becomes easy to evaluate
different methods and algorithms in the system.

The system was tested on several different datasets. Each dataset is a set of
truck assignments with randomly sampled start positions and goals. Differ-
ent algorithms and different parameters were then swapped between to see
what net impact it had on the fuel savings.

1.4 Thesis Outline and Contributions

This section provides an outline of the thesis and describes the content and
contributions of the different sections.
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Section 2: Background This section provides the background of the
thesis. It looks at the current state of platooning, and mentions related
works.

Section 3: Computing Fuel-Efficient Plans for Platooning This
section looks at the core of the platooning system, based on work by van de
Hoef et al [37] [38]. This is the base of the coordination system, on which
the handling of new assignments is later built.

Section 4: Dynamic Updating of Plans This is the main theoreti-
cal contribution of the thesis. This section investigates how to handle new
assignments and incorporate them into the system. This involves updating
the coordination graph in an efficient manner and recalculating the solution.

Section 5: Simulation Setup This section explains the details behind
the simulation engine built for evaluating the system. It explains how the
input assignments were generated, what data is generated after running a
simulation, which parameters we are looking at, the size of the datasets as
well as the software and hardware that the simulations were run on.

Section 6: Simulation Results These are the results from the simu-
lation. It shows that for the equivalent of 5% of Sweden’s truck traffic, it is
possible to reduce fuel consumption with around 7%. The result also shows
that increasing the horizon (how long before a truck starts that the system
gets informed of the assignment) improves the result. Increasing the fre-
quency at which plans are updated also improves the fuel savings. Finally,
other aspects are investigated as well, such as the similarities between the
different clustering methods, the average length of plans, and the percentage
of platooning trucks at any given time.

Section 7: Conclusion & Future work In the final section, conclu-
sions are drawn regarding the viability of the system. The section discusses
some of the limitations and restrictions made in the thesis to limit the scope
of the investigation. It also looks at what the maximum capacity of the
system would be that still allows it to run in real-time. Finally, it looks at
future work for things that are left to investigate.
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2 Background

Platooning is a wide research area with a lot of aspects to investigate. There
are many benefits to platooning. It allows you to reduce fuel consumption,
traffic, and CO2 emissions. The background is mainly divided into two parts.
There is research on platooning, where two vehicles have to drive close to
each other to achieve a reduced air resistance. This is primarily discussed in
Section 2.1. Section 2.2 looks at how to use the concept of platooning with a
coordinator system to create and modify several platoons on a larger scale.
Finally, Section 2.3 looks at some current research projects that are working
on bringing efficient platooning into the real world.

2.1 Platooning

Platooning of trucks dates back to the 1990’s with the Chauffeur project [34]
[21] [22]. For the trucks to form platoons, they need to drive very close to
each other. A common technology for this is adaptive cruise control, which
allows vehicles to follow the speed of the vehicle ahead. There is still a lot of
research being done on adaptive cruise control [17] [26] , but for platooning
purposes there is also more specialized research into cooperative adaptive
cruise control [28] [33]. This is a type of adaptive cruise control where the
vehicles communicate using Vehicle-to-Vehicle (V2V) communication.

The idea is to let the cruise control system perform the longitudinal vehicle
control [30]. By controlling the throttle and breaks, the system can make
sure the vehicle stays at a close, but safe distance to the vehicle in front. The
latitudinal control is handled by the driver of the vehicle, who is in charging
of steering.

In addition to the work on the technology for these platooning system, there
have been experimental studies [27] with real trucks to study the act of cre-
ating and splitting up platoons.

When platooning, trucks have to decide on a platoon speed. This speed
may change based on traffic or other factors, so planning is needed to do this
as efficiently as possible. There have been multiple studies on how to do this
well [18] [29].

There has also been multiple studies on the effect that platooning can have on
traffic [20] [31]. As for studies on fuel savings, experimental studies [12] [13]
have shown fuel savings of 8-20% for a truck that follows behind another
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truck. Although this depends on the truck speed and the distance between
the trucks.

While platooning has a lot of positive effects, it can also come with some
risks. Trucks driving at a lower speed than the rest of traffic can lead to
other drivers trying to pass. However it can be hard to overtake a long pla-
toon of trucks. This can lead to safety issues where drivers get themselves
into an unsafe situation trying to overtake a long platoon. This issue, and
the specific factors involved have been studied in [24].

2.2 Coordination System

There has also been a lot of research on coordination systems for platooning.
In one study [25], instead of looking at how a global system can control all
trucks, it distributes the problem by reducing it to what they call the ”lo-
cal controller problem”. As a solution to the local controller problem, they
investigated placing controllers at junctions, and focusing on whether two
trucks coming towards the intersection should platoon or not. They refer
to a global controller, controlling the timing and routes of all the trucks, as
”computationally intractable”.

There has been studies [23] of global platooning systems before. The study
by Kammer looks at both a global and distributed solution and get fuel sav-
ings around 5-8%, depending on the parameters and number of trucks.

This work is largely based on papers written by van de Hoef et al [10] [35]
[37] [38], who formed the basis for the theory decribed in Section 3.

2.3 Current Vehicle Platooning Projects

This section describes some current, or recent, projects related to truck pla-
tooning.

California PATH - PATH is a research and development program from
University of California, Berkeley which is focused on Intelligent Transporta-
tion Systems. The program was founded in 1986 and is focused on addressing
the challenges of transportation in California [15]. Recently, the program has
done several studies on platooning [13] [16] [30] [34].

COMPANION Project - COMPANION is a project group consisting of
several partners including Scania, KTH and Volkswagen. The main goal of
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COMPANION is to develop a ”real-time coordination system to dynami-
cally create, maintain and dissolve platoons, according to a decision-making
mechanism, taking into account historical and real-time information about
the state of the infrastructure (traffic, weather, etc.). ” [1].

SARTRE - Safe Road Trains for the Environment (SARTRE) is a Euro-
pean platooning project that ran between 2009 and 2012. Its mission was
to investigate technologies behind platooning and forming of a ”road train”.
The road train is controlled both longitudinally and latitudinally by the ve-
hicle at the front of the train. This was demonstrated successfully in Sweden
at the end of the project.

3 Computing Fuel-Efficient Plans for Platoon-

ing

This section seeks to present the underlying method for computing a fuel-
efficient way to create the platoons. It is focused on looking at the trucks
that are currently registered in the system and calculating a good solution
for them from scratch. This section mostly summarizes the relevant results
of the work presented in [36] [37] [38].

In Section 4, the method for computing fuel-efficient plans will be expanded
to investigate how to handle new truck assignments.

