A Comparison Between MongoDB and
MySQL Document Store Considering
Performance

Erik Andersson and Zacharias Berggren

Erik Andersson and Zacharias Berggren
VT 2017

Examensarbete, 15 hp

Supervisor: Kai-Florian Richter

Examiner: Pedher Johansson
Kandidatprogrammet i datavetenskap, 180 hp

Abstract

Databases are an important part of today’s applications where data has
to be stored and accessed quickly. One of the important criteria when
choosing what database technology to use is performance, where you
want the operations to be as fast as possible.

In April 2016 Oracle released a alternative way of working with MySQL
as a document store. This creates an opportunity to compare it to Mon-
goDB which is one of the most popular document store databases.

The comparison was performed by testing different operations on the
databases and comparing the resulting time it took.

The result showed that MongoDB was faster in every test case for every
operation.

Acknowledgements

Thanks to Kai-Florian Richter at the Department of Computing Science at Umea University
for valuable supervision.

Contents

1

2

Introduction
1.1 Earlier Research
1.2 MySQL
1.3 NoSQL
1.3.1 Document Store
1.4 MongoDB
1.4.1 Example
1.42 Shell
1.43 Storage
1.5 MySQL Document Store
1.5.1 Example
1.5.2 Shell
1.5.3 Storage

Method
2.1 Hardware & Software
2.2 Test
2.2.1 Type of data
2.2.2 Data amount
223 Size
2.2.4 Insertion

2.2.5 Updating, Selecting, and Removing

Results

3.1 Insert
3.2 Update
3.3 Select

3.4 Remove

o e N Y. V. BV, e N S I ST

o

10
10
10
11
11

13
13
15
18
21

3.5 Size

3.5.1 Hardware utilization

4 Discussion
4.1 Limitations

4.2 Conclusion

References

A Result table

B MongoDB Code

C MySQL Document Store Code

23
24

25
25
26

27

29

31

45

1 Introduction

For quite some time relational databases such as MySQL and PostgreSQL have dominated
the database market.[1]

NoSQL databases have existed since the late 1960s [5], but it was not until big compa-
nies like Google, Facebook and Amazon picked it up that it really got popular. "NoSQL”
refers to "non SQL”, non relational”, or "not only SQL”. It offers a different mechanic to
store and retrieve data compared to tabular relation databases. Today many companies use
NoSQL databases in their systems since it allows for a simple design and structure. [2]

This thesis will compare the two NoSQL databases MongoDB and MySQL Document
Store. The primary focus of the comparison is performance as measured by execution time.

This comparison is interesting because MySQL Document Store is a new product on the
market that can compete with the already existing NoSQL databases. MySQL is a big and
known brand which could help their development of this technology.

1.1 Earlier Research

Since MySQL Document Store was released just a year ago, there have not been a lot
of coverage of it. The closest research that exist is comparison of regular MySQL and
MongoDB.

Fredriksson and Wester [8] tested MongoDB and MySQL against each other by testing the
time needed for inserting and selecting different amounts of data. The insertion tests were
performed both with and without something called multi-insert which involves sending all
the insertions as a single operation to the database. They found MongoDB to perform better
on the insertion tests except when inserting large amounts of images, and large amounts of
data in multi-insert. On selecting MongoDB performed better in every single one of their
tests.

Gyorodi et.al [4] also compared MongoDB and MySQL by measuring execution time on
different operations. They named four different basic operations that could be performed on
any database; Insert, Select, Update, and Delete. In their tests MongoDB performed better
in every case.

1.2 MySQL

MySQL is a relational database that stores data in a tabular structure and is grouped by
tables. It uses SQL as language for communication with the database, which allows for a
very powerful syntax to create both simple and complex queries to retrieve and structure

1(57)

2(57)

data as you want. A relational database is, as the name implies, useful when the data you
want to store in different tables has a relation between each other.

MySQL comes with with 8 different database engines which can be chosen based on dif-
ferent criteria that one might have. By default, MySQL uses InnoDB if no other engine is
defined when creating a new database.

1.3 NoSQL

NoSQL is a grouping of several different technologies that are defined as any database
technology that is not SQL such as Document Store or Key-Value Store. Both of the NoSQL
technologies that this thesis focused on are Document Store.

1.3.1 Document Store

Document Store works by storing the data as JSON-objects in documents whose structure
does not have to be predefined. As opposed relational databases these objects do not have
to have a common structure and can also be nestled. The support of nestling data removes
the need to join data the same way as it is done in relational databases, and can improve
performance drastically. Each document can be compared to a traditional row in a relational
database, and each property in the JSON-object as a column.

JSON stands for JavaScript Object Notation and is an open standard data format that uses
a attribute-value structure. It is similar to XML both in structure and usage. An example
JSON-object looks like this:

{

”_id” : Objectld(”59144d21f69ebb81cac402b8”),
“name” : " William”,
“age” : 28,
”"middle_name” : [”Henrik”, "Kurt”],
family” @ {
”mother” : ”Sara”,
”dad” : “Jens”

}

The attributes is on the left side of the colon, and the values on the right side.

A Document Store is suited for non-relational data where objects can have different proper-
ties from each other.

Because of this way of working with data, Document Store databases has grown in pop-
ularity. Some large companies like Twitter and Google has adapted it, thus pushing its
popularity and development.

3(57)

1.4 MongoDB

MongoDB is part of the new wave of NoSQL database technologies. It was released in
2009 and is one of the most popular NoSQL databases today that uses Document Store.
[1] MongoDB has tables like relational databases, but they are called collections. In the
collection the documents are stored as rows, but as opposed to a relational database, each
collection does not have any columns.

4(57)

1.4.1 Example

’ item

”_id”: 700000aac2a36e711f16cac9el174d5f20"7,
“"name”: “Monitor 121467,
”size”: 48.81092784926295,
“type”: ”Monitor”,
”width”: 2560,

“height”: 1440,
”quantity ”: 345,
“interface”: ”S—Video”,
“universal”: 1,
“refreshRate ”: 144,
“responseTime”: 5

”_id”: 700001el62a36e711fl6cac9el74d5f20”7,
frequency ”: 1008,

memory ”: 24,

millProp”: O,

name”: “GTX 992497,

quantity 7: 475,

“speed”: 1513.87,

type”: ”Graphics Card”,

universal”: 1,

watt”: 439

”_id”: 70000205f2a36e711f16cac9el174d5f20”
“cores”: 16,

“name”: 71358797,

“quantity ”: 88,

“speed”: 3.83171,

”tenKProp”: 3,

“type”: ”"CPU”,

“universal”: 1

To find the documents with the name "GTX 99249, in this case the middle item, you run:
db.item. find ({"name”: “"GTX 99249”}).

which returns a JSON-array with the JSON-objects matching the name:
[

”_id”: 700001el62a36e711fl6cac9el74d5f20"7,
”frequency ”: 1008,

“memory”: 24,

"millProp”: O,

“name”: "GIX 99249,

”quantity ”: 475,

“speed”: 1513.87,

“type”: 7 Graphics Card”,

“universal”: 1,

“watt”: 439

1.4.2 Shell

MongoDB has a shell called mongo. It is an interactive Javascript interface that can execute
queries and perform more administrative operations. To execute a Javascript-file from the
shell, you run:

mongo <host>:<port>/<database> <myjsfile.js>

1.4.3 Storage

MongoDB supports multiple storage engines to choose from depending on your workflow.
The default engine is WiredTiger since MongoDB version 3.2.

WiredTiger stores the data in files represented as BSON (Binary JSON)[6]. MongoDB
pre-allocates the data files sizes to avoid file system fragmentation.

