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Abstract

Nonlinear stochastic parametric models are widely used in various fields whenever
linear models are not adequate. However, the problem of parameter identification
is very challenging for such models; the likelihood function – which is the central
object in statistical inference – is, in general, analytically intractable. This renders
favored point estimation methods, such as the maximum likelihood method and
the prediction error methods, analytically intractable. In recent years, several
methods have been developed to approximate the maximum likelihood estimator
and the optimal mean-square error predictor using Monte Carlo approximation
methods. However, the available algorithms can be computationally expensive; their
application is so far limited to cases where fundamental difficulties, such as sample
degeneracy and impoverishment problems, can be avoided.

The contributions of this thesis can be divided into two main parts. In the
first part, several approximate solutions to the maximum likelihood problem are
explored. Both analytical and numerical approaches, based on the expectation-
maximization algorithm and the quasi-Newton algorithm, are considered. The
performance of the developed algorithms is demonstrated on several numerical
examples highlighting their advantages and disadvantages. These examples show
that an analytic approximation of the likelihood function using Laplace’s method
may be acceptable; the accuracy depends not only on the true system, but also on the
used input signal. While analytic approximations are difficult to analyze, asymptotic
guarantees can be established for methods based on Monte Carlo approximations.
Yet, Monte Carlo methods come with their own computational difficulties. Sampling
in high-dimensional spaces requires an efficient proposal distribution. The main
challenge is to reduce the number of Monte Carlo samples to a reasonable value
while ensuring that the variance of the approximation is small enough.

In the second part, relatively simple prediction error method estimators are
proposed. They are based on non-stationary one-step ahead predictors which are
linear in the observed outputs, but may be nonlinear in the (assumed known)
input. These predictors rely only on the first two moments of the model and the
computation of the likelihood function is not required. Consequently, the resulting
estimators are defined by analytically tractable objective functions in several relevant
cases. The optimal linear one-step ahead predictor is derived and a corresponding
prediction error estimator is defined. It is shown that, under mild assumptions, the
classical asymptotic limit theorems are applicable and therefore the estimators are
consistent and asymptotically normal. In cases where the first two moments are
analytically intractable due to the complexity of the model, it is possible to resort
to vanilla Monte Carlo approximations. Several numerical examples demonstrate
a good performance of the suggested estimators in several cases that are usually
considered challenging.





Sammanfattning

Icke-linjära parametriska modeller används vid många tillämpningar för att
modellera stokastiska system där linjära modeller inte anses vara adekvata. Dessa
är dock inte helt triviala att tillämpa eftersom paramateridentifiering i dessa mod-
ellstrukturer är väldigt komplicerat; likelihood-funktionen – ett centralt objekt i
statistisk inferens – är, generellt sett, analytiskt sv̊arbehandlad. Detta medför att
välanvända metoder, s̊asom maximum likelihood- och prediktionsfelmetoder, blir
sv̊artillämpade. Diverse metoder har utvecklats under de senaste åren för att approx-
imera maximum likelihood-skattaren och den optimala prediktorn (med avseende
p̊a medelkvadratsfelet) med hjälp av Monte Carlo metoder. Dock s̊a kan dessa
algorimer vara beräkningsmässigt krävande, och deras tillämpningsomr̊aden är idag
begränsade till fall där fundamentala sv̊arigheter, s̊asom partikeldegeneration, kan
undvikas.

I den här avhandlingen behandlar vi det ovan beskrivna problemet via tv̊a
tillvägag̊angssätt. I den första delen utforskas approximativa metoder för att lösa
maximum likelihood-problemet. B̊ade analytiska och numeriska metoder, baserade
p̊a expectation-maximization algoritmen och quasi-Newton metoden, behandlas. Vi
demonstrerar metodernas effektivitet, samt tillkortakommanden, i numeriska simu-
lationer. Exemplerna visar att analytiska approximationer av likelihood-funktionen
(via Laplaces metod) kan vara acceptabla; nogrannheten beror inte enbart p̊a det
sanna systemet, utan även p̊a insignalen som använts. Till skillnad fr̊an metoder
baserade p̊a Monte Carlo approximationer, för vilka asymtotiska garantier kan ges,
är de analytiska approximationerna sv̊ara att analysera. Monte Carlo metoder dras
dock med vissa beräkningsmässiga sv̊arheter; t.ex. är det sv̊art att dra sampel i
högdimensionella rum eftersom det kräver en bra förslagsdistribution. Den huvud-
sakliga utmaningen som vi ställs inför är att reducera antalet Monte Carlo-sampel
som krävs (till en resonlig niv̊a), medan variansen hos skattningen h̊alls l̊ag.

I den andra delen av avhandlingen försl̊as relativt simpla skattare baserade
p̊a prediktionsfelsmetoden. Dessa använder enstegsprediktorn, som är linjär i den
observerade utsignalen, men kan vara icke-linjär i insignalen (som antas vara känd).
Dessa prediktorer i) använder enbart de första tv̊a momenten hos modellen, och
ii) kräver inte att likelihood-funktionen beräknas. Detta medför att de föreslagna
skattarna ger upphov till analytiskt hanterbara kostnadsfunktioner för ett flertal
relevanta modellstrukturer. Den optimala linjära enstegsprediktorn härleds och den
motsvarande prediktionsfelsskattaren defineras. Vi visar att klassiska resultat inom
asymtotisk statistik är tillämpbara, under milda antaganden, vilket medför att vi
kan visa att skattarna är konsistenta och asymptotiskt normalfördelade. I de fall där
modellens första tv̊a moment är analytiskt komplicerade kan man falla tillbaka p̊a
vanliga Monte Carlo approximationer. Vi demonstrerar, via numeriska simulationer,
att de föreslagna skattarna presterar bra för ett flertal exempel som oftast anses
sv̊arbehandlade.
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Notations

A bold font is used to denote random variables and a regular font is used to denote
realizations thereof. The symbol is used to terminate proofs.

Number Sets

N, N0 the set of natural numbers, N ∶= {1,2, . . .}, N0 ∶= N ∪ {0}.
Z the set of integers, Z ∶= {0,±1,±2, . . .}.
R the set of real numbers.
R+ the set of nonnegative real numbers.
Rd the Euclidean real space of dimension d ∈ N.

Parameters and Constants

θ the parameter: a finite dimensional vector in Rd to be estimated.
θ○ the (assumed) true parameter.
Θ a compact subset of Rd.
{gk}∞k=1 impulse response sequence of a plant model.
{hk}∞k=0 impulse response sequence of a noise model.
dw, du, dy the dimension of the process disturbance, the input signal and the

output signal respectively; all belong to N.

Signals and Stochastic Processes

ζ = {ζt}t∈Z a generic vector-valued discrete-time stochastic process.
x = {xt}t∈Z a latent/state process.
u = {ut}t∈Z the input signal.
y = {yt}t∈Z the output signal.
w = {wt}t∈Z the process disturbance.
v = {vt}t∈Z the measurement noise (when it is white).
e = {et}t∈Z the prediction error process.
ε = {εt}t∈Z the (linear) innovations process.
Φζ(ω) the power spectrum of a process ζ, in which ω ∈ R.

xiii



xiv Notations

Vectors and Matrices

A(θ) state matrix of linear state space models parameterized by θ.
B(θ) input matrix of linear state space models parameterized by θ.
C(θ) output matrix of linear state space models parameterized by θ.
Z a column vector, Z ∶= [ζ⊺1, . . . ,ζ⊺N ]⊺.
X a column vector stacking state vectors, X ∶= [x⊺1, . . . ,x⊺N ]⊺.
Ut a column vector stacking input vectors, U ∶= [u⊺1, . . . , u⊺t ]⊺.
Y t a column vector stacking output vectors, Y t ∶= [y⊺1, . . . ,y⊺t ]⊺.
U,Y denote UN ,YN respectively.
W a column vector stacking disturbance vectors, W ∶= [w⊺

1, . . . ,w
⊺
N ]⊺.

V a column vector stacking measurement noise vectors,
V ∶= [v⊺1, . . . ,v⊺N ]⊺.

E a column vector stacking prediction error vectors, E ∶= [e⊺1, . . . ,e⊺N ]⊺.
E a column vector stacking innovation vectors, E ∶= [ε⊺1, . . . ,ε⊺N ]⊺.
ŷt∣t−1 one-step ahead predictor of y.
Ŷ a column vector stacking one step ahead predictors of yt,

Ŷ ∶= [ŷ⊺1∣0, . . . , ŷ
⊺
N ∣N−1]⊺.

θ̂ estimate of θ.

Functions and Operators

(⋅)−1 the inverse (of an operator or a square matrix).
(⋅)⊺ the transpose (of a vector or a matrix).
F ⊺(θ),Σ−1(θ) means [F (θ)]⊺, [Σ(θ)]−1 respectively.
1IS(⋅) the indicator function of a set S. 1IS(x) = 1 if x ∈ S and 0

otherwise.
∥⋅∥2, ∥⋅∥Q the Euclidean norm and a weighted Euclidean norm. For any

vector x ∈ Rn, n ∈ N and any positive definite matrix Q,
∥x∥Q ∶=

√
x⊺Qx.

q the shift operator on sequence spaces, qxt ∶= xt+1 .
q−1 the backward shift operator on sequence spaces, q−1xt ∶= xt−1.
G(q, θ) transfer operator plant model parameterized by θ.
H(q, θ) transfer operator noise model parameterized by θ.
f, g and h static (measurable) functions between Euclidean spaces.
ψ one-step ahead predictor function defining ŷt∣t−1.
` scalar function used in the definition of prediction error

methods, (ε, t, θ) ↦ `(ε, t, θ) ∈ R+.



Notations xv

Probability Spaces

(Ω,F , Pθ) generic underlying measure space. The measure is
parameterized by θ.

δx̃(dx) Dirac measure supported at a point x̃.
E[⋅; θ] mathematical expectation with respect to Pθ.
Eζ[⋅; θ] mathematical expectation with respect to the distribution of a

random vector ζ. The distribution is parameterized by θ.
p(ζ; θ) probability density function of a real vector-valued random

variable ζ parameterized by θ with respect to the Lebesgue
measure.

pζ(ζ; θ) the value p(ζ = ζ; θ).
p(ζ; θ) the likelihood function of θ given a realization of ζ.
p(ζ∣η; θ) conditional probability density function, parameterized by θ, of

a real vector-valued random variable ζ given a realization of
another random variable η; that is p(ζ∣η = η; θ). The reference
measure is always the Lebesgue measure.

ζ∣η a (conditional) random variable ζ with a PDF p(ζ∣η; θ).
E[⋅∣η; θ] conditional expectation given that η = η.
cov(ζ1,ζ2; θ) the covariance matrix of two random vectors ζ1,ζ2; that is

E [(ζ1 −E[ζ1; θ])(ζ2 −E[ζ2; θ])⊺; θ].
var(ζ; θ) the variance of a real-valued random variable ζ.
↝ means “converges in distribution to”.
a.s.Ð→ means “converges almost surely to”.
θ̂ estimator of θ; that is θ̂ ∶= θ̂(DN).

Function Spaces

L2(Ω,F , Pθ) the Hilbert space of real-valued random variables with finite
second moments. Generally, the arguments will be dropped
and only L2 will be used.

Ln2 (Ω,F , Pθ) the Hilbert space of random variables in Rn with entries in
L2, and n ∈ N. Generally, the arguments will be dropped and
only Ln2 will be used.

ϕ a generic (measurable) test function.
⟨⋅, ⋅⟩ the inner product of the Hilbert space L2(Ω,F , Pθ) , for any

x,y ∈ L2, the inner product ⟨x,y⟩ ∶= E[xy; θ].
sp{S} the linear span of the subset S ⊂ L2.
PS[⋅] the orthogonal projection operator of L2 or Ln2 onto a closed

subspace S. The space is understood from the context.



xvi Notations

Data Sets

N the cardinality of the data set, N ∈ N.
Dt a set of input and output pairs, Dt ∶= {(yk, uk) ∶ 1 ≤ k ≤ t}, t ≤ N .

Standard Distributions

N (µ(θ),Σ(θ)) the multivariate Gaussian distribution with a mean vector
µ(θ) and a covariance matrix Σ(θ); both parameterized by
θ.

U ([a, b]) the uniform distribution over the closed interval [a, b].

Other

0 the zero vector (the space is understood from context).
∞ infinity.
∶ means “such that”.
∀ means “for all”.
∼ means “is distributed according to”. It is used in conjunction

with probability measures, distribution functions or PDFs.
∝ means “is proportional to”.
∶= means “is defined as”.
≈ means “is approximately equal to”.
1 a column vector of ones with the appropriate dimension.
I the identity matrix with the appropriate dimension.
t discrete time index for signals and time-dependent

functions.
z complex variable of the z-transform.
ω angular frequency variable.
arg min

θ∈Θ
f(θ) the set of global minimizers of a real-valued function f over

a compact set Θ.
∇θf(θ) gradient of a real-valued function f .
∇2
θf(θ) Hessian of a real-valued function f .
O(N) a function such that ∣O(N)∣≤ CN , with nonnegative C < ∞,

N ∈ N.
log(⋅) the natural logarithm function, log ∶ R+/{0} → R.
Σ1 ⪰ Σ2, Σ1 ≻ Σ2 for any two symmetric matrices Σ1 and Σ2 with equal

dimensions, means that Σ ∶= Σ1 −Σ2 is a positive
semidefinite matrix or a positive definite matrix
respectively.



Abbreviations

i.i.d. Independent and Identically Distributed.
EM Expectation-Maximization.
EnKF Ensemble Kalman Filter.
KF Kalman Filter.
LTI Linear Time-Invariant.
L-PEM Prediction Error Method based on the optimal linear predictor.
L-SPEM Simulated Prediction Error Method based on the optimal linear

predictor.
MAP Maximum A Posteriori.
MC Monte Carlo.
MCEM Monte Carlo Expectation-Maximization.
MCMC Markov Chain Monte Carlo.
ML Maximum Likelihood.
MLE Maximum Likelihood Estimate/Estimator.
MSE Mean-Square Error.
OE-PEM OE-type Prediction Error Method.
OE-SPEM OE-type Simulated Prediction Error Method.
PDF Probability Density Function.
PE Prediction Error.
PEM(s) Prediction Error Method(s).
WL-PEM Prediction Error Method based on the optimal linear predictor

and a “Gaussian log-likelihood form” criterion.
WL-SPEM Simulated Prediction Error Method based on the optimal linear

predictor and a “Gaussian log-likelihood form” criterion.
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Chapter 1

Introduction

In this chapter, we introduce the topic of the thesis, motivate the problem, and
highlight our contributions. The last section gives an outline of the thesis content.

1.1 Learning Dynamical Models

System identification is a scientific method concerned with learning dynamical
models based on observed data (see [65, 92, 111, 138, 142]). It can be described as
the joint activity of dynamical systems modeling and parameter estimation. Like
any other scientific method, system identification is used to acquire new knowledge
or correct and improve existing knowledge based on measurable evidence. In system
identification, the evidence is given in terms of a set of measured signals (variables)
known as the “data set”. The mathematical model used to describe the relation
between the measured signals constitutes the hypothesis of the method.

In engineering sciences, system identification is used as a tool for the design or the
operation of engineering systems. For example, most of the modern control techniques
and signal processing and fault detection methods are based on mathematical models
obtained using system identification techniques.

1.1.1 Systems

The term “system” refers to any spatially and temporally bounded physical or
conceptual object within which several variables interact to produce an observable
phenomena (see [69, 95, 152]). The observable variables are called the outputs (or
the output signals) of the system. We will assume here that the outputs reflect the
behavior of the system in response to some external stimuli. The external variables
that can be altered by an extraneous observer are called the inputs (or the input
signals) of the system. All other external variables that cannot be altered by the
observer are called disturbances (or disturbance signals). In some but not all cases,
the disturbances can be directly observed (measured).

1



2 Introduction

It is assumed here that a system follows some sort of causality. The inputs and
the disturbances are considered to be the causes, and the outputs are the observable
effect. This definition of a system is quite general and can accommodate many
observable phenomena. For example a system can be an economic system, a human
cell, the solar system, an electric motor, or an aircraft. It is possible to define inputs,
disturbances and outputs for each of these systems. For instance, the solar system is
affected by the gravity of neighboring stars which cannot be altered by the observer;
such gravitational effect is therefore a disturbance. On the other hand, the behavior
of an aircraft is influenced by the engine thrust that can be taken as an input, but
is also influenced by gust which is a disturbance. For more complex systems, the
discrimination between inputs, disturbances, and outputs becomes less clear.

In many scientific fields, including engineering sciences, most of the systems are
dynamical systems with some sort of memory. The outputs of a dynamical system
at a certain time do not only depend on the inputs and disturbances at the same
time, but also on their entire history.

1.1.2 Mathematical Models

A fundamental step of any system identification procedure is the specification of
a mathematical model set. A mathematical model is an abstract representation
of a system in terms of a mathematical relation between its inputs, outputs and
disturbances. In practice, a mathematical model is seen as an approximation of the
real-life system’s behavior, and cannot provide an exact description; consequently,
one system can have several models under several assumptions and/or intended use.

Dynamical systems are usually modeled by a set of (partial or ordinary) differen-
tial or difference equations. Models corresponding to differential equations are called
continuous-time models, while those corresponding to difference equations are called
discrete-time models. When the coefficients of these equations are independent of
time, the models are called time-invariant models.

A generic causal discrete-time model can be defined by the equation

yt = ft({uk}tk=−∞,{ζk}tk=−∞; θt)

in which t ∈ Z is some integer representing time, yt ∈ Rdy is a real vector representing
the value of the outputs at time t, the sequence {uk}tk=−∞ represents the input
history up to time t, in which ut ∈ Rdu for all t ∈ Z is a real vector representing the
value of the inputs at time t, and the sequence {ζk}tk=−∞ represents the history of
the disturbances up to time t where ζt for all t ∈ Z is a real vector representing the
values of the disturbances. The symbol ft denotes a generic mathematical function
modeling the cause/effect relationship between the inputs and disturbances on one
hand, and the outputs on the other. The function is parameterized by a parameter
θt. Such a parameter is usually a finite-dimensional real vector, θt ∈ Rd for all t ∈ Z
and some d ∈ N, in which case the model is said to be parametric. The subscript t
indicates that the function and the parameter may, in general, vary with time.
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A model may be derived using physical laws and prior knowledge about the
system. However, in cases where physical modeling is not possible due to the
complexity of the system, standard classes of models can be used. An important
subset of models is the set of parametric linear time-invariant models. These are
models that assume a linear relationship between the inputs, the disturbances
and the outputs such that the parameter is time-independent: θt = θ for all t ∈ Z
(see Section 2.1.3). Linear models are used extensively in practice, even when the
underlying system exhibits a nonlinear behavior. This is mainly due to the fact that
the estimation and feedback control theory is well developed and understood for
linear models (see [6, 7, 53, 67, 68, 114, 137, 153]). However, when linear models are
not accurate enough for the intended use, nonlinear models have to be considered
(see [130] for a related discussion).

1.1.3 Estimation Methods

Once a model set has been determined, the next step of the system identification
procedure is to choose a parameter estimation method. The choice is guided by
the available assumptions on the data and the model class. The main goal of
the estimation method is the evaluation of the unknown parameter vector θ. An
estimate is usually computed by solving either an optimization problem or an
algebraic problem based on a set of recorded input and output signals over a finite
time interval. Furthermore, the estimation method must provide some kind of
accuracy measure for the computed estimate.

Since the values of the disturbances are usually not given, an uncertainty concept
must be introduced. There are two main approaches for the characterization of
uncertainty: the unknown but bounded approach, and the stochastic approach. In
the unknown but bounded approach (see [100]), the uncertainty is characterized by
defining a membership set for all the uncertain quantities. That is, for all t ∈ Z, the
values assumed by ζt belong to some known bounded set. Based on this constraint
and the given data, a set of feasible parameters can be determined and a parameter
can be selected by minimizing the worst-case error according to some performance
measure. This approach is known by the name of “worst-case identification”. The
stochastic approach, on the other hand, assumes a random nature of the uncertainty
which is characterized by some probability distribution.

In this thesis, we will only consider the stochastic approach. The estimation step
is then seen as an application of statistical inference methods. Under the assumption
of a “frequentist” (see [82]) stochastic framework, the analysis of identification
methods investigates what would happen if the experiment was to be repeated. The
result of a “good” method is expected, for example, not to vary significantly. The
analysis also examines what would happen to the result if very long (“infinite”) data
records are available. It is important to understand that, even though only finite
data records are available and even if the experiment is performed only once, the
answers to such questions give confidence in the estimation method and are also
used to compare and choose between different available estimation methods.



4 Introduction

The most commonly used statistical estimation methods in system identification
are the Maximum Likelihood (ML) method and the Prediction Error Methods
(PEM) based on Prediction Error (PE) minimization (see [19, 52, 92, 111, 138]).
Both are instances of a wider class of estimators known as the class of Extremum
Estimators (see, for example, [1, Chapter 4]). Estimators in this class are defined by
maximizing or minimizing a general objective function of the data and the parameter.
The result is a point estimate, i.e., a single value for the parameter, together with
an approximate confidence region.

In the case of the ML method, the objective function to be maximized is the
likelihood function of the parameter. It is defined by the joint Probability Density
Function (PDF) of the possible model outputs over some interval of time. The
likelihood function is equal to the value of the PDF evaluated at the observed
outputs and seen as a function of the parameter. Accordingly, to be able to compute
the Maximum Likelihood Estimate (MLE) for a given model, it should be possible
to compute the required joint PDF. Unfortunately, for general nonlinear models,
this task is not trivial because the likelihood function has no analytic form.

On the other hand, the objective function to be minimized in the case of PEMs
is given by the sum of the errors made by the model when used to predict the
observed outputs. This requires the definition of: (i) an output predictor function
based on the assumed statistical model, and (ii) a distance measure in the output
signal space to evaluate the errors. Different choices for the predictor functions and
the distance measure lead to different instances of the family of PEMs. An optimal
PEM instance, in the sense of minimizing the expected squared prediction errors,
can be defined. However, it relies indirectly on the joint PDF of the possible model
outputs. Consequently, for general nonlinear models, the objective function of the
optimal PEM instance has no analytic form.

1.1.4 Properties of Estimators

The ML method and the PEMs are favored due to their statistical properties. To
be able to discuss and compare statistical properties of estimators, we usually need
the assumption of a true system. Namely, we assume that there exists a “true”
parameter, denoted by θ○, such that the recorded observation is a realization of
the outputs of the model with θ = θ○. The model evaluated at θ○ is said to be the
“true model/system”. Although such an assumption is never true in practice, it is
convenient for the theoretical analysis of the estimation methods.

Usually, the considered properties of estimators are asymptotic in nature. Per-
haps the weakest property that should be required for any estimation method is
“consistency”. Consistency is a central idea in statistics; it means that as the data size
increases, the resulting estimates become closer to the true parameter. Because an
estimator is a random variable (a function of random variables), such a convergence
is taken in a probabilistic sense (see [23, Chapter 4]). For example, convergence
can be defined as follows: for an arbitrary probability P ∈ [0,1] close to 1 and any
topological ball centered at θ○ with an arbitrary small radius, we only need data
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records long enough so that the estimate of θ is inside the given ball with probability
P . We then say that the estimator converges in probability to the true parameter
as the data size grows towards infinity. An estimator with such a property is called
a (weakly) consistent estimator of θ.

Efficiency is another property used to compare consistent estimators. Given two
consistent estimators of θ, it is natural to use the one that gives estimates closer to the
true parameter. This can be evaluated by comparing the (asymptotic) distributions
of a normalized version of the errors (θ̂ − θ○). A consistent estimator is called
asymptotically efficient if its normalized error has an asymptotic covariance no larger
than any other consistent estimator. It is usually the case that limN→∞

√
N(θ̂ − θ○),

in which N is the data size and θ̂ is a consistent estimator of θ, has a multivariate
Gaussian distribution with zero mean and some covariance matrix. It is then said
that the estimator is asymptotically normal. Given several asymptotically normal
estimators of the same parameter, the estimator with the smallest asymptotic
covariance matrix should be preferred.

Under fairly general conditions, it can be shown that both the ML method and the
PEMs lead to consistent and asymptotically normal estimators (see [19, 60, 92] for
example). Furthermore, the MLE is asymptotically efficient under week assumptions.
The PEM with the optimal predictor and a specific choice for the distance measure
on the outputs can be shown to coincide with the MLE.

1.2 Motivation and Overview of Available Methods

In this thesis, we are concerned with the parameter estimation problem of fairly
general stochastic nonlinear dynamical models. We are specifically interested in
cases where an unobserved disturbance or latent process is affecting the outputs
through a non-invertible nonlinear transformation. This is illustrated in the block
diagram in Figure 1.1. We will make the standing assumption that a parametric
model set is given and we will not be concerned with the important step of model
structure selection. Our objective is to apply either the ML method or a consistent
instance of the PEMs.

ut

wt

vt

yt+
Nonlinear

Dynamical

Model

Figure 1.1: A stochastic nonlinear model. The input ut is known and the output
yt is a stochastic process. The disturbance wt is an unobserved stochastic process
affecting the output through the nonlinear dynamics, and vt is an additive measurement
noise. Both wt and vt are usually assumed to be mutually independent and to have
finite-dimensional distributions of known analytic forms.
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To motivate the problem, we consider below two cases. In the first, the stochastic
part of the outputs comes from an additive measurement noise; in this case, the
model is invertible in the sense that, for any given θ, the measurement noise can be
reconstructed from the knowledge of the inputs and the outputs. In the second, a
nonlinear contribution from an unobserved disturbance is also present; in this case
the inputs and outputs cannot be used to reconstruct the unobserved disturbance,
and the model is said to be non-invertible.

For each case, we provide a very brief overview of the available identification
methods. There is a significant literature on this topic, and it is not possible to
cover all the relevant work in a brief overview. However, we refer the interested
reader to the surveys [12, 57, 126, 128, 134], the books [13, 48, 101, 104, 111], and
the exhaustive references lists therein. The Ph.D. theses [36, 87, 127, 132] cover the
most recent methods dealing with identification for nonlinear systems.

1.2.1 Case 1: Invertible Models
Consider the static model

yt = g(ut; θ) + vt, t = 1,2,3, . . . (1.1)
with scalar inputs ut and outputs yt, in which g(⋅; θ) ∶ R→ R is a nonlinear function
parameterized by θ, and for any time t ∈ N the random variable vt has a known
PDF, that is vt ∼ p(vt). Observe that a bold font is used to denote random variables
and a regular font is used to denote realizations thereof. We assume that vt and vs
are independent whenever t ≠ s. Since the input sequence {ut} is known, it is clear
that the outputs are independent over t.

Let us define the vector Yt ∶= [y1 . . . yt]⊺, and let Y ∶= YN . We can easily
construct the joint PDF of the model outputs,

p(Y ; θ) =
N

∏
t=1
p(yt; θ) =

N

∏
t=1
pvt(yt − g(ut; θ)), (1.2)

and therefore we have no trouble formulating the ML optimization problem (see
Definition 2.4.2):

θ̂ML ∶= arg max
θ

N

∏
t=1
pvt(yt − g(ut; θ)).

Because the outputs are independent over time, it is also easy to show, see [92,
Chapter 3], that the optimal (mean-square error) one-step ahead predictor is given
by

ŷt∣t−1(θ) ∶= g(ut; θ),
and we can simply define a suboptimal but consistent (see Definitions 2.3.2 and
2.3.3) PEM estimator (see Definition 2.4.4) as the minimizer of an unweighted
nonlinear least-squares problem:

θ̂PEM ∶= arg min
θ

N

∑
t=1

(yt − ŷt∣t−1(θ))2 = arg min
θ

N

∑
t=1

(yt − g(ut; θ))2.
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Under some weak conditions on the model, the parameterization and the input
signal (see [92, Chapter 8]), it is known that both estimators are consistent and
asymptotically normal (see Definition 2.3.4).

We get a direct extension to the dynamic case if we allow the function g to
depend on previous inputs and outputs. Most of the classical research found in the
literature on nonlinear system identification is dedicated to this case, and generally
focuses on two main issues: (i) the problem of model selection and parameterization,
and (ii) the optimization methods used to fit the parameters to the data. Most of
the work is done using a slightly more general model compared to (1.1) and is given
by the equations

yt = ψ(ϕ(t; θ); θ) + vt, t = 1,2,3, . . . (1.3)

The nonlinear mapping ψ is known as the predictor function, and ϕ(t; θ) is a
parameterized regression vector that is a function of past inputs, past outputs, and
past prediction errors et(θ) ∶= yt − ψ(ϕ(t; θ); θ). Observe that the model in (1.3)
assumes that wt in Figure 1.1 is identically 0 for all t but allows for a recurrent
structure; i.e., the current output may depend on previous inputs and outputs (see
[134]). Several possibilities of parameterizing the predictor function and selecting the
regressor variables can be found in the above cited books and surveys. For instance,
they include Volterra kernel representations, Nonlinear AutoRegressive eXogenous
(NARX) models, Nonlinear AutoRegressive Moving Average eXogenous (NARMAX)
models, nonlinear state-space models in predictor form, and block-oriented models
with only additive measurement noise and no latent disturbances.

The Volterra representation is an example of a nonparametric structure and
is described in detail in the book [124]. It can be seen as a generalization of the
impulse response of linear models to the nonlinear case. Its identification requires the
estimation of the kernels which, according to their orders, might contain thousands
of parameters. The recent research effort in [14] applied regularization techniques to
Volterra kernels estimation in the hope of improving the accuracy of the estimates
for reasonable data sizes.

The NARX and NARMAX models are generalizations of the linear AutoRegres-
sive eXogenous (ARX) and AutoRegressive Moving Average eXogenous (ARMAX)
models defined in [92, Chapter 4]. They are flexible nonlinear model structures that
provide input-output representations of a wide range of nonlinear systems including
models with nonlinear feedback; they are studied in detail in the book [13]. One
of the main advantages of such structures is their parsimony; the dimension of the
parameterization vector of a NARX or a NARMAX model is small compared to
other available nonlinear models.

Block-oriented models (see [48]) are models consisting of two main block types:
static nonlinearity blocks and Linear Time-Invariant (LTI) dynamical blocks. The
LTI blocks can be represented by parametric models such as rational transfer
operators, linear state-space models, basis function expansions or by nonparametric
models in either time or frequency domain. Similarly, the static nonlinearity can be
represented by a nonparametric kernel model, or by some linear-in-parameters basis
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function model. A block-oriented model structure is developed by connecting several
of these two building blocks together in series or in parallel, or both. Feedback
connections are also possible. Although not as general as the Volterra representation
or the NARMAX models, the block-oriented structures may be used to model many
real-life nonlinear systems (see [48]). The simplest block-oriented structures are
series connections involving only one block of each type, see Figure 1.2. A Wiener
model is constructed by a single LTI block followed by a static nonlinearity block
at the output; a Hammerstein model is constructed by a static nonlinearity block
at the input followed by an LTI block. The model complexity can be increased by
connecting these simple models in series or in parallel as shown in [48].

ut

vt

yt+LTI
Static

Nonlinearity

(a) Wiener model: an LTI model followed
by a static nonlinearity at the output

ut

vt

yt+LTI
Static

Nonlinearity

(b) Hammerstein model: a static nonlinear-
ity at the input followed by an LTI model.

Figure 1.2: A Wiener and a Hammerstein model.

One main advantage of block-oriented structures is the possibility of separat-
ing the estimation of the linear and nonlinear parts of the model. Under some
assumptions on the input signal and the noise, it is possible to construct best linear
approximations (BLA) of the model, see [36, 93, 129, 130], which can be shown
to be related to the LTI blocks, see [128, 132]. The main tool there is Bussgang’s
theorem given in [18]; it states that the cross-correlation functions of a Gaussian
signal before and after passing through a static nonlinear function are equal up to a
constant. However, the constant may well be 0 (see Example 4.2.3 on page 102).

The choice among these different representations is usually guided by prior knowl-
edge about the underlying system, the intended use of the model, and the available
computational resources, among others. The selection of the model structure is fun-
damental and is recognized to be the most difficult step in the system identification
procedure. Several specialized methods of structure selection for nonlinear models
have been developed in both time and frequency domain, see [13] and [128].

The parameter estimation step for the model in (1.3) remains relatively simple.
The ML problem can be easily formulated assuming a known distribution for vt
and known initial conditions. Observe that the regression vectors of the NARMAX
mode include delayed measurement noise; the NARMAX model is defined by the
relations

yt = ψ(yt−1, . . . ,yt−ny , ut−1, . . . , ut−nu ,vt−1, . . . ,vt−nv ; θ) + vt, t ∈ Z,

for some ny, nu, nv ∈ N. The values vt−1, . . . ,vt−nv can be evaluated using the model,
the initial conditions and the previous inputs and outputs (it is an invertible model).
This allows us to compute the likelihood function in closed-form. Similarly, it is
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still possible to formulate a PEM problem in closed-form. A PEM estimator can be
defined, for example, as the global minimizer

θ̂ ∶= arg min
θ∈Θ

N

∑
t=1

∥yt − ψ(ϕ(t; θ); θ)∥2.

Depending on the parameterization of the predictor function and the regression
vector, the solution is usually not available in closed-form. The resulting optimization
problem is in general non-convex. Nonlinear optimization algorithms like the damped
Gauss-Newton algorithm or the Levenberg-Marquardt algorithm (see [42, 104, 108])
are therefore required. These algorithms are numerical iterative methods that
can only find a local minimum. They require a good initial value to guarantee
that the solution is in the vicinity of a global minimizer. In the case of block-
oriented models, linear approximations can be used to initialize the optimization
algorithms. There have been some research efforts in this direction, see for example
[97, 110, 132, 133, 135, 136]. However, it should be noted that the problem of finding
a linear approximation, depending on the chosen model structure for the LTI blocks,
might still be a difficult non-convex problem.

To avoid possible local minima for complicated parameterizations, it is also
possible to use random global search strategies such as simulated annealing and
genetic algorithms (see [104, Chapter 5] or [117, Chapter 5]). However, due to
their random nature, the exploration of the entire optimization domain could
be computationally expensive and time-consuming. On the other hand, several
approaches constrain the possible parameterization of the model in such a way
that the resulting optimization problem has a closed-form solution (for example
considering only linear-in-parameters models (see [134, Section 8] or [13, Chapter
3]).

The model in (1.3) ignores any possible stochastic process (different from vt) that
passes through the nonlinear dynamics. This is an idealization of the real situation
where there might exist a disturbance entering the system before some nonlinear
subsystem. It has been shown in [58] that if the process disturbance is ignored, the
resulting estimators will not be consistent. Therefore, it is important to develop
identification methods that take into account the presence of such disturbances,
which is the aim of this thesis.

1.2.2 Case 2: Non-invertible Models
Assume that the output does not only depend on the input and the variables vt,
but also on some (latent) unobserved process wt through a non-invertible (in wt)
nonlinear function. In this case, the output becomes

yt = g(wt, ut; θ) + vt, t = 1,2,3, . . . (1.4)

in which g(⋅, ⋅; θ) ∶ R × R → R is a non-invertible (w.r.t. wt) nonlinear function
parameterized by θ.
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Define the vector Wt ∶= [w1 . . . wt]⊺, let W ∶= WN , and assume that
W ∼ p(W ; θ) which has a known functional form. Let us first consider the ML
problem. Note that the outputs are independent only if the latent process w is
independent over. We also observe that because W is not observed, the PDF of Y
has to be calculated by marginalizing the joint distribution p(Y ,W ; θ) with respect
to W ; that is

p(Y ; θ) = ∫
RdwN

p(Y ,W ; θ)dW. (1.5)

Unfortunately, even though the integrand in (1.5) has a known form, the integral
is a multidimensional integral over RdwN which, in general, has no closed-form
expression. The symbol dw denotes the dimension of the latent process w, which is
assumed to be a scalar process in the current example (i.e., dw = 1). For commonly
encountered models and applications, the value of dwN is O(103) or O(104) and
the evaluation of the integral in (1.5) is very challenging due to the nature of the
integrand. To be able to find an approximate solution to the ML problem, one has
to come up with computational methods that can approximate the maximizer of
the intractable function p(Y ; ⋅) over a given set Θ.

Currently, there is an ongoing research effort in this direction within the system
identification community; see for example [86, 106, 125, 146, 147] for ML estimation
based on sequential Monte Carlo (SMC) methods. The survey [126] summarizes the
available state-of-the-art algorithms and distinguishes between two main approaches:
(i) the marginalization approach, and (ii) the data augmentation approach.

In the marginalization approach, SMC filters and smoothers (also known as
particle filters) are used to “marginalize out” the latent process to approximate the
logarithm of the likelihood function (the log-likelihood) and its gradient at a given
value of θ. The resulting approximations are then used within an iterative numerical
optimization algorithm to find an approximate solution to the ML problem. In the
data augmentation approach, the SMC filters and smoothers are used in conjunction
with the Expectation-Maximization (EM) algorithm (see [29] or Section 3.2.1) to
approximate the MLE as suggested in [144]. The resulting Monte Carlo EM (MCEM)
algorithm converges only if the number of the Monte Carlo samples (particles) grows
with the algorithm iterations, see for example [20, 43]. Furthermore, a new set
of particles has to be generated at each iteration of the algorithm. In order to
make a more efficient use of the particles, [28] suggested the use of a stochastic
approximation version of the EM algorithm (SAEM) which replaces the expectation
step of the EM algorithm by one iteration of a stochastic approximation procedure.
In [86], a particle Gibbs sampler (conditional particle filter with ancestor sampling,
see [85]) is used within the SAEM algorithm to generate the required particles.

We note here that the available convergence proofs of the MCEM and the SAEM
algorithms (see [28, 43]) are, so far, given for cases where p(Y ,W ; θ) belongs to the
exponential family (see [123, Section 2.2] for a definition of the exponential family).
This constrains the distributions of w and v as well as the parameterization of the
model.
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Estimation methods based on SMC approximations can be computationally
expensive. For example, the convergence of the MCEM and the SAEM algorithms
can be very slow when the variance of the latent process is small. Furthermore, cases
with small or no measurement noise are considered challenging for SMC methods.
Moreover, due to the sample degeneracy and impoverishment problems – a pair of
fundamental difficulties of SMC methods (see [32, 33]) – the SMC methods are so
far, to the best of the author’s knowledge, applicable to models with relatively small
dw.

In this thesis, the ultimate goal is the construction of consistent estimators
of θ; we will be looking at alternative approximation methods that can be used
to approximately solve the MLE problem without relying on an exact filtering or
smoothing distribution. Instead, we only use the parameterized model which defines
the joint PDF p(Y ,W ; θ). It is of interest to know if this point of view could lead
to some computational advantage. We shall deal with this problem in Chapter 3.

The computation of the PEM estimator, for cases with non-invertible model, is
not easier than the computation of the MLE. Observe that any estimator ignoring
w, as shown in [58], is not guaranteed to be consistent. So far, the available PEMs
have relied on approximations of the optimal predictor. The optimal (mean-square
error) one-step ahead predictor depends on the history of the observed outputs and
is given by the conditional mean (see Chapter 2, page 34),

ŷt∣t−1(θ) ∶= E[yt∣Yt−1; θ] = ∫
Rdy

yt p(yt∣Yt−1; θ)dyt, t = 1,2,3, . . . (1.6)

in which p(yt∣Yt−1; θ) is known as the predictive PDF and Y0 is defined as the
empty set; hence ŷ1∣0(θ) is constant and is equal to the expectation of y1. Unlike
the MLE, the integrals appearing in the PEM objective function are of the same
dimension as that of the output signal. This means that the domain of the integrand
is independent of N . For single-input single-output models (like the model in (1.4)),
these are one-dimensional integrals; however, the integrand has an unknown form.
Unfortunately, to be able to calculate the predictive PDF, we need to compute
multidimensional integrals. Observe that by Bayes’ theorem (see [64, page 39]),

p(yt∣Yt−1; θ) = p(Yt; θ)
∫Rdy p(Yt; θ)dyt

= ∫Rdwt p(Yt,Wt; θ)dWt

∫Rdy ∫Rdwt p(Yt,Wt; θ)dWt dyt
. (1.7)

It appears that the predictive PDF of the output depends on p(Yt; θ) which does not
have a closed-form expression. To be able to formulate and solve a PEM problem,
one has to come up with either consistent instances of the PEMs without relying
on the optimal predictor, or computational methods that can approximate the
conditional mean (1.6). In the latter case, it seems that the PEM does not have
any computational advantage over the efficient ML method. Both the MLE and
the conditional mean of the outputs require the solution of similar marginalization
integrals. For this reason, most of the recent research efforts found in the system
identification literature, so far, target the maximum likelihood estimator.
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One of the main contributions of this thesis is the introduction of one-step ahead
predictors constructed using the postulated statistical model without any reference
to the data or the the likelihood function (see Chapter 4). These predictors are
relatively easy to compute and the can be used to construct consistent instances of the
PEMs. The predictors do not necessarily coincide with the optimal predictor, which
means that certain asymptotic properties (such as statistical efficiency) cannot be
guaranteed. However, the introduced predictors are algorithmically and conceptually
simpler than predictors based on either SMC smoothing algorithms or Markov Chain
Monte Carlo (MCMC) algorithms.

The main challenge

The two cases discussed above clarify the source of difficulty of the estimation prob-
lems considered in this thesis. The difference between the “tractable” model in (1.1)
and the “intractable” model in (1.4) is the non-invertible nonlinear transformation
of unobserved random variables in the latter. This makes the likelihood function
and the optimal one-step ahead predictor of the output analytically intractable.
Consequently, the objective functions of the optimization problems of both the MLE
and the PEM estimator are not available in closed-form.

1.3 Thesis Outline and Contributions

The content of this thesis concerns the estimation problem of parametric nonlinear
stochastic dynamical models. Firstly, several possible approximations of the MLE
are explored. Secondly, computationally attractive PEM estimators based on non-
stationary linear one-step ahead predictors are introduced. Below, an outline of each
chapter is given where we also indicate the main contributions.

Chapter 2: Background and Problem Formulation

Chapter 2 provides the necessary background for the thesis. Here, several important
remarks and observations are made. After introducing a stochastic framework, a
classical result on the structure of general second-order stochastic processes – due
to Harold Cramér in [27] – is introduced. It generalizes Wold’s decomposition (see
[148]) of stationary processes by giving an exact description of the second-order
properties of a non-stationary process in terms of a causal “linear” time-varying
filtering of the innovation process. This interesting result is used in Chapter 4 as
the basis for optimal linear prediction of non-stationary processes with nonlinear
underlying models. The chapter also introduces two frequentist estimation methods:
the ML method and the PEMs based on PE minimization. The kinship between
the two methods is highlighted using linear dynamical models. Finally, the main
problem of the thesis is formulated.



1.3. Thesis Outline and Contributions 13

Chapter 3: Approximate Solutions to the ML problem

In this chapter, we investigate several approaches to approximate solutions of the
ML estimation problem. The focus is on the EM algorithm and the quasi-Newton
algorithm. For both algorithms, analytical as well as numerical approximations are
explored. The analytical approximations are based on a Gaussian approximation of
the posterior of the unobserved (latent) disturbance (using Laplace’s method). The
numerical approximations, in cases where the output process is independent, may
be obtained by using deterministic integration; however, in general, Monte Carlo
approximations based on importance sampling are considered. The performance of
the approximate algorithms is evaluated on several (relatively simple) numerical
examples where the advantages and disadvantages of each method are highlighted.

The material in this chapter has not appeared in any publications, except the last
part of Section 3.4.2 concerning Monte Carlo approximations of the quasi-Newton
algorithm based on Laplace importance sampling (Algorithm 3.4.2); this algorithm
has been published in

Mohamed Abdalmoaty and H̊akan Hjalmarsson. A Simulated Maximum
Likelihood Method for Estimation of Stochastic Wiener Systems. In the 55th
IEEE Conference on Decision and Control (CDC), pp. 3060-3065, Las Vegas,
USA, 2016

Chapter 4: Linear Prediction Error Methods

In this chapter, we propose a relatively cost-efficient PEM based on suboptimal
predictors. The used predictors are defined using only the first two moments of
the postulated model; they are linear in the observed outputs, but are allowed to
depend nonlinearly on the (assumed known) inputs. The optimal linear predictors,
in the sense of minimum mean-square error, are derived and used to construct
a PEM estimator. It is shown that for several relevant models with intractable
likelihood functions (such as stochastic Wiener-Hammerstein models with polynomial
nonlinearity), the suggested PEM estimators are defined by closed-form (exact)
expressions. Under some mild assumptions, the resulting estimators are shown to
be consistent and asymptotically normal. The chapter also discusses the relation
between the proposed PEMs and a suggested approximation in Chapter 3. We give
the PEM a maximum likelihood interpretation that allows for the use of the EM
algorithm. The performance of the method is illustrated by numerical simulations
using several challenging models. Finally, a comparison and a connection are made
to a PEM based on the Ensemble Kalman filter – a Monte Carlo filter used to define
a (nonlinear) suboptimal predictor.

The ideas developed in this chapter have originated in

Mohamed Abdalmoaty and H̊akan Hjalmarsson. Simulated Pseudo Maximum
Likelihood Identification of Nonlinear Models. In IFAC-PapersOnLine, Volume
50, Issue 1, pp. 14058–14063, 2017.
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Chapter 5: Conclusions and Future Research Directions

In this last chapter, we summarize the conclusions of the thesis and give some
pointers for future research.

Appendices

The thesis contains three appendices where relevant definitions and results are
summarized. Appendix A introduces the idea of Monte Carlo estimation. Random
sampling, common random numbers, and importance sampling are defined and
discussed. In Appendix B, Hilbert spaces of random variables are defined and the
optimal linear mean-square error predictors are derived based on the projection
theorem. Lastly, Appendix C gathers some relevant properties of Gaussian random
vectors and multivariate Gaussian distributions.



Chapter 2

Background and Problem Formulation

This chapter introduces the necessary background, formulates the main problem,
and makes several remarks. We start by introducing a stochastic framework for the
signals. We then describe the models that we are concerned with. Finally, we discuss
statistical estimation methods and their properties.

2.1 Mathematical Models

The mathematical models considered in this thesis belong to the set of stochastic
models; all the signals are modeled using stochastic processes. A stochastic process
y = {yt ∶ t ∈ T} is a family of random variables indexed by a given index set
T and defined over a common underlying probability space (Ω,F , Pθ). In this
thesis, the probability measure is parameterized by a finite-dimensional real vector
θ ∈ Θ ⊂ Rd for some d ∈ N. The index t always refers to time and the index set T
is taken as the set of integers Z giving rise to discrete-time stochastic processes
(a classical reference on the theory of stochastic processes is [31]). For any finite
subset {t1, . . . , tN} ⊂ Z, the joint distribution of the random variables {yt1 , . . . ,ytN }
is known as a finite-dimensional distribution of the process. For every t, we always
assume the existence of a joint probability density function p(Yt; θ) of the vector
Yt ∶= [y⊺1, . . . ,y⊺t ]⊺. The probability measure Pθ can be characterized by specifying
the finite-dimensional distribution for all finite subsets of Z. The mathematical
models are then deterministic objects that define the probability measure Pθ on the
space of observed signals. Because all practical systems are causal systems, for which
the current output does not depend on the future inputs or future disturbances, we
limit ourselves to causal models. We start by defining special classes of signals.

2.1.1 Signals

The outputs, inputs, and disturbances are modeled using stochastic processes. The
mathematical models to be developed are deterministic functions that define a

15
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mapping between these processes. We will only consider dζ-dimensional real-valued
second-order discrete-time stochastic processes ζ with some finite dζ ∈ N.

