
Crowdsourcing GNSS Jamming Detection

and Localization

Luka Strizic

Space Engineering, master's level (120 credits)

2017

Luleå University of Technology

Department of Computer Science, Electrical and Space Engineering

Crowdsourcing GNSS Jamming
Detection and Localization

Luka Strizic

Lule̊a University of Technology
Department of Computer Science, Electrical and Space Engineering

12 November 2017

ABSTRACT

Global Navigation Satellite Systems (GNSS) have found wide adoption in various appli-

cations, be they military, civilian or commercial. The susceptibility of GNSS to radio-

frequency interference can, thus, be very disruptive, even for emergency services, there-

fore threatening people’s lives. An early prototype of a system providing relatively cheap

widescale GNSS jamming detection, called J911, is explored in this thesis.

J911 is smartphone-based crowdsourcing of GNSS observations, most interesting of which

are carrier-to-noise-density ratio (C
N0

) and Automatic Gain Control (AGC) voltage. To

implement the prototype, an Android application to provide the measurements, a back-

end to parse and store the measurements, and a frontend to visualize the measurements

were developed. In real-world use, the thesis argues, the J911 system would best be im-

plemented over existing Enhanced 9-1-1 (E911) infrastructure, becoming a standardized

part of the Public Switched Telephone Network (PSTN).

The Android application, running on a smartphone, would periodically construct mes-

sages to be sent to the backend over an Internet connection. The messages would include:

current location from all location providers available in Android OS, observed satellites

from all supported constellations, the satellites’ C
N0

, and a timestamp. Once a message

is received on the backend, the data would be extracted and stored in a database. The

frontend would query the database and produce a map with the collected datapoints

overlaid on top of it, whose color indicates received signal strength at that point. When

a jammer gets close enough to a few smartphones, they will all be jammed, which is

easily observed on the map. On top of that, if enough samples are gathered, a Power

Difference of Arrival localization algorithm can be used to localize the jammer.

The smartphones that the system was planned to be tested with did not support AGC

level readings, therefore in order to obtain AGC levels over time, a few SiGe GN3S

Samplers, which are radio-frequency frontends, were used. In eastern Idaho, United

States, over three nights in July 2017, an exercise, named 2017 DHS JamX, was performed

with the help of the US Department of Homeland Security. Sadly, the approval for the

publication of the test results did not come in time to be included in this thesis.

iii

ACKNOWLEDGEMENT

First of all, I would like to thank the SpaceMaster Consortium, the SpaceMaster students

and the staff, for providing an enjoyable and thriving environment to study in. There

is not much opportunity to study space science and engineering in Croatia, thus being

accepted to such a program was a blessing.

A big thanks goes to the University of Colorado Boulder, Colorado Center for Astrody-

namics Research, Dr. Nagaraj Channarayapatna Shivaramaiah and, most importantly,

to my supervisor, Professor Dennis M. Akos, for hosting me for six months and providing

me a considerable amount of guidance and support during the work on this thesis and

beyond.

Special thanks to my examiner, Professor Mathias Milz, and Paul Sabatier University

for tolerating the unfortunate delays that have befallen the results of this thesis.

The University of Zagreb and all the professors and assistants, whose courses I took, and

the colleagues, with whom I have worked, deserve many thanks for accepting, under-

standing and enduring my absence through the past two years.

Last, but not least, I am grateful to have a loving and supporting family that encouraged

me through my two years of studies and work abroad.

v

CONTENTS

Chapter 1 – Introduction 7

Chapter 2 – Background 9

2.1 GNSS Basics . 9

2.1.1 Space Segment . 10

2.1.2 Signal Characteristics . 11

2.1.3 Transmitted Information . 13

2.1.4 Receiver . 14

2.2 Interference Detection . 17

2.3 Localization . 21

2.3.1 Time Difference of Arrival (TDOA) 22

2.3.2 Power Difference of Arrival (PDOA) 23

2.4 Enhanced 911 (E911) . 24

Chapter 3 – J911 Prototype 27

3.1 Smartphone App . 27

3.1.1 Raw GNSS Measurements, NMEA Sentences and Location 28

3.1.2 Internet Connectivity . 32

3.1.3 Storage . 35

3.2 Server Software . 36

3.2.1 Processing Algorithm and Visualization Software 37

3.2.2 Privacy . 38

3.3 J911 Architecture . 39

3.4 SiGe GN3S Sampler Module . 40

Chapter 4 – Discussion 43

Chapter 5 – Conclusion 47

LIST OF FIGURES

2.1 Construction of the spread-spectrum data signal from the original data

signal and a pseudo-random code. [1] . 13

2.2 Visual representation of FDMA and CDMA. [2] 14

2.3 Block diagram of a GNSS receiver with Low Noise Amplifier (LNA), Phase

Lock Loop (PLL), Temperature Compensated Crystal Oscillator (TCXO)

and AGC. The AGC utilizes a Variable Gain Amplifier (VGA). [3] 16

2.4 Bins for a 2 bit ADC. [3] . 17

2.5 Illustration of correlation of an input with three replicas, late, prompt and

early, when the late replica is closer to the incoming signal (Left) and when

the prompt replica is spot on (Right). [4] 18

2.6 High-level architecture of the digital part of a GNSS receiver. 19

2.7 AGC samples with the average and the standard deviation marked. [3] . 20

2.8 Effects of RFI, Spoofing and Nominal Conditions on AGC and C
N0

. [5] . . 21

2.9 Illustration of the process behind E911 localization. [6] 24

3.1 GNSS interference detection app. Data collection settings left and log right. 28

3.2 Layout of the PostgreSQL database used in the backend. 38

3.3 An example of a processed batch of GNSS measurements for GPS (Left in

each sphere) and GLONASS (Right in each sphere) C
N0

. 39

3.4 Illustration of the process behind E911 localization and J911 servers place-

ment. [6] . 40

3.5 Illustration of data flow in a SiGe GN3S Sampler, overlaid on an image of

the module. [7] . 41

1

LIST OF TABLES

2.1 Basic comparison of GPS, GLONASS, Galileo and BeiDou constellation

characteristics. 11

2.2 Basic comparison of GPS, GLONASS, Galileo and BeiDou signal charac-

teristics. 12

3

LIST OF LISTINGS

3.1 Sample of NMEA sentences captured on a smartphone. 29

3.2 Pseudocode of starting and stopping raw GNSS measurements, NMEA

sentences and location updates. 29

3.3 Pseudocode of raw GNSS measurements, NMEA sentences and location

updates callbacks. 30

3.4 Sample of JSON message that gets sent from a smartphone to a server. . 32

3.5 Pseudocode of message transmission and connection logic. 34

3.6 Pseudocode of unsent message receovery, storing and removal. 35

3.7 Pseudocode of the backend. 36

CHAPTER 1

Introduction

In November 2009, a Global Positioning System (GPS) Ground Based Augmentation

System (GBAS) was installed at Newark Liberty International Airport and immediately

began experiencing seemingly irregular outages. The GBAS, which is used to provide nav-

igation and high precision services to incoming and outgoing aircraft, was rendered useless

due to radio-frequency interference from unknown sources. Outage analysis indicated a

localized event and cast suspicion on vehicles on a nearby freeway. Several-months-long

efforts were initiated to find the offending vehicles and their users. Advanced interference

detection equipment and surveillance cameras were used to catch a GPS jammer user,

who turned out to be a truck driver attempting to prevent GPS-based vehicle tracking.

The truck driver had in his possession a broadly available $33 200mW GPS jammer, eas-

ily procured on the Internet. In order to avoid such incidents in the future, the Federal

Aviation Administration (FAA) relocated the GBAS further away from the freeway to a

better protected location. [8]

Services derived from Global Navigation Satellite Systems (GNSS) are widely used in

many critical military and civil applications. Hence, the susceptibility of GNSS to inter-

ference can potentially result in inconvenient, costly and even life-threatening conditions.

This is a problem as GNSS jammers, while illegal, can still be easily and cheaply pro-

cured. While there are regulations that seek to prevent GNSS interference, they are

difficult to enforce. Enforcement requires detection and localization. However, detection

and localization currently requires expensive signal processing equipment and manpower

[8] [9]. Resources dedicated to GNSS interference detection are few and far between.

Non-dedicated resources may not distinguish interference from natural or physical out-

ages. As a result, many jamming instances are either undetected or misidentified. Hence,

developing flexible and cost-effective methods to identify and locate the source of inter-

ference is necessary.

Smartphones can be extremely valuable sensors for detecting and localizing GNSS inter-

ference. They are deployed in the billions and are in high density in our most populated

7

8 Introduction

areas, where GNSS interference has the potential to do the most damage. Crowdsourced

information from even a small fraction of these could prove very valuable, as they can

detect local interference that cannot be easily detected by reference station networks. Ad-

ditionally, the Android operating system (OS) will provide access to many GNSS receiver

observables that will allow for robust detection of jamming, allowing us to distinguish

these events from other, natural causes of signal degradation.

An Android application (app), a backend and a frontend were developed to demonstrate a

basic capability of smartphone-based GNSS interference detection. The setup was tested

on the JamX 2017 exercise hosted by the US Department of Homeland Security (DHS).

The app gathers basic GNSS observables such as satellite information and carrier-to-

noise-density ratio (C
N0

) and pushes this data to a central server for interference detection

assessment.

This thesis discusses the technology involved and proposes a way to deploy such a jammer

detection and localization system, called J911.

