Endovascular aortic aneurysm repair: Aspects of follow-up and complications

BADERKHAN HASSAN
Abstract

Endovascular aortic aneurysm repair (EVAR) is the procedure of choice in most patients with abdominal aortic aneurysm. The drawbacks of EVAR are a higher rate of complications and frequent need for reinterventions, requiring regular postoperative follow-up. Non-stratified follow-up may have a deleterious effect on patients and the health care system. The aim of this thesis is to develop strategies that can stratify the EVAR follow-up programme according to an individual patient’s risk profile.

Study I, an international multicentre study of all abdominal aortic aneurysm (AAA) patients with EVAR in three centres (2000 to 2011) demonstrated a lower rate of late complications and reinterventions in patients with sac shrinkage during the first postoperative year, compared to the non-shrinkage group.

Study II, an international multicentre study of patients treated for a ruptured aortic aneurysm with EVAR in three centres (2000 to 2012) demonstrated that ruptured EVAR (rEVAR) in patients with hostile anatomy is associated with a high rate of graft-related complications, reinterventions and increased overall mortality.

Study III, a two-centre cohort study of 326 patients with EVAR (2001 to 2012), with first postoperative computerised tomographic angiography (CTA) within one year of the operation. Patients with adequate proximal and distal sealing zones and no endoleak in the first postoperative CTA had significantly lower risk for AAA-related complications and reinterventions up to five years postoperatively.

Study IV, studied all complications and reinterventions in a two-centre cohort study of all EVAR patients (1998 to 2012), One-fourth of the patients in the study developed complications during a mean follow-up of five years. Most complications were asymptomatic imaging-detected. Ultrasound could detect most of the clinically significant complications.

Keywords: abdominal aortic aneurysm, EVAR, rEVAR surveillance

Baderkhan Hassan, Department of Surgical Sciences, Vascular Surgery, Akademiska sjukhuset ing 70 1 tr, Uppsala University, SE-751 85 Uppsala, Sweden.

© Baderkhan Hassan 2018

ISSN 1651-6206
ISBN 978-91-513-0167-9
urn:nbn:se:uu:diva-334369 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-334369)
To my Beloved family

Harman, Miro, Meivi and Sharo
List of studies

This thesis is based on the following papers, which are referred to in the text by their Roman numerals.

 British Journal of Surgery. 2014 Jun;101 (7):802-10

 Journal of Endovascular Therapy. 2016 Dec;23 (6):919-927

III Hassan Baderkhan, Olov Haller, Anders Wanhainen, Martin Björck, Kevin Mani. Follow-up after endovascular aortic aneurysm repair can be stratified based on first postoperative imaging.

 In press, British Journal of Surgery

IV Hassan Baderkhan, Olov Haller, Anders Wanhainen, Martin Björck, Kevin Mani. Detection of late complications after endovascular abdominal aortic aneurysm repair and implications for follow-up.

 Manuscript

Reprints were made with permission from the respective publishers.
Cover Picture:

Illustration of the endovascular aortic aneurysm repair (EVAR), with some of the most common complications, provided by the brilliant illustrator and researcher Fuad Bahram.
Contents

Abbreviations ..9
Introduction ..11
Historical aspects ..12
Definition and prevalence ...14
Natural course and rupture ..15
Management of abdominal aortic aneurysm ...17
 Open repair ..17
 Endovascular repair ..18
 EVAR in ruptured cases ...20
Suitability for EVAR and technical success ...21
 Instructions for use for EVAR ...21
 Technical success ...22
EVAR complications ...23
 Graft-related complications ...24
 Endoleaks ..24
 Migration ...30
 Component separation ...30
 Limb kinking and occlusion ..31
 Post-implantation rupture ...31
 Other EVAR complications ...32
 Risk factors for post-EVAR complications ..32
Surveillance after EVAR ...34
 Imaging modalities for EVAR surveillance ...34
 Computerised Tomographic Angiography ...35
 Duplex Ultrasonography ..35
 Contrast-Enhanced Duplex Ultrasound ..35
 Magnetic Resonance Imaging ...36
 Plain Abdominal X-ray ...36
 Other modalities ...36
Surveillance protocols ...36
Compliance with EVAR surveillance and loss to follow-up ...38
Aims of this thesis

Specific aims

Materials and methods

Study I

Study II

Study III

Study IV

Statistical analysis

Results

Study I

Study II

Study III

Study IV

General Discussion

Post-implantation rupture and the benefit of EVAR surveillance

EVAR follow-up - an increasing burden

Type II endoleak and surveillance

EVAR for ruptured AAA

Can the current studies change EVAR follow-up?

Low-risk

High-risk

Follow-up after five years from EVAR

Future perspectives

Conclusion

Sammanfattning på svenska (Summary in Swedish)

Delarbete I

Delarbete II

Delarbete III

Delarbete IV

Acknowledgement

References
Abbreviations

AAA Abdominal aortic aneurysm
AJAX trial The Amsterdam Acute Aneurysm trial
CEDU Contrast-enhanced duplex ultrasound
CI confidence interval
CTA Computerised tomographic angiography
DREAM trial The Dutch Randomized Endovascular Aneurysm Management trial
DSA Digital subtraction angiography
DUS Duplex ultrasonography
ECAR Endovasculaire ou Chirurgie dans les Anévrysmes aorto-iliaques Rompus
ESVS The European Society for Vascular Surgery
EVAR Endovascular aortic aneurysm repair
EVAR trials UK Endovascular versus Open Repair of Abdominal Aortic Aneurysm Trials 1 and 2
GFR Glomerular filtration rate
HR Hazard ratio
ICU Intensive care unit
IFU Instruction of use
IMPROVE trial The Immediate Management of the Patient with Rupture: Open Versus Endovascular strategies trial

MAIFU Minimum appropriate imaging follow-up

MRI Magnetic resonance imaging

NCT Non-contrast Computerised tomographic angiography

OSR Open surgical repair

OVER trial The Open versus Endovascular Repair Veterans Affairs trial

PAX Plain Abdominal X-ray

PTFE Polytetrafluoroethylene

rAAA Ruptured abdominal aortic aneurysm

RCT Randomised controlled trial

rEVAR Ruptured endovascular aortic aneurysm repair

SVS Society for vascular surgery
Introduction

Abdominal aortic aneurysm (AAA) is a pathological widening of the abdominal aorta, which untreated expanding and ending in rupture with fatal consequence. Conventionally the AAA operation has been performed by the open approach through a long laparotomy incision, a technique associated with risk for morbidity and mortality. A new catheter-based technique, endovascular aortic aneurysm repair (EVAR), was introduced in 1985 by Volodos and further developed by Parodi (Veith, 2005; Volodos, 2015; Volodos, 1986). EVAR resulted in a paradigm shift and changed AAA management dramatically, introducing the possibility to treat new patient cohorts who were previously deemed too high risk for open aortic surgery. Standard EVAR requires certain anatomical criteria to be fulfilled to achieve long-lasting results. Juxta – and suprarenal aneurysms require more complex endovascular procedures with fenestrations, chimneys or branches. EVAR has a superior short-term outcome compared to open aortic repair, but unlike open repair, there is a risk of late complications related to incomplete exclusion of the aneurysm sac, repressurisation and, ultimately, rupture. Therefore, EVAR patients should be followed regularly according to all current guidelines to detect and manage complications timely. However, EVAR follow-up is an increasing burden for the health care system. This thesis aims to determine whether all EVAR patients have the same risk of repressurisation of the aneurysm sac with risk of rupture or whether follow-up can be stratified, based on an individual patient’s risk profile.
Historical aspects

The word *aneurysm* is derived from the Greek *aneurysma*, which means ‘widening’. The first written record of an aneurysm is in the Book of Hearts, from the Eber Scolls papyrus of ancient Egypt, dating back to 1550 BC. In that text, an aneurysm was called a ‘tumour of the arteries’. Even India’s Sushruta (800–600 BC) and Galen (126–c216 AD), a surgeon in ancient Rome, mentioned aneurysm in their works.

In the 2nd century AD, the Greek surgeon Antyllus (Friedman and Friedman, 1989) tried to treat an aneurysm with a proximal and a distal ligature, central incision and removal of thrombotic material from the aneurysm.

In 1554, Vesalius (1514–564) produced the first true anatomical plates based on cadaveric dissection, in "De Humani Corporis Fabrica" A year later, he provided the first accurate diagnosis and illustrations of AAA (Van Hee, 1993).

In 1923, Matas (Livesay, 2005) performed the first successful complete ligation of the aorta for an aneurysm. The patient survived for 17 months before dying of pulmonary tuberculosis. Matas also developed the technique of endoaneurysmorraphy. This method involved tying the aneurysmal sac upon itself to restore normal blood flow to the lower limbs; this was the first recorded technique to allow blood flow and was the basis for the development of homografts, synthetic grafts and endovascular techniques.