Each file is a collection and its data. If the file becomes bigger than 2 GB, a new file is
created where more data in the collection is stored.

1.5 MySQL Document Store

MySQL Document Store is a recent development by the MySQL developers Oracle and
is their attempt at a NoSQL database. MySQL Document Store was first released with
MySQL version 5.7.12 [7] and is thus not as mature as MongoDB in that regard. It still runs
on InnoDB which is mature software.

To be able to use MySQL as a document store, you are required to install the plugin ”X
Plugin” for MySQL. This plugin is used to implement a network protocol to communicate
with MySQL, and is shipped with MySQL 5.7.12 and later.

5(57)

6(57)

MySQL Document Store keeps it tabular structure, but requires a column of type "JSON”
named “doc” where it will save the JSON-data. Thanks to this, it allows mixing both doc-
ument store and normal relational database data in the same table. This could be useful if
you both have relational data and unstructured data.

1.5.1 Example

7(57)

item

-id

00000aac?2...

”_id”: 700000aac2a36e711f16cac9el174d5f207,
“name”: “Monitor 121467,
”size”: 48.81092784926295,
“type”: ”Monitor”,
”width”: 2560,

“height”: 1440,
”quantity ”: 345,
“interface”: ”S—Video”,
“universal”: 1,
"refreshRate ”: 144,
“responseTime”: 5

00001e162...

”_id”: 700001el62a36e711f16cac9el174d5f207,
”frequency ”: 1008,

“memory”: 24,

"millProp™”: O,

“name”: "GTX 992497,

”quantity ”: 475,

“speed”: 1513.87,

“type”: ”Graphics Card”,

“universal”: 1,

“watt”: 439

0000205f..

”_id”: 70000205f2a36e711f16cac9el174d5f20”,
“cores”: 16,

“name”: 71358797,

”quantity ”: 88,

“speed”: 3.83171,

”tenKProp”: 3,

“type”: "CPU”,

“universal ”: 1

8(57)

To find the first item, in this case a monitor with the name “Monitor 121467”, you run:

db.item . find ("name = ’*Monitor 121467°”)

which returns a JSON-array with the JSON-objects matching the name:
[

”_id”: 700000aac2a36e711fl16cac9el174d5f20”,
“height”: 1440,
“interface”: ”S—Video”,
“name”: “Monitor 1214677,
”quantity ”: 345,
“refreshRate”: 144,
“responseTime”: 5,
“size”: 48.8109,

“type”: ”Monitor”,
“universal”: 1,

”width”: 2560

1.5.2 Shell

MySQL Document Store has a shell called mysqlsh. Mysqlsh allows for execution of
Javascript using the X DevAPI to work with document based data. It also allows for opera-
tions on the traditional relational data with Javascript.

A javascript-file cant be executed from shell with the following line:
mysqlsh —--uri <user>:<password>@<host>/<database> --file <myjsfile.js>

1.5.3 Storage

InnoDB is one of the popular database engines for MySQL and comes with a lot of func-
tionality. Since it is the default engine when no other is defined, MySQL Document Store
also uses this engine by default.

By default InnoDB stores each table structure and data in separate files physically on the
hard drive. This can also be changed by editing the option innodb_file_per_table to false.

e tablename.ibd contains all the data in the table

e tablename.frm contains the table structure and definitions

2 Method

2.1 Hardware & Software

The tests has been done on a computer running Ubuntu version 16.04 with the specs shown
in table 1.

Table 1 Specification of hardware and software.

Name Value
CPU AMD FX 8350 (8 cores @ 4 GHz)
RAM 8 Gb
Harddrive 1 TB, 7200 RPM
MySQL Server Version 5.7.18
MongoDB Version 3.4.4
2.2 Test

The tests were done by executing JavaScript files that contained different queries to the
database. To make sure the tests were not affected by network speed when timing the
different operations, the scripts were executed locally on the server where the databases
were hosted. All the scripts that performed these operations were also executed directly by
the technologies’ own client program, to remove any effect that libraries or other third-part
application could cause the performance, and made it as fair as possible.

With MySQL Document Store we used mysqglsh, and with MongoDB we used mongo. Both
of these clients execute Javascript-code, which made it easy to use the same scripts for both
database technologies.

The measurement of performance between the database technologies was made by looking
how fast each technology could finish the execution of four different types of queries:

e Inserting data

e Updating data

e Removing data

e Selecting data

These operations were chosen because they are the four main ones when operating on
databases. They also have equivalent operations that were used in previous research.

9(57)

10(57)

The execution of the scripts were timed with the unix-command “time”. Each test was
performed 10 times in a row to get an average of of the time it took to execute the script.
Timing a test-script looked like this:

time mongo localhost:27171/inventory insert1000.js

2.2.1 Type of data

Both databases were inventories where information about different computer components
were stored. Each document in the collection was a computer component where the at-
tributes describes the component. Therefore each different type had different attributes.

All the values that were saved in the different attribute fields were of the type string or
integer. These types were chosen because they are usually the most common data types to
store in this kind of database.

2.2.2 Data amount

The insertion tests combined all the different start sizes (0, 103, 104, 10°, 106) with all
the insertion amounts (103, 10%, 10°, 10°). The other tests were not run with any empty-
database cases because it would not make any sense. The test were also executed on the
other operations on all of the data in the database or only one element. For example: fill
database with 103 and remove all elements, fill database with 10° and remove one element.

The tests were executed on the databases when there already were different amounts of data
present. This was done to see how it affected the performance. There were five levels of
data:

e (0 documents (empty database)

e 103 documents

10* documents

10° documents

[)
e 10° documents
2.2.3 Size

One aspect that is interesting is also how much space the data allocated on the hard drive.
This was measured by using the technologies’ own tools.

MySQL stores information about each database in the “information_scheme” database. By
using a SELECT-query, the size of the table could be retrieved by selecting the “data_length”-
column. This column contains the size of the data, including index-size.

In MongoDB you can query the data size by using the “stats()”’-method on a collection. By
summarizing the data-size and the index-size, you get the actual data-size.

2.2.4 Insertion

Insertion of data was performed in two ways: single-insert and multi-insert. Multi-insert is
used when inserting a lot of data at the same time as a batch, i.e inserting multiple documents
at the same time. Single-insert is usually used when inserting one single document.

2.2.5 Updating, Selecting, and Removing

These tests were performed on the previously defined database sizes of 1000 documents and
above. Each database size was tested with the database sizes up to and including the size of
the database. For example if we were testing on a database with 10° documents we would
perform the test filtering on 103, 10%, and 10° documents. We also made tests filtering on
just a single document.

11(57)

12(57)

3 Results

The full results of our tests can be seen in appendix A.

3.1 Insert

In multi-insert MongoDB and MySQL Document Store performed quite equally with 103
and 10* objects. At 10° objects the difference between the two increased even more. At 10°
objects MongoDB had a big increase in the time it took to insert it, but managed to do it in
just under 30 seconds. MySQL Document Store could not complete this query, and instead
returned error. See figure 1.

Multi-insert into empty database

TTTTT T T T T T T T T T T T T T T
—&—MongoDB
307%%MySQLDS |
> 20 A
0]
E
F
10 |- N
O, |
Ll Lol Lol Ll

10° 10* 10° 10°
Number of entries

Figure 1: Time for inserting different amounts of data into an empty database.

In single-insert MongoDB could insert single documents much faster than MySQL Docu-
ment Store. See figure 2.

13(57)

14(57)

Time (s)

10°

104

10°3

102

10!

10°

Single-insert into empty database

—— MongoDB
—o— MySQL DS

103

104

10°

10°

Number of entries

Figure 2: Time for inserting different amounts of data one at a time into an empty database.

