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Abstract—Gene expression microarrays are the most commonly 
available source of high-throughput biological data. They have 
been widely employed in recent years for the definition of cell 
cycle regulated (or periodically expressed) subsets of the genome 
in a number of different organisms. These have driven the 
development of various computational methods for identifying 
periodical expressed genes. However, the agreement is 
remarkably poor when different computational methods are 
applied to the same data. In view of this, we are motivated to 
propose herein a hybrid computational method targeting the 
identification of periodically expressed genes, which is based on a 
hybrid aggregation of estimations, generated by different 
computational methods. The proposed hybrid method is 
benchmarked against three other computational methods for the 
identification of periodically expressed genes: statistical tests for 
regulation and periodicity and a combined test for regulation and 
periodicity. The hybrid method is shown, together with the 
combined test, to statistically significantly outperform the 
statistical test for periodicity. However, the hybrid method is also 
demonstrated to be significantly better than the combined test for 
regulation and periodicity.  

Keywords-computational method; cell cycle-regulated genes; P-
value for regulation; P-value for periodicity; hybrid aggregation 

I.  INTRODUCTION 
Microarray profiling studies of several different highly 

synchronized cell cultures in fission yeast 
(Schizosaccharomyces pombe) have been widely employed in 
recent years for the identification of periodically regulated 
genes during the cell cycle [1,2,3].  The latter genes are 
expressed only at a specific stage of the cell cycle and 
consequently, exhibit a periodic pattern of expression when 
monitored during consecutive cell cycles. Various 
computational methods for identifying periodically expressed 
genes have been developed for studying the cell cycle 
transcription program in a number of model organisms. 
However, the agreement is remarkably poor when different 
computational methods are applied to the same data. In view of 
this, we propose here a method for the identification of 
periodically expressed genes, which is based on a hybrid 
aggregation of estimations, generated by different 
computational methods. 

In the paper of de Lichtenberg et al. [4], several 
computational methods for the identification of periodically 
expressed genes have been benchmarked. The authors have 
also proposed a new permutation-based method quantifying 
separately both the periodicity and the amplitude of variation, 
and have shown that amplitude-dependant methods perform 
better than the amplitude independent ones. In the benchmark 
study of de Lichtenberg et al. [4], a combined P-value was 
obtained by simply multiplying the P-value for regulation and 
the P-value for periodicity. However, this definition entails the 
negative side effect that the total P-value could become very 
low due to only one of the individual P-values. Therefore, two 
penalty terms, which are not intuitively well based, were 
further introduced in [4].  A more straightforward approach 
was taken in [5], where the individual P-value for regulation 
and periodicity are combined through their geometric mean and 
thus the combined P-value can be seen as a sort of trade-off 
between the individual P-values, since it always ranges 
between their minimum and maximum. The geometric mean 
may as well produce a significantly low total P-value due to the 
occurrence of a very low individual P-value. Therefore, 
Hermans and Tsiporkova [5], introduced two separate 
significance conditions that both need to be verified in order to 
quantify a gene as a significantly periodic. The method of 
periodicity estimation employed in [5] is different from the one 
used by de Lichtenberg et al [4].  Namely, it is based on a 
slightly adapted version of the method used by Merges et al. 
[6,7], described originally by Shedden and Cooper [8]. Other 
multiple hypothesis testing methods have as well been 
presented in the bioinformatics literature, as e.g. [9,10].  

In view of the above, we are motivated to develop a method 
for the identification of periodically expressed genes, which 
can take into account the individual P-values, generated by 
different computational methods. We propose herein a hybrid 
aggregation algorithm, which is based on a mathematically 
well motivated aggregation operator developed in [11]. This 
aggregation algorithm will be used to integrate the individual 
P-values, produced by different computational methods of gene 
significance estimation, into a single overall value by 
employing a vector of different aggregation operators. Each 
one of these aggregation operators exhibits certain 
shortcomings when used individually. However, as it was 
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shown in [11], the aggregation operator that is defined by a 
vector of aggregation operators acts as a trade-off between their 
conflicting behaviour. In this way, different aspects of the 
integrated P-values will be taken into account during the 
aggregation process.  

The proposed hybrid computational method is 
benchmarked against three other computational methods for 
the identification of periodically expressed genes: statistical 
tests for regulation and periodicity and the combined test for 
regulation and periodicity are all defined by de Lichtenberg et 
al. in [4]. The four considered computational methods are 
investigated and compared on gene expression time series data 
coming from a study examining the global cell-cycle control of 
gene expression in fission yeast Schizosaccharomyces pombe 
[3]. The used procedures are implemented in C# and the 
corresponding software is available upon request.   

