Effects of growth and aging on the reference values of pulmonary nitric oxide dynamics in healthy subjects

To cite this article: M Högman et al 2017 J. Breath Res. 11 047103

View the article online for updates and enhancements.

Related content
- Extended NO analysis in health and disease
 Marieann Högman
- Association of extended nitric oxide parameters with bronchial hyperresponsiveness and bronchodilator response in children with asthma
 Yoon Hee Kim, In Suk Sol, Seo Hee Yoon et al.
- A practical approach to the theoretical models to calculate NO parameters of the respiratory system
 M Högman, A Thornadsson, G Hedenstierna et al.

Recent citations
- The unique contribution of Professor Lars E Gustafsson to the field of breath research
 Marieann Högman and Terence Risby
Effects of growth and aging on the reference values of pulmonary nitric oxide dynamics in healthy subjects

M Högman1, A Thorndtsson1,2, P Liv3, T Hua-Huy4, A T Dinh-Xuan4, E Tufvesson4, H Dressel5, C Janson1, K Koskela1, P Oksa6, R Sauni7, J Uitti8, E Moilanen9 and L Lehtimäki8

1 Dept. of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
2 Centre for Research and Development, Uppsala University/Region Gävleborg, Sweden
3 Dept. of Respiratory Physiology, Medical School, Paris Descartes University, Paris, France
4 Dept. of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Sweden
5 Epidemiology, Biostatistics and Prevention Institute, Division of Occupational and Environmental Medicine, University of Zurich, Zurich, Switzerland
6 The Finnish Institute of Occupational Health, Tampere, Finland
7 The Immunopharmacology Research Group, Faculty of Medicine and Biosciences, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
8 Allergy Centre, Tampere University Hospital; and Faculty of Medicine and Biosciences, University of Tampere, Tampere, Finland
E-mail: marieann.hogman@medsci.uu.se

Keywords: breath test, nitric oxide, mathematical model, health, pulmonary gas exchange

Supplementary material for this article is available online

Abstract

The lung just like all other organs is affected by age. The lung matures by the age of 20 and age-related changes start around middle age, at 40–50 years. Exhaled nitric oxide (F_ENO) has been shown to be age, height and gender dependent. We hypothesize that the nitric oxide (NO) parameters alveolar NO (C_ANO), airway flux (J_awNO), airway diffusing capacity (D_awNO) and airway wall content (C_awNO) will also demonstrate this dependence. Data from healthy subjects were gathered by the current authors from their earlier publications in which healthy individuals were included as control subjects. Healthy subjects ($n=433$) ranged in age from 7 to 78 years. Age-stratified reference values of the NO parameters were significantly different. Gender differences were only observed in the 20–49 age group. The results from the multiple regression models in subjects older than 20 years revealed that age, height and gender interaction together explained 6% of variation in F_ENO at 50 ml s$^{-1}$ (F_ENO$_{50}$), 4% in J_awNO, 16% in C_awNO, 8% in D_awNO and 12% in C_ANO. In conclusion, in this study we have generated reference values for NO parameters from an extended NO analysis of healthy subjects. This is important in order to be able to use these parameters in clinical practice.

Introduction

The use of non-invasive methods to diagnose respiratory diseases and monitor treatment is advantageous for both patients and healthcare professionals. Exhaled nitric oxide (F_ENO) has been used extensively since its discovery in human breath [1], especially in asthma where clinical practice guidelines have already been published [2]. The pulmonary nitric oxide dynamics models have the advantage of being a more precise assessment of nitric oxide (NO) dynamics, but their application has been limited [3]. The technical development has rapidly evolved and today we have NO analysers adopted for clinical use, both in specialized respiratory medicine and primary care [4, 5].