CHAPTER 2

Background

Smartphone-based crowdsourcing of GNSS observations has been previously suggested

for interference detection due to its numerous advantages [10] [11]. The existing infra-

structure provides built-in communication capabilities and a smartphone-service-based

system allows for ease of deployment, updating and getting feedback [10]. The high

adoption rate of smartphones allows for low-cost but high-density deployment. A density

of as little as 100 smartphones per squared kilometer can provide useful detection and

localization results, which is easily achieved in urban areas [10]. Even lower densities

enable detection, hence being an efficient deterrent to an attacker, although they may

not be suitable for providing precise localization due to inaccuracies in measurements,

unknown variables and other errors [10] [11]. Smartphones have been successfully used to

detect GPS jamming in specific, controlled scenarios, such as interference by commercial

drivers to circumvent vehicle tracking systems [12] or via an Android application on a

single phone with C
N0

readings and dead reckoning [13].

The work presented in this thesis expands upon previous research with an actual imple-

mentation of a GNSS jamming detection and localization system around low-cost, con-

sumer hardware with a bigger scale, distributed design and wider deployment in mind.

This chapter briefly goes over specifications of existing GNSS constellations, mechanisms

of interference detection and localization, as well as current public infrastructure suited

for deployment of the crowdsourcing system.

2.1 GNSS Basics

GNSS is a system that has global coverage and uses a satellite constellation to enable

trilateration, a surveillance technique based on a receiver’s distances to multiple points

at known locations. Usually, a receiver is interested in four unknowns: three coordinates

9

10 Background

in a 3D system (x, y, z) and time (t). With that in mind, the system of four equations

to solve for x, y, z and t can essentially be written as:

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 = (t̃i − b− si)

2 · c2,

where xi, yi and zi are coordinates of the ith known satellite, and si its time. b is the

difference between satellites’ clock and the receiver’s clock and t̃i is the receiver’s clock

at signal reception, thus the real reception time ti is given by ti = t̃i− b. c is the speed of

electromagnetic wave propagation, or the speed of light in vacuum. The three coordinates

of the receiver, x, y and z, can be translated into latitude, longitude and altitude to a

precision of a few meters in ideal conditions.

Without any prior knowledge of the receiver’s location, time or state, four satellites need

to be acquired and tracked to solve for the four unknowns. Tracking less than that

leads to an unsolvable, underdetermined system and having more to an overdetermined

system, which likely does not have a unique solution, but can still be approximated with

minimization methods such as the least squares method. Another way to think about

the system is through pseudoranges. A pseudorange is a distance from a satellite to a

receiver, calculated through the travel time of the signal. With four such distances, a

location of the receiver can be determined as the intersection of four spheres where each

is a set of possible solutions to one pseudorange.

There are many high-quality resources on the topic of GNSS, such as [14], [15] and [16],

to name just a few, so not much new can be added to that subject in the scope of this

thesis.

2.1.1 Space Segment

As of December 2016 only the United States NAVSTAR (GPS), the Russian GLONASS

(Globalnaya Navigatsionnaya Sputnikovaya Sistema) and the European Union’s Galileo

are global operational GNSSs. The European Union’s Galileo is scheduled to be fully

operational by 2020 [17]. China is in the process of expanding its regional BeiDou

Navigation Satellite System into the global BeiDou-2 by 2020 [18].

Global coverage for each system is generally achieved by a satellite constellation of 18

to 30 medium Earth orbit (MEO) satellites spread between several orbital planes. The

actual systems vary, but use orbital inclinations of over 50◦ and orbital periods of roughly

twelve hours, at an altitude of about 20000 kilometers or 12000 miles. A comparison

2.1. GNSS Basics 11

of various orbital characteristics of the mentioned GNSS constellations can be seen in

table 2.1.

System GPS GLONASS Galileo BeiDou

Orbital altitude 20180 km 19130 km 23222 km 21150 km

Period 11 h 58 min 11 h 16 min 14 h 5 min 12 h 38 min

Number of satellites 24 24 30 35 (5 in GEO)

Number of orbital planes 6 3 3 3

Inclination 55◦ 64◦ 56◦ 55◦

Nominal public precision 15 m 4.5 m — 7.4 m 1 m 10 m

Table 2.1: Basic comparison of GPS, GLONASS, Galileo and BeiDou constellation character-

istics.

2.1.2 Signal Characteristics

The main differences and similarities, when it comes to signal characteristics of the

four mentioned GNSS constellations (GPS, GLONASS, Galileo, BeiDou), are shown in

table 2.2.

Frequencies used by the satellites are carefully chosen to minimize attenuation due to

various atmospheric conditions, contents and layers. Furthermore, using multiple differ-

ent frequencies can provide additional information about the state of the ionosphere and

the troposphere, because the refraction angle is partly determined by the frequency, in

turn influencing signal travel time to receiver and localization accuracy. More precise

corrections are thus possible, when all available frequencies’ travel time is taken into

account.

Every form of wireless communication uses the same medium to transmit information

– the space between the transmitter and the receiver. In order to enable simultaneous

use of the common medium by multiple sources, when they are close enough to interfere

with each other, channel multiple-access methods must be employed, which are CDMA

and FDMA in the case of GNSS, explained further in this section.

12 Background

System GPS GLONASS Galileo BeiDou

Channel access CDMA
FDMA

(moving to CDMA)
CDMA CDMA

Public frequency
1.57542 GHz

1.2276 GHz

1.602 GHz

1.246 GHz

1.1895 GHz

1.28 GHz

1.5755 GHz

1.561098 GHz

1.561098 GHz

1.20714 GHz

Table 2.2: Basic comparison of GPS, GLONASS, Galileo and BeiDou signal characteristics.

Code-Division Multiple Access (CDMA)

CDMA is a spread-spectrum technique, meaning that the bandwidth of the data is spread

around a carrier signal’s frequency. The spreading code is a carefully constructed pseudo-

random sequence running at a significantly higher frequency than the data to be trans-

mitted. Before transmission, the digital data is combined with the pseudo-random code

by a bitwise xor (exclusive or) operation and modulated over the carrier. When mod-

ulating on top of a carrier, every rising or falling edge in the digital signal indicates a

phase shift.

Construction of the spread-spectrum data signal is shown in figure 2.1, where Tc is much

lower than Tb. Resulting bandwidth (BW) is inversely proportional to signal period, thus

BW = 1
Tc

, and is much larger than the starting bandwidth, i.e. spread. The spreading

factor is determined by the ratio Tb

Tc
and to a certain extent determines the maximum

number of satellites the receiver can simultaneously listen to [19].

When demodulating and decoding received CDMA signals, an inverse process is per-

formed. In short, a reference carrier signal generated on the receiver, a plain sine wave,

can be used to remove the real carrier from the input signal. Then, correlation results

indicate which pseudo-random code was used to spread the data signal. The same xor

operation used in coding can be used to decode the spreading code out of the received

signal and leave the message intact. All these operations must account for the Doppler

shift due to satellite’s velocity.

Each transmitting satellite, when CDMA is used, is assigned a different pseudo-random

code to modulate their signal with. It is important that all the assigned pseudo-random

codes are orthogonal to each other, meaning that their correlation function is close to zero.

Otherwise, it would be impossible to distinguish one satellite’s signal from another’s. A

consequence of using CDMA is that the resulting signal is more resistant to interference

than it would be if not spread.

2.1. GNSS Basics 13

Figure 2.1: Construction of the spread-spectrum data signal from the original data signal and

a pseudo-random code. [1]

Frequency-Division Multiple Access (FDMA)

FDMA is more intuitive and easier to understand than CDMA, as each transmitter is

assigned one frequency, or one frequency band, of the channel and is its sole user. In

FDMA, different users are then identified by the frequency they are transmitting on.

However, there is a benefit in CDMA which does not apply to plain FDMA, namely

interference resistance. FDMA in GLONASS uses a spreading technique, similar to

CDMA, to achieve greater resistance, thus each satellites needs to be assigned a frequency

band to account for the spreading and Doppler shift to a lesser extent, instead of a single

frequency. All satellites in GLONASS’ case use the same pseudo-random code. A visual

representation of FDMA and CDMA can be seen in figure 2.2.

2.1.3 Transmitted Information

To be able to solve the system of at least four equations given in section 2.1, the satellite

needs to know precise coordinates of each acquired satellite, as well as their clocks.

The receiver does know the nominal orbit of each satellite, but perturbations happen,

so each satellite sends accurate orbital information, called ephemeris. It also contains

the correction needed because of atmospheric delays through the ionosphere and the

troposphere, due to refraction.

14 Background

Figure 2.2: Visual representation of FDMA and CDMA. [2]

The clocks on different satellites are not actively synchronized, but are atomic, therefore

very stable and precise, with multiple backup clocks. Each message includes the time of

its own transmission.

Part of the information about other satellites in constellation, called almanac, is also

included in every message, to ease acquisition as mentioned in section 2.1.4.

2.1.4 Receiver

A usual receiver design has an analog part and a digital part. In such a setup, the

analog, also called the radio-frequency frontend, deals with downconversion, filtering,

demodulation and digitization. The digital part controls the acquisition, tracking and

decoding processes.

2.1. GNSS Basics 15

Analog Part

Processing the input signal at the carrier frequency digitally can be challenging with cur-

rent computational capabilities, especially in an embedded system, so the first step on

the receiving end is downconverting the signal to baseband, i.e. closer to the code’s orig-

inating frequency. Mixing, also called multiplying or heterodyning, two signals centered

around f1 and f2 will produce two new signals at |f1−f2| and f1+f2 containing the same

information, therefore a specific reference signal is used on the receiver to downconvert

the input to a frequency of choice that is easier to process.