Definition 2.1.1 (Second-order discrete-time stochastic process). A stochastic
process y = {yt ∶ t ∈ Z} is said to be a second-order stochastic process if it holds that

E[yt] = µt, ∥µt∥ ≤ C < ∞, ∀t ∈ Z,
E[yty⊺s] = Ry(t, s), ∥Ry(t, s)∥ ≤ C < ∞, ∀t, s ∈ Z

where C is a generic constant (that does not necessarily assume the same value
when bounding different quantities).

One of the simplest and most used classes of second-order stochastic processes is
the class of stationary processes.

Definition 2.1.2 (Stationary discrete-time stochastic process). A stochastic process
y = {yt ∶ t ∈ Z} is strictly stationary if for any {t1, . . . , tN} ⊂ Z, the joint distribution
of the random variables {y(t1 + τ), . . . , y(tN + τ)} is independent of τ .

It is weakly stationary, or wide-sense stationary, if it holds that

E[yt] = µ ∀t ∈ Z,
E[(yt − µ)(yt+τ − µ)⊺] = Ry(τ) ∀τ ∈ Z.

A weaker concept of stationarity, commonly used in system identification (specif-
ically when LTI models are used), is quasi-stationarity. It allows for a common
framework for stochastic and deterministic signals, and is used to imply that the
signals satisfy regularity conditions (a form of ergodicity) used for the asymptotic
analysis of the identification methods.

Definition 2.1.3 (Quasi-stationary stochastic process [92, Section 2.5]). A stochas-
tic process y = {yt ∶ t ∈ Z} is quasi-stationary if

E[yt] = µt, ∥µt∥ ≤ C, ∀t ∈ Z,
E[yty⊺s] = Ry(t, s), ∥Ry(t, s)∥ ≤ C, ∀t, s ∈ Z,

lim
N→∞

1
N

N

∑
t=1
Ry(t, t − τ) = Ry(τ), ∀τ ∈ Z,

in which the expectation operator is with respect to the distribution of the random
component of the signal. If the signal is deterministic, then the expectation operator
can be omitted.

A special class of second-order stochastic processes is the class of white noise
processes.

Definition 2.1.4 (White noise). A stochastic process ζ = {ζt ∶ t ∈ Z} is white noise
if E[ζt] = 0, ∥E[ζtζ⊺t ]∥ < ∞ ∀t ∈ Z, and E[ζtζ⊺s] = 0 ∀t ≠ s. In words, white noise
is a sequence of uncorrelated random variables with zero mean and finite second
order moments.
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This definition of white noise is “weak” and is used when the estimation method
does not rely on the exact distribution of the process, but only on the first and second
moments. In this case, the exact finite-dimensional distributions of the process are
not specified. However, it is sometimes required to work with white noise which is a
sequence of independent random variables; in this case, we speak of an independent
process (or independent white noise). Furthermore, in some cases, it is assumed
that the white noise is an independent and identically distributed (i.i.d.) process
(following a Gaussian distribution for example).

In system identification, the disturbances (uncertain errors) are usually under-
stood to come from two main sources. The first source is the imperfections of the
sensing devices used to measure the outputs; this is known as measurement noise.
The second source is the uncontrollable inputs (passing through the system) that
affect the observed outputs; this is known as process disturbances. In the linear
setting, the measurement noise is commonly assumed to be white noise, while the
process disturbances are usually modeled as linearly filtered white noise. The inputs
are normally assumed to be known deterministic signals or known realizations of
stochastic processes; in either case, it is usually assumed that the input is quasi-
stationary. Under some assumptions on the data-generation mechanism, it is possible
to show that the output is also a quasi-stationary signal.

A mathematical model in this thesis is understood to be the rule that specifies the
evolution of the signals through time. In other words, it is the deterministic structure
underlying the stochastic observations. A relevant result that gives interesting
insights regarding the structure of certain classes of stochastic processes is Wold’s
decomposition introduced in [148] and its extension in [27].

Wold’s decomposition

Consider a vector-valued discrete-time stochastic process y ∶={yk}∞k=−∞⊂Ln2 (Ω,F, Pθ).
Here, the space Ln2 (Ω,F , Pθ) is the Hilbert space of random variables, with zero
mean and finite covariance, defined over (Ω,F , Pθ) and assuming values in Rn (see
Appendix B). In what follows, we will be referring to this space simply as Ln2 .

Define the Hilbert spaces

Ht ∶= sp{ys ∶ s ≤ t}, ∀t ∈ Z (2.1)

in which the symbol sp{S} is used to denote the closure of the span of S ⊂ Ln2 .
Observe that we can always project yt onto Ht−1 and define the difference

εt ∶= yt − PHt−1[yt] (2.2)

in which P denotes the projection operator (see Appendix B). The vector εt is
known as the innovation in yt and is orthogonal to Ht−1 by construction. The
process ε is known as the “innovation process” of the process y (the name was
suggested in [27]).
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Definition 2.1.5 (The (linear) innovation process). The stochastic process defined
by

εt ∶= yt − PHt−1[yt], yt ∈ Ln2 , ∀t ∈ Z

is called the innovation process of y. If it holds that E[εtε⊺t ] ≻ 0 ∀t ∈ Z (i.e. the
covariance matrix of εt is positive definite), then the process y is said to be full rank.

By the definitions (2.1), (2.2), and the properties of P, it holds that

PHt−1[yt] = P{εt−1}[yt] + PHt−2[yt]

and therefore we may write

yt = εt + P{εt−1}[yt] + PHt−2[yt], t ∈ Z.

Because ε has the same dimension as y and P is, by definition, a linear operator, it
holds that

P{εt−1}[yt] = h1(t)εt−1

in which h1(t) is a square matrix of real numbers. We can repeat the above projection
m times and write

yt =
m−1
∑
k=0

hk(t)εt−k + PHt−m[yt] (2.3)

in which h0(t) = I. Now notice that the variance of the first term on the right hand
side of (2.3) increases with m but is bounded by the variance of yt. Due to the
orthogonality of the two terms, the variance of the second term decreases with m
and is nonnegative. Therefore, asymptotically in m we have

yt =
∞

∑
k=0

hk(t)εt−k + ydt

=Ht(q)εt + ydt , t ∈ Z
(2.4)

where {hk(t)Σt−k}∞k=0 is a square summable sequence. The representation of y in
(2.4) is known as Wold’s decomposition. Here, Σt−k is a square root of E[εt−kε⊺t−k],
Ht(q) = ∑∞

k=0 hk(t)q−k is a monic linear time-varying transfer operator (see Section
2.1.3) and ydt ∈ Ht−m for all m ∈ N. This last observation means that ydt can be
predicted perfectly given the history Ht−m (i.e., {yk}t−mk=t−∞), regardless of the value
m. For this reason, the stochastic process yd is called the linear deterministic part
of y. When this part is zero, the process y is known as a purely non-deterministic
stochastic process and it can always be written as the output of a causal linear
time-varying filter excited by white noise

yt =Ht(q)εt = εt +
∞

∑
k=1

hk(t)εt−k, t ∈ Z.
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If the process y is weakly stationary, the coefficients of the filter H are time
independent and we may write

yt =H(q)εt = εt +
∞

∑
k=1

hkεt−k, t ∈ Z. (2.5)

The decomposition into a deterministic and a purely non-deterministic part of
a given second-order discrete-time stochastic process is the basis of time-domain
linear prediction. It has a direct connection with the representation theorems for
stationary stochastic processes ([7, Theorem 3.2], also see [120, 145]). Because Wold’s
decomposition is not based on the full distribution of the innovation process, it
only captures the first and second moments of y. This is sufficient whenever “linear”
predictors are to be used.

We summarize Wold’s decomposition of non-stationary stochastic processes in
the following theorem.

Theorem 2.1.6 (Extension of Wold’s decomposition to non-stationary processes).
For any given process y with finite second moments and mean function mt, there is
a uniquely determined decomposition

yt −mt = yrt + ydt t ∈ Z

with the following properties:

(a) the processes yrand yd are orthogonal and yrt ,ydt ∈ Ht ⊂ Ln2 ∀t ∈ Z,

(b) the process yd is linearly deterministic, i.e., ydt ∈ Ht−n ⊂ Ln2 ∀t, n ∈ N,

(c) the process yr is purely non-deterministic and can always be expressed (linearly)
in terms of the innovations of y,

yrt =
∞

∑
k=0

hk(t)εt−k, t ∈ Z

in which εt ⊂ Ln2 is the innovation in yt with a covariance matrix Λt ∶= E[εtε⊺t ]
satisfying

∥Λt∥ < ∞ ∀t ∈ Z, and E[εiε⊺j ] = 0 ∀k ≠ j ∈ Z,
where ∥⋅∥ is the squared Frobenius norm, such that

∞

∑
k=0

hk(t)Λt−kh⊺k(t) ⪰ 0,
∞

∑
k=0

∥hk(t)Λt−kh⊺k(t)∥ < ∞ ∀t ∈ Z,

hn(t)Λt−n = E[ytε⊺t−n] = E[yrtε⊺t−n] ∀n ∈ N0, and
h0(t)Λt = Λt = Λth⊺0(t), ∀t ∈ Z.

(2.6)

Furthermore, if the covariance matrix of εt−n ∀n ∈ N, ∀t ∈ Z is full rank,
the sequence {hk(t) ∶ k ∈ N0, t ∈ Z} is uniquely determined and the matrix
h0(t) = I ∀t ∈ Z.
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Proof. The proof is due to Harold Cramér in [27] where he also discussed a similar
decomposition for continuous-time processes.

The last part of Theorem 2.1.6 states that the second-order properties of a
purely non-deterministic full rank process y ∈ Ln2 correspond to the pair of sequences
({hk(t) ∶ k ∈ N0, t ∈ Z},{Λt ∶ t ∈ Z}). Once the second (the covariance sequence of
the innovations) is given, the first is determined uniquely (see the second row of
(2.6)). Observe that, in general, yrt can be written as the output of a time-varying
filter with an impulse response sequence {hk(t)Σt ∶ k ∈ N0, t ∈ Z} and an input
ε̃t = Σ−1

t εt where Σt is any sequence of positive definite square matrices such that
{hk(t)Σt} is “square” summable. Therefore, we will be informally referring to the
representation in Theorem 2.1.6 by Wold’s decomposition even in cases where the
covariance of εt is not necessarily the innovation covariance.

In this thesis, we will be always assuming that the linear deterministic part yd
is identically zero. Furthermore, a property that we shall impose is the invertibility
of the processes (w.r.t. the innovations). Observe that, by definition, εt ∈ Ht.

Assumption 2.1.7. For every t ∈ Z, there exists a uniformly exponentially decaying
sequence {h̃k(t) ∶ k ∈ N0} with h̃0(t) = I such that if we are given a realization
{ys ∶ s ≤ t}, it is possible to write

εt =
∞

∑
k=0

h̃k(t)(yt−k −mt−k), t ∈ Z.

This assumption is used in the asymptotic analysis of prediction error methods
(see Section 4.4); it ensures that the used predictors possess a required stability
property. For the case of stationary processes, this property is linked to the spec-
tral factorization theorem of strictly positive rational spectra (see [120]) and the
invertibility of noise models in linear system identification (see [92, Section 3.2]).

Example 2.1.1 (Wold’s decomposition). Consider the second-order discrete-
time stationary stochastic process given by

yt = et − 2et−1, t ∈ Z, (2.7)

where et is white noise with unit variance. Observe that we may write

0.5yt = 0.5et − et−1 = (0.5q − 1)et−1, t ∈ Z

in which q is the forward shift operator (see [6]). Assuming zero initial conditions,
the solution to this operator equation is given by

et−1 = −0.5
∞

∑
k=0

0.5kyt+k, (2.8)

showing that et−1 ∉ Ht−1. Therefore, (2.7) is not Wold’s decomposition of y.
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To get Wold’s decomposition, we need to write yt in terms of the innovations
{εs}s≤t. Notice that, by redefining the white process in (2.7),

εt− 0.5εt−1= yt ⇔ εt =
∞

∑
k=0

0.5kyt−k

= (et− 2et−1) + 0.5(et−1− 2et−2) + 0.52(et−2− 2et−3) +. . .

= et − 3
∞

∑
k=1

0.5ket−k

and it follows that εt is the innovation process and Wold’s decomposition of y is

yt = εt − 0.5εt−1, with var(εt) = 4 ∀t ∈ Z.

It is obvious that Wold’s decomposition is an incomplete representation that
captures only the second-order properties of the process (compare to Problem
3T.4 in [92]).

2.1.2 Nonlinear Models

The model class considered in this thesis is the class of discrete-time causal dynamical
models of the form

yt = ft({uk}t−1
−∞,{ζk}t−∞; θ), t ∈ Z (2.9)

in which ft(⋅, ⋅; θ) are general nonlinear maps parameterized by a finite-dimensional
parameter vector θ ∈ Θ. The models map the history of the input process {uk}t−1

−∞

and the history of the zero mean (usually stationary) process {ζk}t−∞ to the current
output yt. For each t, we assume that ut ∈ Rdu and yt ∈ Rdy for some du, dy ∈ N.
This class is quite general and includes most of the commonly used models. So far,
we only assume the finite-dimensional (sufficiently smooth) parameterization and
the compactness of the set Θ such that the output process y ⊂ Ldy2 .

Since in practice we only have access to finite input-output data records given
in terms of two vectors

Y = [y⊺1 , . . . , y⊺N ]⊺ ∈ RdyN and U = [u⊺1, . . . , u⊺N ]⊺ ∈ RduN

for some N ∈ N, it is usually assumed that the history of the input {uk}0
−∞ and

the history of the disturbances {ζk}0
−∞ are identically zero. This amounts to a case

with perfectly known initial conditions. When this assumption does not hold, it is
sometimes possible to consider the unknown initial conditions as model parameters,
or assume a random initial condition which is to be lumped to the process ζt (observe
that under stability assumptions, erroneous initial conditions do not influence the
asymptotic properties of consistent estimators). This is summarized in the following
definition.
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Definition 2.1.8. (Stochastic parametric nonlinear dynamical model) The stochas-
tic nonlinear models are defined by the relations

yt = ft({uk}t−1
k=1,{ζk}tk=1; θ), t = 1,2, . . . ,N ∈ N, (2.10)

in which θ ∈ Θ ⊂ Rd is a static parameter to be identified, and {ζk}tk=1 is a sequence
of unobserved random vectors such that {yt ∶ t = 1, . . . ,N} is a subsequence of a
second-order discrete-time stochastic process y = {yt ∶ t ∈ Z}.

The mappings ft between the inputs, the disturbances, and the outputs are
general nonlinear maps; there are many ways to define such maps, either by using
physical/semi-physical modeling, or by black-box modeling using general function
expansions, see for example [134] or [92, Chapter 6] for an overview of possible
nonlinear mapping based on basis functions. In this thesis, we are mainly interested
in model classes for which the disturbance signal acts upon the output through a
non-invertible nonlinear transformation, as presented in Section 1.2.2.

Nonlinear state-space models

A model class of interest is the class of discrete-time nonlinear state-space models,
which has been used in signal processing, systems and control theory with a wide
range of applications. These models are defined by a set of first order difference
equations and are often based on some physical insight (see [92, Section 4.3]). A
causal stochastic discrete-time nonlinear state-space model is given by

xt+1 = h(xt, ut,wt; θ), (the state equation)
yt = g(xt,vt; θ), t = 1,2, . . . ,N. (the output equation)

(2.11)

Such a model is often further restricted by assuming that the process disturbance
w and the measurement noises v enter additively so that

xt+1 = h(xt, ut; θ) +wt

yt = g(xt; θ) + vt.
(2.12)

The (latent/hidden) process x is known as the state process. Under some assumptions
on the disturbance process and measurement noise (see below), the state process
satisfies the Markov property. For brevity, we will suppress the dependence on ut in
all the notations in this part.

Definition 2.1.9. (The Markov property) A stochastic process x = {xt ∶ t ∈ Z} is
said to have the Markov property if for any finite index set {ti ∶ ti < ti+1} ⊂ Z, it
holds that

p(xti ∣xt1 , . . . xti−1 ; θ) = p(xti ∣xti−1 ; θ). (2.13)

In this case, the process x is said to be a Markov process.
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This property indicates that the information in the history of the process
regarding xt is summarized in xt−1. When looking at xt, the Markov property
makes it possible to model the whole past of the process with a single initial
condition x0. The uncertain infinite past {xt−n ∶ n ∈ N} can then be modeled by
letting

x0 ∼ p(x0; θ) (2.14)
which is known as the prior over x0.

We now show that, when both the measurements and the disturbance process
are i.i.d. white noises that are mutually independent, the latent process {xt}
generated by the state-space model is a Markov process. The assumption means
that p(wt,ws; θ) = p(wt; θ)p(ws; θ) for all t ≠ s, and a similar relation holds for the
noise process.

Assume that the sequence {xk}tk=0 is given; that is xk = xk for k = 0, . . . , t.
According to the state equation (first row of (2.12)), it holds that

xt+1∣{xk}tk=0
d= h(xt, ut; θ) +wt∣{xk}tk=0 (2.15)

where we used d= to denote equality in distribution, and the notation ζ∣η to denote
the random variable ζ ∼ p(ζ∣η = η). Due to the independence assumption on the
process disturbance, it then holds that

wt∣{xk}tk=0
d= wt

and
xt+1∣{xk}tk=0

d= h(xt, ut; θ) +wt
d= xt+1∣xt, (2.16)

and therefore the state process is a Markov process if the disturbance process is
independent. By conditioning on xt, the model can be rewritten as

xt+1 ∼ p(xt+1∣xt; θ)

where sampling (simulating) according to p(xt+1∣xt; θ) is done in two steps. First,
a sample wt ∼ p(wt; θ) is generated; then the state equation is used to define
xt+1 = h(xt, ut; θ) +wt. We also observe that the probability that xt+1 = xt+1 is
given by

p(xt+1∣xt; θ) = pw(xt+1 − h(xt, ut; θ); θ).
in which the notation pw(w; θ) denotes the value p(wt = w; θ).

Moreover, conditioning on the state process, the outputs yt become independent
due to the independence assumption on the measurement noise, and it holds that

yt ∼ p(yt∣xt; θ).

Sampling according to p(yt∣xt; θ) is done in two steps. First, a sample vt ∼ p(vt; θ)
is generated; then the output equation is used to define yt = g(xt, ut; θ) + vt. The
probability that yt = yt is given by

p(yt∣xt; θ) = pv(yt − g(xt, ut; θ); θ).
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Finally, the joint PDF of the states up to time t and the joint PDF of the outputs
up to time t are given by

p(Xt; θ) = p(x0; θ)
t−1
∏
k=1

p(xk+1∣xk; θ),

p(Yt∣Xt; θ) =
t

∏
k=1

p(yk ∣Xt; θ) =
t

∏
k=1

p(yk ∣xk; θ).
(2.17)

where Xt ∶= [x⊺1, . . . ,x⊺t ]⊺ and Yt ∶= [y⊺1, . . . ,y⊺t ]⊺. These PDFs are used to construct
the likelihood function of the model parameters.

2.1.3 Linear Models
For Linear Time-Invariant (LTI) models, the mapping between the inputs, the
disturbances and the outputs is a linear time-independent map. A causal stochastic
discrete-time LTI model is given by

yt =
∞

∑
k=1

gkut−k +
∞

∑
k=0

hket−k, t ∈ Z. (2.18)

The model is therefore completely characterized by the impulse response sequences
{gk} and {hk}, together with all the finite-dimensional distributions of the process
e = {ek}. It is usually assumed that at least one input delay is present. This
assumption holds for many practical discrete-time systems and is usually invoked
when considering systems with feedback mechanisms. The process e represents
possible measurement noise and/or internal process disturbances. Due to the linearity
of the model, the contribution from all sources of randomness can be modeled with
the process e, which is usually assumed to be white noise. Observe that this
assumption can be motivated by Wold’s decomposition described in Theorem 2.1.6.

It is common to work with structures that allow the specification of the infinite
impulse response sequences in terms of a finite-dimensional parameter.

Transfer operator models

Transfer operators are defined in terms of shift operators. It is common to use the
backward shift operator q−1 which is defined by the relation

q−1uk = uk−1

where it is assumed that all signals are doubly infinite sequences (see [151, Chapter
7]). A shift-operator algebra allowing division by polynomials whose roots (strictly)
inside the unit disc is usually used ([6, Section 2.6] and [92, Lemma 3.1]).

A transfer operator corresponding to an impulse response sequence {gk} is
defined by

G(q,{gk}) ∶=
∞

∑
k=1

gkq
−k.
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This is an operator acting on the space of doubly infinite (inputs/disturbances)
sequences. To be able to characterize models in terms of finite-dimensional parameters
in the case of Single-Input Single-Output (SISO) models, we restrict the impulse
response sequences to those that can be obtained as an expansion of rational
functions and define

G(q, θ) =
∞

∑
k=1

gk(θ)q−k =
B(q, θ)
F (q, θ)

in which B(q, θ) and F (q, θ) are polynomials in the shift operator whose coefficients
are entries of θ.

A SISO LTI model with a finite parameter can then be written as

yt =
∞

∑
k=1

gk(θ)ut−k +
∞

∑
k=0

hk(θ)et−k

= G(q, θ)ut +H(q, θ)et

= B(q, θ)
F (q, θ)ut +

C(q, θ)
D(q, θ)et, t ∈ Z.

(2.19)

The transfer operator G acting on the input is usually known as the plant model,
while the transfer operator H acting on the stochastic signal is known as the noise
model. The plant model assumes at least one input delay and it is usually assumed
that H is monic, that is h0(θ) = 1. This last assumption is not restrictive, since
we can parameterize the variance of the white noise et. A detailed description of
possible choices for models with rational functions is given in [92].

For Multiple-Input Multiple-Output (MIMO) models, a finite parameterization
can be achieved using matrix fraction descriptions, see [92, Appendix 4A] or [154].

Observe that, under the assumption that the history of the signals for all t ≤ 0 is
known to be zero, the following vector equation holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
⋮
yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¸¹¹¶
=Y

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0
g1(θ) 0 . . . 0
g2(θ) g1(θ) . . . 0
⋮ ⋮ ⋱ ⋮

gN−1(θ) gN−2(θ) . . . g1(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶G(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

⋮
uN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

∶=U

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
h1(θ) 1 . . . 0
⋮ ⋮ ⋱ ⋮

hN−1(θ) hN−1(θ) . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶H(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

⋮
eN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¸¹¹¶
=∶E

,

(2.20)
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that is,

Y = G(θ)U +H(θ)E. (2.21)

Due to the assumption that h0(θ) = 1, the matrix H(θ) is a lower unitriangular
(lower triangular with unit diagonal entires) matrix and therefore invertible. This
means that we can write the vector E in terms of the observations Y and the inputs
U by inverting H;

E =H−1(θ)(Y −G(θ)U). (2.22)

Also observe that wheneverE has a zero mean and a covariance matrix ΛN , the vector
Y has a mean value µY (U ; θ) = G(θ)U and a covariance ΣY (θ) =H(θ)ΛNH⊺(θ)
regardless of the distribution of E. Hence, the first and second moments of Y are
always available in closed-form.

Linear state-space models

Discrete-time linear state-space models are a special case of nonlinear state-space
models; they describe the relation between the signals using a set of first order linear
difference equations via the state process x. They are defined by

xt+1 = A(θ)xt +B(θ)ut +wt, t ∈ N0

yt = C(θ)xt + vt.
(2.23)

in addition to the PDFs of wt and vt. The matrices A,B, and C are parameterized
matrices with appropriate dimensions. Linear state-space representations are not
unique; they depend on the choice of the coordinates for the state vector. However,
there are several canonical forms that link state-space representations to rational
transfer operators (see [68]).

Observe that we can write

yt = C(θ)At(θ)x0 +
t−1
∑
k=0

C(θ)Ak(θ)B(θ)ut−k−1 +
t−1
∑
k=0

C(θ)Ak(θ)wt−k−1 + vt (2.24)

for t = 1,2, . . . ,N . The first term on the right hand side is due to the initial state
x0. Given x0, both the history of the input {uk}−1

k=−∞ and the history of the process
disturbance {wk}−1

k=−∞ are not needed to compute the value of the output at any
t ≥ 0. Assuming that the initial state x0 = 0, it holds that
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
⋮
yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¸¹¹¶
=∶Y

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0
C(θ)B(θ) 0 . . . 0
C(θ)A(θ)B(θ) C(θ)B(θ) . . . 0
⋮ ⋮ ⋱ ⋮
C(θ)AN−2(θ)B(θ) C(θ)AN−3(θ)B(θ) . . . C(θ)B(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶G(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

⋮
uN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=∶U

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(θ) 0 . . . 0
C(θ)A(θ) C(θ) . . . 0
C(θ)A2(θ) C(θ)A(θ) . . . 0
⋮ ⋮ ⋱ ⋮
C(θ)AN−1(θ) C(θ)AN−2(θ) . . . C(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶F (θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0

w1

w2

⋮
wN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶W

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

⋮
vN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=∶V

that is
Y = G(θ)U + F (θ)W +V . (2.25)

Unlike (2.21), the model in (2.25) is not invertible as it is, i.e., the outputs Y
and the input U cannot be used to recover W and V . However, due to the linearity
of the model, it can be transformed into an invertible form.

Assume that W and V are uncorrelated with zero mean and covariance matrices
ΣW (θ) and ΣV (θ) respectively. Then, the first and second moments of Y are
preserved if the random vector F (θ)W +V in (2.25) is replaced by

(F (θ)ΣW (θ)F ⊺(θ) +ΣV (θ)) 1
2E (2.26)

in which E is a zero mean vector with the identity covariance matrix (for example,
a standard Gaussian random vector), and (⋅) 1

2 denotes one of the possible matrix
square roots (for example, the Cholesky square root; see [61, Section 6.4]). By
defining the lower triangular matrix

H(θ) ∶= (F (θ)ΣW (θ)F ⊺(θ) +ΣV (θ)) 1
2 ,

the model can be written in the invertible form

Y = G(θ)U +H(θ)E (2.27)

which has the same form as (2.21). Observe that here, G(θ) and H(θ) are jointly
parameterized by θ (via A(θ)), and that H(θ) is triangular but not unitriangular.
Moreover, note that the representation in (2.27) only captures the first and second
moments of Y .



28 Background and Problem Formulation

2.2 The True System

It is always true that the assumed mathematical model does not exactly describe the
underlying “real-life” system. It is therefore always seen as a mere approximation.
However, for the purpose of analysis, it is convenient to assume the existence of a
true system in order to understand the behavior of different identification methods.
For this purpose, we will make the following assumption.

Assumption 2.2.1 (True system). The observed data follow a known mathematical
rule defined by a true parameter θ○ ∈ Θ ⊂ Rd such that

yt = ft({uk}t−1
k=1,{ζk}tk=1; θ○) ∈ Ln2 , t = 1,2, . . . ,N, (2.28)

for some known functions ft, known inputs {uk}, and unobserved disturbances {ζk}.

2.3 Estimators and Their Qualitative Properties

Estimators are defined as (measurable) functions of the observations. Let Θ be the
parameter space for a parametric family of models corresponding to Pθ, and let
E[⋅; θ] denote the expectation with respect to the model with a parameter θ ∈ Θ.
Define the data set

Dt ∶= {(yk, uk) ∶ k = 1, . . . t}, 1 ≤ t ≤ N, (2.29)

that contains the outputs and inputs up to time t. We are interested in point
estimators

DN ↦ θ̂ ∶= θ̂(DN) ∈ Θ

that map the data to a point in the parameter space. We shall assume that the data is
generated by a model governed by a parameter θ○ ∈ Θ according to Assumption 2.2.1.
It is important then to understand the relation between the process {θ̂(DN) ∶ N ∈ N}
and the parameter θ○. Because θ○ is unknown, any property of the considered
estimators is desired to hold equally for all possible θ○ ∈ Θ.

We will now discuss some desired properties of point estimators. For the following
definitions, we assume that all estimators have finite first and second moments.

Definition 2.3.1 (Unbiased estimators). An estimator θ̂ of a parameter θ is an
unbiased estimator if

E[θ̂(DN); θ] = θ, ∀θ ∈ Θ, ∀N ∈ N.

It is an asymptotically unbiased 1 estimator if
1Note that some authors in the statistical inference literature define asymptotically unbiased

estimators as those estimators with the property that E[limN→∞ f(N)∥θ̂(DN ) − θ∥; θ] = 0 ∀θ ∈ Θ
in which f(N) is a normalization sequence (see [82, Chapter 6]). This definition (without an
additional condition of uniform integrability) does not coincide with Definition 2.3.1.
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E[θ̂(DN); θ] → θ as N →∞ ∀θ ∈ Θ.

Otherwise, it is an asymptotically biased 2 estimator.

Definition 2.3.2 (Consistency). An estimator θ̂ of a parameter θ is a consistent
estimator if

θ̂(DN) a.s.Ð→ θ as N →∞ ∀θ ∈ Θ.

in which a.s.Ð→ denotes almost sure convergence (see [23, Chapter 4]).

Definition 2.3.3 ((Statistical) efficiency). A consistent estimator θ̂ of a parameter
θ is a minimum variance/optimal or (statistically) efficient estimator if, for any
other consistent estimator θ̃ of θ, it holds that

E[(θ̃(DN) − θ)(θ̃(DN) − θ)⊺; θ] ⪰ E[(θ̂(DN) − θ)(θ̂(DN) − θ)⊺; θ] for every N.

The estimator θ̂ is said to be asymptotically efficient if, for all other estimators θ̃
of θ, it holds that

lim
N→∞

N E[(θ̃(DN) − θ)(θ̃(DN) − θ)⊺; θ] ⪰ lim
N→∞

N E[(θ̂(DN) − θ)(θ̂(DN) − θ)⊺; θ].

Otherwise, it is a suboptimal estimator.

Definition 2.3.4 (Asymptotic normality). An estimator θ̂ is asymptotically normal
about θ if there exists a sequence of matrices {PN} such that PN ≻ δI for some
δ ∈ R+, all sufficiently large N ∈ N, and

√
NP

−1/2
N (θ̂(DN) − θ) ↝ N(0, I) as N →∞.

Furthermore, if PN → P ≻ 0 as N → ∞, we say that θ̂ is asymptotically normal
about θ with asymptotic covariance matrix P . The symbol ↝ denotes convergence in
distribution of random variables (see [23, Chapter 4]).

The consistency of estimators is the weakest asymptotic property that should be
required from a “good” estimator. Consistent estimators can be used to construct
efficient estimators (see for example [84, Theorem 7.3.3], [138, Problem 7.12] or
[143]). The asymptotic normality of estimators is important for the construction of
approximate confidence intervals.

2.4 Estimation Methods

In this thesis, we mainly focus on two (frequentist/Fisherian, see [35]) estimation
methods: the Maximum Likelihood Method and the Prediction Error Methods. In
the following subsections, we summarize the definition and some properties of each
method.

2In the text, we simply say that the estimator is biased to mean that it is asymptotically
biased.
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2.4.1 The Maximum Likelihood Method
The Maximum Likelihood (ML) method is a statistical inference method based
on the likelihood principle. The principle essentially states that all the informa-
tion/evidence obtained from an experiment about θ is contained in the likelihood
function of θ (see Definition 2.4.1 below) for the given data. The idea has been
used informally as early as the 1700s, by statisticians such as Carl Friedrich Gauss,
Pierre-Simon Laplace, Thorvald N. Thiele, and Francis Ysidro Edgeworth [140].
However, it is usually attributed to Sir Ronald A. Fisher (1890–1962) who promoted
the method and contributed to the theoretical analysis of its properties, see [40, 41].
Maximum Likelihood Estimators (MLE) are examples of the more general class of
extremum estimators (see [1, Chapter 4]) – a general class of estimators based on
the maximization of an objective function of the data.

Definition 2.4.1 (Likelihood function). The likelihood function of the parameter θ
for a given realization Y of the model outputs and known inputs U is defined by the
nonnegative real function

p(Y ∣U ; ⋅) ∶ Θ→ R+.

In addition, the function
log p(Y ∣U ; ⋅) ∶ Θ→ R+

is referred to as the log-likelihood function.

Because, in what follows, it will be always assumed that U is known, we will
remove it from the notation and refer to the likelihood function of θ simply by
p(Y ; θ) seen as a function of θ.

Definition 2.4.2 (Maximum Likelihood Estimator). The random variable

θ̂(DN) ∶= arg max
θ∈Θ

p(Y , θ) (2.30)

(when it exists) is the Maximum Likelihood Estimator. Given a realization Y , any
element of the set of global minimizers θ̂(DN) is called a maximum likelihood
estimate.

From the above definitions, it is obvious that the ML method requires a full
probabilistic model.

Next, assuming that the likelihood function is differentiable with respect to θ,
we define the score function of the model. It gives an indication of how sensitive the
likelihood function is to variations in θ.

Definition 2.4.3 (Score function). The random vector ∇θ log p(Y ; θ) with coordi-
nates ∂

∂θi
log p(Y ; θ) is called the score function. A realization of the score function

corresponding to Y is equal to the gradient of the logarithm of the likelihood function
of θ evaluated at Y .
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The covariance of the score function is known as the Fisher information matrix,
and, under some regularity conditions, is equivalently given by

−E [∇2
θ log p(Y ; θ); θ] ∣

θ=θ○

where ∇2
θ log p(Y ; θ) denotes the Hessian matrix of the log-likelihood function of θ.

The inverse of the Fisher information matrix gives the Cramér-Rao lower bound
on the Mean-Square Error (MSE) matrix in the class of unbiased estimators (see
[26, 113]). It also holds, under some regularity conditions as shown in [79] or [8],
that the inverse of

IF (θ○) = lim
N→∞

1
N

cov (∇θ log p(Y ; θ),∇θ log p(Y ; θ)) ∣
θ=θ○

gives a lower bound on the “asymptotic MSE” of most estimators, except for
parameters in a set of Lebesgue measure zero. Under some weak conditions, see
for example [5] or [60], the MLE of dynamical models was shown to be consistent,
asymptotically normal, and asymptotically efficient (i.e. with covariance matrix
I−1
F (θ○)). It is because of these appealing theoretical properties that the MLE has

been used in many scientific fields, including system identification. However, it is
worth mentioning that the ML method is justified asymptotically and has no finite
sample guarantees. Furthermore, depending on the model, the MLE might not be
well defined and can be inconsistent as shown for example in [80].

The method of ML was first introduced in the system identification community
in [5], where it was used to estimate the parameters of linear dynamical models.
The next example defines the MLE of a first order LTI state-space model.

Example 2.4.1 (MLE of an LTI dynamical system). Assume that the outputs
Y were collected according to the state-space model

xt+1 = αxk + βut +wt, wt ∼ p(wt), x0 = 0,
yt = xt + vt, vt ∼ p(vt), t = 1, . . . ,N,

(2.31)

with α = α○ and β = β○. Furthermore, assume that the processes w and v are
mutually independent i.i.d. white noise processes. Let θ ∶= [α β]⊺, and observe
that the model can be written in the vector form as in (2.25) for some parameter
dependent matrices G(θ) and F (θ).

The associated family of PDFs of Y is

{p(Y ; θ) ∶ p(Y ; θ) = ∫ pV (Y −G(θ)U − F (θ)W )p(W )dW, θ ∈ Θ}

in which p(V ) = ∏N
t=1 p(vt) and p(W ) = ∏N

t=1 p(wt). If these distributions are
not Gaussian, the above integral might not have a closed form solution. However,
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in cases where w and v are Gaussian processes with zero mean and covariances
σ2
w and σ2

v respectively, the process y is Gaussian and the PDF of Y is

{ p(Y ; θ) ∶ p(Y ; θ) = N(µ(U ; θ),Σ(θ)), θ ∈ Θ } ,

in which µ(U ; θ) = G(θ)U , and Σ(θ) = σ2
wF (θ)F (θ)⊺+σ2

vI. The MLE is therefore
given by

θ̂ = arg max
θ∈Θ

p(Y , θ)

= arg max
θ∈Θ

1
(2π)N2

√
det Σ(θ)

exp (−0.5(Y − µ(U, θ))⊺Σ−1(θ)(Y − µ(U, θ))) .

2.4.2 Prediction Error Methods
Prediction Error Methods (PEMs) are a large family of parameter estimation
methods considered to be the corner stone of system identification (see [19, 92, 138]).
They offer solutions to a wide range of problems and are supported by a solid
underlying theory. Besides other advantages, they have both deterministic (see [91]
or [92, Problem 8T.1]) as well as stochastic motivations, making them attractive
for a wide range of applications. However, since we are concerned with stochastic
models, we will only consider a stochastic framework here.

In this thesis, we will consider an estimation approach based on prediction
error minimization. The main idea of this approach goes as follows. First, the
parameterized model is written in terms of a parameterized predictor; that is a
function of known inputs and previous observed outputs that “predicts” future
outputs (see (2.32)). Then, the distance between the predicted output (the output
of the predictor) and the observed output of the system is defined according to some
metric. Such a metric, a positive scalar-valued function, can itself be parameterized
either independently or by the model parameter vector itself. Finally, the method
seeks the parameter that minimizes the metric over some predefined compact set Θ.

If the predictor and the metric are selected according to the exact probabilistic
nature of the data, the PEM coincides with the ML method (as explained below).
Therefore, the PEMs can be seen as a generalization of the ML method and a
specific instance of extremum estimators.

Let us define the parameterized one-step ahead predictor by the function

ŷt∣t−1(θ) = ψ(Dt−1, t; θ), t = 1, . . . ,N, θ ∈ Θ, (2.32)

where we assume at least one input delay in the model. In practice, such a function
is not always given as an explicit function of the data. It can be a function of a
filtered version of the previous inputs and outputs (those before time t), or can
even be constructed by running a Monte Carlo simulation as we suggest in this
thesis (see Chapter 4). It is important to note that the stochastic assumptions
used to determine the predictor function (2.32) do not have to be related to the
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exact full probabilistic structure of Dt−1, which is an indication of the generality of
the method. It is the representation of the predictor function given in (2.32) that
matters. The importance of all the stochastic assumptions of the (true) model, the
initial conditions, etc. is limited by the way they influence the definition of the
predictor function. In other words, all the probabilistic assumptions that can be
used to form a good predictor are immaterial, and the only important factor is the
way these assumptions are reflected in the predictor. This remark was stressed in
the contribution of Ljung in [90] and later in the book [92]. Also see [138, Sections
7.1-7.3, and Problem 7.3].

Once the predictor is defined, the estimation of the parameter θ is a matter of
solving an optimization problem.

Definition 2.4.4 (Prediction Error Methods estimator). Given a predictor function
ψ and a nonnegative scalar-valued function `, the random variable

θ̂(DN) ∶= min
θ∈Θ

N

∑
t=1
`(et(θ), t; θ)

such that et(θ) = yt − ψ(Dt−1, t; θ), ∀t = 1, . . . ,N,
(2.33)

(when it exists) is the prediction error method estimator. Given a realization DN ,
any element of the set of global minimizers θ̂(DN) is called a PEM estimate.

The process e(θ) is known as the prediction error process. Different choices
for ` and the predictor function ψ lead to different instances within the family
of PEMs. A usual choice for ` is the quadratic Euclidean norm, which is time-
and θ-independent. With such a choice, the PEM problem (2.33) is an unweighted
(nonlinear) least-squares problem. As we will show below, in some cases, the choice
of ` is critical for the performance of the estimation method.

To summarize, for a given model and a data set, the two components that define
an instance of the PEMs are

1. a parameterized predictor (2.32) for future outputs (function of the past data)
– it can be defined according to the parameterized stochastic model with full
or partial probabilistic assumptions, or it can be postulated directly.

2. a measure of distance, `(⋅; θ), defined over the space of outputs y.

A question that arises naturally is: what are the best choices for these two compo-
nents? The answer is given in the following.

The best predictor

To define the best predictor for the outputs of a dynamical model, we first need to
choose a criterion. In a stochastic framework, a commonly used natural measure
(among other possibilities) is the MSE

E [∥yt − ŷt∣t−1(θ)∥2
2; θ○] . (2.34)
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It is not difficult to show that the optimal predictor in the sense of minimizing the
MSE is given by the conditional expectation

ŷt∣t−1(θ) = E[yt∣Dt−1; θ]. (2.35)

Such a predictor has an interesting geometrical interpretation in the Hilbert space
of random variables Ln2 . Let ζ denote an arbitrary measurable function of Dt−1
representing candidate predictors. Then, using the tower property of expectations
[23, Theorem 9.1.5], it holds that

E[y⊺t ζ(Dt−1)] = E[E[y⊺t ζ(Dt−1)∣Dt−1]] = E[E[yt∣Dt−1]⊺ζ(Dt−1)]
⇒ E[ (yt −E[yt∣Dt−1])⊺ ζ(Dt−1)] = 0

which shows that the error yt −E[yt∣Dt−1] is uncorrelated with (orthogonal to) any
measurable function of Dt−1. Thus, the error provides no “information” that can be
used to better guess yt.

Observe that the optimal predictor relies on the probability distribution of the
stochastic process y through its finite-dimensional distributions. In general, the
computation of the optimal predictor involves a multidimensional integral (see (1.6)
and (1.7)), which can be computed analytically only in very few cases. This is where
the power of the PEM is truly apparent: it does not need an “optimal” predictor in
order to construct consistent estimators.

Kinship to the Maximum Likelihood Method

Let us now consider a narrow view of the PEMs (“narrow” because it restricts the
choices of the predictor function and the function ` according to the exact (true)
statistical properties of the data). Assume that the data is generated according to
the data-generation mechanism

yt = ψ(Dt−1, t; θ) + et, t = 1, . . . ,N, (2.36)

in which e is an independent zero mean process, with a PDF p(et; θ). The joint
PDF of the observed outputs is easy to compute using the assumptions on e;

p(Y ; θ) =
N

∏
t=1
pet(yt − ψ(Dt−1, t; θ); θ).

Solving the ML estimation problem is equivalent to solving the minimization problem

min
θ∈Θ

− log(p(Y ; θ)) = min
θ∈Θ

−
N

∑
t=1

log(pet(yt − ψ(Dt−1, t; θ); θ)).

To define a PEM estimator, let us use the model structure and parameterization as
the one used for the true data (2.36). In this case, the optimal predictor (2.35) is
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easy to compute and is given by

ŷt∣t−1(θ) = ψ(Dt−1, t; θ), and
et(θ) = yt − ŷt∣t−1(θ) with a PDF p(et; θ).

Observe that we used the same symbol et for the prediction error process; it holds
that et(θ○) = et. Therefore, if we use the optimal predictor and choose

`(et, t; θ) ∶= − log(p(et; θ)), (2.37)

the solution of the PEM problem (2.33) coincides with the solution of the ML
problem (2.30).

In the next example, we show how to construct the PEM problem for a stochastic
LTI transfer operator model (2.19) parameterized by θ. For details, see [92] or [138].

Example 2.4.2 (PEM for a stochastic LTI transfer operator model). Let us
consider a parameterized LTI model in terms of a transfer operator

yt = G(q, θ)ut +H(q, θ)et, t ∈ Z, (2.38)

in which the noise model H(q, θ) is monic and inversely stable and e is a
martingale difference process, i.e., E[et] = E[et∣{yk}k<t] = 0.

It is then possible to construct an optimal one-step ahead predictor by
inverting the noise model H. Observe that we may write

yt = [I −H−1(q, θ)]yt +H−1(q, θ)G(q, θ)ut + et.

and therefore

ŷt∣t−1(θ) ∶= ψ(Dt−1, θ) = [I −H−1(q, θ)]yt +H−1(q, θ)G(q, θ)ut (2.39)

is the optimal linear predictor, assuming that the data has been generated
according to a mechanism like (2.38) (notice that the model does not specify
the exact full distribution of y). Observe that the optimal predictor is linear
in both the known inputs and the previous outputs. For the stability of the
predictor, the parameter θ must be constrained to the subset for which the two
filters defining ψ are stable.

Under the assumption that the histories {ek}k≤0 and {uk}k≤0 are known to
be identically zero, the outputs vector Y is given in a vector form as shown
in (2.21). Let Ŷ (θ) ∶= [ŷ⊺1∣0(θ) ŷ⊺2∣1(θ) . . . ŷ⊺N ∣N−1(θ)]

⊺

, that is a column
vector of stacked one-step ahead predictors. It then holds that

Ŷ (θ) = (I −H−1(θ))Y +H−1(θ)G(θ)U (2.40)
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in which the matrix G(θ) and the vector U are defined in (2.20) and

H−1(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
h̃1(θ) 1 . . . 0
⋮ ⋮ ⋱ ⋮

h̃N−1(θ) h̃N−1(θ) . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.41)

where {h̃k(θ)} is the impulse response of the filter H−1(q, θ) (it is exponentially
decaying if the noise model is rational). Observe that H−1(θ) coincides with the
inverse of the matrix H(θ) defined in (2.20).

Another (suboptimal) choice for the one-step ahead predictor is

ŷt∣t−1(θ) = G(q, θ)ut (2.42)

which ignores the probabilistic properties of the second term in (2.38) by
assuming H(q, θ) = 1. In this case, the predictor simulates the known input
using the model G(q, θ), and the mean of the process y is used as a predictor.
The predictor in (2.42) is known as the Output-Error (OE) predictor and is
given in vector form by

Ŷ (θ) = G(θ)U. (2.43)

The main point of Example 2.4.2 is the following: for linear models given in terms
of transfer operators, as in (2.38), the optimal predictor is computed by inverting
the noise model H(q, θ). By doing so, it is possible to reconstruct the process et
if θ○ and the full history of the signals are known. Notice that the invertibility
assumption is imposed as part of the model definition.

The computations of ŷt∣t−1 require the knowledge of the complete history of the in-
put and output signals from −∞ to t−1. In cases where the model is finite-dimensional
(rational G(q, θ) and H(q, θ)), it is sufficient to know the initial conditions exactly.
If the initial conditions are unknown, they can be replaced by any reasonable
guess (say 0). The resulting predictor will only be an approximation of the optimal
predictor, but in most cases can be used to obtain acceptable solutions. The exact
optimal predictor can be constructed by a time-varying linear filter computed using
a recursive Kalman filter algorithm. For this, it is necessary to write the model in
terms of a state-space representation and characterize the uncertainty regarding the
initial conditions (history of the inputs and disturbances) using a probabilistic prior
over the initial state.

Example 2.4.3 (PEM through a time-varying Kalman filter). Consider the
following parameterized linear time-invariant state-space model

xt+1 = A(θ)xt +B(θ)ut +wt, wt ∼ p(wt), x0 ∼ p(x0)
yt = C(θ)xt + vt, vt ∼ p(vt), t = 1, . . . ,N.

(2.44)
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We assume that the process disturbance w and the measurement noise v are
both independent processes, mutually independent and independent of x0.

It is interesting to first observe that the model in its current form is not easy
to invert. To clarify this point, let us assume that the initial state is known;
that is p(x0) = δx0 . The question is then how to use the data to reconstruct wt

and vt or a function of them. We might first try to write the model in terms of
transfer operators. For a given θ,

yt = C(θ)(qI −A(θ))−1B(θ)ut
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

known function of θ

+C(θ)(qI −A(θ))−1wt + vt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

stochastic with dynamics

. (2.45)

The difficulty seems to arise from the way the second term is written. Ideally,
we would like to write the stochastic part in terms of an independent process or
a martingale difference process which is unpredictable:

yt =

known function of θ at time t
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ψ(Dt−1, t, θ) + εt.

´¸¶
stochastic and unpredictable

Hence, the problem would be easier if it is possible to write the stochastic part
involving the process disturbance and the measurement noise in terms of filtered
versions of an independent process εt. This requires a change of coordinates
for the model, and it is well understood that this transformation is what the
time-varying Kalman filter does (see [2, 53, 70]).