F_ENO from one single exhalation will give a measured value of NO production from the entire respiratory system. A more detailed insight can be gained through the use of the mathematical two-compartment model (2CM) of pulmonary NO dynamics, which differentiates the NO exchange of the peripheral and central parts of the lung and explains the flow dependence of F_ENO [6, 7]. In brief, the 2CM consists of an alveolar compartment comprising the peripheral gas exchanging parts of the lung (respiratory bronchioles and alveoli) and an airway compartment comprising the conductive...
airways larger than respiratory bronchioles. Gas in the alveolar compartment holds a certain concentration of NO (CawNO). During exhalation, alveolar gas travels through the bronchial compartment and more NO diffuses from the bronchial wall into the luminal gas (airway NO flux, JawNO) [8]. CawNO and JawNO can be estimated based on a linear model if FENO is measured at three flow rates at a least 100 ml s⁻¹ [9]. If a flow rate less than 30 ml s⁻¹ is used together with a median and a high flow rate, i.e. 100 and 300 ml s⁻¹, then a non-linear model can be applied which also estimates the airway wall concentration of NO (CawNO) and the diffusing capacity of NO from the airway wall to the gas stream (DawNO) [8, 10]. Investigations have used the 2CM with interesting results, especially for CawNO where increased values have been found in severe asthma [11], alveolitis [12], and chronic obstructive pulmonary disease [10, 13] and early scleroderma [14]. CawNO has been specifically used to identify scleroderma patients at high risk for lung function deterioration and advancing disease, with 5.3 ppb being suggested as the cut off value [15].

Reference values are necessary for any new method to be accepted in clinical practice, and reference values for FENO at the recommended flow of 50 ml s⁻¹ (FENO50) have been published [16, 17]. Height, age and gender have been shown to influence FENO50. Reference values for NO parameters from extended NO analysis are limited to two publications, one with 89 adults [18] and one with 66 children [19]. The lung matures by the age of 20 in regard to closing volume [20] and in older age the diffusing capacity declines in a linear fashion with increasing age [21], and these changes in pulmonary physiology might also affect NO parameters. The aim of this study was to establish reference values for NO parameters in healthy subjects ranging from young to old age.

Methods

Subjects

Data from healthy non-smoking subjects were gathered by the current authors from their earlier publications in which healthy individuals were included as control subjects [10, 14, 18, 19, 22–30]. In the majority of these studies measurements of lung function and symptom questionnaires verified the health status. Gender, age and height were noted. The exhaled flow together with corresponding exhaled NO levels were collected.

NO analysis

FENO50 and F3NO50 values from exhalation with flows of 5–500 ml s⁻¹ for the extended NO analysis were gathered. All data were recalculated either with the linear model (Tsoukias & George, TG) [9] using three flow rates of at least 100 ml s⁻¹ or with the non-linear model (Högman–Meriläinen Algorithm, HMA) [10, 22] using a low flow rate of 5, 10 or 20, a median rate of 100 and a high flow rate of 300, 400 or 500 ml s⁻¹. Data were fed into an algorithm in a standard Microsoft® Excel environment, available as supplementary information, for the generation of the NO parameters (stacks.iop.org/JBR/11/047103/mmedia). When generating NO parameters from the linear model [9], Pearson’s r-value was noted. With the use of NO parameters from the non-linear model [10, 22] a plot of flow with corresponding NO values can be generated; at a flow of 50 ml s⁻¹, a NO value was noted and compared to the measured FENO50 for a quality control of the estimation of the NO parameters. With the non-linear model there is also a built-in quality test of the curve [10]. This is in line with the first guidelines for the extended NO analysis [31].

Statistical analysis

Due to aging of the lung, the subjects were divided into three age groups, <20 years, 20–49 years and ≥50 years. Descriptive data of the subjects are presented as frequency or as medians and quartiles where appropriate. The distributions of the NO parameters, stratified by age groups, are presented as an arithmetical mean or geometrical mean (for skewed distributed data) and as 2.5th, 5th, 25th, 50th, 75th, 95th, 97.5th percentiles. A Kruskal-Wallis test and one-way ANOVA were used to test for differences in the distribution of NO parameters between the age groups. In the case of significant difference between age groups, post-hoc tests were performed using a pairwise Mann-Whitney U-test. Pearson Correlation was used to test correlations to CawNO. Spearman’s rank order correlation was used for the other NO parameters.

