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Abstract
Affective touch has a fundamental role in human development, social bonding, and for providing emotional support in
interpersonal relationships. We present, what is to our knowledge, the first HRI study of tactile conveyance of both positive
and negative emotions (affective touch) on the Nao robot, and based on an experimental set-up from a study of human–human
tactile communication. In the present work, participants conveyed eight emotions to a small humanoid robot via touch. We
found that female participants conveyed emotions for a longer time, using more varied interaction and touching more regions
on the robot’s body, compared to male participants. Several differences between emotions were found such that emotions
could be classified by the valence of the emotion conveyed, by combining touch amount and duration. Overall, these results
show high agreement with those reported for human–human affective tactile communication and could also have impact on
the design and placement of tactile sensors on humanoid robots.

Keywords Tactile interaction · Affective touch · Human–robot interaction · Emotion encoding · Emotion decoding ·
Social emotions · Nao robot

1 Introduction

This paper reports on a study of how humans convey emo-
tions via touch to a social humanoid robot, in this case theNao
robot.1 As a foundation for this study,we have, as far as possi-
ble, replicated a human–human interaction (HHI) experiment
conducted by Hertenstein et al. [25] so as to validate our
work within the context of natural tactile interaction. The
purpose of our work is twofold: (a) systems design based:
to inform future development efforts of tactile sensors, con-
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cerning where they need to be located, what they should be
able to sense, and how to interpret human touch in terms
of emotions, and (b) furthering scientific understanding of
affective tactile interaction: to be able to draw conclusions
regarding whether it is possible to transfer theories and find-
ings of emotional touch behaviours in HHI research to the
field of human–robot interaction (HRI) and vice-versa. In
addition, potential gender differences were investigated. Pre-
vious studies show that gender, in terms of human gender,
robot gender, computer voice gender, and gender typicality
of tasks, can have an influence on the human experience and
perception of the interaction as well as the human behaviour
[32,38,40,41,45]. The application of robots in different social
domains, e.g. for teaching, companionship, assistive living,
may predominantly affect one gender or other and, therefore,
we consider analysis of affective tactile interaction between
genders of critical importance to HRI.

1.1 Socially Interactive Robots

Socially interactive robots are expected to have an increasing
importance for a growing number of people in the com-

1 The Nao robot is produced by Aldebaran, SoftBank Group. 43, rue
du Colonel Pierre Avia 75015 Paris. https://www.aldebaran.com.
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ing years. Robotics technology has increased in application
to commercial products [44] but for socially interactive
robots to be accepted as part of our everyday life, it is
critical for them to have the capability of recognizing
people’s social behaviours and responding appropriately.
The diversity of applications for socially interactive robots
includes military (cf. [11]), service-based (cf. [7,27]), assis-
tive/health care-based (cf. [10]), industry-based (cf. [26])
and robotic companion-based (e.g. [18,29]). Common to all
domains is the need for communication between human and
robot: “[Human–Robot] [i]nteraction, by definition, requires
communication between robots and humans” [23]. Com-
munication can take the form of verbal linguistic, verbal
non-linguistic, or non-verbal (see [24]). Critical to natural-
istic interaction is the role of affect and the ability of the
inter-actor to perceive affective states (including intentional-
ity) in the other.

The non-verbal communication domain of affective touch,
as fundamental in human communication and crucial for
human bonding [21,31], is typically expressed in the inter-
action between humans and social robots (see e.g. [13,50])
and should therefore be considered important for the realiza-
tion of ameaningful and intuitive interaction between human
beings and robots. Social robots, designed to socially inter-
act with human beings, need to act in relation to social and
emotional aspects of human life, and be able to sense and
react to social cues [19]. As interaction between humans and
robots has becomemore complex, there has been an increased
interest in developing robots with human-like features and
qualities that enable interactionwith humans to bemore intu-
itive and meaningful [17,46,49]. Touch, as one of the most
fundamental aspects of human social interaction [37], has
started to receive interest in HRI research (for an overview
of this work see e.g., [16,47]) and it has been argued that
enabling robots to “feel”, “understand”, and respond to touch
in accordance with expectations of the human would enable
a more intuitive interaction between humans and robots [47].
To the present date, the work regarding the modality of touch
in HRI has mainly revolved around the development of tac-
tile sensors for robotics applications (e.g., [36]). Generally,
these sensors measure various contact parameters and enable
the robot to make physical contact with objects and provide
information such as slip detection and estimation of contact
force [16,47]. However, studies on how people interact with
robots via touch are still to a large degree absent from the
literature, especially in terms of affective interaction.

1.2 Touch and Social Human–Robot Interaction

Concerning the role of touch as ameans for social interaction
between humans and robots, several studies have revealed
that people seek to interact with robots through touch and
spontaneous exhibitions of affective touch such as hugging

(see the Telenoid of [43]) or stroking (see Kismet of [9,50]).
This implies that physical touch plays an important role also
in human–robot interaction. Lee et al. [33] show that phys-
ically embodied robots are evaluated as having a greater
social presence, i.e., a simulation of intelligence success-
ful enough for the human not to notice the artificiality, than
disembodied (i.e. simulated) social robots. However, when
participants were prohibited from touching the physically
embodied robot, they evaluated the interaction and the robot’s
social presencemore negatively thanwhen theywere allowed
to interact with the robot via touch. This suggests that physi-
cal embodiment alone does not cause a positive effect in the
human inter-actor and that tactile communication is essen-
tial for a successful social interaction between humans and
robots [33]. Clearly, the fundamental role of tactile inter-
action in interpersonal relationships goes beyond HHI and
extends also to HRI.

Some attempts to increase the knowledge about how peo-
ple touch robots have been made. For example, Yohanan and
MacLean [54,55] developed the Haptic Creature, an animal
shaped robot with full body sensing and equipped with an
accelerometer, which allow the robot to sense when it is
being touched and moved. Yohanan and MacLean studied
which touch gestures, from a touch dictionary, participants
rated as likely to be used when communicating nine spe-
cific emotions to the Haptic Creature [55]. Regarding the
humanoid robot form, Cooney et al. [12] studied how people
touch humanoid robot mock-ups (mannequins) when con-
veying positive feelings of love and devotion and identified
twenty typical touch gestures. Hugging, stroking, and press-
ing were rated by the participants as the most affectionate;
patting, checking, and controlling were neutral touch ges-
tures; hitting and distancing were considered unaffectionate.
Focus here was on classification of affectionate gesture types
rather than the encoding of specific positive and negative
emotions. Typically, suchHRI-relevant studies have not been
compared to human–human empirical set-ups and findings
such as the Hertenstein et al. [25] study mentioned above.

In general, aside from a few exceptions such as thosemen-
tioned above, affective touch in HRI is an understudied area.
The fundamental role of touch for human bonding and social
interaction suggests that people will similarly seek to show
affection through touch when interacting with robots, espe-
cially social robots designed for social–human interaction.
Improving the understanding of the mechanisms of affec-
tive touch in HRI, i.e., where and how people want to touch
robots, may shorten the communicative distance between
humans and robots. It may also have implications for the
design of future human–robot interaction applications.