First the model of the problem is described in Section 3.1. Then before
we start generating fuel-efficient platoons on a large-scale, we limit the scope
to focus on the platooning of two trucks. Assume there are two trucks with
separate assignments. We need to calculate if these two have any part of
their paths in common. Otherwise they will never be able to form a platoon.
This is investigated in Section 3.2.

The next step is to see if there is a fuel-efficient plan for two trucks to form a
platoon. This is described further in Section 3.3. This information can then
be used to reduce the bigger problem into combining pairwise plans into a
graph, as described in Section 3.4.

3.1 Plan and Assignment Models

Initially, we define our model. A truck assignment is defined by A = (xs, xd, ts, td),
where xs is the start, xd is the destination, ts is the start time and td is the
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deadline, by which time the truck has to be at the destination.

We also define the concept of a plan as P = (e, v, t), where e is the list
of edges (e0, e1, · · · , en) in the route from xs to xd. This list of edges does
not change over time. As a limitation in the model, the system never changes
the route of a truck. A plan describes how a truck’s assignment should be
fulfilled. The plan contains speed information, which is stored in v and t,
where v describes the different speed changes to do to synchronize with the
other trucks in the platoon. The list t describes the times when these speed
changes should take place.

The point of the system is to generate plans that minimize fuel consump-
tion. These plans can change as the truck is driving. This can happen when
a new truck assignment is created, if for example, a truck would save more
fuel platooning with the newly added truck than with the one it is currently
platooning with.

For the platoons, two trucks are considered to platoon if they are driving
along the same road on the same position. The fact that one of the trucks
will have to be slightly behind the other truck is ignored for simplicity, and
instead it is assumed that they have the same position.

3.2 Intersection of truck paths

We want to look at two trucks and determine if they can form a platoon.
The trucks each have a path that they will take to reach xd, the destination
of the truck’s assignment. This path is represented as a list of edges in a
graph. To start out with, we need to calculate if these paths intersect each
other, meaning that they share a route. The second step is to look at the
timing aspect, to see if the trucks will be able to meet up and platoon on the
shared route. This section (3.2) solely looks at finding shared routes. The
timing aspect is calculated in Section 3.3.

The two trucks will each have a route to their destinations. We define these
routes as e1 = (e10, e

1
1, · · · , e1n) and e2 = (e20, e

2
1, · · · , e2n).

We make an assumption that these two routes intersect each other for at
most one continuous section. To show this assumption, we define a function
k(x) : e −→ {0, 1} to determine if the first truck’s path intersect the second
truck’s path in edge x. More formally: k(x) = ∃y : e1x = e2y. Our assumption
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can now be written as

∀i, j, x [i < x ∧ x < j ∧ k (i) ∧ k (j)→ ¬k (x)]

In other words, if e1 intersects e2 in i and j, there is no point x between i
and j where e1 does not intersect e2.

The reason we are making this assumption is that we assume that trucks
are rational and pick the shortest path between i and j. Assuming that both
trucks get the same result for the shortest path between i and j, they should
stay together the whole way.

Figure 4: Two paths in a road network, shown in red and blue. The
common path for the two trucks is shown in purple.

The first observation, which lets us transform this into a polynomial prob-
lem, is that edges in the route are unique for each route. Since there is only
a start and a destination, there is no point in visiting the same route edge
multiple times, as that would effectively mean driving in circles.

Since we previously assumed that the routes only intersect in at most one
continuous section, we can calculate the total amount of edges in the inter-
section as b = |e1∩e2|. If we can find the first edge where e1 and e2 intersect,
we can describe the full intersection as {e1a, · · · , e1a+b}, where a is the index
in e1 of the first intersection. This can be found by going through e1 linearly
and for each edge, see if it is a part of e1 ∩ e2, which is a constant-time
operation.

10



Calculating the intersection therefore ends up being a linear operation, since
it just needs to do a set intersection of edges, and then walk through one of
the paths and find the first intersection.

Algorithm 1 Path intersection

1: procedure LongestCommonPath(e1, e2)
2: Intersections← e1 ∩ e2
3: FirstIntersection← 0
4: for edge← e1 do
5: if edge ∈ Intersections then
6: break
7: FirstIntersection← FirstIntersection + 1

return e1[FirstIntersection : FirstIntersection + |Intersections|]

3.3 Calculating adapted plans

In the previous section, we looked at whether two trucks have a common
path to their destination. We did not look at if it is at all possible for the
trucks to meet up and platoon, and if it is feasible for them to do so.

To do this, we use methods based on previous research [37] [38]. The basic
idea is to have one of the trucks keep going its normal speed and then cal-
culate the fuel-optimal way for the other truck to reach it. We calculate this
both for the first truck adapting to the second truck and for the second truck
adapting to the first truck.

An adapted plan consists of three parts. First there is the merge, where
the follower drives at one speed while catching up with the leader. Then
there is the platooning part where the trucks are driving together in the pla-
toon, driving the same speed as the leader. Finally there is the part after the
platoon splits up. At this point, the follower drives at the speed necessary
to reach its destination.

We need to calculate the most fuel-optimal merge speed. Driving faster
might allow the trucks to platoon longer, but driving faster also burns more
fuel. This thesis bases the fuel-optimal merge speed calculation on the re-
search by van de Hoef et al [38] which assumes a linear affine fuel-model and
calculates the merge speed from that.

When the merge speed has been calculated, the other parts become easier.

11



The platoon speed is already decided based on the speed that the platoon
leader is going. The speed after the split is going to be the slowest acceptable
speed that still allows the truck to make it to its goal in time for the deadline.

An adapted plan details the interactions between a coordination leader and
a coordination follower. The coordination follower follows the adapted plan
and changes its speed to catch up to the coordination leader. Meanwhile,
the coordination leader continues on like normal, following its default plan.
This is done so it can be combined later on. By having the leader drive like
normal, we ensure that we can have multiple followers following the same
coordination leader, forming a platoon with more than two trucks.

3.4 Coordination graph

After calculating the adapted plans between each pair, according to the
method discussed in Section 3.3, we need to store it. We will look at which
pairs of trucks can platoon, and how much fuel can be saved. This informa-
tion can then be saved in a coordination graph. This is a weighted directed
graph, describing relationships where one truck can adapt to another one to
save fuel. The edge weight describes the fuel saved if the two trucks form a
platoon.