II. METHODS 

A. P-value for Regulation 
A P-value for regulation, referred to as Preg, can be 

calculated as described by de Lichtenberg et al. [4]. Namely, a 
P-value for regulation for a particular gene is resulting from the 
comparison of the gene expression variance with a randomly 
generated variance distribution, constructed by selecting at 
each time point the log-ratio value of a randomly chosen gene. 
The P-value for regulation is calculated as the fraction of 
artificial profiles with a variance equal to or greater than the 
score of the real expression profile. 

B. P-value  for Periodicity 
To estimate a P-value for periodicity, referred to as Pper, de 

Lichtenberg et al. compared the Fourier score of the observed 
gene expression profile for each gene to those of random 
permutation of the same gene [4]. Thus the P-value for 
periodicity is calculated as the fraction of artificial profiles with 
Fourier scores equal to or large than that observed for the real 
expression profile. 

Hermans and Tsiporkova employed in [5] a method of 
periodicity estimation which is different from the one used by 
de Lichtenberg et al [4].  Namely, the periodic score is based 
on an adapted version of the method used by Merges et al. 
[6,7]. The observed expression profile of each gene is fitted to 
a periodic component consisting of a sine, a cosine and an 
amplitude offset. The new element is the introduction of an 
amplitude (vertical) offset parameter to the periodicity 
component. 

C. Combined P-value for Regulation and   Periodicity 
In the benchmark study of de Lichtenberg et al. [4], a 

combined P-value, referred to as Pcom, was obtained by simply 
multiplying the P-value for regulation and the P-value for 
periodicity. However, this definition entails the negative side 
effect that the total P-value could become very low due to only 
one of the individual P-values. Therefore, two rather 
unintuitive penalty terms were further introduced in [4]: 
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where Ptotal = Preg . Pper  and thr is a given significant threshold. 

Hermans and Tsiporkova [5], took a more straightforward 
approach to combine the individual P-value for regulation and 
periodicity, namely through their geometric mean perreg P.P , 
with values always ranging between min(Preg,Pper) and 
max(Preg ,Pper).  However, the geometric mean may produce a 
significantly low combined P-value due to the occurrence of a 
very low individual P-value. Therefore, two separate 
significance conditions need to be verified [5]:  

thrP.P perreg < and max(Preg ,Pper ) < λ . thr, 

where λ  is an individual significance trade-off λ≥1. A gene is 
qualified as significantly periodic if the P-values associated 
with it fulfill both conditions.  

D. A Hybrid Aggregation of P-values generated by different 
computational methods  
We propose herein a method for the identification of 

periodically expressed genes, which is based on a hybrid 
aggregation of the individual P-values, generated by different 
computational methods. The proposed aggregation model has 
been inspired by a work on non-parametric recursive 
aggregation, where a set of aggregation operators is applied 
initially over input values, and then again over the result of the 
aggregation, and so on until a certain stop condition is met 
[11]. This process defines an aggregation operator that uses a 
vector of aggregation operators and acts as a trade-off between 
their conflicting behaviour.  

We consider a hybrid aggregation algorithm, which aims at 
integrating vectors of values into a single vector of overall 
values, by employing a set of k aggregation operators A1, A2, 
…, Ak. This algorithm, schematically presented in Fig. 1, will 
be applied to obtain the vector of the overall (hybrid) P-values 
by aggregating the P-values assigned to each gene in a given 
experiment by n different computational methods of gene 
significance estimation. Thus we are supposed to aggregate n 
different P-values associated with each gene. These values can 
initially be combined in parallel with the above k aggregation 
operators. Consequently, k new P-values (one per aggregation 
operator) are generated. The new values can be aggregated 
once more, generating again k new P-values. In this fashion, 
each step is modeled via k parallel aggregations applied over 
the results of the previous step. Thus, the final result is 
obtained after passing a few layers of aggregation. At the first 
layer, we have the initial vectors of P-values (one per 
computational method), generated by different methods of gene 
significance estimation, that are to be combined. Using a vector 
of aggregation operators new vectors are obtained and the next 
step is to combine these new vectors again using these 
aggregation operators. This process needs to be repeated again 
and again until the difference between the maximum and 
minimum values in each position of the currently calculated 
vectors are small enough to stop further aggregation.  
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Notice that applying some information about the 
performance of the considered computational methods, weights 
may be assigned to the corresponding P-values and further 
used in the aggregation procedure in order to obtain more 
realistic overall P-values. This will reflect only the initial 
aggregation step of the proposed aggregation algorithm, where 
the weighted versions of the involved aggregation operators 
will be applied initially over the input P-values.  