In multi-insert with different amounts of data already existing in the database, MongoDB
performed equally for every amount of pre-inserted data. See figure 3. In MySQL DS the
results for different starting sizes affected the results more, as you can see in figure 4.

MongoDB Multi-Insert

Number of items inserted

different amounts of data in MongoDB.

\\H\ T \\\\H\ \\\\H\ T \\\\H\
30 | | —=— Start with 0
—o— Start with 103
25 Start with 10*
—— Start with 10°
20 1 Start with 106
g 15+
= f/
10 +
5
0| o
L1l Ll Ll Lol
103 10* 10° 10°

Figure 3: Time for inserting different amounts of data into databases already containing

MySQL DS Multi-Insert
T T T
—e— Start with O
50 | |—e— Start with 10°
Start with 10*
40 | | —=— Start with 10°
Start with 10°

Z 30 1
L)
£
F
20 - 1
10 |- 1
ol &/— |
| | |
10° 10* 10°
Number of items inserted
Figure 4: Time for inserting different amounts of data into databases already containing
different amounts of data in MySQL DS.
3.2 Update

MongoDB performed better when updating all data in the database. This was specially
noticeable when updating 10° documents. The tests that involved updating 10® documents
in MySQL Document Store at once could not be completed. See figure 5.

15(57)

16(57)

Update All

—=— MongoDB
10 | | —e—MySQL DS

Time (s)

Ll Lol Lol Lol
103 10* 109 10°
Number of entries

Figure 5: Time for updating every element for different database sizes.

When updating one document, both database technologies iterates through all the docu-
ments. MySQL Document Store managed to compete with MongoDB in the first three
levels, but at 10° the difference got a lot more noticeable. See figure 6.

Update One

2.5| |- MongoDB |
—— MySQL DS

1.5

Time (s)

= =

L1l Lol Ll Ll
10° 10* 10° 10°
Number of entries

Figure 6: Time for updating one element in databases of different sizes.

When updating multiple documents with different amounts of data in the database, MySQL

17(57)

Document Store performed poorly. While it could not update 10® documents at once, up-
dating 10° documents when there were 10° documents in the collection was possible. See

figure 7.

MongoDB performed better and could complete the test to update 10° documents in a
database containing 10° documents. See figure 8.

Update MySQL DS
257\\\\\ T T T T T T T T T T T
—=—Update 103
—e— Update 10*

201 Update 10° |
157 N
Py
=
S 10| i

5, -

0, -

L1l Ll Lol Lol

10° 10* 10° 10°
Size of database

Figure 7: Time for updating different amounts in databases of different sizes in MySQL
DS.

18(57)

Update MongoDB
TTTTT T T T TTT] T T TTTT] T T TTTT]
—&— Update 10° A
10y —o— Update 10* |
Update 10°
81 —— Update 10° |

Z 6l :
Q
E
S |
2, |
__——f
07 = = = |
Ll Lol Lol Lol
103 10* 109 10°

Size of database

Figure 8: Time for updating different amounts in databases of different sizes in MongoDB.

3.3 Select

Selecting all documents in the database performed almost equally when it contained 10°
and 10* documents. When it contained 10° documents MySQL Document Store increased
more in time than MongoDB did, and at 10® documents the difference was even larger. See
figure 9.

19(57)

Select All Entries

TTTTT
—=—MongoDB
—— MySQL DS

15

Time (s)

10°

100

10°

104

Number of entries

Figure 9: Time for selecting every document in databases of different sizes.

Selecting only one document the graph pattern was pretty identical to when selecting all

documents. See figure 10.

Select One
TTTTT T T T TTT] T T T T T T
—=—MongoDB
157+MySQLDS |
z 1| 1
o
E
=
0.5} i
07 N Lol Lol |
10°

L1l
103 10* 10°
Number of entries

Figure 10: Time for selecting one document in databases of different sizes.

MongoDB beat MySQL Document Store when selecting multiple documents with different
amounts of data in the database. Selecting 10°-103 documents MySQL actually managed to

20(57)

keep up with MongoDB, but when selecting 10° documents, MySQL Document Store took
three times as much time. See figure 12 & 11.

Select MongoDB
TTTTT T T T T T T T T T T T T T
67 3 |
—&—Select 10 a
5| —e— Select 10* |
Select 10°
4l —+— Select 10° h
~ 37 |
£
E
2, -
1, -
ol s ﬁ// |
Ll Lol Lol Ll

10° 10* 10° 10°
Size of database

Figure 11: Time for selecting different amounts of data from databases of different sizes
in MongoDB.

Select MySQL DS

—&— Select 103 A
—o— Select 10*
15| Select 10° .
—— Select 10°

Z 10| .
Q
£
F
5, |
0ol &— & /@ |

| Ll Ll Lol
10° 10* 103 10°
Size of database

Figure 12: Time for selecting different amounts of data from databases of different sizes
in MySQL DS.

21(57)

3.4 Remove

MySQL Document Store performed pretty close to MongoDB when removing all docu-
ments up to 10°, but at 10 it did not manage to complete the execution. See figure 13.

Remove All
TTTTT T T T T T T T T T T T
—=—MongoDB
g ——MySQL DS
6, |
2
= 40)
2, |
O, |
L1l Lol Lol Ll

103 10* 10° 100
Number of entries

Figure 13: Time for removing all documents in databases of different sizes.

MongoDB had no problem removing one document from the database and kept a steady
execution time until 10° documents, and at 10° size of the database only increases a little
in time. MySQL Document Store on the other hand deviated from the MongoDB line from
the start, and at 10° documents had a greater increase up to almost three seconds. See figure

14.

22(57)

Remove One

37\\\\\ T T T T T T T T T TTT] T T T =
—=— MongoDB
25*+MySQLDS |
2, |
o 15F 1
E
I
1, |
0.57 87’48// B
O, |
L1l Lol N Lol
103 10* 10° 10°

Number of entries

Figure 14: Time for removing a single document from databases of different sizes.

MySQL Document Store performed pretty well in the beginning, but increased drastically
when trying to remove more than 10000 documents when the database had 1000000 doc-
uments already in it. See figure 16. MongoDB managed this test very well. See figure

15.
Remove MongoDB
\\\\‘ T T \\\\‘ T T \\\\‘ T T \\\\‘
—=—Remove 103 a
gl —e—Remove 10* |
Remove 10°
—— Remove 10°
6 N
]
c 40)
2 N
Q/@
o & & = |
Ll Ll Ll Ll

10° 10* 10° 10°
Size of database

Figure 15: Time for removing different amounts of data from databases of different sizes
in MongoDB.

Remove MySQL DS
607””‘ T T T T T T T T T]
—&—Remove 10°
501 —o—Remove 10* |
Remove 10°
40| |
3 30| .
£
F
20 - .
10 - a
0o =@ = : g
Ll Lol Lol Ll

10° 10* 10° 10°
Size of database

Figure 16: Time for removing different amounts of data from databases of different sizes
in MySQL DS.

3.5 Size

MongoDB uses less space than MySQL DS for the same amount of information in these
tests, but since these tests are focused on the document store part it doesn’t use all the space
that MySQL DS allocates.

Table 2 Sizes of the different databases at varying number of documents.

Table size (in bytes)
Num MongoDB MySQL DS
1000 98304 409600
10000 692224 3686400
100000 6524928 50331648
1000000 65212416 444596224

23(57)

24(57)

Size

109?\\\\ T T T T T T T T T T T T T T T ,E

| |—=—MongoDB |

| |—e—MySQL DS i

108 b £

8 i |
2 107 | E
R= B]
o [B
N i i
72] [i
10| |

105 | 5
:HH\ Lol Lol Ll 1

103 10* 10° 10°
Number of entries

Figure 17: Size of the database when containing different amounts of data.