There are not edges between every pair of nodes. There are two possibilities
for why two nodes would not have an edge between them. First, it might
not be possible for two trucks to platoon. Even if they have part of the path
in common, it might not be possible for them to meet, since one of them
might have passed the common path hours before the other truck gets there.
It is also possible that the adapted plan is less fuel efficient than the default
plan because of an increased fuel consumption during the merge phase with
increased speed. In other words, the edge weight could be negative. These
edges are not shown in the graph.
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Figure 5: A simple coordination graph example for 5 trucks

Figure 5 shows schematically an example of a coordination graph. In
this example, truck #1 would save 1.5 units of fuel if it forms a platoon by
adapting to truck #2. Truck #3 would save 2.1 units of fuel if it adapted to
truck #2.

More formally, using the notation from the publication by van de Hoef
et al [36], a coordination graph is defined as a weighted directed graph
Gc = (Nc, Ec,∆F ). Recall that the elements of Nc represent the trucks.
Ec ⊆ Nc ×Nc is a set of edges, and ∆F : Ec −→ R+ are edge weights, such
that there is an edge (n,m) ∈ Ec, if the adapted plan of n to m saves fuel
compared to n’s default plan, i.e., Ec = (i, j) ∈ Nc ×Nc : ∆F (i, j) > 0, i 6= j.

3.5 Clustering Solution for Coordination Graph

The next step is to select which trucks will run adapted plans and which
will keep their default plans. We define a ”coordination follower” as a truck
that follows an adapted plan to catch up with another truck. We also de-
fine a ”coordination leader” as a truck that stays on its normal speed while
coordination followers adapt to it, to form a platoon. We want to select the
coordination leaders in a way that maximizes fuel savings.

The result of the clustering algorithm is a set of coordination leaders. Each
coordination follower will then pick the coordination leader that would be
the most beneficial for it to follow. We can use this to generate the set of
plans for our trucks. The coordination leaders will each follow their own de-
fault plan, moving towards their goal at a constant speed. The coordination
followers will pick the leader with the highest edge weight for that follower.

Nc is the set of nodes in the coordination graph. Each representing a truck.
We then define Nl as our set of coordination leaders and E−(v) as the total
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fuel savings we get from picking a node v as a coordination leader. E−(v) is
the sum of all incoming edges that are not from nodes in Nl.

If we were to pick only one coordination leader for the graph component
{1, 2, 3} in Figure 5, we would get E−(1) = 3.5, E−(2) = 1.5 + 2.1 = 3.6,
E−(3) = 0. This means that picking truck #2 as our coordination leader
would lead to the highest fuel savings. It is also easy to see that truck #5 in
the other component of the graph would be a good choice for a coordination
leader, since E−(5) = 4.0 while E−(4) = 0.

The solid lines in Figure 6 represents followers following a leader. While
the dashed line between node 2 and node 1 represents that node 2 could
follow node 1, but since node 2 is a leader, it will not.

2

1

3 4

5

1.5 3.5

2.1

4.0

Figure 6: The optimal solution to the graph in Figure 5, with the
coordination leaders marked in gray.

We now define a node n’s outgoing neighbors as nodes with an edge n
to them. We can write this mathematically using the notation from [36]:
N o

n = {i ∈ Nc : (n, i) ∈ Ec}.

We can now formally define what these clustering methods are trying to
maximize: Given as input a coordination graph Gc = (Nc, Ec,∆F ) find a
subset Nl ⊂ Nc of nodes that maximizes∑

i∈Nc\Nl

max
j∈N o

i ∩Nl

∆F (i, j)

This is defined as Problem 1 in [36]

The brute-force solution would be to enumerate all possible combinations
of coordination leader and coordination follower, and see which one gives the
highest total fuel savings. However, that algorithm would be O(2n). Even
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for a small amount of trucks, this quickly becomes infeasible. In fact, it has
been shown that calculating an optimal solution is NP-hard [35]. Instead,
it would be preferable to come up with a heuristic that can give us good
results, while still being able to scale to a large number of trucks.

Using the simulation tool developed for this project, we can evaluate several
different clustering algorithms and see how they perform. In the subsections
below we take a closer look at the clustering algorithms investigated.

3.5.1 Greedy clustering

Using the greedy clustering, we define the operation of ”swapping” a node.
Swapping a node means assigning it as a leader, except if it is already a
leader, we assign it as a follower.

For each node, we keep track of how much fuel we would save if we de-
cided to swap it from its current role to the other role. We then swap the
node with the highest improvement, and update our list of fuel savings. We
keep doing this until there are no more nodes that we can swap that would
bring us higher fuel savings. For example, if the algorithm determines that
swapping node X from follower to leader would lead to a fuel improvement
of 5, but swapping Y from a leader role back to a follower is worth 7, the
algorithm will swap Y . The swapping goes both ways.

This gives us no guarantees of how good the resulting clustering solution will
be. Instead it can get stuck in a local maximum, leading to a sub-optimal
solution.
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Algorithm 2 Greedy Clustering

1: procedure GetLeaders(Nodes)
2: Leaders← ∅
3: NodeGains← {x : Gain(x, Leaders) ∀x ∈ Nodes}
4: BestNode← 0
5: while BestNode 6= −1 do
6: BestNode← GetHighestGainNode(NodeGains)
7: if BestNode ∈ Leaders then
8: Leaders← Leaders \ {BestNode}
9: else

10: Leaders← Leaders ∪ {BestNode}
11: NodeGains← {x : Gain(x, Leaders) ∀x ∈ Nodes}

return Leaders
12: procedure Gain(Node, Leaders)
13: total← 0
14: if Node ∈ Leaders then
15: BestLeader ← Leader neighbor X with highest

FuelSavings(Node,X)
16: total← total + FuelSavings(Node,BestLeader)
17: for neighbor ∈ Graph do
18: BestNeighborLeader ← Leader neighbor X with highest

FuelSavings(neighbor,X)
19: CurrentFuelSavings← FuelSavings(neighbor,Node)
20: NewFuelSavings ←

FuelSavings(neighbor,
BestNeighborLeader)

21: total← total + (NewFuelSavings− CurrentFuelSavings)

22: else
23: for neighbor ∈ Graph do
24: CurrentFuelSavings ← FuelSavings(neighbor,

LeaderOf(neighbor))
25: NewFuelSavings← FuelSavings(neighbor,Node)
26: if NewFuelSavings > CurrentFuelSavings then
27: total← total+(NewFuelSavings−CurrentFuelSavings)

return total

3.5.2 Random clustering

Random clustering works similarly to greedy clustering. It uses the same
Gain method as defined in Algorithm 2. The difference is on line 6 in Algo-
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rithm 3 where instead of picking the node with the highest gain, we pick a
random node with positive gain.

This is likely to be worse than the greedy solution and is mostly investi-
gated just for comparison with the greedy solution.