The next step is filtering out the high-frequency f1 + f2 component and a lot of noise,

leaving only the |f1 − f2| part of the spectrum present, with the relevant information

and a relatively small amount of noise. Since in FDMA each satellite has its own, much

narrower bandwidth, compared to CDMA, high-performing filters must be used in the

frontend to separate them.

Next step usually brings the processing into the digital domain – sampling. A variable-

gain amplifier (VGA) is used in receivers to amplify the incoming signal, after down-

conversion and filtering, to a specific level. After amplification, it is sampled, then

digitized/quantized and passed on to the digital part of the receiver, all via the analog-

to-digital converter (ADC). The specific amplification level needed is determined by the

receiver design and, more specifically, its digital section. To be able to accommodate

input signals of varying power, automatic gain control (AGC) mechanism is responsible

for altering the gain level of the VGA by varying the voltage input to one of its pins,

as illustrated in figure 2.3. The required AGC voltage is controlled by the number of

samples in each of the quantization bins, as illustrated by the histogram in figure 2.4.

For example, if the incoming signal is quantized with two bits into four possible values,

a goal could be to have 32% of the samples in minimum and maximum bins, which

correspond to -3 and 3 in figure 2.4, respectively. If the percentage of samples in the

maximum and minimum bins starts increasing, the AGC voltage is lowered to reduce

gain, thus increasing the number of samples which fall into bins closer to 0. Inversely, if

the number of samples in maximum and minimum bins starts decreasing beyond 32%,

the AGC voltage is increased.

Digital Part

When a receiver is turned on, it does not know which GNSS satellites are visible, so

it needs to try to find a satellite in the seemingly random signal received, in a process

called acquisition. A satellite can be found by correlating its pseudo-random code with

16 Background

Figure 2.3: Block diagram of a GNSS receiver with Low Noise Amplifier (LNA), Phase Lock

Loop (PLL), Temperature Compensated Crystal Oscillator (TCXO) and AGC. The AGC utilizes

a Variable Gain Amplifier (VGA). [3]

the input signal, optionally after removing the carrier wave. If that satellite’s signal is

being clearly received, the correlation result will show a noticeable spike at the matching

position. The ratio of the biggest spike to the second biggest spike can be used as an

acquisition metric. Furthermore, the velocity of satellites in orbit causes a significant

Doppler shift which needs to be accounted for when acquiring and tracking satellites.

Therefore, to acquire a satellite, the search space needs to contain all satellites’ codes

and all possible Doppler shift amounts, usually divided into bins, as well as phase shifts.

In the case of FDMA, the receiver knows which satellite to look for, as they all have

the same pseudo-random code, but there are multiple central frequencies to look at, not

counting the Doppler bins, so the total acquisition time is comparable to CDMA systems.

Depending on the exact system specifications, the whole acquisition process with no

prior knowledge of the constellation state can take several minutes or even an hour on

low-powered devices. Parsing almanac data received from one satellite can significantly

reduce that time by eliminating large portions of the search space, thus ignoring the

search for satellites which are on the other side of the planet.

Finally, when a satellite is acquired, the bits it is sending can be decoded with certainty,

but its Doppler shift needs to be tracked since the satellite is still orbiting. The way the

tracking is usually done is by generating a total of three pseudo-random code replicas,

shown in figure 2.5. One replica is prompt, being shifted by, ideally, the signal’s Doppler

shift. The other two replicas are early and late – one slightly shifted positive and the

other negative of the prompt replica. All three replicas are correlated with the incoming

signal; the prompt one to demodulate the signal and the other two to tell in which

2.2. Interference Detection 17

Figure 2.4: Bins for a 2 bit ADC. [3]

direction is the signal moving. Results of that correlation tell the receiver the signal’s

shift amount and direction, so that the prompt pseudo-random code can be adjusted as

needed.

A high-level architecture of the digital part of a GNSS receiver, as explained in the

previous paragraphs, is shown in figure 2.6.

2.2 Interference Detection

GNSS interference detection can be accomplished using observables, such as C
N0

and AGC

levels, available to most GNSS receivers. C
N0

is a standard metric used to quantify the

18 Background

Figure 2.5: Illustration of correlation of an input with three replicas, late, prompt and early,

when the late replica is closer to the incoming signal (Left) and when the prompt replica is spot

on (Right). [4]

power of a tracked GNSS satellite signal relative to noise and is similar to signal to noise

ratio (S
N

) 1. It is calculated for each individual tracked signal. AGC level essentially

indicates the amount of energy entering the antenna, and as such does not change by the

tracked signal. C
N0

and AGC can provide indications of anomalous energy that may be

the result of interference. More powerfully, these two complementary measures can be

used together to differentiate degradation due to interference from spoofing and natural

causes. These are convenient measures for a crowdsourced detection system. Android OS

provides access to C
N0

measurements. Android 8 or Oreo, introduced in August 2017, also

provides the ability to access AGC information. Future smartphones should have AGC

measurements accessible, provided that the smartphone original equipment manufacturer

(OEM) and the GNSS chipset support it.

1 C
N0

[dBHz] = S
N [dB] + 10 log(BW [Hz]), where BW is the signal bandwidth.

2.2. Interference Detection 19

Figure 2.6: High-level architecture of the digital part of a GNSS receiver.

When a jammer approaches a GNSS receiver, such as a smartphone, the interfering noise

level increases. This increases noise on all satellite signals and hence decreases C
N0

on

all satellites. As the jammer gets closer, the received interference may become powerful

enough to cause the GNSS receiver to lose track of the satellites. However, reduction

of C
N0

and loss of tracking can occur due to natural causes such as going under foliage

or going indoors. Hence, C
N0

measurements from individual receivers are generally not

adequate for robust jamming detection. Additional information from AGC, C
N0

time

history, different frequency bands and other receivers can be used to make C
N0

-based

jamming detection more robust.

Using C
N0

for rapid interference detection typically requires a comparison to expectations.

For the comparison, the nominal C
N0

for the receiver must be known. This is typically

around 30 to 40 dB-Hz. Also, it should be known which satellites are reachable from

the location of the receiver. This allows determining if the C
N0

value for a specific satel-

lite should be received, indicating if something has caused the receiver not to track an

available satellite.

A jammer emits a relatively powerful and noisy signal into the GNSS spectrum. The high

power signal causes the AGC voltage to drop in nearby receivers, reducing amplification

of the input signal, including the useful signal from the GNSS satellite. In that case,

the digitized samples correspond more closely to the jammer’s noise and do not contain

enough information to resolve and extract the weak signal from the GNSS satellites –

the receiver is jammed.

To use AGC for interference detection, the nominal AGC voltage needs to be known.

Each device has its own nominal AGC voltage, as different receivers use different discrete

components and different antennas. This is important to ascertain as many factors (i.e.

imperfections in manufacturing processes, differences in operating temperature, etc.) can

20 Background

result in different nominal AGC levels even in the same model. The nominal AGC volt-

age/level can be determined by collecting samples over time and, for example, averaging

them in ideal conditions. Statistical deviations of AGC from its nominal average or stan-

dard deviation provides useful information. A voltage increase means that satellites are

obstructed, thus less power is received, and a voltage decrease indicates interference or

jamming that deposits more power into the spectrum. A scenario is illustrated in fig-

ure 2.7, where around hour 13 (on the x axis), the AGC level increases to around 2750,

which is significantly above the average of 2510 plus its standard deviation of 99. Such

an increase might suggests obstruction. On the other hand, around hour 54, the AGC

level decreases significantly below the standard deviation, to around 2300, suggesting

interference in the GNSS spectrum.

Figure 2.7: AGC samples with the average and the standard deviation marked. [3]

2.3. Localization 21

While C
N0

and AGC can be used individually for interference and potentially spoof de-

tection, when used together, they can distinguish different causes of GNSS degradation

[5] [20]. They can differentiate cases of environmental changes (i.e. going indoors) from

man-made interference. Figure 2.8 shows AGC and C
N0

values from different scenarios.

It shows the different relationship between C
N0

and AGC for spoofing, radio-frequency

interference (RFI) and normal/nominal conditions. Generally speaking, jamming and

RFI increase incoming energy (i.e. lowers AGC levels) and lowers C
N0

, whereas spoofing

increases incoming energy while having similar or higher C
N0

levels. In summary, the

combined use of C
N0

and AGC increase jamming detection robustness by reducing false

positives.

Figure 2.8: Effects of RFI, Spoofing and Nominal Conditions on AGC and C
N0

. [5]

2.3 Localization

A powerful capability of a crowdsourced GNSS measurements is the ability to localize

jamming. C
N0

and AGC are coarse measures that are not meant to provide ranging,

22 Background

bearing or positioning information. Hence, single measurements cannot indicate jammer

location. However, measurements from multiple smartphones can allow for geolocation

of a jamming source due to the geometric diversity of these measurements. This capa-

bility requires that the smartphone measurements be shared or sent to a central server

for processing. Time difference of arrival (TDOA) processing and power difference of

arrival (PDOA), both multilateration techniques, are possible ways to provide refined

localization.