In [11], it has been shown that any recursive aggregation 
process, defined via a set of continuous and strict-
compensatory aggregation operators, following the algorithm 
described herein is convergent. A more detail explanation of 
the hybrid aggregation algorithm can be found in [11,13,14]. 

The proposed hybrid computational method has several 
advantages. First, it is based on a mathematically well 
motivated aggregation operator, developed and studied in [11]. 
The latter one is defined by a vector of aggregation operators 
and acts as a trade-off between their conflicting behaviour. In 
this way, different aspects of P-values, produced by different 
computational methods, will be taken into account during the 
aggregation process. Second, as it was discussed above weights 
may easily be introduced in the hybrid P-value calculation 
algorithm by assigning different importance to the involved 
computational methods. In addition, the calculated total P-
value is not dependent on a particular significant threshold, 
which is the case with the combined P-value, proposed by de 
Lichtenberg et al. [4]. The latter means that it will not be 
necessary to recalculate the total (hybrid) P-value when a 
different significant threshold is used. 

Figure 1.  Schematic representation of the hybrid aggregation of P-values. 

III. EXPERIMENTAL SETUP 

A. Data 
The considered computational methods are evaluated and 

compared on gene expression time series data obtained from a 
study examining the global cell-cycle control of gene 
expression in fission yeast Schizosaccharomyces pombe [3]. 
The study includes 8 independent time-course experiments 
synchronized respectively by 1) elutriation (three independent 
biological repeats), 2) cdc25 block-release (two independent 
biological repeats, of which one in two dye-swapped technical 
replicates, and one experiment in a sep1 mutant background), 
and 3) a combination of both methods (elutriation and cdc25 
block-release as well as elutriation and cdc10 block-release). 
Thus, the following 9 different expression test sets are 

available: 1) elu1, 2) elu2, 3) elu3, 4) cdc25-1, 5) cdc25-2.1, 6) 
cdc25-2.2, 7) cdc25-sep1, 8) elu-cdc10-br, 9) elu-cdc25-br.  

The elutriation datasets and the cdc25 block-release 
datasets consist of 18 to 20 time points covering 2 full cell 
cycles, the combined elutriation/block-release datasets contain 
21 to 22 time points, however covering only one cycle. The 
elutriation synchronization method produces a very 
homogenous population of small cells resulting in expression 
data that contain less noise, while the cdc25 method is based on 
temperature-sensitive cell-cycle mutants generating a slightly 
better synchrony, but introducing some artifacts, which may 
affect the quality of the expression [3]. 

In the pre-processing phase the rows containing more than 
25% missing entries have been filtered out from each 
expression matrix and any other missing expression entries 
have been imputed by the DTWimpute algorithm [12]. In this 
way nine complete expression matrices have been obtained. 
Further, the set of overlapping genes has been found across all 
nine datasets. Subsequently, the time expression profiles of 
these genes have been extracted from the original data matrices 
and thus nine new matrices have been constructed. 

The implemented version of the hybrid aggregation 
algorithm combines two individual P-values, generated by the 
permutation-based methods of regulation and periodicity 
estimation proposed in [4], by using three different aggregation 
operators: arithmetic, geometric and harmonic means. Each 
one of these aggregation operators exhibits certain 
shortcomings when used individually. For instance, the 
arithmetic mean values are strongly influenced by the presence 
of extremely low or extremely high values. This may in some 
cases lead to an averaged overall P-value, which does not 
adequately reflect the individual P-values. In case of the 
geometric mean, the occurrence of a very low individual value 
is sufficient to produce a low overall P-value, no matter what 
the individual P-values are. The harmonic mean behaves even 
more extreme in situations when an individual entry with a 
very low value is present.  

The proposed hybrid computational method has been 
benchmarked against three other computational methods for 
the identification of periodically expressed genes: statistical 
tests for regulation and periodicity and the combined test for 
regulation and periodicity, all defined by de Lichtenberg et al. 
in [4]. In order to validate and compare the performance of the 
considered computational methods, they have been applied on 
the expression matrices included in our test corpus. As 
benchmark sets we have used 407 genes identified by Rustici et 
al. [3] as cell-cycle regulated and 218 significantly regulated 
genes identified in [13]. 