The required form is known as the innovations form and is given by the
equations

x̂t+1(θ) = A(θ)x̂t(θ) +B(θ)ut +Kt(θ)εt
yt = C(θ)x̂t(θ) + εt,
εt is a zero mean independent process with cov(εt,εt) = Λt(θ)

(2.46)

in which the matrix Kt(θ) is known as the Kalman gain, and εt is the innovation
in yt. The process ε is in fact the innovation process, see Definition 2.1.5. It
is now easy to define the (time-varying) one-step ahead predictor, because the
model as written in (2.46) is easy to invert. The optimal predictor is

ŷt∣t−1(θ) = C(θ)x̂t(θ), t = 1, . . . ,N,
x̂t(θ) = A(θ)x̂t−1(θ) +B(θ)ut−1 +Kt−1(θ)(yt−1 −C(θ)x̂t−1(θ)).

(2.47)

When both the process noise and the measurement noise are Gaussian processes
and the initial state is a Gaussian random vector, the innovation process ε is an
independent Gaussian process with covariances Λt(θ). In this case, the PEM
problem based on the time-varying Kalman filter and the norm

`(εt(θ), t; θ) = ε⊺t (θ)Λ−1
t (θ)εt(θ) + log det(Λt(θ)) (2.48)
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coincides with the ML estimator. Observe that ` here is time-dependent and is
parameterized by θ through the covariance matrices. Another PEM instance is
obtained by using the optimal predictor and the Euclidean norm

`(εt(θ), t; θ) = ∥εt(θ)∥2
2 = ε⊺t (θ)εt(θ) (2.49)

which is both time- and parameter-independent.

As we discussed above, choosing a different predictor and/or a different ` will
result in different instances of the PEM family. Some of these choices might lead
to consistent but suboptimal estimators, while others will not be consistent. It is a
well-known fact, as shown in [92] for example, that for linear systems operating in
open-loop and when G and H are parameterized independently, a predictor based
on a misspecified H will not affect the consistency of the PEM estimator of G. This
is clarified in the following example.

Example 2.4.4 (Ignoring process noise for LTI models of systems operating in
open-loop). Assume that the data is generated according to the model structure

yt = G(q, θ○)ut + ζt (2.50)

in which u and ζ are independent stationary processes with spectra Φu(w) and
Φζ(w) respectively. Assume that ζ is colored (this could be for example the
case of a linear state-space model with process noise as in (2.45)). To construct
a PEM estimator, we need to define a predictor and a norm. Consider the OE
suboptimal predictor defined in (2.42) which ignores any predictable features of
the process ζ, and let us pick `(⋅) = ∥ ⋅ ∥2

2 which is both time- and parameter-
independent. Then, the PEM problem is defined by the unweighted nonlinear
least-squares problem

min
θ∈Θ

N

∑
t=1

∥et(θ)∥2
2

such that et(θ) = yt − ŷt∣t−1(θ),
ŷt∣t−1(θ) = G(q, θ)ut, t = 1, . . . ,N.

(2.51)

The limiting estimate of the resulting estimator can be checked by applying
Parseval’s relation to the cost function (see [92, Section 8.5, page 266]); it holds
that

θ∗ = arg min
θ∈Θ ∫

π

−π
∣G(eiω, θ○) −G(eiω, θ)∣2Φu(ω)dω + ∫

π

−π
Φζ(ω)dω.

It is evident that when Φu(ω) > 0 ∀ω, and under the identifiability condition

G(eiω, θ○)−G(eiω, θ) = 0 for almost all ω (with respect to Φu(ω)dω) ⇒ θ○ = θ

it holds that θ∗ = θ○. Therefore, the estimator defined by (2.51) for data coming
from (2.50) is consistent.
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PEM when it is not ML

Even though the estimator defined by the PEM in Example 2.4.4 is consistent, it
does not coincide with the MLE. We note here that the predictor is defined using
only the first moment of y and an exact full probabilistic model is not required. It is
of interest to observe that the PEM still solves a likelihood problem which happens
to be misspecified. To clarify this point, we look at the choices made by the PEM
(in terms of the predictor and the used norm) and examine their implications if the
PEM problem is to coincide with an ML problem.

First, for the used predictor to coincide with a conditional mean, the data should
be generated according to a data-generation mechanism

yt = G(q, θ)ut + ζ̃t

in which ζ̃ is a zero mean independent process. Second, for the objective function of
the PEM problem (2.51) to match a likelihood function, the relation (2.37) has to
be satisfied. This occurs if ζ̃ is a Gaussian process with a constant variance which is
θ-independent; that is (for a scalar signal)

p(ζ̃t) =
1

(2πσ2)N2
exp(− 1

2σ2 ∥ζ̃t∥
2
2) , ∀t ∈ Z. (2.52)

This would imply that y is an independent Gaussian process with a mean function
mt(θ) = G(q, θ)ut and a constant (θ-independent) variance. Under this model, the
(misspecified) likelihood function of θ is

p̃(Y ; θ) =
N

∏
t=1
pζ̃(yt −G(q, θ)ut). (2.53)

Solving the misspecified ML estimation problem is equivalent to solving the mini-
mization problem

min
θ

N

∑
t=1

∥yt −G(q, θ)ut∥2
2 (2.54)

where all the θ-independent terms are dropped. This problem coincides with problem
(2.51) formulated by the PEM. In Chapter 4, we will extend this notion to stochastic
nonlinear models.

Before we summarize this chapter, we formulate the main problem of the thesis.
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2.5 Problem Formulation

Assume that a finite data set DN of known inputs and observed outputs,
as defined in (2.29), is given such that

1. the outputs are generated according to a discrete-time stochastic
parametric nonlinear dynamical model, as defined in Definition
2.10, with a (true) parameter θ○ ∈ Θ.

2. the unobserved stochastic process {ζk} follows a well-defined
distribution which can be parameterized (possibly independently)
by θ○ ∈ Θ.

The objective is to construct (approximations of) consistent estimators
of θ○,

DN ↦ θ̂(DN).
The focus lies on the Maximum Likelihood Estimator (Definition 2.4.2),
and on possible consistent instances of the PEMs family (Definition
2.4.4).

2.6 Summary

In this chapter, we summarized the necessary background and made several important
remarks. In Section 2.1, we introduced a stochastic framework for the signals and
defined both parametric linear and nonlinear models in discrete-time. We presented
Wold’s decomposition of a class of non-stationary processes in Theorem 2.1.6. In
Section 2.3, we defined estimators and their properties. In Section 2.4, we defined
the two estimation methods that concern us: the Maximum Likelihood Method and
the family of Prediction Error Methods. We presented several examples of both
methods for parametric linear models. Finally, in Section 2.5, we formulated the
main problem of the thesis.



Chapter 3

Approximate Solutions to the ML Problem

As argued in Chapter 1, the parameter identification problem of the general models
defined in (2.10) is challenging due to the intractability of the objective functions
defining the estimators. In this chapter, we will explore approaches to approximate
solutions to the MLE problem, or equivalently the optimal instance of the PEMs.
We first start in Section 3.2 by presenting the methods that can be used for
tractable models. The goal is to identify the intractable quantities that would
require approximations. In the latter sections, we study several possible analytic
and numerical approximate algorithms. The intention here is not to promote the
use of these methods, but to understand the fundamental difficulties of the problem.

3.1 Introduction

Recall that the MLE and the PEM estimators are defined by an optimization
problem,

θ̂ ∶= arg max
θ∈Θ
J (DN , θ)

for some objective (cost) function J (in the case of the PEMs, it is equivalent to
maximize the negative of the sum in (2.33)). Our goal is to study approximate
solutions to the problem when the objective function is analytically intractable due
to the involved multidimensional integrals (see Section 1.2.2).

It is important to understand that we are not interested in the objective function
itself, but in the set of (global) maximizers. Note that even for tractable models,
where J can be written in closed-form, the maximizers are usually not available in
closed-form due to complex model parameterizations. Hence, numerical optimization
routines are required in general. Methods applicable to intractable models com-
bine iterative numerical optimization with analytic or numerical approximation of
intractable quantities.

In this thesis, we are only considering a subclass of numerical optimization
algorithms based on local explorations, known as hill-climbing methods. These
are iterative numerical optimization methods that start at an initial feasible point

41
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θ(0) ∈ Θ, then attempt to find (according to a well-defined mathematical strategy)
another candidate point in the parameter space. The method iterates over this
parameter update step until convergence. In practice, convergence means that no
further improvement can be achieved, a specific tolerance for some condition is met
or a maximum number of iterations is reached. Such methods do not guarantee that
the algorithm returns a global maximizer; they can only guarantee convergence to
a local maximizer, or sometimes only to a stationary point. For this reason, the
initial point θ(0) has to be chosen carefully, and initialization methods with the sole
purpose of finding a good θ(0) are usually needed.

The mathematical formalism of iterative numerical optimization methods assigns
to each algorithm a point-to-set mapping θ ↦ A(θ) ⊂ Θ, see for example [94,
Chapter 7]. The algorithm then generates a sequence of points {θ(i)} according to
the iterations θ(i+1) ∈ A(θ(i)) in which i ∈ N0. From this point of view, it is clear
that the key for achieving the aim that we set for ourselves (see Section 2.5) is
the mapping A and not the objective function J itself. The hill-climbing methods
considered in this thesis are algorithms that are applicable when the likelihood
function and its gradient are available in closed-form. They can be divided into
direct optimization methods or Minorization-Maximization methods.

Direct optimization methods can be divided into: (i) derivative-free algorithms,
and (ii) gradient-based algorithms. In derivative-free optimization, the mapping A
relies only on evaluations of the objective function at several points that depend on
the current value θ(i). In this case, approximating A requires the approximation
of the objective function at the given points. A commonly used derivative-free
algorithm is the Nelder-Mead algorithm (see [103]). On the other hand, the mapping
A of gradient-based algorithms relies on the gradient of the objective function
and possibly on the Hessian matrix. Approximating A in this case requires at least
approximations of the gradient of the objective function. Depending on the algorithm,
it might also need evaluations of the objective function itself. A commonly used
gradient-based algorithm is the quasi-Newton algorithm (see [94, Chapter 10]).

An alternative to direct optimization methods is methods based on Minorization-
Maximization algorithms, such as the celebrated Expectation-Maximization
algorithm, originally introduced in [29]. These methods replace the original objective
function by a surrogate function supposedly easier to maximize. The surrogate
function is chosen such that the sequence {θ(i)} converges to a local maximizer of
the original objective function.

In any case, the approximate solutions are developed by approximating the
mapping A of the used algorithm either analytically or numerically. They may
require an approximation of the objective function, its gradient or another quantity
like a surrogate function for example.

In this chapter, we are only considering the MLE problem. As shown in Chapter
2, the optimal instance of the PEMs is related to the MLE; hence, all the developed
approximations in this chapter can also be seen as approximations of the optimal
instance of the PEMs. Our goal is to study possible approximations of the MLE
for intractable models. As shown in the next section, approximations of the MLE



3.1. Introduction 43

require approximations of PDFs over high-dimensional spaces, which makes the
problem computationally expensive. Later in Chapter 4, we will describe a PEM
that can be used to construct computationally attractive consistent estimators.

We will constrain the general model

yt = ft({uk}t−1
k=1,{ζk}tk=1; θ), t = 1,2, . . . ,N,

given in Definition 2.1.8, to cases where the unobserved process is

ζt = [ζ̃⊺t w⊺
t v⊺t ]

⊺

,

in which w = {wt} and v = {vt} are independent and mutually independent white
noise. The process w models any latent process (such as the process disturbance in
state-space models), and the process v represents measurement noise. If required, ζ̃
can be used to model unknown initial conditions (like x0 for state-space models)
and it is assumed to be independent of both w and v.

To be able to simplify the exposition, we will assume that ζ̃t is known for all
t ∈ Z or lumped together with wt. Define the column vectors

Y ∶= [y⊺1 . . . y⊺N]
⊺

∈ LdyN2 , U ∶= [u⊺1 . . . u⊺N−1]
⊺

∈ Rdu(N−1),

W ∶= [w⊺
1 . . . w⊺

N]
⊺

∈ LdwN2 , V ∶= [v⊺1 . . .v⊺N]
⊺

∈ LdyN2 .

and note that we will omit the dependence on the inputs U from all the notations.

The methods of this chapter require the following assumption:

Assumption 3.1.1. The joint PDF

p(Y ,W ; θ) (3.1)

has a known analytical form, parameterized by θ ∈ Θ.

This assumption is not very restrictive, however. It holds for a wide range of
interesting models; for example, state-space models with known forms for the state
and the output equation and known PDFs for the initial state, process disturbance,
and the measurement noise (see (2.12) and (2.17)). It may also be satisfied for
non-Markovian models, such as switching systems and conditionally linear Gaussian
state-space models (see [20]).

Observe that, in general, the joint PDF in (3.1) can be factored as

p(Y ,W ; θ) = p(Y ∣W ; θ)p(W ; θ). (3.2)

The assumption that ζ follows a known distribution (see Section 2.5) implies that
p(W ; θ) is a known PDF, and Assumption 3.1.1 requires the conditional PDF
p(Y ∣W ; θ) to be known. This holds in the following scenarios:
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1. The model is given by the relations

yt = ft({uk}t−1
k=1,{wk}tk=1; θ) + vt, t = 1, . . . ,N,

i.e., the measurement noise is additive. In this case, the output vector can be
written in terms of a well-defined mapping M,

Y =M(U,W ; θ) +V ,

and for any realizations Y and W

p(Y ∣W ; θ) = pV (Y −M(U,W ; θ); θ).

2. If the measurement noise v is not additive, we assume that it is possible
to evaluate a derived (conditional) density for Y given W ; see for example
[64, Theorem 2.7]. This assumption restricts the models to those that can be
(conditionally) inverted with respect to vt.

Because W is not observed, the PDF of the output vector Y has to be calculated
by marginalization, namely

p(Y ; θ) = ∫
RdwN

p(Y ,W ; θ)dW. (3.3)

Using (3.2), we have
p(Y ; θ) = EW [p(Y ∣W ; θ); θ] ,

in which we used the notation EW [⋅; θ] to denote the expectation with respect to
the distribution of the random quantity W . The notation indicates that, in general,
the distribution of W is θ-dependent. The ML estimate (see Definition 2.4.2), is
then given by

θ̂ = arg max
θ∈Θ

E [p(Y ∣W ; θ); θ]

where the function to be maximized is defined by a multidimensional integral and is
generally not available in closed-form.

A key quantity

A key quantity for most of the algorithms is the posterior PDF of W which we
denote by p(W ∣Y ; θ)1. To appreciate the importance of this PDF, observe that

p(Y ; θ) = p(Y,W ; θ)
p(W ∣Y ; θ) (3.4)

for any feasible Y and θ, and that the right-hand side is independent of any specific
value of W . Thus, if the PDF p(W ∣Y ; θ) is known, the likelihood of θ for any
given realization Y is given by the fraction p(Y,W ; θ)/p(W ∣Y ; θ) with any arbitrary
value W in the support of p(W ; θ). Under Assumption 3.1.1, the numerator of this
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fraction is known. Consequently, determining the likelihood function is as hard as
determining the posterior of W . As we will shortly see, most of the algorithms shift
the difficulty of the problem from the likelihood function to the posterior of W .

Because neither θ nor p(W ∣Y ; θ) are known, most of the algorithms iterate
conditionally between both: conditioned on a candidate value θ(i) the algorithms
compute (an approximation of) p(W ∣Y ; θ(i)) or a value for W and then use it to
generate the next candidate θ(i+1), and so on.

3.2 Algorithms for Tractable Models

Before discussing any approximation approaches, we describe two main algorithm
types that can be used to solve the ML (or the Maximum A-Posteriori) problem
when the posterior of W , or the likelihood function and its gradient, possess a known
analytic form: the Expectation-Maximization algorithms and the gradient-based
algorithms. In some cases, one of the two types might be preferred over the other.
For example, if the model is simple enough, the Expectation-Maximization algorithm
can have closed-form iterations and does not require the explicit evaluation of the
gradient vector; however, it is also known that it is much slower compared to the
quasi-Newton algorithm for example.

3.2.1 The Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is an iterative (hill-climbing)
algorithm, used to solve the ML estimation problem when the likelihood function is
written in terms of a marginalization integral (see for example (3.3)). The algorithm
is originally due to [29], it was published in 1977 and has been extensively used in
the statistical inference community (cited by more than 50,000 articles/books2).

The main idea of the EM algorithm is to break the main optimization problem
into two simpler related problems. In the first one, it is assumed that θ is known and
the algorithm computes a distribution for the unobserved (missing) vector W , and
in the second one, it is assumed that such a distribution is given and the algorithm
computes a value for θ by solving a maximization problem. To explain the idea, first
observe that

p(W ∣Y ; θ) = p(Y,W ; θ)
p(Y ; θ) , (3.5)

and therefore
log p(Y ; θ) = log p(Y,W ; θ) − log p(W ∣Y ; θ). (3.6)

1For brevity, we will refer to this PDF as “the posterior of W ”. It is also known as “the
smoothing density of W ”.

2Estimated by Google Scholar’s index as of November 2017.



46 Approximate Solutions to the ML Problem

Assume that a value θ(i) is given and use the model to evaluate the conditional
density p(W ∣Y ; θ(i)). By integrating (3.6) with respect to p(W ∣Y ; θ(i)) we get that

log p(Y ; θ) = E[log p(Y,W ; θ)∣Y ; θ(i)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Q(θ,θ(i))

−E[log p(W ∣Y ; θ)∣Y ; θ(i)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶V(θ,θ(i))

. (3.7)

The quantity

Q(θ, θ(i)) = ∫
RdwN

log p(Y,W ; θ)p(W ∣Y ; θ(i))dW (3.8)

is known as the intermediate quantity (or the Q-function) of the EM algorithm.
It is a real-valued function over Θ, indexed by θ(i). The step of evaluating the
intermediate quantity is known as the Expectation step (E-step) of the algorithm.
The quantity

−V(θ, θ(i)) = ∫
RdwN

− log p(W ∣Y ; θ)p(W ∣Y ; θ(i))dW

is known as the entropy of p(W ∣Y ; θ(i)). The increment (V(θ(i), θ(i)) − V(θ, θ(i)))
is the Kullback-Leibler divergence (relative entropy) between p(W ∣Y ; θ(i)) and
p(W ∣Y ; θ) and is always nonnegative, see [24] for example.

Using (3.7), it holds that

log p(Y ; θ) − log p(Y ; θ(i)) = (Q(θ, θ(i)) −Q(θ(i), θ(i))) + (V(θ(i), θ(i)) − V(θ, θ(i))) .

Therefore, for every value θ(i+1) such that Q(θ(i+1), θ(i)) −Q(θ(i), θ(i)) ≥ 0 it holds
that

log p(Y ; θ(i+1)) − log p(Y ; θ(i)) ≥ 0. (3.9)
The EM algorithm as introduced in [29] defines θ(i+1) as the global maximizer
of Q(θ, θ(i)) over Θ. This guarantees that the inequality (3.9) is satisfied and it
means that the EM algorithm is a monotone optimization algorithm. The step of
computing θ(i+1) is known as the Maximization step (M-step) of the algorithm.
Iterating over the above two steps will result in a sequence {θ(i)} mapped by the
likelihood function into a nondecreasing sequence of positive reals.

In summary, the EM algorithm is given by the iterations θ(i+1) ∈ A(θ(i)) where

A(θ(i)) ∶= {θ ∈ Θ ∶ θ ∈ arg max
θ∈Θ

Q(θ, θ(i))}. (3.10)

The procedure is illustrated in Figure 3.1 and summarized in Algorithm 1. We
summarize the monotonicity property of the algorithm in the following theorem.

Theorem 3.2.1 (Monotonicity of the EM algorithm). The sequence {θ(i)} defined
by Algorithm 1 satisfies

p(Y ; θ(i+1)) ≥ p(Y ; θ(i)), for every realization Y, i ∈ N0

and the equality holds if and only if Q(θ(i+1), θ(i)) = Q(θ(i), θ(i)).
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{θ(i)}θ(i)

Q(θ, θ(i))

E
[
log p(Y,W ; θ)|Y ; θ(i)

]
argmax

θ
Q(θ, θi)

Initialization

θ(0)

Figure 3.1: Illustration of the EM algorithm.

Proof. The proof (sketched above) is due to Dempster et al. [29]. Also see [98].

Notice that the theorem does not guarantee that the sequence {θ(i), i ∈ N0}
converges to a maximum likelihood estimate. Further conditions on the mapping A
in (3.10) are required to ensure the convergence to a stationary point. For details
on these conditions we refer the reader to [16, 149]. Observe however that even
under such conditions, the convergence is guaranteed only to a stationary point
of the likelihood function. Additional conditions on the intermediate quantity can
guarantee the convergence to a local maximum, but the available conditions are
not easy to verify in practice. In any case, the EM algorithm is usually run several
times with different (may be arbitrary) starting points θ(0) to avoid convergence to
undesirable stationary points.

Algorithm 1: The Expectation-Maximization (EM) algorithm [29].
input : an initial guess θ(0), the data (Y,U), the conditional (smoothing)

PDF p(W ∣Y ; θ), and a convergence (stopping) criterion
output : an approximate local maximum of the likelihood function θ̂

1 Initialize θ(i) and set index i← 0
2 while not converged do
3 E-step: Compute Q(θ, θ(i)) = E[log p(Y,W ; θ)∣Y ; θ(i)]
4 M-step: Compute θ(i+1) = arg max

θ∈Θ
Q(θ, θ(i))

5 i← i + 1
6 end
7 Set θ̂ = θ(i)
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3.2.2 Gradient-based Algorithms

An alternative to the EM algorithm is the family of gradient-based optimization
methods. Two of the many comprehensive references on general numerical optimiza-
tion algorithms are [108] and [94].

In this part, we will briefly discuss (i) the steepest ascent algorithm, and (ii)
Newton’s algorithm. Both are iterative hill-climbing algorithms that target local
solutions. The focus is on describing the quantities needed within the iterations
of the algorithms. We will only look at unconstrained problems and assume the
existence of the gradient vector ∇θp(Y ; θ) and the Hessian matrix ∇2

θp(Y ; θ) of the
likelihood function with respect to the vector θ. To keep the notation uncluttered,
we will use the notation ∇θp(Y ; θ(i)) to denote the value of the gradient at θ(i)
instead of the explicit notation ∇θp(Y ; θ)∣θ=θ(i) . A similar notation is used for the
Hessian matrix.

The steepest ascent algorithm

The steepest ascent algorithm is one of the simplest gradient-based methods for
optimization. It is based on the recursive formula

θ(i+1) = θ(i) + α∇θp(Y ; θ(i))

in which the step size α is a small non-negative real number. For such a fixed step
size, the algorithm only needs evaluations of the gradient. However, to guarantee
the global convergence, i.e., convergence for all possible starting points θ(0), with
optimal rate, the step size α should be adaptively computed for each iteration.
Ideally, it should be computed by solving the line-search problem

αi = arg max
α∈R+

p(Y ; θ(α))

such that θ(α) = θ(i) + α∇θp(Y ; θ(i)).
(3.11)

However, solving this optimization problem for each iteration is computationally
expensive. Notice that, in general, a solution to this problem will not be available in
closed-form. Furthermore, it requires the evaluation of the likelihood function at
candidate values θ(α).

In practice, an inexact line-search method, like backtracking (see [108, Chapter
3]), is used in almost every case. Inexact algorithms check a given set of conditions
at several values of α and select the first value that satisfies the conditions. For this,
evaluations of the likelihood function and its gradient are required.

Another possible method for step size selection is the Barzilai and Borwein
method [9] which solves, instead of (3.11), a quadratic problem (in α) with a closed-
form solution. Even though this leads to a non-monotone method, global convergence
can be established in the quadratic case (in θ, see [9]). In the general case however,
the step size computed using Barzilai and Borwein method may be unacceptable
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and it must be modified to establish the convergence of the algorithm (see [56]). For
this, evaluations of the likelihood function and its gradient are again required.

In summary, the algorithm is given by the iterations θ(i+1) ∈ A(θ(i)) where

A(θ(i)) ∶= {θ ∈ Θ ∶ θ = θ(i) + αi∇θp(Y ; θ(i))},

in which αi is computed by an inexact line-search method. This may require many
evaluations of the likelihood function for each iteration. The convergence rate of the
steepest ascent is known to be slow (linear) and with access to evaluations of the
likelihood function and its gradient, better and faster algorithms can be used.

Newton’s algorithm

Newton’s method is based on a second-order approximation of the likelihood gradient;

∇θp(Y ; θ) ≈ ∇θp(Y ; θ̃) + ∇2
θp(Y ; θ̃)(θ − θ̃). (3.12)

The first order condition ∇θp(Y ; θ) = 0 is approximated by the relation
θ = θ̃ −∇2

θp
−1(Y ; θ̃)∇θp(Y ; θ̃) and therefore the algorithm is based on the recursive

formula
θ(i+1) = θ(i) − [∇2

θp(Y ; θ(i))]
−1
∇θp(Y ; θ(i)).

To guarantee desirable convergence properties, see [108, Theorem 3.5], the method
is usually modified by introducing a small step size αi such that

θ(i+1) = θ(i) − αi [∇2
θp(Y ; θ(i))]

−1
∇θp(Y ; θ(i)).

Similarly to the steepest ascent algorithm, the step size is to be computed for each
iteration and it requires evaluations of the likelihood function at several candidate
points θ(α).

The convergence rate of Newton’s algorithm is quadratic3 and therefore is
recognized to be very efficient. However, its application is hindered by a numerical
difficulty.

The implementation of the Newton’s algorithm is prone to numerical instability
due to possible non-invertible or poorly conditioned Hessian matrices. In addition,
computing and inverting the Hessian matrix adds to the required computational
effort. Fortunately, there are several methods that can be used to alleviate such
difficulties, one of which is the quasi-Newton method. The idea is to approximate
the inverse of the Hessian matrix directly by a positive definite weight matrix Hi

computed based on gradient evaluations. One commonly used approximation is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximation, see [94, Chapter
10] or [108, Chapter 6]. Although such an approximation is based only on gradient
evaluations, the line-search of the quasi-Newton algorithm requires the evaluation
of the likelihood function at several candidate points.

3See [108, Section 3.3] for the definition and details of convergence rates of iterative optimization
algorithms.
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In summary, the algorithm is given by the iterations θ(i+1) ∈ A(θ(i)) where

A(θ(i)) ∶= {θ ∈ Θ ∶ θ = θ(i) + αiHi∇θp(Y ; θ(i))}

in which αi is computed by an inexact line-search method, and Hi is an approxima-
tion of the Hessian inverse.

The quasi-Newton algorithm is preferred over the steepest ascent algorithm for
nonlinear problems due to its faster convergence. The algorithm is illustrated in
Figure 3.2.

{θ(i)}θ(i)

αi, Hi , ∇θp(Y ; θ(i))

Initialization

θ(0)

Find αi [needs p(Y ;θ(α))],

Evaluate ∇θp(Y ; θ(i)), and Hi

θ(i+1) = θ(i) + αiHi∇θp(Y ; θ(i))

Figure 3.2: Illustration of the quasi-Newton algorithm.

Log-likelihoods versus Likelihoods

When gradient-based algorithms are used to solve the ML problem, it is usually
recommended from a numerical point of view to work with the logarithm of the
likelihood function (log-likelihood). We give two reasons for this.

The first is related to the tractability of the values of the objective function. To
clarify this point, assume that the number of samples N is large, and the output
yt is independent over time. Then for any realization Y the value of the likelihood
function at θ is given by p(Y ; θ) = ∏N

t=1 p(yt; θ) in which, for several t, the value
p(yt; θ) might be small. This means that the value p(Y ; θ) will be very small. If
N = 100 and each term of the product is around 0.4, this value is 0.4100 ≈ 1.6× 10−40

which is less than machine precision. The use of the logarithm turns the product
into sums and produce tractable numbers; 100 log(0.4) ≈ −91.62.

The second reason is related to the scale of the gradient. The gradient of the log-
likelihood function is usually well-scaled compared to the gradient of the likelihood
function. This is evident in cases where p(Y ; θ) ∝ exp (−ϕ(Y, θ)) for some positive
function ϕ. In such cases, ∇θp(Y ; θ) = −p(Y ; θ)∇θϕ(Y ; θ) will take very small values.
On the other hand

∇θ log p(Y ; θ) = ∇θp(Y ; θ) 1
p(Y ; θ) , (3.13)

which is a scaled version of the gradient of the likelihood function, and will usually
assume tractable values.
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As will become clear in what follows, regardless of the used algorithm, working
with the log-likelihood function and its gradient requires the knowledge of the
posterior PDF p(W ∣Y ; θ). Whenever the involved integrals are written with respect
to the (known) prior p(W ; θ), the involved quantities have to be multiplied by the
conditional likelihood function p(Y ∣W ; θ) which leads to numerical difficulties.

To conclude this part, we compare the EM algorithm to the quasi-Newton
algorithm.

The EM algorithm versus the quasi-Newton algorithm

As described above, the EM algorithm indicates that p(W ∣Y ; θ) is a key ingredient.
Unfortunately, according to the assumed model, this PDF is not always available
in closed-form. The EM algorithm is expected to be very helpful in cases where
the following two conditions hold: (i) it is possible to evaluate the intermediate
quantity (i.e., compute the E-step) at a reasonable computational cost, and (ii)
the intermediate quantity has a sufficiently simple form to allow for a closed-form
solution of the M-step. Usually, see [98, Section 1.5.3], these two conditions hold
when the joint PDF p(Y ,W ; θ) is a member of the exponential family (see [123]
for detailed definition and properties of the exponential family of distributions). In
such cases, the intermediate quantity takes the form

Q(θ, θ(i)) ∝ β⊺(θ)E[s(Y,W )∣Y ; θ(i)] − c(θ) (3.14)

in which s is a natural sufficient statistic, the E-step reduces to the conditional
expectation of s, and the M-step is available in closed-form whenever

arg max
θ∈Θ

β⊺(θ)S − c(θ)

takes a closed-form for every given vector S. In this situation, the EM algorithm
is known to be parameterization-independent or scale-free. This means that for
any one-to-one transformation of θ, the EM iterations remain unchanged and the
convergence rate of the EM algorithm is not affected. Furthermore, for cases with
a simple M-step, it is possible to consider constraints implicitly by introducing
Lagrange multipliers (see [94, Chapter 11]).

In cases where the E-step is computationally expensive and/or the M-step is
a complicated maximization problem by itself, it is not clear whether the EM
algorithm is advantageous or not. Nevertheless, observe that the EM algorithm does
not really need a (local or global) maximizer in the M-step. Instead, it requires any
point θ(i+1) such that Q(θ(i+1), θ(i)) > Q(θ(i), θ(i)), see (3.9). Several options have
been suggested in the literature to overcome the intractability of the M-step. One
possibility is to use conditional maximization (see [99]). Another option is to use only
one step of a Newton’s method in the M-step (see [76]). It has also been noticed that
the EM algorithm seem to avoid local minima of (erratic) log-likelihood functions
(see [107, Section 3.4]). The argument used to explain this behavior is that the
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intermediate quantity forms a global approximation of the log-likelihood function,
unlike the local approximations (see (3.12)) that are implicit to gradient-based
algorithms.

In several other cases, the quasi-Newton algorithm might be preferred, especially
if it does not require an additional maximization step within its iterations. Due to the
use of (an easy to compute) approximation of the Hessian matrix, the quasi-Newton
algorithm might also reach quadratic convergence and is usually faster than the EM
algorithm when the dimension of θ is large or the variance of W is small. On the
other hand, there exist several suggestions for accelerating the convergence of the
EM algorithm using the Hessian matrix (see [76, 77] for example).

Table 3.1: Summary of the required quantities at each iteration for the Expectation-
Maximization algorithm and the quasi-Newton algorithm.

Expectation-Maximization quasi-Newton (BFGS)

Needed quantities
per iteration

p(W ∣Y ; θ(i)), arg max
θ∈Θ

Q(θ, θ(i))
(see (3.5) and (3.8))

∇θp(Y ; θ(i)), p(Y ; θ̃)
for several θ̃ (see (3.3))

We have summarized the findings regarding the required quantities for the
EM and quasi-Newton algorithms in Table 3.1. In what follows, we will discuss
possible approximations of these quantities and test the corresponding algorithms on
relatively simple models with analytically intractable likelihood functions. We first
start with analytical approximations and then consider numerical approximations.

3.3 Analytical Approximations

All the values in Table 3.1 are given in terms of intractable multidimensional
integrals. Analytical approximations of multidimensional integrals have long been
used to approximate various quantities in mathematical physics and statistics. Once
an approximation is obtained, the original problem usually simplifies considerably,
and closed-form solutions based on the obtained approximation might be available.
However, there is in general no way to exactly evaluate the accuracy of the resulting
approximations.

Laplace’s approximation method (named after Pierre-Simon Laplace (1749–1827))
is a technique that originally appeared in [78] where it aimed at approximating a
particular instance of the one-dimensional integrals of the form

∫
b

a
h(t) exp (−λM(t))dt, a, b ∈ R ∪ {∞,−∞} (3.15)

when λ > 0 is large. Since then, the method has been extended to similar multidi-
mensional integrals in addition to contour integrations (see [37]). The basic idea
of the approximation is that large contributions to the value of the integral occur
at values of t around the (assumed unique) minimizer of M(t). Let us denote the
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minimizer by t⋆, then Laplace’s approximation of (3.15), under some conditions (see
[37, Section 4.3.3]), is given by the value

√
2π

λM ′′(t⋆) h(t
⋆) exp (−λM(t⋆)) .

In statistical inference, Laplace’s approximation method has been used in a
Bayesian framework to approximate posterior PDFs of parameter vectors of fixed
dimension by using a multivariate Gaussian density (see [141] for example). This
can be motivated by the asymptotic normality of posteriors that holds under some
regularity conditions (see [123, Theorem 7.89]). Laplace’s approximation method
can also be used to approximate Bayes factors, which are used for model selection
and comparison, by approximating the marginal PDF of the data (see [123, Theorem
7.166]) and may be used to motivate the Bayesian information criterion (see [15,
Section 4.41]).

In this thesis, the ideas of Laplace’s approximation are used to approximate
both the posterior PDF p(W ∣Y ; θ) and the value of the likelihood function p(Y, θ)
for a given θ. Before describing the method, we make the following assumption.

Assumption 3.3.1. For every given Y and θ ∈ Θ, the function, p(Y,W ; θ) is twice
continuously differentiable with respect to W .

Now, recall that Bayes’ theorem states that

p(W ∣Y ; θ) = p(Y,W ; θ)
p(Y ; θ) . (3.16)

Under Assumption 3.1.1, the numerator in (3.16) is known in closed-form, but not
the normalizing factor (the likelihood function).

To define an approximation of the posterior we proceed as follows. For a given
candidate value θ and a realization Y , we first find a mode of the posterior by
computing

arg max
W

p(W ∣Y ; θ) = arg max
W

p(Y,W ; θ)
p(Y ; θ) = arg max

W
p(Y,W ; θ). (3.17)

Let us denote any local maximizer4 of (3.17) by Ŵ (θ) and any global maximizer
by ŴMAP(θ). By definition, the vector ŴMAP is a Maximum a Posteriori (MAP)
estimate of the unobserved W (see [118, Section 4.1.2]). Note that the maximizer
depends on θ (and of course on the realization Y ). Furthermore, define the matrix

Π(Ŵ (θ), θ) ∶= ∇2
W log p(Y,W ; θ)∣

W=Ŵ (θ)
,

and observe that for every local maximizer Ŵ (θ) it must hold that Π(Ŵ (θ), θ) ≺ 0.

4Also known as a “mode” of the PDF. A PDF is called “uni-modal” if it has a single mode. If
it has two or more modes, it is called “bi-modal” or “multi-modal” respectively.
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The posterior PDF

The next step is to write the second-order Taylor approximation of log p(Y,W ; θ)
around a local maximum Ŵ (θ). It holds that

log p(Y,W ; θ) ≈ log p(Y, Ŵ (θ); θ) + 1
2
(W − Ŵ (θ))⊺Π(Ŵ (θ), θ)(W − Ŵ (θ)).

Notice that the first-order term is equal to zero because Ŵ (θ) is a local maximum.
This implies that

p(Y,W ; θ) ≈ p(Y, Ŵ (θ); θ) exp(1
2
(W − Ŵ (θ))⊺Π(Ŵ (θ), θ)(W − Ŵ (θ))) . (3.18)

Because p(W ∣Y ; θ), as a PDF for W , is proportional to p(Y,W ; θ) (see (3.16)), we
get an approximation of the posterior of W if we normalize the right-hand side
of (3.18). Since the argument of the exponential function on the right-hand side is
quadratic in W , we can use standard results for the normalization of multivariate
Gaussian distributions (see Appendix C) to obtain the Gaussian approximation

p̃(W ∣Y ; θ) = N(Ŵ (θ),Σ(Ŵ (θ), θ)) (3.19)

in which the mean is given by Ŵ (θ), and the covariance matrix is

Σ(Ŵ (θ), θ) ∶= −Π−1(Ŵ (θ), θ) ≻ 0. (3.20)

The likelihood function

The approximation in (3.18) can also be used to obtain an approximation of the
likelihood function of θ at Y (the normalization constant in (3.16)). Recall that the
likelihood function is given by the marginalization integral (3.3), seen as a function
of θ with fixed realization Y . To get the required approximation, we instead solve
the tractable integral

∫ p(Y, Ŵ (θ); θ) exp(1
2
(W − Ŵ (θ))⊺Π(Ŵ (θ), θ)(W − Ŵ (θ)))dW.

By using standard results on Gaussian integrals and observing that the first factor
of the integrand is independent of W , we get the approximation

p̃(Y ; θ) = p(Y, Ŵ (θ); θ) ⋅
√

(2π)dwN
√

det (Σ(Ŵ (θ), θ)), (3.21)

or alternatively

log p̃(Y ; θ) = log p(Y, Ŵ (θ); θ) + dwN
2

log(2π) + 1
2

log det(Σ(Ŵ (θ), θ)). (3.22)

The above approximations of the posterior of W and the likelihood function imply
the following approximation for the joint PDF (evaluated at Y )

p(Y,W ; θ) ≈ p̃(Y,W ; θ) ∶= p̃(Y ; θ)p̃(W ∣Y ; θ). (3.23)
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We summarize several observations on Laplace’s approximation in the following
remark.

Remark 3.3.2 (Properties of Laplace’s approximation).

• Laplace’s approximations of p(Y,W ; θ) and p(Y, θ) are θ-dependent. Therefore,
when used in conjunction with an iterative optimization algorithm, such as the
EM or the quasi-Newton algorithm, new approximations have to be computed
for each new candidate θ(i). To avoid evaluating (3.17) many times, algorithms
that require the least number of iterations would be preferred.

• Laplace’s approximation depends on how the unobserved process is modeled.
For example, if the model has a latent (state) process X that depends on W, the
approximation of the likelihood function that we compute based on p(Y,W ; θ)
(see (3.21)) is generally different from the one that would be obtained based on
p(Y,X; θ). Observe that if θ is considered known, one can look at W and X
as different “parameterizations” of the model.

• Since the dimension of the vector W depends on the data size N , the pos-
terior p(W ∣Y ; θ) does not concentrate as N increases; it does not approach
a Gaussian PDF for example, and according to the model it might well be a
multi-modal PDF regardless of N .

• Laplace’s approximation is exact if and only if p(Y ,W ; θ) is a multivariate
Gaussian distribution (see Example 3.3.2).

• The basic idea behind Laplace’s approximation assumes that the PDF to be
approximated has one dominant mode. In case of multi-modal posterior PDFs,
the approximation will only provide a local description around one mode.

Next, we will investigate how the approximations (3.19) and (3.21) can be used
to approximate quantities in Table 3.1. We start with the EM algorithm.

3.3.1 Approximate Expectation-Maximization
At iteration i + 1 of the EM algorithm, we are given θ(i) and a corresponding
approximation p̃(W ∣Y ; θ(i)). The E-step is the step of evaluating the integral
defining the intermediate quantity, see (3.8). We will present two ways to proceed
with an approximate solution; they rely on different approximations of the integrand
of (3.8). To simplify the expressions of the intermediate quantity, we will make the
following assumption.

Assumption 3.3.3. The conditional PDF p(Y ∣W ; θ) is Gaussian with a mean
vector µ(W ; θ) and a covariance matrix ΣY (θ). Furthermore, the vector W is
Gaussian such that W ∼ N(0,ΣW (θ)).

Let us first opt for the exact known form of log p(Y,W ; θ) but assume that the
approximation (3.19) is used in lieu of the analytically intractable p(W ∣Y ; θ(i)).
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Proposition 3.3.4. Let the model be subject to Assumption 3.3.3 and assume
that Laplace’s approximation (3.19) of the posterior p(W ∣Y ; θ) is used. Then, the
intermediate quantity of the EM algorithm, Q(θ, θ(i)), up to some θ-independent
terms is given by

Q̂1(θ, θ(i)) ∶= −
1
2

log det(ΣY (θ)) − 1
2
Y ⊺Σ−1

Y (θ)Y

− 1
2

log det(ΣW (θ)) − 1
2
E[µ⊺(W ; θ)Σ−1

Y (θ)µ(W ; θ)∣Y ; θ(i)]

+Y ⊺Σ−1
Y (θ)E[µ(W ; θ)∣Y ; θ(i)] − 1

2
E [W ⊺Σ−1

W (θ)W ∣Y ; θ(i)] .

(3.24)

Proof. By linearity of integrals, (3.8) can be written as a sum of two integrals,

∫ log p(Y ∣W ; θ)p̃(W ∣Y ; θ(i))dW + ∫ log p(W ; θ)p̃(W ∣Y ; θ(i))dW (3.25)

in which the posterior of W is approximated by (3.19). According to Assumption
3.3.3, the first factors of the integrands are

log p(Y ∣W ; θ) = −dyN
2

log(2π) − 1
2

log det(ΣY (θ))

−1
2
(Y ⊺Σ−1

Y (θ)Y − 2Y ⊺Σ−1
Y (θ)µ(W ; θ) + µ⊺(W ; θ)Σ−1

Y (θ)µ(W ; θ))
(3.26)

and

log p(W ; θ) = −dwN
2

log(2π) − 1
2

log det(ΣW (θ)) − 1
2
W ⊺Σ−1

W (θ)W. (3.27)

Ignoring all θ-independent terms in (3.26) and (3.27) and using linearity of integrals
once more, we find that (3.25) is

1
2

log det(ΣY (θ)) − 1
2
Y ⊺Σ−1

Y (θ)Y − 1
2
E[µ⊺(W ; θ)Σ−1

Y (θ)µ(W ; θ)∣Y ; θ(i)]

− 1
2

log det(ΣW (θ)) +Y ⊺Σ−1
Y (θ)E[µ(W ; θ)∣Y ; θ(i)] − 1

2
E [W ⊺Σ−1

W (θ)W ∣Y ; θ(i)]

in which all the expectations are with respect to the Gaussian approximation (3.19)
with θ = θ(i).

The expectations in (3.24) are easy to evaluate only in few cases; for example,
when the outputs are independent and the entries [µ(W ; θ)]i of the mean vector of
Y ∣W are polynomials in wt, see Example 3.3.3. Unfortunately, for the general model
(2.10), the first two expectations are again analytically intractable and further
approximations of these conditional moments are required (using Monte Carlo
simulations for example). The last expectation can be evaluated by observing that

E [W ⊺Σ−1
W (θ)W ∣Y ; θ(i)] = E [tr [Σ−1

W (θ)WW ⊺] ∣Y ; θ(i)]
= tr [E [Σ−1

W (θ)WW ⊺∣Y ; θ(i)]]
= tr [Σ−1

W (θ)(Σ(θ(i)) + Ŵ (θ(i))Ŵ ⊺(θ(i)))]
(3.28)
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where Σ(θ(i)) ∶= Σ(Ŵ (θ(i)), θ(i)), and tr is used to denote the trace operator. In the
first equality, we used the fact that the trace of a product of two or more matrices
is invariant under cyclic permutations, and in the second equality we used the fact
that the trace is a linear operator, and therefore it commutes with the expectation
operator. For a proof of these properties, we refer the reader to any book on matrix
analysis, see for example [62].

An alternative idea is to use approximations for both log p(Y,W ; θ) and
p(W ∣Y ; θ(i)) in (3.8).

Proposition 3.3.5. Assume that p(Y,W ; θ) is approximated by Laplace’s approxi-
mation (3.23). Then, the intermediate quantity of the EM algorithm, Q(θ, θ(i)), up
to some θ-independent terms is given by

Q̂2(θ, θ(i)) ∶= log p̃(Y, Ŵ (θ); θ)

− 1
2
Ŵ ⊺(θ)Σ−1(θ) (Ŵ (θ) − 2Ŵ (θ(i)))

− 1
2
tr [Σ−1(θ)(Σ(θ(i)) + Ŵ (θ(i))Ŵ ⊺(θ(i)))] .

(3.29)

in which Σ(θ) = Σ(Ŵ (θ); θ).

Proof. Observe that according to Laplace’s approximation (3.23) it holds that

log p̃(Y,W ; θ) = log p̃(Y ; θ) + log p̃(W ∣Y ; θ). (3.30)

where the first term on the right hand side is independent of W . Therefore, by
linearity of integrals, (3.8) becomes

log p̃(Y ; θ) + ∫ log p̃(W ∣Y ; θ)p̃(W ∣Y ; θ(i))dW. (3.31)

in which the integral in the second term evaluates to

− dWN
2

log(2π) − 1
2

log det Σ(θ) − 1
2
Ŵ ⊺(θ)Σ−1(θ(i)) (Ŵ (θ) − 2Ŵ (θ(i)))

− 1
2
tr [Σ−1(θ)(Σ(θ(i)) + Ŵ (θ(i))Ŵ ⊺(θ(i)))] .

Adding this value to the expression of log p̃(Y ; θ) in (3.22) gives (3.31).

Notice that defining

Q(θ, θ(i)) = Q̂2(θ, θ(i)) = log p̃(Y ; θ) + ∫ log p̃(W ∣Y ; θ)p̃(W ∣Y ; θ(i))dW,

as suggested in Proposition 3.3.5, corresponds exactly to (3.7) with p replaced by
p̃. This means that using Q̂2(θ, θ(i)) in an EM algorithm will generate a sequence
{θ(i)} such that p̃(Y ; θ(i+1)) ≥ p̃(Y ; θ(i)) and convergence to a stationary point
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of the approximate likelihood p̃(Y ; θ) is guaranteed (see Theorem 3.2.1 and the
associated discussion). The E-step and the M-step of such an algorithm are defined
by maximization problems over W and θ respectively and, in general, will not admit
closed-form solutions. This means that direct maximization of the approximate
log-likelihood log p̃(Y ; θ) over θ using a gradient-based optimization algorithm might
be computationally cheaper. On the other hand, as observed in [106, 107, 125], the
log-likelihood function can exhibit an erratic behavior with many local maxima
creating a difficulty for gradient-based algorithms, and the EM algorithm seems
to be able to avoid these local maxima. One of the given explanations is that the
intermediate quantity is well-behaved in comparison to the erratic log-likelihood
function; however, a thorough understanding of this behavior is still missing and
there exist no guarantees that the EM is better than any other local optimization
algorithm in avoiding local solutions.

When the approximate likelihood function p̃(Y ; θ) is straightforward to maximize
over Θ, an EM algorithm based on Q̂2(θ, θ(i)) does not seem to have advantage
over direct optimization. To clarify this point, we apply the EM algorithm, in the
suggested form considering a trivial (static) model.