Gender-stratified simple regression models were fitted with the logarithms of F3NO50, CawNO, DawNO, and JawNO, respectively, as the dependent variable, and with age as an independent variable. Logarithmically scaled regression lines were retransformed back into natural scale and all regression lines were then plotted along with their corresponding 95% reference intervals.

Multiple regression modelling was performed on data where subjects younger than 20 years were excluded, as children differ from adults in regards to the relationship between age and height, which made it difficult to fit robust statistical models. The models were specified with the CawNO in natural scale, the logarithms of F3NO50, CawNO, DawNO, and JawNO, respectively, as the dependent variable, and with age, height and gender, including interaction terms between gender*height and gender*age, as independent variables. For all the models, ANOVA chunk tests were performed, jointly testing if the two interaction terms contributed significantly to the models as compared to omitting them from the model. As this was not the case for any of the NO parameters, the models were refitted without the interaction terms. To
account for a potential cluster effect in the data, we also controlled for study centre and estimation method (TG versus HMA). To help the interpretability of regression coefficients, the variables age and height were centred and age was scaled to a unit of 10 years and 10 cm respectively [32]. For the factor gender, B represents the expected ratio in geometrical means between a male and a female, keeping all other variables fixed. For the logarithmically transformed parameters, regression coefficients have been retransformed to natural scale using the exponential function. The bootstrap procedure produces optimism-corrected estimates of R^2, with a correction factor based on the average difference, in over 5000 bootstrap samples, between the R^2 of the model fit to the bootstrap data and the R^2 of the bootstrap model applied to the original data.

Model assumptions of normality and homoscedasticity of residuals were assessed from graphs. A p-value <0.05 was considered statistically significant. Excel (Microsoft Office 2011) was used for calculations of the NO parameters. Statistical analyses were performed using SPSS, v. 22 (SPSS Inc., Chicago, MI, USA), and R [33] using the rms package [34].

Results

Healthy subjects ($n = 433$) aged between 7–78 years were analysed. There were more men ($n = 268$) than women ($n = 165$) (table 1). There was no difference in F_{ENO} between the study centres ($p = 0.37$).

The NO parameters were estimated using the linear model TG ($n = 87$) with an r-value from 0.90 to 1.0, and with a median value of 1.0 ($0.99, 1.0$). In the non-linear model HMA ($n = 346$), all passed the built-in quality test. The difference in measured and estimated F_{ENO} ranged from -5.1 to 5.0, with a median value of $0.3 (-0.6, 1.3)$ ppb.

NO parameters in the different age groups

There were statistically significant differences in the distribution of the NO parameters between the young, middle and older age groups (table 2). F_{ENO} was higher in the older age group compared to the young age group ($p < 0.001$) and the middle age group ($p = 0.001$), and F_{ENO} was higher in the middle age group than the younger age group ($p < 0.001$). J_{awNO} was lower in the young age group compared to the middle age ($p < 0.001$) as well as the older age group ($p < 0.001$). C_{awNO} was higher in the older age group compared to the young age group ($p < 0.001$) and the middle age group ($p < 0.001$), and C_{awNO} was higher in the middle age group than in the younger age group ($p < 0.001$). D_{awNO} was lower in the older age group compared to the young age group ($p = 0.023$) and the middle age group ($p = 0.001$). C_{NO} was lower in the middle age group compared to the young age group ($p = 0.001$) and the older age group ($p < 0.001$).

NO parameters in the different age groups by gender

There was only a difference between genders in the middle age group in F_{ENO} ($p < 0.001$), F_{awNO} ($p < 0.001$), C_{awNO} ($p < 0.001$) and C_{NO} ($p = 0.027$) but not in D_{awNO} (table 3).

Regression analyses

Relationships between age and the NO parameters ($J_{\text{awNO}}, C_{\text{awNO}}, D_{\text{awNO}}$ and C_{awNO}), with univariate regression lines and estimated 95% reference intervals, are shown in figure 1. F_{ENO} is shown in the supplementary material, available online.