Algorithm 3 Random Clustering

1: procedure GetLeaders(Nodes)
2: Leaders← ∅
3: NodeGains← {x : Gain(x, Leaders) ∀x ∈ Nodes}
4: RandomNode← 0
5: while RandomNode 6= −1 do
6: RandomNode← GetRandomGainNode(NodeGains)
7: if RandomNode ∈ Leaders then
8: Leaders← Leaders \ {RandomNode}
9: else

10: Leaders← Leaders ∪ {RandomNode}
11: NodeGains← {x : Gain(x, Leaders) ∀x ∈ Nodes}

return Leaders

3.5.3 Sub-modularity clustering

In addition to the greedy and random clustering methods, this thesis investi-
gates the effectiveness of two algorithms by N. Buchbinder et al [14]. In their
paper, they put forth two approximation algorithms for solving what they
call the ”Unconstrained Submodular Maximization” (USM) problem. These
are Deterministic USM and Randomized USM. The algorithms are described
below in pseudo-code described by N. Buchbinder et al [14].
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Algorithm 4 Deterministic USM

1: X0 ← ∅, Y0 ← N
2: for i = 1 to n do
3: ai ← f(Xi−1 + ui)− f(Xi−1)
4: bi ← f(Yi−1 − ui)− f(Yi−1)
5: if ai ≥ bi then
6: Xi ← Xi−1 + ui

7: Yi ← Yi−1
8: else
9: Xi ← Xi−1

10: Yi ← Yi−1 − ui
return Xn

Algorithm 5 Randomized USM

1: X0 ← ∅, Y0 ← N
2: with probability i = 1 to n do
3: ai ← f(Xi−1 + ui)− f(Xi−1)
4: bi ← f(Yi−1 − ui)− f(Yi−1)
5: with probability a′i/(a′i + b′i)

∗ do
6: Xi ← Xi−1 + ui

7: Yi ← Yi−1

8: else (with the complement probability b′i/(a′i + b′i)) do
9: Xi ← Xi−1

10: Yi ← Yi−1 − ui
return Xn

*If a′i = b′i = 0, we assume a′i/(a′i + b′i) = 1.

The (1/2)- and (1/3)-approximations1 given by the two algorithms is only
guaranteed if the clustering problem is a nonnegative submodular function.
This thesis does not seek to prove that this is true for the clustering problem,
so we do not have these guarantees. However, since the algorithms return
a subset that maximizes a function, they should still be applicable for our
situation.

1This means that the output of these algorithms will be at least half or one-third
(respectively) as good as the optimal solution. It means the algorithms have guaranteed
lower bounds, described as fractions of the optimal solution.
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4 Dynamic Updating of Coordination System

There are multiple reasons why the coordination system needs to update the
clustering solution as time goes on. It is possible that since the last time
the system calculated the clustering solution, some trucks have split up from
their platoons and are now ready to merge with another platoon. There will
also be new trucks that register with the coordination system.

When a new assignment comes in, we will need to update the coordination
graph described in Section 3.4. First of all, we need to add a node for the
new truck. We also need to check if this new truck can platoon with anyone
in the graph, and create edges for this in the graph. Figure 7 shows how an
existing graph is updated with new edges when a new node is introduced.

Figure 7: When a new node (shown in green) is added to the graph, new
edges are created to the nodes that the new node can platoon with.

However, there is another aspect that needs to be handled. Since time
has passed since the graph was last updated, the relationships between ex-
isting trucks will have changed. The current position of each truck will have
changed, meaning the potential merge positions have changed. Trucks might
also have been driving faster than normal since the last update. This means
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that there is a possibility for new platooning opportunities that were not
visible in the model before.

4.1 Updating existing edges

Edges in the graph represent a plan where one truck follows another in a pla-
toon, with the edge weight being the fuel saved by following the plan. The
amount of fuel saved changes over time. An adapted plan generally consists
of three phases. The merging phase where the trucks are catching up to each
other, the platooning phase where the trucks are driving close together, and
the split phase which happens after the trucks split up to go their separate
ways.

During the merge, the follower will either be speeding up or slowing down
to catch up with the leader. For the sake of simplicity we will focus on the
case where the follower speeds up. This expends more fuel than driving at its
normal speed, but the assumption is that the fuel saved while platooning will
make up for it if the coordination follower follows the plan to the end. This
means that if a platoon follower follows the adapted plan, the plan becomes
increasingly attractive until it actually starts platooning. It then becomes
less attractive the closer it gets to the end of the platooning phase.
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Figure 8: Showing an example of how the remaining expected fuel saving
changes over time.

In Figure 8, we can see how the remaining expected fuel savings changes
over time. At any given point, this graph shows how much fuel we expect to
save if we continue with the plan, compared to if we follow the default plan.
At t = 0, the amount of fuel saved is around 6, which is the total that we are
expecting from this plan. Between t = 0 and t = 5, the follower is merging.
As more fuel is spent catching up to the leader, the expected improvement
over the default plan increases, since the invested part is already gone. At
t = 5, the graph has reached its peak. At this point, all the fuel savings are
yet to come and the fuel investment has already been spent. Finally around
t = 12, the platoon splits up, and the follower starts following its default
plan instead.

By calculating a graph like this for each edge, we can quickly update the
weights of the edges in the graph. Imagine the graph in Figure 8 represents
a plan that corresponds to an edge in our coordination graph. After the
plan is created at t = 0, the edge needs to be recalculated regularly. At
t = 1, instead of recalculating the whole adapted plan, we can look at the
graph to determine what the expected fuel saving is. This makes it easier to
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recalculate plans and calculate how they compare to other plans.

4.2 Creating new edges between old nodes

When more trucks are added to the graph, it is possible that some old pairs
of nodes that did not have an edge between them previously should now have
an edge between them. As mentioned in Section 3.4, the graph only contains
edges where the adapted plan has positive fuel savings. It is possible that
adapted plans with negative fuel savings will later become positive. For ex-
ample, if a coordination follower would have to spend a lot of fuel just to
get to the platoon, the expected fuel savings may be negative and the edge
would not be included in the coordination graph. An hour later, it might
have sped up multiple times to join other platoons, and is now further ahead
than originally planned. The fuel needed to get to the platoon on time has
already been spent, and at this point the fuel benefit from the platoon is
higher than the fuel spent to get into the platoon.

There are also other reasons why two trucks that share a common path,
would not have an edge in the graph. For example, it is possible that a coor-
dination follower is slowing down as part of an adapted plan. When it slows
down to follow another truck, it could become attractive as a coordination
leader for another truck. Another example is a truck that has to drive at
max speed for an hour, just to platoon for 30 seconds. The fuel saved from
platooning for 30 seconds is not worth the fuel spent on driving faster to get
to the merge point in time.