Arthur Voorhees is credited with the invention of synthetic arterial prosthetics. He tested a wide variety of materials for synthetic tube grafts and settled upon vinyon-N, which proved to be robust. In 1952, Voorhees (Voorhees, 1952) inserted the first synthetic graft into a ruptured abdominal aortic aneurysm. By 1954, he had successfully implanted 17 such grafts. Similar materials with improved tensile strength are still used in open aneurysm repair, including Teflon, Dacron and expanded Polytetrafluoroethylene (PTFE).

The development of ultrasound in the 1940s and 1950s was a major milestone in the management of AAA and reduction of ruptures. In 1958, Ian Donald (Donald, 1958) published "Investigation of abdominal masses by pulsed ultrasound", which is regarded as a major work in diagnostic imaging. Computerised axial tomography scans became available in the early 1970s and rapidly became the gold standard to define aneurysm morphology and planning before surgical intervention.
In the 1980s, Volodos (Volodos, 1991) and his team experimented intensively with different catheter-based approaches to treat aortic aneurysms. In 1986 he could use a hybrid approach to AAA for the first time. In this procedure, an endoprosthesis was deployed following laparotomy to achieve proximal anastomosis in a rapid fashion without aortic clamping. Volodos continued to develop stent grafts for treatment of thoracic and abdominal aortic disease (Diethrich, 2013; Volodos, 2015).

In 1991, Parodi (Parodi, 1991) operated on five patients with elective AAA, using a custom-made Dacron tube endoprosthesis inserted transfemorally and fixed with balloon expandable stents. In 1994, endovascular repair of a ruptured aneurysm was first performed in Nottingham, UK (Yusuf, 1994).
Definition and prevalence

AAA is defined in various ways. The most frequently used definition is the infrarenal aortic diameter of 30mm or larger as cutoff for definition of AAA (McGregor, 1975). Another definition is an infrarenal to suprarenal ratio of 1.5 or more (Sterpetti, 1987). Collin defined AAA as an infrarenal diameter of 40 mm or more, or an infrarenal diameter larger than the suprarenal diameter by at least 5 mm (Collin, 1988). The International Society of Cardiovascular Surgery defines AAA as a 50 % permanent dilatation of the normal artery, adjusted to gender and radiological modality (Johnston, 1991).

AAA is more common in men than in women. In population-based screening studies, the prevalence was 4–7.6 % in men, compared to 1.3 % in women (Ashton, 2002; Lindholt, 2003; Norman, 2004; Scott, 2002). Screening data from Sweden from 2011 to 2014, reported a much lower prevalence than in the studies mentioned above: 1.3–2.2 % in men and 0.3 % in women (Linne, 2014; Svensjo, 2013; Wanhainen and Bjorck, 2011). The aetiology and pathogenesis of AAA are complex, characterised by the interaction of hereditary and environmental factors (Bjorck and Wanhainen, 2013). The reduction in prevalence is mainly explained by a reduction in smoking (Svensjo, 2011).
Natural course and rupture

An AAA expands at a rate of 2–3 mm per year. Larger aneurysms grow faster (Brady, 2004; Thompson, 2010). Smoking cessation and presence of diabetes are associated with a lower growth rate (Lindblad, 2005; Tornwall, 2001), while the associations between AAA growth and hypertension, obstructive pulmonary diseases and medications are unclear (Prisant and Mondy, 2004). Currently there is no drug therapy for small AAA. Several commonly used cardiovascular drugs have been associated with reduced AAA growth in observational studies. However, a number of clinical trials have so far not been able to verify these findings. Beta-blockers, Macrolide/Doxycycline, mast cell inhibition, and ACE inhibition have been evaluated in several RCTs, with no effect. Early observational studies suggested a possible growth reduction effect of Statins, while more recent and larger association studies found no such effect (Golledge, 2017).

Initial aneurysm diameter is an independent risk factor for rupture (Conway, 2001; Lederle, 2002). Several studies have demonstrated an increased risk of rupture in female patients (Brown, 2003; Norman and Powell, 2007), smokers and patients with hypertension (Brown and Powell, 1999; Cronenwett, 1985). Table 1 shows the estimated annual rupture risk based on initial aneurysm size.
Table 1.

The estimated rupture rate per 100 person-years, based on aneurysm diameter.

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Rupture rate per 100 person-years</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-55</td>
<td>1.6</td>
<td>(Powell, 2011)</td>
</tr>
<tr>
<td>55-59</td>
<td>9.4</td>
<td>(Lederle et al., 2002)</td>
</tr>
<tr>
<td>60-70</td>
<td>10-20</td>
<td>(Lederle et al., 2002)</td>
</tr>
<tr>
<td>70-80</td>
<td>30-40</td>
<td>(Lederle et al., 2002)</td>
</tr>
<tr>
<td>>80</td>
<td>30-50</td>
<td>(Lederle et al., 2002)</td>
</tr>
</tbody>
</table>
Management of abdominal aortic aneurysm

Surgical management should be considered for all AAA larger than 55 mm in men and 52 mm in women to avoid a rupture, according to the current guidelines of the European Society for Vascular Surgery (Moll, ESVS guidelines, 2011). Once the AAA reaches these thresholds, a choice must be made between open and endovascular repair.

Open repair

The conventional surgical method is usually performed with transperitoneal (or less commonly retroperitoneal) laparotomy through a long midline incision from the Xyphoid process to the symphysis pubis. The aneurysm is resected and replaced by a straight or Y-shaped graft (Figure 1).

![Figure 1. Conventional open surgical infrarenal aortic aneurysm procedure.](image)

Open surgery provides a durable and successful treatment of an aneurysm. The perioperative mortality rate is approximately 3 % in the Swedish vascular registry (Swedvasc), and ranging from 1 to 8 % in other cohorts, in
elective cases (EVAR trial 1 investigators, 2005; Hertzer, 2002; Huber, 2001), and 30% to 82% in ruptured cases (Bown, 2002; Noel, 2001; Prance, 1999). These are higher than the perioperative mortality rates after EVAR, as verified in existing randomised controlled trials and populations-based registries (Lilja, 2017; Mani, 2015).

After open repair, 15% to 30% of patient’s experience complications (Lee, 2004; Nowygrod, 2006). Open repair is also associated with more blood loss and longer intensive care unit and hospital stays (Brewster, 1998).

Endovascular repair

EVAR is now the standard procedure used to treat aortoiliac aneurysms and is the most often used technique for AAA repair in many Western countries, including Sweden (Beck, 2016; Budtz-Lilly, 2017; Lilja et al., 2017; Mani, 2011). Since 2000, there has been a more than 600% increase in EVAR procedures performed in the USA (Nowygrod et al., 2006). In Sweden, the number of EVAR procedures grows each year; in 2013, more than 600 procedures were performed (Figure 2).

![Figure 2. The number of procedures for AAA in Sweden (1994-2013), from the Swedvasc database.](image)

EVAR is a minimally invasive operation. A stent graft is implanted in the aorta through femoral access, to exclude the aneurysm from the circulation. The femoral access is closed through a vascular cut down, fascia sutures or closure devices placed percutaneously. The contemporary stent grafts have barbs and hooks for supra- or infrarenal fixation to the aortic wall (Figure 2).
Giles et al. analysed the USA inpatient database from 1993 to 2005 and found that, since the introduction of EVAR, the annual number of deaths from AAA has significantly decreased. This trend coincided with an increase in the number of EVAR procedures performed for intact AAA (Giles, 2009).

EVAR is associated with shorter operating time, decreased blood loss, decreased postoperative pain and need for intensive care, as well as shorter hospital stays (Brewster et al., 1998). In addition, it can be performed under local anaesthesia and has a better early outcome regarding perioperative mortality. Disadvantages of EVAR include the potential risk of incomplete sealing, endoleak and repressurization, which may lead to sac enlargement and rupture. Thus, regular follow-up for many years after the operation has been regarded as mandatory.

UK Endovascular versus Open Repair of Abdominal Aortic Aneurysm Trial (EVAR Trial 1) reported a perioperative mortality rate of 1.7 % for EVAR compared to 4.7 % for open surgical repair (OSR), p=0.009 (Greenhalgh, 2004). Similar results have been reported by the Dutch Randomized Endovascular Aneurysm Management (DREAM) trial, with 1.2 % EVAR vs 4.6 % for OSR, p=0.1 (Prinssen, 2004), and the Open versus Endovascular Repair (OVER) Veterans Affairs Study, with 0.5 % vs 3.0 %, p=0.004 (Lederle, 2009), as well as in several non-randomised reports (Budtz-Lilly et al., 2017; Giles, 2009; Greenberg, 2004; Lilja et al., 2017; Matsumura, 2003).