3.5.1 Hardware utilization

While the tests were performed we also monitored the CPU, RAM and Hard drive usage to
see any potential limitation.

The CPU did not have any problem with handling any of the operations, only 1-2 core
sometimes had a 100% usage, while the rest of the cores had minimal to no usage.

The hard drive usage was sometimes 100% busy ,though it did not use its maximum writing
speed.

The RAM and swap-space usage reached 100% when executing the test in figure 4, inserting
10% documents in MySQL Document Store.

4 Discussion

MongoDB performed better but had an interesting increase of time at updating 10 docu-
ments when the size of the database was 10® documents. See figure 8.

MongoDB performed equally when multi-inserting different amounts of data into different
amounts of already present data, shown in figure 3. This suggest that the technology scales
pretty well, while updating, removing and selecting had a increase in time when executing
the operations on 10° or more documents with 103 documents in the database.

MongoDB allocated less space for the same data, which was not so surprising since InnoDB
stores more information about tables, such as table-structure. It also stores the data in files
as BSON, while InnoDb stores the data in files in a B+ tree. [3] This could also be a
explanation why MongoDB allocates less space. See table 2 and figure 17.

4.1 Limitations

MySQL Document Store failed to perform insert, update or remove on 10® documents, see
figures 4, 7, 16. The execution would return MySQL Error 2000 and that the execution
failed. Error 2000 is defined as “unknown MySQL error” in the documentation, but by
looking in the error-logs we could see the error “lock_wait_timout_exceded”. This could
with high probability be because of the many changes we do to the database in short period
of time. We tried resolving this by changing the ”innodb_lock_wait_timeout” property to a
higher value, but it was unsuccessful. Because it would return an error whenever the query
ran for too long the ten successful attempts that we used for our average on a few of the tests
is really the best-case scenario, that is why the lines seem to converge around 50 seconds
on inserting 103 into a non-empty database in MySQL Document Store.

The performance issues with MySQL Document Store seems to be tied to the X Plugin and
how it handles the executions. While we ran the test we noticed some serious issues with
the memory-usage while doing multi-insertion where sometimes the RAM and swap space
would be used up fully. It could possibly be because of a memory leak, or just how the
plugin handles insertions and therefor requires more RAM for such a high amount of data
to be inserted at once.

What caused the performance issues could depend on both hardware and software. To be
able to get the most out of the database technologies you would also have to configure them
for the use-cases. This is something that we did not do, since we wanted to base our results
on the default settings.

25(57)

26(57)

4.2 Conclusion

In every single test we found MongoDB to perform better than MySQL DS. This was spe-
cially noticeable when operating on 10° documents or more, where MySQL Document
Store could perform multiple times worse than MongoDB.

But since MySQL Document Store was recently released you could expect some perfor-
mance issues. This will hopefully be addressed by Oracle while the technology matures
and more people and organizations start using it. It is still a interesting approach by Oracle
to implement this alternative way to work with data in MySQL and it shows that they want
to have a foot in the NoSQL market.

27(57)

References

[1] Historical trend of the popularity ranking of database management systems. https:
//db-engines.com/en/ranking_trend. Accessed: 2017-06-05.

[2] Our customers. https://www.mongodb.com/who-uses-mongodb. Accessed: 2017-
06-06.

[3] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large or-
dered indices. Acta Informatica, 1(3):173-189, 1972.

[4] Cornelia Gy6rddi, Robert Gyodrodi, George Pecherle, and Andrada Olah. A comparative
study: MongoDB vs. MySQL. In Engineering of Modern Electric Systems (EMES),
2015 13th International Conference on, pages 1-6. IEEE, 2015.

[5] Neal Leavitt. Will nosql databases live up to their promise? Computer, 43(2), 2010.

[6] MongoDB. MongoDB Architecture. https://www.mongodb.com/mongodb-
architecture#data-model.

[7] Oracle. Changes in MySQL 5.7.12, 04 2016.
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-12.html.

[8] Alfred Wester and Olof Fredriksson. Jimforelse av Mysql och MongoDb, 2012.

28(57)

A Result table

Type Num | Existing | MySQL DS | MongoDB
Multi-insert 1000 0 0.226 0.113
Multi-insert 10000 0 0,960 0,370
Multi-insert | 100000 0 33,622 2,506
Multi-insert | 1000000 0 - 29,028
Multi-insert 1000 1000 0,441 0,110
Multi-insert 10000 1000 0,985 0,354
Multi-insert | 100000 1000 50,158 2,564
Multi-insert | 1000000 1000 - 29,192
Multi-insert 1000 10000 0,274 0,110
Multi-insert 10000 10000 0,943 0,361
Multi-insert | 100000 10000 50,026 2,587
Multi-insert | 1000000 10000 - 29,020
Multi-insert 1000 | 100000 1,389 0,108
Multi-insert 10000 | 100000 6,852 0,357
Multi-insert | 100000 | 100000 53,774 2,616
Multi-insert | 1000000 | 100000 - 28,410
Multi-insert 1000 | 1000000 0,398 0,112
Multi-insert 10000 | 1000000 8,861 0,366
Multi-insert | 100000 | 1000000 50,710 2,633
Multi-insert | 1000000 | 1000000 - 28,386

Single-insert 1000 0 64,339 0,403
Single-insert 10000 0 526,650 3,382
Single-insert | 100000 0 5322,850 33,273
Single-insert | 1000000 0| 56224,030 328,246

30(57)

Type Num | Existing | MySQL DS | MongoDB
Multi-Select 1000 1000 0,118 0,084
Multi-Select 1000 10000 0,171 0,100
Multi-Select 10000 10000 0,317 0,160
Multi-Select 1000 | 100000 0,231 0,149
Multi-Select 10000 | 100000 0,352 0,207
Multi-Select | 100000 | 100000 1,895 0,649
Multi-Select 1000 | 1000000 1,407 0,558
Multi-Select 10000 | 1000000 1,468 0,626
Multi-Select | 100000 | 1000000 4,087 1,069
Multi-Select | 1000000 | 1000000 17,929 5,752

Select 1 1000 0,098 0,074
Select 1 10000 0,112 0,080
Select 1 | 100000 0,252 0,117
Select 1 | 1000000 1,647 0,467
Type Num | Existing | MySQL DS | MongoDB
Multi-Update 1000 1000 0,247 0,089
Multi-Update 1000 10000 0,291 0,099
Multi-Update 10000 10000 0,705 0,180
Multi-Update 1000 | 100000 0,981 0,144
Multi-Update 10000 | 100000 3,869 0,233
Multi-Update | 100000 | 100000 9,136 1,099
Multi-Update 1000 | 1000000 5,046 0,580
Multi-Update 10000 | 1000000 11,738 0,681
Multi-Update | 100000 | 1000000 23,381 1,575
Multi-Update | 1000000 | 1000000 - 10,582
Update 1000 0,101 0,073
Update 1 10000 0,137 0,083
Update 1| 100000 0,334 0,120
Update 1 | 1000000 2,493 0,463
Type Num | Existing | MySQL DS | MongoDB
Multi-Remove 1000 1000 0,164 0,090
Multi-Remove 1000 10000 0,286 0,099
Multi-Remove 10000 10000 0,495 0,167
Multi-Remove 1000 | 100000 0,754 0,146
Multi-Remove 10000 | 100000 1,018 0,221
Multi-Remove 100000 | 100000 1,898 1,007
Multi-Remove 1000 | 1000000 13,885 0,620
Multi-Remove 10000 | 1000000 46,718 0,691
Multi-Remove | 100000 | 1000000 56,768 1,488
Multi-Remove | 1000000 | 1000000 - 9,052
Remove 1 1000 0,157 0,079
Remove 1 10000 0,393 0,090
Remove 1 | 100000 0,768 0,126
Remove 1 | 1000000 2,763 0,527