Example 3.3.1. Consider the static model

y = θu +w + v

in which θ = 0.7, w and v are standard Gaussian random variables, and u is a
known real number. Assume that we observed only a single sample of y and our
goal is to estimate θ using the MLE. It is trivial to see that

p(y; θ) ∝ exp(−1
4
(y − θu)2)

and therefore the ML estimate is θ̂ = y/u.
Now observe that, since y and w are jointly Gaussian random variables, the

posterior
p(w∣y; θ) ∝ exp(−(w − (−1

2
(y − θu))2)

and
Q(θ, θ(i)) = log p(y; θ) + ∫ log p(w∣y; θ)p(w∣y; θ(i))dw

The integral on the right hand side is easy to evaluate and we find that maxi-
mizing Q(θ, θ(i)) over θ is the same as evaluating

θ(i+1) = arg min
θ

1
2
(y − θu)2 + 1

4
(y − θu)(y − θ(i)u). (3.32)

Therefore, the EM iterations based on Q as written in (3.31) reads

θ(i+1) = y
u
− 1

4
(y − θ(i)u)

u
.
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This is a fixed-point iteration with a limit θ̂ = y/u. The point is that, for such a
simple model, there is no advantage of iterating over (3.32) instead of directly
minimizing the first term in the same equation.

Before describing possible approximations of gradient based algorithms, we summa-
rize the EM algorithm based on Q̂1(θ, θ(i)) in Algorithm 2. The algorithm is first
applied to the case of a linear Gaussian model with latent process (as in (2.25) for
example), and then we perform a simulation study on a simple nonlinear model.

Algorithm 2: An Expectation-Maximization (EM) algorithm based on
Laplace’s approximation of the posterior.

input : An initial guess θ(0), the data (Y,U), and a stopping criterion
output : An estimate θ̂

1 Initialize θ(i) and set index i← 0
2 while not converged do
3 Compute Ŵ (θ(i)) and ΣW (Ŵ (θ(i)), θ(i)) by solving max

W
p(Y,W ; θ(i)).

4 Compute θ(i+1) ∈ arg max
θ∈Θ

Q̂1(θ, θ(i)) (see (3.24))
5 i← i + 1
6 end
7 Set θ̂ = θ(i)

Example 3.3.2 (EM based on Laplace’s approximation for linear Gaussian
models). Consider a linear Gaussian model described by

Y = F (θ)W +V (3.33)
such that

W ∼ p(W ; θ) = N(0,ΣW (θ)), and V ∼ p(V ; θ) = N(0,ΣV (θ)).
For clarity of exposition, we assume that there is no input (U = 0). The general
case with either stochastic (observed) or deterministic input U ≠ 0 is not different
if we assume that U is generated independently of both W and V . The only
changes will appear in the mean of the distributions.

Using standard results for multivariate Gaussian random variables (see
Appendix C), it is easy to see that Y and W are jointly Gaussian such that

Y ∼ p(Y ; θ) = N(0,ΣY (θ)),
W ∣Y ∼ p(W ∣Y ; θ) = N(ŴMAP,ΣW ∣Y (θ)),

in which
ΣY (θ) = F (θ)ΣW (θ)F ⊺(θ) +ΣV (θ),
ŴMAP = ΣW (θ)F ⊺(θ)Σ−1

Y (θ)Y, and
ΣW ∣Y (θ) = ΣW (θ) −ΣW (θ)F ⊺(θ)Σ−1

Y (θ)F (θ)ΣW (θ).
(3.34)
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Laplace’s approximation method requires the computation of (3.17). For the
given model in (3.33), it is easy to see that (note that log p(Y,W ; θ) has the
same stationary points as p(Y,W ; θ))

log p(Y,W ; θ) ∝ −1
2
(Y − F (θ)W )⊺Σ−1

V (θ)(Y − F (θ)W ) − 1
2
W ⊺Σ−1

W (θ)W

∝ Y ⊺Σ−1
V (θ)F (θ)W − 1

2
W ⊺ (Σ−1

W (θ) − F ⊺(θ)Σ−1
V (θ)F (θ))W

which is quadratic in W and therefore has a unique (global) maximizer. To find
it, we compute

∇W log p(Y,W ; θ)∝ Y ⊺Σ−1
V (θ)F (θ)−W ⊺(Σ−1

W (θ) − F ⊺(θ)Σ−1
V (θ)F (θ))−1

,

equate it to zero and solve for W ; we get that

ŴMAP(θ) = (Σ−1
W (θ) − F ⊺(θ)Σ−1

V (θ)F (θ))−1
F ⊺(θ)Σ−1

V (θ)Y. (3.35)

Using the Woodbury formula (see [62, Section 0.7.4]) and a couple of properties
of matrix inverses, it can be shown that the right-hand side of (3.35) and that
of the second row of (3.34) are identical.

To find the covariance matrix of Laplace’s approximation, we evaluate the
Hessian matrix of log p(Y,W ; θ) and observe that

∇2
W log p(Y,W ; θ) ∝ −(Σ−1

W (θ) − F ⊺(θ)Σ−1
V (θ)F (θ)) (3.36)

which is independent of W . A direct application of the Woodbury formula shows
that the negative inverse of (3.36) coincides with the posterior covariance in
(3.34).

Therefore, Laplace’s approximation is in fact exact for linear Gaussian models
and p(W ∣Y ; θ) = p̃(W ∣Y ; θ). This also means that Laplace’s approximation of
the normalizing constant (3.21) coincides with the true likelihood function;
p(Y ; θ) = p̃(Y ; θ). Consequently, Algorithm 1 and Algorithm 2 are equivalent
for linear Gaussian models.

Furthermore, the expectations in (3.24) are available in closed-form:

EW [F (θ)W ∣Y ; θ(i)] = F (θ)Ŵ (θ(i)),
EW [W ⊺F ⊺(θ)Σ−1

Y (θ)F (θ)W ∣Y ; θ(i)] =
tr [Σ−1

Y (θ)F (θ(i)) (ΣW (θ(i)) + Ŵ (θ(i))Ŵ ⊺(θ(i)))F ⊺(θ(i))] .

In the next example, Algorithm 2 is tested on a nonlinear model with bi-modal
posterior using numerical simulations.
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Example 3.3.3 (Stochastic Wiener model with quadratic nonlinearity). Assume
that the data is generated according to the model

xt =
q−1

1 − θq−1ut +wt

yt = x2
t + vt, t = 1, . . . ,N,

(3.37)

in which all the signals are scalar (first order SISO model), θ = 0.7,wt ∼ N(0, λw),
and vt ∼ N(0,1). The input ut is a known realization of ut ∼ N(0,1). Observe
that the posterior of W for this model can be bi-modal due to the quadratic
nonlinearity in the output equation. We assume that w and v are independent
and mutually independent; thus, the outputs are independent over time and it is
possible to approximate the likelihood function arbitrarily well using numerical
integration methods (see Section 3.4). Such an approximation can be used within
a quasi-Newton algorithm to compute the true MLE to an arbitrary accuracy.
In this example, Gauss-Hermite quadrature (see [37, Section 5.3.4]) is used to
compare the true MLE to the estimate of Algorithm 2. Due to the independence
of the outputs, all the expectations defining the intermediate quantity in (3.24)
can be computed in closed form (as functions of the mean and the variance of
(3.19)).

The results of the two algorithms starting from the initial value 0.4 are
shown in Figure 3.3 for N = 100 and the following values for λw ∶ 0.1, 0.3,and 0.6
respectively from left to right.
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Figure 3.3: The quasi-Newton iterations solving the true ML problem are given by
the blue curves, while the iterations of Algorithm 2 are shown in red. The three cases
from left to right are with λw = 0.1,0.3,and 0.6 respectively.

As can be seen from this simulation result, the approximation (for this
example) is acceptable for small variances λw, however when λw is increased
the approximation is not reliable anymore. We also observe that it takes more
iterations for the algorithm to converge. The stopping criterion for this example
was ∣θ(i) − θ(i−1)∣ < 10−3.

These simulation results do not improve if the model is such that the posterior
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is uni-modal. Assume for example that the measurement model is given by

yt = x3
t + vt (3.38)

instead of the quadratic model in (3.37). In this case, the posterior of W is
expected to have one dominant mode. However, if we repeat the same simulation
experiment as above, we get the results shown in Figure 3.4. The approximations
are actually worse and the algorithm takes longer to converge.
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Figure 3.4: The results for the same cases as in Figure 3.3 however for a cubic
measurement model (3.38)

Even though the example is simple enough to allow for an accurate approxi-
mation of the MLE by using numerical integration, Algorithm 2 does not seem
very promising and it is difficult to assess its convergence.

An alternative idea is to use Laplace’s approximation method to directly ap-
proximate the intermediate quantity, instead of first approximating the posterior of
W and then evaluating the involved expectations. For example, an approximation
can be obtained by assuming that only one point has the major contribution to the
value of the integral. We may define the approximation

Q(θ, θ(i)) ≈ Q̂3(θ, θ(i)) ∶= log p(Y, Ŵ (θ(i)); θ)

in which Ŵ (θ(i)) is used. Essentially, this means that we are assuming that the
posterior of W (or the approximation (3.19)) is concentrated around its mean value
(i.e., the covariance is very close to zero). We summarize this idea in Algorithm
3 in which the E-step is replaced by a maximization problem over W . Hence, the
algorithm iterates between two maximization problems and it is easy to see that it
is solving the following “joint” estimation problem

(Ŵ , θ̂) ∶= arg max
W,θ

log p(Y,W ; θ) (3.39)

by maximizing over one variable at a time (i.e., coordinate ascent). This means that
the iterations of an EM algorithm based on the intermediate value Q̂3(θ, θ(i)) will
converge to some value.
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Figure 3.5: Comparison of the MLE, joint MAP estimate as given by Algorithm 3 ,
and the approximate EM algorithm 2

Using an EM algorithm to solve (3.39) would be preferred if maximizing over W
or θ individually is a tractable problem with a closed-form solution. However, in
general, using a quasi-Newton algorithm to directly solve (3.39) is expected to be
faster than Algorithm 3 due to the intractability of the optimization problems over
θ and W .

The idea of joint estimation is quite old (see [25] for example) and it is known
that this estimator (as shown for the linear case in [63]) is not consistent and the
resulting estimator of θ does not coincide with the MLE. On the other hand, it has
been noticed (see [150]) that for short data sizes the estimate of θ given in (3.39)
could be preferable to the MLE in terms of both the bias and the covariance.

Example 3.3.4 (Joint MAP estimation). In this example, we compare Algo-
rithm 2 to Algorithm 3 using the model (3.37) introduced in Example 3.3.3. For
the current example, we have

λw = λv = 1, N = 100, and ut ∼ N(1,1).

The algorithms are terminated once ∥θ(i) − θ(i−1)∥ < 10−5. The simulation results
are shown in Figure 3.5. It shows that the joint MAP estimate comes very close
to the MLE (very slowly with many iterations), while Algorithm 2 still shows
the same speculative behavior observed in Example 3.3.3.

Before moving to the next part, we have the following lemma regarding the interme-
diate quantity. It is interesting to observe that in order to approximate the iterations
of the EM algorithm (see (3.10)), we do not actually need to evaluate the value of
the Q-function itself; it is sufficient to evaluate Q up to a θ-independent factor. As a
result, the quantity to be maximized in the M-step can be written as an expectation
with respect to the known prior PDF p(W ; θ), and therefore (subject to Assumption
3.1) the integrand is known. This fact will be of interest when discussing possible
Monte Carlo approximations in the next sections.
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Algorithm 3: An Expectation-Maximization (EM) algorithm based on a
degenerate approximation of the posterior (joint MAP estimation)

input : An initial guess θ(0), the data (Y,U), and a stopping criterion
output : An estimate θ̂

1 Initialize θ(i) and set index i← 0
2 while not converged do
3 Compute Ŵ (θ(i)) by solving max

W
p(Y,W ; θ(i)).

4 Compute θ(i+1) ∈ arg max
θ∈Θ

Q̂3(θ, θ(i)), where

5 Q̂3(θ, θ(i)) ∶= log p(Y, Ŵ (θ(i)); θ)
6 i← i + 1
7 end
8 Set θ̂ = θ(i)

Lemma 3.3.6. The intermediate quantity of the EM algorithm satisfies

Q(θ, θ(i)) ∝ E[p(Y ∣W ; θ(i)) log p(Y,W ; θ); θ(i)], (3.40)

where the expectation is with respect to the known prior PDF p(W ; θ(i)).

Proof. Note that according to the expression in (3.8), it holds in general that

Q(θ, θ(i)) = ∫ log p(Y,W ; θ)p(Y,W ; θ(i))
p(Y ; θ(i)) dW

{p(Y ; θ(i)) independent of W} = 1
p(Y ; θ(i))∫ log p(Y,W ; θ)p(Y,W ; θ(i))dW

{as a function of θ} ∝ ∫ log p(Y,W ; θ)p(Y,W ; θ(i))dW

=∫ log p(Y,W ; θ) p(Y ∣W ; θ(i))p(W ; θ(i))dW

= E [log p(Y,W ; θ)p(Y ∣W ; θ(i)) ; θ(i)] .

If the expectation in (3.40) can be evaluated analytically, the E-step is tractable.
Otherwise, approximations are necessary. It should be noted that, even though the
integrand in (3.40) is known exactly, evaluating the expectation is not an easy task.
For example, let the model be subject to Assumption 3.3.3 and assume that the
model parameterization is such that the prior p(W ) is θ-independent. In this case,
(3.40) becomes

E[p(Y ∣W ; θ(i)) log p(Y,W ; θ); θ(i)]
= E[p(Y ∣W ; θ(i)) log p(Y ∣W ; θ)] +E[p(Y ∣W ; θ(i)) log p(W )]
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and since the second term of the right hand side is θ-independent,

Q(θ, θ(i)) ∝ E[p(Y ∣W ; θ(i)) log p(Y ∣W ; θ)].

Using the expression of the conditional likelihood in (3.26) and ignoring all terms
that are θ-independent, we get that

Q(θ, θ(i)) ∝ − 1
2

log det(ΣY (θ)) − 1
2
Y ⊺Σ−1

Y (θ)Y

+ Y ⊺Σ−1
Y (θ)E[µ(W ; θ)ϕ(Y,W ; θ(i))]

− 1
2
E[µ⊺(W ; θ)Σ−1

Y (θ)µ(W ; θ)ϕ(Y,W ; θ(i))]

(3.41)

in which

ϕ(Y,W ; θ(i)) ∶= exp((Y ⊺ − 1
2
µ⊺(W ; θ(i)))Σ−1

Y (θ(i))µ(W ; θ(i))) .

Thus, the two expectations in (3.41) are, in general, analytically intractable. Fur-
thermore, it will turn out that, for any reasonable value of N , näıve Monte Carlo
approximations based on direct samplings are extremely inefficient and come with
very large variance (see Example 3.4.2).

Remark 3.3.7 (Analytic approximations of the EM algorithm).

• Laplace’s approximation is one way of obtaining a Gaussian approximation
of the posterior PDF p(W ∣Y ; θ) and an approximate value of the likelihood
function. As shown above, with such approximations, the E-step of the EM
algorithm simplifies and it is possible to obtain closed-form expressions for the
intermediate quantity if the expectations are tractable. The idea of using Gaus-
sian approximations is not specific to Laplace’s method or the EM algorithm.
It is possible to use alternative techniques to obtain Gaussian approximations,
and we shall see this later in the context of PEMs in the following chapter.

• An alternative analytical approximation for multi-modal posteriors may be
obtained using a Gaussian-Mixture PDF instead of a single Gaussian. This
can be seen as an extension of the EM algorithm based on Laplace’s ap-
proximation to an EM algorithm based on Gaussian-Mixture approximations.
Gaussian-Mixture PDFs can be constructed, for example, based on Laplace’s
approximations at different modes; however, we will not pursue this idea
further.

In the coming section, we discuss a possible use of Laplace’s approximation
within a quasi-Newton algorithm. Given the data and a candidate θ(i), the idea
is to use Laplace’s approximation method to compute an approximate value for
the likelihood function (and possibly its gradient). This idea seems better when
compared to Algorithm 2. To make an argument for this, observe that in Algorithm
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2, only the posterior was approximated and the true (assumed known) joint PDF
p(Y ,W ; θ) was used. The consequence is that all the identities of the EM algorithm,
as shown in Section 3.2.1, are not valid anymore and it is not obvious how to
establish the convergence of the algorithm (to any point). On the other hand, given
a well defined function that can be evaluated at every candidate point, and under
some smoothness conditions, the convergence of gradient-based algorithms to a
limit point can be guaranteed. It is a different issue then whether the resulting
approximation is consistent or not.

3.3.2 Approximate Gradient-based Methods
Laplace’s approximation method suggests the value in (3.21) as an approximation
of the likelihood function. It can be used to approximate the MLE by computing

arg max
θ

p̃(Y ; θ) = arg max
θ

log p̃(Y ; θ).

Ignoring all θ-independent terms, this is equal to

arg max
θ

log p(Y, Ŵ (θ); θ) + 1
2

log det(ΣW (Ŵ (θ), θ)), (3.42)

and it is clear that the approximation is based on joint maximizations over W and
θ which is different from (3.39). One can think of (3.42) as a regularized joint MAP
estimate. Observe that this estimator is consistent in the linear case under mild
conditions (it coincides with the MLE), unlike (3.39). To see this, we borrow an
argument used in [63, Appendix A]: let us write

(Ŵ , θ̂) = arg max
W,θ

p(W,θ∣Y ) = arg max
W,θ

p(Y,W ∣θ)p(θ)

in which p(θ) is a correction (regularization) factor which is independent of W . For
a fixed value θ, the maximizer Ŵ (θ) is the MAP estimate of W because maximizing
p(Y,W ∣θ) over W is the same as maximizing p(W ∣Y, θ). On the other hand, the
estimator of the parameters which is defined by

θ̂ = arg max
θ

p(Y, Ŵ (θ)∣θ)p(θ)

is not consistent in general5 and does not coincide with the MLE. Observe that we
can rewrite the estimator in the form

θ̂ = arg max
θ

p(Ŵ (θ)∣Y, θ)p(Y ∣θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=p(Y,Ŵ (θ)∣θ)

p(θ) (3.43)

which indicates that the maximizer will coincide with the MLE if and only if
p(Ŵ (θ)∣Y, θ)p(θ) is not a function of θ (see [63]).

5For consistency, p(θ) has to be such that, in the limit as N →∞ and under some regularity
conditions, θ○ is the unique minimizer of the averaged objective function.
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This can be seen as another motivation for the cost function in (3.42). If the
posterior is approximated by the multivariate Gaussian PDF in (3.19), we can
find an approximation of p(θ) if we assume that p(Ŵ (θ)∣Y, θ) is approximated
by the normalization factor in (3.19) and define p(θ) as its inverse. We then use
this approximate correction term in (3.43) together with the true joint model
p(Y, Ŵ (θ)∣θ).

This point of view shows that, regardless of the posterior, we can always write
the maximum likelihood estimate as

θ̂ = arg max
θ

log p(Y, Ŵ (θ); θ) − log p(Ŵ (θ)∣Y ; θ)

= arg max
θ

p(Y ; θ)

which comes in agreement with the comments after (3.4). Consequently, even in cases
with non-unique MAP estimates ŴMAP (θ), any of them can be used assuming that
we are able to compute p(Ŵ (θ)∣Y ; θ) (which depends on the unknown likelihood).
Assuming a case where we are able to reasonably approximate the posterior around
one mode by a multivariate Gaussian, an approximation of log p(Ŵ (θ)∣Y ; θ) can
be obtained. The quality of the estimates will however depend on the shape of the
true posterior and will depend on the used input signal. To clarify this point, we
consider the following example.

Example 3.3.5 (Bi-modal posteriors). Consider the following static nonlinear
model

y = (u +w)r + v (3.44)

in which u is a given real number, w and v are standard Gaussian (scalar)
random variables. Assume that we observed a single sample of y. Then it is
possible to compute the true posterior of w, which is given by

p(w∣y, u) = p(y∣u,w)p(w)
∫ p(y∣u,w)p(w)dw

,

by solving the scalar integral in the denominator (using deterministic numerical
integration for example).

Figures 3.6 and 3.7 compare the true posterior of w to the Gaussian approx-
imation obtained by Laplace’s approximation method for two cases: when r = 2
and when r = 3 respectively. Observe that we used different scales for the true
and the approximate density plots. In each case, we show the results for the
values u = 0,1,and 5.

With r = 2, it is clear that when u = 0 the posterior of w can have two
equivalent peaks, as the used realization shows, and the PDF is symmetrical
around the vertical axis. Each mode can be seen as a Gaussian PDF by itself and
the true posterior looks like a Gaussian mixture with equal mixture weights. In
this case, Laplace’s approximation is able to capture one of the modes (depending
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Figure 3.6: True and approximate posterior of w for the model in (3.44) when r = 2
for different values of u. From left to right u = 0,1, and 5.

on the sign of the initialization value of (3.17)). The true value of p(y) for the
used realization is 0.1 and Laplace’s approximation gives 0.0447 which is about
half the original probability. This can be seen from the figure by noticing that
p̃(ŵ∣y, u) is approximately twice the true value. When u is increased, see the
middle and right plots in Figure 3.6, we see that the distribution becomes
unimodal and the obtained approximation is quite good. When u = 5 the
posterior is almost a Gaussian and the approximate value of p(y) is practically
the same as the true value. Similar observations are seen when r = 3 as shown
in Figure 3.7.
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Figure 3.7: True and approximate posterior of w for the model in (3.44) when r = 3
for different values of u. From left to right u = 0,1, and 5.

The next example demonstrates the approximation of the likelihood function
of a nonlinear model when the posterior is bi-modal. We look at two cases: a case
when the model has no inputs, and a second case when there is a small input.

Example 3.3.6 (Likelihood approximation of a bi-modal model). Consider the
model

yt = (θwt)2 + vt, t = 1, . . . ,N, (3.45)

in which wt ∼ N(0,2), vt ∼ N(0,0.1) are independent over t and mutually
independent, and let θ = 0.5. We fixed N = 100 and simulated one realization
of the data. The true negative log-likelihood and the true posterior of wt are
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Figure 3.8: On the left: The true negative log-likelihood function (blue) and its
approximation (red). In the middle: The posterior of wt at five selected time points.
On the right: The approximation of the posterior (red) in comparison to the true one.

then compared to the approximation obtained by Laplace’s approximation
method. The results are shown in Figure 3.8. It is clear that the posterior can
be bi-modal as shown in the middle plot. The right plot shows how Laplace’s
approximation tries to capture one of the two modes (shown in red). Despite the
poor approximation, the shape of the negative log-likelihood can be approximated
quite well as shown on the left. Both the approximation and the true negative
log-likelihood have very close minima around ±0.5. Observe that the model is
not globally identifiable, and the likelihood function has two global maximizers,
see Figure 3.9.

In cases where the posterior PDF has different values at each mode, for
example when we introduce a small input such that

yt = (ut−1 + θwt)2 + vt, (3.46)

ut is a known realization of ut ∼ N(0.1,1), the peaks of the likelihood function
approximation will not be equal. According to which posterior mode (the positive
or the negative) is captured by Laplace’s approximation, the peak with the
corresponding sign will be larger, see Figure 3.10. However, because the model
is not identifiable, we cannot hope to recover the sign of θ. The important
observation is that the approximation has the same shape as the likelihood
function and appears to indicate the location of the minima.

Regrettably, the approximate likelihood function (3.42) is a complicated function
of θ due to the complicated parameterization via Ŵ (θ) and the corresponding
covariance matrix ΣW (Ŵ (θ), θ). If Ŵ (θ) does not assume a closed-form expression,
it will not be possible to compute the gradient with respect to θ analytically and
the objective function log p̃(Y ; θ) will not be available in closed-form. Nevertheless,
for every given candidate θ(i) ∈ Θ, it is possible to evaluate the value log p̃(Y ; θ(i))
by solving the smoothing problem (3.17).

Fortunately, being able to evaluate log p̃(Y ; θ) for every given value Y and
θ ∈ Θ would be enough for several available numerical optimization algorithms.
For example a gradient-free algorithm like the Nelder-Mead algorithm would work.
However, there are no guarantees that the Nelder-Mead algorithm converges to
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Figure 3.9: The true likelihood function (blue) and its approximation (red) for the
model in (3.45).

-1 0 1
0

5

10

15

10-66

0

1

2

3

4

La
pl

ac
e'

s 
ap

pr
ox

im
at

io
n

10-73

-2 0 2

200

400

600

200

400

600

0.4 0.5 0.6

2

4

6

10-75

Figure 3.10: The negative log-likelihood (left) and the likelihood function (right) for
the model in (3.46). The true value is in blue and its approximation is in red. The
peak of the approximate likelihood function around 0.5 is rescaled in a subplot.

a local solution (even if the objective function is convex, see for example [75]).
Another possibility that could be preferred (due to convergence properties) is the
use of the function evaluations to approximate the gradient numerically by using
finite differences, see [108, Chapter 8] or [4, Chapter VII], and then use these
approximations within a quasi-Newton algorithm or similar gradient-based methods.
Most of the optimization toolboxes in modern scientific computing packages like
MATLAB (fminunc), Mathematica (FindMinimum) or R (optim) include generic
well-implemented functions that apply this strategy.

In the next example, we will use a quasi-Newton algorithm based on approximate
gradients to find the ML estimate and its approximation based on (3.42).

Example 3.3.7 ( Laplace’s approximation of the likelihood function). Consider
the Wiener model (3.37) introduced in Example 3.3.3. Recall that for this simple
model, it is possible to compute the likelihood function by solving a numerical
integration problem. In the current example, we would like to compare the
approximate likelihood in (3.42) to the true likelihood.

We evaluated the solution to (3.42) under different inputs when N = 100,
wt ∼ N(0,2) and vt ∼ N(0,1). Figures 3.11, 3.12 and 3.13 show the obtained
results for three cases when ut ∼ N(1,1), ut ∼ N(0,1), and ut ∼ N(0,10)
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respectively. Recall that the true value of θ is 0.7.
For the first case, as shown on the right in Figure 3.11, the shape of the

approximate cost function is very close to the true likelihood function, and more
interestingly they have very close minima. Running a quasi-Newton algorithm
demonstrates the fast convergence of the Laplace’s approximate estimate which,
as shown on the left in Figure 3.11, is very close to the true ML estimate.
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Figure 3.11: λu = λv = 1 and λw = 2, the mean value of u is 1.

However, as shown in Figure 3.12, when we set the mean of the input to
zero and keep the same variance, the approximate cost function becomes erratic
with several local minima. Yet, the global minimum seem to be close to the true
ones.
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Figure 3.12: λu = λv = 1 and λw = 2, the mean value of u is 0.

Finally, keeping a zero mean value for the input but increasing its variance
to 10 seems to improve the situation. As shown in Figure 3.13, the approximate
cost function recovers the shape of the true likelihood function, and the estimate
is again close to the ML estimate.
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Figure 3.13: λu = 10, λv = 1 and λw = 2, the mean value of u is 0.

Gradient approximations

A well known tool usually used to evaluate the gradient of the log-likelihood
function when the likelihood function is written as a marginalization integral is
Fisher’s identity. Under some regularity conditions that allow changing the order of
differentiation and integration (see [98, Section 3.7]) the identity states that

∇θ log p(Y ; θ(i)) = ∫ ∇θ log p(Y,W ; θ)∣θ=θ(i) p(W ∣Y ; θ(i))dW. (3.47)

It is not difficult to see why this is true; notice that using (3.13), it holds that

∇θ log p(Y ; θ) = 1
p(Y ; θ) ∫ ∇θp(Y,W ; θ)dW

= 1
p(Y ; θ) ∫

∇θp(Y,W ; θ)
p(W ∣Y ; θ) p(W ∣Y ; θ)dW

= ∫
∇θp(Y,W ; θ)

p(W ∣Y ; θ)p(Y ; θ)p(W ∣Y ; θ)dW

= ∫
∇θp(Y,W ; θ)
p(Y,W ; θ) p(W ∣Y ; θ)dW

= ∫ ∇θ log p(Y,W ; θ)p(W ∣Y ; θ)dW.

(3.48)

This relation can be used to compute an approximate gradient ∇θ log p(Y ; θ(i))
if required. It has not been used in any of the methods of this thesis, however
we mention it here for completeness. To get an approximation, we may use the
multivariate Gaussian (3.19) obtained by Laplace’s method in the place of the
posterior in (3.47); however this will give reasonable approximations only if the
posterior can be described well with a Gaussian PDF. In this case, we end up with
a similar equation as (3.24); thus,

∇θ log p(Y ; θ(i)) ≈ ∇θQ(θ, θ(i))∣
θ=θ(i) (3.49)
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where Q(θ, θ(i)) is given by (3.24) and we assume that the gradient operator ∇θ
commutes with the expectation operator. Unfortunately, we end up with analytically
intractable expectations and further approximations are required (using MC sampling
for example). Observe that this approximation is exact for linear Gaussian models.

3.3.3 Summary

So far, we have presented two main possible approximation methods based on
Laplace’s approximation method. The results in Example 3.3.3 show that when
compared to the true MLE, the sequence θ(i) of Algorithm 2 does not always
converge to a reasonable approximation and no guarantees can be made. Apart from
the slow convergence, the behavior of the algorithm deteriorates once the variance
of the unobserved process wt is increased. On the other hand, Examples 3.3.5,
3.3.6 and 3.3.7 indicate that direct optimization of the Laplace’s approximation of
the log-likelihood function defined in (3.22) might lead to acceptable results. As
indicated in the numerical example, the obtained approximations depend on the
true model and the used input.

In the following section, we will present possible numerical approximation ap-
proaches and discuss their difficulties.

3.4 Numerical Approximations

Analytical approximations to some of the quantities in Table 3.1 were considered in
the previous part. In this section, we consider possible numerical approximations
based on either deterministic numerical integration or Monte Carlo integration (see
Appendix A).

3.4.1 Approximations Based on Deterministic Numerical
Integration – a Case with Independent Outputs

Consider the special case when both y and w are independent and mutually
independent stochastic processes, such that we can write

p(Y ,W ; θ) =
N

∏
t=1
p(yt,wt; θ). (3.50)

This is the case for stochastic Wiener models with independent white process
disturbance which were used in most of the numerical examples in the previous
sections. The likelihood function in this case is

p(Y ; θ) = ∫ p(Y,W ; θ)dW = ∫
N

∏
t=1
p(yt,wt)dW =

N

∏
t=1
∫ p(yt,wt)dwt, (3.51)
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and instead of having one multidimensional integral over RdwN , we have N integrals
each of dimension dw. Consequently, the likelihood function can be approximated
by approximating the integrals

p(yt; θ) = ∫
Rdw

p(yt,wt; θ)dwt = ∫
Rdw

p(yt∣wt; θ)p(wt; θ)dwt

which has a known integrand. When the dimension of the unobserved process w
is small enough, these integrals can be approximated efficiently using any of the
available deterministic numerical integration methods (see [37, Chapter 5]). Observe
that the posterior of wt is never computed in this approach. Approximations of
gradient-based algorithms developed on top of deterministic numerical integration
were considered in [58]. Here, we will investigate the possibility of employing the
EM algorithm.

To proceed, we first make the following two observations. First, note that the
posterior can be factorized, due to the independence of the outputs, as

p(W ∣Y ; θ) =
N

∏
t=1
p(wt∣yt; θ).

This is easy to see if Bayes’ theorem is used to write

p(W ∣Y ; θ) = p(Y,W ; θ)
p(Y ; θ) = ∏

N
t=1 p(yt,wt)
∏N
t=1 p(yt; θ)

= ∏
N
t=1 p(wt∣yt; θ)∏N

t=1 p(yt; θ)
∏N
t=1 p(yt; θ)

Second, we recall from Lemma 3.3.6 that (in general) the intermediate quantity as
a function of θ satisfies

Q(θ, θ(i)) ∝ ∫ log p(Y,W ; θ) p(Y,W ; θ(i))dW. (3.52)

In particular, for cases where (3.50) holds, the intermediate quantity satisfies

Q(θ, θ(i)) ∝ ∫ log(
N

∏
t=1
p(yt,wt; θ))

N

∏
t=1
p(yt,wt; θ(i))dW

=
N

∑
t=1
∫ log p(yt,wt; θ) p(yt∣wt; θ(i))p(wt; θ(i))dwt

=
N

∑
t=1
E [p(yt∣wt; θ(i)) log p(yt,wt; θ); θ(i)] .

(3.53)

The maximization of the intermediate quantity of the EM algorithm is then equivalent
to the maximization of the right-hand side of (3.53). When the dimension dw of
the process w is small (one or two-dimensional process for example), deterministic
numerical integration can be used to approximate the expectations in (3.53) and
obtain an approximate ML estimate.
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It should be observed that in general, and depending on the parameterization,
the maximizer of the Q-function will not be available in closed-form. Therefore,
the M-step has to be solved numerically using gradient-based algorithms. For this
purpose, we need to evaluate the gradient

N

∑
t=1
∫ ∇θ log p(yt,wt; θ) p(yt,wt; θ(i))dwt

using deterministic numerical integration. Observe that we assumed that we are
allowed to differentiate under the integral sign.

In summary, the EM algorithm is defined by the updates

θ(i+1) = arg max
θ

N

∑
t=1
∫
Rdw

log p(yt,wt; θ) p(yt,wt; θ(i))dwt.

Comparing this to a quasi-Newton algorithm when used to evaluate

θ̂ ∶= arg max
θ

N

∑
t=1

log ∫
Rdw

p(yt,wt; θ)dwt,

we conclude that the EM algorithm has no clear computational advantage for cases
where deterministic numerical integration can be used, especially when a faster
gradient-based algorithm is applicable. However, we should recall that the iterations
of the EM algorithm do not require the global maximizer of the M-step and it seems
that the EM algorithm might avoid local maxima which can be problematic for
a gradient based algorithm (see [125]). As we discussed earlier it is also preferred
to work with the logarithm of the density; however, this is not crucial when dw is
small.

A limitation

For a general case, with multidimensional integrals of size dwN , integration methods
that are based on deterministic griding are hopeless. To see this, let us assume that
we have a scalar model with dw = 1 and assume that N = 100, a small sample size
for system identification problems in most engineering applications. Furthermore,
let us assume a very coarse grid of the integral domain of only 10 points per
dimension. In this situation, and to get a very rough approximation based on this
coarse deterministic grid, we need 10100 evaluations of the integrand. This is an
unimaginable number, much larger than the Eddington number (NEdd ≈ 1079, an
estimate of the number of protons in the observable universe, see [34]). In such cases,
numerical approximations should be based on the probabilistic properties of the
integration variable; this is the idea of Monte Carlo methods.
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3.4.2 Approximations Based on Monte Carlo Simulations
In this part, we will look at approximations of the EM and quasi-Newton algorithms
based on the Monte Carlo method. We remind the reader that a brief overview of
the Monte Carlo method is given in Appendix A.

A major advantage of Monte Carlo methods is the possibility of analyzing the
asymptotic behavior of the approximation and sometimes bounding the approxi-
mation errors. In most cases, (theoretical) convergence to the true MLE can be
established under mild conditions. Thus, one may consider most of the Monte Carlo
methods as exact methods because the approximation errors are functions of only the
available computational time and resources. Unfortunately, Monte Carlo methods
targeting the MLE can be computationally expensive and its application, to the
best of the author’s knowledge, is so far limited to problems of small dimensions.
We will touch upon this in the coming parts of this chapter before moving to the
next chapter where we introduce a PEM that can be used to construct cheaper to
computer consistent estimators.

The Monte Carlo Expectation-Maximization algorithm

The idea of the Monte Carlo Expectation-Maximization (MCEM) algorithm is due
to [144] who considered cases where the mapping A (of the EM algorithm, see (3.10))
is analytically intractable due to an intractable E-step; however, it assumed that
it is easy to obtain random samples according to the (assumed known) posterior
distribution.

The principle consists of approximating the E-step using a Monte Carlo sum; we
let

Q(θ, θ(i−1)) ≈ QMi(θ, θ(i−1)) = 1
Mi

N

∑
m=1

log p(Y,W (i,m); θ)

where W (i,1), . . . ,W (i,Mi) are conditionally i.i.d. random variables given the set of
random variables

F(i−1) ∶= {θ(0)} ∪ {W (j,m) ∶ j = 1, . . . , i − 1, m = 1, . . . ,Mj}

and distributed according to p(W ∣Y ; θ(i−1)). The first superscript i of W (i,m) is the
EM iteration index and the second superscript m is the sample index such that

W (i,m) ∼ p(W ∣Y ; θ(i−1)), m = 1, . . . ,Mi, and i ∈ N.

As indicated by the notations, the number of samples Mi can be iteration-dependent.
It is also assumed that it is possible to easily realize (simulate) these random
variables. The M-step is then replaced by the maximization of the approximate
intermediate quantity QMi+1(θ, θ(i)). The procedure is summarized in Algorithm 4.

The idea is intuitive and simple, however the implementation of the algorithm and
its analysis can get quite involved. Due to the conditional independence assumption,
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Algorithm 4: The Monte Carlo EM (MCEM) algorithm [144]
input : An initial guess θ(0), the data (Y,U), ideal sampler of p(W ∣Y ; θ)

for every feasible θ, and a convergence (stopping) criterion
output : An approximate local maximum of the likelihood function θ̂

1 Initialize θ(i) and set index i← 0
2 while not converged do

3

E-step: Sample W (i+1,m),m = 1, . . . ,Mi+1 conditionally
independently given F(i) according to p(W ∣Y, θ(i)),
then compute
QMi+1(θ, θ(i)) =

1
Mi+1

N

∑
m=1

log p(Y,W (i+1,m); θ(i)).

4 M-step: Compute θ(i+1) ∈ arg max
θ∈Θ

QMi+1(θ, θ(i))
5 i← i + 1
6 end
7 Set θ̂ = θ(i)

it is possible under some conditions (see [43] or [102] for example) to prove the
convergence of the MCEM algorithm if the number of simulations Mi approaches
infinity fast enough as the algorithm approaches convergence (that is as i → ∞).
The analysis is based on the observation that each iteration of the MCEM algorithm
can be seen as a perturbed version of an EM iteration. The size of the perturbation
depends on the history of the Monte Carlo approximation errors and consequently
on the sequence {Mi}. It is important to note that the MCEM is not a monotone
algorithm, unlike the EM, and more work has to be done to establish its convergence.
The available proofs assume a model within the exponential family; the simplest
proof can be found in [20] for example where it is assumed that exact i.i.d. samples
are used, and that the joint PDF is, as in (3.14), a member of the exponential
family. These assumptions are quite restrictive, especially the independent samples
assumption.

For the general models considered in this thesis, the posterior p(W ∣Y ; θ) is not
available and obtaining i.i.d. samples that minimize the Monte Carlo approximation
errors is not a trivial task. In principle, the prior p(W ; θ) can be used to generate
i.i.d. samples which are then weighted with the conditional likelihood function (see
(3.40)). However, almost all the weights will be very close to zero and using this
(inefficient) method will result in a very high Monte Carlo variance. Approximate
methods of sampling that can be used to avoid this difficulty include: Markov Chain
Monte Carlo (MCMC) methods, and, depending on the used model, sequential
Monte Carlo (SMC) samplers might also be used. Unfortunately, beside the increased
computational cost, using approximate sampling methods complicates the algorithm
and introduces further errors due to the dependence between the generated samples.
Consequently, the analysis of the algorithm gets more involved. See [43] for example
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for the convergence analysis when p(Y ,W ; θ) is a member of the exponential family
and when the used samples are based on an MCMC kernel.

The MCEM algorithm based on sequential Monte Carlo (particle filter/smoother)
has been used for nonlinear state-space models identification in [106, 109, 125, 146,
147]. Ideas based on sequential Monte Carlo samples are the topic of active research
and most of the recent literature on nonlinear system identification relies on it.
However, so far, its application is hampered by the two fundamental difficulties:
particle degeneracy and impoverishment (see [33, 71]).

In the following part, we would like to check if the methods suggested in Section
3.3 can be improved using the Monte Carlo idea. Nevertheless, it should be kept in
mind that approximating high-dimensional distributions by random sampling is a
difficult problem and using Monte Carlo sampling in high-dimensional spaces adds
to the computational complexity of the methods.

According to Proposition 3.3.4, under Assumption 3.3.3, and by using Laplace’s
approximation (3.19) the intermediate quantity of the EM algorithm (up to θ-
independent terms) is given by (3.24). We also found that two of the three terms
that depend on W in the expansion of p(Y,W ; θ) have analytically intractable
expectations with respect to (3.19). A natural approximation of these expectations
is given by the Monte Carlo estimates

E[µ⊺(W ; θ)Σ−1
Y (θ)µ(W ; θ)∣Y ; θ(i−1)]

≈ 1
Mi

Mi

∑
m=1

µ⊺(W (i,m); θ)Σ−1
Y (θ)µ(W (i,m); θ),

(3.54)

and
E[µ(W ; θ)∣Y ; θ(i−1)] ≈ 1

Mi

Mi

∑
m=1

µ(W (i,m); θ) (3.55)

in which W (i,m),m = 1, . . . ,Mi, i = 1,2, . . . are realizations of the conditionally
independent random variables

W (i,m) ∼ N (Ŵ (θ(i−1)),Σ(Ŵ (θ(i−1)), θ(i−1))) , m = 1, . . . ,Mi, i = 1,2, . . .

Using these approximation in (3.24), we compute QMi(θ, θ(i−1)) which is then
maximized in the M-step using an iterative numerical optimization algorithm.
However, we do not gain much by doing this because Algorithm 2 itself does not
have any guarantees. If we let Mi →∞ as i grows, the sequence θ(i) will converge to
whatever limit Algorithm 2 has. But even for cases where these expectations were
tractable, see Example 3.3.3, the algorithm did not perform well. Nevertheless, this
problem can be solved by weighting the used samples as explained below.

Observe that the approximations (3.54) and (3.55) are asymptotically exact
if the samples are generated according to the true posterior. Therefore, the idea
that suggests itself here is the correction of these MC estimators by introducing
sample-dependent weights in the MC sums. This idea is known as importance
sampling (see Section A.3 in Appendix A).
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As pointed out in Lemma 3.3.6, the normalization constant of p(W ∣Y ; θ(i)) is
not needed to solve the M-step and the intermediate quantity of the EM algorithm
(seen as a function of θ) is in general proportional to the integral

∫ log p(Y,W ; θ) p(Y,W ; θ(i))dW. (3.56)

The integrand of this integral is known in terms of a closed-form expression and
therefore importance sampling can be used without worrying about weights self-
normalization. It can be easily shown (see [117, Theorem 3.12]) that the optimal
importance sampling density is given by

p̃⋆(W ∣Y ; θ, θ(i)) = log p(Y,W ; θ) p(Y,W ; θ(i))
∫ log p(Y,W ; θ) p(Y,W ; θ(i))dW

which depends on θ, θ(i) and Y . This PDF is optimal in the sense of minimizing
the variance of the approximation error (in fact reducing it to zero). Of course, this
optimal density is always unknown as it depends on the intractable integral to be
approximated. However, it is possible to use an importance sampling density based
on Laplace’s approximation method.

Laplace’s approximation of the posterior (3.19) is based on the joint PDF
p(Y ,W ; θ) and using it as an importance sampling density in (3.56) is not optimal.
Note that, even the true posterior itself is not an optimal importance sampling
density for the integral in (3.56) (unlike the case when approximating the likelihood
function, see the next section). Even in the case of linear models, where Laplace’s
approximation of the posterior is exact, many samples should be used to ensure small
approximation errors. Thus, it is expected that a large number of samples would be
needed for non-Gaussian posteriors. Furthermore, to ensure the convergence of the
MCEM algorithm, the number of samples should grow with each iteration which
makes the method computationally expensive.

Importance sampling for the E-step

Notice that the integral in Lemma 3.3.6 is alternatively given by

∫
log p(Y,W ; θ) p(Y,W ; θ(i))

p̃(W ∣Y, θ, θ(i)) p̃(W ∣Y, θ, θ(i))dW

which can be seen as an expectation and

Q(θ, θ(i)) ∝ E [ log p(Y,W ; θ) ⋅ p(Y,W ; θ(i))
p̃(W ∣Y, θ, θ(i)) ; θ, θ(i)]

in which E is with respect to an importance sampling density p̃(W ∣Y, θ, θ(i)). We
will assume that (3.19) is used as an importance sampling density. A Monte Carlo
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approximation of the E-step (up to θ-independent constant) at iteration i is then
given by

1
Mi+1

Mi+1

∑
m=1

log p(Y,W (i,m)(θ); θ) ⋅ p(Y,W (i,m)(θ); θ(i))
p̃(W (i,m)(θ)∣Y, θ)

in which W (i,m)(θ) are i.i.d. samples according to (3.19). We summarize the method
in Algorithm 5.

Algorithm 5: The Monte Carlo EM (MCEM) algorithm based on impor-
tance sampling

input : An initial guess θ(0), the data (Y,U), and a convergence
(stopping) criterion

output : An approximate local maximum of the likelihood function θ̂

1 Initialize θ(i) and set index i← 0
2 while not converged do

3

E-step: Find an importance sampling PDF p̃ (by solving (3.17)
or by any alternative method) and simulate
W (i+1,m) ∼ p̃, m = 1, . . . ,Mi+1.

4 M-step: θ(i+1) ∈ arg max
θ
∑Mi+1
m=1

logp(Y,W (i+1,m);θ)⋅p(Y,W (i+1,m);θ(i))
Mi+1 p̃(W (i+1,m)∣Y,θ,θ(i))

5 i← i + 1
6 end
7 Set θ̂ = θ(i)

Remark 3.4.1 (MCEM based on importance sampling).

• The generality of Algorithm 5 hides the difficulty of the original problem in the
step of choosing an importance sampling density. A careless choice will result
in very small importance weights that are practically 0. In this case, most or
even all the samples will not contribute to the approximation of the integral.

• An advantage of the use of importance sampling, as described in Algorithm 5,
is the possibility of using common random numbers (see Section A.2). This
preserves the continuity properties of the function to be maximized in the
M-step (see [49]). In addition, generating the required i.i.d. samples becomes
an easy task (e.g., simulating Gaussian random variables).

• In contrast to estimators based on MCMC/SMC samplers, the Monte Carlo
estimator used in the E-step is an unbiased estimator of (3.52) for any finite
value Mi. The reason is that self-normalization of the weights is not required.

• To reduce the computational demand of the algorithm, the same importance
sampling density can be used for a few iterations before recomputing a new
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density. However, this would require even larger number of samples to control
the possible increase in the approximation error variance.

The difficulties of applying the above method are illustrated in the next numerical
example.

Example 3.4.1 (Expectation-Maximization based on Laplace importance sam-
pling). We first demonstrate the performance of Algorithm 5 on the simple
linear state-space model

xt+1 = θxt + ut +wt, θ = 0.7, x0 = 0,
yt = xt + vt, t = 1, . . . ,N = 100.

(3.57)

For each t, the input ut is a known realization of a Gaussian random variable
with mean 1 and variance 1, and wt,vt ∼ N(0,1) such that they are mutually
independent. We used Mi = 1000 for all i, and terminated the algorithm once
∥θ(i) − θ(i−1)∥ < 10−5. The used importance sampling density is given by (3.19)
which coincides in this case (see Example 3.3.2) with the true posterior. Therefore
all the values p(Y,W (i,m); θ(i))/p̃(W (i,m)∣Y, θ(i)) are the same regardless of m
and are equal to p(Y ; θ(i)). The results of one realization are shown in Figure
3.14; we see that the iterations of the algorithm converge to the true MLE which
agrees with the above theoretical motivation.
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Figure 3.14: The MLE of θ in (3.57). The blue curve shows the iterates of a quasi-
Newton algorithm optimizing the true likelihood, and the red curve shows the iterations
of Algorithm 5 in which Laplace’s approximation (3.19) was used as a sampling density.