However, the early survival benefit after EVAR is not durable, and long-term survival after EVAR for intact AAA using earlier generation’s devices is less favourable. In both the EVAR 1 and DREAM trials (De Bruin, 2010; Greenhalgh, 2010), the EVAR groups had a lower aneurysm-related mortality rate during the first postoperative year, but a comparable overall mortality with the convergence of survival curves during the second
postoperative year. In both trials, the EVAR group had more late complications and reinterventions. An analysis of Medicare beneficiaries who had surgery for AAA between 2001 and 2004 reported a higher rate of rupture (1.8 % vs. 0.5 %, p < 0.001) and a higher rate of minor and major AAA-related reinterventions (9.0 % versus 1.7 %, p<0.001) by four years post-surgery in the EVAR group compared to the OSR group (Schermerhorn, 2008). EVAR I trial investigators published newly 15 years follow-up data. Eight years after operation and onward had open group better survival compared with EVAR group. The endovascular group had higher risk of aneurysm sac rupture and cancer, resulting in higher rate of aneurysm-related, as well as total mortality (Patel, EVAR I trial, 2016).

The endografts used in these RCTs were of older generations, and there are some reports that newer endografts have a lower rate of complications (Verzini, 2014).

EVAR in ruptured cases

Wide adoption of EVAR in elective cases with superior short-term outcomes has encouraged vascular surgeons to use this minimally invasive technique in ruptured cases. Observational trials reported lower mortality for EVAR for ruptured aneurysms (rEVAR) compared to OSR (Dillon, 2007; Noorani, 2012; Ten Bosch, 2012), but this could not be verified in the earlier reports of the three randomised trials, the Immediate Management of the Patient with Rupture: Open versus Endovascular strategies (IMPROVE) trial, the Amsterdam Acute Aneurysm (AJAX) trial, Endovasculaire ou Chirurgie dans les Anévrysmes aorto-iliaques (ECAR) Rompus, comparing the two techniques (Desgranges, 2015; Powell, 2014; Reimerink, AJAX trial, 2013; Sweeting, 2015). However, patients undergoing rEVAR are more likely to be discharged from hospital faster, and women may benefit more from an endovascular strategy (Sweeting et al., 2015). IMPROVE trial newly published the three years result. In the mid-term (three months to three years), EVAR group had a better survival (hazard ratio [HR] 0.57, 95 % confidence interval [CI] 0.36 to 0.90), leading to lower mortality (48 % v 56 %). Lower mortality together with better quality of life resulted in higher cost effectiveness for the EVAR group. Both groups had similar levels of reintervention (IMPROVE trial investigators, 2017).
Suitability for EVAR and technical success

Instructions for use for EVAR

As mentioned previously, EVAR requires certain anatomical criteria to be fulfilled (Figure 4). These are summarised in the manufacturer’s instructions for use (IFU) for each specific device and include aneurysm characteristics of the neck and iliac criteria.

![Figure 4. Schematic illustration of anatomic criteria included in device-specific IFU.](image)

IFU for most contemporary devices are quite similar; Table 2 shows the IFU of the most commonly used stent grafts: Endurant® (Medtronic, Santa Rosa,
CA, USA), Excluder® (W.L. Gore and Associates, Flagstaff, AZ, USA) and Zenith® (Cook Medical INC., Bloomington, IN, USA).

Table 2.

Instructions for use for the most commonly used endografts

<table>
<thead>
<tr>
<th>Anatomical parameter</th>
<th>Endurant®</th>
<th>Excluder®</th>
<th>Zenith®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck length, mm</td>
<td>≥10'</td>
<td>≥15</td>
<td>≥15</td>
</tr>
<tr>
<td>Neck diameter, mm</td>
<td>19-32</td>
<td>19-29</td>
<td>18-32</td>
</tr>
<tr>
<td>Suprarenal neck angulation (α)</td>
<td>≤45°</td>
<td>---</td>
<td><45°</td>
</tr>
<tr>
<td>Infrarenal neck angulation (β)</td>
<td>≤60°</td>
<td>≤60°</td>
<td><60°</td>
</tr>
<tr>
<td>Distal fixation site length, mm</td>
<td>≥15</td>
<td>≥10</td>
<td>>10</td>
</tr>
<tr>
<td>Distal fixation site diameter, mm</td>
<td>8-25</td>
<td>8-25</td>
<td>7.5-20</td>
</tr>
</tbody>
</table>

*≥15mm with ≤75° infrarenal and ≤60° suprarenal neck angulation.

In addition to the criteria mentioned above, there should be adequate femoral access. Additional anatomical elements may affect successful endovascular repair:

- Significant or circumferential calcification or thrombosis in the proximal and distal landing zones
- Conic neck (greater than 10 mm increase in diameter over intended landing zone length)

Technical success

Primary technical success has been defined by reporting standards of Society for Vascular Surgery, SVS (Chaikof, 2002) as successful introduction and deployment of the endograft without conversion or mortality, type I and III endoleak and graft limb obstructions. Technical failure relates to occurrence of any of these events from the initiation of the procedure through the first 24 hours after the operation. The terms assisted primary or secondary technical success are used when an unplanned endovascular or surgical procedure has been necessary in addition to the planned procedure.
EVAR complications

EVAR is a minimally invasive procedure and is associated with reduced systemic complications (i.e. cardiac, pulmonary and renal disorders) when compared to OSR (Anderson, 2004; Becquemin, 2008; Feringa, 2007; Wald, 2006) (Table 3).

Table 3

<table>
<thead>
<tr>
<th>Outcome</th>
<th>EVAR</th>
<th>OSR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality, %</td>
<td>1.2</td>
<td>4.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Myocardial Infarction, %</td>
<td>7.0</td>
<td>9.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Pneumonia, %</td>
<td>9.3</td>
<td>17.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Acute renal failure, %</td>
<td>5.5</td>
<td>10.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Dialysis, %</td>
<td>0.4</td>
<td>0.5</td>
<td>0.047</td>
</tr>
<tr>
<td>Colonic ischaemia, %</td>
<td>1.0</td>
<td>2.1</td>
<td><0.001</td>
</tr>
</tbody>
</table>

There is, however, a set of EVAR-specific complications. The **graft-related complications** (Herman, 2017), refers to complications related to the stent graft and sac repressurisation such as type I and III endoleaks, expansion more than 5 mm, migration, graft limb occlusion and rupture. **Clinically significant complications**, based on Chaikof’s definition of clinical failure (Chaikof, 2002), refers to all complications that follow EVAR and have significant clinical impact. These include direct endoleaks, type II endoleak with expansion, any significant expansion, migration, graft infection, graft limb thrombosis and post-implantation ruptures.
Graft-related complications

Technical failure is uncommon with currently available EVAR devices and experience. However, EVAR still results in graft-related complications and reinterventions over time. The thirty-day reintervention rate was 9.8 % in the EVAR trial 1 and 18 % in EVAR trial 2 (EVAR trial 2 investigators, 2005; EVAR trial 1 investigators, 2005). Most reinterventions were performed to repair endoleaks. The rate of graft-related complications that required reinterventions was 19 % over a three year mean follow-up in a large study by Mehta et al. (Mehta, 2010), and about 20 % over 6.4 years median follow-up in the DREAM trial (De Bruin et al., 2010).

Endoleaks

Endoleak is defined as a persistent flow outside the stent graft but within the aneurysm sac. Endoleaks are the most common complication after EVAR and occur in 5 % to 25 % of cases (Hobo and Buth, 2006; Hoornweg, 2007; Ouriel, 2003; Sheehan, 2006). Computerised tomographic angiography (CTA) is the standard method used to detect endoleaks. Other diagnostic methods include duplex ultrasonography (DUS), contrast-enhanced duplex ultrasound (CEDU), magnetic resonance imaging (MRI) and digital subtraction angiography (DSA). White and May have classified endoleaks into four types, as described below (White, 1998):

Endoleak type I

Endoleak type I occurs because of incomplete sealing of the proximal (type Ia) or the distal (type Ib) end of the endograft with the aorta or iliac arteries (Figure 5). Hostile anatomy, such as short, conical or angulated neck or iliac landing zones, are predisposing factors for type I endoleaks. Type I endoleaks occur at a rate of 3-4 % over 6 years follow up (Conrad, 2009; Lal, OVER trial, 2015). Type I endoleaks are associated with significant risk for rupture and should be managed promptly (Buth and Laheij, 2000; Harris, 2000; Schurink, 1998).