An appealing source to use when it comes to informing
the development of tactile sensors for affective HRI concerns
the field of HHI (human–human interaction). It has been sug-
gested that valuable contributions to the field of HRI research
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can be derived from interaction studies in Ethology, Psychol-
ogy, and the social sciences [17]. For example, App et al. [1]
show that people tend to prefer tactile interaction over other
modalities when communicating intimate emotions critical
for social bonding. Gallace and Spence [22] argue, based
on their review of interpersonal touch, that tactile interac-
tion provides an effective way of influencing people’s social
behaviors, for example, increasing their tendency to comply
with requests. Studies like these are potentially very infor-
mative for the design of social robots, both in terms of how
users may communicate social information to the robot, but
also in providing input on how robotsmay act towards human
users in order to increase positive user experience. However,
to effectively draw from studies on HHI, we need to under-
stand to what extent such theories can apply to interactive
situations in which one of the parties is a robot instead of a
human.

In order to test to what extent results from studies on inter-
personal tactile communication generalizes to HRI, we take
inspiration from the HHI study of tactile interaction con-
ducted by Hertenstein et al. [25]. In that study participants
were paired into dyads and assigned either the role of emotion
encoder or decoder when communicating the emotions by
touch. The encoder was instructed to convey eight emotions
(anger, fear, happiness, sadness, disgust, love, gratitude, and
sympathy), one by one, via touch to a blindfolded decoder.
The emotion words were displayed serially to the encoder,
who was asked to make physical contact with the decoder’s
body using any type of touch he or she considered appropri-
ate for communicating the emotion. Duration, location, type
of touch, and intensitywere recorded. After each tactile inter-
action, the decoder was asked to choose from a forced-choice
response sheet which emotion was being communicated.

As forHertenstein [25], thework reported is exploratory in
nature regarding research into gender differences. However,
as alluded to above, gender differences are found in a number
of areas in human–robot (and machine) interaction and on
that basis we hypothesize that there will be differences in
some aspects of performance between males and females
thoughwe do notmake specific predictions concerning either
direction of the differences or regarding the specific aspects
wherein differences may lie.

The results showed systematic differences in where and
how the emotions were communicated, i.e., touch locations
and which types of touch were used for the different emo-
tions. The main result showed that all eight emotions were
decoded at greater than chance levels and without significant
levels of confusion with other emotions (for further details,
see [25]).

The remainder of the paper is organised as follows: Sect. 2
describes the methodology of the experiment. In Sect. 3, the
analysis and results are reported. Section 4 provides a dis-
cussion of the research results, making explicit reference and

comparison to the work of Hertenstein et al. [25] and con-
cludes by outlining projected future work.

2 Method

2.1 Participants

The sample comprised sixty-four participants (32men and 32
women), recruited via fliers and mailing lists, from the Uni-
versity of Skövde in Sweden. Themajority of the participants
were undergraduate students in the age range of 20–30 years.
Each participant was compensated with a movie ticket for
their participation. No participant reported having previous
experience of interacting with a Nao robot.

Participants were randomly assigned to one of two con-
ditions that concerned the robot wearing, or not, tight-fitting
textile garments over different body parts. Gender was bal-
anced across the two groups (32 males and 32 females for
each condition). The results concerning analysis of the effects
of the robot wearing (or not) the textile garments is to be
reported elsewhere [34]. The use of Nao in a clothed inter-
face is here considered a controlled variable since the effects
of interacting with a ‘naked’ versus an ‘attired’ robot are not
clear or well documented in the HRI literature. In this paper,
we grouped the 16 male/female subjects of the clothed ver-
sus non-clothed conditions into conditions solely for gender.
This was done to enable a comparison with the study pre-
sented by Hertenstein et al. [25] in which they compared
gender differences in the communication of emotions.

2.2 Procedure andMaterials

Methodologically, we replicated the experiment conducted
by Hertenstein et al. [25] in relation to encoder instructions
and overall task (see the description of Hertenstein’s work in
Sect. 1.2). Instead of pairing the participants into dyads, the
‘decoders’ were replaced with the Nao robot. The robot was
unable to decode the emotions and due to this change, there
was no decoding of the emotions being conveyed during the
experiment.

For each participant, the entire procedure took approxi-
mately 30 min to complete and took place in the Usability
Lab. The lab consists of a medium-sized testing room
furnished as a small apartment and outfitted with three video-
cameras, a one-way observation glass and an adjacent control
room. The Lab, and experimental set-up, is displayed in
Fig. 1. The control room is outfitted with video recording and
editing equipment and allows researchers to unobtrusively
observe participants during studies. The participants entered
the testing room to find the robot standing on a table. Nao is
one of the most common robotic platforms used in research
and education and thus considered to be an appropriatemodel
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Fig. 1 Experimental set-up
where the participant interacts
with the Nao in the Usability
Lab. This participant interacts
with the Nao by touching left
and right arms to convey a
particular emotion. Camera
shots are displayed and analyzed
using the ELAN annotation tool

on which to focus our human–robot interaction study. Dur-
ing the experiment, the robot was running in “autonomous
life” mode, a built-in application of the Nao robot, designed
to simulate life-like behavior. We considered this more nat-
uralistic setting preferable for promoting interaction than a
motionless Nao (switched off). As a result, the robot was
at times turning its head giving the impression of establish-
ing eye-contact with the human participant, and also showed
slowmicro-motions including simulated breathing and some
arm motion. The robot did not, however, move around freely
and all joints were configured with high stiffness, meaning
that the participant could only induce minor movement of
arms and other body parts of the robot. It may be argued that
such an autonomous life setting compromises the controlled
nature of our investigation. We viewed this as a problem of
a trade-off between having a static robotic agent that may
constrain the extent to which a human would wish to interact
emotionally, and having a non-controlled ‘naturalistic’ inter-
action. In general, the robot would not give specific reactions
to the different emotions, however, so while this setting may
potentially increase inter-subject variability, it is less obvi-
ous that it would have specific gender, or emotion-specific,
effects, i.e. in relation to the two variables under investiga-
tion.

Following Hertenstein et al. [25], eight different emotions
were presented one at a time on individual cards in a random
order. The participants were instructed to convey each emo-
tion to the robot via touch. A set of five primary emotions:
anger, disgust, fear, happiness, and sadness, and three pro-
social emotions, gratitude, sympathy, and love, were used
[25].

Participants were required to stand in front of the table
on which the robot was placed. They were facing the robot

and instructed to read the eight emotions written on the paper
cards, one at a time, and for each emotion think about how
to communicate that specific emotion to the robot via touch.
The instructions said that they, when they felt ready, should
make contact with the robot’s body, using any form of touch
the participant found to be appropriate. Participants were not
time-limited in their interactions as this was considered to
impose a constraint on the naturalness or creativity of the
emotional interaction. While the study was being conducted,
one of the experimenters was present in the room with the
participant and another experimenter observed from the con-
trol room. All tactile contact between the participant and the
robot was video recorded. At the end of the experimental run,
the participant answered a questionnaire regarding his or her
subjective experience of interacting with the robot via touch
(the results concerning the analysis of this questionnaire is
reported in [2]).