The multiple regression analyses, with the bootstrap validation step, showed in the age groups above 20 years that age, height and gender interactions together explained 6% of variation in F_{ENO}, 4% in J_{awNO}, 16% in C_{awNO}, 8% in D_{awNO} and 12% in C_{NO} (table 4). Age was a significant predictor in all models ($p < 0.001$) except for J_{awNO} ($p = 0.18$) (table 4). The association was positive for F_{ENO} and all NO parameters. Gender contributed as a significant main effect for C_{awNO} and C_{NO} only. Multiple linear regression models poorly predicted the large variations in F_{ENO} and NO parameters.

In the age group <20 years there were only 83 subjects and therefore multiple regression models were not applied. Age correlated positively to F_{ENO} ($r = 0.31$, $p = 0.005$) and to J_{awNO} ($r = 0.32$, $p = 0.003$). There were stronger correlations between height and F_{ENO} ($r = 0.45$, $p < 0.001$), and height and J_{awNO} ($r = 0.41$, $p = 0.001$), while no correlations were found between height and $C_{\text{awNO}}, C_{\text{awNO}}$ and D_{awNO}.

Table 1. Subject characteristics in the different age groups presented by gender.

<table>
<thead>
<tr>
<th>Age group</th>
<th><20 yrs</th>
<th>20–49 yrs</th>
<th>≥50 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Subjects, n</td>
<td>41</td>
<td>42</td>
<td>82</td>
</tr>
<tr>
<td>Age, years</td>
<td>10 (9, 11)</td>
<td>10 (8, 12)</td>
<td>33 (26, 40)</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.39 (1.32, 1.47)</td>
<td>1.37 (1.31, 1.49)</td>
<td>1.68 (1.64, 1.71)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>34 (30, 38)</td>
<td>32 (28, 39)</td>
<td>60 (55, 68)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>17 (16, 19)</td>
<td>17 (16, 19)</td>
<td>22 (20, 23)</td>
</tr>
</tbody>
</table>

Data are given in median (25, 75 percentile).
Data are given in median.

Gender | Female | Male | Female | Male
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---
CANO, ppb | 2.12 | | | | | | | | | | | |
JawNO, ml | 1.78, 2.39 | | | | | | | | | | | |
CawNO, ppb | 1.98, 2.39 | | | | | | | | | | | |
FENO50, ppb | 8.7 | | | | | | | | | | | |

Table 3. Mean values and percentile distribution of FENO50 and NO parameters in the three age groups.

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Mean</th>
<th>p-value</th>
<th>2.5</th>
<th>5</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>95</th>
<th>97.5</th>
</tr>
</thead>
<tbody>
<tr>
<td><20 yrs</td>
<td>10.8</td>
<td><0.001</td>
<td>4.7</td>
<td>4.9</td>
<td>7.1</td>
<td>10.5</td>
<td>15.9</td>
<td>25.6</td>
<td>27.0</td>
</tr>
<tr>
<td>20–49 yrs</td>
<td>16.0</td>
<td></td>
<td>6.6</td>
<td>7.4</td>
<td>12.0</td>
<td>15.3</td>
<td>20.9</td>
<td>38.0</td>
<td>45.5</td>
</tr>
<tr>
<td>≥50 yrs</td>
<td>18.2</td>
<td></td>
<td>7.7</td>
<td>8.5</td>
<td>13.2</td>
<td>18.2</td>
<td>25.3</td>
<td>36.5</td>
<td>44.9</td>
</tr>
</tbody>
</table>

Table 3. FENO50 and NO parameters in the different age groups presented by gender.