With both TDOA and PDOA, if more than three measurements, i.e. four devices, want

to be taken into account when solving for jammer’s location, the system becomes overde-

termined and likely will not have a unique solution. Even with three measurements a

solution often does not exist in practice due to various unknown variables in the envi-

ronment. In such scenarios, a good approach is using a least squares method to find the

solution which best fits all measurements in the least squares sense.

2.3.1 Time Difference of Arrival (TDOA)

TDOA, like the name implies, works by measuring the difference in times of the signal’s

arrival to two or more receivers with known locations (xi, yi and zi, for the ith receiver).

Assuming that there are three unknown variables of interest – jammer’s coordinates in

a three-dimensional Cartesian system (x, y and z) – a starting system of equations is:

di =
√

(xi − x)2 + (yi − y)2 + (zi − z)2, (2.1)

where di is the distance from the jammer to the ith receiver. The distance is, of course,

unknown, but information about it can be gained from the difference of arrival times,

when compared to another receiver:

ti − ti+1 = ∆ti,

di − di+1 = ∆ti · c, (2.2)

where ti is the time of arrival of the ith signal. If equation (2.1) and equation (2.2) are

combined to relate coordinates to time difference, it goes:√
(xi − x)2 + (yi − y)2 + (zi − z)2 −

√
(xi+1 − x)2 + (yi+1 − y)2 + (zi+1 − z)2 = ∆ti · c.

(2.3)

2.3. Localization 23

With a single time difference measurement from a pair of receivers, the system in equa-

tion (2.3) can be solved for a hyperboloid which makes up all the possible positions of

the jammer [21].

When another, third receiver is present, an additional measurement can be procured, re-

ducing the possible solutions to the curve that is the intersection of the two hyperboloids.

Note that with a set of three receivers, three pairs of receivers can be made, however,

one pair’s information is contained in the other two pairs. Therefore, to solve system

in equation (2.3) for a single point, a total of at least four receivers is needed [21]. It

is necessary to have the receivers’ time synchronized [21], which will be the case if they

acquired GNSS satellites ”recently”.

2.3.2 Power Difference of Arrival (PDOA)

Similar to TDOA, PDOA, also known as Received Signal Strength (RSS), measures the

difference in the received power at two or more receivers with known locations (xi, yi
and zi, for the ith receiver). Again, the unknowns are same as in the TDOA case,

jammer’s coordinates (x, y and z), as shown in equation (2.1). To properly relate the

power difference to distances, an electromagnetic wave propagation model is needed. It is

impossible to take into account all the obstacles and antenna properties that can influence

input power measurements, so a valid approximation ranges from the inverse square law

to the inverse biquadratic law [22]:

from Pd ∝
1

d2
to Pd ∝

1

d4
,

where Pd is the power received at distance d. For the sake of simplicity, the inverse square

law is used as an example in the following equations, which as a consequence has:

Pdi

Pdi+1

=
d2i+1

d2i
,

for the measurements from the ith and the (i + 1)th receiver. In the field of radio-

communication, the power is often expressed using the logarithmic scale:

Pdi+1
[dB]− Pdi [dB] = ∆P [dB] = 10 · 2 · log

(di+1

di

)
. (2.4)

24 Background

Finally, when equation (2.1) and equation (2.4) are put together, the system is:

∆P [dB] = 10 · log
((xi+1 − x)2 + (yi+1 − y)2 + (zi+1 − z)2

(xi − x)2 + (yi − y)2 + (zi − z)2

)
(2.5)

Unlike with TDOA, a single measurement of PDOA with a pair of receivers solves the sys-

tem in equation (2.5) for a sphere of possible jammer locations [21] [22]. With additional

power difference measurements, the jammer’s location solution becomes the intersection

of multiple spheres. Like with TDOA, four receiving devices are needed to solve the

system of equation (2.5) for a single point [21] [22].

2.4 Enhanced 911 (E911)

In the United States of America, E911 is an upgrade to the 911 system that enables

the automatic reporting of telephone number and location of every 911 caller, wired or

wireless, to public safety entities. Such a system allows for prompt reaction even when

communicating a location is difficult or impossible.

Figure 2.9: Illustration of the process behind E911 localization. [6]

Location is determined by the information in the Automatic Location Information (ALI)

database, which is also used to update the Master Street Address Guide (MSAG) database.

Emergency calls are routed to the appropriate Public Safety Answering Point (PSAP)

based on the data in the MSAG database, after being routed through the Public Switched

Telephone Network (PSTN) and through a special facility called a Class 4 telephone

switch or a Tandem office. Then, the ALI database is queried for the caller’s location

from the PSAP.

2.4. Enhanced 911 (E911) 25

Two phases are involved in obtaining the caller’s location. Phase I sends the cell tower’s

location to the PSAP, which is easier to obtain, while Phase II sends the cellphone’s

location, as is illustrated in figure 2.9

Enhanced 911 infrastructure is an excellent candidate to be reused for J911, since the

changes needed for J911 implementation would need to be made only in software, across

the whole stack, as further detailed in chapter 3.

CHAPTER 3

J911 Prototype

The J911 system could be seen as having three independent, but connected, parts. On

one end is the measurement-collecting hardware and software. In the prototype, a smart-

phone with the developed Android app took that role, however, any device capable of

GNSS reception would fit it. On the other end is the visualization frontend. It is a piece

of software that can show the taken measurements to a user or simply display/dispatch

a notification when a jammer is detected. Between the two ends sits the backend, re-

sponsible for receiving and parsing the smartphones’ messages and storing the data in a

database for easy querying.

This chapter explains the architecture and implementation of the J911 prototype system

in greater detail, covering the whole stack.

3.1 Smartphone App

The bespoke app for capturing, storing and sending GNSS measurement information was

developed and designed to get that information, if available, from the OS. It looks for any

of the following: position, accuracy, satellite, C
N0

, pseudo range and AGC values. The app

supports all receivable constellations, namely GPS, GLONASS, Galileo and BeiDou. It is

built without using the features introduced in Android OS 8.0, but assumes to support it

at some point and is prepared for it. Hence, it can operate on earlier version of Android

as well, having an eye towards the future and newer capabilities. These observables are

captured at a software-configurable rate, defaulting to 1 Hz, and can be uploaded to a

server, should connectivity be available.

The application was developed in the programming language Java, which is well sup-

ported in the Android ecosystem, through the official Android software development kit

27

28 J911 Prototype

(SDK) and the official integrated development environment (IDE) Android Studio. It is

based on the open-source GNSSLogger application developed by Mohammed Khider of

Google to demonstrate GNSS capabilities of the Android OS [23].

The settings screen is shown on the left side of figure 3.1, with options explained later

in this section. The logging screen, shown on the right of figure 3.1, includes all the

information that is sent to a remote server, for user’s preview.

Figure 3.1: GNSS interference detection app. Data collection settings left and log right.

3.1.1 Raw GNSS Measurements, NMEA Sentences and Location

The application can gather the following location- and GNSS-related information offered

through the Android application programming interface (API):

3.1. Smartphone App 29

• location updates sourced by GNSS,

• location updates sourced by the cellular network,

• location updates sourced by the fused provider,

• standardized National Marine Electronics Association (NMEA) sentences.

Location updates provided by the cellular network are based on the known cellular tower

locations and are fairly imprecise in comparison to GNSS-sourced location. The fused

provider is available through the Google Play Service. While not built into Android,

Google Play Services are widely available on smartphones, therefore they were used too.

The fused provider takes into account GNSS, cellular network, visible WiFi and Bluetooth

stations when calculating current location. Ephemeris and information about acquired

satellites is sent to the application using NMEA sentences, which are parsed to extract

the desired information. A sample of NMEA sentences acquired on a smartphone is

shown in listing 3.1.

$GLGSV,2 ,1 ,07 ,69 ,70 ,061 ,35 ,79 ,66 ,069 ,37 ,80 ,37 ,187 ,26 ,70 ,35 ,318 ,33∗60
$GLGSV,2 ,2 ,07 ,68 ,25 ,111 ,32 ,86 ,11 ,330 ,32 ,85 ,11 ,279 ,30∗56
$GPGSV,3 ,1 ,11 ,22 ,77 ,258 ,42 ,31 ,60 ,059 ,42 ,03 ,55 ,305 ,41 ,14 ,38 ,072 ,36∗72
$GPGSV,3 ,2 ,11 ,01 ,33 ,235 ,38 ,26 ,28 ,136 ,30 ,23 ,26 ,278 ,38 ,32 ,19 ,082 ,32∗7E
$GPGSV,3 ,3 , 11 ,25 ,12 ,036 ,26 ,11 ,08 ,225 ,29 ,16 ,09 ,159 ,∗49
$GPGGA,080741 .00 ,4332 .360641 ,N,11249 .798235 ,W,1 , 1 7 , 0 . 4 , 1 5 2 7 . 6 ,M,−17.4 ,M, ,∗63

Listing 3.1: Sample of NMEA sentences captured on a smartphone.

Later Android versions (7.0 and up) offer an interface to programmatically extract the

same information that is contained in the NMEA sentences, however it was not used

in the application to avoid diverging in source code between older and newer Android

versions. Version 8.0 introduced API to get AGC level, which will be useful in future

revisions of the application.