2.3 Coding Procedure

The video recordings of tactile displays were analyzed
and coded on a second-by-second basis using the ELAN
annotation software.2 During the coding procedure, the
experimenters were naïve to the emotion being communi-
cated but retroactively labelled annotation sets according to
each of the eight emotions. Following Hertenstein et al. [25],
four main touch components were evaluated by the experi-
menters: touch intensity, touch duration, touch location and
touch type.

2 The ELAN annotation software: https://tla.mpi.nl/tools/tla-tools/
elan/.
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Each touch episode was assigned a level of intensity, i.e.,
an estimation of the level of human-applied pressure, from
the following four-interval scale [25]:

• No interaction (subjects refused or were not able to con-
template an appropriate touch),

• Low intensity (subjects gave light touches to the Nao
robot with no apparent or barely perceptible movement
of Nao),

• Medium intensity (subjects gave moderate intensity
touches with some, but not extensive, movement of the
Nao robot),

• high intensity (subjects gave strong intensity toucheswith
a substantial movement of the Nao robot as a result of
pressure to the touch).

Whilst tactile expression for a given emotion could involve
many intensities, annotation of intensity entailed the intensity
type that was expressedmost in the interval between different
emotion tactile expressions. While an objective measure of
touch intensity is difficult to achieve without the use of tac-
tile force sensors, the investigators made an effort to increase
inter-rater reliability by carrying out parallel annotations. In
pilot studies and over initial subject recordings, for any given
subject, two investigators compared annotations for the emo-
tion interactions. This comparison was based on 5 recordings
from the pilot study and 4 subject recordings from the exper-
imental run, annotated by both investigators and used as
a material to come to an agreement for the coding prac-
tice. Once this was done, all video recordings were divided
between the two investigators and annotated based on this
agreed upon coding practice, and the initial annotations,
mainly used as a practise material, were replaced by final
annotations, which are the ones reported here. There were
a few cases of equivocal touch behaviours that required the
attention of both investigators to ensure an appropriate cod-
ing. However, these instances were considered a consultation
and separate annotations were therefore not part of the work
procedure. This approach was also applied in annotations for
touch type and location.

Touch duration was calculated for each emotion over the
entire emotion episode, i.e. from initial tactile interaction to
end of the tactile interaction. A single interaction comprising,
for example, two short strokes separated by a longer interval
without contact was hence coded as a single (long) duration.
As such, duration should be seen as ameasure of the length of
tactile interaction, not as a direct measure of the duration of
physical contact between human and robot. We adopted this
approach as a result of ambiguity as to when to objectively
measure the point at which a touch interaction had started
or ended, e.g. certain touch types like pat or stroke entail
touching and retouching with variable time delays.

Fig. 2 Diagram over body regions considered in the coding process for
location of touch. Colors indicate unique touch locations. (Color figure
online)

In order to analyze touch location, a body location dia-
gram of the robot (Fig. 2) was created and used during video
annotation. 16 unique body locations were considered: back,
belowwaist, chest, face, left arm, left ear, left hand, left shoul-
der, left waist, occiput, right arm, right ear, right hand, right
shoulder, right waist, scalp. Each location was coded zero or
once during each interaction implying that locations touched
several times during the same interaction was only counted
once.

Following themethodology of Hertenstein et al. [25], type
of touch was coded using the following 23 touch types:
Squeezing, Stroking, Rubbing, Pushing, Pulling, Pressing,
Patting, Tapping, Shaking, Pinching, Trembling, Poking,
Hitting, Scratching, Massaging, Tickling, Slapping, Lift-
ing, Picking, Hugging, Finger interlocking, Swinging, and
Tossing. Our single-instance type annotation per emotion,
presented a rather coarse approach; however, we avoided in
our evaluation accounting for multiple touches of the same
type for a given emotion thatmight provide a source of strong
variance in the data.

Hertenstein et al. [25] make reference to their use of
the Tactile Interaction Index (TII) for attempting to provide
objective standards to annotation. It has been described as
using: "a complicated scoring system to measure, among
other factors, the actual number and duration of touches, the
location of touch and whether the areas touched are densely
packed with nerve pathways […], the degree of pressure
on the skin and the specific type of action used in touch-
ing.”3 Notwithstanding its not being publicly accessible, the

3 University of California San Francisco Magazine, Volym 11, Univer-
sity Publications, University of California, San Francisco, Department
of Public Affairs, 1988.
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Fig. 3 Intensity ratings over
emotions and genders. The
stacked bar plots show female,
(F) and male (M) ratings over
the different intensity intervals
per emotion. The x-axis shows
total number of ratings per
emotion as well as mean ratings
over all emotions (right-most
plot) for comparison. It can be
seen that with the exception of
anger (both male and female)
and disgust (males) medium
intensity ratings were highest

TII was specifically developed, therefore, for human–human
interaction. Touch type, therefore, as for touch intensity, was
evaluated in the present study according to inter-rater agree-
ment regarding annotation in a pilot phase and initial subject
evaluations in the experimental phase.

3 Results

Results were analyzed according to the four criteria with
which Hertenstein et al. [25] evaluated emotion encoding
on their HHI studies: intensity, duration, location, type. It
should be borne in mind that, unlike for Hertenstein et al.
[25] experiments, the Nao robot is not able to decode the
emotions being conveyed by the humans; we did not have
an a priori measure of successful decoding of the emotions.
However, we evaluated tactile dimensions along which, in
principle, the Nao robot might be able to distinguish among
the different conveyed emotions, i.e. to decode.

3.1 Encoding Emotions

Intensity
The number of each of the four intervals, no interaction,
low intensity, medium intensity, and high intensity, for the
emotions is displayed in Fig. 3, separated for male and
female participants. Plots concern total number of ratings
over the participants. Mean number of ratings per emotion
were not analyzed as only one touch intensity per emotion
was recorded by the experimenters. What is observable is
a general tendency for emotions to be rated as of medium
intensity. However, it is also salient that this is not the case
for Anger, in particular for males, whowere rated as showing
predominantly Strong Intensity touch interactions.

Only Anger (bothmales and females) andDisgust (males)
showed a predominant rating for an intensity category other
than Medium Intensity by the experimenters. In these cases,
Strong Intensity ratings were most frequent. It can also be
observed that the Strong Intensity ratingwasmore frequently
applied to interactions by male participants, compared to
females, for the primary emotions (the opposite being true for
the pro-social emotions).4 Tables of results (Tables 1, 2, 3)
of the total different interval valuations for each of the 8 con-
veyed emotions for (a) the female participants, (b) the male
participants, (c) for all participants, are given in “Appendix
A”.