31(57)

B MongoDB Code

Listing B.1: mongodb.sh - used for sending test scripts to the database

#!/usr/bin/env bash
mongo —authenticationDatabase admin —u master —p \
zachariaserik localhost/inventory $@

Listing B.2: runTest.sh - used for automating tests

#!/bin/bash
./mongodb.sh empty.js > /dev/null 2> /dev/null || exit
./mongodb.sh fillWebstore.js > /dev/null 2> /dev/null || exit

echo "start._loop”
for i in {1..10}
do
time ./mongodb.sh getComponents.js
./mongodb.sh empty.js && ./mongodb.sh fillWebstore.js && \
time ./mongodb.sh delete.js
./mongodb.sh reset.js && time ./mongodb.sh update.js
./mongodb. sh empty.js && ./mongodb.sh fillWebstore.js && \
time ./mongodb.sh insert.js
./mongodb. sh empty.js && ./mongodb.sh fillWebstore.js && \
time ./mongodb.sh singlelnsert.js

Listing B.3: empty.js - used for emptying the database

var filter = {”universal”: 1.0}; //delete all
db.item.remove(filter);

Listing B.4: fillWebstore.js - used for filling the database in preparation for other scripts.
const TOTALRECORDS = 1000;

const NUM_GPU = TOTAL_RECORDS/5;
const NUMRAM = TOTAL_RECORDS/5;
const NUM_CPU = TOTAL_RECORDS/5;
const NUM_MONITOR = TOTAL_RECORDS/5;
const NUM_PSU = TOTAL_RECORDS/5;

var tmp = [];

for (var i=0; i<NUMGPU; i++) {
tmp . push (createGpu(i));

32(57)

}
db.item.insert (tmp);
tmp = [];

for (var i=0; i<NUMRAM; i++) {
tmp . push (createRam(i));

}
db.item.insert (tmp);
tmp = [];

for (var i=0; i<NUMCPU; i++) {
tmp . push(createCpu(i));

}
db.item.insert (tmp);
tmp = [];

for (var i=0; i<NUMMONITOR; i++) {
tmp.push(createMonitor (i));

}
db.item.insert (tmp);
tmp = [];

for (var i=0; i<NUMPSU; i++) {
tmp.push(createPsu(i));
¥

db.item.insert (tmp);

function createGpu(index){
return {
name : "GTX_.”+index ,
type: ”Graphics._Card”,
quantity : Math. floor (inInterval (1,10000)),
frequency: Math. floor(inInterval (902,1784)),

memory : fromList([1,2,3,4,6,8,11,12,16,24,32]),
speed : inInterval (250,1800),
watt : Math. floor(inInterval (15,580)),

millProp: Math. floor (index/1000000),
universal: 1

}
}
function createRam (index){
return {
name : ”Memory."”+index ,
type: "RAM” ,
quantity : Math. floor (inInterval (1,10000)),
memory : fromList([1,2,3,4,6,8,12,16,24,32,48,64,96,128]),

voltage: inInterval (0.31,2.5),

}

function createCpu(index){

return {

}

hundKProp:
universal:

name :
type:

quantity :

speed :
cores:

tenKProp:
universal:

33(57)

Math. floor (index/100000),
1

99 * 99
1

+index ,

”CPU” ,

Math. floor (inInterval (1,200)),
inInterval (1.1,4.7),

Math. floor (inlInterval (1,22)),
Math. floor (index/10000),

1

function createMonitor(index){
fromList ([{

var res

oA

oA

$oA

oA

oA

HA

oA

oA

oA

X
y:

bl

1024,
768

1280,
1024

1360,
768

1366,
480

1366,
768

1400,
900

1440,
900

1600,
900

1600,
1200

1680,
1050

34(57)

A

x: 1920,

y: 1080
HA

x: 1920,

y: 1200
FA

x: 2048,

y: 1536
A

x: 2560,

y: 1024
HA

xX: 2560,

y: 1080
A

x: 2560,

y: 1440
FA

x: 2560,

y: 1600
HA

X: 3440,

y: 1440
A

x: 3840,

y: 1600
FA

x: 3840,

y: 2160
FA

x: 4096,

y: 2160
A

x: 5120,

y: 2880
HA

x: 5760,

y: 2160
JEDE
return {

name :

type:

quantity :

width :

height:

refreshRate:

responseTime:

”Monitor.”+index ,

”Monitor”,

Math. floor (inInterval (1,500)),

res.x,

res.y,
fromList([30,60,85,100,120,144,180,2401),
Math. floor (inlInterval (1,25)),

35(57)

interface: fromList ([" BNC” ,”Component” ,” DisplayPort”
”DVI” ,”DVI-A” ,”DVI-D_Dual-Link”
"DVI-D._Single—-Link”,
”DVI-I1_Dual—-Link” ,”HDMI” ,
”Mini—Display .Port” ,”S—Video”,

"VGA”]) ,
size: inlnterval (15,55),
universal: 1
}
}
function createPsu(index){
return {
name : "PSU._."+index ,
type: ”PSU” ,
quantity : Math. floor(inInterval (1,1500)),
watt : Math. floor (inInterval (180,2000)),
kProp: Math. floor (index/1000),

universal: 1

}

function inlnterval (min, max) {
return (Math.random () * (max — min)) + min;
}

function fromList(list) {
return list[Math. floor (Math.random () * list.length)];
}

Listing B.5: getComponents.js - used for getting different amounts of data

//var filter “name”: "GTX 0”}; //get 1
//var filter {"universal”: 1.0}; //get all
var filter = {”kProp”: 1.0}; //get 1000
//var filter {"tenKProp”: 1.0}; //get 10000
//var filter {”hundKProp”: 1.0}; //get 100000
//var filter {"millProp”: 1.0}; //get 1000000

I~

var cursor

db.item.find (filter). toArray ();

Listing B.6: delete.js - used for removing different amounts of data

//var filter = {”name”: "GTX 07}; //delete 1
//var filter = {"universal”: 1.0}; //delete all
var filter = {"kProp”: 1.0}; //delete 1000

//var filter
//var filter
//var filter

{”tenKProp”: 1.0}; //delete 10000
{”hundKProp”: 1.0}; //delete 100000
{"millProp”: 1.0}; //delete 1000000

db.item .remove(filter);

36(57)

Listing B.7: reset.js - used for resetting the value of the universal property between tests

var filter = {};
var operation = {$set: {universal: 1.0}};
db.item .updateMany (filter ,operation);

Listing B.8: update.js - used for updating different amounts of data

//var filter = {"name”: "GTX 0”}; //update 1
//var filter = {"universal”: 1.0}; //update all
var filter = {”kProp”: 1.0}; //update 1000

//var filter = {”tenKProp”: 1.0}; //update 10000
//var filter {”hundKProp”: 1.0}; //update 100000
//var filter = {"millProp”: 1.0}; //update 1000000

var operation = {$set: {universal: 2.0}};
db.item .updateMany (filter ,operation);

Listing B.9: insert.js - used for inserting different amounts of data

const TOTAL_RECORDS = 100000:;

const NUM_GPU = TOTAL_RECORDS/5;
const NUMRAM = TOTAL_RECORDS/5;
const NUM_CPU = TOTAL_RECORDS/5;
const NUM_MONITOR = TOTAL_RECORDS/5;
const NUM_PSU = TOTAL_RECORDS/5;

var tmp = [];

for (var i=0; i<NUMGPU; i++) {
tmp . push (createGpu(i));