We now consider the nonlinear model (3.37) from Example 3.3.3. In order
to demonstrate the behavior of Algorithm 5 in comparison to Algorithm 2
we assumed that N = 5. This is a very short sample size for many practical
applications, and is used only to avoid several numerical issues (see below) that
are present when running the algorithm for larger N . Furthermore, Laplace’s
approximation of the posterior, given by (3.19), is used as an importance
sampling density.

Figure 3.15 shows the simulation results of both algorithms when λw = 1
(a case which was difficult for Algorithm 2). Apart from the slow convergence,
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the results show that the MCEM with importance sampling converges to the
true ML estimate as expected, unlike the EM algorithm based on Laplace’s
approximation for the posterior. It is also clear that the use of common random
numbers preserves the continuity and smoothness of the intermediate value
function. These results highlight the advantage when N is small.
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Figure 3.15: The plot shows a comparison between Algorithm 2 (in grey) and
Algorithm 5 (in yellow) for N = 5 and Mi = 104 for all i. The plots on the left show
the Q-function at iteration 200. On the right, the iterations of the quasi-Newton
algorithm optimizing the true likelihood are shown against the iterations of the two
EM algorithms.

Unfortunately, the situation gets more complicated when N increases. The
simulation results for one realization when N = 100, Mi = 104 for all i are
shown in Figure 3.16. We see that Algorithm 5 does not converge to the true
ML estimate. The reason for this becomes clear when we look at the weights,
normalized by dividing by their maximum such that all the weights are in
between 0 and 1. For example at iteration 200, among 104 samples of the
100-dimensional vector W , only 28 samples come with a weight larger than 0.2
and almost all the rest have weights very close to zero. This indicates that the
importance sampling density obtained by Laplace’s approximation method does
not capture the important regions of the support of the posterior of W and is
not the optimal choice.

The previous example demonstrated possible advantages and disadvantages of
Algorithm 5. One major advantage is the use of conditionally i.i.d. samples that
makes the convergence of the algorithm to the true MLE possible if Mi →∞ fast
enough. The major difficulty lies in the choice of the proposal density and the
computations of the weights. Inefficient densities (i.e., those that are not close in
shape to the optimal sampling density) will lead to very small weights for almost all
the samples. Another numerical difficulty is how the weights are computed; observe
that the weights are given by the ratio of high-dimensional PDFs, and suitable

6Normalized by dividing by the largest weight, such that all the weights are in [0,1].
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Figure 3.16: The plot shows a comparison between Algorithm 2 (in grey and red)
and Algorithm 5 (in yellow and blue) for N = 100 and Mi = 104 for all i. The plot on
the left shows the normalized weights6 used in Algorithm 5 at iteration 200. On the
right, the iterations of the quasi-Newton algorithm optimizing the true likelihood is
shown against the iterations of the two EM algorithms.

θ-independent normalization constants have to be used for each i to make the values
tractable.

For sequential models, like state-space models, these difficulties can be alleviated
by the use of sequential Monte Carlo samplers as suggested in [109, 125] for example.
The idea there is to propagate the samples of wt sequentially over t such that the
weights are computed and normalized in the low dimension dw. While such methods
are able to keep the weights relatively high, the required number of samples remains
large and the methods are so far applicable only to problems with small dimensions.

In general, Markov Chain Monte Carlo methods can be used to sample from the
posterior. However, once more, the difficulty of the problem is transferred to the
choice of the proposal density of the MCMC kernel. In addition, a large number of
samples might be required to ensure the convergence of the Markov Chain to the
stationary distribution.

One of the problems of Algorithm 5 is the difficulty of finding the optimal
importance sampling density. As we pointed out above, the true posterior is not
optimal and even in the linear case Mi should be large enough to reduce the MC
approximation errors. The situation might be slightly different if we try instead to
use the importance sampling idea to approximate the likelihood function. As shown
in the next part, the true posterior is the optimal importance sampling density when
used to approximate the marginalization integral defining the likelihood function.

Monte Carlo approximations of gradient-based methods

Monte Carlo approximations can be alternatively used to approximate the likelihood
function itself. The idea is then to use the approximation within a quasi-Newton
algorithm where the gradients are estimated numerically using finite differences. For
this approach to work we need the estimators to use common random numbers.
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Recall that the likelihood function is given by the marginalization integral

p(Y ; θ) = ∫ p(Y,W ; θ)dW = ∫ p(Y ∣W ; θ)p(W ; θ)dW.

In general, an unbiased Monte Carlo estimator of the likelihood function at a given
value θ and observation vector Y can be obtained using i.i.d. samples

W (m)(θ) ∼ p(W ; θ), m = 1, . . . ,M,

which are used to write

p(Y ; θ)
⋀

= 1
M

M

∑
m=1

p(Y ∣W (m)(θ); θ). (3.58)

It is trivial to see that

E[p(Y ; θ)
⋀

] = 1
M

M

∑
m=1

E[p(Y ∣W (m)θ)
⋀

] = p(Y ; θ),

and under the assumption that p(Y ∣W (m)(θ); θ) has a finite variance with respect
to p(W ; θ)dW , it also holds that

var [p(Y ; θ)
⋀

; θ] = 1
M

var[p(Y ∣W (m)(θ); θ); θ].

A notable feature of this estimator is that the variance does not depend directly
on the dimension of either W or Y and it holds in general that the approximation
error is O(M−1). This is an advantage of Monte Carlo approximation methods over
deterministic methods. Furthermore, due to the use of independent samples, a direct
application of the strong law of large numbers shows that

1
M

M

∑
m=1

p(Y ∣W (m)(θ); θ) a.s.Ð→ p(Y ; θ) as M →∞

and the precise rate of convergence is given by the law of the iterated logarithm
(see [23, Section 7.6]). Moreover, the standard version of the central limit theorem
of i.i.d. random variables implies that

p(Y ; θ)
⋀

−E[p(Y ∣W ; θ); θ]
var⋀[p(Y ; θ)
⋀

; θ]
is approximately N(0,1)

where
var⋀[p(Y ; θ)
⋀

; θ] = 1
M2

M

∑
m=1

[p(Y ∣W (m)(θ)) − p(Y ; θ)
⋀

]2.

The knowledge of the asymptotic distribution can be used for the construction of
confidence intervals and various tests for the convergence of the estimator.
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These are all desirable “asymptotic” properties; however, the accuracy of (3.58)
depends significantly on the nature of the conditional likelihood and it is usually
the case that var[p(Y ∣W (m)(θ); θ); θ] is very large for large dwN . Consequently,
prohibitively large M might be needed to arrive at a reasonable approximation.
Observe that the samples W (m) do not rely on the specific realization Y ; they only
rely on the prior PDF which is usually not concentrated. Also note that for a fixed
Y and θ, the function p(Y ∣W ; θ) seen as a function of W has most of its mass in
regions whose volume is only a fraction of the total mass of the prior. To give a hint
on how this situation looks like, we give the following example.

Example 3.4.2. Consider the following static linear model

y = θw + v

with θ = 50 and both w and v are independent random variables such that
w ∼ N(0,1) and v ∼ N(0,0.1). Figure 3.17 shows the graph of the function
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Figure 3.17: Illustration of the inefficiency of prior samplers for integrating a condi-
tional densities

p(y∣w; θ) = 1√
2π

√
0.1

exp(− 1
2 ⋅ 0.1(y − 50w)2)

when y = 131.353 and w is varied. If we consider w as a parameter, this function
is, by definition, the likelihood function of w. It is clear that even in this
one dimensional example, the function p(y∣⋅; θ) has almost all of its mass, i.e.,
{w ∶ p(y∣w θ) > ε} with small ε > 0, concentrated in a very short interval; for
the given realization, the interval length is around 0.06 for ε = 10−4. Among 500
independent samples generated according to the prior p(w), none have hit the
important interval of the function p(y∣⋅; θ) to be integrated.

Of course, for the above simple example, increasing the number of samples M
will eventually give an acceptable approximation of p(y; θ). However, when the
dimension of Y is large, this problem is magnified and will always be present in
practice regardless of what the realizations of the involved variables are or how big
M is.
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The next example clarifies the inefficiency of the MC estimator (3.58) when
used within a quasi-Newton algorithm to approximate the ML estimate. Again, we
estimate the gradients with finite differences.

Example 3.4.3. To demonstrate the practical inefficiency of using prior samples,
consider a simple scalar linear state-space model.

xk+1 = θxk +wk, θ = 0.7, x0 = 0,
yk = xk + ek, t = 1, . . . ,N.

We assume that wt ∼ N(0,1.5) and is independent of vt ∼ N(0,1). We let
N = 200, and simulate the estimator over 1000 realization of Y for a grid of
values for M between 103 and 104. The result is shown in comparison to the
MLE in Figure 3.18. It is clear that the approximation error, which is reflected
in the MSE, is quite large and it seems that M has to be very large to get any
acceptable approximations.
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Figure 3.18: Illustration of the inefficiency of direct sampling according to the prior:
the plot shows the empirical MSE of the estimates as a function of M ; the blue curve
is the MSE of the true ML estimate which is independent of M , and the red curve is
the MSE of the approximation.

The problem observed in the above example is a manifestation of the curse of
dimensionality. Observe that the likelihood function can be bounded in terms of a
volume of a set under the measure p(W ; θ)dW since

p(Y ; θ) ≤ C ∫ 1SY,θ p(W ; θ)dW

for some positive constant C and

SY,θ ∶= {W ∶ p(Y ∣W ; θ) ≠ 0}.

Pick a small positive ε and consider the set

S̃ ∶= {W ∶ p(Y ∣W ; θ) ≥ ε} ⊂ SY,θ
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and observe that the difference (in volume) between these two sets can be made
arbitrarily small regardless of N by picking ε small enough. Now notice that the
volume of S̃ under dW must shrink with the dimension N . To see this, let us
consider an example of a scalar model for which

p(Y ∣W ; θ) ∝ exp(−1
2
∥Y −W ∥2

2) .

We then center the coordinates at Y so that

S̃ = BN(ε̃) = {W ∶ ∥W ∥2 ≤ ε̃}

This is a ball of radius ε̃ in RN whose volume approach zero as N grows to ∞ (see
[47, Chapter 1]). This means that SY,θ will have a shrinking volume; thus, for a
small fixed value ε, the probability that a sample W drawn according to the prior is
in S̃ approaches zero as N increases.

Importance sampling for the quasi-Newton algorithm

To reduce the variance of the estimates, importance sampling can be used. For every
PDF p̃(W ;Y, θ) that may depend on Y and θ, we have the following alternative
representation of (3.3)

p(Y ; θ) = ∫
p(Y ∣W ; θ)p(W )
p̃(W ;Y, θ) p̃(W ;Y, θ)dW.

An unbiased Monte Carlo estimate based on importance sampling can be obtained
using i.i.d. samples

W (m)(θ) ∼ p̃(W ;Y, θ), m = 1, . . . ,M,

which is used to define the estimate

p(Y ; θ)
⋀

= 1
M

M

∑
m=1

p(Y ∣W (m)(θ); θ)p(W (m)(θ))
p̃(W (m)(θ);Y, θ) . (3.59)

Under similar conditions as before,

var [p(Y ; θ)
⋀

; θ] = 1
M

var [p(Y ∣W (m)(θ); θ)p(W (m)(θ))
p̃(W (m)(θ);Y, θ)

; θ] (3.60)

where the variance operator is with respect to p̃(W ;Y, θ). It is clear that one
necessary condition for the variance to be finite is that the ratio

p(W (m)(θ))
p̃(W (m)(θ);Y, θ)

has to be bounded.
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Now, observe that this variance can be made equal to zero by choosing

p̃(W ;Y, θ) = p(W ∣Y, θ).

Indeed, in this case the variance on the right-hand side of (3.60) becomes

var
⎡⎢⎢⎢⎢⎢⎣

p(Y ∣W (m)(θ); θ)p(W (m)(θ))
p(Y ∣W (m)(θ);θ)p(W (m)(θ))

p(Y ;θ)

; θ
⎤⎥⎥⎥⎥⎥⎦
= var [p(Y ; θ)] = 0

and only one sample is required, i.e., M = 1. The approximation is then given by

p(Y ∣W (1); θ)p(W (1))
p(W (1)∣Y ; θ)

which is independent of the used sample W (1) and is equal to p(Y ; θ). Therefore,
we conclude that the optimal sampling density for (3.59) is the posterior of W .

An approximation of the MLE can be obtained by using Laplace’s approximation
of the posterior as an importance sampling density, and then using the estimates of
the likelihood function within a quasi-Newton algorithm. In this case, the resulting
algorithm is exact for linear Gaussian models. Furthermore, for cases where the
posterior has one dominant mode, Laplace’s approximation is expected to capture the
important region of the posterior support, and therefore the variance of the likelihood
estimate will be reduced. We summarize the suggested method in Algorithm 6.

The method described above has several disadvantages. As we pointed out on
page 50, from a numerical point of view it is preferred to work with the log-likelihood
function. To be able to use Algorithm 6, the value of the likelihood function has to
be scaled with an appropriate θ-independent factor.

Assume that both wt and vt are independent zero mean Gaussian random
variables with variances λwI and λvI respectively. For given Y , θ, importance
sampling density, and corresponding samples W (m), the likelihood approximation is
evaluated by computing the fraction

p(Y ∣W (m); θ)pW (W (m))
p̃W (W (m)∣Y ; θ) =

c1 exp (− 1
2λe ∥Y −M(U,W (m); θ)∥2) c2 exp (− 1

2λw ∥W (m)∥2)
c3(θ) exp (− 1

2(W (m) − Ŵ (θ))⊺[Σ(Ŵ ; θ)]−1(W (m) − Ŵ (θ)))
,

(3.61)

with c1 =
1

(2πλv)
N
2
, c1 =

1
(2πλw)

N
2
, and c3(θ) = 1

(2π)
N
2 [det Σ(Ŵ , θ)] 1

2

.

For large values of N , a direct calculation of this expression is not possible. First, the
value [det Σ(Ŵ , θ)]− 1

2 will be a very small number. Second, the constants c1 and c2
will be very large. Third, it is likely that the arguments of the exponential function
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Algorithm 6: Monte Carlo approximation of the quasi-Newton algorithm
based on Laplace importance sampling

input : An initial guess θ(0), the data (Y,U), and a convergence
(stopping) criterion

output : An approximate local maximum of the likelihood function θ̂

1 Initialize θ(i) and set index i← 0
2 while not converged do

3

Find p̃: Find an importance sampling PDF p̃ (by solving (3.17)
for example, or by any alternative way) and simulate
W (i+1,m) ∼ p̃, m = 1, . . . ,Mi+1.

4

Update θ: θ(i+1) = θ(i) − αiHi∇θp(Y ; θ(i))
⋀

where the estimate ∇θp(Y ; θ(i))
⋀

is computed using
finite differences based on the estimate
p(Y ; θ)
⋀

= M−1
i+1 ∑Mi+1

m=1
p(Y ∣W (i+1,m);θ)p(W (i+1,m);θ)

p̃(W (i+1,m);Y,θ)
The step αi is determined by an inexact line search
based on p(Y ; θ)
⋀

, and Hi approximates the inverse of
the Hessian using the BFGS method for example.

5 i← i + 1
6 end
7 Set θ̂ = θ(i)

will be too large, making the exponential function equal to zero for any computer
with finite precision. Nevertheless, by first taking the logarithm of the fraction in
(3.61) and then applying the exponential function to the result the problem can be
alleviated. The logarithm transforms products into sums and exponents into scaling
factors, which makes the numbers more tractable. In addition, the whole expression
can be normalized by any constant that is independent of θ. This can be calculated
based on θ(1) such that the minimum value of the fraction (over m) is equal to 1
and then keep it fixed for all future iterations.

Notice that, in principle, an approximation of the gradient of the log-likelihood
function can be computed based on importance sampling. According to (3.48)

∇θ log p(Y ; θ) = ∫ ∇θ log p(Y,W ; θ)p(W ∣Y ; θ)dW

Because the posterior p(W ∣Y ; θ) is only known up to the normalizing constant,
self-normalized importance sampling has to be used and the resulting estimator

∇θ log p(Y ; θ)
⋀

= 1
M

M

∑
m=1

ω(m) ∇θ log p(Y,W (m); θ)
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where

ω(m) =
p(Y,W (m);θ)
p̃(W (m);Y,θ)

∑Mm=1
p(Y,W (m);θ)
p̃(W (m);Y,θ)

is biased for every finite M . This approximation can be used in Algorithm 6 instead of
∇θp(Y ; θ)
⋀

, but the performance depends significantly on the choice of the importance
sampling density. Observe that the true posterior is not the optimal importance
sampling density for directly approximating the gradient of the likelihood function.
The number of samples Mi has to be large enough to reduce the possible bias and
guarantee that the effective sample size is large enough.

Example 3.4.4. Consider the following FIR model with cubic nonlinearity at
the output

xt = θut + ut−1 +wt, θ = 0.5
yt = x3

t + vt, u0 = 0, t = 1, . . . ,N.

in which, ut ∼ N(0, 1
3),vt ∼ N(0,0.1), and wt ∼ N(0,0.2) are independent. We

fixed the number of observations N = 1000, and the number of Monte Carlo
samples M = 5000 and implemented Algorithm 6. Because the outputs are inde-
pendent over time, we may use numerical integration to accurately approximate
the true MLE. Observe that Algorithm 6 does not use the assumption that the
outputs are independent over time.

The average results over 1000 disturbance, noise and input realizations are
summarized in Table 3.2. The simulation results indicate that the Algorithm 6
is unbiased; but has a higher variance compared to the true MLE due to the
Monte Carlo approximation errors.

Table 3.2: Simulation results for Example 3.4.4.

Mean std MSE

Deterministic numerical Integration (true MLE): 0.4944 0.0319 0.0010
Algorithm 6: 0.5151 0.0469 0.0024

3.4.3 Summary
We saw that when the output y is an independent process, deterministic numerical
integration can be used to approximate the M-step of the EM algorithm whenever
the dimension dw is small enough. We then introduced the Monte Carlo EM
(MCEM) algorithm and suggested the use of Laplace’s approximation of the posterior
p(W ∣Y ; θ) as an importance sampling density. The resulting algorithm (Algorithm
5) has desirable theoretical guarantees; however as Example 3.4.1 shows, when N
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increases the variance of the importance sampling weights can be very high due to
a poor importance sampling density.

In Algorithm 6 we proposed the use of importance sampling to directly approxi-
mate the likelihood function. One main difference between the two algorithms is
that in the latter the used importance sampling density is an approximation of the
optimal importance sampling density. The implementation of both algorithms has a
numerical difficulty due to the use of probabilities of high dimensional vectors when
computing the weight.

3.5 Conclusions

In this chapter, we studied several approximation approaches to the ML prob-
lem of parametric nonlinear models. We focused on two main algorithms: (i) the
Expectation-Maximization algorithm, and (ii) the quasi-Newton algorithm and
discussed their properties, advantages and disadvantages in Section 3.2. In Section
3.3, we introduced Laplace’s approximation method that can be used to obtain
a Gaussian approximation of the posterior of W as well an approximation of the
likelihood function at a given θ. Several simulation examples show that direct ap-
proximation of the likelihood function may be acceptable; the accuracy depends not
only on the true model but also on the used input signal.

One disadvantage common to all methods based on analytic (functional) approx-
imations is the difficulty of analyzing the resulting estimates. The best that could
be done is to show that these approximations are exact for the linear case. This
comes in contrast to approximations based on Monte Carlo methods, as shown in
Section 3.4.

Whenever Monte Carlo approximations are used, it is usually possible to establish
asymptotic results and in some cases get finite (approximate) sample bounds. Yet,
Monte Carlo methods come with their own computational and numerical difficulties.
The main challenge is to reduce the number of the required MC samples to a
reasonable value and in the same time guarantee that the MC variance is small
enough. The current state-of-the-art sampling methods rely on particle filters and
(particle) MCMC algorithms (see for example [126]).





Chapter 4

Linear Prediction Error Methods

The methods of Chapter 3 attempt several approximations of the MLE. Because
they rely on approximations of rather complicated PDFs in high-dimensional spaces,
they are computationally expensive and come with several numerical difficulties
as well as unfavourable properties. In this chapter, we look at the problem from a
prediction error perspective where we do not necessarily seek an optimal predictor.
We show that it is possible to use computationally attractive suboptimal predictors
to construct consistent estimators in a prediction error framework.

4.1 Introduction

A fundamental step of any prediction error method is the computation of a predictor
for the assumed model. The optimal one-step ahead predictor(see (2.35) on page 34),
which minimizes the variance of the prediction errors, is usually the preferred choice.
However, as shown in Chapter 1, the optimal predictors of stochastic nonlinear
models are, in general, analytically intractable. Approximations of the optimal
predictor are as complicated as approximations of the efficient MLE, since both rely
on the intractable likelihood function. Fortunately, as discussed in Section 2.4.2, the
predictors in the PEMs can be defined in many ways that might even include some
ad hoc non-probabilistic arguments (also see [92, Section 3.3]). In this chapter, we
are interested in consistent instances of the PEMs based on linear predictors. The
obtained results can be seen as extensions of the linear case (see Examples 2.4.2,
2.4.3, and 2.4.4 in Chapter 2), and can be motivated by Wold’s decomposition as
given in Theorem 2.1.6. We will work under the following assumption:

Assumption 4.1.1. The outputs can be described by a known vector relation M,

Y =M(U,W ; θ) +V , (4.1)

where U ∈ RduN is a vector of known inputs, W ∈ LdwN2 is an unobserved random
vector with a known (possibly parameterized) PDF, and V ∈ LdyN2 is an unobserved
random vector representing measurement noise.

93
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Notice, however, that the methods in this chapter can be easily extended to
a more general class of models where V is not necessarily additive. Assume for
the moment that v is a linearly filtered white noise with zero mean and known
covariance function, but unknown PDFs. Under the assumption that the centered
process yt−E[yt; θ] is purely non-deterministic1 with zero initial conditions, Wold’s
decomposition as given in Theorem 2.1.6 ensures the existence of the representation

Y = µ(U, θ) +Z(U, θ)

in which µ(U, θ) is the mean vector of Y : namely, [µ(U ; θ)]t ∶= E[yt; θ], and

Z(U, θ) = L(U ; θ)E

in which L(U ; θ) is a lower unitriangular matrix of decaying elements, and E is the
vector of innovations; that is, a vector whose elements are white noise2 with finite
covariance such that [E]t ∈Ht. We invite the reader to compare this representation
to the models in (2.21) and (2.27) on pages 26 and 27 respectively.

We see that regardless of the underlying model, as long as the conditions of
Theorem 2.1.6 are satisfied, the output vector can always be written in terms of the
mean vector plus a causally filtered white noise. It is important to notice that, in
general, the filtering matrix L (the equivalent of the noise model) depends on the
used input. Furthermore, we observe that Wold’s decomposition does not specify
the distribution of E but only its second moments; therefore, it is an incomplete
representation characterizing only the first and second moments of the process.
Fortunately, this characterization is sufficient for the construction of optimal linear
predictors (see Appendix B).

4.2 Using Linear Predictors and PEMs for Nonlinear
Models

It is important to understand that what we are suggesting here are linear predictors
for a process with a nonlinear underlying model. The objective is to estimate the
parameters of the assumed nonlinear structure by using a linear predictor in a PEM
(a different objective compared to [36]). To do so, we are required to construct a
predictor that is parameterized by θ and is linear in the observations Y . However,
the dependence on the known inputs U can be nonlinear.

We clarify this in the following example.

1i.e., the linear deterministic part of yt −E[yt; θ] is zero.
2Recall that we define white noise as a sequence of uncorrelated random variables but not

necessarily independent, and that Ht ∶= sp{ys ∶ s ≤ t} ∀t ∈ Z.



4.2. Using Linear Predictors and PEMs for Nonlinear Models 95

Example 4.2.1 (Linear prediction of a non-stationary process). Consider the
second-order discrete-time stochastic process

yt = µt(θ) + ζt, t ∈ Z,

and assume for the moment that ζ is a purely non-deterministic zero mean
stationary process with strictly positive rational power spectrum. The determin-
istic signal µt(θ) is assumed to be generated according to some given recursion;
for example,

µt(θ) = f(µt−1(θ), . . . , µt−nµ(θ), ut−1, . . . , ut−nu ; θ), nµ, nu ∈ N

for some known parameterized function f and known deterministic sequence
{uk}, but it can be generated in any other way. Observe that we did not specify
the distribution of ζ and that y is given in the form of Wold’s decomposition.
Indeed, the signal µt(θ) = E[yt; θ] is the mean of the process y, and according
to the spectral factorization theorem (see [120]), we can write ζt =H(q, θ)εt in
which H(q, θ) is a causal and causally and stably invertible LTI filter that can
be parameterized (independently) by θ, and ε is white noise, i.e.,

yt = E[yt; θ] +H(q, θ)εt, t ∈ Z. (4.2)

It is clear that εt ∈Ht, and (4.2) is Wold’s decomposition of y.
Hence, this case is not much different from the case of LTI models in

Example 2.4.2 (on page 35) where the mean of the process is µt(θ) = G(q, θ)ut.
Regardless of how the (assumed known) mean is modeled, the process y has the
same representation in terms of the mean signal and causally filtered (linear)
innovations. Thus, we may proceed similarly and define two linear predictors.
The first predictor can be constructed by ignoring the stochastic structure of
the additive noise ζ and carrying on as if ζ were an independent white process.
This leads to the deterministic predictor

ŷt∣t−1(θ) = µt(θ), t ∈ Z, (4.3)

which is independent of the observed outputs. Under some conditions on the used
inputs (e.g., open-loop operation) and µt as functions of θ, the PEM estimator

θ̂(DN) ∶= arg min
θ∈Θ

N

∑
t=1

∥et(θ)∥2

such that et(θ) = yt − µt(θ), ∀t = 1, . . . ,N,

can be shown to be consistent (see Example 2.4.4 for the linear case). However,
it is obvious that the predictor in (4.2) is suboptimal, even in the restricted
class of linear predictors. Note that it does not coincide with the unique optimal
linear predictor which relies on the covariance function of y (see Theorem B.1.9
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and Section B.4). The optimal “linear” (in y) predictor can be constructed by
inverting the noise model H(q, θ) (compare to (2.39)); we define

ŷt∣t−1(θ) ∶= [1 −H−1(q, θ)]yt +H−1(q, θ)µt(θ), t ∈ Z

where ŷt∣t−1(θ) denotes the predicted output at time t given all outputs and
inputs before t.

Now assume that the process ζ is a purely non-deterministic non-stationary
process with zero mean (compare to the linear state-space model in (2.45)).
Then by Theorem 2.1.6, we can write

yt = µt(θ) +
∞

∑
k=0

hk(t)εt−k, t ∈ Z,

in which ε is the (linear) innovations process of y, and the linear filter is
time-varying with a “square summable” impulse response sequence. Using the
assumption of zero initial conditions; i.e., that both µt(θ) and εt are zero for
all t < 1, we have the vector representation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
⋮
yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¸¹¹¶
=Y

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ1(θ)
µ2(θ)
µ3(θ)
⋮

µN(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶M(θ)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
h1(2) 1 . . . 0
⋮ ⋮ ⋱ ⋮

hN−1(N) hN−2(N) . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶HN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

⋮
εN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¸¹¹¶
=∶E

,
(4.4)

that is,
Y =M(θ) +HNE. (4.5)

Observe that M(θ) is a known deterministic vector-valued function of θ, HN

is a unitriangular matrix of deterministic (and decaying) coefficients, and the
innovations vector E has a zero mean and a finite covariance. It is then possible
to define the best linear predictor of Y by inverting the matrix HN .

Define the vector of stacked one-step ahead ‘linear’ predictors

Ŷ ∶= [ŷ⊺1∣0 . . . ŷ⊺N ∣N−1]
⊺

. (4.6)

Then, similar to (2.40), we have

Ŷ (θ) = [I −H−1
N ]Y +H−1

N M(θ) (4.7)

which is parameterized by θ and the coefficients of HN . Observe that HN is
invertible for any finite N ; however, to be able to guarantee that Ŷ is well
defined as N → ∞, it is required to assume that y is such that the entries of
H−1
N are decaying as time grows (see Assumption 2.1.7 on page 20).
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In the previous example, the models were given in the form of Wold’s decomposi-
tion, and we showed how linear predictors (in y) can be defined. In the next example,
we will define five PEM instances for a relatively simple stochastic nonlinear model.
The first step is to rewrite the given model in the form of Wold’s decomposition;
then the linear predictors and the corresponding PEM problems can be defined.

Example 4.2.2 (PEM for a scalar stochastic nonlinear model). Assume that
the observations are generated according to the relation

yt = θ(ut−1 +wt)2 + ζt, t = 1, . . . ,N (4.8)

in which all signals are scalars, θ = 0.7, u is a known input signal, w is an
unobserved independent white noise with time-independent variance λw = 1,
and ζ is a linearly filtered white noise defined as

ζt ∶=
1

1 − 0.9q−1 εt, t ∈ Z, (4.9)

in which ε is a stationary white noise with variance λε = 3. Observe that the full
distributions of w and ζ are not specified; however, it is assumed that w and ζ
are independent. Moreover, notice that the model is simplified in two ways: (i)
the unobserved disturbance w is assumed to be an independent process, (ii) the
model is linear in the parameter θ. A straightforward extension of the model,
that does not affect the discussion, is to assume a parameterized input (for
example, ut(θ) = G(q; θ)ũt for some transfer operator G and known ũt.)

Under the assumption that ζ0 = 0, the model can be written in the vector
form

Y = θ(U +W )2 +Z
Z =HE

in which the exponent is applied element-wise; i.e., for any vector W we define
W 2 ∶= [w2

1 . . .w
2
N ]⊺. The vector U is redefined, just for the current example, to

be the vector [u0 . . . uN−1]⊺. According to (4.9), the filtering matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
0.9 1 0 . . . 0
0.92 0.9 1 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮

0.9N−1 0.9N−2 . . . . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The assumption that w is an independent white noise makes the model
simple enough to allow for analytic computation of the outputs mean value. It
holds that

Y = θU2 + θW 2 + 2θUW +Z,
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µ(U ; θ) ∶= E[Y ; θ] = θU2 + θE[W 2] + 2θE[UW ] +E[Z]
= θ(U2 + λw1)

in which the product UW is element-wise and 1 ∈ RN is a column vector of
ones. Using this result, it is possible to evaluate the covariance matrix of the
output vector, it holds that

Σ(U ; θ) ∶= cov(Y ,Y ; θ)
= E [Y − µ(U ; θ))(Y − µ(U ; θ))⊺]
= E [(θW 2 + 2θUW +HE − θλw1)(θW 2 + 2θUW +HE − θλw1)⊺]
= E [θ2(W 2)(W 2)⊺+ 4θ2(W 2)(UW )⊺+ 2θ(W 2)(HE)⊺

− 2θ2λw(W 2)(1)⊺ + 4θ2(UW )(UW )⊺ + 4θ(UW )(HE)⊺

−4θ2λw(UW )(1)⊺ +HEE⊺H⊺ − 2θλw(HE)(1)⊺ + θ2λ2
wI]

in which the products (⋅)(⋅)⊺ evaluate to diagonal matrices whose diagonal is
given by the element-wise product of the vectors, and therefore

Σ(U ; θ) = λεHH⊺ +D(U ; θ) (4.10)

in which D is a diagonal matrix with entries [D]tt = 2θ2λw(2u2
t−1 + λw) for all

t = 1, . . .N . It is necessary to stress here that, due to the nonlinear dynamics,
the matrix D depends on the input (unlike the case of linear state-space models;
see (2.25) and (2.26)). Furthermore, we define the matrix square-root

Σ 1
2 (U ; θ) ∶= L(U ; θ)Λ 1

2 (U, θ)

in which L is the unique lower unitriangular diagonal matrix, and Λ is a diagonal
matrix.

Note that, for the current example, the mean vector is nonlinear in the
known inputs. Also notice that the first term of the covariance matrix Σ(U ; θ)
as shown in (4.10) is due to the additive noise Z and is independent of θ, while
the second term is due to the ”process noise” W and depends on the model
(the nonlinearity), the variance λw and the input signal.

The output can be written as

yt = θ(u2
t−1 + λw) +

t

∑
k=0

lk(t;Ut, θ)εt−k, t ∈ N, (4.11)

in which εt is an innovation sequence; i.e., an uncorrelated sequence of zero mean
random variables with time-dependent variances given by the diagonal of Λ(U ; θ),
and lt(0;Ut, θ) ∶= 1 for all t ∈ N. This representation of the outputs agrees with
Wold’s decomposition under the assumption of zero initial conditions. We note
here that in a scenario where ζ is an independent process, it holds that H = IN ,
L(U ; θ) = IN , and y is a linear process such that E[yt; θ] = E[yt∣Ht−1; θ].
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We now define the following predictors:

Ŷ1(θ) ∶= θU2,

Ŷ2(θ) ∶= θ(U2 + λw),

Ŷ3(θ) ∶= (I − λ−
1
2

ε H−1)Y + λ−
1
2

ε H−1 θ(U2 + λw),
Ŷ4(θ) ∶= (I −L−1(U ; θ))Y +L−1(U ; θ) θ(U2 + λw),

(4.12)

and the following five PEM estimators

θ̂k(DN) ∶= arg min
θ

∥Y − Ŷk(θ)∥2
2 for k = 1,2,3,4 and

θ̂5(DN) ∶= arg min
θ

{∥Y − Ŷ4(θ)∥2
Λ−1(U ;θ) +

N

∑
t=1

log[Λ(U ; θ)]tt} .
(4.13)

The first two predictors are deterministic and both (as justification for their
definition) assume that y is an independent process with unit variance; however,
the first one ignores w completely. The third and fourth predictors are linear in
Y and quadratic in U . Recall that both H and L−1(U ; θ) are lower unitriangular
matrices, and therefore the entries of the vectors Ŷ3 and Ŷ4 are one-step ahead
predictors similar to (4.6).

To compare the five estimators defined in (4.13), we used simulated data
according to the true model in (4.8). We generated 1000 independent realizations
of W and Z for different values of N between 100 and 3000, assuming Gaussian
distributions with zero mean and the given variances. For each N and each
realization, the input U is given as a known (fixed) realization of an independent
Gaussian white noise with variance λu = 5.

The average MSE and the average bias of each estimator is given, for the
different values of N , in Figure 4.1.
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Figure 4.1: The average MSE and the average bias over 1000 Monte Carlo simulations
of the five PEM estimators defined in (4.13).

The first observation to be made here is that the first estimator is biased.
To understand why, observe that the predictor Ŷ1(θ) ignores the process w; i.e.,
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it is defined assuming wt = 0 ∀t and it is well-known that the PEM estimators
based on this false assumption are biased (see [58]). Due to the convenient
parameterization, the estimator has the closed-form expression

θ̂1(DN) =
1
N ∑

N
t=1 ytu

2
t−1

1
N ∑

N
t=1 u

4
t−1

, N ∈ N,

and it is possible to analyze the asymptotic estimate. By using the model in
(4.8) to substitute for yt in the above expression, we see that

θ̂1(DN) = θ○
1
N ∑

N
t=1 u

4
t−1 + 1

N ∑
N
t=1w

2
tu

2
t−1 + 2 1

N ∑
N
t=1wtu

3
t−1

1
N ∑

N
t=1 u

4
t−1

.

Under some conditions on the input signal, a direct application of the law of
large numbers together with Slutsky’s lemma ([23, Chapter 5]) shows that

θ̂1(DN) a.s.Ð→ θ○
⎛
⎝

1 + λw
lim
N→∞

1
N ∑

N
t=1 u

2
t−1

lim
N→∞

1
N ∑

N
t=1 u

4
t−1

⎞
⎠

as N →∞.

and it is clear that θ̂1(DN) a.s.Ð→ θ∗ ≠ θ○ as N →∞ when λw ≠ 0, and thus the
estimator is not consistent. The asymptotic bias depends on the true parameter
and the input properties. It is given by

θ○ − θ∗ = −θ○ λw
3λu

in which we used the fact that the input is Gaussian with variance λu. For
the values used in the current example, this gives an asymptotic bias equal to
−0.7 1

15 = −0.04666 which agrees with the simulation results in Figure 4.1.
On the other hand, we see that the simulation results indicate that all the

other suggested estimators are consistent but have different accuracy. Observe
for example that

θ̂2(DN) =
1
N ∑

N
t=1 yt(u2

t−1 + λw)
1
N ∑

N
t=1(u2

t−1 + λw)2

= θ○
1
N ∑

N
t=1((ut−1 +wt)2 + ζt)(u2

t−1 + λw)2

1
N ∑

N
t=1 u

4
t−1 + 1

N ∑
N
t=1 λ

2
w + 2λw

N ∑Nt=1 u
2
t−1

,

and the asymptotic estimate exists; it holds that

θ̂2(DN) a.s.Ð→ θ○
[ lim
N→∞

1
N ∑

N
t=1 u

4
t−1] + 2λw [ lim

N→∞

1
N ∑

N
t=1 u

2
t−1] + λ2

w

[ lim
N→∞

1
N ∑

N
t=1 u

4
t−1] + 2λw [ lim

N→∞

1
N ∑

N
t=1 u

2
t−1] + λ2

w

as N →∞,

and it is clear that θ̂2(DN) a.s.Ð→ θ○ as N → ∞ for every λw > 0 which shows
that, unlike θ̂1, θ̂2 is consistent. Similar computations can be done to show the
consistency of θ̂3, θ̂4 and θ̂5.
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It is of interest to observe that the four consistent PEM instances have
prediction errors of the form

Ek = Qk(Y − µ(U ; θ)) k = 2,3,4, or 5 (4.14)

in which Qk is a square positive definite matrix (prefiltering/weighting);

Q2 = I, Q3 = λ
− 1

2
ε H−1, and Q4 = Q5 = L−1(U ; θ).

Regardless of the used Q, the three predictors deal with w in the same way:
instead of ignoring it, they average over all possible values of W according to its
known distribution. Furthermore, observe that since the weighted norm defining
θ̂5, see (4.13), is θ-dependent, the objective function has a correction term that
ensures the consistency of the estimator. We will discuss these observations
further in the next section.

While Example 4.2.2 assumes a quite simple model, it illustrates the main ideas
of this chapter. We saw that it is possible to define simple “distribution-independent
predictors” that are linear in the observed outputs such that the resulting PEM
estimator is consistent. The good news is that these ideas are still applicable for
much more complicated models. In the next section, we give general definitions
for linear predictors of nonlinear models and define several corresponding PEM
estimators. We also clarify the definitions and behaviors of the estimators used
in Example 4.2.2. However before moving there, we relate our framework to the
notions of LTI second-order equivalent (LTI-SOE) models (see [36, 93]) and best
linear approximations (BLA, see [111, 128, 130]).

LTI second-order equivalent models and best linear approximations

Linear time-invariant approximations of nonlinear systems are usually considered
under different set of assumptions and objectives. They are usually studied in a
mean-square error framework where assumptions and restrictions on the systems
to be approximated are implicitly given as assumptions on the input and output
processes. It is usually assumed that the inputs and the outputs are zero mean
stationary stochastic processes, such that the input belongs to a certain class; for
example, a class of periodic processes, or processes that have a spectrum with a
unique canonical spectral factorization.

In such a framework, explicit assumptions on the underlying data generating
mechanism (such as a true parametric nonlinear model) are not necessarily used or
required. The goal there is to use the assumptions on the data to obtain an LTI
model – linear in both y and u – that approximate the behavior of the underlying
nonlinear system. For example, an output error LTI-SOE model (OE-LTI-SOE)
model is defined in [36, Section 4.2] as

GOE(q) ∶= arg min
G(q)∈G

E[∥yt −G(q)ut∥2
2], (4.15)
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in which G is the set of all stable and causal LTI models and the expectation operator
is with respect to the joint distribution of y and u. When the stability and causality
constraints are dropped, the minimizer is called the best linear approximation (BLA)
and denoted GBLA(q). Observe that these models are not necessarily rational.

Apart from the obvious differences in the assumptions and the objectives, the
obtained LTI-SOE models and BLAs depend on the distribution of the input process
u. Notice that the models in (4.15) are defined by averaging, not only over y, but
also over all inputs u. Therefore, one has to speak of an LTI-SOE model or a BLA
“with respect to a certain class of input signals”. In this thesis, by contrast, the inputs
are assumed fixed and known. They are used to describe the mean of y, which is
not necessarily stationary, and therefore all the computations are conditioned on
the given inputs (consequently, the assumption regarding the underlying model
structure is of importance here).

Even though linear predictors are utilized in this thesis to define PEM estimators,
it should be clear that (under Assumption 2.2.1), the underlying models are exact
once the full distribution of the basic stochastic process ζ is known; i.e., the models
completely specify the underlying measure Pθ in terms of all finite distributions of
y for a given input. This comes in contrast to the undermodelling framework in
which LTI-SOE models and BLAs are considered. For example, the OE-LTI-SOE
(4.15) only captures the causal part of the cross-covariance function between y and
u, and the general error LTI-SOE (GE-LTI-SOE, see [36, Section 4.4]) only models
the second-order properties of the signals in terms of the covariance function of y
and the cross-covariance function between y and u. To further clarify these remarks,
we have the following example.

Example 4.2.3 (LTI-SOEs model and BLAs). Let us assume that the under-
lying nonlinear system is given by the relation

yt = θ(ut +wt)2 + vt − 2θ, t ∈ Z (4.16)

in which u, w and v are independent and mutually independent zero mean
stationary Gaussian processes with unit variance, θ ∈ R. It is straightforward to
show that

Φu(z) = 1, Φyu(z) = 0, and Φy(z) = 8θ2 + 1.

Consequently, the OE-LTI-SOE model, with respect to the standard stationary
Gaussian input, is GOE(q) = 0, and the GE-LTI-SOE model is given by the
triplet (GGE(q),HGE(q), λ0) in which GGE(q) = 0, HGE(q) = 1, and λ0 = 8θ2+1
(see [36, Theorem 4.5]). The nonlinear system and its GE-LTI-SOE model are
indistinguishable if only the second-order properties of y and u are considered,
i.e., the process

ỹt = GGE(q)ut +HGE(q)ε̃t,
=HGE(q)ε̃t,

(4.17)

in which ε̃t is white noise with variance λ0, has exactly the same spectrum as y.
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Observe that, because y is assumed to be a zero mean independent stationary
process, the representation in (4.17) coincides with Wold’s decomposition, see
(2.5), in which hk = 0 ∀k ≥ 1. Moreover, under the assumptions on u, it holds
that the optimal linear predictor constructed based on (4.17) is equivalent to

ŷt∣t−1 = E[yt] = E[yt∣Ht−1] = 0.

It can also be shown that the BLA (with respect to the standard stationary
Gaussian input) as described in [131] or in [46], coincides with the OE-LTI-SOE
model; i.e., GBLA(q) = 0.

On the other hand, the linear predictors suggested in this thesis are defined
by conditioning on the assumed known (realization of the) input. Assuming that
u is fixed and known, the mean of y is

E[yt; θ] = E[θ(ut +wt)2 + vt − 2θ] = θ(u2
t − 1), ∀t ∈ Z,

and the variance is

E[(yt −E[yt; θ])2; θ] = 2θ2(2u2
t + 1) + 1 ∀t ∈ Z,

and thus, Wold’s decomposition of y (given u) is

yt = θ(u2
t − 1) +Ht(q; θ)εt, var(εt) = 1, ∀t ∈ Z, (4.18)

in which Ht(q; θ) is a time-varying filter whose impulse response coefficients
hk(t) = 0 ∀k ≥ 1 and h0(t) =

√
2θ2(2u2

t + 1) + 1 for all t ∈ Z. Notice that, because
y is an independent process, the optimal linear predictor (in y) coincides with
the unrestricted optimal MSE predictor as well as the unconditional mean:

ŷt∣t−1(θ) = E[yt; θ] = E[yt∣Ht−1; θ] = θ(u2
t − 1), ∀t ∈ Z,

which is nonlinear in ut.
Thus, a main difference between the models in (4.17) and (4.18) is the

assumption on the input. While the GE-LTI-SOE model is defined by averaging
over an assumed stationary input, the model in (4.18) is obtained by conditioning
on a given realization.

4.3 Optimal Linear Predictors for Nonlinear Models

The general prediction problem can be described as follows: at time t − 1, we have
observed the outputs y1, . . . ,yt−1 for some t ∈ Z and wish to estimate the value of
yt. Let us define the column vector of outputs Yt−1 ∶ [y⊺1, . . . ,y⊺t−1]⊺ ∈ Ldy(t−1)

2 . A
one-step ahead predictor is defined as a (measurable) function of the observation
vector Yt−1, which is usually chosen to minimize some criteria. We have already seen
in Section 2.4.2 (on page 34) that the optimal predictor, in the sense of minimizing
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the Mean-Square Error (MSE), is the conditional mean given in (2.35) which is, in
most cases, hard to compute. For this reason, and due to the fact that the prediction
error framework does not really need an “optimal” predictor to construct a consistent
estimator, we are led to the restricted class of linear predictors of the form

ŷt∣t−1(θ) = f(Ut; θ) +
t−1
∑
k=1

l̃t−k(t,Ut; θ)yk, t ∈ N.

in which f and l̃t−k are functions of θ and the known inputs.
Linear predictors are much easier to work with; notice for example that a unique

optimal linear least MSE predictor for any second-order process always exists among
the set of linear predictors (see below). The computations are also straightforward,
and closed-form expressions for the predictors are available in several relevant cases.

4.3.1 The Optimal Linear Predictor
By considering the outputs of the general model in (2.10) as elements of the Hilbert
space Ldy2 (see Appendix B), the projection theorem can be used to define the
optimal linear predictor. The key idea is that the optimal linear predictor can be
thought of as the unique orthogonal projection of the random vector yt onto the
closed subspace spanned by the observation vector Yt−1 when the MSE is used as
an optimality criteria. We formalize this in the following definition and lemma.

Definition 4.3.1 (Optimal linear predictor). Let S ⊂ Ldy2 be the closed subspace
spanned by the entries of Yt−1. Then, an optimal linear predictor of yt in S is
defined as a vector ŷt∣t−1 ∈ S such that

∥yt − ŷt∣t−1∥2
Ldy2

∶= E [∥yt − ŷt∣t−1∥2
2; θ] ≤ E [∥yt − ỹ∥2

2; θ] ∀ỹ ∈ S

A characterization of such an optimal predictor is given in the following lemma.

Lemma 4.3.2. The optimal one-step ahead linear predictor defined in Definition
4.3.1 exists and is unique. It is given by

ŷt∣t−1(θ) = E[yt; θ] +Ψ(Ut−1; θ) (Yt−1− µ(Ut−1; θ)) , 1 ≤ t ≤ N (4.19)

in which
µ(Ut−1; θ) ∶= E[Y t−1; θ],

Ψ(Ut−1; θ) ∶= [cov(Yt−1,Yt−1; θ)]−1 cov(yt,Yt−1; θ), (4.20)

and ŷ1∣0(θ) = E[y1; θ].

Proof. The proof is given in Section B.4.2, by a direct application of Theorem B.1.9.
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To connect this result to Wold’s decomposition of y and its innovation process,
observe that the predictors in (4.19) would be easy to compute if the matrices
cov(Yt−1,Yt−1; θ) were diagonal. This holds only if the outputs y1, . . . ,yt−1 are
orthogonal (uncorrelated) which is rarely the case in most applications. Nevertheless,
the Gram-Schmidt procedure (see [67, Section 4.2.3]) can be used to (causally)
transform the observations into a set of orthogonal vectors (innovations) {εk} such
that

εt ∶= yt − ŷt∣t−1(θ), 1 ≤ t ≤ N,

= yt −E[yt; θ] −
t−1
∑
k=1

cov(yt,εk)λ−1
εk
εk,

(4.21)

with ε1 = y1 −E[y1; θ], and λεk = cov(εk,εk).
Let

Et−1 =[ε⊺1 . . .ε⊺t−1]⊺, Ȳ t−1 ∶= Y t−1 − µ(Ut−1; θ) and, ȳt ∶= yt −E[yt; θ].