Most of the proximal type I endoleaks can be treated by balloon dilatation or balloon expandable stents or cuffs, with or without fenestrations for visceral arteries, as shown in Figure 6 (Faries, 2003). Distal type I endoleaks are managed by a graft leg extension (Figure 7). Use of embolic agents and coils may be another way to treat type I endoleaks (Maldonado, 2003; Sheehan, 2004), but sometimes a conversion to open operation is the only option to treat type I endoleaks (Kelso, 2009).
Figure 5. Schematic illustration of type Ia and Ib endoleaks.

Figure 6. Endoleak type Ia on CTA (a) and DSA (b), management with proximal cuff extension (c) and disappearance of endoleak on control CTA (d).
Endoleak type II

Endoleak type II occurs because of backflow from the inferior mesenteric artery (IIa) or lumbar arteries (IIb) into the aneurysm sac (Figure 8). Other sources of type II endoleaks may be an accessory renal artery, sacral artery or leak from iliac occluders. Type II endoleak is the most common endoleak and is observed in 10 to 20% of patients (Veith, 2002). Most type II endoleaks resolve spontaneously within a few months postoperatively (Higashiura, 2007; Jones, 2007; Silverberg, 2006). Type II endoleaks associated with sac expansion should be treated to avoid post-implantation rupture (Moll, 2011; van Marrewijk, 2004).

The most common way to treat type II endoleaks is to stop the side branch’s flow through embolisation with coils or other embolic agents (Figure 9). The approach could be transarterial catheterisation of the branches (Kasirajan, 2003) or translumbar with direct puncture of the aneurysm sac (Binkert, 2006). If these methods fail, other alternatives include laparoscopy or laparotomy and ligation of the side branches (Kolvenbach, 2002; Yamada, 2015) or conversion to open repair (van Marrewijk et al., 2004). Patients who have a type II endoleak that is associated with expansion and, in particular, those who experience
expansion after treatment of the endoleak, should be examined to exclude type I or III endoleaks (Hajibandeh, 2015).

Figure 8. Schematic illustration of type II endoleak.

Figure 9. Endoleak type II on CTA (a) and DSA (b), catheterisation of the lumbar artery through the left internal iliac artery all the way to the aneurysm sac (c), disappearance of the endoleak after coiling (d).
Endoleak type III
Endoleak type III is caused by endograft disintegration and component separation, mostly due to migration or angulation of the stent graft (Figure 10). Less commonly, endoleak type III occurs as a result of fabric disruption. The published rate for this type of endoleak is 0% to 1.5% (Brewster, 2006; Wang and Carpenter, 2008). This type of endoleak should be treated promptly due to repressurisation of the aneurysm sac with the systemic blood pressure and a high risk of rupture. The standard treatment is endovascular, by bridging the gap between the two separated components with a stent graft limb, relining (Figure 11).

![Figure 10. Schematic illustration of type III endoleak.](image)

![Figure 11. Endoleak type III due to component separation on CTA (a) and DSA (b), management with by bridging the gap between the two components (c).](image)
Endoleak type IV
Endoleak type IV is seepage through porous fabric, usually seen in the control angiography (Figure 12). It is uncommon with today's devices and it is usually self-limiting (Becquemin, 2005).
Seepage through fabric observed after the first postoperative month should not be considered as a type IV endoleak (Chaikof et al., 2002).

![Figure 12. Schematic illustration of type IV endoleak.](image)

Undefined endoleaks
Undefined endoleaks are flows outside the graft that are observed in imaging studies, but of which the exact origin cannot be determined. These endoleaks can be managed by active follow-up if not associated with sac expansion. When direct endoleak is suspected, or sac expansion occurs, treatment should be preceded by advanced imaging to define the type of endoleak and identify the best management strategy.

Endotension
Endotension (endoleak type V) is defined as continuous sac enlargement without any detectable endoleak. The cause of endotension is unclear; it could be due to a low-flow endoleak, an endoleak that cannot be detected by current imaging modalities or pressure transmission through the endograft fabric or the thrombus mass (Figure 13). Continuous sac expansion without a clear leak is usually managed by realignment of the endograft or by conversion to open operation (van Sambeek, 2004).
Migration

Migration is defined as stent graft movement by >10mm by SVS reporting standards and in other reports (Cao, 2002; Chaikof et al., 2002; Herman et al., 2017), or any movement leading to complications, usually type I endoleak (Tonnessen, 2004). There are some controversies regarding this definition and some authors using 5 mm as a migration limit (Sternbergh, 2004). The rate of migration varies widely from 0 % to 45 % (Becquemin et al., 2005). Migration has been observed with all commercially available devices but was more common with older devices without active fixation. Most migrations have been reported after 24 months of follow-up (Tonnessen, 2005).

The migration is most often caudal, but sometimes a cranial migration of the iliac attachment site may occur. Neck anatomy (Cao et al., 2002; Rodway, 2008; Tonnessen et al., 2005), degree of oversizing (Sternbergh et al., 2004; van Prehn, 2009) disease progression and different device designs (Malina, 1998; Resch, 2000) may influence the risk of downward migration. A proximal cuff, deployed as close as possible to the lowest renal artery, usually manages caudal migration. Cranial migration is managed by distal extension of the iliac limb.

Component separation

Component separation is defined as an insufficient overlap between components of the stent graft that may lead to type III endoleak and rupture (Figure 11). Component separation was common with older devices. Most of the current commercially available stent grafts have not demonstrated any significant rate of integrity problems (Greenberg, 2008).
Limb kinking and occlusion

Kinking, twisting and stenosis of the stent graft limb may lead to thrombosis and occlusion of the graft limb (Figure 14). The causes of kinking and stenosis may be narrow aortic bifurcation, severely angulated iliac artery or upward migration of the graft limb. Severely atherosclerotic iliac or femoral artery may cause stenosis and decreased outflow and thrombosis of the graft limb as well. The EVAR trials reported 2.3 % limb thrombosis (Wyss, EVAR trials, 2010), while the Eurostar registry reports 3.7 % (Fransen, 2003). Graft limb thrombosis is usually managed with thrombolysis and ballooning or stenting of the stenosis, or sometimes with an extra anatomical femorofemoral bypass. Graft limb thrombosis without or with little symptom can be left untreated.

Figure 14. Graft limb thrombosis (a), management with thrombolysis and restenting (b). Another patient with right side graft limb thrombosis, managed with femorofemoral crossover (c).

Post-implantation rupture

Post-implantation rupture is regarded as a major failure of EVAR implantation and is often a lethal complication. Regular post-EVAR follow-up aims to prevent this complication. The rate of post-implantation rupture in the existing RCTs and registry reports is approximately 1 % to 4 % at a mean follow-up time of 5 years (Stather, 2013). The median time to rupture was 18 months in the Eurostar registry (Fransen, 2003), while in EVAR trials there were few ruptures within 30 days from the primary operation and late ruptures occurred in a mean time of 44 months (Wyss et al., EVAR
trials, 2010). The EVAR 1 trial 15 years results reported the increased aneurysm-related mortality in the EVAR group after 8 years, mainly as a result of aneurysm rupture, 13 deaths (7 %) in the EVAR group vs two (1 %) in the open repair group (Patel et al., EVAR 1 trial, 2016).

Other EVAR complications
There are several other complications that may occur after EVAR (Maleux, 2009). These include local wound complications, access artery injury, contrast-induced nephropathy, colonic ischaemia, spinal cord ischaemia, renal artery occlusion and graft infection, In general prevention of these complications is not the primary aim of post-EVAR follow-up programme.

Risk factors for post-EVAR complications
Not all patients have the same risk of post-EVAR complication. In the current literature different pre-, per- and postoperative risk factors have been identified for post-EVAR complications and reinterventions.

- **IFU and preoperative aortoiliac anatomy**
 Compliance with IFU when performing EVAR has been studied extensively. Most authors agree that non-adherence to device-specific IFU is associated with increased postoperative risk for complications and reinterventions (Abbruzzese, 2008; AbuRahma, 2016; Herman et al., 2017; Nakai, 2013), while others reported no significant differences in the outcome (Beckerman, 2016; Igari, 2014; Lee, 2013; Walker, 2015). Most reports recommend a more careful and long-term follow-up when EVAR is used outside IFU.

- **Preoperative aortic aneurysm diameter**
 Several studies reported that maximum preoperative aortic aneurysm diameter is an independent predictor for EVAR outcome; larger aneurysms have a higher risk for late complications and reinterventions (Karthikesalingam, 2013; Patel, 2017; Schuurmann, 2017).