}

for (var i=0; i<NUMRAM; i++) {
tmp . push (createRam(i));
¥

for (var i=0; i<NUMCPU; i++) {
tmp . push (createCpu(i));
}

for (var i=0; i<NUMMONITOR; i++) {
tmp . push(createMonitor (i));
¥

for (var i=0; i<NUMPSU; i++) {
tmp.push(createPsu(i));

¥

db.item.insert (tmp);

function createGpu(index){

return {

name :
type:

quantity :
frequency:

memory :
speed :
watt:

millProp:
universal :

name :
type:

quantity :

memory :

voltage:

hundKProp:
universal:

name :
type:

quantity :

speed :
cores:

tenKProp:
universal:

37(57)

"GTX.”+index ,

”Graphics.Card”,

Math. floor(inInterval (1,10000)),

Math. floor (inInterval (902,1784)),
fromList([1,2,3,4,6,8,11,12,16,24.,32]),
inInterval (250,1800),

Math. floor(inInterval (15,580)),

Math. floor (index/1000000),

1

”Memory."+index ,
"RAM” ,

Math. floor (inInterval (1,10000)),
fromList([1,2,3,4,6,8,12,16,24,32,
48.,64,96,128]),

inlnterval (0.31,2.5),
Math. floor (index/100000),
1

99 : 99
1

+index ,

”CPU” ,

Math. floor (inInterval (1,200)),
inInterval (1.1,4.7),

Math. floor(inInterval (1,22)),
Math. floor (index/10000),

1

function createMonitor (index){

}
}
function createRam(index){
return {
}
}
function createCpu(index){
return {
}
}
var res
HA
oA

f

X
y:

>

romList ([{

1024,
768

1280,
1024

1360,
768

38(57)

1A

A

oA

1A

oA

1A

1A

oA

1A

1A

1A

oA

oA

1A

oA

1366,
480

1366,
768

1400,
900

1440,
900

1600,
900

1600,
1200

1680,
1050

1920,
1080

1920,
1200

2048,
1536

2560,
1024

2560,
1080

2560,
1440

2560,
1600

3440,
1440

3840,
1600

39(57)

FoA
x: 3840,
y: 2160
FA
x: 4096,
y: 2160
FA
x: 5120,
y: 2880
FoA
x: 5760,
y: 2160
P
return {
name : ”Monitor._.”+index ,
type: ”Monitor”,
quantity : Math. floor (inInterval (1,500)),
width : res .x,
height: res.y,
refreshRate: fromList([30,60,85,100,120,144,180,240]),
responseTime: Math. floor(inlInterval (1,25)),
interface: fromList (["BNC” ,” Component” ,
»DisplayPort” ,”DVI” ,”DVI-A” ,
”DVI-D_Dual—Link”,
"DVI-D.Single—-Link”,
”DVI-I _.Dual—Link” ,”HDMI” ,
”Mini—Display ._.Port”,
”S—Video” ,”VGA”]) ,
size: inInterval (15,55),
universal: 1
}
}
function createPsu(index){
return {
name : "PSU._."+index ,
type: ”PSU” ,
quantity : Math. floor(inInterval (1,1500)),
watt : Math. floor (inInterval (180,2000)),
kProp: Math. floor (index/1000),

universal: 1

}

function inlnterval (min, max) {
return (Math.random () * (max — min)) + min;
}

function fromList(list) {

40(57)

return list[Math. floor (Math.random () * list.length)];

}
Listing B.10: singlelnsert.js - used for inserting different amounts of data one at a time

const TOTAL_RECORDS = 100000;

const NUM.GPU = TOTAL_RECORDS/5;

const NUMRAM = TOTAL_RECORDS/5;

const NUM.CPU = TOTAL_RECORDS/5;

const NUM_MONITOR = TOTAL_RECORDS/S5;

const NUM_PSU = TOTAL_RECORDS/5;

for (var i=0; i<NUMGPU; i++) {
db.item.insert (createGpu(i));
}

for (var i=0; i<NUMRAM; i++) {
db.item.insert (createRam(i));
¥

for (var i=0; i<NUMCPU; i++) {
db.item.insert (createCpu(i));
}

for (var i=0; i<NUMMONITOR; i++) {
db.item.insert(createMonitor(i));
¥

for (var i=0; i<NUMPSU; i++) {
db.item.insert(createPsu(1i));

¥
function createGpu(index){
return {
name : "GTX.”+index ,
type: ”Graphics._Card”,
quantity : Math. floor (inInterval (1,10000)),
frequency: Math. floor(inInterval (902,1784)),
memory : fromList([1,2,3,4,6,8,11,12,16,24,32]),
speed : inInterval (250,1800),
watt : Math. floor (inInterval (15,580)),
millProp: Math. floor (index/1000000),
universal: 1
}
¥

function createRam (index){
return {
name : ”Memory.”+index ,

41(57)

type: "RAM”

quantity: Math. floor(inInterval (1,10000)),

memory : fromList([1,2,3,4,6,8,12,16,24,32,48,64,96,1
voltage: inInterval (0.31,2.5),

hundKProp: Math. floor (index/100000),
universal: 1

}
}
function createCpu(index){
return {
name : ”1”+index ,
type: ”CPU” ,
quantity : Math.floor(inInterval (1,200)),
speed : inlnterval (1.1,4.7),
cores: Math. floor (inlInterval (1,22)),

tenKProp: Math.floor (index/10000),
universal: 1

}
¥
function createMonitor (index){
var res = fromList ([{
x: 1024,
y: 768
FA
x: 1280,
y: 1024
FA
x: 1360,
y: 768
FA
x: 1366,
y: 480
FA
x: 1366,
y: 768
A
x: 1400,
y: 900
FA
x: 1440,
y: 900
FA
x: 1600,
y: 900
A

x: 1600,

42(57)

y: 1200
FA

x: 1680,

y: 1050
FA

x: 1920,

y: 1080
FA

x: 1920,

y: 1200
FA

x: 2048,

y: 1536
A

x: 2560,

y: 1024
FA

x: 2560,

y: 1080
FA

x: 2560,

y: 1440
A

x: 2560,

y: 1600
FA

X: 3440,

y: 1440
FA

x: 3840,

y: 1600
A

x: 3840,

y: 2160
FA

x: 4096,

y: 2160
A

x: 5120,

y: 2880
FA

x: 5760,

y: 2160
s
return {

name :

type:

quantity :

”Monitor.”+index ,
”Monitor”,
Math. floor(inlInterval (1,500)),

43(57)

width : res .x,

height: res.y,

refreshRate: fromList([30,60,85,100,120,144,180,240]),

responseTime: Math. floor(inlInterval (1,25)),

interface: fromList ([" BNC” ,”Component” ,” DisplayPort”
"DVI” ,”DVI-A” ,”DVI-D_.Dual—-Link”,
”DVI-D.Single —Link” ,”DVI-1_.Dual—Link”,
"HDMI” ,”Mini—Display .Port” ,”S—Video” ,”VGA’

size: inlnterval (15,55),
universal: 1
}
}
function createPsu(index){
return {
name : "PSU_."+index ,
type: ”PSU” ,
quantity: Math.floor(inInterval (1,1500)),
watt : Math. floor(inInterval (180,2000)),
kProp: Math. floor (index/1000),

universal: 1

}

function inInterval (min, max) {
return (Math.random () * (max — min)) + min;
}

function fromList(list) {
return list[Math. floor (Math.random () * list.length)];
}