The tendency for experimenters to predominantly rate
intensities as Medium may owe to experimenter bias in rat-
ing or participant bias similar to a non-committal central
tendency bias (as is common to 5-point likert scales). We
carried out a chi-squared test comparing frequencies of the
four intensity categories over the two genders. Our value of
χ2(3,N = 64) = 2.141, p > 0.05 showed there was no sig-
nificant difference between the genders regarding recorded
intensity of touch.

Duration
The duration of tactile interaction for a given emotion was
recorded according to the initial touch and the final touch
before the participant turned the next card (signalling the
next emotion conveyance episode). Figure 4 plots means of
such durations (emotion conveyance episodes) in relation to
each emotion both for males and females.

It can be observed from Fig. 4 that females interact with
theNao robot for longer durations on average thanmales over
all emotions. This ismost evident for sadness and love. Using
a two-way (mixed design) ANOVA with independent vari-

4 Differences in pro-sociality and emotions between gender are com-
plex and often depend on context (cf. [20]).
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Fig. 4 Mean durations of tactile
interaction from initial to final
touch over each emotion.
Females interact with the Nao
for longer durations over all
emotions (means) and
differences are greatest
(non-overlapping standard error
bars) for sadness, love, disgust
and fear emotions

ables of gender (between subjects), and emotion type (within
subjects) and Winsorization5 of 90% we found a signifi-
cant main effect of gender: F(1, 64) = 4.228, p = 0.0485.
There was no significant interaction effect between the two
independent variables: F(7, 64) = 0.877, p = 0.5259;
but there was a significant main effect for emotion type:
F(7, 64) = 10.838, p < 0.01. See Table 4 for details.

Therefore, female participants tended to have longer
duration tactile interactionswith theNao robot thanmale par-
ticipants. Two-tailed post hoc (bonferroni correction) tests
were carried out to test differences between the emotions
conveyed. Only Sadness, Love and Sympathy yielded sig-
nificant differences with respect to other emotions. Sadness
was conveyed with significantly longer duration for all emo-
tions except for love and sympathy (at p < 0.05 level; see
“Appendix B” for details). Sympathy was conveyed for sig-
nificantly longer duration than Anger and Disgust, Love for
longer than Disgust.

In summary, differences in duration of tactile interaction
for the different emotions could be observed with Sadness
being the dominant emotion in regard to duration of tac-
tile interaction. Gender differences were also found (over all
emotions) with females spending significantly longer to con-
vey emotions than males. Data for this dimension showed a
large degree of variability such that outliers were required to
be dealt with (Winsorization was used). The reason for this
was that the instructions vocalized by the experimenters did
not request time-limited responding fromparticipants regard-
ing the conveyed emotions. Time-limitation was considered

5 We winsorized 3 values (outliers) for each of the 16 conditions and
additionally one extra of the gender-emotion conditions with highest
variance female-sadness, male-sadness, female-love, male-love, i.e. 52
values out of 512 data points in total. We winsorized values above
the 90th percentile but not values of the lower tail percentile as high
duration times were the source of variance here (low duration times =
zero interaction time).

to be constraining on the modes of interaction conveyed and
was thus avoided.

Location
Figure 5 displays the mean number of touched locations dur-
ing interaction separated for each emotion and for gender
and where individual touched regions per emotion were only
recorded once. As is visible in the figure, Disgust yielded
the most limited interaction for both genders, with a mean
of fewer than two locations touched. Love resulted in the
most plentiful interaction overall with a mean for females of
greater than 5 regions involved in each interaction. The exact
number of touches for each location is found in “Appendix
A” (Table 5).

Using a two-way (mixed design) ANOVA with indepen-
dent variables of gender (between subjects), and emotion type
(within subjects)we founda significantmain effect of gender:
F(1, 64) = 13.05, p < 0.01 (females touched more loca-
tions), and also for emotion type: F(7, 64) = 11.512, p <

0.01. However, there was no significant interaction effect
between the two independent variables: F(7, 64) = 1.4, p =
0.2024.Bonferroni correction tests found: Love>Fear, Love
>Anger, Love>Disgust, Love>Happiness, Love>Grat-
itude, Love > Sympathy, Happiness > Disgust, Sadness >
Disgust, all at p < 0.01.

In summary, females showed a tendency to touch the Nao
overmore areas particularlywith respect toLove,whileLove,
per se provoked subjects to touch more areas than most other
emotions.

Figures 6 and 7 present the frequencies of touched loca-
tions for gender and emotion, respectively. The difference
betweenmale and female participants described above is here
reflected in a larger involvement of the head for female par-
ticipants. Both male and female participants, however, touch
the arms and hands most frequently and involve feet and legs
to a very small extent.
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Fig. 5 Mean number of touched
locations during interaction. The
mean values represent the
number of touches per
participant for each gender

Fig. 6 Heat maps depicting touch distribution over gender, averaged
over all emotions. The different locations on Nao are visualized accord-
ing to amount of red in relation to numbers of touches. Darker red
indicates a higher number of touches over all the participants. The per-
centage of all touches is in brackets for each touch location. Sc scalp,

Fa face, RS right shoulder, LS left shoulder, RA right arm, LA left arm,
RH right hand, LH left hand, BW below waist, Ch chest, Ococciput,
LE left ear, RE right ear, Baback, LW left waist, RW right waist. (Color
figure online)

Looking at the touch frequencies for each emotion (Fig. 7),
Gratitude corresponds to a high percentage of right-hand
touches. This correlates with the high amount of hand-
shaking observed by participants in the experiment and is
corroborated by the Type data analyzed (see Type section).
Disgust is characterized by Chest poking or pushing actions
(seeType subsection)—ingeneral participantsminimized the
amount of touches conveying this emotion.Anger (and some-
what Fear) was focused on the upper torso. Love and Sadness
shared a profile of more distributed touch. Sympathy and
Happiness were focused more on the arms and hands of the
Nao.

Type
The seven most frequently used types of touch are presented
in Fig. 8. On average, these seven touch types constitute
85% of all tactile interaction. Participants use squeezing

(29%), stroking (16%), and pressing (14%) most frequently.
Pulling, trembling, and tossing, are never observed during
any interaction. Happiness stands out by involving a rela-
tively large proportion (12%) of swinging the robot’s arms,
not observed during other emotions.Male participants showa
general tendency to predominantly use squeeze for each con-
veyed emotion. Only in the case of disgust is another touch
type dominant (Push). By contrast, female participants use
squeeze as the dominant touch type in 3 of the 8 emotions:
Fear, Happiness, Gratitude. Push (Anger, Disgust), Stroke
(Sadness, Sympathy) and Hug (Love) are other dominant
emotion types expressed. Overall, females thereby appear to
show a greater variety of tactile interactions. However, gen-
der differences did not reach significance when applying the
χ2 test to type of touch patterns for the individual emotions
(see “Appendix B”).
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Fig. 7 Heatmaps depicting touch distribution over emotions (bothmale
and female participants). The different locations on Nao are visualized
according to amount of red in relation to numbers of touches. Darker
red indicates a higher number of touches over all the participants. The
percentage of all touches is in brackets for each touch location. Sc scalp,

Fa face, RS right shoulder, LS left shoulder, RA right arm, LA left arm,
RH right hand, LH left hand, BW below waist, Ch chest, Ococciput,
LE left ear, RE right ear, Baback, LW left waist, RW right waist. (Color
figure online)
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Fig. 8 Touch type over emotions and gender. The seven most common touch types are presented individually for each emotion

In summary, when encoding emotions from human to
robot, the following results stand out:

1. Sadness was the emotion conveyed for longer time than
all the ‘basic’ emotions and longest overall (independent
of gender);

2. Females tended to touch (convey emotions to) the Nao
robot over a longer duration than Males;

3. Love was the emotion that evoked the highest number of
locations touched on the Nao;

4. Females tended to touch more locations than Males;
5. Females showed a greater variety of touch types than

Males (though results were not significant).