- **Anatomical factors associated with increased risk for type II endoleak**
 In a single center series of 189 patients, Piazza et al. defined several criteria for increased risk of type II endoleak, such as patent inferior mesenteric artery >3mm in diameter, patency of at least three pairs of lumbar arteries or patency of at least two pairs of lumbar arteries with a patent sacral, accessory renal or any diameter inferior mesenteric artery (Piazza, 2017). Other studies have reported similar results (Marchiori, 2011).
• **Intraoperative adjunct procedures**
Byrne et al. demonstrated a higher rate of type I endoleak and secondary reinterventions in patients who required a Palmaz stent in the primary operation (Byrne, 2013). Karthikesalingam et al. showed that intraoperative adjuncts are an independent risk factor for future reintervention (Hazard ratio [HR] 2.62, p= 0.012) (Karthikesalingam, 2010).

• **Sealing zones**
Short sealing or presence of endoleak in early post-EVAR imaging is significant risk factors for aneurysm-related complications (Bastos Goncalves, 2013).

• **Aneurysm sac shrinkage**
Patients with aneurysm sac regression have significantly lower rate of endoleaks, ruptures, or reinterventions and better survival (Cieri, 2013; Houbballah, 2010).

• **Symptomatic or ruptured initial indication for EVAR**
A study identified symptomatic or ruptured AAA as a significant predictor for late rupture after EVAR, (HR 7.4; 95 % confidence interval [CI] 2.2-24.8; P <.01) (Candell, 2014).
Surveillance after EVAR

As described in the previous chapter, EVAR is associated with a significant risk of postoperative complications and reinterventions (Powell, 2017; Stather et al., 2013). Different types of endoleaks, device migration and structural failure may lead to aneurysm expansion and rupture. Hence, continued surveillance after EVAR is currently regarded as mandatory for all patients, and is recommended in current vascular surgical guidelines. Presently, the optimal modality and timing for EVAR surveillance is a topic of debate.

Imaging modalities for EVAR surveillance

Finding a proper imaging modality that is safe, repeatable, non-invasive, cost-effective, reliable and able to detect all complications before rupture is not easy (Table 4).

Table 4

Detecting various complications with different imaging modalities for surveillance after EVAR

<table>
<thead>
<tr>
<th>Complications</th>
<th>NCT</th>
<th>CTA</th>
<th>DUS</th>
<th>CEDU</th>
<th>PAX</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endoleak</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sac diameter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Migration</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Y/N</td>
</tr>
<tr>
<td>Component separation</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Y/N</td>
</tr>
<tr>
<td>Limb kinking</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Limb occlusion</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sealing</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Y/N</td>
</tr>
</tbody>
</table>

NCT, non-contrast computerised tomographic angiography; CTA, computerised tomographic angiography; DUS, duplex ultrasonography; CEDU, contrast-enhanced duplex ultrasound; PAX, plain abdominal X-ray; MRI, magnetic resonance imaging.
Computerised Tomographic Angiography

Computerised tomographic angiography (CTA) is a known standard and is the most commonly used modality for follow-up after EVAR, both to detect endoleaks and to measure aneurysm diameter. Early and delayed phase CTA is used for diagnosis of endoleaks (Buth, 2002). The major issues with CTA are contrast-induced nephrotoxicity and the potential cancer risk of ionising radiation. Non-contrast-enhanced CTA can be used in patients with impaired renal function to measure aneurysm diameter, but will not provide any information about the presence of endoleaks. CTA can also detect component separation and kinking of the graft limbs.

Duplex Ultrasonography

Duplex ultrasonography (DUS) is a safe, non-invasive, repeatable method for EVAR surveillance. Several studies have demonstrated a sensitivity of DUS comparable to CTA in detecting clinically significant endoleaks (Bargellini, 2009; Chaer, 2009; Collins, 2007; Sandford, 2006), while Mirza et al. reported an inferior sensitivity of DUS for endoleak detection compared to CEDU and CTA. DUS lacks the ability to give information regarding endograft integrity, sealing and migration (Mirza, 2010). Additionally, it is operator-dependent and is limited by body habitus and bowel gas. Manning et al. concluded that, despite low positive predictive value, DUS is a sensitive test for detecting clinically significant endoleaks (Manning, 2009), a finding that was supported by Karthikesalingam et al. in a systemic review (Karthikesalingam, 2012). It is still a matter of debate whether DUS can be used as a stand-alone modality for EVAR follow-up.

Contrast-Enhanced Duplex Ultrasound

In the systemic review by Karthikesalingam et al. the pooled sensitivity of contrast-enhanced duplex ultrasound (CEDU) was 0.96, and 0.99, and pooled specificity was 0.85 and 1.00 for detection of all types of endoleaks and direct endoleaks respectively, compared to CTA (Karthikesalingam et al., 2012). The advantages of CEDU include that it is safe, uses a non-toxic contrast agent, and it has the ability to detect late and low flow endoleaks. Additionally, it results in the possibility to achieve a dynamic analysis of the flow. Disadvantages are that it is operator-dependent and it needs special equipment and good expertise. CEDU also has the traditional limitations of ultrasound, such as bowel gas and obesity (Corriere, 2004).
Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) with a blood pool contrast agent is effective for endoleak detection and measurement of AAA diameter (Cornelissen, 2008) and is comparable to CTA (Ayuso, 2004). MRI lacks the CTA’s risks of radiation and contrast-induced nephrotoxicity. Disadvantages of the MRI include difficulties in assessing device integrity, artefacts from some endografts containing stainless steel, the fact that MRI is not suitable for pacemaker patients and that it is not as widely available as CTA. In addition, the gadolinium contrast agent has been identified as the cause of nephrogenic systemic fibrosis in patients with low glomerular filtration rate (GFR).

Plain Abdominal X-ray

Plain abdominal X-ray (PAX) using anterioposterior and lateral projections gives accurate information on structural disruption, stent fractures and migration, but no information about endoleak and sac diameter (Fearn, 2003). PAX is not a stand-alone imaging modality for the follow-up.

Other modalities

Intra-aneurysm sac pressure measurement, three-dimensional contrast-enhanced ultrasound and digital tomosynthesis are also modalities that have been discussed for EVAR surveillance. However, they are beyond the scope of this thesis.

Surveillance protocols

The Society for Vascular Surgery (SVS) practice guidelines recommend the following protocol for surveillance after EVAR (Chaikof, SVS guidelines, 2009), (Figure 15):

The European Society of Vascular Surgery (ESVS) presented another protocol (Moll et al., ESVS guidelines, 2011) (Figure 16):

Both guidelines recommend a CTA at 30 days postoperatively and, if there is no endoleak, the next surveillance will be a CTA at one year. If there is endoleak (or poor overlap, in the ESVS guidelines), another CTA should be done at six months. Normal CTA at one year will be followed by annual DUS. New or persistent endoleaks or increased sac diameter should be controlled by a CTA at any time. ESVS recommends lateral and anterioposterior projection PAX in every phase of the surveillance to check for metallic frame failure or inadequate component overlap. Divergence from these guidelines is very common, and almost all vascular units have developed local routines for the EVAR follow-up (Garg, 2015). Most follow-up protocols now include one or two CTA imagings in the first postoperative year, followed by annual DUS, if there are no endoleaks or sealing problems; this is a change from previous recommendations for yearly CTA (Hirsch, 2006; Sapirstein, 2001).

The follow-up programmes varied in the centres involved in the studies described in this thesis. In Uppsala, the follow-up comprised ultrasound at 30 days, CTA at six months, ultrasound at one year, and then ultrasound every two years and CTA every two years. In Rotterdam and Gävle, the follow-up was CTA at one, six and 12 months, then yearly. In both centres, yearly CTA was replaced by ultrasound when no significant abnormalities could be detected.

Compliance with EVAR surveillance and loss to follow-up

Compliance with surveillance and lack to follow-up has been defined differently in different reports. De Mestral et al. define minimum appropriate imaging follow-up (MAIFU) as a CTA or ultrasound of the abdomen within 90 days of EVAR as well as every 15 months after that (de Mestral, 2017). Garg et al. defined complete surveillance as one imaging event within 15 months from EVAR and at least one imaging event every 15 months after that (Garg et al., 2015). AbuRahma et al. considered patients non-compliant if they missed their first follow-up imaging over 6 months or if they did not have any imaging for two years (AbuRahma, 2016). Adherence to surveillance is heterogeneous, and its impact on outcome is unclear.
Aims of this thesis

The aims of this thesis is to identify patients with low versus high risk for complications after EVAR in order to enable tailored post-EVAR surveillance depending on the patient’s risk profile.

Specific aims

- To assess the role of early aneurysm sac dynamics after EVAR in determining the long-term outcome (Study I)

- To analyse the impact of the aortic-iliac anatomy of ruptured AAA on outcome after rEVAR (Study II)

- To assess the possibility to predict risk for late complications and reinterventions after EVAR based on evaluation of sealing zone and endoleak on the first postoperative CTA (Study III)

- To study the frequency and methods of detection of post-EVAR complications (Study IV)

- To compare the efficacy of DUS in detecting clinically significant complications to CTA (Study IV)
Materials and methods

Study I and II were based on a multicentre international collaboration between Uppsala university hospital and Gävle district hospital in Sweden and Erasmus university hospital in Rotterdam, Netherlands. Approximately 400 EVAR procedures performed during the period 2000-2011 in Rotterdam were included in these studies. Uppsala and Gävle had performed approximately 500 EVAR procedures during the period 1998-2012. Study III and IV comprised patients from Uppsala and Gävle.