44(57)

45(57)

C MySQL Document Store Code

Listing C.1: mysql-ds.sh - used for sending test scripts to the database

#!/usr/bin/env bash
mysqlsh —uri root:zachariaserik@localhost/inventory —file $@

Listing C.2: runTest.sh - used for automating tests

#!/bin/bash
#./mysql—ds.sh empty.js > /dev/null 2> /dev/null || exit
#./mysql—ds.sh fillWebstore.js > /dev/null 2> /dev/null || exit

echo "start._loop”

for i in {1..10}

do

time ./mysql—ds.sh getComponents.js
./ mysql—ds.sh empty.js && ./mysql—ds.sh fillWebstore.js && \
time ./mysql—ds.sh delete.js

./ mysql—ds.sh reset.js && time ./mysql—ds.sh update.js

./mysql—ds.sh empty.js && ./mysql—ds.sh fillWebstore.js && \
time ./mysql—ds.sh insert.js

./mysql—ds.sh empty.js && ./mysql—ds.sh fillWebstore.js && \
time ./mysql—ds.sh singlelnsert.js

done

Listing C.3: empty.js - used for emptying the database
db.item .remove (). execute ();

Listing C.4: fillWebstore.js - used for filling the database in preparation for other scripts.
const TOTALRECORDS = 1000000;

const NUM_GPU = TOTAL_RECORDS/5;
const NUMRAM = TOTAL_RECORDS/5;
const NUM_CPU = TOTAL_RECORDS/5;
const NUM_MONITOR = TOTAL_RECORDS/5;
const NUM_PSU = TOTAL_RECORDS/5;
const NUM_NSERT = 50000;

var tmp = [];

for (var i=0; i<NUMGPU; i++) {
tmp . push(createGpu(i));
if (i%NUM_INSERT==0){
db.item.add(tmp).execute ();

46(57)

tmp = [];
}
}
db.item.add (tmp). execute ();
tmp = [];

for (var i=0; i<NUMRAM; i++) {
tmp . push (createRam(i));
if (1 %NUM_INSERT==0){
db.item.add(tmp).execute ();

tmp = [];
¥
¥
db.item.add (tmp). execute ();
tmp = [];

for (var i=0; i<NUMCPU; i++) {
tmp . push (createCpu(i));
if (i%NUM_INSERT==0){
db.item.add(tmp).execute ();

tmp = [];
}
}
db.item.add (tmp). execute ();
tmp = [];

for (var i=0; i<NUMMONITOR; i++) {
tmp . push(createMonitor (i));
if (1 %NUM_INSERT==0){
db.item.add(tmp).execute ();

tmp = [];
¥
¥
db.item.add (tmp). execute ();
tmp = [];

for (var i=0; i<NUMPSU; i++) {
tmp . push(createPsu(i));
if (i%NUM_INSERT==0){
db.item.add(tmp).execute ();
tmp = [];
}
}
db.item.add (tmp). execute ();

function createGpu(index){
return {
name : "GTX_.”+index ,

}

function createRam(index){

return {

}

function createCpu(index){

return {

}

type:

quantity :
frequency:

memory :
speed :
watt:

millProp:
universal :

name :
type:

quantity :

memory :

voltage:

hundKProp:
universal :

name :
type:

quantity :

speed :
cores:

tenKProp:
universal:

47(57)

”Graphics.Card”,

Math. floor (inInterval (1,10000)),

Math. floor(inInterval (902,1784)),
fromList([1,2,3,4,6,8,11,12,16,24,32]),
inInterval (250,1800),

Math. floor (inInterval (15,580)),

Math. floor (index/1000000),

1

”Memory.”+index ,

"RAM” ,

Math. floor (inInterval (1,10000)),

fromList([1,2,3,4,6,8,12,16,24,
32,48,64,96,128]),

inInterval (0.31,2.5),

Math. floor (index/100000),

1

99 : 99
1

+index ,

”CPU” ,

Math. floor (inInterval (1,200)),
inInterval (1.1,4.7),

Math. floor (inInterval (1,22)),
Math. floor (index/10000),

1

function createMonitor (index){
romList ([{

var res

oA

oA

oA

f

X
y:

>

1024,
768

1280,
1024

1360,
768

1366,

48(57)

oA

+oA

1A

oA

1A

1A

1A

1A

oA

oA

1A

oA

1A

oA

oA

480

1366,
768

1400,
900

1440,
900

1600,
900

1600,
1200

1680,
1050

1920,
1080

1920,
1200

2048,
1536

2560,
1024

2560,
1080

2560,
1440

2560,
1600

3440,
1440

3840,
1600

3840,

49(57)

y: 2160
FA
x: 4096,
y: 2160
FoA
x: 5120,
y: 2880
FoA
x: 5760,
y: 2160
[
return {
name : ”Monitor._.”+index ,
type: ”Monitor”,
quantity : Math. floor (inInterval (1,500)),
width : res .x,
height: res.y,
refreshRate: fromList([30,60,85,100,120,144,180,240]),
responseTime: Math. floor(inlInterval (1,25)),
interface: fromList ([’BNC” ,” Component” ,
»DisplayPort” ,”DVI” ,”DVI-A”
”DVI-D._.Dual—Link” ,”DVI-D_.Single —Link”,
”DVI-I_Dual—Link” ,”HDMI” ,
”Mini—Display _.Port”,”S—Video” ,”VGA”]) ,
size: inlnterval (15,55),
universal: 1
}
}
function createPsu(index){
return {
name : "PSU_”+index ,
type: ”PSU”
quantity : Math. floor(inInterval (1,1500)),
watt : Math. floor (inInterval (180,2000)),
kProp: Math. floor (index/1000),

universal: 1

}

function inlnterval (min, max) {
return (Math.random () % (max — min)) + min;

}

function fromList(list) {

return list[Math. floor (Math.random () * list.length)];

}

Listing C.5: getComponents.js - used for getting different amounts of data

50(57)

//var filter = "universal = 1”7 //get all

var filter = “kProp.=.0"; // get 1000
//var filter "tenKProp = 07; //get 10000
//var filter "hundKProp = 07; //get 100000
//var filter "millProp = 07; //get 1000000

var items = db.item.find(filter).execute (). fetchAll ();

Listing C.6: delete.js - used for removing different amounts of data

var filter = "name.=. GIX_.0’"; //Remove I

//var filter = "universal = 17; //Remove all
//var filter = "kProp = 07; // Remove 1000
//var filter = "tenKProp = 07; // Remove 10000
//var filter = "hundKProp = 0”; //Remove 100000
//var filter = "millprop = 07; // Remove 1000000

db.item .remove(filter). execute ();

Listing C.7: reset.js - used for resetting the value of the universal property between tests

db.item.modify (). set(”universal”, 1.0).execute ();

Listing C.8: update.js - used for updating different amounts of data
//var filter = "name = 'GTX 0’”; // Update 1

//var filter = "universal = 17; // Update all

var filter = “kProp.=.0"; // Update 1000

//var filter = "tenKProp = 07; // Update 10000

//var filter = "hundKProp = 0”; // Update 100000
//var filter = "millProp”; // Update 1000000
db.item.modify (filter). set(”universal”, 2.0).execute ();

Listing C.9: insert.js - used for inserting different amounts of data

const TOTAL_RECORDS = 1000000;

const NUM_GPU = TOTAL_RECORDS/5;
const NUMRAM = TOTAL_RECORDS/5;
const NUM_CPU = TOTAL_RECORDS/5;
const NUM_MONITOR = TOTAL_RECORDS/5;
const NUM_PSU = TOTAL_RECORDS/5;

var tmp = [];

for (var i=0; i<NUMGPU; i++) {
tmp . push (createGpu(i));