B. Evaluation 
The performance of the considered methods in the 

identification of genes from the benchmark sets is measured as 
follows: bssn ⋅= 2cov , where n is the number of 
overlapping genes across two sets (identified and benchmark), 
s and sb are the number of genes in the newly obtained and 
benchmark sets, respectively. As it was shown in [14], higher 
values of the fraction (coverage) cov implies better 
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performance of the underlying computational algorithm on the 
corresponding test matrix. 

The identification of periodically expressed genes may 
also be viewed as a classification problem for which the 
objective of each studied method is to distinguish positives 
(periodically expressed genes) from negatives. A true 
classification is achieved when a method classifies a gene 
correctly, otherwise the classification is false. Since a gene 
may be either a positive or a negative, there are four possible 
outcomes of gene classification: 1) true positive, 2) false 
positive, 3) true negative, and 4) false negative. These four 
outcomes may also be associated with different costs, 
depending on the application. 

Using the classification perspective, the performance of 
the four studied methods can also be analyzed using ROC 
curves and evaluated using the area under the ROC curve 
measure (AUC), which is based on the true positives rate 
(TPR) and the false positives rate (FPR). Two suitable 
characteristics of AUC are that it does not depend on equal 
class distribution or misclassification costs [15]. ROC analysis 
in general and the calculation of AUC in particular is 
described in detail and motivated by Fawcett [16]. Using AUC 
as performance metric, we may compare the methods as 
follows: the null hypothesis of interest is that the difference in 
performance between any of the studied methods is zero. The 
test of this hypothesis involves the comparison of more than 
two methods and on multiple data sets. Thus, a suitable 
method to apply when testing the null hypothesis is the non-
parametric Friedman’s test [17] and the corresponding 
Nemenyi post hoc test [18]. This combination of tests is 
comparable to the ANOVA test and the Tukey post hoc test 
for situations were ANOVA’s assumptions may be violated 
[19]. Friedman’s test is based on calculating the average rank 
of each method on the studied data sets rather than using the 
actual AUC scores. 

Since it has been shown that Friedman’s statistic, based on 
the χ2

F distribution, is too conservative [20], the recommended 
alternative statistic, FF, based on the F-distribution, is used 
instead: 
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Given that m represent the number of data sets and l represent 
the number of compared methods, hypothesis testing is 
conducted at p < 0.05 and with l − 1 and (l − 1)(m − 1) degrees 
of freedom. If the null hypothesis is rejected, the Nemenyi 
post hoc test can be used to determine whether the 
performance of two particular methods is significantly 
different. In order for the difference to be significant, the 
corresponding average ranks of the methods in question must 
differ by at least the critical difference: 
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where qα is the critical value for the two-tailed Nemenyi test at 
p < α. The corresponding critical value for the Nemenyi post 
hoc test in our case is 2.569. Thus, the critical difference is 
approximately 0.951. 
 

C. Software 
Four computational methods for the identification of 

periodically expressed genes have been implemented in the 
developed software: 1) P-value for regulation; 2) P-value for 
periodicity; 3) combined P-value for regulation and 
periodicity; 4) hybrid P-value for regulation and periodicity. 
The implemented statistical tests for regulation and periodicity 
are based on the permutation-based algorithm described in [4] 
(see Sections II.A and II.B). The combined P-value for 
regulation and periodicity is calculated according to the 
definition proposed by de Lichtenberg et al. in [4] (equation 
(1)). Four text files (one per computational method) containing 
the calculated P-values are generated as a result of the 
software execution. In addition, the software proposes a 
possibility for comparing the performance of the implemented 
methods in the identification of genes from a given benchmark 
set by calculating the corresponding coverage values.  

 

IV. RESULTS AND DISCUSSIONS 
 

Fig. 2 benchmarks the calculated coverage values of the 
individual test matrices and the integrated (fused) matrix 
separately on each benchmark set. The integrated matrix is 
obtained by applying the hierarchical merge procedure, 
developed in [13], which fuses together multiple-experiment 
expression profiles of the individual matrices.  It can be seen 
that the performance of P-regulation test is almost always 
superior to the one of P-periodicity test. The greatest difference 
in performance between two methods is seen for cdc25-sep1 
dataset, which may be due to the quality of the data. In 
addition, the P-regulation test in the majority of cases 
outperforms the other three methods especially on the 
benchmark set containing 218 cell-cycle regulated genes 
identified in [13] (see Fig. 2(a)). A possible explanation for this 
phenomenon is the used benchmark set, which was built in [13] 
on the base of overall P-regulation values of multiple-
experiment expression profiles from Rustici et al. data [3]. The 
P-hybrid coverage values are comparable to (in some case even 
higher than) those given by the combined P-value method. 
Moreover, the performance of the P-hybrid method is almost 
always better than that of the P-periodicity method. The latter 
one is observed to have the worst performance.   