OnTrackingTurnedOn () {
locat ionManager . requestLocat ionUpdates (NETWORKPROVIDER,

LOCATION UPDATE RATE,

onLocationUpdate) ;

locat ionManager . requestLocat ionUpdates (GNSS PROVIDER,

LOCATION UPDATE RATE,

onLocationUpdate) ;

goog l eP l aySe rv i c e s . requestLocat ionUpdates (FUSED PROVIDER,

LOCATION UPDATE RATE,

onLocationUpdate) ;

locat ionManager . requestNMEAUpdates (onNMEAUpdate) ;

locatoinManager . requestRawGNSSUpdates (onRawGNSSUpdate) ;

30 J911 Prototype

}

OnTrackingTurnedOff () {
locat ionManager . removeLocationUpdates (NETWORKPROVIDER) ;

locat ionManager . removeLocationUpdates (GNSS PROVIDER) ;

goog l eP l aySe rv i c e s . removeLocationUpdates (FUSED PROVIDER) ;

locat ionManager . removeNMEAUpdates () ;

locatoinManager . removeRawGNSSUpdates () ;

}
Listing 3.2: Pseudocode of starting and stopping raw GNSS measurements, NMEA sentences

and location updates.

Listing 3.2 shows pseudocode of the start and stop of location updates, along with GNSS

measurements and NMEA sentences. Functions OnTrackingTurnedOn and OnTrackingTurnedOff

are tied to ”Location and NMEA” switch shown in figure 3.1. Each of the requestLocationUpdates

function calls take a callback as one of its arguments, to deliver its information to. NMEA

sentences and raw GNSS measurements call their callback whenever a measurement is

ready, with the update rate provided to requestLocationUpdates with GNSS PROVIDER

as the first argument. A notable difference with FUSED PROVIDER is that it is provided

by Google Play Services.

onLocationUpdate (provider , l o c a t i o n){
switch (prov ide r) {

case NETWORKPROVIDER:

network la t = l o c a t i o n . l a t ;

network lon = l o c a t i o n . lon ;

ne twork a l t = l o c a t i o n . a l t ;

network hacc = l o c a t i o n . hacc ;

network vacc = l o c a t i o n . vacc ;

network timestamp = l o c a t i o n . timestamp ;

break ;

case GNSS PROVIDER:

g n s s l a t = l o c a t i o n . l a t ;

gn s s l on = l o c a t i o n . lon ;

g n s s a l t = l o c a t i o n . a l t ;

gnss hacc = l o c a t i o n . hacc ;

gns s vacc = l o c a t i o n . vacc ;

gnss t imestamp = l o c a t i o n . timestamp ;

break ;

case FUSED PROVIDER:

f u s e d l a t = l o c a t i o n . l a t ;

f u s ed l on = l o c a t i o n . lon ;

f u s e d a l t = l o c a t i o n . a l t ;

f u s ed hacc = l o c a t i o n . hacc ;

3.1. Smartphone App 31

f u s ed vacc = l o c a t i o n . vacc ;

fused t imestamp = l o c a t i o n . timestamp ;

break ;

}

// In fu tu r e vers ion , f o r AGC support .

onRawGNSSUpdate(measurement) {
switch (measurement . c o n s t e l l a t i o n) {

case BEIDOU:

be idou agc = measurement . agc ;

break ;

case GALILEO:

g a l i l e o a g c = measurement . agc ;

break ;

case GLONASS:

g l ona s s ag c = measurement . agc ;

break ;

case GPS:

gps agc = measurement . agc ;

break ;

}

onNMEAUpdate(sentence) {
s to r eSentence (sencence) ;

parsed = parseNMEA(sentence) ;

switch (parsed . type) {
case GPGSV: // GPS

vis ib leGPSSats = parsed . v i s i b l e S a t s ;

visibleGPSCN0s = parsed . CN0s ;

break ;

case GLGSV: // GLONASS

visibleGLONASSSats = parsed . v i s i b l e S a t s ;

visibleGLONASSCN0s = parsed . CN0s ;

break ;

case GPGGA: // End o f NMEA cyc l e .

message . a l l nmea = popStoredSentences () ;

message . timestamp = currenTime () ;

message . id = get Id () ;

message . gnss = { gn s s l a t , gns s lon , gn s s a l t ,

gnss hacc , gnss vacc , gnss t imestamp } ;
message . network = { network lat , network lon , network a l t ,

network hacc , network vacc , network timestamp } ;
message . fused = { f u s ed l a t , fu s ed lon , f u s ed a l t ,

32 J911 Prototype

fused hacc , fused vacc , fused t imestamp } ;
message . agcs = {beidou agc , g a l i l e o a g c , g lonas s agc , gps agc } ;
message . gp s s a t s = vis ib leGPSSats ;

message . g l o n a s s s a t s = visibleGLONASSSats ;

message . gps cn0s = visibleGPSCN0s ;

message . g l ona s s cn0 s = visibleGLONASSSats ;

storeAndPutIntoSendQueue (message) ;

message . c l e a r () ;

break ;

case

}
}
Listing 3.3: Pseudocode of raw GNSS measurements, NMEA sentences and location updates

callbacks.

Listing 3.3 shows pseudocode where all the information requested in listing 3.2 gets re-

ceived and processed. As previously mentioned, AGC measurements will be supported in

the future. Whenever any location provider gives an update, the information is stored,

overwriting previous values and waiting to be sent out. GNSS location provider is syn-

chronized with NMEA sentence update cycle, which usually starts with GPGSV and

ends with GPGGA sentences. The cycle may be different between different phones, but

on the same phone it was observed to always be a consistent cycle, thus it is possible to

rely on a single sentence type to signal the end of a cycle. Once the cycle is finished,

a message is constructed from all available data and is stored on the phone and sent

over the network if desired. Only GPGSV and GLGSV sentences are used to extract

information from, as they hold detailed satellite information about GPS and GLONASS,

respectively. Other *GSV sentences will be researched and implemented once observed

on phones which support BeiDou and Galileo. GPGGA is exclusively used for signaling

the end of the cycle as seen in all phones tested on.

3.1.2 Internet Connectivity

Messages are created periodically on the phone and sent to the server as soon as a con-

nection can be established, if the user wishes. The user can select the remote destination

– host address and port – where the messages get sent to. A message contains all the

information that is received from the OS and the times of last updates. A pretty-printed

example of such a message is shown in listing 3.4.

3.1. Smartphone App 33

{
”other nmea ” :”$GPGGA,080741 .00 ,4332 .360641 ,N,

11249.798235 ,W,1 , 1 7 , 0 . 4 , 1 5 2 7 . 6 ,M,−17.4 ,M, ,∗63” ,

”GLGSVs” : [

”$GLGSV,2 ,1 , 07 , 69 , 70 , 061 ,35 , 79 , 66 , 069 ,37 ,

80 ,37 ,187 ,26 ,70 ,35 ,318 ,33∗60” ,
”$GLGSV,2 ,2 , 07 , 68 , 25 , 111 ,32 , 86 , 11 , 330 ,32 ,

85 ,11 ,279 ,30∗56”
] ,

”GPGSVs” : [

”$GPGSV,3 ,1 , 11 , 22 , 77 , 258 ,42 , 31 , 60 , 059 ,42 ,

03 ,55 ,305 ,41 ,14 ,38 ,072 ,36∗72” ,
”$GPGSV,3 ,2 , 11 , 01 , 33 , 235 ,38 , 26 , 28 , 136 ,30 ,

23 ,26 ,278 ,38 ,32 ,19 ,082 ,32∗7E” ,
”$GPGSV,3 ,3 , 11 , 25 , 12 , 036 ,26 , 11 , 08 , 225 ,29 ,

16 ,09 ,159 ,∗49”
] ,

” id ” :” cjACrijA1QA” ,

”timestamp ”:1500624462232 ,

” l a t g n s s ” :43 .53934467869471 ,

” l on gn s s ”:−112.82997114268005 ,

” a l t g n s s ” :1510 .1347219543397 ,

” hacc gnss ” : 4 ,

” vacc gns s ” : 0 ,

” t imestamp gnss ” :1500624459999 ,

” la t ne twork ” : 0 ,

” lon network ” : 0 ,

” a l t ne twork ” : 0 ,

” hacc network ” : 0 ,

” vacc network ” : 0 ,

” timestamp network ” : 0 ,

” l a t f u s e d ” :43 .5393447 ,

” l on f u s ed ”:−112.8299711 ,

” a l t f u s e d ” :1510 .1347219543397 ,

” vacc fu s ed ” : 0 ,

” hacc fu sed ” : 4 ,

” t imestamp fused ”:1500624459999 ,

” ag c be i ” : 0 ,

” ag c ga l ” : 0 ,

” ag c g l o ” : 0 ,

” agc gps ” :0

}

Listing 3.4: Sample of JSON message that gets sent from a smartphone to a server.

34 J911 Prototype

The message is constructed in JavaScript Object Notation (JSON) format and is ASCII

encoded. Because of its encoding, there is a lot of redundancy. The message, as given in

the example, is 929 bytes long. If, instead, binary encoding was used, with just sending

the extracted data, where every numerical value is presented with 8 bytes as a double-

precision floating-point number and timestamps as 8 byte integers, the message would

be 647 bytes long, which is a significant saving even with the approximate transmission

control protocol (TCP) overhead of 40 bytes with each message. Furthermore, presenting

numerical values with 4 bytes as single-precision floating-point numbers and timestamps

as 4 byte integers can still give enough precision while further reducing the message size.

Message size and frequency are important considerations if one wishes to reduce the load

on cellular towers in densely populated areas, if E911 infrastructure were to be used for

jamming detection [10].