Study I

All patients treated with standard EVAR in the three centres from January 2000 to December 2011 were included. Clinical, procedural and follow-up data were collected in a study-specific database. The inclusion criteria were patients with infrarenal aortic/aortoiliac aneurysm treated with standard EVAR, who had two consecutive postoperative image examinations with the same technique (CTA or DUS): the first within one month of the operation and the second after approximately one year (range 6–18 months). The second of the two scans was considered to be the index examination. The sac dynamic between the two examinations was analysed. Patients with a mycotic aneurysm or previous aortic surgery were excluded. Patients with examinations with two different modalities were also excluded owing to measurement variability between the modalities.

Study II

All patients treated with rEVAR from January 2000 to December 2012, at the three centres were assessed. Only patients with a ruptured infrarenal aortic/aortoiliac aneurysm evident on the preoperative CT, with contrast extravasation or retroperitoneal hematoma, and who were treated with standard EVAR (no procedures including chimneys, fenestrations or branches) were included. Symptomatic aneurysms, isolated iliac aneurysms or previous abdominal aortic surgeries were excluded. Clinical and anatomical baseline characteristics, procedural details and follow-up data were collected in a study-specific database in each centre. Anatomical
measurements were performed with a central lumen line of flow reconstruction using dedicated software (3mensio Vascular™, Pie medical imaging B.V., Bilthoven, the Netherlands). Follow-up information included all registered complications, secondary interventions and mortality.

Study III

All EVAR patients from Uppsala and Gävle who were treated between 2001 and 2012 with a first postoperative CTA within one year from the operation were included in the study. Patients with isolated iliac aneurysm and patients with complex endovascular reconstruction were excluded. The study database comprised baseline characteristics, operative and follow-up data. Anatomical measurements were performed with central luminal line reconstructions using dedicated software (3mensio Vascular™, Pie medical imaging B.V., Bilthoven, the Netherlands and Acquarius iNtuition™, Terarecon, Foster city, CA, USA). Figure 17 demonstrates the method of measuring sealing zone on the CTA.

![Figure 17](image)

Figure 17. The method of measuring sealing zone on the CTA. A, Reconstructed axial slice shows adequate seal, 2 mm below the renal arteries, with good wall-graft apposition in the entire vessel circumference. B, Same patient, 30 mm below the renal arteries, shows inadequate seal. C, Length of adequate proximal seal, measured in stretched view. (Reprinted with permission from journal of vascular surgery/Elsevier) (Bastos Goncalves et al., 2013).

Study IV

All EVAR patients from the two centres (Uppsala and Gävle) who were treated from 1998 to 2012 were studied. The study database included
preoperative patients’ demographic, procedural and postoperative data. All clinically significant complications and reinterventions as well as follow-up modalities, were studied. All paired images (CTA and DUS) within three months of each other were studied to analyse the efficacy of DUS compared to CTA in detecting clinically significant complications. Non-compliance was defined as no follow-up imaging for two years during follow-up or in the first six months after the operation.
Statistical analysis

The data analyses were performed using IBM SPSS Statistics 21-23 (IBM Inc., Chicago, IL, USA).

Categorical variables were presented as count and percentage and compared with Chi-square or Fisher’s exact test tests. Continuous variables were presented as mean and standard deviation if normally distributed and as median and range when the distribution was skewed, and compared using one-way Anova test in study I and Student t-tests or Mann-Whitney U-test in study II-IV.

Study I: The Kaplan-Meier method was used to estimate freedom from complications and secondary interventions. A multivariable Cox-regression model was created to assess the independent influence of early sac dynamics on late complication rates. Selection bias was explored by comparing baseline characteristics, survival, follow-up duration, complication and secondary intervention rates in patients included in and excluded from this study.

Study II: The effect of potential predictors on overall mortality and late complications were assessed by Cox hazard regression. The Kaplan-Meier method was used to estimate survival, late complications and reinterventions distribution for the groups, and were compared with log-rank test.

Study III: The effect of potential predictors on primary and secondary endpoints was analysed by logistic regression. Selection bias was assessed by comparing baseline characteristics, follow-up time, mortality, AAA-related complications and reintervention rates between patients included in and excluded from the study. Estimates for the freedom from AAA-related complications and reinterventions for each group were obtained using the Kaplan-Meier method and compared using the log-rank test. The kappa coefficient was used to evaluate interobserver agreement in classifying patients to each group.

Study IV: The kappa coefficient was used to evaluate agreement between the two imaging modalities used during follow-up.
Results

Study I

From 2000 to 2011, 840 patients were treated with EVAR in the three participating institutions. Of these, 45 died within six months, and 198 were excluded. 597 (71%) were included in the study (Figure 18). In 284 patients (48%), no shrinkage was observed. Among these, a growth of 5 mm or more was noted in 14 patients (2%). Moderate shrinkage (5 to 9 mm) was registered in 142 patients (24%) and major shrinkage (at least 10 mm) in the remaining 171 (29%).

<table>
<thead>
<tr>
<th>Jan 2000-Dec 2011: 840 Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excluded because of death within 6 months: 45/840</td>
</tr>
<tr>
<td>27/103 ruptured AAA</td>
</tr>
<tr>
<td>18/737 intact AAA</td>
</tr>
<tr>
<td>Excluded because no 2 consecutive equivalent exams were available: 198/795</td>
</tr>
<tr>
<td>Included: 597 Patients (71%)</td>
</tr>
<tr>
<td>No Shrinkage N = 284 (47.6%)</td>
</tr>
<tr>
<td>Moderate Shrinkage N = 142 (23.8%)</td>
</tr>
<tr>
<td>Major Shrinkage N = 171 (28.6%)</td>
</tr>
</tbody>
</table>

Figure 18. Flow chart for patient selection.

After the index imaging, freedom from complications was 84% (95% CI: 79-90), 88% (81-95) and 94% (90-99) for no shrinkage versus moderate and major shrinkage. Figure 19 shows a Kaplan-Meier analysis of freedom from complications and secondary interventions for all three groups.

No shrinkage compared to major shrinkage was an independent risk factor for late complications (HR 3.37, p=0.003) and moderate compared to major shrinkage (HR=2.49, P=0.045), as shown in Table 5.
Figure 19. Five years’ freedom from late complications and reinterventions, according to early sac dynamics (Bastos Goncalves, 2014).

Table 5

Risk factors for late complications (Cox-regression)

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate shrinkage (compared to major shrinkage)</td>
<td>2.489</td>
<td>1.022-6.057</td>
<td>0.045</td>
</tr>
<tr>
<td>No shrinkage (compared to major shrinkage)</td>
<td>3.371</td>
<td>1.512-7.513</td>
<td>0.003</td>
</tr>
<tr>
<td>AAA diameter (per mm increase)</td>
<td>1.035</td>
<td>1.017-1.053</td>
<td><0.001</td>
</tr>
<tr>
<td>Treatment of intact (vs. ruptured) AAA</td>
<td>1.675</td>
<td>0.465-6.034</td>
<td>0.430</td>
</tr>
<tr>
<td>Aorto-monoiliac design</td>
<td>3.829</td>
<td>1.280-11.45</td>
<td>0.016</td>
</tr>
<tr>
<td>Occurrence of intraoperative complications</td>
<td>2.039</td>
<td>1.170-3.552</td>
<td>0.012</td>
</tr>
<tr>
<td>Occurrence of complications before index examination</td>
<td>1.070</td>
<td>0.331-3.461</td>
<td>0.910</td>
</tr>
</tbody>
</table>