The results suggest that Female participants were typically
more emotionally engaged with the Nao robot than were
Male participants in support of our hypothesis that there
would be differences in interaction behaviour with the Nao
betweenmales and females. The pro-social emotions of Love
and Sadness were more expressed although based on these
results this could signify greater uncertainty of expression
or alternatively greater engagement in relation to these emo-
tions.

As a final point, by evaluating single, rather than multi-
ple, touch types per emotion, and giving one intensity rating
over the emotion interval, it is possible that this would have
brought intensity values closer to medium ratings. However,
it was observed that typically intensities of interaction didn’t
vary so much, particularly in relation to multiple touches of
the same type.

3.2 Decoding Emotions

Unlike the Hertenstein et al. [25] experiment upon which our
HRI study was methodologically based, the Nao robot was a
passive recipient of touch, i.e. lacking the sensory apparatus
to decode the emotions conveyed. Nevertheless, the patterns

of affective tactile interaction observed during experimen-
tation provide clues as to the critical dimensions of touch
requisite to disambiguating the emotional or affective state
of the encoder.This in turn can inform robotics engineers as to
which types of sensors, and their locations, are most suitable
for a Nao robot seeking to interpret human affective states.
It can also inform as to the types of post-processing (e.g.
classification algorithms and input dimensions) that are most
relevant for decoding emotions. Therefore, here we derive
Systems Design based insights from our study.

In Fig. 9 is visualized a Support Vector Machine (SVM)
classification of emotional valence—specifically, the valence
of emotional conveyance. We used Matlab for the 2-
dimensional SVM classification. We analyzed mean val-
ues for the two dimensions—number of different locations
touched and duration of touch—in order to classify the emo-
tions. 2-dimensional classifications according to gender can
be seen in “Appendix C”.

The SVM classification here effectively has used the data
provided by the participants in our experiment as a training
set. In principle, new emotions conveyed could be classified
into one or two of the valenced affective states such that the
Nao robot has a fundamental affective understanding of the
meaning of the tactile interaction of the human.Nevertheless,
individual variance is such that any affective tactile interac-
tion would have to be calibrated (require some re-training)
on a case-by-case basis.

The results above-described have shown that emotions
(primary and pro-social) of the type used byHertenstein et al.
[25] in their human–human study are conveyed differentially
along a number of dimensions—intensity, duration, location
and type. Alongwith specific differences found regarding the
emotions being conveyed, it was found that classifications of
emotional tactile interaction according to valenced emotional
conveyance provides a useful means by which emotions may
also be decoded in robots (specifically the Nao robot here).
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Fig. 9 A support vector machine classification of emotional con-
veyance valence by number of location and duration of touch. Emotion
mean values are classified according to their positive or negative mean-
ing (either side of the hyperplane). Note, sadness here is classified as an
emotion that is conveyed positively (for consoling the agent). Circled
are the support vectors. (Color figure online)

The two dimensions of number of different locations and
duration of locations provide hints at the types of sensors,
and their distributions over the robot, needed for emotional
intention to be interpreted by the robot (see Discussion sec-
tion).

In Fig. 9, a strong distance between means can be seen
regarding Anger and Disgust, with respect to Love and
Sadness (even greater in Fig. 12 where Anger is the most
intensely expressed emotion). We decided to pool data for
all female and male subjects over Anger and Disgust (Rejec-
tion emotions6) and over Sadness and Love (Attachment
emotions7, where Sadness appears to be expressed in a con-
solatory manner). As can be seen in Fig. 10, most data for
both females and males for Rejection emotions are clus-
tered around high intensity, low duration and low location
number touch whereas Attachment emotions are more dis-
tributed with typically higher duration and location number.
Figure 11 shows, based on the (linear) decision hyperplanes
generated in the respective SVM training phase for females
and males, the classification accuracy for the remainder of
the data points. Note, the partitioning of data into training and
test/classification sets was arbitrary and we ran 25 such tests

6 Hutcherson and Gross (2011) and Nabi [39], have considered anger,
disgust (and also contempt) as rejection emotions that are differentiable,
in their appraisal-action effects, or not, respectively.
7 Bowlby [8], in his attachment theory considered that attachment
between individuals entails the development of a bond, expressed in
‘love’, or the threat, or realization, of loss, expressed as ‘sorrow’. We
consider sadness was typically expressed by individuals as a consoling
act according to perception of threat, or realization, of loss.

selecting the partitioning (model) that provided the greatest
accuracy for Rejection-Attachment classification.

In summary, our results for decoding emotions suggest
that affective tactile interaction may be classified according
to:

1. valence—positive and negative emotions conveyed seem
amenable to classification given that individual calibra-
tion (much inter-individual variance) is accounted for by
the robot;

2. rejection versus attachment—these two particularly
important social affective types appear amenable to clas-
sification based on touch alone.

Much research has highlighted the benefits of having multi-
plemodalities of sensory input so as to decode affective states
(e.g. [5]), including with reference to decoding tactile (ges-
tural) inputs [12]. Furthermore, Hertenstein et al. [25] found
a lower mean percentage correct classification/decoding for
the Rejection (64%) and Attachment (59%) emotions identi-
fied above, than we did in our study. However, each emotion
was decoded in reference to all other emotions in this case.
The fact that we obtained reasonable classification accuracy
using tactile interaction as the sole sensory modality for con-
veying emotion on the robot indicates that there is some
potential to use the encoder results to provide a basis for Nao
to decode emotions according to the touch properties of dura-
tion, location number and intensity. Imbuing the Nao with
appropriately placed sensors and perception/learning algo-
rithms would potentially allow the robot, thus, to perceive
the affective state (e.g. valence, rejection versus attachment)
of the interacting human by touch alone, particularly when
the robot is calibrated to the individual8.