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Gender</th>
<th><20 yrs</th>
<th>Male</th>
<th>20–49 yrs</th>
<th>Male</th>
<th>≥50 yrs</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>FENO50, ppb</td>
<td>Female</td>
<td>11 (8, 16)</td>
<td>10 (7, 15)</td>
<td>13 (10, 17)</td>
<td>18 (13, 23)</td>
<td>17 (12, 23)</td>
<td>19 (14, 26)</td>
</tr>
<tr>
<td>JawNO, ml/s</td>
<td>Female</td>
<td>0.43 (0.28, 0.66)</td>
<td>0.37 (0.23, 0.66)</td>
<td>0.63 (0.44, 0.83)</td>
<td>0.87 (0.60, 1.25)</td>
<td>0.75 (0.49, 1.14)</td>
<td>0.84 (0.54, 1.26)</td>
</tr>
<tr>
<td>CawNO, ppb</td>
<td>Female</td>
<td>76 (48, 130)</td>
<td>54 (30, 84)</td>
<td>77 (54, 115)</td>
<td>126 (77, 211)</td>
<td>121 (71, 173)</td>
<td>163 (100, 288)</td>
</tr>
<tr>
<td>DawNO, ml/s</td>
<td>Female</td>
<td>0.56 (0.40, 1.09)</td>
<td>0.57 (0.52, 0.80)</td>
<td>0.68 (0.60, 1.48)</td>
<td>1.10 (0.75, 1.65)</td>
<td>0.75 (0.49, 1.14)</td>
<td>0.84 (0.54, 1.26)</td>
</tr>
<tr>
<td>CNO, NO, ppb</td>
<td>Female</td>
<td>2.12 (1.78, 2.39)</td>
<td>1.98 (1.25, 2.33)</td>
<td>1.99 (1.22, 2.39)</td>
<td>1.52 (1.07, 2.06)</td>
<td>2.44 (1.25, 2.92)</td>
<td>2.20 (1.45, 2.83)</td>
</tr>
</tbody>
</table>

Data are given in median (25,75 percentile). Geometrical mean. Mann-Whitney U-test for gender differences, *p < 0.05.

Discussion

In this study we have generated reference values for NO parameters from an extended NO analysis of healthy subjects. By pooling the healthy subjects' data from earlier published data the values of NO parameters for a large group of subjects can be presented. We have found that age influences FENO and all the NO parameters, while gender affects NO parameters only in the middle age group. Multiple linear regression models poorly predicted the large variations in FENO and NO parameters. In the See et al paper (n = 13,275) about 10% of the variation in FENO was explained by a variety of variables [35], and this is in line with the current results (n = 433) where about 6% of the variation in FENO was explained by age, height, gender, NO model and study centre.

Lung development

In the <20 age group, FENO was lower than in the other age groups. This could possibly reflect an increasing mucosal surface area with increasing height and growing lung volumes. This was also present in the study by Jacinto et al where the FENO increase breakpoint appeared around 14 years in girls and 16 years in boys [17]. This is in line with the growth of the body, and more specifically the development of the bronchial tree.

Ageing

In the middle and older age groups pulmonary aging seems to increase CNO. This possibly reflects decreased diffusivity of gases in the distal portion of the lung, as CNO is determined not only by factors affecting FENO and all the airway NO parameters. In the extended NO analysis of healthy subjects there is a decrease in steady-state circulation where it is rapidly scavenged by haemoglobin. In older age, the diffusing capacity declines in a linear fashion with increasing age [21] and in elderly healthy subjects there is a decrease in steady-state transfer capacity for carbon monoxide (CO) [36] and NO [37]. There is also an increase in residual volume...
Figure 1. Relationship between age and the NO parameters, airway NO flux ($J_{\text{aw}}\text{NO}$), alveolar NO ($C_{\text{AN}}\text{NO}$), airway diffusing capacity ($D_{\text{aw}}\text{NO}$) and airway wall content ($C_{\text{aw}}\text{NO}$), with univariate regression lines and estimated 95% reference intervals. Since children differ markedly from adults, in particular regarding the associations between height and age, the young age group was treated separately.
DawNO found in older age might re-

However, the uptake of NO in pulmonary
with age, and both can contribute to the increase of
with the inhaled NO from the airways that increases
accumulation of NO from the alveolar region together

This is possibly explained by a decrease in the capillary
The increased CANO that has been found in COPD
until there is enough data for this age group. Therefore,