Listing 3.5 shows pseudocode of transmission and (re)connection logic. sendOneMessage

function is repeatedly called in a dedicated background thread in the application. At

first, the doTransmit variable is checked, as it says whether any messages should be sent

at all. The value of the variable is controlled by the ”Push data to server if possible”

switch from figure 3.1. If transmission is turned off, busy-waiting on the condition would

waste a lot of processing power, thus the app sleeps for a second, before exiting the

invocation, which will promptly be repeated. currentMessage is initialized to a null

value and is filled up with an actual message from the sending queue at the beginning of

the while loop. Popping from the sending queue is a blocking operation in this case, thus

it waits for a message indefinitely, if the queue is empty. However, if at the beginning of

the while loop a message already exists, it means that it was not successfully sent in the

previous loop, so the application sleeps for a second before retrying. Both before and after

transmission, the socket is checked for connection status, as data loss is unacceptable.

At the end, only if the current message is successfully sent, the queue is tested for other

messages. When there is no other message waiting in the sending queue, the invocation

will return.

sendOneMessage () {
i f (! doTransmit) {

s l e e p (1000) ;

r e turn ;

}

currentMessage = nu l l ;

do {
// I f the cur rent message doesn ’ t ex i s t , grab a new one .

i f (currentNmeaMessage == nu l l) {
currentMessage = popFromSendQueue () ;

// I f the cur rent message a l r eady ex i s t s , i t means that l a s t

3.1. Smartphone App 35

// t ransmi s s i on f a i l e d , so s l e e p and repeat .

} e l s e {
s l e e p (1000) ;

}

// I f below check passes , i t means the socke t i sn ’ t connected .

i f (socke t == nu l l | | ! s ocke t . i sConnected () | | socke t . i sC l o s ed () | |
! s ocke t . isBound () | | socke t . isOutputShutdown ()) {

socke t . connect (ipAddress , port) ;

output = socket . getStream () ;

}

output . wr i t e (currentMessage) ;

i f (output . wr i t eFa i l ed ()) {
socke t . c l o s e () ;

cont inue ;

}
// Loop un t i l we send curren message or un t i l the queue i s emptied .

} whi le (! isSendQueueEmpty ()) ;

}
Listing 3.5: Pseudocode of message transmission and connection logic.

3.1.3 Storage

To prevent data loss in unexpected scenarios, where the developed application crashes,

every message that is created is stored into a file on the phone in the JSON format, shown

in listing 3.4. If recovered from the phone, the file can be ”replayed” to the remote server.

When Internet connectivity is unavailable, the messages to be sent are stored in work-

ing memory of the application. To remember which messages need to be sent from the

previous app run, if a restart happened, all unsent messages are saved from the working

memory into an SQLite database that is a standard part of the Android OS and inde-

pendent of other applications. On app initialization, all unsent messages are recovered

from the SQLite database, and when a message is sent, it is removed from the database,

shown in listing 3.6. The layout of the SQL unsentMessagesDatabase is very simple –

one column for the mandatory unique ID and one column for the message content.

restoreFromUnsentDatabaseOnAppInit () {
cur so r = unsentMessagesDatabase . query (TABLENAME, COLUMNNAMETEXT) ;

whi l e (cu r so r . moveToNext ()) {
message = cur so r . message ;

36 J911 Prototype

putIntoSendQueue (message) ;

}
cur so r . c l o s e () ;

}

storeIntoUnsentDatabasOnShutdown (message) {
valuesToStore = {COLUMNNAMEMESSAGE, mesage } ;
unsentMesageDatabase . i n s e r t (TABLENAME, valuesToStore) ;

}

removeFromUnsentDatabaseWhenSent (message) {
s e l e c t i o n = COLUMNNAMEMESSAGE + ” LIKE ?” ;

se lect ionArguments = {message } ;
unsentMessagesDatabase . d e l e t e (TABLENAME, s e l e c t i o n , se l ect ionArguments) ;

}
Listing 3.6: Pseudocode of unsent message receovery, storing and removal.

3.2 Server Software

A publicly reachable machine was used to host the backend, which consisted of a web

server, implemented in Python using the Twisted networking library, and the PostgreSQL

database. When a message on the phone is ready, it is sent through the opened TCP

connection to the server. After receiving a message, the server interprets it as a JSON

object and extracts all data from it. If no problems were encountered in the message

formatting, the data is stored into the PostgreSQL database, laid out in figure 3.2.

onLineReceived (l i n e) {
message = parseAsJSON(l i n e) ;

cu r so r = database . startCommit () :

messageID = database . in se r tMessage (cursor , message . id , message . timestamp)

database . inser tNetworkLocat ion (cursor , messageID , message . network lat ,

message . network lon , message . network a l t ,

message . network hacc , message . network vacc ,

message . network timestamp) ;

database . insertGNSSLocation (cursor , messageID , message . gn s s l a t ,

message . gns s lon , message . gn s s a l t ,

message . gnss hacc , message . gnss vacc ,

message . gnss t imestamp) ;

database . in se r tFusedLocat ion (cursor , messageID , message . f u s ed l a t ,

message . fu s ed lon , message . f u s ed a l t ,

message . fused hacc , message . fused vacc ,

3.2. Server Software 37

message . fused t imestamp) ;

database . insertGPSSatsAndCN0s (cursor , messageID ,

message . gps sa t s , message . gps cn0s) ;

database . insertGLONASSSatsAndCN0s (cursor , messageID ,

message . g l ona s s s a t s , message . g l ona s s cn0 s) ;

database . commit (cur so r) ;

}

Listing 3.7: Pseudocode of the backend.

The crux of the server software, also called backend, is illustrated in listing 3.7. The

Twisted framework takes care of the low-level details of multiplexing connections and

invokes the onLineReceived callback every time a message, or a line of text, is received.

The callback will try interpreting the received bytes as a JSON object and will extract

data from it to be stored in the database.

3.2.1 Processing Algorithm and Visualization Software

With the data in the central server, processing was developed to identify jamming. For

the initial development, a simple algorithm was created for detection and identification.

Each receiver reported, in a message to the server, the C
N0

of all satellites that it sees and

each message was treated individually without consideration of other receivers or prior

messages. Because at least four satellites need to be acquired for a position solution

to be available, the best four measurements reported in a message were averaged for

each constellation. If less than four satellites’ C
N0

was measured at a time, the missing

ones were assumed to be zero. The single calculated number for each constellation for

an instant in time is compared to a fixed threshold to determine if that given receiver

indicates jamming at that given time. A more sophisticated version may have examined

the time history of the receiver to set thresholds. Additionally, satellites may be weighted

based on their likelihood to be attenuated by jamming or other sources.

Frontend software was developed to visualize all the measurements taken. Since all

captured information gets stored into the database, the frontend is independent of other

parts of the stack, as long as the database layout does not change. MATLAB was used

to query the database for specific time periods and specific phones and then used to plot

locations of phones and the measured C
N0

, overlaid on a map of the area, over the duration

of the test. An example of a processed batch is shown in figure 3.3, where on the left

hand side in the image, a lot of low C
N0

data points may be seen, which is an indicator of

GNSS jamming, according to the theory.

38 J911 Prototype

Figure 3.2: Layout of the PostgreSQL database used in the backend.

3.2.2 Privacy

Whenever, yet another, third party wants to collect, store and process user-identifiable

and sensitive data, such as near-realtime location information, privacy concerns are

raised, and rightly so.

Google, the owner of the Android platform, already collects location information about its

users [24] and wireless cellular service providers do the same [25]. However, the developed

application does not collect identifiable data, but only the unique user ID which resets on

every app (re)installation. The unique id is important in determining device’s nominal

values for AGC and C
N0

, and their standard deviation, but is not critical for the app’s

basic functionality. Nonetheless, the collected information is easily correlated to Google’s

or wireless service providers’ data, in the unlikely case of law enforcement requiring it.

3.3. J911 Architecture 39

Figure 3.3: An example of a processed batch of GNSS measurements for GPS (Left in each

sphere) and GLONASS (Right in each sphere) C
N0

.

After all, it should be noted that, in the cases of law enforcement requiring otherwise

sensitive information, little value is added with the developed app, since the data that

law enforcement finds useful exists elsewhere [24] [25].

3.3 J911 Architecture

Architecture of the J911, a system for realtime GNSS jamming monitoring on the national

level, can be similar to the E911 system, relying on existing standards and infrastructure

[10]. All essential hardware is already in place, except the smartphones with GNSS chips

supporting required features. However, with the current relatively short smartphone life-

cycle, it is a matter of a few years when a significant portion of the Android market will

have a minimum or higher Android OS version needed to run the developed prototype

application, if historical trends continue [26]. Furthermore, current phones with support-

ing hardware can be upgraded by over-the-air updates. Overall, the current upgrading

practices, albeit not good for consumers, are a big benefit for fast deployment. To get

the system up and running, cell stations and some nodes in the PSTN would also have to

update their software. Biggest addition to the system would be the servers commissioned

to run the backend.

40 J911 Prototype

It is hard to discuss the best placement of backend servers and its interface to the rest of

the E911 system, without knowing the proprietary details of the PSTN implementations.

Nonetheless, an educated guess could be made that a placement close to the ALI database

could be useful in updating it from the same incoming datastream. Depending on which

services would answer a jamming incident, the path to the other endpoint, a PSAP, may

or may not be shared with the J911 system. On one hand, if local emergency services

should be immediately notified, it would make sense to route J911 warning to the PSAP.

On the other hand, notification from the J911 servers could be sent elsewhere for further

analysis. The proposed placement of the backend servers is illustrated in figure 3.4.