When initially computing pairwise plans we classify them into three cate-
gories: beneficial, potential and impossible. Beneficial plans are adapted
plans that lead to positive fuel savings. These are represented by edges in
the graph. Potential plans are adapted plans that do not lead to positive fuel
savings or are not possible right now. However, they have been found to have
the potential to be a beneficial plan in the future. These are not present in
the graph but are recalculated each time a new node is added to the graph
to see if they have become beneficial. The impossible category is for pairs of
trucks that will never be able to platoon. This can happen if the two trucks
do not have an overlapping path or if one or both of the trucks have already
passed the overlapping path. If we come to the conclusion that an adapted
plan between two trucks will never be beneficial, we will remember it and
never recalculate the adapted plan between those two trucks again.
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4.3 Updating the clustering solution

2

1

3 4

5

1.5 3.5

2.1

4.0

(a) Initial platoon graph from Figure 6, showing the optimal solution
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(b) The addition of node 6 changes the optimal solution.

Figure 9: When we add a new assignment, 6, to the graph, one of the
platoon leaders change from 5 to 4.

The easiest way to find the updated clustering solution is to recalculate the
platoon graph and the clustering solution from scratch every time a new
assignment shows up, using one of the algorithms in Section 3.5. This is in-
efficient since the addition of a new assignment results in a solution that can
be very similar to the previous solution. That two clustering solutions are
similar means that there is a large overlap in the set of coordination leaders
for the two solutions. As shown in Figure 9, the addition of a new node only
impacts the right component of the graph, not the left one.

However, finding out the impact of a new assignment is tricky. Even a
small change can affect the entire clustering solution. As shown in Figure
10, the addition of a new node impacts the entire clustering solution. Every
coordination follower becomes a coordination leader and ever coordination
leader becomes a coordination follower. While this is a constructed example
to show how the impact can propagate indefinitely, it is still relevant to show
that there is no easy way to calculate the full impact.
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(a) Initial platoon graph, with #1 and #3 as platoon leaders.
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(b) When a new assignment comes in, it completely changes the optimal
solution.

Figure 10: An example of how the impact of adding a new assignment
propagates through the platoon graph.

Another solution is to allow the new assignments to be followers. This
would let us keep the previous optimal solution and just pick the best leader
for the new assignment to adapt to. However, this runs into issues when all
the original leaders reach their destinations. In a system that ideally keeps
running for years, there needs to be a constant influx of both leaders and
followers. Adding all new assignments as followers means we will soon start
running out of leaders to follow.

In the end, a hybrid solution was chosen. Looking specifically at the clus-
tering algorithms described in Section 3.5, it is sometimes possible to start
from the previous clustering solution. Both the greedy and random cluster-
ing methods start with an empty set of leaders. They then keep selecting
nodes to swap between leader and follower. If we give these methods a non-
empty set of leaders from the previous iteration, it will keep us from having
to rebuild the solution from scratch. For the submodular clustering method,
it is not as obvious how to start from a previous solution. Because of this, it
recalculates the clustering solution from scratch every time.

5 Simulation Setup

To investigate how a dynamic system would work and scale, a simulation
tool was constructed to try out how different methods and ideas perform.
A flow chart of the simulation code is shown in Figure 11. After starting
and generating an empty coordination graph, the simulation code goes into
a loop until there are no more trucks to simulate. The loop first takes in any
new truck assignments that have started since the last update. It updates all
the trucks, calculating their new positions. It then updates the coordination
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graph using the methods described in Section 4. In then calculates a new
clustering solution using whatever clustering method was specified. Finally,
it updates the plan of all active trucks and updates the speed history accord-
ingly.

The updating of the coordination graph is done according to the method
described in Section 4.1 and 4.2. The details on how to find a new clustering
solution in the coordination graph is explained in more detail in section 4.3.
The concept of a speed history is introduced in Section 5.3. Finally, the idea
of verifying the results is discussed in Section 5.4.

5.1 Truck assignments

First off, we need to decide how to generate our truck assignments which is
the input to the simulation. It is possible to take a manually constructed
set of truck assignments to test on, but for our purposes, we want to get
a general sense of how the system performs. To do this, we will generate
assignments randomly.

Each assignment needs a start position, a goal position, a start time, and
a deadline. The start and goal positions are randomly sampled from a popu-
lation density map of Sweden, shown in Figure 12. The start time is randomly
picked with a uniform distribution in a 48 hour start interval. The actual
routes that the the trucks drive in the simulation are shown in Figure 13.
The routes are calculated using Open Street Map (OSM) [3]. This map had
the shorter routes removed to mainly keep the long highways that we are in-
terested in. Specifically (using OSM terminology), only motorway, primary,
and secondary roads were kept, along with their corresponding link roads.

The average length of truck routes after sampling from the density map
ended up being around 540 kilometers. For a sense of scale, the distance
between Stockholm and Gothenburg is around 470 kilometers.
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Figure 11: A flow chart of the full simulation behavior.
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Figure 12: Density map used for sampling random truck assignments [32].
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Figure 13: Map showing the routes driven by the trucks in the
simulation [2].
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5.2 Assignment Start Interval

To evaluate the performance of the system, we want to get a correct view of
how the system performs on average. In other words, imagine that the sys-
tem runs continuously for a long time. To grade the performance, we would
like to know what the fuel consumption is on a randomly picked day.

The thing to note is that it takes a while for the system to reach a steady
state. As trucks finish their assignments, new trucks will start driving, keep-
ing the total number of driving trucks close to constant. However, when
the system first starts up, there will be a growing amount of trucks as more
and more trucks are added to the system, since no trucks have finished their
assignments yet. As some of the first trucks start finishing their routes, it
will converge towards a more steady number with small fluctuations around
the average due to randomized start times and deadlines. A graph of active
trucks can be seen in Figure 14. It is taken from a simulation with 800 trucks
over 48 hours. A similar graph for the big dataset used for the main results
is shown in Figure 18.

Figure 14: Showing the amount of active trucks over time.

As shown in the figure above, the amount of active trucks converge after
around 10 hours. Because of this, we will run simulations with a 48 hour
start interval. This means that all the trucks in the simulation will start
within a span of 48 hours. For evaluation, we will only consider the trucks
that start in the second half of the interval. This means the results are from
24 hours of simulation. The reason we limit ourselves to half of the result is
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to avoid the transient effects of the initial startup when the amount of trucks
in the system is still increasing quickly. The reason this was done instead of
initializing the simulation with multiple running trucks was to make sure the
previously existing trucks were simulated correctly. Starting the simulation
with trucks that are already halfway through their assignments seemed like
something that might not fully model the real scenario.