Then, for the purpose of linear prediction, the vectors Et−1 and Ȳ t−1 are equivalent
in the sense that they span the same subspaces and it holds that

Psp{Ȳ t−1}
[ȳt] = Psp{Et−1}[ȳt].

Consequently, under the assumption that all signals are known to be zero for all
t ≤ 0, the above construction is identical to Wold’s decomposition (see the second
row of (2.6) and compare to (4.21)).

Remark 4.3.3. Observe that the coefficients (4.20) in the expression of the optimal
predictor depend only on the unconditional first and second moments of y up to
time t. Consequently, the computations of the best linear predictor can be simpler
than the computations of the unrestricted optimal predictor (the conditional mean).

The next lemma concerns the computations of the optimal one-step ahead linear
predictor. It shows that finding the optimal linear predictors and the associated
innovations corresponds to an LDL⊺ factorization of the covariance of Y (see [51,
Section 4.1] for the definition and the properties of such a factorization).

Lemma 4.3.4 (Computations of the optimal linear predictor). Consider the general
nonlinear model in (2.10) subject to Assumption 4.1.1 such that yt = 0 ∀t ≤ 0.
Furthermore, assume that

µ(U ; θ) ∶= E[Y ; θ], and Σ(U ; θ) ∶= cov(Y ,Y ; θ) ≻ 0

are given. Then the unique optimal one-step ahead linear predictor of yt is given by

ŷt∣t−1(θ) = E[yt; θ] +
t−1
∑
k=1

l̃t−k(t,Ut−1; θ) (yk −E[yk; θ]) , (4.22)
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in which
l̃j(t,Ut−1; θ) ∶= [L−1(U ; θ)]

tj
, 1 < t ≤ N,

and the matrix L(U ; θ) is the unique lower unitriangular matrix given by the LDL⊺
factorization of Σ; that is,

Σ(U ; θ) = L(U ; θ)Λ(U ; θ)L⊺(U ; θ). (4.23)

Furthermore, ŷ1∣0(θ) = E[y1; θ].

Proof. The last statement of the theorem is straightforward: given no observations
(or zero initial condition), the subspace S is equal to {0} because the span of an
empty set is the zero vector. Therefore, the orthogonal projection of y1 −E[y1; θ]
onto S is 0 (see properties of projections in Appendix B) and the result follows.

To establish (4.22), first recall that whenever the covariance matrix Σ is positive
definite, the factorization in (4.23) is unique. Then observe that using Wold’s
decomposition or (4.21) we may write

Y = µ(U ; θ) + L̃(U ; θ)E (4.24)

in which

L̃(U ; θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 . . . 0
cov(y2,ε1)λ−1

ε1
I . . . 0

⋮ ⋮ ⋱ ⋮
cov(yN ,ε1)λ−1

ε1
cov(yN ,ε2)λ−1

ε2
. . . I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From (4.24) and due to the linearity of the expectation operator, it follows that

cov(Y ,Y ; θ) = L̃(U ; θ)Λ̃(U ; θ)L̃⊺(U ; θ).

The uniqueness of the factorization in (4.23) implies that L̃(U ; θ) = L(U ; θ) and
Λ̃(U ; θ) = Λ(U ; θ) is a block diagonal matrix of innovation covariances.

Finally, observe that we are able to compute the innovations vector by inverting
the unitriangular matrix L (which is always invertible for any finite N) to get

E(θ) = L−1(U ; θ)(Y − µ(U ; θ)), (4.25)

and by definition (see (4.21)) we have

E(θ) = Y − Ŷ (θ), (4.26)

which gives the vector of one-step ahead predictors

Ŷ (θ) = Y − E(θ) = Y −L−1(U ; θ)(Y − µ(U ; θ)) (4.27)

and therefore (4.22) holds.
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Remark 4.3.5. Notice that (4.27) can be rewritten in the form

Ŷ (θ) = (I −L−1(U ; θ))Y +L−1(U ; θ)µ(U ; θ), (4.28)

which has the same form as the vector of optimal predictors of the linear case in
(2.40) and (2.41). There, the entries of the matrix L are given by the impulse
response coefficients of the noise model. Observe that here – unlike the linear case –
the entries of L−1 depend on the used input.

Example 4.3.1. Consider the model of Example 4.2.2. The vector of optimal
one-step ahead linear predictors is given by Ŷ4(θ) in (4.12).

In the next part, we relate the above results to the two special cases of stationary
and quasi-stationary signals.

The stationary and the quasi-stationary cases

In the special case where y is a stationary (centered) process observed from t = −∞
with autocovariance function sk = cov(yt,yt+k) and t, k ∈ Z, the optimal one-step
ahead linear predictor is given by the Wiener filter (or recursively by the Kalman
filter) and the solution is equivalent to computing the canonical factorization of the
spectrum Φy(z) of the process (see [2, Section 9.5] or [67, Chapter 7]).

Let Φy(z) be a strictly positive rational spectrum of a scalar stationary process
y. Then it holds that

Φ(z) = L(z)ΛεLT (z−1) = Z[sk] (4.29)

in which Z[sk] denotes the z-transform of the auto-covariance sequence, and

L(z) = 1 +
∞

∑
k=1

lkz
−k (4.30)

is a minimum-phase causal LTI filter known as the spectral factor of y. Hence,
L(z) has a well defined causal and stable LTI inverse: L−1(z) = 1 +∑∞

k=1 l̃kz
−k. The

optimal one-step ahead predictor is then given by the pure prediction Wiener filter
(see [67, Section 7.6.1]),

ŷt∣t−1 = (1 −L−1(q))yt, t ∈ Z, (4.31)

and the innovation process is given by

εt = L−1(q)yt, t ∈ Z. (4.32)

Under the assumption of zero initial conditions, that is yt = 0 ∀t ≤ 0, only the first
t − 1 coefficients of the impulse response of L−1(q) are used to compute ŷt∣t−1. Due
to the uniqueness of the optimal linear predictor, this implies that for a stationary y
the matrix L in Lemma 4.3.4 is a Toeplitz lower unitriangular matrix whose entries
are given by the first t − 1 impulse response coefficients of the spectral factor (4.30).
We summarize this in the following corollary.
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Corollary 4.3.6. Assume that y is a second-order weakly stationary discrete-
time stochastic process with a strictly positive rational spectrum and zero initial
conditions. Then the matrix L defining the optimal one-step ahead linear predictors
in Lemma 4.3.4 has a Toeplitz structure and its first column coincides with the first
N coefficients of the spectral factor of y.

Proof. See above.

Similar arguments can be used for the quasi-stationary case. Consider for instance
the quasi-stationary output of Example 2.4.2. Comparing the predictors as given in
(2.39) and (2.40) to Lemma 4.3.4, we conclude that L has a Toeplitz structure and
its first column coincides with the first N coefficients of the impulse response of the
noise model H(q).

For a general case of a non-stationary output, L will not be Toeplitz; however, as
can be seen from the discussion after Lemma 4.3.2, the entries of its rows correspond
to the (square summable) impulse response of a time-varying filter. The ith row
correspond to the first i coefficients of the impulse response at time t = i. The question
of how to compute these time-varying filters in terms of a finite parameterization is
not trivial though. Moreover, as we show in Section 4.4, assumptions have to be
imposed on the predictors to establish the convergence of the PEM.

4.3.2 PEM Based on the Optimal Linear Predictor
We now define two instances of the PEM based on the unique optimal linear predictor.
The difference between the two is due to the used criterion ` that maps the sequence
of prediction errors into a positive scalar. The analysis of the resulting estimators
is given in Section 4.4. The first instance is based on an unweighted time- and
parameter-independent Euclidean norm.

Definition 4.3.7 (PEMs based on the optimal linear predictor (L-PEM)). A PEM
estimator based on the optimal linear predictor is defined by

θ̂(DN) = arg min
θ∈Θ

∥Y − Ŷ (θ)∥2
2

such that Ŷ (θ) = (I −L−1(U ; θ))Y −L−1(U ; θ)µ(U ; θ).
(4.33)

We will refer to this estimator as L-PEM (Linear Prediction Error Method)
to indicate that the optimal linear predictor is used with a quadratic criterion.
Observe that such an estimator was used in Example 4.2.2 in the previous section
to define the consistent estimator θ̂4(DN). Also observe that in the classical case of
LTI models, the L-PEM estimator is nothing more than the commonly used PEM
estimator defined using a Euclidean norm and the optimal one-step ahead predictor
(see Example 2.4.2).

To gain insight into the average behavior of the L-PEM estimators, observe that
the objective function can be written in the form

tr (L−⊺(U ; θ)L⊺(U ; θ)(Y Y ⊺ − 2µ(U ; θ)Y ⊺ + µ(U ; θ))) .
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Integrating with respect to the true distribution of Y (i.e., the true measure Pθ○)
and differentiating with respect to θ we get

−2tr (L−1(U ; θ)∂θL(U ; θ)Λ(U ; θ○))
− 2tr (L−⊺(U ; θ)L−1(U ; θ)∂θL−1(U ; θ)Λ(U ; θ○))L−1(U ; θ)M)
− 2tr (L−⊺(U ; θ)L−1(U ; θ)(∂θµ(U ; θ)µ(U ; θ○) − ∂θµ(U ; θ)µ(U ; θ))

(4.34)

in which

M = µ(U ; θ○)µ⊺(U ; θ○) − 2µ(U ; θ)µ⊺(U ; θ○) + µ(U ; θ)µ⊺(U ; θ).

It is easy to verify that this quantity vanishes if and only if µ(U ; θ) = µ(U ; θ○) and
L(U ; θ) = L(U ; θ○). Note for example that the first term of (4.34) is zero, since L−1

is lower unitriangular, ∂θL is strictly lower triangular (lower triangular with 0s along
the main diagonal) and Λ is diagonal. Thus, under identifiability and regularity
conditions, the L-PEM estimator can be shown to be consistent. Note that in the
linear case, the above condition is nothing more than the identifiability condition
on the plant model G(q, θ) and the noise model H(q, θ).

The asymptotic properties of the L-PEM estimators can be improved by the use
of a weighted criterion. To motivate this, observe that in the case of non-stationary
linear Gaussian state-space models (see (2.48) and (2.49) in Example 2.4.3), the
(unweighted) L-PEM is suboptimal, and using a weighted criterion according to the
Gaussian distribution of the innovations results in an asymptotically efficient (ML)
estimator. This leads us to the following PEM estimator.

Definition 4.3.8 (PEM based on the optimal linear predictor using a weighted norm
(WL-PEM)). The weighted PEM estimator based on the optimal linear predictor
and θ-dependent weights is defined by

θ̂(DN) = arg min
θ∈Θ

∥Y − Ŷ (θ)∥2
Λ−1(U ;θ) + log det Λ(U ; θ)

such that Ŷ (θ) = (I −L−1(U ; θ))Y −L−1(U ; θ)µ(U ; θ).
(4.35)

We will refer to this estimator as WL-PEM (Weighted Linear Prediction Error
Method) to indicate that the optimal linear predictor is used with a weighted
quadratic criterion plus a log det term. Observe that the used criterion is on the
“Gaussian log-likelihood function” form; it is both time- and parameter-dependent
via the innovation covariance matrices. Also notice that the resulting estimator was
used in Example 4.2.2 to define the consistent estimator θ̂5(DN). As indicated by
the simulation results, the accuracy of the WL-PEM estimator is the best among
the tested estimators in that example.

Note that, by using (4.25) and (4.26), the objective function in (4.35) can be
equivalently written as

(Y − µ(U ; θ))⊺L−⊺(U ; θ)Λ−1(U ; θ)L−1(U ; θ)(Y − µ(U ; θ)) + log det Λ(U ; θ)
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Recalling (4.23) and that L(U ; θ) is a unitriangular matrix, this expression is
equivalent to

(Y − µ(U ; θ))⊺Σ−1(U ; θ)(Y − µ(U ; θ)) + log det Σ(U ; θ)

in which Σ(U, θ) is the covariance of Y . Observe that the log det term of the
criterion function in (4.35) is important for the consistency of the estimator due to
the dependence of the weight on θ. To see this, observe that for all N , every solution
θ̂ to the problem in (4.35) must satisfy the equation

{∂θ [(Y − µ(U ; θ))⊺Σ−1(U, θ)(Y − µ(U ; θ)) + log det Σ(U ; θ)]}∣
θ=θ̂

= 0

which can be expanded to

{tr(Σ−1(U ; θ)∂θΣ(U ; θ)Σ−1(U ; θ)(Y − µ(U ; θ))(Y − µ(U ; θ))⊺)
+ tr(Σ−1(U ; θ)∂θΣ(U ; θ)) − 2∂θµ⊺(U ; θ)Σ−1(U ; θ)Y
+ 2∂θµ⊺(U ; θ)Σ−1(U ; θ)µ⊺(U ; θ)}∣

θ=θ̂
= 0.

Taking the expectation with respect to the true distribution of Y , we get that

{tr(Σ−1(U ; θ)∂θΣ(U ; θ)Σ−1(U ; θ)Σ(U ; θ○)) + tr(Σ−1(U ; θ)∇θΣ(U ; θ))
−2∂θµ⊺(U ; θ)Σ−1(U ; θ)µ(U ; θ○) + 2∂θµ⊺(U ; θ)Σ−1(U ; θ)µ(U ; θ)}∣

θ=θ̂
= 0

which holds if and only if µ(U ; θ̂) = µ(U ; θ○) and Σ(U ; θ̂) = Σ(U ; θ○). If the model
is identifiable, this can happen only when θ̂ = θ○. Removing the log det term will
therefore result in a biased estimator.

In cases where the covariance is assumed to be known and independent of θ, the
log det term will not be needed. See for example the definition of Ŷ 3(θ) and θ̂3(DN)
of Example 4.2.2. An alternative way that can be used to avoid the log det term
when the required weights are parameter-dependent is to use a two-step procedure.
First, an unweighted problem defining a consistent estimator is solved. Then, the
resulting estimate is used to compute a consistent estimator of the weights, which is
then used in the weighted problem.

Next, we consider the problem of constructing a suboptimal linear predictor.
Here, we are thinking of the simplest possible predictor that can be used to still
obtain consistent estimators of θ.

4.3.3 Suboptimal Linear Predictors
Due to the uniqueness of the optimal linear predictor, any other linear predictor is
suboptimal. Motivated by the Output-Error predictor in (2.42) which was shown to
be consistent in the case of LTI models operating in open-loop (see Example 2.4.4),
we define the following suboptimal predictor for general nonlinear models.
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Definition 4.3.9 (OE-type linear predictors). Consider the general model given in
(2.10). The Output-Error-type (OE-type) one-step ahead linear predictor of yt is
defined as the “deterministic” quantity

ŷt∣t−1(θ) ∶= E[yt; θ], t ∈ N. (4.36)

When Assumption 4.1.1 holds and V has a zero mean, the above predictors are given
in the vector form

Ŷ (θ) ∶= µ(U ; θ) = E [M(U,W ; θ); θ]
in which the expectation is with respect to the PDF p(W ; θ).

Notice that we did not assume the knowledge of the full distribution of v but
only that it has a zero mean. The PDF of W is assumed to be known but can be
parameterized by θ. In some specific cases, the computations of the suboptimal
predictor require the knowledge of only the first r moments of W , for some finite
r ∈ N (for example, the case of Wiener model with polynomial nonlinearity of
order r). The predictor in (4.36), although independent of Y , is different from the
“nonlinear simulation model” defined in [92, Section 5.3, page 147]. The above OE-
type predictor averages the model outputs over all possible values of the unobserved
process (instead of ignoring it). Under some identifiability and regularity conditions,
this is expected to give rise to a consistent PEM estimator, which we define next.

Definition 4.3.10 (PEM based on OE-type linear predictor). The PEM estimator
based on the OE-type linear predictor (OE-PEM) is defined by

θ̂(DN) = arg min
θ∈Θ

∥Y − Ŷ (θ)∥2

such that Ŷ (θ) = µ(U ; θ).
(4.37)

Any solution θ̂ to the problem in (4.37) must satisfy the condition

∂θ∥Y − µ(U ; θ)∥2∣
θ=θ̂

= 0.

Expanding the derivative, we see that

∂θ∥Y − µ(U ; θ)∥2 = ∂θ (Y ⊺Y − 2Y ⊺µ(U ; θ) + µ(U ; θ)µ⊺(U ; θ))
= −2Y ⊺∂θµ(U ; θ) + 2µ⊺(U ; θ)∂θµ(U ; θ).

Applying the expectation operator, with respect to the true distribution of Y , to
both sides yields

E [∂θ∥Y − µ(U ; θ)∥2; θ○] = E [−2Y ⊺∂θµ(U ; θ) + 2µ(U ; θ)∂θµ(U ; θ); θ○]
= −2µ⊺(U ; θ○)∂θµ(U ; θ) + 2µ(U ; θ)∂θµ(U ; θ).

Therefore, the condition

E [∂θ∥Y − µ(U ; θ)∥2; θ○]∣
θ=θ̂

= 0
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holds if and only if
µ(U ; θ○) = µ(U ; θ̂).

Under identifiability conditions, this can only happen when θ̂ = θ○. This argument
indicates that, under the required identifiability condition, the estimator in Definition
4.3.10 can be shown to be a consistent estimator. Observe that this estimator was
used in Example 4.2.2 in the previous section to define the consistent estimator
θ̂2(DN). We also note here that the norm in (4.37) can be weighted using any
positive definite matrix independent of θ (see (4.14)).

In the following example, we compare the OE-PEM and the WL-PEM estimators
defined in (4.37) and (4.35) to the (asymptotically efficient) MLE. We will assume a
SISO model in two scenarios. In the first, we will consider a model with independent
outputs over time such that the likelihood function factorizes as shown in (3.51). This
allows for the use of deterministic numerical integration for the MLE computations.
Recall that in this scenario, as we remarked before, the optimal linear predictor
coincides with the unrestricted optimal predictor (conditional mean); both are equal
to the unconditional mean value. Therefore, here, the OE-PEM and the WL-PEM
estimators are using the same predictors but different criterion. In the second
scenario, we will consider a case with dependent outputs. Here, we will compare the
OE-PEM to a PEM estimator ignoring w.

Example 4.3.2 (PEM for stochastic Wiener model). Let the observations be
the outputs of a first-order SISO stochastic Wiener model given by the relations

yt = x2
t + vt, t = 1, . . . ,N,

xt =
q−1

1 − θq−1ut +wt, θ = 0.7,
(4.38)

in which we assume that u is a known signal, w is an independent Gaussian
process with zero mean and variance λw = 1, and v is an independent Gaussian
process with zero mean and variance λv = 3 and independent of w. We will
assume that the input u is a known realization of an independent Gaussian
process with zero mean and variance λu = 3. This model is very similar to the
model of Example 4.2.2; however, here we assume that we know the distributions
of w and v to be able to compute the MLE. Since the outputs are independent,
it is possible to use deterministic numerical integration, the Gauss-Hermite
quadrature for example, to approximate the likelihood function.

Figure 4.2 shows the result of a Monte Carlo simulation over 1000 independent
realizations of the inputs, W and V for different values of N between 100 and
3000. The quasi-Newton algorithm, initialized at the true parameter, was used
to compute the estimates. As expected, the two PEM instances are consistent.
Furthermore, for this example, their MSE follows closely the MSE of the MLE
but the MSE of the WL-PEM estimator is slightly better compared to the OE-
PEM estimator. Figure 4.3 compares the cost functions of the three estimators
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Figure 4.2: The average MSE and the average bias over 1000 Monte Carlo simulations
of the OE-PEM and WL-PEM estimators defined in (4.37) (blue) and (4.35) (red) and
the MLE (yellow) for the model in (4.38).

for a single realization when N = 1000. Notice that, for the model in (4.38),
the cost functions of the PEM estimators are available in closed form, however
the cost function of the MLE is not and it was approximated using the Gauss-
Hermite quadrature. Consequently, the computations of the two PEM estimators
are several times faster than the MLE, especially for large N .

-1 0.6978

OE-PEM

-1 0.7069

WL-PEM

-1 0.7115

MLE

Figure 4.3: Sample of the cost functions of the three estimators in Example 4.3.2 for
N = 1000. From left to right, the figure shows the cost function of (4.37), (4.35), and
the approximated negative log-likelihood function.

Let us now assume that w is in fact colored; for example, consider

wt =
q−1

1 − 0.9q−1 w̃t, t ∈ Z,

in which w̃ is an independent Gaussian process with zero mean and unit variance.
In this case, the output process y is colored and the computations of the MLE
are challenging. While any predictor ignoring the process noise ([92, Section
5.3]) is known to lead to a biased PEM estimator, the OE-PEM estimator is a
simple consistent estimator. By only assuming the stationarity of w, we may



114 Linear Prediction Error Methods

write
E[yt; θ, λw] = µt(θ) + λw,

µt(θ) ∶= ( q−1

1 − θq−1ut)
2

, t ∈ Z

and the OE-PEM estimator is defined by

θ̂ ∶= arg min
θ,λw

N

∑
t=1

(yt −E[yt; θ, λw])2, (4.39)

in which we also optimize over λw. Figure 4.4 shows the result of a Monte Carlo
simulation over 1000 independent realizations of the inputs, the colored W and
V for different values of N between 100 and 5000.
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Figure 4.4: The average MSE (log-lin scale) and the average bias over 1000 Monte
Carlo simulations when the disturbance is colored; the OE-PEM estimator defined in
(4.39) is shown in blue, and an estimator based on a simulation predictor ignoring w
is shown in red.

The results of the above example are encouraging. Recall, from Chapter 3, that
approaches targeting the MLE for similar models were either without guarantees or
computationally troublesome, see for instance Example 3.3.3 on page 61. On the
contrary, using the PEM ideas suggested in this chapter leads to closed-form cost
functions for several models with intractable likelihood functions.

For example, this will be the case for the class of stochastic Wiener models
whenever the static nonlinearity is a polynomial; that is, when the model is given
by the relation

yt = f(xt; θ) + vt, t = 1, . . . ,N
xt = G(q, θ)ut +wt,

(4.40)

where f is a multivariate polynomial. In this case, the mean of the model outputs
is an explicit function of the moments of w, which can be either evaluated or
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used as decision variables in the optimization problem. This is a great advantage
that simplifies the computations and is expected to reduce the computational time
significantly.

The next example clarifies this point using a more complicated model.

Example 4.3.3 (Stochastic Wiener-Hammerstein Models). Consider the model,
depicted in Figure 4.5 given by the relations

yt = G2(q, θ)f(y(1)t (θ) +wt) + vt,
y
(1)
t (θ) = G1(q, θ)ut,
wt =H1(q)ε(2)t ,

vt =H2(q)ε(2)t t = 1, . . . ,N

in which ε(1)t and ε(2)t are stationary white noises. The function f(⋅) denotes a
static nonlinearity, and G1(q, θ), G2(q, θ) are rational transfer operators. The
processes w and v are unobserved colored stationary process disturbance and
measurement noise respectively. Therefore, methods relying on the likelihood
function are analytically intractable. However, with minimal assumptions, a
consistent estimator can be constructed by considering the PEM in (4.37).

To look at a concrete case, assume that all the signals are scalars, the static
nonlinearity is f(x) ∶= x2 ∀x ∈ R, and recall that w is stationary. Then define

ŷt∣t−1(θ) = E [G2(q, θ)f(y(1)t (θ) +wt) +H2(q)ε(2)t ]

= G2(q, θ)E [f(y(1)t (θ) +wt)]

= G2(q, θ)E [[y(1)t (θ)]2 +w2
t + 2y(1)t (θ)wt)]

= G2(q, θ)([y(1)t (θ)]2 + λw).

(4.41)

The consistent OE-PEM estimator is given by the minimization of a closed-form
cost function; using (4.41) it holds that

θ̂ = arg min
θ,λw

N

∑
t=1

(yt −G2(q, θ)([G1(q, θ)ut]2 + λw))
2
, (4.42)

Notice that the unobserved process v is related linearly to the outputs;
consequently the estimator in (4.42) can be easily improved by assuming a noise
model for v. Let us assume that v is stationary with a rational and strictly
positive spectrum (such that H2 can be modeled by a rational function) and
append the new parameters to θ. It is then possible to define the PEM estimator

θ̂ = arg min
θ,λw

N

∑
t=1
H−1

2 (q; θ) (yt −G2(q, θ)([G1(q, θ)ut]2 + λw))
2
, (4.43)
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Figure 4.5: A stochastic Wiener-Hammerstein model. The LTI blocks are modeled
with rational transfer operators G1(q, θ) and G2(q, θ). The function f(⋅) denotes a
static nonlinearity. The processes w and v are colored unobserved stationary process
disturbance and measurement noise respectively.

in which H2(q, θ) might be known or independently parameterized by θ. We
note here that this estimator is similar to the third estimator estimator θ̂3, see
(4.12) and (4.13), defined in Example 4.2.2. Observe that the only assumption
we used regarding w and v was stationarity and nothing else.

To look at a simulation example, consider the case where

G1(q, θ) =
q−1

1 − θ1q−1 , G2(q, θ) =
q−1

1 − θ2q−1 ,

H1(q) =
q−1

1 − 0.9q−1 , H2(q) =
q−1

1 − 0.7q−1 ,

and let θ1 = 0.7, θ2 = 0.5, ε(1)t ∼ N(0,1) independent over t, and ε(2)t ∼ N(0,3)
independent over t and independent of ε(1) for all t. Let the input be a realization
of ut ∼ N(0,3) independent over time and independent of the disturbance and
the noise. Assume that the noise model H2(q) is known, and consider the
estimation problem of θ1 and θ2.

Figure 4.6 shows the result of a Monte Carlo simulation over 1000 independent
realizations of the inputs, wt and vt for different values of N between 100 and
3000. As expected, it is clear that both estimators are consistent. Moreover, it
is obvious that using the noise model improves the accuracy of the estimator.

4.4 Asymptotic Analysis

Ideally, one would like to obtain exact information regarding the accuracy of the
estimator when a data record of finite length is used. However, except in very
few situations (such as the case of linear least-squares estimators), the analysis
of frequentist estimators based on finite data records is intractable. On the other
hand, it is usually possible to obtain precise asymptotic properties of the estimation
method as N →∞. This is the objective of this section.
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Figure 4.6: The average MSE and the average bias over 1000 Monte Carlo simulations
when the disturbance is colored;The OE-PEM estimator defined in (4.42) is shown
in blue, and the weighted version defined in (4.43) is shown in red. On the right, the
solid lines correspond to θ1, and the dashed lines correspond to θ2

Besides providing a theoretical justification and confidence in the used estimation
methods, the results of asymptotic3 analysis are usually used to compare estimators
(in terms of asymptotic variances or rates of convergence for example), and evaluate
the accuracy of the estimates. The main disadvantage of this type of analysis is the
lack of any guarantees when N is finite. For example, consider an estimator that
returns a constant value regardless of the data as long as N < 106 but is equal to the
ML estimator for any larger N . Asymptotic analysis does not distinguish between
the two; they are asymptotically equivalent.

Furthermore, it should be noted that the results of asymptotic analysis are merely
limit results and not approximation results: they do not provide any lower bounds
for N such that the obtained asymptotic expressions are reasonably applicable.
Consequently, asymptotic results must be used with care and should be accompanied
by simulation studies (see [112] for the idea of bootstrapping for example).

This section is divided into two subsections in which the convergence and
asymptotic normality of the PEM estimators defined in Section 4.3 are established.
We show that the general asymptotic theory of the PEMs is applicable to the
instances defined in this thesis. The results are based on the original work of Ljung
in [90] and Ljung and Caines in [89] respectively. Our main focus will be the
assumptions on the data, the used linear predictors and the parameterization for
the results to hold.

4.4.1 Convergence and Consistency
Let us denote the PEM criterion function by

VN(θ) ∶= 1
N

N

∑
t=1
`(εt(θ), t; θ). (4.44)

3The term “asymptotic” in this thesis is restricted to large-sample scenarios, i.e., N →∞.
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The PEM estimator is then defined by
θ̂N ∶= arg min

θ∈Θ
VN(θ), N ∈ N.

For simple cases where the PEM estimator is given in closed form (see Example
4.2.2 for instance), it is possible to establish the convergence of the estimator
by directly applying variants of the law of large numbers and limit theorems
concerning sequences of random variables, such as Slutsky’s theorem. However,
in more complicated situations where the estimator is defined implicitly with no
closed-form expression, the asymptotic analysis involves the study of the asymptotic
behavior of the sequence of criterion functions {VN(θ) ∶ N ∈ N, θ ∈ Θ} and the use
of a compactness assumption on the parameter set Θ to control the corresponding
process of global minimizers {θ̂N ∶ N ∈ N, θ ∈ Θ}.

As far as the prediction error framework is concerned, the simplest cases are those
involving (quasi-)stationary ergodic processes such that the sequence of criterion
functions converges uniformly over Θ to a well-defined limit; namely,

VN(θ) a.s.Ð→ V̄(θ) as N →∞, (4.45)
such that the (deterministic) limit V̄(θ) is continuous over Θ and has a unique
global minimizer θ∗. In general, this limit depends on the system and the input
properties. Under identifiability conditions and a compactness assumption on Θ, it
is straightforward to conclude, when (4.45) holds, that θ̂N

a.s.Ð→ θ∗ = θ○ as N →∞.
These are essentially the arguments used in the convergence and consistency proofs
in an ergodic environment (see [92, Chapter 8] for the LTI case).

In a general non-stationary environment however, the sequence of criterion
functions does not converge to any limit and may very well be divergent. Consider
for example a linear model

yt = θ○ut−1 + vt, t ∈ Z,
in which v is a zero mean independent process with increasing variance, and observe
that the optimal MSE predictor is given by ŷt∣t−1(θ) = θut−1. It then holds that the
average criterion function, when `(ε, t; θ) = ∥ε∥2, is

E [VN(θ)] =
N

∑
t=1
E [(yt − θut−1)2] =

N

∑
t=1

((θ○ − θ)2u2
t−1 +E[v2

t ])

and is not necessarily convergent (even when normalized by dividing by N),
but the global minimizer is arg minθE [VN(θ)] = θ○ ∀N ∈ N. Therefore, with no
(quasi-)stationary ergodic assumptions, it is possible to establish the convergence
of the minimizers by showing that VN(θ) asymptotically behaves like the averaged
criterion E [VN(θ)] uniformly in θ. This is the main idea of the convergence and
consistency analysis developed in [90].

Before stating the basic result, we discuss sufficient regularity assumptions
regarding the data, the predictor and the used criterion. As before, we assume here
that the inputs are known.
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The data generating mechanism

A generic discrete-time model (2.9) of the observed process is understood as a
map of sequences of known inputs and random vectors representing the underlying
uncertainty. For a causal dynamical model, the output at time t is a function of: (i)
the known inputs up to time t−1 (assuming at least one delay), (ii) the disturbances
entering the system after an arbitrary earlier time k < t, and (iii) the state of the
system at time k summarizing the effect of the disturbances at and before time
k. Now observe that for an increasing sequence of observations to give a correct
picture of the underlying system, the effect of the (unobserved) state at time k on
the outputs at times s ≥ t should not be predominant. In other words, the observed
process should forget erroneous remote past or initial conditions, which is a property
of stable systems.

For the convergence of the PE methods, it is sufficient that the dependence of
the moments upon the history of the observed process decays at an exponential rate.
It will be assumed that Assumption 2.2.1 holds, and therefore the terms “model”
and “system” are used interchangeably.

Definition 4.4.1 (r-stability). A discrete-time causal dynamical model of y is
said to be r-stable with some r > 1, if for all s, t ∈ Z such that t ≥ s there exist
doubly-indexed random variables {yt,s ∶ yt,t = 0} such that

1. yt,s is a (measurable) function of {yk}tk=s+1 and independent of {yk}sk=−∞,

2. for some real numbers C < ∞ and λ < 1, it holds that

E [∥yt − yt,s∥r] < Cλt−s. (4.46)

The outputs of an “r-stable” model according to Definition 4.4.1 form a class of
stochastic processes known as “r-mean exponentially stable processes” or
“exponentially forgetting processes of order r”. Observe that the definition implies
that

E [∥yt∥r] < C ∀t ∈ Z, and some C < ∞,
and therefore the output of an r-stable model must have a bounded mean. Generally
speaking, the random variables yt,s can be interpreted as the outputs of the system
when the underlying basic stochastic process ζ is replaced by {ζt,s}t∈Z such that
{ζt,s}t<s are given by a value independent of {ζt}t<s, say zero, but ζt,s ∶= ζt ∀t > s.
We note here that the above definition of stability includes the conventional stability
definition of dynamical systems. For example, in the case of LTI rational models,
the output process is exponentially stable when all the poles of the model transfer
functions are strictly inside the unit circle.

Models of Definition 2.1.8 are quite general and need to be restricted for the results
to hold. Observe that not every second-order process is exponentially forgetting,
even if its innovation process is independent. The next proposition clarifies this
point.
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Proposition 4.4.2. Assume that y is a second-order discrete-time stochastic process
with independent linear innovations {εt} and no linearly deterministic part; then
y is not necessarily exponentially forgetting. However, if E [∥εt∥4] < ∞ ∀t ∈ Z and
the sequences {hk(t) ∶ k ∈ N0}, t ∈ Z in Wold’s decomposition (2.4) are uniformly
exponentially decaying, then y is exponentially forgetting process4 of order 4.

Proof. The first assertion is straightforward; we only need to find an example of a
second-order discrete-time stochastic process whose innovations are independent but
which is not exponentially stable. Consider for example the process yt = ∑∞

k=1 k
−1εt−k

with independent innovations. This is clearly a second-order process that also forgets
the remote past, however only linearly.

To prove the second part, we use Wold’s decomposition of y assuming zero mean,

yt =
∞

∑
k=0

hk(t)εt−k, t ∈ Z,

with the hypothesis that the innovations {εt} are independent and the sequences
{hk(t) ∶ k ∈ N0}, t ∈ Z are uniformly exponentially decaying. Therefore, there exist
constants c1 < ∞ and 0 < λ < 1 such that ∣hk(t)∣ < c1λk for every t ∈ Z.

Using the triangular inequality, it holds that for every t ∈ Z and every n ∈ N

∥
n

∑
k=1

hk(t)εt−k∥
4

≤ (
N

∑
k=1

∥hk(t)∥∥εt−k∥)
4

≤ c41 (
N

∑
k=1

λk ∥εt−k∥)
4

≤ c41 (
n

∑
k=1

λk)
3 n

∑
k=1

λk∥εt−k∥4

in which we used Hölder’s inequality ([122, Theorem 3.5] applied to (λ kp )(λ kq ∥εt−k∥))
for the last implication. By applying the expectation operator to both sides and
letting N →∞ we get the inequality

E [∥yt∥4] ≤ c41
(1 − λ)3

∞

∑
k=1

λkE [∥εt−k∥4] . (4.47)

By defining yt,s = ∑∞
k=0 hk(t)εt−k,s such that εt,s = εt for t > s and zero otherwise,

we see that (4.47) implies that

E [∥yt − yt,s∥4] ≤ c41
(1 − λ)3

∞

∑
k=t−s

λkE [∥εt−k∥4] ≤ cλt−s, ∀t > s

which proves the required statement.

More explicit conditions can be given for specific model sets. The next example
considers a Wiener model with a stochastic process disturbance.

4r = 4 is sufficient for the convergence of PEM, see Lemma 4.4.5.
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Example 4.4.1 (Exponentially stable data). Consider a system that can be
described by the stochastic Wiener model

xt = G(q, θ○)ut +H(q, θ○)wt,
yt = f(xt; θ○) + vt, t ∈ Z,

(4.48)

and assume that the LTI part of the model is rational and stable; i.e., the poles
of G(z, θ○) and H(z, θ○) are strictly inside the unit circle. Furthermore, assume
that wt and vt are independent and mutually independent white noises with
bounded moments of sufficiently high order.

Then, in the light of Proposition 4.4.2, we see that xt is an exponentially
forgetting process. Because the nonlinearity f(⋅; θ○) is static, we only need
to guarantee that several first moments of y are bounded (the order of the
moments depends on f) and that f(x; θ○) is exponentially decaying whenever
x is exponentially decaying. This is the case when f is a polynomial in x for
example.

The predictor

The predictor function used in the PEM framework is a user choice; it is usually
guided by the assumed underlying statistical model. Apart from a natural differen-
tiability assumption with respect to the parameter and a compactness condition on
the parameter set, it is required that the remote past observation has little effect
on the current output of the predictor and its derivative. From the point view of
asymptotic analysis, this means that all the observed outputs, regardless of their
order in time, may have a comparable contribution to the choice of the parameter.
In other words, the magnitude of the prediction errors may be uniformly bounded
with a suitably decaying bound. From the practical point of view, this condition is
needed for the numerical stability of the minimization procedure.

This reasonable assumption means that the used predictors should have a stability
property. The precise sufficient conditions are summarized in the following definition.

Definition 4.4.3 (Uniformly stable predictors). The one-step ahead predictors
{ŷt∣t−1(θ) = ψ(Dt−1, t; θ), θ ∈ Θ} are said to be uniformly stable if Θ is compact and
there exist constants C < ∞ and λ ∈ (0,1) such that the following conditions hold:

1. ∥ξ(Dt−1, t; θ) − ξ(D̄t−1, t; θ)∥ ≤ C∑t−1
k=0 λ

t−k∥yk − ȳk∥, where ξ is used to denote
the predictor function ψ and it’s derivative with respect to θ, and Dt−1, D̄t−1,
are arbitrary data sets of length t.

2. ∥ξ(0, t; θ)∥ ≤ C ∀t, ∀θ in an open neighborhood of Θ, where 0 represents a
data set of arbitrary inputs and zero outputs of length t.

3. θ → ψ(Dt−1, t; θ) is continuously differentiable over an open neighborhood of
Θ, for all t ∈ N and for every data set Dt−1.
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In this thesis, we suggested two predictors: a suboptimal predictor (4.36) defined
using the mean function of y, and the optimal linear predictor (4.22) defined using
the mean and the covariance functions y. Let us examine the conditions under which
they are uniformly stable according to the above definition.

First of all, note that the compactness of Θ is part of the definition. Second, it is
clear that the parameterization of µ(U ; θ) and Σ(U ; θ) is required to be continuously
differentiable; this translates to smoothness conditions on the parameterization of
the assumed nonlinear model. To check the remaining conditions, we first recall that
the predictors have the form

ŷt∣t−1(θ) = E[yt; θ] +
t−1
∑
k=1

l̃t−k(t,Ut−1; θ) (yk −E[yk; θ]) ,

in which l̃j(t,Ut−1; θ) ∶= [L−1(U ; θ)]
tj
, 1 < t ≤ N

for the optimal linear predictor, and l̃j(t,Ut−1; θ) = 0 ∀t for the OE-type linear
predictor. In either case, observe that Condition 2 of Definition 4.4.3 requires that
the derivative of the mean E[yt; θ] with respect to θ to be uniformly bounded in θ
and t. We now invite the reader to compare this form to the predictors constructed
for linear models in (2.39) on page 35, and recall our earlier discussion regarding
the interpretation of the coefficients {l̃k(t)} (see Remark 4.3.5). These predictors
are known to satisfy the required stability property if the transfer function G(z; θ)
is stable for all θ ∈ Θ in addition to the hypothesis that the noise model H(z; θ)
is inversely stable (has all its zeros inside the unit circle) over Θ, see [92, Lemma
4.1 and Lemma 4.2 on pages 109 and 110]. Translating this to the two predictors
suggested in this thesis, we get conditions on the mean of the output process and
the causal invertibility of the (innovations form) model.

Similarly to the linear case, we shall impose the assumption of causal and
(exponentially) stable invertibility of y with respect to the linear innovations, and
therefore the sequences {l̃k(t; θ)}k∈N0 , t ∈ Z are assumed to be uniformly exponentially
decaying; see Assumption 2.1.7.

The identification criterion

The identification criterion in a PEM framework (4.44) is defined by the sum of the
scalar functions `(εt(θ), t; θ). Generally speaking, there is no unique way of defining
these functions; however, a quadratic norm is the most commonly used function.
It turns out that for the convergence analysis, it is sufficient to assume that these
functions are quadratically bounded according to the following definition.

Definition 4.4.4 (Quadratically bounded criteria). The family of prediction error
criterion functions {VN(θ) ∶= 1

N ∑
N
k=1 `(εt(θ), t; θ) ∶ N ∈ N, θ ∈ Θ} is quadratically

bounded if {`(⋅, t; ⋅)} are continuously differentiable for every t, and for some c < ∞
1. ∥ ∂

∂ε
`(ε, t; θ)∥ ≤ c∥ε∥, ∀θ ∈ Θ, and ∀t ∈ N,

2. ∥ ∂
∂θ
`(ε, t; θ)∥ ≤ c∥ε∥2, ∀θ ∈ Θ, and ∀t ∈ N.
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It is clear that the unweighted Euclidean norm, `(ε, t; θ) = ε⊺ε, used to define the
L-PEM and the OE-PEM estimators is parameter-independent and quadratically
bounded. For the case of WL-PEMs, the criterion is defined by using

`(ε, t; θ) = ε⊺Λ−1
t (θ)ε + log det Λt(θ).

Because this function is quadratic in ε, it is only required to verify that

∂

∂θ
`(ε, t; θ) = −ε⊺Λ−1

t (θ)∂Λt(θ)
∂θ

Λ−1
t (θ)ε + tr(Λ−1

t (θ)∂Λt(θ)
∂θ

)

is well-defined and quadratically uniformly bounded. This is a requirement on
the parameterization of the covariance matrices Λt(θ) of the innovations. Observe
that these matrices are defined via an LDL⊺ decomposition which is a continuous
operation. When the parameterization is continuously differentiable such that the
covariances matrices are uniformly bounded for all t and θ the condition is satisfied.
Therefore, once more, we end up with assumptions on the parameterization of the
assumed model. We are now ready to state the basic convergence result.

Lemma 4.4.5 (Convergence of the PEM estimators). Suppose that the nonlinear
system generating the data is r-stable with r = 4, the used predictor is uniformly
stable and the identification criterion is quadratically bounded. Then

θ̂N
a.s.Ð→ DI ∶= {θ ∈ Θ ∶ lim inf

N→∞
E[VN(θ)] ≤ min

β∈Θ
lim sup
N→∞

E[VN(β)]} as N →∞.

Proof. The proof is due to Ljung; see [90].

The result of Lemma 4.4.5 is very useful. Firstly, it removes the stochastic aspects
of the problem and reduces the analysis to a deterministic set. Secondly, the result
is proven for a fairly general case that includes scenarios where the true system is
not in the assumed model set (i.e., there is no true parameter θ○, or θ○ ∉ Θ). The
result of the lemma means that the criterion function becomes arbitrary close to
the average criterion function such that, almost surely, for every arbitrary small
ε > 0 there exist n ∈ N such that for all N > n, the set DI ∩ {θ ∶ ∥θ̂N − θ∥ < ε} ≠ ∅.
Observe that, for all θ∗ ∈DI it holds that

lim inf
N→∞

E[VN(θ∗)] ≤ lim sup
N→∞

E[VN(θ)] ∀θ ∈ Θ,

and therefore θ∗ can be interpreted as a parameter that gives “the best average
prediction” according to the chosen predictor and criterion function. The expectation
operator here is with respect to the true underlying probability space generating
the basic stochastic process.

Notice that Lemma 4.4.5 establishes the convergence of the process {θ̂N}N∈N
only to a subset of Θ. However, for cases when θ○ ∈ Θ (see Assumption 2.2.1 on page
28), and assuming that an identifiability condition holds such that the limit set is a
singleton, DI = {θ○}, a consistency proof is completed by a direct application of the
lemma.
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Definition 4.4.6 (Identifiable parameterization). For a given model (2.10), we say
that Θ constitutes

• a first-order identifiable parameterization if, for all θ, θ̃ ∈ Θ, it holds that

µ(U ; θ) = µ(U ; θ̃) ⇔ θ = θ̃. (4.49)

• a second-order identifiable parameterization if, for all θ, θ̃ ∈ Θ, it holds that

µ(U ; θ) = µ(U ; θ̃) and Σ(U ; θ) = Σ(U ; θ̃) ⇔ θ = θ̃. (4.50)

Note that the user is free to restrict the definition of the identifiability property
to a subset of Θ. For instance, the model (3.46) of Example 3.3.6 on page 68 (where
E[yt; θ] = u2

t−1 + 2θ2 ∀t) is not parameter identifiable over Θ = (−a, a) for any
positive real a, but is first-order identifiable over Θ = (0, a).

Remark 4.4.7.

• In the PEM literature, a martingale difference exact model for the output
process is usually assumed. Under this assumption, the conditional mean
of the outputs is readily available; i.e., the optimal predictor has a (directly
parameterized) standard form ŷt∣t−1(θ) = ψt(Dt−1; θ), θ ∈ Θ and t ∈ N. If there
exists θ○ ∈ Θ, the prediction error process et(θ○) = yt−ŷt∣t−1(θ○) is a martingale
difference and E[et(θ○)∣{e0(θ○), . . . ,et−1(θ○)}] = 0. This is not the case for
the predictors used in this thesis; for example, the prediction error process
due to the optimal linear predictor (the linear innovations process) is merely
orthogonal. Note that if it were a martingale difference (or independent), then
the optimal linear predictor would be in fact the unrestricted optimal predictor.

• Assuming that the (appropriate) identifiability assumption given above holds,
then the three PEM instances defined in the previous section satisfy

θ○ = arg min
θ∈Θ

E[VN(θ)], ∀N ∈ N. (4.51)

Next, we state the main consistency theorem.

Theorem 4.4.8 (Consistency of the L-PEM and the WL-PEM estimators). Assume
that the underlying nonlinear system is r-stable with r = 4 according to Definition
4.4.1, and let Assumptions 2.2.1 and 2.1.7 hold. Let Θ be a continuously differentiable
second-order identifiable parameterization according to Definition 4.4.6 such that
the optimal linear predictor is uniformly stable according to Definition 4.4.3.

Then, the L-PEM estimator (4.33) is consistent. Moreover, if the parameterization
is such that the innovations covariances are continuously differentiable and uniformly
bounded, then the WL-PEM estimator (4.35) is consistent.

Proof. The proof is a direct consequence of Lemma 4.4.5 and the identifiability
assumption.
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In cases where the stronger5 assumption of first-order identifiability holds, the
consistency of the OE-PEM estimator can be established.

Theorem 4.4.9 (Consistency of the OE-PEM estimator). Assume that the under-
lying nonlinear system is r-stable with r = 4 according to Definition 4.4.1, and let
Assumption 2.2.1 hold. Let Θ be a continuously differentiable first-order identifiable
parameterization according to Definition 4.4.6.

Then, the OE-PEM estimator (4.37) is consistent.

Proof. The proof is a direct consequence of Lemma 4.4.5 and the identifiability
assumption.

The last part of this section concerns the asymptotic normality of the estimators.

4.4.2 Asymptotic Distribution
Subject to a strengthening of the hypotheses of the consistency theorems, it is possible
to prove that the resulting estimators are asymptotically normally distributed
around θ○. We first summarize the additional required conditions without going into
unnecessary details. These stronger conditions are required to establish that V ′′N(θ)
asymptotically behaves as E[V ′′N(θ)] uniformly over Θ, and that the derivative
V ′N(θ○) is asymptotically normal when multiplied by

√
N and normalized.