DawNO decreases with increasing age. This is
interesting, as DawNO is the total diffusivity of NO
from bronchial mucosa to luminal air, and it can be
assumed to reflect both the total surface area available
for diffusion and also the physical properties of the
mucosa affecting the diffusivity of gases. As individuals
grow so do their bronchial trees, and one would
assume that DawNO increases with increasing height,
but we did not see this. Instead, we found that CawNO
increased and this explained the increase in JawNO and
F2NO50 during the growth period. The decrease of
DawNO found in older age might reflect the physical
changes occurring in the bronchial mucosa of the
aging lung.

Gender

It was only in the middle age group where a gender
difference could be found in F2NO50, JawNO, CawNO
and CANO. In the regression model only the variations
in CawNO and CANO were significant for gender.

Olin et al found F2NO50 to be higher in men than
in women around 50 years of age with 18 resp. 15 ppb
respectively, but when comparing F2NO50 between
the sexes with similar heights and ages no difference
was found [16]. Jacinto et al have shown a gender dif-
ference in the same age group with men slightly above
15 ppb and women around 12 ppb [17]. The correspon-
ding values for F2NO50 in the present study with the
young age group excluded are 16 ppb for men and
15 ppb for women, which are in line with the values
obtained by Olin et al using the same analysing
method, namely chemiluminescence.

A limitation in this study is that data were pooled,
which resulted in more men than women, especially
in the old age group. In addition, the cross-sectional
design of the study is not optimal to assess the relation
between age and NO parameters. However, long
enough longitudinal studies would require decades of
follow-up. It would be interesting to put lung function
in relation to the NO parameters, but unfortunately
we did not have lung function data from all of the sub-
jects. We did check that there was no signifi-
cant difference in the mean F2NO50 values between
the different groups. It was only in the middle age

Table 4. Regression coefficients (B) and p-values of the multiple regression models for NO-variables. The R² is the unadjusted
coefficient of determination of the models and R²boot is the corresponding optimism-corrected R² values as estimated by
bootstrapping.

<table>
<thead>
<tr>
<th>Intercept</th>
<th>Age</th>
<th>Height</th>
<th>Gender (male)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B p-value</td>
<td>B p-value</td>
<td>B p-value</td>
</tr>
<tr>
<td>F2NO50 ppb</td>
<td>0.001 1.07</td>
<td><0.001</td>
<td>1.04</td>
</tr>
<tr>
<td>JawNO ml/s</td>
<td>0.77</td>
<td>1.03</td>
<td>0.18</td>
</tr>
<tr>
<td>CawNO ppb</td>
<td>86.6</td>
<td>1.16</td>
<td><0.001</td>
</tr>
<tr>
<td>DawNO ml/s</td>
<td>8.6</td>
<td>0.88</td>
<td><0.001</td>
</tr>
<tr>
<td>CANO ppb</td>
<td>0.001</td>
<td>0.2</td>
<td><0.001</td>
</tr>
</tbody>
</table>
possibly create reliable reference equations. However, this is currently the largest dataset for NO parameters that can be used as a basis for comparisons in future studies regarding health and disease.

References

[3] Hogman M 2012 Extended NO analysis in health and disease J. Breath Res. 6 041703

[10] Hogman M et al 2002 Extended NO analysis applied to patients with COPD, allergic asthma and allergic rhinitis Respir. Med. 96 24–30

[16] Olin A C and Toren K 2006 Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample Chest 130 1319–23

[22] Högman M, Thornåssson A, Hedenstierna G and Meriläinen P 2014 A practical approach to the theoretical models to calculate NO parameters of the respiratory system J. Breath Res. 8 016002

[27] Tufvesson E, Aaronsdon D, Ankerst J, George S C and Bjernér L 2007 Peripheral nitric oxide is increased in rhinitic patients with asthma compared to bronchial hyperresponsiveness Respir. Med. 101 2321–6

[34] Harrell F E Jr 2016 Regression Modeling Strategies (New York, USA: Springer Science + Business Media)