5.3 Generated Data During a Simulation Run

This section looks at the data gathered during a simulation, detailing exactly
what the trucks did during this time. The results in Section 6 are based on
this data, not on predictions made during the simulation. In this case, we
are most interested in how the trucks drove. The most important property
that the system changes is the speed at different points, so for each truck, a
speed history is collected.

The speed history is a list of speed changes, where each speed change contains
four elements:

• Start time

• End time

• Speed

• Which other truck, if any, that the truck was platooning with.

These speed changes should cover the entire trip. This means it is possible
for every simulated truck to reconstruct the history and see how fast it was
going at any point in time and when it was platooning.

An example of what a speed history can look like is shown in Figure 15.
This shows exactly what the speed was at any point during a trucks journey.
The orange parts show when the truck was driving as a coordination follower.
It started by driving at 80 km/h, but quickly sped up to 90 km/h to meet
up with a coordination leader. After driving in the platoon for a short time,
it decided to speed up again to meet up with a different coordination leader.
It drove in this platoon for over three hours before splitting up. At the end,
it was able to reduce its speed to around 71 km/h to save fuel and still make
it to the destination on time.

In addition, the simulation also generates a plan history, detailing exactly
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what plan each truck was following at any given time. The details for a
specific adapted plan contains information on:

• How much fuel is consumed by following the plan to the end.

• How much fuel would be consumed by instead following the default
plan.

• When/Where the truck will merge with the platoon.

• When/Where the truck will split from the platoon.

• When the truck will make it to the destination.

• The speed the truck needs to drive at on its way to the merge point.

• The speed the truck should drive at while in the platoon.

• The speed the truck needs to drive at after leaving the platoon.

• The coordination leader that the truck is following as part of the
adapted plan.

31



Figure 15: A truck’s speed history, showing its speed at every point in time.

5.4 Testing of the Simulation Results

In a complex system like this, it is important to know that the results are
correct. To help with this, a tool was written to test the results at the end
of each simulation.

This tool performs the following tests:

• Speed history reaches destination: Check if the total distance
driven according to the speed history is enough to let the truck reach
the destination from the start point. It should also not be longer than
necessary to reach the destination.

• Speed history start time: Check if the speed history starts at the
same time as the truck.

• Speed history end time: Check if the speed history ends before the
truck’s deadline.
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• Speed history is continuous: Check if there are no gaps in the
speed history. Each speed change in the history should start where the
previous change ended and there should be no overlap.

• Speed history arrival time: Check if the arrival time of the truck
is at the same time as the speed history ends.

• Not leading and following simultaneously: Check if there is no
truck that is both a platoon follower and a platoon leader at the same
time.

• Platoon match: Check that for each plan to platoon, both trucks
made it to the merge point at the same time and split at the same
time.

Checking all of these things increases the confidence in the result. Even if
there are problems in the implementation, the solution given is plausible in
the sense that it is realistic. This makes the fuel consumption reduction into
a lower bound of what you can expect from the system. There could be a
better solution with a correct implementation, but the solution produced is
also feasible.

As an example, early in development there was a bug that caused the system
to overestimate the fuel consumption reduction because many trucks were
missing part of their speed history. Since the speed history was incomplete,
the system assumed that no fuel was spent during this missing period. This
kind of bug was caught by the ”Speed history is continuous” test.

5.5 Simulation Parameters

The following parameters are used to configure the simulation:

• Minimum speed: This is the minimum speed that the trucks drive.
The minimum speed is set to 70 km/h.

• Maximum speed: This is the maximum speed that the trucks drive.
The maximum speed is set to 90 km/h.

• Nominal speed: This is the normal speed that trucks drive if they are
in a platoon or if they are not forming a platoon with another truck.
The nominal speed is set to 80 km/h.

• Minimum intersection length: Trucks only form a platoon if the
common path between a pair of trucks is at least 5 kilometers.
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• Horizon: The horizon describes how far in advance the system gets to
know about new truck assignments. If the horizon is set to 10 minutes,
the truck registers in the system 10 minutes before it starts its journey.
Increasing this value allows the system to consider new assignments
earlier in the planning process. For most of the simulations, this value
was set to 0 seconds, to show the worst-case scenario. However, in
Section 6.3, it shows how different horizon lengths impact the results.

• Interval: This describes how often the plans will be recalculated. The
plans can be recalculated each time a new assignment is registered, or
at regular intervals. For the simulations, the interval was set to 10
minutes. However, in Section 6.4, we investigate how different interval
lengths impact the results.

5.6 Simulation Fuel Model

For the simulation, we use a linear fuel model derived from [10]. When
a truck is not platooning, the fuel consumption per distance traveled at a
certain speed is calculated using

f(v) = 4.80 · 10−5 + 8.42 · 10−6 · v

. When platooning, it is calculated using the formula

fp(v) = 8.54 · 10−5 + 5.05 · 10−6 · v

By inserting the normal platooning speed mentioned in the previous section,
we can calculate the fuel saving, s, for a platoon follower driving at the
nominal speed of 22.2 m/s (80 km/h).

s = fp(22.2)/f(22.2) =

= (8.54 · 10−5 + 5.05 · 10−6 · v)/(4.80 · 10−5 + 8.42 · 10−6 · v) ≈
≈ 0.84054

This means that platooning gives around 15.9% fuel savings compared to
driving like normal.
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Figure 16: Showing the graph for the two linear fuel models.

Additionally, since we are looking at it from a global perspective, it’s not
important exactly which truck saves fuel. This means we’re assuming that
the coordination follower saves fuel, not the platoon follower. This means
that the truck that runs the adapted plan to catch up with another truck
will be considered to save fuel, even if it ends up in the front of the platoon.

5.7 Size of Test Datasets

The results in Section 6 come from running the simulation software on five
datasets. Each dataset contains 10,000 truck assignments and a starting in-
terval of 48 hours. The final result was the average of the 5 datasets.

In 2016, Sweden’s truck traffic consisted of a total of 39,619,000 truck as-
signments [6]. This means an average of around 100,000 trucks per day,
which means that 10,000 trucks in 48 hours is about 5% of Sweden’s normal
traffic load. Due to the large number of hyper-parameters such as horizon,
interval length, and different clustering methods as well as trying to get an
average of several different datasets, a decision was made to limit the test
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size to allow sufficient time for simulation. This is still a realistic size for the
dataset, since it is unlikely that every truck in Sweden would be equipped
with the hardware necessary for platooning.