Freedom from secondary interventions and direct endoleaks were greater for patients with major shrinkage. Table 6 shows late outcome in all three groups according to sac dynamics.
<table>
<thead>
<tr>
<th></th>
<th>No shrinkage</th>
<th>Moderate shrinkage</th>
<th>Major shrinkage</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total follow-up, years – median (range)</td>
<td>3.1 (11.4)</td>
<td>3.2 (11.8)</td>
<td>3.2 (12.2)</td>
<td>0.35</td>
</tr>
<tr>
<td>Follow-up after index exam, years – median (range)</td>
<td>2.2 (11.3)</td>
<td>2.2 (11.2)</td>
<td>2.2 (11.9)</td>
<td>0.31</td>
</tr>
<tr>
<td>Complications – N (%)</td>
<td>36 (13)</td>
<td>14 (10)</td>
<td>8 (5)</td>
<td>0.038</td>
</tr>
<tr>
<td>Secondary interventions – N (%)</td>
<td>59 (20)</td>
<td>17 (12)</td>
<td>11 (6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Proximal extension cuff or stent – N events</td>
<td>20</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Limb component extensions – N events</td>
<td>21</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Coil/glue embolisation – N events</td>
<td>18</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Open/laparoscopic collateral ligation – N events</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Conversion to open repair – N events</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Post-implantation rupture – N (%)</td>
<td>3 (1)</td>
<td>1 (1)</td>
<td>2 (1)</td>
<td>0.90</td>
</tr>
<tr>
<td>Direct endoleak – N (%)</td>
<td>20 (7)</td>
<td>11 (8)</td>
<td>3 (2)</td>
<td>0.040</td>
</tr>
<tr>
<td>Type 1a – N events</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Type 1b – N events</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Type III – N events</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Undetermined type – N events</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Persistent or late-onset type II endoleak – N (%)</td>
<td>55 (19)</td>
<td>9 (6)</td>
<td>9 (5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Endograft occlusion – N (%)</td>
<td>5 (2)</td>
<td>3 (2)</td>
<td>3 (2)</td>
<td>0.95</td>
</tr>
<tr>
<td>Endograft infection – N (%)</td>
<td>2 (1)</td>
<td>1 (1)</td>
<td>1 (0)</td>
<td>0.92</td>
</tr>
</tbody>
</table>
Study II

From 2000 to 2012, a total of 112 patients were treated with rEVAR in the three participating institutions. Sixty-one (55%) of the rEVAR patients were treated inside IFU, and 43 patients (38%) were treated outside IFU. Eight patients (7%) lacked preoperative CT of adequate quality for anatomical assessment and were excluded from the analysis. The mean patient age was 73 years. Patients treated outside IFU had larger aneurysms and a higher frequency of peripheral arterial diseases. Of patients outside IFU, 19 (44%) had neck length <15 mm, 11 (26%) had neck diameter outside IFU (29mm for excluder, 32mm for others) and 18 (42%) had an infrarenal angulation >60 degrees (Table 7).

Table 7

Anatomical characteristics of patients inside vs outside IFU

<table>
<thead>
<tr>
<th>inside IFU</th>
<th>Outside IFU</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean neck diameter, mm</td>
<td>25.1</td>
<td>27.1</td>
</tr>
<tr>
<td>Mean neck length, mm</td>
<td>25.1</td>
<td>18.6</td>
</tr>
<tr>
<td>Mean suprarenal angulation, degrees</td>
<td>20.3</td>
<td>37.3</td>
</tr>
<tr>
<td>Mean infrarenal angulation, degrees</td>
<td>34.3</td>
<td>56.8</td>
</tr>
<tr>
<td>Neck calcification > 50%, n (%)</td>
<td>2 (3.3)</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Neck thrombosis > 50%, n (%)</td>
<td>7 (11.7)</td>
<td>10 (24.4)</td>
</tr>
<tr>
<td>Any iliac stenosis, n (%)</td>
<td>5 (8.9)</td>
<td>7 (16.7)</td>
</tr>
<tr>
<td>Severe iliac tortuosity (> 90°), n (%)</td>
<td>3 (5.4)</td>
<td>4 (10.0)</td>
</tr>
<tr>
<td>Mean right iliac diameter, mm</td>
<td>14.6</td>
<td>16.9</td>
</tr>
<tr>
<td>Mean left iliac diameter, mm</td>
<td>14.4</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Patients treated outside IFU had a higher 90-day mortality (inside IFU 15%; outside IFU 37%; p=0.011).

The mean follow-up for patients surviving the first 30 days was 2.9 years (range 0-11.5 years). Eight out of 30 patients (27%) surviving the 30-day period and treated outside IFU had graft-related complications, compared to three of the 52 (6%) patients treated inside IFU (p=0.015). At three years, the Kaplan-Meier estimate of graft-related complications was 44% for
patients treated outside IFU versus 9 % of patients treated inside IFU (p=0.001), as shown in Figure 20.

Figure 20. Kaplan-Meier plot for graft-related complications and reintervention for inside versus outside IFU groups.

The outside IFU group had a higher rate of graft-related reinterventions at three years, 42 % outside IFU versus 17 % inside IFU (p=0.060). Overall mortality was 56 % for outside IFU, 34 % for inside IFU (p=0.016), as shown in Figure 21.

Figure 21. Overall mortality for inside vs outside IFU groups.

Age, surgery under local anaesthesia and neck diameter were predictors of overall survival. Neck length and infrarenal angulation were predictors of late graft-related complications (Table 8).
Table 8

Risk factors for overall mortality and graft-related complications

<table>
<thead>
<tr>
<th>Univariable analysis</th>
<th>Overall mortality</th>
<th></th>
<th>Graft-related complication</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>p-value</td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age, per year</td>
<td>1.068</td>
<td>1.032-1.105</td>
<td><0.001</td>
<td>0.975</td>
<td>0.922-1.031</td>
</tr>
<tr>
<td>Local anaesthesia</td>
<td>0.681</td>
<td>0.386-1.202</td>
<td>0.185</td>
<td>0.756</td>
<td>0.283-2.021</td>
</tr>
<tr>
<td>Outside IFU, Device</td>
<td>2.117</td>
<td>1.167-3.842</td>
<td>0.014</td>
<td>7.066</td>
<td>2.288-21.824</td>
</tr>
<tr>
<td>Neck length <15mm</td>
<td>1.252</td>
<td>0.617-2.540</td>
<td>0.533</td>
<td>7.504</td>
<td>2.830-19.896</td>
</tr>
<tr>
<td>Neck diameter >29mm</td>
<td>2.993</td>
<td>1.522-5.885</td>
<td>0.001</td>
<td>0.946</td>
<td>0.211-4.240</td>
</tr>
<tr>
<td>Beta angle >60 degrees</td>
<td>1.494</td>
<td>0.732-3.049</td>
<td>0.270</td>
<td>2.514</td>
<td>0.873-7.237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multivariable analysis</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, per year</td>
<td>1.086</td>
<td>1.032-1.142</td>
<td>0.002</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Local anaesthesia</td>
<td>0.404</td>
<td>0.188-0.865</td>
<td>0.020</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neck length <15mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.149</td>
<td>3.026-21.944</td>
</tr>
<tr>
<td>Neck diameter >29mm</td>
<td>2.513</td>
<td>1.065-5.932</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beta angle >60 degrees</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.094</td>
<td>1.026-9.328</td>
</tr>
</tbody>
</table>

Study III

Three hundred twenty six patients treated with EVAR at Uppsala and Gävle hospitals during the time period 2001-2012 were included in the study. Patients were classified based on the presence of endoleak and measurement of sealing zone length on first postoperative CTA into a high-risk or low-risk cohort. 35 % of the patients were classified as high-risk, as they had endoleak and/or short sealing (<10 mm seal zone) proximal in the aneurysm neck or distal in the common or external iliac arteries, (Figure 22).
Figure 22. Flow chart for patient selection in the study III.

Within five years of the operation, 3% AAA-related complications occurred in the low-risk group compared to 47% in the high-risk group (p <0.001). Reinterventions occurred in 2% of the low-risk group compared to 39% of the high-risk group (p < 0.001), as shown in Table 9.
Table 9
Five years frequency of AAA-related complications and reinterventions after EVAR categorised to low or high-risk based on first postoperative CTA