Figure 3.4: Illustration of the process behind E911 localization and J911 servers placement. [6]

3.4 SiGe GN3S Sampler Module

Not strictly the topic of this thesis, but definitely worth a mention, is the SiGe GN3S

Sampler, a GPS RF frontend developed by the Colorado Center for Astrodynamics Re-

search. A significant amount of time allocated for this thesis went into updating the host

software for this software-defined radio (SDR), to use the latest, stable version of the

libusb library for USB communication, and to make it robust for use in tests. During

testing of the J911 prototype, it was important to have the GN3S Sampler present, to

be able to corroborate AGC measurements with C
N0

measurements, since the AGC was

inaccessible on the Android smartphones. Despite its use as the go-to SDR at CCAR,

and the fact that the in-house software was built around that SDR, the raw data being

recorded is SDR- and processing-software-agnostic [27].

In summary, the SiGe GN3S Sampler is a low cost platform based on the SiGe SE4120

or the SiGe SE4110 GPS frontend chip and Cypress FX2 USB controller. Having such a

3.4. SiGe GN3S Sampler Module 41

platform, controlled by custom software, allows far more control than Android OS and

OEMs provide at the moment. With that control, of course, comes raw data collection of

EM samples at the intermediate frequency (IF) and AGC value samples. Since everything

after the frontend is based in software, adding high-level features, such as distributed data

collection via networking, is possible. The GN3S Sampler performs the same process that

is shown in figure 2.3, as well as illustrated in figure 3.5.

Figure 3.5: Illustration of data flow in a SiGe GN3S Sampler, overlaid on an image of the

module. [7]

42 J911 Prototype

The module is connected via a USB 2.0 connection to a PC, which has to be running

the host software, a portable program written in C++ and utilizing the libusb library.

The host software accepts command line parameters to configure the module with. After

the USB connection has been established and the module is configured, it immediately

begins streaming IF and AGC samples to the host at a maximum rate of roughly 4 MB

and 200 B per second, respectively. Apart from simply recording data to a file, the host

software also supports dumping a user-specified period of samples to a file when triggered

by AGC voltage going above a specific threshold. Another feature is controlling many

other GN3S Samplers through their respective hosts with the low level Asio networking

library, on top of a standard TCP/IP network stack. In that case, the captured data can

be sent to the central host if the connection is fast enough, or it can just receive data

dumps whenever any of the remote modules’ AGC threshold is triggered.

CHAPTER 4

Discussion

During the implementation of the J911 prototype system, laid out in this thesis, the plan

was to have the main premise tested and have questions answered, such as:

• Can C
N0

and AGC be acquired from a smartphone?

• What is the quality of such measurements on a smartphone?

• What conclusions can be drawn based on the measurements from a single smart-

phone?

• What conclusions can be drawn based on the measurements from a crowd of smart-

phones?

• Can a GNSS jammer be detected with confidence based on crowdsourced data?

• Can a GNSS jammer be localized with confidence based on crowdsourced data?

• Is such a J911 system feasible on a large scale, as determined by battery life,

bandwidth use and computational capabilities on a phone and a server?

A test, named 2017 DHS JamX exercise, was performed, with the help and approval

from the US Department of Homeland Security. This exercise supported tests of different

technologies to address interference issues, such as GNSS interference. It was held at a

remote location in eastern Idaho, United States, over three nights in July 2017. On

two of those nights, termed Night 1 (July 19 — 20) and Night 2 (July 20 — 21), 15

smartphones, 5 GN3S Samplers and various commercial jammers were fielded. The

jammers had varying specified levels of radiated power from milliwatt to watt levels.

They also potentially had different jamming waveforms. Each jammer was operated

statically in the test area before being driven in a roughly 2-mile loop at low speeds.

43

44 Discussion

Sadly, the DHS did not approve the publication and sharing of the promising results

of the exercise before this thesis was due, thus the results are left out. The team that

performed the test is hoping to have the results published in the Institute of Navigation

International Technical Meeting in February of 2018.

After fielding the system and reviewing the results, a few ideas for improvement came

up, as outlined in the continuation of this chapter.

Increased Receiver Density and Localization

A test with a higher density of smartphones may make locating the jammer visually

easier and would provide more data to be analyzed. With enough samples gathered,

and a high enough receiver density, possibilities of localization with TDOA or PDOA

increase.

Improved Robustness and Spoofing Detection with AGC

Android OS version 8.0 introduces an API to get AGC level of the smartphone GNSS

chipset. While AGC has in general been shown to be useful for both GNSS interference

and spoofing detection [3], the utility of AGC within a smartphone needs to be validated.

The electromagnetic environment in smartphones is volatile due to the various radios that

are located inside the limited space, but the extent of its effects on AGC measurements

and spoofing detection should be researched once devices supporting Android 8.0 are in

the stores and more phones with supporting hardware appear on the market.

Better Data Processing Algorithms

Current data processing methods are quite simple, but more advanced data processing

or averaging algorithms may give better results, in terms of how easy it is to subse-

quently detect jamming or differentiate going indoors from true jamming. Furthermore,

to save bandwidth and energy, an adaptation algorithm could be used on smartphones,

that provides updates less frequently when there is no suspicion of jamming. When the

measurements become suspicious, the update frequency could temporary be increased to

provide more information to the backend to process, just when it is needed the most.

Leverage Other Smartphone Information

The received GNSS power in a smartphone can be influenced by many factors. Due to

the smartphone design constraint, its orientation could significantly influence the power

of received signals. Since design and hardware between different phones differs, the

ideal phone orientation for one phone might not be ideal for another. Quantization of

45

orientation’s effects on measurements would be beneficial in future test. Afterwards, the

use of internal smartphone measures of orientation may help calibrate out the effects of

orientation. Similarly being indoors, in a pocket or under foliage can also reduce signal

power and C
N0

. Smartphone sensors such as light sensor, gyroscope, other radio-frequency

measures, etc. may be useful for detecting these scenarios and reducing false positives.

Data Compression

Assuming a 70% smartphone penetration in the United States [28] [29], with a population

of roughly 324 million [30], the total required throughput on a national level, at 1 Hz, 1 kB

updates, would be approximately 1.814 terabit per second, which can be very taxing on

the systems in question. There is a lot of spatial redundancy when ASCII encoding and

JSON format are used, as well as temporal redundancy. Using binary encoding reduces

spatial redundancy, but temporal still remains, thus bandwidth savings could be achieved

and load on cellular towers reduced if messages were batched together, compressed and

then sent to the server.

Authentication

The backend that was developed as the prototype accepts incoming connections from

any actor, allowing for easy abuse of the experimental system. Authentication between

a GNSS receiver and the backend should have great importance in a production system

and implemented for a more robust solution, to prevent spoofing of messages.

CHAPTER 5

Conclusion

The work presented in this thesis has laid a practical foundation towards using smart-

phones for crowdsourcing GNSS jamming detection, by building an Android application

and supporting server software. A specific architecture for the J911 system has been

proposed, albeit without going into the details of PSTN. The thesis argues that smart-

phones are indeed a suitable platform for collection of GNSS observables, especially when

newer hardware and Android OS versions become available. While the idea is still in its

infancy, it is definitely worth exploring. GNSS receiver hardware is becoming cheaper,

smaller and more energy efficient, warranting further adoption. However, the same can

be said about GNSS jammers, thus successful standardization and deployment of the

J911 system may be an effective way to combat GNSS jamming. The test, that was

performed, was not performed on a big scale and there are points that deserve further

addressing, as mentioned in chapter 4. The work is still in its preliminary phase, but

nonetheless, based on previous research, the results are likely to improve with a bigger

scale and the points that should be addressed have been solved in other industries and

applications. In the author’s opinion, J911’s future is bright.

47

BIBLIOGRAPHY

[1] Marcos Vicente, “Generation of cdma.” https://web.archive.org/web/

20170920020639/https://en.wikipedia.org/wiki/File:Generation_of_

CDMA.svg, 2010.

[2] Karoling, “Fdma, tdma ja cdma graafiline vördlus.” https://web.archive.

org/web/20170920021340/https://commons.wikimedia.org/wiki/File:

FDMA,_TDMA_ja_CDMA_graafiline_v%C3%B5rdlus.jpg, 2013.

[3] D. M. Akos, “Who’s afraid of the spoofer? gps/gnss spoofing detection via automatic

gain control (agc),” Navigation, vol. 59, no. 4, pp. 281–290, 2012.

[4] GMV Innovating Solutions, “Mc replicas.” https://web.archive.org/web/

20170920022200/http://www.navipedia.net/index.php/File:Mc_replicas.

png, 2011.

[5] E. G. Manfredini, D. M. Akos, Y. H. Chen, S. Lo, T. Walter, and P. Enge, “Effec-

tive gps spoofing detection utilizing commercial receivers technology.” submitted to

Navigation: The Journal of the Institute of Navigation, 2017.

[6] Evan Mason, “9-1-1 system.” https://web.archive.org/web/20170920022734/

https://en.wikipedia.org/wiki/File:9-1-1_System.svg, 2012.

[7] J.-P. Poncelet and D. M. Akos, “A low-cost monitoring station for detection &

localization of interference in gps l1 band,” in Satellite Navigation Technologies and

European Workshop on GNSS Signals and Signal Processing,(NAVITEC), 2012 6th

ESA Workshop on, pp. 1–6, IEEE, 2012.