Conditions for asymptotic normality

C1. The underlying system is r-stable with r > 4 (take r = 5 for example; then, a
uniform exponentially decaying bound on the fifth moment of ∥yt − yt,s∥ is
required).

C2. The used predictors are three times continuously differentiable with respect to
θ such that the derivatives satisfy the first and second conditions in Definition
4.4.3.

C3. The criterion function is three times continuously differentiable with respect
to θ and ε such that

1. ∥ ∂k
∂θk

∂
∂ε
`(ε, t; θ)∥ ≤ c∥ε∥, k = 0,1,2; ∀θ ∈ Θ, and ∀t ∈ N,

2. ∥ ∂k
∂θk

∂2

∂ε2 `(ε, t; θ)∥ ≤ c, k = 0,1; ∀θ ∈ Θ, and ∀t ∈ N,

3. ∥ ∂k
∂θk

`(ε, t; θ)∥ ≤ c∥ε∥2, k = 1,2,3; ∀θ ∈ Θ, and ∀t ∈ N.

Apart from an increased smoothness requirement on the parameterization of the
predictor and the criterion function, the new set of conditions require that the
second and third derivatives of the predictor have the uniform stability property.

5Note that first-order identifiability implies second-order identifiability.
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We note here that the criterion functions of the PEM instances defined in
the previous section are all quadratic in ε. In the case of the WL-PEM problem,
the criterion is parameterized by θ, and the covariances Λt(θ) have to be three
times continuously differentiable and uniformly bounded according to the above
requirement. This translates to a smoothness requirement on the parameterization
of the covariance of the model.

Theorem 4.4.10 (Asymptotic normality). Assume that, in addition to the
hypotheses of the consistency theorems, the set of strengthened conditions C1-C3
holds. Furthermore, let WN(θ) ∶= E[VN(θ)] and assume that for some δ > 0 and
some N0 ∈ N,

W ′′
N(θ) ≻ δI, ∀θ ∈ Θ, ∀N > N0. (4.52)

Introduce the (normalizing) matrices

PN = [W ′′
N(θ○)]−1QN [W ′′

N(θ○)]−1,

where
QN ∶= E[N V ′N(θ○)(V ′N(θ○))⊺].

Assume that PN ≻ δI and QN ≻ δI for some δ > 0 and all sufficiently large N .
Then √

NP
− 1

2
N (θ̂N − θ○) ↝ N(0, Id) as N →∞, (4.53)

where θ̂N denotes any of the consistent PEM estimators defined in Section 4.3.

Proof. The proof is due to Ljung and Caines; see [89].

Notice that the condition in (4.52) requires the strict convexity of the criterion
functions VN(θ) over the whole postulated set Θ for sufficiently large N , which might
seem quite restrictive. However, one may think of it as restricting the minimization
problem to a local neighborhood of θ○ (using a good initial candidate θ(0) in the
iterative minimization algorithm).

In (quasi-)stationary ergodic scenarios where the average criterion WN → W̄(θ)
as N →∞ and the matrices QN → Q̄ as N →∞ such that the limit is invertible, it
is not difficult to show that

√
N(θ̂N − θ○) ↝ N(0, P ) as N →∞,

where
P = [W̄ ′′(θ○)]−1Q̄[W̄ ′′(θ○)]−1

is the asymptotic covariance matrix of the estimator. In such cases, it is actually
possible to derive an expression for P , which is mainly used for the construction
of (asymptotic) confidence intervals, the comparison between different estimators
as well as experiment design. Furthermore, it is used for the design of an “optimal”
criterion for a given predictor function; i.e., a criterion that leads to a minimal P
with respect to the usual partial ordering of positive semidefinite matrices.
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With no (quasi-)stationarity assumptions or conditions, an analysis in the same
spirit can be done by studying the normalizing sequence of matrices {PN ∶ N ∈ N}.
The scalar function ` to be preferred is that corresponding to a minimal normalizing
sequence; in other words, the one leading to the largest normalization factors P − 1

2
N

such that the convergence in (4.53) still holds.
However, computing the expressions of PN requires the knowledge of up to the

fourth moments of the innovation process for t = 1, . . . ,N .

In Section 2.4.2, the PEMs were introduced and the kinship to the maximum
likelihood method was explained. We saw that in a stochastic framework, the
problems of PEMs can be interpreted as Maximum Likelihood problems. This is
true even when the resulting estimator does not coincide with the true MLE of
the assumed model. In the following section, we look at the Maximum Likelihood
problems solved by the PEM defined in this chapter.

4.5 Relation to Maximum Likelihood Estimators

Let us first consider the OE-PEM estimator: the PEM based on the suboptimal
linear predictor as given in Definition 4.3.10. To arrive at an equivalent maximum
likelihood problem, we use the same arguments used in Section 2.4.2, page 39. It is
easy to conclude that the definition of the OE-PEM estimator implicitly implies
that the process y is an independent Gaussian process with unit covariance, namely

yt ∼ N(E[yt; θ], Idy),

and in vectors
Y ∼ N(µ(U ; θ), IdyN).

In other words, the output vector Y is jointly Gaussian with a mean vector µ(U ; θ)
and a unit covariance. According to these assumptions, the likelihood function is

p̃(Y ; θ) = 1
(2π)

dyN

2

exp(−1
2
∥Y − µ(U ; θ)∥2

2)

=
N

∏
t=1

1
(2π)

dy
2

exp(−1
2
∥yt −E[yt; θ]∥2

2) .

and its maximization is equivalent to the problem in (4.37). It is obvious that this
misspecified model captures only the first moment of y. It is therefore required to
assume that the model is identifiable via its first order moments.

We now look at the WL-PEM estimator: the PEM based on the optimal linear
predictor as given in Definition 4.7.4. Using similar arguments as above, we see that
the optimal linear predictor coincides with a conditional mean if the data follow a
model

Y = µ(U ; θ) +Σ 1
2 (U ; θ)Z (4.54)
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in which Z is a zero mean vector with unit covariance. Under this assumption, the
likelihood function is given

p̃(Y ; θ) =
√

det Σ−1(U ; θ)
√

(2π)dyN
exp(−1

2
(Y − µ(U ; θ))⊺Σ−1(U ; θ)(Y − µ(U ; θ)).) (4.55)

Hence, the definition of the WL-PEM estimator implicitly assumes a misspecified
Gaussian likelihood function such that the vector Y has the correct mean and
covariance according to the true model. It is clear that the representation in (4.54)
captures the first and second moments of the model. It is therefore enough to require
that the model is identifiable via its first and second moments.

Remark 4.5.1. The idea of using a misspecified likelihood function to construct
tractable estimators is not new. It can be traced back to [11, Section 3.3] under the
name of pseudo-likelihood methods where it was used for data with spatial dependence,
when the likelihood function is unavailable. It has also been suggested and studied in
Econometrics; for example, the asymptotic properties were investigated in [55] for
conditionally independent models.

Gaussian approximation of p(Y ,W ; θ)

In this part, we would like to comment on the implicit assumption made by the
PEM instances, defined in the previous section, regarding the joint distribution of Y
and W . It is not difficult to show that, if the distribution of W in (4.1) (the prior)
is a multivariate Gaussian, then the above arguments can be extended to imply a
Gaussian approximation of the joint PDF p(Y ,W ; θ) and the posterior p(W ∣Y ; θ).

As explained above, the WL-PEM instance uses the misspecified likelihood
function

p̃(Y ; θ) = N(µ(U ; θ),Σ(U ; θ));

in addition, let us assume that

p(W ; θ) = N(0,ΣW (θ)).

It is easy to conclude that (see Appendix C), for the vectors Y and W to be jointly
Gaussian, it must hold that

p̃(Y ,W ; θ) = N
⎛
⎝
⎡⎢⎢⎢⎣

0
µ(U ; θ)

⎤⎥⎥⎥⎦
,
⎡⎢⎢⎢⎣

ΣW (θ) ΣWY (U ; θ)
ΣYW (U, θ) Σ(U ; θ)

⎤⎥⎥⎥⎦
⎞
⎠

(4.56)

in which the covariance ΣWY (U, θ) is defined (via the model) by

ΣWY (U, θ) ∶= cov(W ,Y ; θ)

and ΣYW (U, θ) = Σ⊺
WY (U, θ). The approximation in (4.56) looks like the approxima-

tions suggested in Chapter 3; recall for instance Laplace’s approximation in (3.23).
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Even though the PEMs defined in this chapter do not require any reference to the
posterior density of W , (4.56) implicitly defines a Gaussian approximation. It is of
interest to check their relation to the approximations of Chapter 3.

Using the standard results of conditioning Gaussian random vectors, it is easy
to see that (4.56) implies the posterior

p̃(W ∣Y ; θ) = N(µW ∣Y (θ),ΣW ∣Y (θ)) (4.57)

in which
µW ∣Y (θ) =ΣWY (U ; θ)Σ−1(U ; θ) (Y − µ(U, θ)) ,
ΣW ∣Y (θ) =ΣW (θ) −ΣWY (U ; θ)Σ−1(U, θ)ΣYW (U ; θ).

Note that the posterior approximation (4.57), although Gaussian, is different from
Laplace’s approximation (3.19) which is defined by the solution of a relatively costly
optimization problem over W . The posterior in (4.57) is defined in terms of the first
two moments of the model and there is no optimization involved. While Laplace’s
approximation centers the Gaussian PDF at one of the modes of the posterior, (4.57)
is centered at a mean value computed via Gaussian conditioning.

In case of linear Gaussian models similar to (3.33) in Example 3.3.2, both (4.57)
and (3.19) are equivalent and coincide with the true posterior. However, in general,
they differ and will be close only when the mode and the mean of the posterior are
close. To clarify this, we repeat Example 3.3.6 where the posterior was shown to be
bi-modal.

Example 4.5.1 (Likelihood approximations of a bi-modal model). Consider
the model of Example 3.3.6,

yt = (ut−1 + θwt)2 + vt, t ∈ Z, (4.58)

in which wt ∼ N(0, λw), vt ∼ N(0, λe) independent over t and mutually
independent. The input ut = 0.1 for all t, λw = 2, λe = 0.1, and θ = 0.5. We fixed
N = 100 and simulated one realization of the data.

Observe that the above model is an instance of (4.40), and remember that the
outputs of this model are independent over time. Therefore Σ(U ; θ) is diagonal,
and it is very easy to compute the mean and the covariance of the outputs which
are available in closed-form:

[µ(U ; θ)]t = E[yt; θ] = u2
t−1 + θ2λw,

[Σ(U ; θ)]tt = var(yt; θ) = λwθ2(2λwθ2 + u2
t−1) + λv.

Thus, the cost function of the optimal linear PEM problem (4.35) is available in
closed-form and computing the WL-PEM estimate is straightforward.

Figure 4.7 shows the true negative-log likelihood and the true posterior
of wt against the approximations obtained by both Laplace’s method (3.42)
and the optimal linear PEM (4.35). In addition, Figure 4.8 compares the true
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Figure 4.7: On the left: The true negative log-likelihood function (blue), Laplace’s
approximation (3.42) (red), and the cost of the optimal linear PEM (4.35) (green) of
the model in (4.58). On the right: The true posterior of wt at five selected time points
(blue), Laplace’s approximation (red), and the approximation underlying the optimal
linear PEM (4.57) (green).

likelihood function itself to the misspecified likelihood function (4.55) underlying
the optimal linear PEM.

The simulation results show that the cost functions defining the three
considered estimators have the same shape, and more importantly they have very
close minima. Both Laplace’s approximation and PEM capture the two global
minimizers of the true negative log-likelihood. However, the theoretical and
computational properties of the two methods differ. While nothing can be said
regarding the asymptotic properties of (3.42), the PEM estimator is consistent
under mild conditions. Moreover, the PEM estimator is computationally simpler
than both the true MLE and Laplace’s approximation. These properties are not
specific to the current example; it hold for more general models.
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Figure 4.8: Plots of the true likelihood function (blue) and the misspecified likelihood
(4.55) (red) of the model (4.58). Observe that regardless of the scale, both have very
close global maximizers.
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Remark 4.5.2.

• Observe that the above ML interpretation of the PEM problem, together with
the PDFs (4.56) and (4.57), which are completely defined by the given model,
allows for the possibility of using the Expectation-Maximization algorithm
(Algorithm 1) to solve the PEM problem. When (4.57) is used instead of
Laplace’s approximation, Proposition 3.3.4 on page 56 gives the expression of
the intermediate quantity defining the algorithm.

• When using the EM algorithm to solve the PEM problem, it is still required to
solve the M-step using numerical optimization. It has been claimed (see [107,
Section 3.4]) that the EM iterations seem to avoid local solutions that might be
problematic for a gradient-based method. However, an investigation of such a
behavior has to be done; particularly in the “misspecified” setting adapted here.

For all examples in the previous sections, it was possible to compute the linear
suboptimal and linear optimal predictors in closed-form. However, for general
nonlinear models, the computations of the mean and covariance of Y might be
analytically intractable. In this case, it is possible to approximate them using a
Monte Carlo estimator, as we show in the next section.

4.6 Simulated Prediction Error Method (SPEM)

To be able to solve the PEM problems (4.35), (4.33) or (4.37), it is necessary to
evaluate the first two moments

µ(U ; θ) = E[Y ; θ],
ν(U ; θ) = E[Y Y ⊺; θ],

(4.59)

and in turn the covariance matrix

Σ(U ; θ) = ν(U ; θ) − µ(U ; θ)µ⊺(U ; θ).

Assume that we are given the general nonlinear model in (4.1) with one of the
following assumptions:

1. The random vectors W and V follow a known joint distribution parameterized
by θ;

(W ,V ) ∼ p(W ,V ; θ),
and V has a mean value µV (θ).

2. The random vectorsW and V are independent,W follows a known distribution
parameterized by θ;

W ∼ p(W ; θ),
and V has a mean value µV (θ) and a covariance matrix ΣV (θ).
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The first case is clearly more general; however, when V is representing measurement
noise, it is not restrictive to assume that it is independent of W . For the more
general case, the moments in (4.59) are given by the integrals

µ(U ; θ) = ∫ M(U,W ; θ)dW + µV (θ)

ν(U ; θ) = ∬ (M(U,W ; θ) + V )(M(U,W ; θ) + V )⊺p(W,V ; θ)dW dV,

and in the case of independent W and V the second integral simplifies to

ν(U ; θ) = ΣV (θ) +∬ M(U,W ; θ)M⊺(U,W ; θ)p(W ; θ)dW.

Without any further assumptions (like independence of the outputs over time), these
integrals are multidimensional integrals with analytic solutions only in special cases.
However, even in the general situation, it is possible to estimate them using the
Monte Carlo idea (see Remark 4.6.3 on the next page).

Monte Carlo approximation of the moments

Notice that the moments of Pθ are functions of θ. For every given θ, we assume that
it is possible to generate M independent samples

(W (m)(θ),V (m)(θ)) ∼ p(W ,V ; θ), m = 1, . . . ,M,

using common random numbers (see Appendix A, Section A.2). These samples
together with the inputs can be used to generate pseudo realizations of the model
outputs

Y (m)(θ) =M(U,W (m)(θ); θ) + V (m)(θ), m = 1, . . . ,M.

Notice that the samples Y (m) are realization of

Y (m) ∼ p(Y ; θ) independent over m,

and therefore we can define the two Monte Carlo estimators

µ(U ; θ)
⋀

∶=M−1
M

∑
m=1

Y (m)

Σ(U, θ)
⋀

∶= (M − 1)−1
M

∑
m=1

(Y (m) −µ(U ; θ)
⋀

)(Y (m) −µ(U ; θ)
⋀

)
⊺

.

(4.60)

Due to the independence of the used samples, the Monte Carlo estimators in (4.60)
enjoy all the desired asymptotic properties. For example, both converge almost
surely to their true values as M →∞.

The idea is then to replace the intractable mean vector and covariance matrix
of Y in the definition of the (sub)optimal linear predictor and the associated
PEM problem by Monte Carlo estimates. We will refer to the resulting method by
“Simulated PEM” (SPEM).
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Definition 4.6.1 (Simulated Prediction Error Method). The three simulated PEM
estimators L-SPEM, WL-SPEM, and OE-SPEM are defined by (4.33), (4.35), and
(4.37) respectively when the mean vector and the covariance matrix of the model
outputs are replaced by their corresponding Monte Carlo estimates defined in (4.60).

Notice that the resulting estimators, which we will denote by θ̂M(DN), are
Monte Carlo approximations of θ̂(DN) and depend on M . Due to the assumption
that the samples Y (m)(θ) are exact independent copies over m, it is straightforward
to conclude their convergence.

Theorem 4.6.2 (Consistency and Asymptotic Normality of SPEM estimators).
Under the same hypotheses used in Theorems 4.4.8, 4.4.9 and 4.4.10, the L-SPEM,
WL-SPEM and OE-SPEM estimators are consistent and asymptotically normal if
M →∞, i.e.,

lim
M→∞

θ̂M(DN) a.s.Ð→ θ○ as N →∞

Proof. Observe that, for a given input u and a fixed θ ∈ Θ, the Monte Carlo estimates
of the first two moments of the model are based on “exact” independent samples
according to the true distribution of the outputs. Therefore, a direct use of the
strong law of large numbers implies the almost sure convergence of the simulated
PEM problem to the corresponding exact PEM problem.

Remark 4.6.3. The Monte Carlo estimators of the moments suggested in this
chapter are simpler than the Monte Carlo estimators of the intermediate quantity
and the likelihood function from Chapter 3. Observe that here, direct sampling
according to p(W ; θ) is not troublesome because every sample contributes equally to
the Monte Carlo sum, unlike the case of approximating marginalization integrals.

To illustrate the idea of the SPEM, we consider the following examples.

Example 4.6.1. (Stochastic Wiener model with colored disturbance) Consider
the following state-space model

xt+1 = θxt +wt,

yt = x2
t + vt, t ∈ Z

where θ = 0.7 and wt ∼ N(0,0.1), vt ∼ N(0,0.1) both are independent of each
other and independent over time. For simplicity, assume x0 = 0. Observe that
the model can be rewritten in the vector form

Y = (X)2 +V = (F (θ)W )2 +V
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in which the square operator (⋅)2 is applied element-wise, and

F (θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
θ 1 0 . . . 0
θ2 θ 1 . . . 0
⋮ ⋮ ⋱ ⋮
θN−1 θN−2 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Even though the state process x is colored and the outputs are dependent, the
model is still simple enough for analytic computations of the moments. Observe
for instance that it is easy to find that

E[Y ; θ] = 0.1(F (θ)1)2,

and the covariance is

cov(Y ,Y ; θ) = E[(F (θ)W )2((F (θ)W )2)⊺] − 0.12(F (θ)1)2((F (θ)1)2)⊺

where once more (⋅)2 is applied element-wise. Note that it is possible to compute
the second moment appearing in the covariance expression analytically; the
computations require the fourth moment of w which is available. Thus, it is
possible here to compute the optimal linear predictor analytically. However, for
more general models, such computations can get quite involved.

In this example, we will not use analytic computations; our objective is to
demonstrate the performance of the WL-SPEM estimator in a simple simulation
study. Figure 4.9 shows the result of a Monte Carlo simulation over 1000
independent realizations of w and v for different values of N between 100 and
1000. The number of used sample M is fixed to 105 for each N . As expected
from the theory, the simulations indicate the consistency of the estimator.

200 400 600 800 1000

N
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0.03

M
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Figure 4.9: The average MSE over 1000 Monte Carlo simulations when the WL-SPEM
is used, fixed M = 105.

In the next example, we consider a highly nonlinear model that has been used as a
benchmark problem for sequential Monte Carlo methods.
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Example 4.6.2. (The particle filter benchmark problem) Consider the nonlinear
time series model

yt = 0.05x2
t + vt, t = 1, . . . ,N,

xt = θxt−1 + b
xt−1

1 +x2
t−1

+ 8 cos(1.2(t − 1)) +wt−1, θ = 0.5, b = 1. (4.61)

This univariate non-stationary growth model appeared in [22, 54, 72] and has
been considered by many others, see for example [21, 86, 125]. It has been
mainly used as challenging benchmark problem for filtering/smoothing and
parameter estimation methods due to its nonlinearity and the bi-modal posterior
distribution of the state.

Observe that here, we are using a different coefficient in the second term of
the state equation. The standard model has a coefficient of b = 25, which we
replaced here by 1. The reason for this choice is that the original coefficients
seem to result in abrupt and large changes in the gradient of the E[yt; θ], see
Figure 4.10.
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Figure 4.10: A sample of the derivative of the model output mean (approximated by
averaging 105 independent MC samples) with respect to θ when λw = 1, λe = 0.1. The
case for b = 25 is shown in the top panel, and the case for b = 1 is shown at the bottom
panel. In both cases, the same realization of the disturbance and noise was used.

It is obvious that the true predictor of the output and the likelihood function
are both analytically intractable regardless of the distributions of w and v.
Observe that the measurement equation looks like the ones in Examples 4.2.2,
4.38 and 4.5.1. However, here the state process x is not white; it is a Markov
process (see Definition 2.1.9) generated by w using the recursion in the second
row of (4.61). The consequence is that we are not able to evaluate the moments
of the outputs analytically.
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To proceed, assume that w and v are independent and mutually independent
Gaussian white noises with zero mean and variances λw = λe = 1, and let
N = 1000. The model can be written using our vector notations in the form

Y = 0.05X2 +V ,

such that
V ∼ N(0, IN), and X ∼ p(X; θ).

The PDF of X is constructed using the Markov property of the model (see
(2.17));

p(X; θ) =
N

∏
t=1
p(xt∣xt−1; θ).

Now observe that the expectation

E[Y ; θ] = 0.05 E[X2; θ]

is analytically intractable due to the fraction in the state equation. However,
both the mean and the covariance of Y can be estimated via MC simulations.

Recall that sampling according to p(X; θ) is done sequentially as explained
on pages 22 and 24 in Chapter 2. We simulated one realization of the output
and solved two instances of the simulated PEM with M = 104. We assumed that
the initial state x0 = 0 is known. We then evaluated the cost functions for a grid
of values between 0.2 and 0.8 as shown in Figure 4.11.

The results show that the WL-SPEM and OE-PEM estimators have minimiz-
ers located very close to the true value. We also observe that the cost functions
in both cases have two global minima close to 0.5 and −0.5 respectively, similar
to the true likelihood function (neither are shown here).
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Figure 4.11: A sample of the cost function of θ for the WL-SPEM and the OE-SPEM
assuming the model in (4.61). On the left: Monte Carlo approximation of (4.35). On
the right: Monte Carlo approximation of (4.37).

Next, under the same scenario, we kept θ fixed to its true value, and evaluated
the cost for different values of λw between 0.25 and 4. The results are shown in
Figure 4.12 where we observe a similar behavior as above.
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Figure 4.12: A sample of the cost function of λw for the WL-SPEM and the OE-
SPEM assuming the model in (4.61). On the left: Monte Carlo approximation of (4.35).
On the right: Monte Carlo approximation of (4.37).

Table 4.1 shows the result of a Monte Carlo simulation of the WL-SPEM
estimator over 1000 independent realizations of w and v and random initial-
ization when N = 100. The number of used samples M is fixed to 104. The
initial values for the parameters were chosen uniformly at random from an
interval, centered at the true parameter, and have a diameter equal to 50% of
the corresponding true parameter. We see that, for the assumed highly nonlinear
model, the simulation results indicate the consistency of the suggested estimator.
Table 4.1: The mean value and the standard deviations of the WL-SPEM estimator
of θ and λw based on 1000 Monte Carlo runs, when N = 100 and M = 104.

Parameter True value Estimated

θ 0.5 0.4997 ± 0.0223
λw 1 0.9883 ± 0.208

Next, we compare the WL-SPEM estimator to the state-of-the-art sequential
Monte Carlo algorithms approximating the true MLE. We performed a numerical
experiment similar to that in [86, Section 4], where the coefficients of the model
are assumed known; but not the variances of w and v. Our objective is to
estimate the variances λw and λv in two cases: in Case 1, λw = 1 and λv = 0.1,
and in Case 2, λw = 0.1 and λv = 1.

The WL-SPEM estimator (computed using an implementation of quasi-
Newton algorithm) is compared to two algorithms approximating the MLE: (i)
the Conditional Particle Filter with ancestor sampling used within a Stochastic
Approximation Expectation-Maximization algorithm (CPF-SAEM) as suggested
in [86], and (ii) the Monte Carlo Expectation-Maximization algorithm based
on a (fast rejection-sampling-based) Forward Filtering/Backward SImulation
(fast RS-FFBSi) smoother (also known as Particle Smoother EM (PSEM)) as
suggested in [125].
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For each MC realization, the three algorithms are initialized at the same
random point (∼ U([1,1.4]) for both parameters). We used 100 MC realization
with N = 1500, 2000 iterations for the CPF-SAEM; the step size for the stochastic
approximation step is γi = 0.98 ∀i ≤ 100 and i−0.7 for 100 < i ≤ 2000. Here,
M = 2 × 104 trajectories were used for the computations of the WL-SPEM
estimator. For the PSEM algorithm, the number of forward filter particles is
1500 and the backward trajectories number is 300. The results of the two cases
are given in Tables 4.2 and 4.3, and Figurers 4.13 and 4.14.
Table 4.2: The mean value and the standard deviations for the three estimators based
on 100 Monte Carlo runs, when N = 1500, λw = 1 and λv = 0.1.

Parameter λw (true = 1) λv (true = 0.1) Avg. CPU time (sec.)

WL-SPEM 0.9976 + 0.0685 0.1089 + 0.0111 187
CPF-SAEM 0.9982 + 0.0596 0.1007 + 0.0089 126

PSEM 0.9904 + 0.0595 0.1024 + 0.0088 7713
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Figure 4.13: Parameter estimates for 20 realizations of the three estimators. Each
line corresponds to one realization of the data. The true values are λw = 1 and λv = 0.1.

The simulation results show that, for the current example, the accuracy of
the WL-SPEM estimator is comparable to that of the state-of the-art MLE
approximations obtained by the CPF-SAEM algorithm or the PSEM algorithm.
The WL-SPEM estimator is consistent and can outperform the CPF-SAEM in
computational time whenever the process disturbance variance is small or in
cases where the M-step of the EM algorithm is not available in closed-form.
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Table 4.3: The mean value and the standard deviations for the three estimators based
on 100 Monte Carlo runs, when N = 1500, λw = 0.1 and λv = 1.

Parameter λw (true = 0.1) λv (true = 1) Avg. CPU time (sec.)

WL-SPEM 0.0889 + 0.0670 1.0071 + 0.0477 190
CPF-SAEM 0.1871 + 0.0500 0.9656 + 0.0429 125

PSEM 0.0972 + 0.0604 1.0029 + 0.0456 17071
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Figure 4.14: Parameter estimates for 20 realizations of the three estimators. Each
line corresponds to one realization of the data. The true values are λw = 0.1 and λv = 1.

In the next example, we estimate two parameters of an even more challenging
nonlinear state-space model of dimension 100.

Example 4.6.3. (High dimensional nonlinear state-space model identification)
In this example, we consider a nonlinear system with 100 states and one output,

x1(t + 1) = θ1
x1(t)

x2
100(t) + 1

+w1(t), x0 = 0,

xi(t + 1) = θ1
xi(t)

x2
i−1(t) + 1

+wi(t), i = 2, . . . ,100

yt = (
100
∑
i=1
xi(k))

2

+ vt,

(4.62)
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in which

vt ∼ N(0,0.1) ∀t, wi(t) ∼ N(0, θ2) ∀t and i = 1, . . . ,100, (4.63)

and the parameters
θ1 = 0.7, and θ2 = 0.1.

The state equation for each dimension is a variant of the particle filter benchmark
model from the previous example. Due to its high-dimensionality, this model is
quite challenging for estimators based on optimal filtering methods, especially
owing to the cyclic dependence between all the states. It also poses a challenge
for any estimation method that relies on approximations of the true likelihood
such as the approaches in Chapter 3. To the best of the author’s knowledge, the
parameter identification algorithms targeting the MLE using sequential Monte
Carlo algorithms have been applied only to problems with small dimensions
(due to the the particle degeneracy problem).

From the WL-SPEM point of view, the problem here is similar to the first
order model of the previous example and the algorithm requires no special
modifications. Figure 4.15 presents the result which indicates the consistency of
the estimator. Here, we estimated two parameters, one of which is the variance of
the process disturbance. The first two moments of the model were approximated
using M = 104 independent samples. The computational time required for one
realization of the estimator is in the order of few minutes.
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Figure 4.15: The results of applying the WL-SPEM estimator to the high-dimensional
state-space model (4.62). On the left: The empirical MSE over 250 realizations. On
the right: a sample of the contours of the cost function of the estimator. The true θ is
marked with a red asterisk

We conclude this section with the following application-motivated example.
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Example 4.6.4 (A cascaded anaerobic digestion process). Consider a dynamical
model of a continuous anaerobic digestion process. This biological process is
used for the treatment of organic waste in which the microorganism is broken
into a mixture of methane and carbon dioxide. The details of such a process and
possible models can be found in [10]. The notation in this example is slightly
different from the rest of the thesis, because the model is given in continuous-
time. Here, t ∈ R, the subscript denotes different (dimension) variables, and time
is given as an argument. It is more or less the same notation used in [10].

A stochastic two-stage bioreactor is modeled by the stochastic differential
equations

ds1(t) = [−k1µ1(s1(t),x1(t)) +D1(s1,in(t) − s1(t))]dt + dw1(t)
dx1(t) = [µ1(s1(t),x1(t)) −D1x1(t)]dt + dw2(t)
ds21(t) = [k3µ1(s1(t),x1(t)) −D1s21(t)]dt + dw3(t)
dx2(t) = [µ2(s22(t),x2(t)) −D2x2(t)]dt + dw4(t)
ds22(t) = [−k2µ2(s22(t),x2(t)) +D2(s21(t) − s22(t))]dt + dw5(t)

in which the dilution rates D1 = 0.04 and D2 = 0.01/day. The process s1
represents the substrate concentration in tank 1, and s1,in is the substrate
concentration in the influent. The processes s21 and s22 represent the product
substrate concentration in tank 1 and 2 respectively, while x1 and x2 are the
concentrations of the biomass in tank 1 and 2 respectively. The independent
Brownian motion w1 to w5 represent unobserved process disturbances. The
parameters k1, k2, and k3 are yield coefficients. The growth rates are modeled
using a Monod-law

µ1(s1,x1) =
µ∗1s1x1

s1 +Km1
, µ2(s22,x2) =

µ∗2s22x2

s22 +Km2
,

with the assumption that µ∗1 = µ∗2 = 1/hr. The goal is to identify the parameter
vector

θ = [k1 k2 k3 Km1 Km2]

using measurements of s1 and s22. The measurement model is given in discrete-
time; the outputs are

y1(k) = s1(kT ) + v1(k),
y2(k) = s22(kT ) + v2(k), k = 1, . . . ,N.

To generate the estimation data, we discretized the model using Euler’s
method with time interval T = 7/24 day. The process is then simulated in
discrete-time with the initial values s1 = x1 = s22 = 0.5, and x2 = s21 = 1, and
θ○ = [5 10 6 10 20]⊺. The input s1,in is a square wave with levels 20 and 40 g/L.
The initial level is 20 and it is changed every 7 days. The variance of the discrete-
time process disturbances is 0.001T , and the measurement noise is an independent
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Gaussian process with variance 0.005. We performed a Monte Carlo experiment
using 1000 realizations for three experiment durations: 60,80,and 100 days.
They correspond to N = 205,274,and 342 samples respectively. The number of
simulations M is fixed to 104.

The average results of the WL-SPEM estimator are summarized in the
following table

k1 k2 k3 Km1 Km2 MSE

N=205 mean 4.99 9.83 6.01 9.99 19.6 8.18
std 0.28 1.41 0.76 0.15 2.31

N=274 mean 5 9.88 5.99 9.99 19.7 5.14
std 0.27 1.16 0.72 0.13 1.76

N=342 mean 4.98 9.93 6.02 9.99 19.8 3.81
std 0.27 1.06 0.72 0.12 1.43

As expected, the simulation results indicate the consistency of the estimator.
Notice that the computational time required to estimate the parameters is, once
more, in the order of a few minutes.

Before moving to the next subsection, we have the following remarks.

Remark 4.6.4.

• The SPEMs are applicable to a more general class of models where V is not
additive; for example, stochastic volatility models (see [20, Chapter 1]).

• It is possible to use a variance reduction technique (see [117, Chapter 4]) to
improve the Monte Carlo estimate of the moments or to reduce the number of
required samples. However, we do not pursue this possibility in this thesis.

In the next section, we will discuss an interesting relationship between the SPEM,
maximum likelihood, and the Ensemble Kalman Filter (EnKF) for the general class
of nonlinear state-space model (2.11). The EnKF (see [17, 38]) is a Monte Carlo
implementation of the classical Kalman filter recursions (see [70]). It was originally
introduced to replace the Kalman recursions for high-dimensional problems by
replacing the error covariance matrices by sample covariance matrices. Due to its
flexibility, it is also used for approximate filtering in nonlinear non-Gaussian models
in lieu of classical nonlinear extensions of the Kalman filter, such as [66], and particle
filters (see [45], [81] and [119]). It has been used for combined state and parameter
estimation in [39] but, to the best of the author’s knowledge, was not considered in
the PEM framework before.
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4.7 PEM Based on the Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) uses sequential Monte Carlo simulations to
approximately compute and propagate the moments of the filtering and predictive
densities of general nonlinear state-space models (2.11). It can be seen as a Monte
Carlo implementation of the Kalman recursions. We start by a short presentation of
the Kalman filter which will be used to motivate the EnKF.

The Kalman Filter

Consider the LTI state-space mode used in Example 2.4.3,

xt+1 = A(θ)xt +B(θ)ut +wt, x0 ∼ p(x0; θ),
yt = C(θ)xt + vt, t ∈ N0,

(4.64)

in which w and v are independent processes with zero mean and finite covariances
λwIdw and λvIdv . Moreover, assume that the initial state x0 has a mean value x̂0
and a covariance matrix P0 and that x is independent of w and v for all t. It is
well known that without any further assumptions, the Kalman filter defines the
best linear estimator of the state and the best linear one-step ahead predictor of
the outputs (see [2, 67]). With the additional assumption that x0, w, and v are
Gaussian processes, the Kalman filter gives the optimal solution to the filtering
problem, i.e., the problem of finding the conditional distributions p(xt∣Yt; θ). Due to
the linearity of the model, the filtering distributions are Gaussian in this case and
they are completely defined by the mean value x̂t∣t and the covariance matrix Pt∣t.

The filter proceeds recursively. Assume that the filtering density at time t − 1 is
given by

p(xt−1∣Yt−1; θ) = N (x̂t−1∣t−1(θ), Pt−1∣t−1(θ)) . (4.65)
The state equation is then used to propagate p(xt−1∣Yt−1; θ) through the dynamics
of the system and the result is adjusted according to the observation yt to arrive at
a filtering density at time t. This is done by solving the Bayesian update step

p(xt∣Yt; θ) =
p(yt∣xt; θ)p(xt∣Yt−1; θ)

p(yt∣Yt−1; θ) (4.66)

where the prior over xt is given by the predictive density

p(xt∣Yt−1; θ) = ∫ p(xt, xt−1∣Yt−1; θ)dxt−1

= ∫ p(xt∣xt−1, Yt−1; θ)p(xt−1∣Yt−1; θ)dxt−1

= ∫ p(xt∣xt−1; θ)p(xt−1∣Yt−1; θ)dxt−1

and the last equality follows from the Markov property (Definition 2.1.9 on page
22). Due to the linearity of the model, this integral can be solved analytically to
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find that
p(xt∣Yt−1; θ) = N (x̂t∣t−1(θ), Pt∣t−1(θ)) (4.67)

in which
x̂t∣t−1(θ) = A(θ)x̂t−1∣t−1(θ) +B(θ)ut
Pt∣t−1(θ) = A(θ)Pt−1∣t−1(θ)A⊺(θ) + λwIdw .

(4.68)

This is quite an elegant result. Observe how (4.65) is propagated to (4.67) by only
pushing the mean and the covariance through the state equation. Using similar
arguments, it holds that the one-step ahead prediction of the outputs is

ŷt∣t−1(θ) = C(θ)x̂t∣t−1(θ), with a covariance
λt(θ) = C(θ)Pt−1∣t−1(θ)C⊺(θ) + λvIdv

(4.69)

which completely defines the one-step ahead predictive density

p(yt∣Yt−1; θ) = N (ŷt∣t−1(θ), λt(θ)) .

The likelihood of the state is easily computed using the output equation and the
PDF of vt. It follows that

p(yt∣xt; θ) = N (yt;C(θ)xt, λvIdv) .

Since all the PDFs are Gaussian, the filtering density at time t is also Gaussian and
is easily found to be

p(xt∣Yt; θ) = N (x̂k∣k(θ), Pt∣t(θ))

in which
x̂t∣t(θ) = x̂t∣t−1(θ) +Kt(θ)(yt − ŷt∣t−1(θ)),
Pt∣t(θ) = Pt∣t−1(θ) −Kt(θ)C(θ)Pt∣t−1(θ), and
Kt(θ) = Pt∣t−1(θ)C⊺(θ)λ−1

t (θ)

where the matrix Kt(θ) is known as the Kalman gain. It is used to compute
the filtering density by adjusting the mean and the covariance of the predictive
distribution. The steps in (4.68) and (4.69) are usually known as the time update
steps, and the computations in (4.7) are known as the measurement update.

The essential step of the filter is the measurement update step. Observe that it
relies on the covariance matrices of the state and the one-step ahead predictor of the
outputs. The main idea of the EnKF is to avoid computing and storing the matrices
{Pt∣t} by propagating Monte Carlo samples. Once Monte Carlo simulations are used,
the method is flexible enough for general nonlinear models. In the following, we will
describe the algorithm for nonlinear state-space model of the form in (2.12). We
will assume that the mean value of vt is zero for all t.
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The Ensemble Kalman Filter (EnKF)

To keep the notation uncluttered, the dependence of all the samples and all the
estimators on θ and M will not be explicit in the notation. The procedure of the
EnKF is simple and intuitive. The filter starts by generating M independent samples
according to the prior

x
(m)
0 ∼ p(x0; θ), w

(m)
0 ∼ p(w; θ) i.i.d. over m = 1, . . . ,M.

It then simulates x1 using the state equation M times. Let us define the (ensemble)
matrices

X0 ∶= [x(1)0 x
(2)
0 . . . x

(M)
0 ] , and

W0 ∶= [w(1)0 w
(2)
0 . . . w

(M)
0 ] .

with as many rows as the state dimension and M columns. Then, the predictive
ensemble at time t = 1

X1∣0 = [x(1)1∣0 x
(2)
1∣0 . . . x

(M)

1∣0 ]
= h(X0, u01⊺,W1; θ)

where the symbol h, with a slight abuse of notation, is used to also operate on
ensembles (element-wise). The symbol 1 denotes a column vector of ones and has a
dimension M . Generally, at time t > 1, assume that an ensemble Xt−1∣t−1 is available.
The filter simulates the time updates

Xt∣t−1 = [x(1)
t∣t−1 x

(2)
t∣t−1 . . . x

(M)

t∣t−1]
= h(Xt−1∣t−1, ut−11⊺,Wt−1; θ)

(4.70)

in which
Wt−1 = [w(1)t−1 w

(2)
t−1 . . . w

(M)
t−1 ]

and w(m)t−1 ∼ p(w; θ) i.i.d. over t and m. The next step is to simulate the (predicted)
output as follows

Yt∣t−1 = [y(1)
t∣t−1 y

(2)
t∣t−1 . . . y

(M)

t∣t−1]
= g(Xt∣t−1; θ) + Vt.

(4.71)

in which
Vt = [v(1)t v

(2)
t . . . v

(M)
t ]

and v(m)t ∼ p(v; θ) i.i.d. over t and m. Observe that, with a slight abuse of notation,
the symbol g is used to also operate on ensembles.

The two steps in (4.70) and (4.71) are analogous to the time update step of
the Kalman filter. Observe that the samples (ensemble or particles) Xt∣t−1 and
Yt∣t−1 provide empirical approximations to the predictive densities p(xt∣Yt−1; θ) and
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p(yt∣Yt−1; θ) respectively. Similarly, Xt−1∣t−1 is seen as an empirical approximation
of the filtering density p(xt−1∣Yt−1; θ). The important observation here is that
whenever Xk−1∣k−1 contains exact i.i.d. samples according to the filtering density
p(xt−1∣Yt−1; θ), the samples of Xt∣t−1 and Yt∣t−1 will be exact i.i.d. samples of the
respective distributions. This observation suggests the use of the following Monte
Carlo estimators of the mean

x̂t∣t−1 ≈ x̃t∣t−1 ∶=M−1Xt∣t−11,
ŷt∣t−1 ≈ ỹt∣t−1 ∶=M−1Yt∣t−11,

(4.72)

and the covariances
cov(xt∣t−1,xt∣t−1) ≈ Pt∣t−1 = (M − 1)−1 X̃t∣t−1X̃

⊺
t∣t−1,

cov(yt∣t−1,yt∣t−1) ≈ λt = (M − 1)−1 Ỹt∣t−1Ỹ
⊺
t∣t−1 + λvIdv ,

cov(xt∣t−1,yt∣t−1) ≈ St = (M − 1)−1 X̃t∣t−1Ỹ
⊺
t∣t−1,

(4.73)

where
X̃t∣t−1 =Xt∣t−1 − x̃t∣t−11⊺, and
Ỹt∣t−1 = g(Xt∣t−1; θ) − ỹt∣t−11⊺.

If the ensemble Xt−1∣t−1 were exact with i.i.d. samples, a standard version of the law
of large numbers would apply and the above mean and covariance estimators would
converge almost surely to their true values as M →∞. However the used samples
are dependent and the way the filter employs the observations and the prior at t to
compute the ensemble Xt−1∣t−1 relies on couple of approximations as we shall now
explain.

The ensemble Xt∣t is computed based on an approximate solution of the Bayesian
update (4.66). The joint predictive density p(xt,yt∣Yt−1; θ) is approximated by the
multivariate Gaussian distribution

p(xt,yt∣Yt−1; θ) ≈ N
⎛
⎝
⎡⎢⎢⎢⎣
x̃t∣t−1

ỹt∣t−1

⎤⎥⎥⎥⎦
,
⎡⎢⎢⎢⎣
Pt∣t−1 St

S⊺t λt

⎤⎥⎥⎥⎦
⎞
⎠
,

where the means and covariances were defined above in (4.72) and (4.73). By
conditioning on yt, we get a measurement update equation similar to the linear
case; namely

x̌ = x̂t∣t−1(θ) +Kt(θ)(yt − y̌),
in which x̌ and y̌ are place holders. This relation defines the mechanism used by
the EnKF to update each element of the ensembles, that is

Xt∣t =Xt∣t−1 +K(yt1⊺ − Yt∣t−1) (4.74)

in which the effect of K is defined by multiplying each column of the argument
matrix by the gain

Kk = Skλ−1
k = 1

M − 1
M

∑
1=m

X̃t∣t−1Ỹ
T
t∣t−1λ

−1
k . (4.75)
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This is analogous to the Kalman gain in the linear case. We note here that in practice,
the empirical covariance matrix Pt∣t does not require to be computed or stored. The
computations of the Kalman gain Kk are sample-based, which allows the filter to
work with very high-dimensional state-space models. In addition, because the time
update step is based on simulations, the filter can be applied to any nonlinear model
that can be simulated.

In the following example, we compute the log-likelihood function of a linear
Gaussian model by using the EnKF.

Example 4.7.1. This example demonstrates the convergence of the EnKF in
the linear case. We consider a model similar to the one in (2.31) in Example
(2.4.1);

xt+1 = θxt +wt,

yt = xt + vt, t ∈ N0,
(4.76)

such that θ = 0.7, w and v are stationary independent and mutually independent
Gaussian white noises with unit variance. With N =M = 1000, we simulated
one realization of the model outputs and evaluated the negative log-likelihood
function at several values of θ. The results in Figure 4.16 show that the EnKF
(almost) coincides with log-likelihood as computed by the sequential KF or
direct evaluations.

We note here that the convergence of the EnKF to the KF for linear models
is not a trivial result. Observe that the used samples in (4.72) and (4.73) are
not independent. Each element of the filtering ensemble depends on the whole
prediction ensemble Xt∣t−1, and therefore the samples are dependent; however,
the dependence is only through the empirical covariance matrix computations.
A law of large numbers still holds as shown in [81] where the convergence of the
EnKF is established.
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Figure 4.16: Comparison between EnKF and KF for the LTI model in (4.76). The
figure shows the negative log-likelihood computed with three methods: (i) Direct
computation (in blue), (ii) sequential computation using the EnKF (in red), and (iii)
sequential computation using the time-varying KF (in yellow)
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PEM based on the EnKF

In this last part, we first define a PEM instance based on the one-step ahead
predictors (4.72) given by the EnKF. We then investigate the relationship between
the resulting PEM estimator and the SPEM estimator based on the suboptimal and
the optimal linear predictors we defined earlier in this chapter.

Definition 4.7.1 (The EnKF one step-ahead predictors). The EnKF one-step
ahead predictors of the outputs at time t are defined by

ỹt∣t−1(θ) ∶=
1
M
Yt∣t−1(θ)1 (4.77)

in which Yt∣t−1 is the predictive ensemble of the outputs.

Proposition 4.7.2. The EnKF one-step ahead predictor of yt is nonlinear in both
previous outputs Y t−1 and previous inputs Ut−1.

Proof. To see this, it is only required to write the predictors in terms of the inputs
and the outputs. Note that the predictive ensembles are defined by propagating the
ensemble members through the nonlinear state and output equations, see (4.70) and
(4.71). Therefore, assuming that vt has zero mean, the predictors are given by

ỹt∣t−1(θ) =
1
M

M

∑
m=1

g(x(m)
t∣t−1; θ)

= 1
M

M

∑
m=1

g(h(x(m)
t−1∣t−1, ut−1,w

(m)
t−1 ; θ); θ)

The state filtering ensemble is updated according to (4.74), and we end up with

ỹt∣t−1(θ) =
1
M

M

∑
m=1

g(

x
(m)
t∣t−1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
h( x(m)

t−1∣t−2 +Kt−1(yt−1 − y
(m)

t∣t−1)
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It is obvious that the EnKF one-step ahead predictors are different from the
suboptimal and optimal linear predictors defined earlier this chapter. However, as
the following lemma asserts, there are some cases where the EnKF is related to the
OE-type suboptimal predictor.

Lemma 4.7.3. Assume that the state process and the output process of the state-
space model are such that cov(xt,yt) = 0 for all t ∈ Z. Then the EnKF one-step
ahead predictor ỹt∣t−1(θ) is a Monte Carlo approximation of E[yt; θ] and therefore
is measurement independent and coincides with the suboptimal predictor defined in
(4.60).
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Proof. The proof is straightforward. In all cases where cov(xt,yt) = 0, the Kalman
gain is Kt = 0, see (4.75). In this case, the measurement update step has no effect
and the measurement is never used to update the prediction ensemble. This means
that for all t, it holds that Xt∣t =Xt∣t−1 and therefore the samples of the ensemble Yt∣t
are just i.i.d. samples distributed according to p(yt; θ). Consequently, the predictor
(4.77) is equivalent to the first row of (4.60).

Example 4.7.2. Consider the case of a stochastic Wiener model

xt+1 = θxt +wt

yt = x2
t + vt, t ∈ N0

where x0 ∼ N(0, λx0), wt ∼ N(0, λw) and vt ∼ N(0, λv) for all t. Furthermore,
assume that vt is independent of both x0 and wt for all t. Then, xt is a Gaussian
random variable and cov(xt,yt) = 0 for every t. Thus, the predictor (4.77) is a
Monte Carlo approximation of the suboptimal linear predictor (4.36) (it does
not depend on yt).