4 Discussion

In this article, we have reported and analyzed findings of an
experiment detailing how humans convey emotional touch
to a humanoid (Nao) robot. The experiment closely followed
the methodological procedure of Hertenstein et al. [25] and
compared touch behaviour between male and female partic-
ipants. Our main findings are as follows:

1. Females convey emotions through touch to the robot for
longer durations than do males.

2. Females convey emotions over a larger distribution of
locations than do males.

8 It is often the case that emotion recognition software uses calibration
for establishing ‘baseline’ affective states of individuals (e.g. Noldus’
FaceReader software: http://www.noldus.com/facereader/set-up-your-
system).
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Fig. 10 A support vector machine classification of rejection versus
attachment affective state conveyance valence by number of location,
duration of touch and intensity of touch. Here is depicted training data
(50% of all data used) for each gender for rejection emotions (disgust

and anger) and Attachment emotions (love and sadness). Left: female
SVM classification. Right: male SVM classification. Support vectors
are not depicted here for purposes of clarity of visualization
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Fig. 11 Confusion matrices for females (left) and males (right). The matrices were calculated using the SVM hyperplanes in Fig. 10. Female data,
overall, were more accurately classified using this approach, especially with respect to the reject emotions

3. Females show a greater variety of touch types over all
emotions compared to males (but not significantly so).

Thus, we found females were more emotionally expressive
than males when conveying emotions by touch to the Nao
robot. This is consistent with our hypothesis that we would
find differences between female and male robot interaction
behaviours.

Additionally:

4. Sadness is the emotion that is conveyed for the longest
duration over both genders.

5. Love is the emotion that is conveyed over the largest
distribution of locations.

6. Emotions may be classified by conveyance valence, and
decoded (by a Nao robot), according to location number
and duration of touches.

7. Emotions may also be classified in relation to location
number, duration and intensity, when pooled into Rejec-
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tion (Disgust and Anger) and Attachment (Love and
Sadness/Consoling) based affective states.

Evidence for a number of other emotion-specific findings
were also found: (i) anger was the most intensely expressed
emotion, (ii) anger, disgust and fear were expressed for short-
est time and over the fewest number of locations. In general,
we foundnegative conveyance emotions (anger, disgust, fear)
were typically conducive to expressivity than positively con-
veyed emotions (happiness, sadness, gratitude, sympathy,
love) where sadness was seen to be expressed as a gesture of
consolation not dissimilar to sympathy and love.

Despite subjects being instructed to “imagine the you have
these emotions and that you want the robot to understand
how you feel by touching it in ways that you feel is relevant
for conveying each specific emotion”, sadness, apparently,
was interpreted more as a pro-social emotion. It could be
considered in terms of conveying empathy or sympathy to
the robot. Expression of sadness as a pro-social emotion
(i.e. being responsive to another’s sadness) versus empathy
(i.e. ‘feeling’ another’s pain), however, may be different. For
example, Bandstra et al. [4] found that children were more
behaviourally responsive when expressing pro-social sad-
ness9 than empathy. One might feel another’s pain but not be
unduly worried about it! On this reading, sadness, expressed
by subjects in this experiment, was a pro-social emotion that
did not necessarily entail an empathic component.

4.1 Human–Robot and Human–Human Interaction:
Scientific Implications

As alluded to throughout the article, our HRI research has
taken strong inspiration from thework onHHI of Hertenstein
et al. [25]. While there are some methodological differ-
ences between the present work and the replicated study on
human–human tactile communication, we see several strong
similarities in the results. Intensity of touch and duration of
touch, for example, followed similar patterns of interaction
in our HRI investigation as can be seen in “Appendix D”. The
(three) most and least categorized emotions according to the
four annotated intensity types (no interaction, low, medium,
high) are observably comparable in both ours and Herten-
stein’s investigations. For example, Anger and Disgust are
similarly annotated as being of high intensity (or involving
no interaction) whereas pro-social emotions (Love, Grati-
tude, Sympathy) are more typically conveyed through low
or intermediate intensity touch. In relation to duration, many
emotions are similarly conveyed in both human–human and
human–robot investigations. For example, Sadness and Sym-
pathy are of relatively long duration in both our results and

9 Pro-social sadness was expressed by, among other behaviours,
‘attempts to comfort the distressed victim’ ([4], p. 1076).

in the study by Hertenstein et al. Interestingly, Fear and Love
are conveyed differently in the two studies. In Hertenstein’s
HHI study, Fear is of longest duration whereas in our HRI
study it constituted one of the shortest duration emotions
conveyed. Love is conveyed with the second shortest dura-
tion in the Hertenstein study, while in our HRI study it is one
of the emotions conveyed over the longest duration. Low
duration conveyance of Love, to our understanding, is not
an intuitive result. A possible explanation for Hertenstein’s
finding is that humans find it awkward to convey such an
intimate emotion as Love to another human stranger while to
a small robot conveyance of such an emotion is less intimi-
dating. Such a divergence in our results might even indicate
that there is an important scientific role for artificial systems
to play in understanding emotional tactile interaction. This
interpretation gains weight when we consider the results of
our questionnaires regarding the ease and confidence with
which the subjects perceived their conveyance of Love. This
was perceived to be expressed more easily and confidently
than for all other emotions (see [2]).

In relation to type of touch, comparable findings over the
HHI andHRI investigations,Hertenstein et al. [25] report that
“fearwas communicated by holding the other, squeezing, and
contact without movement, whereas sympathy was commu-
nicated by holding the other, patting, and rubbing” (p. 570).
We observed a similar pattern with squeezing and pressing
being the dominant touch types used for communicatingFear,
while stroking was most frequently used when communicat-
ingSympathy. Furthermore, in linewithHertenstein et al., we
found several significant gender differences regarding how
emotions are communicated using touch. Male participants
appear to use high intensity interaction when communicating
primary emotions to a larger degree than female participants,
but for a shorter duration. Female participants are more var-
ied in their interaction, touching more locations on the robot
and using a larger set of different types of touch, compared
to male participants.

Going beyond a comparison with Hertenstein’s study, it
is noticeable that similar results have been found in Psychol-
ogy research and investigations of HHI in relation to touch
and gender differences. One of the most well-known studies
[28] shows that females touch other people, both females and
males, on more regions of their body than do males in their
tactile interaction. The most frequently touched body parts
in HHI are hands, arms (forearms and upper arms), shoul-
ders, and head [15,42] and that is consistent with our study in
which both the male and female participants most frequently
touched the robot’s arms and hands.

There are some other notable differences between the
results observed in the present study, and those reported by
Hertenstein et al. [25]. Firstly, Hertenstein et al. reported no
significant main effects of gender in terms of decoding accu-
racy, that is, the perceiving person’s ability to identify the
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communicated emotion. In the present study, we do not have
a measure of decoder accuracy but as discussed above, sev-
eral other effects of gender were found. It should be noted
that Hertenstein et al. only tested gender effects in relation
to male-female combinations of dyadic (encoder-decoder)
interactions and the accuracy of decoded emotions, and not
with respect to the properties of emotions communication.
This opens up at least two possible interpretations: (1) that the
gender differences found in the present study are not present
inHHI, (2) that our results also apply toHHIbut that observed
gender differences in how emotions are communicated via
touch do not affect the accuracy of communicated emotions.
Furthermore, while there is high consistency regarding most
types of touch over all communicated emotions, Hertenstein
et al. reports more frequent use of lift, shake, and swing than
observed in the present study. This may be a result of the
robot being configured with stiff joints, making it difficult
for the participant to use touch types involving movement of
the robot.