5.8 Hardware and Software for Simulation

Hardware: The simulation machine contains a Intel Core i7-2600k CPU @
3.4GHz and 4x4GB DDR3 1333MHz RAM.

Software: The simulation machine was running Python 2.7.9 on Debian
8.2.

6 Simulation Results

In this section we introduce the results from the simulation. The section
shows a lot of different results including the fuel saved by the different clus-
tering methods and the effect of changing parameters such as the horizon
and update frequency. It also shows some interesting simulation metrics
such as the percentage of trucks that are platooning at any given time and
the average plan durations.

6.1 Clustering methods

First let us look at a baseline for the four different clustering methods de-
scribed in Section 3.5. The greedy, the random, and both the deterministic
and randomized version of the USM (Unconstrained Submodular Maximiza-
tion) clustering methods. The result in Figure 17 is taken from running each
of the clustering methods using the simulation methods specified in Section
5.
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Figure 17: Showing the percentage fuel saving for each clustering method.
The black lines at the top of each bar represents the spread of the result,
from the minimum value achieved to the maximum.

The greedy algorithm ends up with the best average fuel saving of 6.92%.
Both of the USM algorithms have significantly worse fuel savings than the
greedy and random algorithms. The black bar shows the spread between the
minimum and maximum values from the simulation. From the figure, this
spread seems to be very low. The highest spread comes from the random
method, which makes sense since it is based on picking a random node at
each step.

It is reasonable that the greedy method ends up higher than random, since
greedy picks the best leader at any given time, instead of a random one. It is
a bit unexpected to see the USM methods perform significantly worse than
random and greedy.
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To shorten the necessary simulation time, the rest of the results are solely
focused on the greedy clustering method, since it seems to perform better
than the other algorithms. Unless stated otherwise, the rest of the results
came from using the greedy clustering method.

In addition to the average fuel savings of the different methods, another
interesting aspect to investigate is how similar the solutions provided by the
different methods are. To calculate this, the percentage of leaders that the
solutions had in common were aggregated over the entire duration of the
simulation. The result can be seen in Table ??.

Greedy Random
Deterministic

USM

Randomized

USM

Greedy 100%

Random 47.40% 100%

Deterministic

USM
42.43% 43.77% 100%

Randomized

USM
42.43% 40.92% 50.60% 100%

Table 1: Percentage of clustering solutions that are the same. Upper
triangle is blank since the table is symmetric.

The similarity between two methods m1 and m2 was calculated by taking
the average of

(leaders(m1) ∩ leaders(m2))/(leaders(m1) ∪ leaders(m2))

for every step in the simulation.

The table above shows that the clusterings solutions from the different meth-
ods differ quite a lot. Just like in Figure 17, we can see that the two USM
methods are closer to each other than to the rest. The same is true for greedy
and random. This makes sense considering they share a common algorithmic
base.

6.2 Steady State of Active Trucks

In Section 5.2 we investigated how to set the start interval to get a look at
an average day. To show this, we used the number of active trucks over time
in a small simulation, as shown in Figure 14. In this section we are showing
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the same type of graph for our five large datasets. This is shown in Figure
18 below.

Figure 18: Showing how the active number of trucks changes over time for
the five different datasets.

6.3 Effect of Increasing Horizon

Next, let us investigate how the horizon, as explained in Section 5.5, affects
the fuel saving. The data in Figure 19 shows how the greedy clustering
method performs with different horizon lengths ranging from zero to two
hours. For each horizon length, the average fuel saving was taken from the
five datasets presented in Section 5.7.
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Figure 19: Showing how a longer horizon impacts the fuel saving for the
different clustering methods. Note that the y-axis starts at 6.0 .

The data in Figure 19 is not very surprising. The further in advance
that a system gets to learn about an upcoming assignment, the better it can
plan for it and figure out a good solution. However, there is a limit to how
much it can improve the results. The relative improvement quickly falls and
it seems to converge towards fuel savings of approximately 7.4%, up from
around 6.9%.

The results show that a longer horizon length leads to better results. How-
ever, the horizon length depends on the system and truck assignments you’re
getting. If the horizon length was set to one year, the trucks would have to
register a year in advance to get the expected fuel savings. This value does
not need to be static. In a real system, trucks should aim to register as early
as possible. This means that it’s better if more trucks that register early,
but for any trucks that register 10 minutes before starting will still be able
to join the system.
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6.4 Effect of Increasing Update Frequency

When handling dynamic platooning the system has to re-calculate the pla-
tooning possibilities at a regular interval. One thing to investigate is how in-
creasing or decreasing the frequency at which the system recalculates changes
the results. A higher frequency means that the system has to recalculate more
often while a lower frequency means that new trucks will have to wait longer
before a plan is calculated. This data is shown in Figure 20. The implication
that this has on the maximum capacity is discussed in Section 6.8.

Figure 20: Showing how the update frequency for re-calculations impact
the fuel savings.

Figure 20 looks reasonable since the more often the plans are re-calculated,
the better. Recalculating often is good for multiple reasons. Not only does
it take new trucks into account that have not yet received a plan. It also
calculates if there are new better plans for the existing trucks. The graph
does not go all the way to the left, since 0 recalculations per hour would
mean no fuel savings. The trade-off here is between fuel-consumption and
calculation time. More updates per hour means less time to calculate each
update. This is discussed more in Section 6.8.
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6.5 Expected fuel consumption

We can also investigate and plot how the expected fuel consumption changes
over time, which can be seen in Figure 21. The horizontal line represents the
default state.

Figure 21: Showing how the expected fuel consumption changes over time
as more truck assignments come in.

If every truck in the entire simulation drove without trying to platoon,
the expected fuel consumption will not change since trucks will never change
their plans. Therefore the orange line is horizontal.

The blue line shows the predicted fuel consumption at each point in time.
Note that this does not just include active trucks. Instead it is the total of
all trucks that are a part of the simulation dataset. As we get further and
further along, more trucks are active and get taken into consideration when
calculating the clustering, therefore getting a better predicted fuel consump-
tion.
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6.6 Plan Durations

Another aspect to be investigated is the average plan duration. This is the
average time until a truck changes plans. This should not be confused with
how fast they reach their destination, since trucks can be assigned to change
from one plan to another, before the first plan is finished. The result in
Figure 22 shows the average time that the trucks followed each plan.

Figure 22: Showing the average plan length, both for all trucks and just
trucks that platooned at some point.