¥

for (var i=0; i<NUMRAM; i++) {
tmp . push (createRam(i));

51(57)

}

for (var i=0; i<NUMCPU; i++) {
tmp . push (createCpu(i));
}

for (var i=0; i<NUMMONITOR; i++) {
tmp . push(createMonitor (i));
}

for (var i=0; i<NUMPSU; i++) {
tmp . push(createPsu(i));
}

db.item.add (tmp). execute ();

function createGpu(index){
return {
name : "GTX.”+index ,
type: ”Graphics._Card”,
quantity: Math.floor(inInterval (1,10000)),
frequency: Math. floor(inInterval (902,1784)),

memory : fromList([1,2,3,4,6,8,11,12,16,24,32]),
speed : inlnterval (250,1800),
watt : Math. floor (inInterval (15,580)),

millProp: Math. floor (index/1000000),
universal: 1

}
}
function createRam(index){
return {
name : ”Memory . +index ,
type: "RAM” ,
quantity : Math. floor(inInterval (1,10000)),
memory : fromList([1,2,3,4,6,8,12,16,24,
32,48,64,96,128]),
voltage : inInterval (0.31,2.5),

hundKProp: Math. floor (index/100000),
universal: 1

}
}
function createCpu(index){
return {
name : ”1”+index ,
type: ”CPU” ,

quantity : Math.floor(inlnterval (1,200)),
speed : inlnterval (1.1,4.7),

52(57)

cores: Math. floor(inInterval (1,22)),
tenKProp: Math. floor (index/10000),
universal: 1

}
}
function createMonitor (index){
var res = fromList ([{
x: 1024,
y: 768
FA
x: 1280,
y: 1024
oA
x: 1360,
y: 768
HoA
x: 1366,
y: 480
FA
x: 1366,
y: 768
oA
x: 1400,
y: 900
FA
x: 1440,
y: 900
HA
x: 1600,
y: 900
oA
x: 1600,
y: 1200
FA
x: 1680,
y: 1050
oA
x: 1920,
y: 1080
oA
x: 1920,
y: 1200
FA
x: 2048,
y: 1536
oA

x: 2560,

A

oA

oA

oA

oA

oA

oA

HoA

D

return {

}

y: 1024
x: 2560,
y: 1080
x: 2560,
y: 1440
x: 2560,
y: 1600
X: 3440,
y: 1440
x: 3840,
y: 1600
x: 3840,
y: 2160
x: 4096,
y: 2160
x: 5120,
y: 2880
x: 5760,
y: 2160
name :
type:
quantity :
width :
height:

refreshRate:

responseTime :

interface:

size :
universal:

function createPsu (index){

53(57)

”Monitor.”+index ,

”Monitor”,

Math. floor (inlInterval (1,500)),

res .x,

res.y,
fromList([30,60,85,100,120,144,180,240]),
Math. floor(inlInterval (1,25)),
fromList (["BNC” ,”Component” ,
”DisplayPort” ,”DVI” ,”DVI-A”,
”DVI-D.Dual—-Link” ,”DVI-D.Single —Link”,
”DVI-I _Dual—Link” ,”HDMI” ,
”Mini—Display._.Port”,”S—Video” ,”VGA”]) ,
inlnterval (15,55),

1

54(57)

return {
name : "PSU_"+index ,
type: ”PSU”
quantity : Math. floor(inInterval (1,1500)),
watt : Math. floor (inInterval (180,2000)),
kProp: Math. floor (index/1000),

universal: 1

}

function inInterval (min, max) {
return (Math.random () * (max — min)) + min;
¥

function fromList(list) {

return list[Math. floor (Math.random () * list.length)];
¥

Listing C.10: singlelnsert.js - used for inserting different amounts of data one at a time
const TOTAL_RECORDS = 1000000;

const NUM.GPU = TOTAL_RECORDS/5;
const NUMRAM = TOTAL_RECORDS/5;
const NUM_CPU = TOTAL_RECORDS/5;
const NUM_MONITOR = TOTAL_RECORDS/5;
const NUM_PSU = TOTAL_RECORDS/5;

for (var i=0; i<NUMGPU; i++) {
db.item.add(createGpu(i)).execute ();
}

for (var i=0; i<NUMRAM; i++) {
db.item.add(createRam(i)). execute ();

for (var i=0; i<NUMCPU; i++) {
db.item.add(createCpu(i)). execute ();

for (var i=0; i<NUMMONITOR; i++) {
db.item.add(createMonitor(i)). execute ();
}

for (var i=0; i<NUMPSU; i++) {
db.item.add(createPsu(i)).execute ();
}

function createGpu(index){
return {
name : "GTX.”+index ,

}

function createRam(index){

return {

}

function createCpu(index){

return {

}

type:

quantity :
frequency:

memory :
speed :
watt:

millProp:
universal :

name :
type:

quantity :

memory :

voltage:

hundKProp:
universal :

name :
type:

quantity :

speed :
cores:

tenKProp:
universal:

55(57)

”Graphics.Card”,

Math. floor (inInterval (1,10000)),

Math. floor(inInterval (902,1784)),
fromList([1,2,3,4,6,8,11,12,16,24,32]),
inInterval (250,1800),

Math. floor (inInterval (15,580)),

Math. floor (index/1000000),

1

”Memory.”+index ,
"RAM” ,

Math. floor (inInterval (1,10000)),
fromList([1,2,3,4,6,8,12,16,24,32,
48.,64,96,128]),

inInterval (0.31,2.5),
Math. floor (index/100000),
1

99 : 99
1

+index ,

”CPU” ,

Math. floor (inInterval (1,200)),
inInterval (1.1,4.7),

Math. floor (inInterval (1,22)),
Math. floor (index/10000),

1

function createMonitor (index){
romList ([{

var res

oA

oA

oA

f

X
y:

>

1024,
768

1280,
1024

1360,
768

1366,

56(57)

oA

+oA

1A

oA

1A

1A

1A

1A

oA

oA

1A

oA

1A

oA

oA

480

1366,
768

1400,
900

1440,
900

1600,
900

1600,
1200

1680,
1050

1920,
1080

1920,
1200

2048,
1536

2560,
1024

2560,
1080

2560,
1440

2560,
1600

3440,
1440

3840,
1600

3840,

57(57)

y: 2160
FA
x: 4096,
y: 2160
FoA
x: 5120,
y: 2880
FoA
x: 5760,
y: 2160
[
return {
name : ”Monitor._.”+index ,
type: ”Monitor”,
quantity : Math. floor (inInterval (1,500)),
width : res .x,
height: res.y,
refreshRate: fromList([30,60,85,100,120,144,180,240]),
responseTime: Math. floor(inlInterval (1,25)),
interface: fromList ([’BNC” ,” Component” ,
»DisplayPort” ,”DVI” ,”DVI-A”
”DVI-D._.Dual—Link” ,”DVI-D_.Single —Link”,
”DVI-I_Dual—Link” ,”HDMI” ,
”Mini—Display _.Port”,”S—Video” ,”VGA”]) ,
size: inlnterval (15,55),
universal: 1
}
}
function createPsu(index){
return {
name : "PSU_”+index ,
type: ”PSU”
quantity : Math. floor(inInterval (1,1500)),
watt : Math. floor (inInterval (180,2000)),
kProp: Math. floor (index/1000),

universal: 1

}

function inlnterval (min, max) {
return (Math.random () % (max — min)) + min;

}

function fromList(list) {

return list[Math. floor (Math.random () * list.length)];

}