4.2 Human–Robot Tactile Interaction Systems
Design

From the perspective of Systems Design and HRI, it is worth
noting that three touch types, squeezing, stroking, and press-
ing, constitutedmore than half (59%) of all tactile interaction
in the study. While a detailed analysis of the information
content in each touch component is beyond the scope of the
present work, the present findings suggests that encoding and
decoding of these three touch types are critical for successful
human–robot tactile interaction. Furthermore, as presented in
Sect. 3.2, number of different locations touched and duration
of touch proved to be particularly informationally critical in
the decoding of emotions from tactile interaction. Somewhat
surprisingly, the intensity of touch appears less informative
for decoding emotional content. There was a predominance
of intermediate intensity encodings, whichmay reflect a cen-
tral tendency bias in either or both annotator and participant
behaviour. Hertenstein et al. [25] refer to the use of the Tac-
tile Interaction Index (TII) of Weiss [52] but we were unable
to adopt this approach to intensity annotations in our inves-
tigation as we were unable to obtain the TII. Subsequently,
we relied upon inter-rater agreement regarding estimations
of touch intensity (and type).

The present findings can also be viewed in relation to the
existing positioning of tactile sensors on the Nao robot. The
Nao has seven tactile sensors, three on the scalp, two on the
back of the hands, and two bump sensors on the feet. While
the hands are frequently involved in tactile interaction, the
scalp constitutes less than twopercent of all tactile interaction
in the present study. No tactile sensors are placed on the arms
that are the most frequently touched locations.

The fact that our HRI study found a general tendency for
females to be more expressive than males suggests that posi-
tioning/distribution of sensors may need to account for the
particular application domains in which the robot (specifi-
cally Nao in this case) is used. Robots in HRI domains are
often used for teaching assistance, elderly care/assistive liv-
ing, companionship. If the primary users are one gender or
another, sensor positioning and number may need to be con-
sidered.

Further design considerations concern the use of fab-
rics embedded with sensors that provide a robot wear-
able/interface (see Lowe et al. [34]). Such wearables need
not only have the sensors appropriately distributed on the
robot’s body, but should also allow for the sensor properties
to be utilized. Sensors may be sensitive to pressure for regis-
tering touch types such as squeeze and press. They may also
be implemented as arrays to record stroke or rub touch types.
Wearables embedded with smart sensors exist [cf. Maiolino
et al. [35], Yogeswaran et al. [53]] that serve as effective suits
whose primary role, however, is to provide the robot with
tactile information for its own safety and to provide a softer
surface interactive interface for facilitating human safety. In
relation to affective-based interactions, if the wearable mate-
rials are not conducive to such interactions, e.g. do not visibly
afford touch, the sensors will not be so well exploited. Of
further relevance is how theNao (or a given robot) should per-
ceive and respond to affective touch. Our results (Sect. 3.2)
indicate that affective valence (positively conveyed versus
negatively conveyed emotions) may be detectable according
to the dimensions of duration of touch and distribution of
locations touched. Such perception naturally requires cali-
bration to individual humans.

While the similarity between the present results and the
results reported by Hertenstein et al. [25] is notable, it is
still unknown to what extent these results hold also for other
robot models, including non-humanoid robots. Evaluating
different morphological properties of robots and other artifi-
cial systems would be requisite to furthering understanding
of the factors that influence human conveyance of emotion-
based touch. The present results are likely to be dependent
on the appearance and shape of the robot, and to what extent
people see the robot as another agent, or merely an artefact.

Results may also be dependent on the interaction context
and the placement of the Nao. For example, placing the Nao
on the floor is likely to change the interaction pattern, at least
in terms of where the robot is touched. Another limitation of
this study lies in the age of participants. Itwould, for example,
be interesting to compare these results to children interacting
with the robot. Children constitute one important target group
and may be less constrained by social conventions. This may
be particularly relevant to furthering the understanding of
tactile conveyance of intimate emotions such as love where
adults may feel comparatively inhibited.
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4.3 Human–Computer Tactile Interaction Systems
Design

Tactile interaction for use in human–computer interaction
(HCI) is of growing interest with increasingly broadening
applications [48]. The nature of differentiated affective or
emotional tactile interaction in artificial systems has most
obvious application to physically embodied agents withmor-
phologies comparable to humans. However, affective tactile
interaction may have more general application to HCI, for
example in the shape of digitally mediated emotions with
the use of haptic devices [3], or as a facilitator of social
presence in relation to virtual agents (cf. [51]). It has been
found that hand squeezes, using an air bladder, improves
human relations with virtual agents [6]. In the context of
tactile interaction that may be informative for both virtual
agent technology and forHRI, Cooney et al. [12] investigated
howpeople conveyed affectionate touch (types) to two differ-
ent types of humanoid (adult-sized) motionless mannequins.
They found that humanswere able to accurately decode touch
types according to a classification algorithm. They did not,
however, evaluate how well people interacted with a real,
moving, robot nor did they look at the conveyance of spe-
cific emotions (including negative emotions). The domain
on non-humanoid artificial agents also provides an applica-
tion area for affective tactile interaction. An example of an
artificial creature (robot) designed to encourage haptic (tac-
tile and kinesthetic) interactions is the Haptic Creature of
Yohanan and MacLean [55]. This creature is simultaneously
able to (i) sense touch and movement using an array of touch
sensors and an accelerometer, respectively, and (ii) display
its emotional state through adjusting the of its stiffness ears,
modulation of its breathing and producing a (vibrotactile)
purring sound. Use of such non-humanoid robots, however,
may ultimately be limiting with respect to the types of affec-
tive touch interactions that are permissible and natural.