The above initial information about the performance of the 
studied computational methods can be applied to introduce 
weights in the definition of hybrid P-value. In this way, its 
calculation will be fitted to the observed performance of P-
regulation and P-periodicity tests. Namely, the obtained 
coverage values of each method on the nine test datasets can be 
used to define weights, which will be assigned to the 
corresponding P-values and used in the calculation of P-hybrid 
values. Evidently, the P-regulation and P-periodicity tests will 
have different contribution to the produced hybrid P-value. In 
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the considered context, the P-regulation and P-periodicity 
weights have been estimated to 0.7 and 0.3, respectively.  

 
(a) 218 cell-cycle  regulated genes identified in [13]. 

 

 
(b) 407 cell-cycle  regulated genes identified in [3]. 

Figure 2.  Comparison of the coverage results of the test matrices. 

 

TABLE I. Area under the ROC curve (AUC) scores for all methods on nine 
data sets and the corresponding average rank of each method. 

 

 

The weighted version of hybrid P-value method has been 
benchmarked against the other three computational methods by 

conducting Friedman’s test on the AUC scores of each method 
on the nine studied data sets (see Table I). In classification, the 
AUC for a certain classifier is calculated by ordering instances 
according to the classifier’s assigned probability that the 
instances are positives. However, in contrast, the P-values 
generated by the studied methods represent the probability that 
the instances are negatives. Thus, we may obtain the required 
type of probability for each instance by calculating 1-P-value. 
The ordered list of instances is used to generate a ROC curve 
from which the AUC metric can be derived. Statistically, the 
AUC represents the probability that a randomly selected 
instance, which has been classified as a positive, is instead a 
negative. In general, an AUC score close to 1 represents a 
significant ability to correct classify genes, while a score equal 
to 0.5 implies that the classification performance of the studied 
method is equal to that of a random guesser. The AUC values 
in the presented study have been generated by plotting ROC 
curves with ROCR in the R-project environment. 

The aforementioned results are confirmed by Friedman’s 
test, as well. The test statistic, FF, is distributed according to 
the F-distribution with 3 and 24 degrees of freedom. At p < 
0.05, the null hypothesis can be rejected since FF >3.72. The 
subsequent Nemenyi post-hoc test reveals that P-regulation is 
significantly better than the other methods. Moreover, P-
combined and P-hybrid are significantly better than P-
periodicity since the differences in average rank are larger than 
the critical difference (CD = 0.951). Finally, P-hybrid is shown 
to be significantly better than P-combined in terms of AUC 
performance. 

V. CONCLUSION 
In this paper, we have proposed a method for the 

identification of periodically expressed genes, which is based 
on a hybrid aggregation of estimations, generated by different 
computational methods. The proposed hybrid computational 
method has been benchmarked against three other 
computational methods for the identification of periodically 
expressed genes: statistical tests for regulation and periodicity, 
and a combined test for regulation and periodicity, all three 
developed in [4]. The four computational methods have been 
investigated and compared on gene expression time series data 
coming from a study examining the global cell-cycle control of 
gene expression in fission yeast (Schizosaccharomyces pombe). 
The four methods have also been subjected to ROC analysis. 
Area under the ROC curve (AUC) scores were obtained for all 
methods on nine datasets. Friedman’s test and the Nemenyi 
post hoc test show that P-regulation is significantly better than 
the remaining methods. P-hybrid and P-combined both 
significantly outperformed P-periodicity. However, P-hybrid 
was additionally shown to be significantly better, in terms of 
AUC, than P-combined. 
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 AUC scores 

Data set P-regulation P-periodicity P-combined P-hybrid 

elu1 0,85702 0,66861 0,83245 0,84404 
elu2 0,86763 0,67224 0,84947 0,85914 
elu3 0,92801 0,65785 0,90086 0,91789 
cdc25-1 0,92892 0,82191 0,90886 0,91920 
cdc25-2.1 0,94902 0,76596 0,91692 0,93531 
cdc25-2.2 0,95187 0,79089 0,91316 0,93164 
cdc25-sep1 0,94405 0,69769 0,91935 0,93149 
elu-cdc10 0.94267 0.85937 0.92987 0.93548 

elu-cdc25 0.92336 0.85170 0.90838 0.91416 

Avg. rank 1 4 3 2 
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