[8] J. C. Grabowski, “Personal privacy jammers: Locating jersey ppds jamming gbas

safety-of-life signals.” https://web.archive.org/web/20170910001057/http://

gpsworld.com/personal-privacy-jammers-12837/, 2012.

[9] J. Coffed, “The threat of gps jamming: The risk to an information utility,” Report

of EXELIS, Jan, 2014.

[10] L. Scott, “J911: The case for fast jammer detection and location using crowdsourc-

ing approaches,” in Proceedings of the 24th International Technical Meeting of The

Satellite Division of the Institute of Navigation (ION GNSS 2011), pp. 1931–1940,

2001.

49

https://web.archive.org/web/20170920020639/https://en.wikipedia.org/wiki/File:Generation_of_CDMA.svg
https://web.archive.org/web/20170920020639/https://en.wikipedia.org/wiki/File:Generation_of_CDMA.svg
https://web.archive.org/web/20170920020639/https://en.wikipedia.org/wiki/File:Generation_of_CDMA.svg
https://web.archive.org/web/20170920021340/https://commons.wikimedia.org/wiki/File:FDMA,_TDMA_ja_CDMA_graafiline_v%C3%B5rdlus.jpg
https://web.archive.org/web/20170920021340/https://commons.wikimedia.org/wiki/File:FDMA,_TDMA_ja_CDMA_graafiline_v%C3%B5rdlus.jpg
https://web.archive.org/web/20170920021340/https://commons.wikimedia.org/wiki/File:FDMA,_TDMA_ja_CDMA_graafiline_v%C3%B5rdlus.jpg
https://web.archive.org/web/20170920022200/http://www.navipedia.net/index.php/File:Mc_replicas.png
https://web.archive.org/web/20170920022200/http://www.navipedia.net/index.php/File:Mc_replicas.png
https://web.archive.org/web/20170920022200/http://www.navipedia.net/index.php/File:Mc_replicas.png
https://web.archive.org/web/20170920022734/https://en.wikipedia.org/wiki/File:9-1-1_System.svg
https://web.archive.org/web/20170920022734/https://en.wikipedia.org/wiki/File:9-1-1_System.svg
https://web.archive.org/web/20170910001057/http://gpsworld.com/personal-privacy-jammers-12837/
https://web.archive.org/web/20170910001057/http://gpsworld.com/personal-privacy-jammers-12837/

50

[11] B. R. Secrest, D. Richie, and B. Rapp, “Mathematical underpinnings of crowdsource

gps jammer geolocation using signal strength readings from various locations.” 7th

International Conference on Localization and GNSS, 2017.

[12] G. Kar, H. Mustafa, Y. Wang, Y. Chen, W. Xu, M. Gruteser, and T. Vu, “De-

tection of on-road vehicles emanating gps interference,” in Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, pp. 621–632,

ACM, 2014.

[13] I. Kraemer, P. Dykta, R. Bauernfeind, and B. Eissfeller, “Android gps jammer

localizer application based on c/n0 measurements and pedestrian dead reckoning,”

in Proceedings of the 25th International Technical Meeting of The Satellite Division

of the Institute of Navigation (ION/GNSS 2012), pp. 3154–3162, 2012.

[14] E. Kaplan and C. Hegarty, Understanding GPS: principles and applications. Artech

house, 2005.

[15] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS–global navigation

satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Busi-

ness Media, 2007.

[16] P. D. Groves, Principles of GNSS, inertial, and multisensor integrated navigation

systems. Artech house, 2013.

[17] European Commission, “Galileo goes live!.” https://web.archive.org/web/

20170905235145/http://europa.eu/rapid/press-release_IP-16-4366_en.

htm, 2016.

[18] J. Shen, “Update on beidou navigation satellite system (bds).” https:

//web.archive.org/web/20170513173123/www.gps.gov/cgsic/meetings/

2016/shen.pdf, 2016.

[19] V. A. Dubendorf, Wireless data technologies. John Wiley & Sons, 2003.

[20] J. Gross and T. E. Humphreys, “Gnss spoofing, jamming, and multipath interfer-

ence classification using a maximum-likelihood multi-tap multipath estimator,” ION

ITM, Monterey Jan, 2017.

[21] A. Roxin, J. Gaber, M. Wack, and A. Nait-Sidi-Moh, “Survey of wireless geolocation

techniques,” in Globecom Workshops, 2007 IEEE, pp. 1–9, IEEE, 2007.

[22] B. Jackson, S. Wang, and R. Inkol, “Emitter geolocation estimation using power

difference of arrival,” Defence R&D Canada Technical Report DRDC Ottawa TR,

vol. 40, 2011.

https://web.archive.org/web/20170905235145/http://europa.eu/rapid/press-release_IP-16-4366_en.htm
https://web.archive.org/web/20170905235145/http://europa.eu/rapid/press-release_IP-16-4366_en.htm
https://web.archive.org/web/20170905235145/http://europa.eu/rapid/press-release_IP-16-4366_en.htm
https://web.archive.org/web/20170513173123/www.gps.gov/cgsic/meetings/2016/shen.pdf
https://web.archive.org/web/20170513173123/www.gps.gov/cgsic/meetings/2016/shen.pdf
https://web.archive.org/web/20170513173123/www.gps.gov/cgsic/meetings/2016/shen.pdf

51

[23] M. Khider and Google, “GNSSLogger.” https://web.archive.org/web/

20170910000954/https://github.com/google/gps-measurement-tools, 2017.

[24] Google, “Google privacy policy.” https://web.archive.org/web/

20170909001548/https://www.google.com/policies/privacy/, 2017.

[25] Computer Crime and Intellectual Property Section, U.S. Department of Justice

and FBI’s Cellular Analysis Survey Team, “Retention periods of major cellu-

lar service providers.” https://web.archive.org/web/20170909235410/http:

//www.irisinvestigations.com/wordpress/wp-content/uploads/2016/03/

Telephone-Carrier-Information-Retention-Schedule-Mar-2011.pdf, 2011.

[26] Bidouille, “Android version distribution history.” https://web.archive.org/web/

20170910233737/https://www.bidouille.org/misc/androidcharts, 2017.

[27] Colorado Center for Astrodynamics Research, “Sige gn3s sampler.”

[28] Jacob Poushter, Pew Research Center, “Smartphone ownership and in-

ternet usage continues to climb in emerging economies.” https://web.

archive.org/web/20170911010238/http://www.pewglobal.org/2016/02/22/

smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/,

2017.

[29] Newzoo, “Top 50 countries by smartphone users and penetration.” https:

//web.archive.org/web/20170911010242/https://newzoo.com/insights/

rankings/top-50-countries-by-smartphone-penetration-and-users/, 2017.

[30] United States Census Bureau, “U. s. census bureau quick facts: United

states.” https://web.archive.org/web/20170911011304/https://www.census.

gov/quickfacts/fact/table/US/PST045216, 2016.

https://web.archive.org/web/20170910000954/https://github.com/google/gps-measurement-tools
https://web.archive.org/web/20170910000954/https://github.com/google/gps-measurement-tools
https://web.archive.org/web/20170909001548/https://www.google.com/policies/privacy/
https://web.archive.org/web/20170909001548/https://www.google.com/policies/privacy/
https://web.archive.org/web/20170909235410/http://www.irisinvestigations.com/wordpress/wp-content/uploads/2016/03/Telephone-Carrier-Information-Retention-Schedule-Mar-2011.pdf
https://web.archive.org/web/20170909235410/http://www.irisinvestigations.com/wordpress/wp-content/uploads/2016/03/Telephone-Carrier-Information-Retention-Schedule-Mar-2011.pdf
https://web.archive.org/web/20170909235410/http://www.irisinvestigations.com/wordpress/wp-content/uploads/2016/03/Telephone-Carrier-Information-Retention-Schedule-Mar-2011.pdf
https://web.archive.org/web/20170910233737/https://www.bidouille.org/misc/androidcharts
https://web.archive.org/web/20170910233737/https://www.bidouille.org/misc/androidcharts
https://web.archive.org/web/20170911010238/http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
https://web.archive.org/web/20170911010238/http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
https://web.archive.org/web/20170911010238/http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
https://web.archive.org/web/20170911010242/https://newzoo.com/insights/rankings/top-50-countries-by-smartphone-penetration-and-users/
https://web.archive.org/web/20170911010242/https://newzoo.com/insights/rankings/top-50-countries-by-smartphone-penetration-and-users/
https://web.archive.org/web/20170911010242/https://newzoo.com/insights/rankings/top-50-countries-by-smartphone-penetration-and-users/
https://web.archive.org/web/20170911011304/https://www.census.gov/quickfacts/fact/table/US/PST045216
https://web.archive.org/web/20170911011304/https://www.census.gov/quickfacts/fact/table/US/PST045216

	Chapter 1 – Introduction
	Chapter 2 – Background
	GNSS Basics
	Space Segment
	Signal Characteristics
	Transmitted Information
	Receiver

	Interference Detection
	Localization
	Time Difference of Arrival (TDOA)
	Power Difference of Arrival (PDOA)

	Enhanced 911 (E911)

	Chapter 3 – J911 Prototype
	Smartphone App
	Raw GNSS Measurements, NMEA Sentences and Location
	Internet Connectivity
	Storage

	Server Software
	Processing Algorithm and Visualization Software
	Privacy

	J911 Architecture
	SiGe GN3S Sampler Module

	Chapter 4 – Discussion
	Chapter 5 – Conclusion