4.4 Further Study

Follow-up studies are envisioned to take the formof revisiting
our Human–Robot tactile interaction scenario using differ-
ent robots and also different subjects, e.g. children. Present
work concerns an ongoing investigation using Aldebaran’s
Pepper10 robot. In general, a different robotmorphologymay

10 The Pepper robot is produced by Aldebaran, SoftBank Group. 43,
rue du Colonel Pierre Avia 75015 Paris. https://www.aldebaran.com.

afford different touch types more than others. We also plan
to utilize smart textile sensors [14,30] on the robot (e.g. Nao)
distributing the sensors on a wearable (Wearable Affective
Interface, or WAffI—see Lowe et al. [34]) in accordance
with our findings. Different textiles may also affect the extent
to which human subjects utilize particular touch types, e.g.
squeeze, press, as a function of the elasticity of the mate-
rial. Further studies are required to also take into account
the mitigating effects of environmental settings for the HRI.
Nevertheless, we believe that our findings, presented in this
article, as well as those in Lowe et al. [34], can directly influ-
ence the positioning, selection, and development of tactile
sensors for robots, and possibly other artefacts. Finally, we
see potential to investigate in more depth interaction regard-
ing specific emotions. This is particularly relevant where the
use of a robot may make participants feel more comfortable
when communicating some emotions (such as Love) than
when communicating the same emotion to another human
stranger.
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Appendix A: Tables of Number of Touch
Intensity Categories and Touch Type

See Tables 1, 2, 3 and 5.
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Table 1 Percentage (1DP) of
intensity ratings over all
emotions (all participants)

All

Fear Anger Disgust Happiness Sadness Gratitude Sympathy Love Mean

No 9.4 9.4 12.5 6.25 6.25 3.125 1.6 1.6 6.25

LI 18.8 7.8 15.6 20.3 35.9 9.4 25 26.6 19.9

MI 51.6 21.9 40.6 50 46.9 51.6 68.8 53.1 48

SI 20.3 60.9 31.25 23.4 10.9 35.9 4.7 18.8 25.8

Table 2 Percentage (1DP) of
intensity ratings over all
emotions (female participants)

Female

Fear Anger Disgust Happiness Sadness Gratitude Sympathy Love Mean

No 9.4 12.5 12.5 6.25 3.2 6.25 3.2 3.2 7

LI 21.8 9.4 15.6 25 37.6 9.4 25 25 21

MI 53.2 28.2 56.2 50 50 43.8 65.6 46.8 49.2

SI 15.6 50 15.6 18.8 9.4 40.6 6.25 25 22.6

Table 3 Percentage (1DP) of
intensity ratings over all
emotions (male participants)

Male

Fear Anger Disgust Happiness Sadness Gratitude Sympathy Love Mean

No 9.4 6.25 12.5 6.25 9.4 0 0 0 5.1

LI 15.6 6.25 15.6 15.6 34.4 9.4 25 28.2 18.75

MI 50 15.6 25 50 43.8 59.4 71.8 59.4 46.9

SI 25 71.8 46.8 28.2 12.5 31.2 3.2 12.5 28.9

Nono touch attempted, LI light intensity touch rating,MImedium/mid touch intensity rating, SI strong inten-
sity touch rating

Table 4 Between- and within- subject variables analysis of variance

SOV SS df MS F P

IV1 749.184 1 749.184 4.228 0.0485

Error(IV1) 5315.516 30 177.184

IV2 1218.038 7 174.005 10.838 0.0000

IV1xIV2 98.513 7 14.073 0.877 0.5259

Error(IV1xIV2) 3371.571 210 16.055

Total 21867.033 511

Bold font indicates results that are statistically significant

Appendix B: Encoder Statistical Comparisons

Duration of touch
The below-calculated ANOVA was tested using Matlab’s
BWANOVA2() function which implements a mixed 2-way
anova function. In this case, IV1(BS) levels are: 2; IV2(WS)
levels are: 8; number of subjects are: 32. The test was carried
out to test main and interactive effects of gender and emotion
type on duration of tactile interaction.

Bonferroni correction significant test results for duration
of touch

Sympathy > Anger: p = 0.0014

Sympathy > Disgust: p = 0.0002

Love > Disgust: p = 0.0003

Sadness > Fear: p = 0.0003

Sadness > Anger: p = 0.0000

Sadness > Disgust: p = 0.0000

Sadness > Happiness: p = 0.0003

Sadness > Gratitude: p = 0.0012

Touch type Chi-squared tests

Fear:
2
χ(22,N = 64) = 0.981

Anger:
2
χ(22,N = 64) = 0.652

Disgust:
2
χ(22,N = 64) = 0.999

Happiness:
2
χ(22,N = 64) = 0.716

Sadness:
2
χ(22,N = 64) = 1.000

Gratitude:
2
χ(22,N = 64) = 1.000
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Table 5 Total number of
touches per emotion per location
on Nao

Fear Anger Disgust Happiness Sadness Gratitude Sympathy Love

LA 29 33 7 35 31 17 33 47

RA 23 28 9 32 26 21 22 39

LS 7 10 6 9 12 8 13 9

RS 7 4 8 6 19 6 13 12

LH 20 8 11 30 19 21 13 19

RH 13 5 9 33 23 46 13 20

Ch 11 19 25 6 8 7 2 16

Ba 4 0 1 7 18 8 6 28

RW 2 1 1 3 2 1 0 3

LW 2 1 1 3 2 0 0 4

Fa 3 4 9 3 10 6 3 17

Sc 1 2 0 2 4 1 7 5

LE 0 0 2 2 1 0 1 9

RE 0 0 1 2 2 2 6 8

Oc 1 0 0 1 2 1 1 5

BW 4 2 3 6 9 6 0 10

Totals 127 117 93 180 188 151 133 251

LA left arm, RA right arm, LS left shoulder, RS right shoulder, LH left hand, RH right hand, Ch chest, Baback,
RW right waist, LW left waist, Fa face, ScScalp, LE left ear, RE right ear,Ococciput (back of head), BW below
waist

Sympathy:
2
χ(22,N = 64) = 0.986

Love:
2
χ(22,N = 64) = 0.974

Appendix C: Decoder Emotion Classifications

See Fig. 12.

Appendix D: Human–Robot and Human–
Human Interaction Comparison

Table 6 and 7 present a qualitative comparison with Herten-
stein et al. (2009) for touch duration and intensity. With
two exceptions, the same top three emotions appear for
each intensity level, indicating high consistency between
the results reported by Hertenstein et al. and the results
presented here, regarding intensity (Table 6). In Table 7,
we have arranged all communicated emotions according to

Fig. 12 Two-dimensional support vector machine classification across genders. Left: female SVM classification. Right: male classification
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Table 6 Listing of emotions for each touch intensity level

No interaction Low Medium High

HHI HRI HHI HRI HHI HRI HHI high HRI

Most Disgust,
anger, love

Disgust, fear,
anger

Sympathy,
sadness, love

Sadness, love,
sympathy

Gratitude, fear,
love

Sympathy,
love, fear

Anger,
happiness,
disgust

Anger,
gratitude,
disgust

Least gratitude,
fear,
sadness

Sympathy,
love,
gratitude

Anger, disgust,
happiness

Anger,
gratitude,
disgust

Sadness,
sympathy,
anger

Anger, disgust,
sadness

Sympathy,
sadness, love

Sympathy,
sadness, love

Table 7 Ranking of emotions
over duration

HHI HRI female HRI male

Longest duration Fear Sadness Sympathy

Sadness Love Sadness

Sympathy Sympathy Love

Gratitude Gratitude happiness Gratitude

Happiness Happiness

Disgust Fear Anger

Love Disgust Fear

Shortest duration Anger Anger Disgust

mean duration, allowing grouping of emotions into long
duration (sadness, love, and sympathy), medium duration
(gratitude and happiness), and short duration (fear, disgust,
andanger). With the exceptions of fear and love, a similar
pattern emerges also in the data from Hertenstein et al.
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