For each method, two values are shown. The left column shows the
average for all trucks. However, in any simulation there are trucks that
do not form a platoon with any other truck and just drive on their own.
The right column shows the average value when excluding any truck that
just follows their default plan the entire way. The reason we’re making this
distinction is to try and also see the average for trucks that are actively part
of the platooning process.
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6.7 Percentage of platooning trucks

Similar to the previous section, it is interesting to investigate how the pla-
tooning ends up working in more detail. Figure 23 shows the percentage of
active trucks that are followers in a platoon at any given point in time.

Figure 23: The percentage of trucks that are platooning.

The figure above shows that after the initial start of the system, the
percentage of platoon follower quickly converges to around 40-50%. This is
consistent with the fuel model in Section 5.6. If all trucks were following in
a platoon all the time, the percentage of fuel saved would be around 16.5%.
Instead, we achieve around 7% fuel savings on a global scale. This is around
42% of the possible fuel savings, and seems close to fit well with the average
percent of platooning trucks, as shown in Figure 23.

6.8 Capacity for Real-time System

The coordinating system has an update frequency which determines how of-
ten the graph and clustering solutions are recalculated. An update frequency
of every 10 minutes was chosen for most of the simulation results.
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In a real-time system, this means that the system has 10 minutes to fin-
ish the calculations before it has to start a new calculation. The time it
takes to run this calculation is based on the active trucks that are registered
in the system. In Figure 24 the relationship between calculation time and
active trucks is investigated.

Figure 24: Time for one recalculation depending on amount of active trucks.

Looking at the figure above, we can see how many active trucks we can
expect to be able to handle in a system with an update frequency of every
10 minutes. According to Figure 24 it is around 2600 active trucks.

To examine how many trucks the system can handle per day, we use the
data from Figure 18. The simulation datasets contained 5000 trucks per day.
From the figure we can see that they all have around 750 active trucks at any
given time after the initial startup. This means that around 15% of the daily
trucks are active on any given time. To confirm this, we can look back at Fig-
ure 14 which shows a similar graph for a simulation with 400 trucks per day.
15% of 400 trucks is 60, which matches what we see in the graph. Stepping
back and relating this to the the maximum amount of active trucks that the
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system can handle, we get that the system can handle 2600/0.15 ≈ 17, 333
trucks per day.

The maximum capacity is based on the software and hardware that ran the
simulation. Running it on better hardware would likely result in a higher
daily capacity. While this is less than 20% of Sweden’s daily truck traffic,
it shows what is possible with a 6-year old computer. With new, dedicated
hardware, much higher maximum capacity should be possible.

7 Conclusion & Future work

This section concludes the thesis. It summarizes and draws conclusions from
the simulations results. It also looks at areas that require more research and
work to investigate further.

7.1 Conclusion

This thesis evaluated large-scale simulations for coordination of platoons.
New theory was introduced to handle new assignments and the changing of
existing assignments. The thesis sought to answer questions about what level
of fuel savings one can expect from this system, as well as how suited the
system would be for a real-time system. With fuel savings of 7%, this work
shows promising potential for a global coordination system.

Even though the implementation of the simulation engine was not optimized
for speed, it was still able to simulate a realistic amount of trucks in a reason-
able amount of time. Results show that it should be able to simulate around
17,000 trucks per day in real-time. This work also shows that the result can
be improved even further, depending on the parameters and computational
performance of the system. The more often the plans are recalculated and
the further in advance the system gets to know about future assignments,
the better fuel savings the users can expect.

Right now, the simulation considers the calculations to be instantaneous,
even though they are not. This means that all trucks pause while the system
is recalculating plans. In the real world, this will not be true. If it takes a
minute for the system to calculate the plans, the plans will be slightly off by
the time the calculation finishes. There are several questions to answer here.
How much does this affect the results and is it possible to compensate for it
by extrapolating the trucks’ current position based on historic data of how
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long the calculations will take?

We also made some other simplifications in order to investigate systematic
effects without writing overly complicated code. First of all, the system
assumes that all roads have the same speed limits. Since the map mostly
contains of highways (as described in Section 5.1), this is not as bad as it
may seem. However, varying highway speeds is another area that could lead
to disturbances.

The system also assumes that changing the speed is instant. In reality, a
truck accelerates slowly. A medium truck can have an acceleration speed of
0.74m/s2 [39], meaning it can take around 3-4 seconds to accelerate from the
nominal speed (80 km/h) to the maximum speed (90 km/h). This could lead
to trucks being late to their merge point, which could impact the fuel sav-
ings. This could potentially be handled by changing the way adapted plans
are created. The code would have to take the acceleration into account. The
speed history would also have to be modified to show the gradual change in
speed as the truck accelerates and decelerates.

7.2 Future work

The method described in this thesis already achieves significant results. How-
ever, in addition to the limitations mentioned in Section 7.1, there are other
areas that should be investigated further. Traffic, accidents, and road and
weather conditions, are all things that can impact the calculations. How
much, and mitigations for this problem are things worth investigating before
implementing this in the real world. This section looks at other areas that
could be improved for further improvements of the whole system.

Right now, the whole system relies on adjusting speed. However, it is possi-
ble that the results can be improved by looking at different paths. While a
truck might initially follow the shortest path between A and B, it might ben-
efit from switching to a slightly longer path, if there are a lot of other trucks
to platoon with on the alternate path. This would require major rework of
the way the adapted plans are calculated to make the algorithm consider
multiple different paths with potentially multiple different speed profiles. A
potential simplification could be to only consider the shortest path that in-
tersects the path of the coordination leader, that way a lot of the existing
code and theory could be reused.

Another interesting topic is how the clustering solution changes when new
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assignments come in. After a new assignment comes in, it is possible that a
majority of the new clustering solution is the same. It is also possible that
the entire clustering solution is different, as shown in Figure 10. While it is
possible to start the greedy and random algorithms from the previous solu-
tion, it would be interesting to calculate exactly how much of the solution
is affected. This would mean other clustering algorithms that can not start
from the previous solution can be optimized to only recalculate the part of
the solution that has been impacted by the new assignments.

The current dataset sizes are realistic, but Section 6.8 shows that the max-
imum capacity is still less than 20% of Sweden’s truck traffic. While it is
possible that there will be multiple competing providers of this platoon co-
ordination service, it would be interesting to see how much fuel can be saved
if all the trucks in Sweden were using the same system.

If the system could be improved to handle hundreds of thousands of trucks
instead of tens of thousand, we would get a better idea of the kinds of fuel
savings we could expect. To achieve this, the system should probably be
rewritten in a language that allows for further performance optimizations,
like C++ [8]. It should also be possible to make the system multi-threaded
and distribute the workload. Especially the task of calculating the pair-wise
adapted plans should be trivial to parallelize which should greatly increase
performance and therefore the maximum capacity of the system.
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