In the following definition, a PEM estimator is defined based on the EnKF
one-step ahead predictors.

Definition 4.7.4 (PEM based on the EnKF). The PEM estimator based on the
EnKF is defined by

θ̂M(DN) = arg min
θ∈Θ

∥Y − Ỹ (θ))∥2
Λ−1(U ;θ) + log det Λ−1(U ; θ)

such that Ỹ (θ) ∶= [ỹ⊺1∣0(θ) ỹ⊺2∣1(θ) ⋯ ỹ⊺N ∣N−1(θ)]
⊺

,

where the one-step ahead linear predictions ỹt∣t−1 are defined in Definition 4.7.1,
and Λ(U ; θ) is a diagonal matrix with entries λt(θ) as defined in (4.73).

It is clear that this estimator looks very similar to the estimator based on the
simulated optimal linear predictor as defined in (4.6.1). Both solve a prediction
error problem with parameterized norm using simulated predictors (also note that
an unweighted version may also be defined). However, they differ in the way they
define the predictor and the covariances. The SPEM estimators defined in (4.6.1) is
based on a Monte Carlo approximation of “linear” predictors. However, as shown
above, the EnKF predictors are nonlinear and it is not obvious how to assess the
properties of the resulting estimator.

To get an idea about the relation between the two, we introduce the following
example.
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Example 4.7.3. First, we consider a model for which the relationship between
xt and yt is linear.

xt+1 = θ
xt

x2
t + 1

+wt, wt ∼ N(0,0.1)

yt = xt + vt, vt ∼ N(0,0.1),
(4.78)

We assume that x0 = 0, θ = 0.7 and N = 100. We then simulate one realization of
the outputs and compute the one-step ahead predictors (4.77) and a simulated
version of the optimal linear predictor (4.22) using the true θ and M = 105.
Figure 4.17 shows plots of the prediction errors, prediction error variance, and
the one-step ahead predictions, and the cost function for both estimators for a
grid of values for θ. To further control the comparison, we use the same random
numbers for both cases.

Although not identical, the EnKF predictor follows the optimal linear pre-
dictor closely. More interestingly, the cost functions have the same shape and
seem to have very close minimizers.
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Figure 4.17: Simulation results for the model in (4.78).

Next, we repeat the same experiment with the same setting but using a
quadratic observation model

xt+1 = θ
xt

x2
t + 1

+wt,

yt = x2
t + vt.

(4.79)
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Figure 4.18 shows similar conclusions to those found in the case of a linear
observation model. This experiment seems to highlight a close relationship
between the two estimators.
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Figure 4.18: Simulation results for the model in (4.79).

4.8 Summary

In this chapter, we introduced a consistent and asymptotically normal estimator
for parametric nonlinear models. As explained in Section 4.2, the basic idea is to
apply the PEM using predictors that are linear in the observed output, but may
be nonlinear in the known input. The given examples show that in several cases of
interest, the predictors and the objective functions are given in closed-form. The
optimal linear (in yt) one-step ahead predictor and the associated PEM problem
are defined in Section 4.3. Several remarks were given regarding the interpretation
of the predictor, the connection to Wold’s decomposition and the linear case. The
asymptotic analysis of the suggested estimators is given in Section 4.4. We discussed
the required conditions on the data, the predictors, and the used criterion and
parameterization for the general results in [90] and [89] to hold. A maximum
likelihood interpretation is given in Section 4.5. We then defined the simulated
PEM: a Monte Carlo approximation of the PEM estimators suggested in this thesis.
They are used when the first two moments of the model are analytically intractable.
Finally, we discussed the Ensemble Kalman Filter (EnKF) and an associated PEM.
We saw that the EnKF one-step ahead predictor is nonlinear in both yt and ut,
however in some cases it might be independent of the measurement.





Chapter 5

Conclusions and Future Research Directions

The content of this thesis concerns the estimation problem of parametric nonlin-
ear stochastic dynamical models. The problem is considered under the following
assumptions:

• The model structure is known,

• There exists an unobserved (latent) stochastic process influencing the outputs
through a non-invertible nonlinear relation.

• The data is generated in open-loop, i.e., the input signal is known and is
independent of all other signals.

In this setting, the commonly used point estimation methods such as the maxi-
mum likelihood method and the prediction error method –relying on the optimal
one-step ahead predictor– are analytically intractable. While ignoring the existence
of the unobserved stochastic disturbance leads to tractable problems, it is well
known that the resulting estimators are biased.

Recently, there has been extensive research in the system identification community
on the use of sequential Monte Carlo and/or Markov Chain Monte Carlo methods
to solve general nonlinear inference problems. These methods have been shown to
provide acceptable solutions on several academic examples; nevertheless, scaling
these methods to high-dimensional models with many parameters is quite challenging
and is currently an active research area. Moreover, the convergence of some of these
methods is guaranteed only within the exponential family.

In an attempt to address these problems, the thesis is divided into two main
parts:

1. approaches for approximate solutions of the maximum likelihood problem, and

2. consistent instances of the prediction error methods.

In the following sections, we first summarize the conclusions of the thesis and
then give several pointers for possible future research.
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5.1 Thesis Conclusions

Let us begin by commenting on Wold’s decomposition given in Chapter 2.

Wold’s decomposition

Theorem 2.1.6 gives an interesting insight regarding the structure of general second-
order non-stationary processes. It shows that any purely non-deterministic process
with finite second-order moments can be seen as causally and linearly filtered white
noise (innovations). Two observations are important here: (i) the filters are time-
varying and not necessarily exponentially stable (the impulse response sequences
may only be square summable), (ii) the innovations are merely uncorrelated and
may be dependent.

In linear system identification, the basic stochastic process is assumed stationary,
“linea” and purely non-deterministic, i.e., it is defined as the output of a stable LTI
filter whose input, the innovations sequence, is an i.i.d. process. These stronger
assumptions imply the summability of the covariance sequence, and therefore it
is possible to define a spectral density for the process. However, observe that the
linearity and stability of the process do not imply the (causal and stable) invertibility
with respect to the innovations. Therefore, further conditions have to be “imposed” to
guarantee invertibility. The spectral factorization theorem gives sufficient conditions
on the power spectrum that can be translated to properties of the used transfer
operator or state-space models.

For the nonlinear models considered in this thesis, Wold’s decomposition is used
to motivate the use of linear predictors. The invertibility assumption – similar to
the linear case – is imposed. However, direct verifiable conditions on the underlying
model were not studied.

Chapter 3
In this chapter, we explored several analytical and numerical approximations for
the maximum likelihood estimator.

The EM and the quasi-Newton algorithms

The EM algorithm is advantageous whenever the E-step and the M-step are tractable
with closed-form expressions. In this situation, the algorithm does not require the
computation of any gradients. However, this advantageous situation is restricted
to only some models; e.g., joint models in the exponential family. On the other
hand, the quasi-Newton algorithm is a gradient-based algorithm and therefore it is
parameterization-dependent. Nevertheless, due to the use of Hessian approximations,
the quasi-Newton algorithm can be a few times faster compared to the EM. Both
algorithms are intractable for general nonlinear models. The EM requires approxi-
mations of the posterior PDF of the disturbance, and the quasi-Newton algorithm
needs approximations of the (log-)likelihood function and its gradient.
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Analytic approximations of the EM algorithm

The convergence results of the EM algorithm rely mainly on the fact that the
posterior distribution used to define the Q-function corresponds exactly to the
integrated joint model. When the posterior is replaced by any other non-degenerate
distribution, the convergence of the algorithm is not guaranteed (even if the integral
w.r.t the approximate PDF is evaluated exactly). This is what we observed when
Laplace’s approximation of the posterior was used to integrate the true joint model.

On the other hand, assuming that the covariance of Laplace’s approximation is
infinite such that the PDF is concentrated on the MAP estimate of the disturbance,
the EM algorithm is equivalent to a joint estimation problem. The resulting estimator
is known to be biased (even in the linear case), nevertheless it has been also observed
that it could be preferable to the MLE for short data records.

Analytical approximations of the likelihood function

The normalization constant of Laplace’s approximation of the posterior can be
used as an approximation of the log-likelihood function. Regardless of the posterior
distribution, the quality of the log-likelihood approximation relies on how accurately
a multivariate Gaussian can approximate the posterior around any of its possibly
many modes. The resulting estimator can be seen as a regularized joint MAP
estimator that coincides with the MLE in the linear case. The simulation examples
indicate that the approximation might be acceptable in some cases.

One disadvantage common to all methods based on analytic approximations is
the difficulty of analyzing the resulting estimates. At best, we were only able to
show that these approximations are exact for the linear case.

Numerical Approximations

Whenever the dimension of the disturbance process is small enough and the outputs
are independent over time, deterministic numerical integration can be efficiently
used to approximate the iterates of the EM algorithm. To do so, the interesting
observation that the Q-function can be written in terms of an integral with respect
to the (assumed known) PDF is used. For models with colored outputs, the involved
integrals are multidimensional and deterministic integration methods are hopeless.
In such cases, MC approximations should be used instead.

The Q-function and the likelihood function can be written as expectations with
respect to the known distribution of the latent process. Thus, direct sampling may
be used to define an unbiased estimator of each. However, due to the nature of the
conditional likelihood, the variance is usually very large for any manageable number
of samples. In this thesis, we used Laplace’s approximation of the posterior as an
importance sampling density. In principle, this leads to a variance reduction when
N is small and the true posterior is relatively close to a Gaussian. However, for
larger values of N , the required number of samples might be very large.
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Chapter 4

In this chapter, we looked at several consistent instances of the PEM.

Linear predictors and PEMs for nonlinear models

Motivated by Wold’s decomposition of the outputs, we proposed linear predictors
based on the underlying nonlinear model. The predictors are linear in the observed
outputs; however, the dependence on the known inputs may be nonlinear.

The simplest possible predictor of any model is given by the mean value of its
outputs. In cases where the output process is independent, the mean value is in
fact the unrestricted optimal predictor (it coincides with the conditional mean).
Using this simple predictor, we defined what we call an OE-type (Output-Error
type) PEM. As the name suggests, this is equivalent to the use of an OE-structure
in linear system identification.

If the first two moments of the model are available, the optimal linear predictor
can be derived. Similarly to the linear case, the optimal linear predictor is constructed
by inverting a noise model. However, unlike the linear case, the noise model here is
time-varying because it depends on the used input. Under the assumption of zero
initial conditions, only the first part of the noise model impulse response is required.
Based on the optimal linear predictor, what we call an L-PEM (Linear PEM) can
be defined. In the linear case, this is just the commonly used PEM formulation.

The accuracy of the OE-PEM and L-PEM estimators can be improved by the
use of weighting. The given examples provided several possible alternatives. The
best accuracy is obtained when the L-PEM problem is weighted using the “time-
varying” covariances of the innovations. Because these are unknown and depend on
the parameter, a log det term needs to be added to the cost function to establish
the consistency of the estimator. We denote the resulting estimator by WL-PEM
(Weighted Linear PEM).

In cases where the first two moments of the model are analytically intractable,
we proposed the use of vanilla MC approximations. Here, direct sampling is not
troublesome because every sample contributes equally to the Monte Carlo sum, unlike
the case of approximating marginalization integrals. The obtained approximations
can be used in lieu of the exact moments to define the OE-SPEM (Output-Error
Simulated PEM), L-SPEM (Linear Simulated PEM) and WL-SPEM (Weighted
Linear Simulated PEM) estimators which converge to the corresponding exact
versions as the number of MC samples approaches infinity.

The asymptotic theory of the PEMs is applicable to the instances defined in
this thesis. Under some mild conditions on the data, model parameterization, and
the mean of the model output, the proposed estimators are all consistent and
asymptotically normal. Several simulation examples, including some challenging
models, confirm these results.
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Maximum likelihood interpretations

The OE-PEM, L-PEM, and WL-PEM problems have an interesting interpretation
in terms of misspecified Maximum Likelihood problems. They all correspond to a
misspecified multivariate Gaussian model for the model outputs. All the instances
correctly specify the mean of true model, however they differ in the specification of the
covariance (the weighting). This interesting point of view makes it possible to obtain
a Gaussian approximation for the joint model (of the outputs and the unobserved
disturbance) whenever the disturbance process is Gaussian. This approximation,
while in the same spirit, is different from Laplace’s approximation. The joint Gaussian
approximation allows for the possibility of using the EM algorithm to solve the
PEM problems.

The EnKF and a corresponding PEM

The EnKF is an MC version of the basic KF which can be used for nonlinear
state-space models. Similar to the simulated linear predictors proposed in this thesis,
the EnKF predictor depends on the first two moments of the model. However, it is
shown that the obtained predictor is nonlinear in both the inputs and the outputs.
Nevertheless, it boils down to the mean of the outputs whenever the covariance of
the state and the output is zero. When the covariance is not exactly zero but small,
the EnKF resembles the OE-type predictor. However, no asymptotic guarantees can
be made in general.

5.2 Possible Future Research Directions

In this last section, we give some ideas for possible future research.

Asymptotically efficient two-step estimator

The PEM estimators developed in this thesis are computationally attractive. In
several relevant cases, they may be defined using closed-form predictors and, under
some mild conditions, they are consistent and asymptotically normal, but not
asymptotically efficient. It is in fact possible to improve the asymptotic properties
of these consistent estimators by just one iteration of a Newton-Raphson scheme.
Denote the consistent PEM estimator by θ̂; then, it can be shown that the estimator

θ̃ ∶= θ̂ − [∇2
θ log p(Y,W ; θ̂)]−1∇θ log p(Y,W ; θ̂)

is asymptotically efficient. The symbols ∇θp(Y,W ; θ̂) and ∇2
θ log p(Y,W ; θ̂) denote

the gradient of the log-likelihood function and its Hessian respectively, evaluated at
θ̂. This means that an efficient estimator can be constructed by a “single” evaluation
of the gradient and the Hessian of the log-likelihood function. This can be achieved
by solving (3.47) and a similar integral for the Hessian using only a ‘single’ run of
any Monte Carlo smoothing algorithm, for example a conditional particle filter. The
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resulting two-step procedure is expected to be computationally cheaper compared
to a full SMC solution.

Initialization and relaxation methods for Wiener-Hammerstein models

One disadvantage of the (S)PEMs in general is the difficulty of the involved optimiza-
tion problems. According to the assumed model structure, the resulting optimization
problem is usually non-convex with several local minima, especially with short data
records. Thus, a good initial guess of the parameters is needed.

For Wiener-Hammersten models, it is well known that under some assumptions
on the noise, the Best Linear Approximation is directly related to the LTI part
of the model. One possibility here is the use of weighted least-square methods to
obtain an initialization point.

Using the Expectation-Maximization algorithm to solve SPEM

In this thesis, we proposed the SPEMs and gave them an ML interpretation. This
opened the possibility of approximating the joint density p(Y ,W ; θ) by a Gaussian
PDF whenever p(W ; θ) is Gaussian. An interesting possibility would be to use the
expectation-maximization algorithm to solve the SPEM problem. In particular, a
Stochastic Approximation EM might be advantageous for several reasons: (i) i.i.d.
exact samples can be easily generated, (ii) the number of used samples does not
need to grow with N , (iii) a convergence guarantee is available (see [28]), (iv) it
has been observed that SAEM prevents the sequence from staying near an unstable
stationary point of the likelihood and might behave better than the EM algorithm in
some cases (see [105]). Therefore, it is of interest to determine whether a stochastic
approximation EM algorithm can be used.

Simulation studies and comparisons

In this thesis, the simulation and numerical examples were chosen to clarify the ideas
and expose the advantages and disadvantages of the proposed methods. For example,
a main goal was to verify the consistency of the methods in various situations.
However, a simulation study comparing the performance of the proposed SPEM to
that of the available alternative is required for better understanding of the methods.

Variance reduction techniques for SPEM

Even though the variance of the Monte Carlo estimators of the first two moments
does not depend on N , it depends on the variance of the model outputs. If this
variance is large, vanilla Monte Carlo methods might be inefficient. In this case, it
is possible to adopt variance reduction techniques.
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Nonlinear errors-in-variables estimation problems

The methods proposed in this thesis were developed and analyzed under the as-
sumption that the input is known. In some practical situations, the user might not
be in control of the identification experiment, and therefore both inputs and outputs
have to be measured. Several challenging technical problems arise in this situation.





Appendix A

The Monte Carlo Method

In this appendix, we describe the Monte Carlo idea for approximating PDFs and
integrals. For more details, we refer the reader to any of the several books on the
Monte Carlo methods. See for example, the books [117], [88], or [37].

A.1 The Monte Carlo Idea

The Monte Carlo (MC) idea is based on replacing some unknown or intractable
probability distribution function by an empirical distribution based on a set of
random samples.

Consider a random variable ζ defined on some set Z (usually a Euclidian real
space) and distributed according to a probability distribution function F (ζ); in
addition, consider a sequence of independent random variables

ζ(m) ∼ F (ζ), m = 1, . . . ,M

that are copies of ζ. These random variables can be used to define the empirical
distribution

dFFFM ∶= 1
M

M

∑
m=1

δζ(m)(dζ), (A.1)

in which δζ(m)(dζ) denotes a Dirac measure on the singleton {ζ(m)}, and a corre-
sponding probability density function

p̂M(ζ) ∶= 1
M

M

∑
m=1

δζ(m)({ζ}).

Let ϕ be some test function, defined over Z, such that it is integrable with respect
to F , and consider the problem of evaluating the integral

E[ϕ(ζ)] ∶= ∫
Z
ϕ(ζ)dF (ζ).
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A MC estimator of this integral can be defined using (A.1) as the “random variable”

Ê̂ÊEM [ϕ(ζ)] ∶= ∫
Z
ϕ(ζ)dFFFM = 1

M

M

∑
m=1

ϕ(ζ(m)). (A.2)

A MC estimate is given by a realization {ζ(m)}Mm=1 and is written as a MC sum

ÊM [ϕ(ζ)] = ∫
Z
ϕ(ζ)dFM = 1

M

M

∑
m=1

ϕ(ζ(m)).

It is immediate that the estimator (A.2) of E[ϕ] is unbiased and, due to the
assumption that the random variables ζ(m) are independent over m, a direct
application of the strong law of large numbers (see [23, Chapter 5]) shows that

Ê̂ÊEM [ϕ(ζ)] a.s.Ð→ E[ϕ(ζ)] as M →∞. (A.3)

The symbol a.s.Ð→ denotes almost sure convergence. This means that, if we use
sufficiently large number of samples M , we can achieve any required approximation
accuracy of the expectation of ϕ by averaging the values {ϕ(ζ(m))}. It is also not
difficult to see that when the function ϕ has a finite variance (with respect to F ),
a standard version of the central limit theorem (see [23, Chapter 7]) implies the
convergence in distribution of the normalized (MC) errors; that is

√
N (Ê̂ÊEM [ϕ(ζ)] −E[ϕ(ζ)]) ↝ N(0,var(ϕ)) as M →∞ (A.4)

in which the symbol ↝ denotes convergence in distribution. This last result can
be used to construct asymptotic confidence regions for the estimator in (A.2). The
important observation to be made here is that the variance of the estimator does not
depend directly on the dimension N . This is a notable advantage of the Monte Carlo
method over deterministic approximation methods. The accuracy of the Monte Carlo
method depends however on the number of used samples M and the variance var(ϕ)
of the integrand under the true measure. It follows that the approximation error
decreases at a rate of O(M−1); however it should be noticed that the proportionality
constant can be quite large depending on how the samples are generated.

Monte Carlo estimators rely on the assumption that it is possible to generate
i.i.d. samples according to F . However, this is usually not possible in practice. Even
if it is possible to generate i.i.d. samples, and depending on the properties of the
integrand function, the required number of samples M to achieve a certain accuracy
might be prohibitively large. Therefore, most of the research performed on methods
relying on the MC idea try to answer one or both of the following two questions:

1. How to sample according to a high-dimensional distribution that has an
intractable probability density/distribution function?

2. How to decrease the computational complexity and accelerate the convergence
of the method in the sense of minimizing the number of required samples M?

In the following sections, we explain briefly what is meant by generating a random
sample according to some distribution.
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A.2 Random Sampling and Common Random Numbers

The MC idea presented in the previous section is based on the assumption that it is
possible to generate (using a computer machine) as many realizations as wished of
certain random variables. In some cases, it is required to do so for a random variable
whose PDF has no explicitly known closed-form expression.

We first consider the problem of producing realizations of a uniform random
variable in the interval [0, 1]. The first difficulty that one faces when trying to solve
such a problem is how to deal with the philosophical notion of randomness. Without
dwelling on such a notion, what we really want to obtain is a completely determinis-
tic method known as a “uniform pseudo-number generator”. This is a well defined
algorithm characterized by a transformation T on the unit interval. The transforma-
tion defines a recursion, that when started at a known initial (deterministic) value
ζ(0) ∈ [0,1], called the “seed”, it produces a sequence of values

{ζ(m)} = {T m(ζ(0))} ⊂ [0,1], 1 ≤m ≤M

such that the statistical hypothesis

H0 ∶ ζ(1),ζ(2), . . . ,ζ(M) are i.i.d. ∼ U([0,1])

is accepted under a usual family of uniformity and independence tests, see [83,
Chaper 14] for example. This means that the elements of this sequence are required
to behave statistically in a similar way as i.i.d. samples of U([0,1]). In such a case,
we allow ourselves to write

ζ(m) ∼ U([0,1]).

Due to the deterministic nature of the algorithm, using the same seed ζ(0) will
always produce the same unique sequence. Many of the available software packages
like MATLAB, Mathematica, Julia, R, ..., etc. come equipped with efficient pseudo-
random number generators. The user is able to control the seed of the algorithm
every time a random sample is generated, which makes all MC simulations repeatable.
In this case, we say that the MC method is using “common random numbers”. Using
common random numbers is required for the algorithms developed in this thesis (to
preserve the continuity and smoothness of the objective functions, see [49]).

Because any generic probability space (Ω,F , P ), can be constructed by defining
random variables ζ over the basic probability space ([0, 1],B([0, 1]),U([0, 1])) such
that, ζ ∶ [0,1] → Ω (see [73, Theorem 1.104] and recall that R is equipotent to the
unit interval), it is evident that a uniform pseudo-number generator is sufficient to
produce pseudo-realizations of many random variable (at least theoretically). This
is indeed the case if the distribution function F is known. Assume that we have
ζ ∼ U([0, 1]), then it is not difficult to show that F −1(ζ) is a pseudo-random sample
according to the given distribution F (see [88, Lemma 2.1.1]). In practice, however,
this approach can be used only when F is available in closed-form and its inverse
can be easily evaluated. Even if these two conditions hold, generating samples this
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way might not be the best option in terms of algorithmic efficiency. We refer the
interested reader to [30, 74, 116].

In the next section, we present the importance sampling method that can be
used as a variance reduction technique or in situations where direct sampling is not
possible, or is very time-consuming.

A.3 Importance Sampling

The importance sampling solution can be traced back to the beginning of MC
techniques. It has been introduced in [59] and [121] as a variance reduction technique
for MC approximation methods. It has also been used in [44] for Bayesian inference
and in [50] for the simulation of Markov chains. The importance sampling idea is
nothing more than a change of measure trick. Assume that we are interested in
generating a random sample according to a probability density function p, but we
have one of the following situations:

1. the normalizing constant of p is unknown or sampling from p is difficult or
time-consuming.

2. p is known and easy to sample from, but the resulting MC estimators have
high variance.

In either case, we may introduce an “importance sampling density” q (also known
as proposal density) defined on the same probability space, and for any value ζ we
define the ratio

w(ζ) = p(ζ)
q(ζ)

which is known in this context as the “importance weight” or merely the weight.
For these values to be finite for all ζ, we require that the support of q, i.e., the set

supp(q) = {ζ ∣ q(ζ) ≠ 0},

contains the support of p. Because both densities are defined on the same space,
the random samples {ζ(m) ∼ q, m = 1, . . . ,M} with the weights {w(ζ(m)) ∶ m =
1, . . . ,M)} can be used to define the empirical probability density function p̂M ,

p̂M(ζ) = 1
M

M

∑
m=1

w(ζ(m)) δζ(m)({ζ}).

See Figure A.1 for an example of importance sampling of a triangular distribution.
When the random variables ζ(m) are independent over m and p and q are exactly

known, the strong law of large numbers implies that

1
M

M

∑
m=1

wm
a.s.Ð→ 1 as M →∞ (A.5)
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Figure A.1: Importance sampling of a triangular distribution with a PDF p(x) = x+1
whenever −1 ≤ x ≤ 0, p(x) = 1 − x whenever 0 < x ≤ 1, and p(x) = 0 whenever ∣x∣ > 1.
The plot on the right shows 200 direct samples, and the plot on the left shows 200
weighted sampled generated according to U([−2,2]).

in which
wm ∶= w(ζ(m)) = p(ζ

(m))
q(ζ(m))

.

The estimator of ∫ ϕ(ζ)p(ζ)dζ, for any integrable ϕ, given by

Ê̂ÊEM [ϕ(ζ)] = 1
M

M

∑
m=1

wmϕ(ζ(m)), in which ζ(m) ∼ q. (A.6)

is unbiased for any value M , and almost surely consistent. The central limit theorem
for i.i.d. samples can be directly applied and deviation inequalities might be used to
check the accuracy of the estimates.

Self-normalized importance sampling

In many situations, the target distribution p is known only up to a normalization
factor. This means that the importance weight function is known only up to a
constant scaling factor, and the convergence (A.5) does not hold anymore. In this
case, importance sampling can still be used by adopting the self-normalized form.
For this, normalized importance weights (self-normalized weights) are defined by

w̄m ∶= w̃m

∑Mm=1 w̃m

,

in which
w̃m = p̃(ζ

(m))
q̃(ζ(m))

and
p̃(ζ(m)) ∝ p(ζ(m)), q̃(ζ(m)) ∝ q(ζ(m)).

Then, the self-normalized form of the empirical distribution is given by

p̂M(ζ) =
M

∑
m=1

w̄m δζ(m)({ζ}) =
1
M ∑Mm=1 w̃m δζ(m)({ζ})

( 1
M ∑Mm=1 w̃m)

.
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This is a ratio of two sample means that, by the strong law of large numbers,
converges almost surely to p, but is biased for any finite value M . The resulting
weighted sample {(ζ(m), w̄m)} is said to be consistent for p.

The importance sampling idea is quite general; it introduces only little restrictions
on the choice of the proposal density q which is assumed to be easy to sample from.
The idea can even be taken further by assuming that the proposal density itself is
given in terms of a weighted sample {(ζ(m), w̄(m)q )}, where w̄(m)q denotes the mth

weight with respect to the PDF q. In this case, the importance sampling algorithm
makes the transformation

{(ζ(m), w̄(m)q )} ↦ {(ζ(m), w̄(m)p )}

by only modifying the weights. More complex transformations can be applied to
modify both the samples and the weights.

One interesting property of the importance sampling method is that the con-
sistency (of ÊM [ϕ(ζ)] or p̂(ζ)) can be established in some cases where the MC
samples are dependent. For instance, as shown in [96], it is possible to use MCMC
samplers within an importance sampling algorithm without introducing any bias.
However, this generality and flexibility of the method hides the difficulty of the
original problem in the step of choosing a proposal density q. Even though the
method officially makes use of all the samples, a careless choice for q might lead to
very small weights that are practically 0. In this case, most of the samples will not
contribute to the MC sum and the method will be inefficient. In other words, only
very few samples (in the worst case, only one) will contribute to the approximation
of the target distribution.



Appendix B

Hilbert Spaces of Random Variables

In this appendix, we review some relevant definitions, properties and theorems of
the Hilbert space of random variables with zero mean and finite second moment.
The proofs of all the statements and more details can be found in any book on
functional analysis. See for example [122], [151], [115], or [3].

B.1 Inner Product Spaces

Let H be a vector space over the reals R. One way to define a topological structure
over H is by defining an inner product, denoted ⟨⋅, ⋅⟩. The pair (H, ⟨⋅, ⋅⟩) is known
as an inner product space or a pre-Hilbert space.

Definition B.1.1 (Inner product space). A real vector space H is an inner product
space if there is an inner product (a function)

⟨⋅, ⋅⟩ ∶ H ×H → R+,

that is a mapping such that for any three vectors x,y and z ∈ H and two scalars
α,β ∈ R+,

i. ⟨x,y⟩ = ⟨y,x⟩,

ii. ⟨αx + βy,z⟩ = α⟨x,z⟩ + β⟨x,y⟩,

iii. ⟨x,x⟩ ≥ 0 ∀ x ∈ H and ⟨x,x⟩ = 0 ⇐⇒ x = 0.

An inner product can be used to define a norm.

Definition B.1.2 (Induced norm). The inner product of an inner product space H
can be used to define the quantity

∥x∥H =
√

⟨x,x⟩ for any vector x ∈ H.

∥⋅∥H is said to be the induced norm on H.
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It is easy to check that the induced norm is indeed a norm on H, and therefore
(H, ∥⋅∥H) is a normed space. It can be used to define usual topological concepts
over H, such as closure, openness, convergence and completeness. On the other
hand, the underlying inner product can be used to define geometrical concepts like
orthogonality, parallelism and angles between vectors. This allows us to generalize
the intuitive geometrical concepts from the standard Euclidean space R3 to abstract
infinite dimensional function spaces.

Definition B.1.3 (Orthogonality). Let (H, ⟨⋅, ⋅⟩) be an inner product space. Any
two vectors x,y ∈ H are said to be orthogonal if

⟨x,y⟩ = 0.

This is symbolized by writing x ⊥ y. A vector x ∈ H is said to be orthogonal to a set
S (written x ⊥ S) if x ⊥ s for all s ∈ S.

Definition B.1.4 (Cauchy Sequence). A sequence {xn ∶ n = 1,2, . . .} of vectors in
an inner-product space (H, ⟨⋅, ⋅⟩) is said to be a Cauchy sequence if

∥xn −xm∥H → 0 as m,n→∞.

Definition B.1.5 (Hilbert space). A Hilbert space is a complete inner product
space. That is, every Cauchy sequence converges in the topology generated by the
induced norm.

Definition B.1.6 (Closed subspaces). A linear subspace S of (H, ∥⋅∥H) is said to
be a closed subspace if for any sequence {xn} ⊂ S and some x ∈ H

∥xn −x∥H → 0 as n→∞ Ô⇒ x ∈ S.

Lemma B.1.7 (Finite dimensional subspaces). Let (H, ∥⋅∥H) be a Hilbert space.
Any finite dimensional subspace S of H is closed in H.

Definition B.1.8 (Orthogonal complement). For any S ⊂ H, its orthogonal com-
plement is

S⊥ ∶= {x ∈ H ∶ ⟨x,y⟩ = 0 ∀y ∈ S}.

An important theorem of Hilbert spaces is the projection theorem.

Theorem B.1.9 (The projection theorem). If S is a closed subspace of H and
x ∈ H, then:

i. There is a unique element x̂ ∈ S such that

∥x − x̂∥H = inf
y∈S

∥x − y∥H.

ii. If x̂ ∈ S then ∥x − x̂∥H = infy∈S∥x − y∥H if and only if (x − x̂) ∈ S⊥.
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B.2 The Space L2(Ω,F , Pθ)

Given a fixed parameter θ ∈ Θ ⊂ Rd, consider the set L2(Ω,F , Pθ) of all real-valued
random variables x, defined over the probability space (Ω,F , Pθ), with zero mean
and

E[x2; θ] < ∞.
Observe that such a set is a vector space over R with the usual addition of random
variables and scalar multiplication. The zero vector is taken as the measurable
function which is identically zero over Ω. Furthermore, by Minkowski inequality, it
holds that

√
E[(x + y)2] ≤

√
E[x2] +

√
E[y2], ∀x,y ∈ L2(Ω,F , Pθ)

which implies that L2(Ω,F , Pθ) is closed under addition. For any x,y ∈ L2(Ω,F , Pθ)
define

⟨x,y⟩ ∶= E[xy; θ]. (B.1)
It is easy to show that this definition satisfies the properties of inner product on the
set L2(Ω,F , Pθ), except that

⟨x,x⟩ = 0 does not imply that x = 0,

but only that
Pθ(x = 0) = 1.

If we work instead with the vector space of classes of Pθ-equivalent functions, in the
set L2(Ω,F , Pθ), which is defined by the equivalence relation

x,y are equivalent if Pθ(x = y) = 1,

(B.1) becomes an inner product. Let us denote such a set of equivalent classes (or
the set of representatives) by L2(Ω,F , Pθ).

Theorem B.2.1 (Hilbert space of random variables). The inner product space
L2(Ω,F , Pθ) is complete, and therefore is a Hilbert space.

For brevity, we will drop the argument of L2(Ω,F , Pθ) and refer to the space by
the symbol L2.

Definition B.2.2 (The projection mapping). If S is a closed subspace of L2, and
idL2 is the identity map on L2, the projection PS of L2 onto S is defined by

PSx ∶= x̂, for any x ∈ L2,

in which x̂ is the unique element such that

∥x − x̂∥L2 = inf
y∈S

∥x − y∥L2 .

The existence and uniqueness of the projection mapping is given by the projection
theorem. We also have the complement projection map (idL2 −PS) mapping L2 onto
S⊥.
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The projection mapping can be shown to satisfy the following properties

i. PS(αx + βy) = αPSx + βPSy, ∀x,y ∈ L2 and α,β ∈ R.

ii. ∥x∥2
L2

= ∥PSx∥2
L2
+ ∥(idL2 − PS)x∥2

L2
, for any x ∈ L2.

iii. For any given closed subspace S ⊂ L2, every x ∈ L2 has a unique representation
as a sum of a vector in S and a vector in S⊥, i.e., x = PSx + (idL2 − PS)x.

iv. PSxn → PSx if ∥xn −x∥L2 → 0, for any {xn} ⊂ L2, and x ∈ L2.

v. x ∈ S ⇐⇒ PSx = x, and x ∈ S⊥ ⇐⇒ PS = 0.

vi. For any S1,S2 ⊂ L2, it holds that S1 ⊂ S2 ⇐⇒ PS1PS2x = PS1x ∀x ∈ L2.

Definition B.2.3 (The prediction equation). Let S ⊂ L2 be a closed subspace. For
any x ∈ L2, the equation

⟨x − x̂,y⟩ = 0 ∀y ∈ S
defining x̂ are known as the predictions equation. Here, x̂ is the unique vector defined
by the projection theorem. The prediction equation is therefore seen as a restatement
of condition (ii) in Theorem B.1.9.

The above development can be generalized to real vector valued random variables.

B.3 The Space Ln2(Ω,F , Pθ)

Consider the set Ln2 (Ω,F , Pθ) of random vectors X = [x1,x2, . . . ,xn]⊺, in which
xi ∈ L2 for i = 1,2, . . . , n, for some finite n ∈ N. Such a set forms a vector space over
R with the usual notion of random vector addition and multiplication by reals. We
can introduce the function

⟨X,Z⟩ ∶= E[X⊺Z; θ] for any X,Z ∈ Ln2 .

It is easy to show that such a function satisfies the definition of an inner product on
the set of classes of Pθ-equivalent random vectors in Ln2 (Ω,F , Pθ), and therefore we
get an inner product space which we denote Ln2 (Ω,F , Pθ). This inner product space
can be shown to be complete, and therefore it is a Hilbert space. This means that all
the statements developed in Section B.2 hold for the space Ln2 (Ω,F , Pθ), including
the projection theorem. For brevity, we will drop the argument of Ln2 (Ω,F , Pθ) and
refer to the space by the symbol Ln2 .

B.4 Linear Minimum Mean-Square Error Prediction

B.4.1 Projection in L2

Let y1, . . . ,yN be vectors in L2. These vectors generate a finite-dimensional subspace

DN ∶= sp{y1, . . . ,yN} ⊂ L2.
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Given an arbitrary vector x ∈ L2, we seek a vector x̂ ∈DN that best approximates x
in the sense of minimizing ∥x− x̂∥L2 . Since the subspace DN is finite dimensional, it
is closed in L2, and the projection theorem guarantees the existence and uniqueness
of the solution. Due to the finite dimensionality of DN , the prediction equations
can be easily used to characterize the solution. Since x̂ ∈DN , we have

x̂ = α1y1 + ⋅ ⋅ ⋅ + αnyn, α1, . . . , αN ∈ R.

Therefore, the problem reduces to finding the N scalars αi, i = 1, . . . ,N . The
prediction equations imply that

α1⟨y1,y1⟩ + α2⟨y2,y1⟩ + . . . αN ⟨yn,y1⟩ =⟨x,y1⟩,
α1⟨y1,y2⟩ + α2⟨y2,y2⟩ + . . . αN ⟨yn,y2⟩ =⟨x,y2⟩,

⋮
α1⟨y1,yN ⟩ + α2⟨y2,yN ⟩ + . . . αN ⟨yn,yN ⟩ =⟨x,yN ⟩.

Define the vectors
α = [α1, . . . αN ]⊺,
β = [⟨x,y1⟩, ⟨x,y2⟩, . . . ⟨x,yN ⟩]⊺,
Y = [y1, . . . ,yN ]⊺,

and the matrix

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨y1,y1⟩ ⟨y2,y1⟩ . . . ⟨yN ,y1⟩
⟨y1,y2⟩ ⟨y2,y2⟩ . . . ⟨yN ,y2⟩

⋮ ⋮ ⋱ ⋮
⟨y1,yN ⟩ ⟨y2,yN ⟩ . . . ⟨yN ,yN ⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, finding x̂ is equivalent to solving, for α, the system of linear equations

Σα = β.

The projection is given by

x̂ = Y ⊺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨y1,y1⟩ ⟨y2,y1⟩ . . . ⟨yN ,y1⟩
⟨y1,y2⟩ ⟨y2,y2⟩ . . . ⟨yN ,y2⟩

⋮ ⋮ ⋱ ⋮
⟨y1,yN ⟩ ⟨y2,yN ⟩ . . . ⟨yN ,yN ⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨x,y1⟩
⟨x,y2⟩

⋮
⟨x,yN ⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.2)

B.4.2 Projection in Ln2
Let a vector Y = [y1, . . . ,yN ]⊺ with entries in L2 be given and consider the subspace

S = sp{ {y(j)i } ∶ i = 1, . . . ,N, and j = 1, . . . , n},
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in which y(j)i ∈ Ln2 is the vector valued random variable with the jth entry equal to
yi and all other entries are equal to the zero vector of L2. The subspace S is a finite
dimensional subspace of Ln2 . It can be equivalently represented by multiplying the
vector Y with an arbitrary n ×N matrix, that is to say

S = {LY ∶ L is an arbitrary n ×N matrix of real numbers} ⊂ Ln2 .

We are interested in finding the projection of an arbitrary element

X = [x1, . . . ,xn]⊺ ∈ Ln2

onto S. We assume that X ∉ S. The projection theorem guarantees the existence
and uniqueness of a projection X̂ = L∗Y that satisfies the orthogonality condition
(X − X̂) ⊥ S, or

⟨X −L∗Y , LY ⟩ = 0 for all matrices L.

It is not difficult to show (by expanding the matrix multiplication and choosing L
appropriately) that this is equivalent to

E[(X −L∗Y )Y ⊺; θ] = 0

where the zero is the n ×N zero matrix and therefore, the projection matrix L∗ is
given by

L∗ = cov(X,Y )Σ−1,

in which Σ = cov(Y ,Y ). The projection is given by

X̂
⊺=Y ⊺

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨y1,y1⟩ ⟨y2,y1⟩ . . . ⟨yN ,y1⟩
⟨y1,y2⟩ ⟨y2,y2⟩ . . . ⟨yN ,y2⟩

⋮ ⋮ ⋱ ⋮
⟨y1,yN ⟩ ⟨y2,yn⟩ . . . ⟨yN ,yN ⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨x1,y1⟩ ⟨x2,y1⟩ . . . ⟨xn,y1⟩
⟨x1,y2⟩ ⟨x2,y2⟩ . . . ⟨xn,y2⟩

⋮ ⋮ ⋱ ⋮
⟨x1,yN ⟩ ⟨x2,yN ⟩ . . . ⟨xn,yN ⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This comes in agreement with the obtained results in [67] where a different space
is used with matrix valued inner products. Comparing with [67, Theorem 3.2.1 in
page 81], we see that the projection X̂ does not only minimize ∥X −Z∥Ln2 over all
Z ∈ S, but also minimizes the error covariance matrix

E [(X −Z)(X −Z)⊺; θ]

over all Z ∈ S.
Comparing this result with the results of the scalar case in (B.2), we see that the

projection of a vector valued random variable X ∈ Ln2 is given by the projections (in
L2) of its individual entries xi for i = 1, . . . , n onto DN , then stacking them together
in one column vector.
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B.5 Summary

In this appendix, we reviewed the definition and some properties of Hilbert spaces
of random variables. The main result that is relevant to the material of this thesis
is the projection theorem. It guarantees the existence and uniqueness of a linear
minimum mean-square estimator of a random variable given a set of correlated but
arbitrary random variables with finite second order moments. Due to its linearity,
such an estimator relies only on the first and second order moments of the involved
random variables.





Appendix C

The Multivariate Gaussian Distribution

In this appendix, we gather some results of multivariate Gaussian random variables.
The material is standard and can be found in [2], [67], or [139] for example. The
importance of multivariate Gaussian distributions stems from its mathematical
properties. For example, the Gaussian family of distributions is closed under affine
transformations and their marginalization integrals can be computed analytically. A
Gaussian distribution is also completely determined by the the mean vector and the
covariance matrix. Moreover, it appears as a fundamental limiting distribution in
central limit theorems.

C.1 Multivariate Gaussian Random Variables

Let X = [x1, . . . ,xn]⊺ be a vector valued random variable. We say that X is a
Gaussian random variable and write

X ∼ N(µ(θ),Σ(θ)),

if its PDF is

p(X; θ) = 1
(2π)n/2[det Σ(θ)]1/2 exp(−1

2
(X − µ(θ))⊺Σ−1(θ)(X − µ(θ)))

for a vector µ(θ) ∈ Rn and an n × n matrix Σ(θ) ≻ 0. We say that X is a standard
Gaussian random variable if

X ∼ N(0, I).
Let X ∼ N(µ(θ),Σ(θ)) take values in Rn. Then it holds that

E[X; θ] = µ(θ), and cov(X,X; θ) = Σ(θ).
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Define
Y = AX + b

in which b ∈ Rp and A is a matrix of dimension p × n with full row rank. Then it is
easy to show that

Y ∼ N(Aµ(θ) + b,AΣ(θ)A⊺).
Because X and Y are related linearly, it also holds that they are jointly Gaussian.
This means that the vector

Z = [X⊺ Y ⊺]
⊺

is a Gaussian random variable.

C.2 Conditional Distribution of Multivariate Gaussian
Random Variables

The conditional distribution of jointly Gaussian random vectors is also a Gaus-
sian distribution. It is completely characterized by the conditional mean and the
conditional covariance matrix.

Theorem C.2.1. Consider a partitioned Gaussian random vector

Z =
⎡⎢⎢⎢⎣
X

Y

⎤⎥⎥⎥⎦
∼ N

⎛
⎝
⎡⎢⎢⎢⎣
µ1

µ2

⎤⎥⎥⎥⎦
,
⎡⎢⎢⎢⎣

Σ1 Σ12

Σ21 Σ2

⎤⎥⎥⎥⎦
⎞
⎠
.

Then it holds that

X ∼ N(µ1,Σ1),
Y ∼ N(µ2,Σ2),

X ∣Y ∼ N(µ1 +Σ12Σ−1
2 (Y − µ2) , Σ1 −Σ12Σ−1

2 Σ21), and
Y ∣X ∼ N(µ2 +Σ21Σ−1

1 (X − µ1) , Σ2 −Σ21Σ−1
1 Σ12).

Observe that the conditional expectation

E[X ∣Y ; θ] = µ1 +Σ12Σ−1
2 (Y − µ2)

coincides with the projection X̂ of (X − µ1) ∈ Ln2 onto the subspace spanned by the
entries of (Y − µ2) in Ln2 , see Appendix B. Therefore, the linear minimum mean-
squares error estimator of X given Y coincides with the unconstrained minimum
mean-square error estimator.
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[97] A. Marconato, J. Sjöberg, J. Suykens, and J. Schoukens. Separate initializa-
tion of dynamics and nonlinearities in nonlinear state-space models. In 2012
IEEE International Instrumentation and Measurement Technology Conference
Proceedings, pages 2104–2108, 2012.

[98] G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley,
2007.

[99] X.-L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika, 80(2):267–278, 1993.

[100] M. Milanese. Bounding approaches to system identification. Plenum Press, 1996.

[101] G. Mzyk. Combined Parametric-Nonparametric Identification of Block-Oriented
Systems. Springer, 2013.

[102] R. C. Neath. On Convergence Properties of the Monte Carlo EM Algorithm,
Vol. 10 of Collections, pages 43–62. Institute of Mathematical Statistics, 2013.

[103] J. A. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal, 7(4):308–313, 1965.

[104] O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural
Networks and Fuzzy Models. Springer, 2001.

[105] S. F. Nielsen. The stochastic EM algorithm: estimation and asymptotic results.
Bernoulli, 6(3):457–489, 2000.

[106] B. Ninness, A. Wills, and T. Schön. Estimation of general nonlinear state-space
systems. In 49th IEEE Conference on Decision and Control, Atlanta, Georgia,
USA, pages 1–6, 2010.

[107] B. Ninness. Some system identification challenges and approaches. IFAC
Proceedings Volumes, 42(10):1 – 20, 2009.

[108] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[109] J. Olsson, O. Cappé, R. Douc, and E. Moulines. Sequential Monte Carlo
smoothing with application to parameter estimation in nonlinear state space
models. Bernoulli, 14(1):155–179, 2008.



184 Bibliography

[110] J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens, and R. Pintelon.
Identification of nonlinear systems using polynomial nonlinear state space models.
Automatica, 46(4):647 – 656, 2010.

[111] R. Pintelon and J. Schoukens. System Identification: A Frequency Domain
Approach. Wiley, 2nd edition, 2012.

[112] D. N. Politis. Computer-intensive methods in statistical analysis. IEEE Signal
Processing Magazine, 15(1):39–55, 1998.

[113] C. R. Rao. Information and the accuracy attainable in the estimation of
statistical parameters. Bulletin of Cal. Math. Soc., 37(3):81–91, 1945.

[114] J. Rawlings and D. Mayne. Model Predictive Control: Theory and Design. Nob
Hill Pub., 2009.

[115] F. Riesz and B. Nagy. Functional Analysis. Dover Publications, 2012.

[116] B. Ripley. Stochastic Simulation. Wiley, 2009.

[117] C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2013.

[118] C. Robert. The Bayesian Choice: From Decision-Theoretic Foundations to
Computational Implementation. Springer, 2007.

[119] M. Roth, C. Fritsche, G. Hendeby, and F. Gustafsson. The ensemble Kalman
filter and its relations to other nonlinear filters. In 2015 23rd European Signal
Processing Conference (EUSIPCO), pages 1236–1240, 2015.

[120] I. Rozanov. Stationary random processes. Holden-Day, 1967.

[121] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons,
1981.

[122] W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

[123] M. Schervish. Theory of Statistics. Springer, 1996.

[124] M. Schetzen. The Volterra and Wiener theories of nonlinear systems. Wiley,
1980.

[125] T. B. Schön, A. Wills, and B. Ninness. System identification of nonlinear
state-space models. Automatica, 47(1):39 – 49, 2011.

[126] T. B. Schön, F. Lindsten, J. Dahlin, J. Wågberg, C. A. Naesseth, A. Svensson,
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