<table>
<thead>
<tr>
<th>Overall outcome</th>
<th>Low-risk N=212</th>
<th>High-risk N=114</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA-related complications, n (%)</td>
<td>7 (3.3)</td>
<td>53 (46.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>AAA-related reinterventions, n (%)</td>
<td>4 (1.9)</td>
<td>44 (38.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Any endoleak, n (%)</td>
<td>4 (1.9)</td>
<td>48 (42.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Rupture, n (%)</td>
<td>1 (0.5)</td>
<td>3 (2.6)</td>
<td>0.125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detailed outcome*</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Ia endoleak, n (%)</td>
<td>0 (0)</td>
<td>24 (21.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Type Ib endoleak, n (%)</td>
<td>0 (0)</td>
<td>13 (11.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Type III endoleak, n (%)</td>
<td>0 (0)</td>
<td>5 (4.4)</td>
<td>0.005</td>
</tr>
<tr>
<td>Undefined endoleak, n (%)</td>
<td>1 (0.5)</td>
<td>2 (1.8)</td>
<td>0.281</td>
</tr>
<tr>
<td>Type II with expansion</td>
<td>3 (1.4)</td>
<td>13 (11.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Expansion without clear endoleak, n (%)</td>
<td>2 (0.9)</td>
<td>4 (3.5)</td>
<td>0.189</td>
</tr>
<tr>
<td>Graft migration, n (%)</td>
<td>0 (0)</td>
<td>2 (1.8)</td>
<td>0.122</td>
</tr>
<tr>
<td>Graft limb thrombosis, n %**</td>
<td>12 (5.7)</td>
<td>4 (3.5)</td>
<td>0.391</td>
</tr>
<tr>
<td>Proximal cuff/Palmaz® stent, n (%)</td>
<td>1 (4.2)</td>
<td>23 (20.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Relining, n (%)</td>
<td>0 (0)</td>
<td>4 (3.5)</td>
<td>0.014</td>
</tr>
<tr>
<td>Limb extension, n (%)</td>
<td>0 (0)</td>
<td>11 (9.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Coil or glue embolisation, n (%)</td>
<td>3 (1.4)</td>
<td>9 (7.9)</td>
<td>0.005</td>
</tr>
<tr>
<td>Conversion to open surgery, n (%)</td>
<td>1 (0.5)</td>
<td>4 (3.5)</td>
<td>0.052</td>
</tr>
<tr>
<td>Conversion to AUI, n (%)</td>
<td>0 (0)</td>
<td>1 (0.9)</td>
<td>0.350</td>
</tr>
<tr>
<td>Thrombolysis, n %**</td>
<td>6 (2.8)</td>
<td>1 (0.9)</td>
<td>0.428</td>
</tr>
</tbody>
</table>

AUI=Aorto-uni-iliac. *Some patients had more than one adverse event and reintervention. **Graft limb thrombosis and thrombolysis were not regarded as AAA-related complications and reinterventions in the analysis.
In the low-risk group, 97% patients had five years of freedom from AAA-related complications vs 47% in the high-risk group, (log rank p < 0.001). In the low-risk group, five years freedom from AAA-related reinterventions was 97% compared to 54% in the high-risk group (log rank p < 0.00), as shown in Figure 23.

![Kaplan-Meier plot of 5-years freedom from AAA-related complications and reinterventions](image)

Figure 23. Kaplan-Meier plot of 5-years freedom from AAA-related complications and reinterventions

During follow-up, there were 1343 surveillance imaging examinations in the low-risk group and 652 in the high-risk group. This results in 168 imaging examinations per AAA-complications in the low-risk group and 11 imaging examinations per complication in the high-risk group (Table 10).
Table 10

Details of imaging of post-EVAR surveillance categorised to low or high-risk based on first postoperative CTA.

<table>
<thead>
<tr>
<th></th>
<th>Low-risk</th>
<th>High-risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of examinations performed to the first complication or the end of the follow-up</td>
<td>1343</td>
<td>652</td>
</tr>
<tr>
<td>CTA</td>
<td>533</td>
<td>265</td>
</tr>
<tr>
<td>DUS</td>
<td>632</td>
<td>345</td>
</tr>
<tr>
<td>Non-contrast-enhanced computerised tomography</td>
<td>79</td>
<td>30</td>
</tr>
<tr>
<td>Plain abdominal X-ray</td>
<td>87</td>
<td>4</td>
</tr>
<tr>
<td>Others (15 CEDU, 4 DSA, 1 IVUS)</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>AAA-related complications during total follow-up time</td>
<td>8</td>
<td>59</td>
</tr>
<tr>
<td>Examinations needed for one AAA-related complications</td>
<td>168</td>
<td>11</td>
</tr>
</tbody>
</table>

CTA, computerised tomographic angiography. DUS, duplex ultrasonography. CEDU, Contrast-enhanced duplex ultrasonography. DSA, digital subtraction angiography. IVUS, intravenous ultrasound.

Study IV

Some 454 patients were included in the study from Uppsala and Gävle. Fifteen patients died within 30 days of the operation, and they were excluded from the analysis. Of the remaining 439 patients, 118 (27 %) developed 176 complications (Figure 24).
Figure 24. Flow chart of all patients in the study IV.

Table 11 shows baseline characteristics for patients with and without complications after EVAR. Image-detection identified complications in 62 % of the patients. Graft limb thrombosis, graft infection and post-implantation ruptures were mainly symptomatic complications, while sac expansion and endoleaks were mainly asymptomatic imaging-detected.
Baseline characteristics of patients with and without post-EVAR complications

<table>
<thead>
<tr>
<th></th>
<th>No complication group, N=321</th>
<th>Complication group, N=118</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male patients, n (%)</td>
<td>268 (83.5)</td>
<td>99 (83.9)</td>
<td>0.918</td>
</tr>
<tr>
<td>Mean follow-up time, years</td>
<td>4.9 (3.2)</td>
<td>5.6 (3.1)</td>
<td>0.345</td>
</tr>
<tr>
<td>Maximum aortic diameter, mm (SD)</td>
<td>62.8 (11.9)</td>
<td>64.9 (14.8)</td>
<td>0.116</td>
</tr>
<tr>
<td>Age, years (SD)</td>
<td>75.1 (7.0)</td>
<td>74.9 (6.7)</td>
<td>0.715</td>
</tr>
<tr>
<td>Rupture, n (%)</td>
<td>19 (6.0)</td>
<td>12 (9.8)</td>
<td>0.157</td>
</tr>
<tr>
<td>Cardiac disease, n (%)</td>
<td>156 (49.8)</td>
<td>57 (48.7)</td>
<td>0.836</td>
</tr>
<tr>
<td>Pulmonary disease, n (%)</td>
<td>59 (18.8)</td>
<td>23 (20.0)</td>
<td>0.783</td>
</tr>
<tr>
<td>Renal disease, n (%)</td>
<td>31 (9.9)</td>
<td>14 (11.9)</td>
<td>0.546</td>
</tr>
<tr>
<td>Outside IFU</td>
<td>89 (32.6)</td>
<td>43 (41.3)</td>
<td>0.112</td>
</tr>
</tbody>
</table>

Type of stentgraft used			
Endurant®, n (%)	72.0 (23.1)	27 (22.5)	0.898
Zenith®, n (%)	132 (42.3)	53 (44.2)	0.727
Excluder®, n (%)	83 (26.6)	33 (27.5)	0.850
Talent®, n (%)	17 (5.4)	4 (3.3)	0.360
Other endografts, n (%)	8 (2.6)	3 (2.5)	1.000

Endurant® and Talent® (Medtronic, Santa Rosa, CA, USA), Excluder® (W.L. Gore and Associates, Flagstaff, AZ, USA) and Zenith® (Cook Medical INC., Bloomington, IN, USA).

Over 80% of complications occurred within 5 years from the operation and mainly in the first postoperative year (Figure 25).

Fifty-five clinically significant complications had dual imaging (a CTA and a DUS within three months from each other). Additionally, there were 194 paired negative or false positive images during the follow-up period. The kappa coefficient between CTA and DUS for detecting clinically
significant complications was 0.91. The DUS had a sensitivity of 88.8 %, specificity of 99.4 % and negative predictive value of 97 % for clinically significant complications. The compliance with follow-up in the cohort was 59 %.

Figure 25. Most of the post-EVAR complications occurred within five years of the operation.
General Discussion

Although EVAR is now the primary treatment modality for AAA in most countries, unfortunately, EVAR’s path is not always strewn with roses. A successful EVAR requires some predefined anatomical criteria to be fulfilled, based on the device’s IFU. Additionally, the procedure is not infrequently complicated by early or late graft-related complications including the different type of endoleaks and expansion that may lead to post-implantation rupture. Therefore, surveillance after EVAR is regarded as mandatory, and annual imaging is recommended in current guidelines. With increasing number of EVARs, this results in an increasing burden of post-EVAR surveillance examinations.

Post-implantation rupture and the benefit of EVAR surveillance

Post-implantation rupture is regarded as a major failure of EVAR and aims to be prevented by the surveillance programme. Figure 26 clarifies the idea behind the EVAR surveillance programme.

Figure 26. Schematic view of the idea of EVAR follow-up: to detect abnormalities that lead to endoleak and expansion, which may result in rupture.
Post-implantation rapture is a devastating complication. The 30-day mortality rate varies from 44 % in the study IV to 63 % in the Eurostar registry and 66 % in the EVAR trials. Table 12 illustrates a comparison of post-implantation ruptures between the study IV and the EVAR trials.

Table 12

<table>
<thead>
<tr>
<th></th>
<th>Study IV, n=454</th>
<th>EVAR trials, n=848</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-implantation ruptures, n</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>Time to rupture, months</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>Ruptures within 30 days from EVAR, n</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>No intervention, n</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Successful Endovascular approach, n</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>30-days mortality, %</td>
<td>44</td>
<td>66</td>
</tr>
<tr>
<td>Survival after reintervention, %</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

Cho JS et al. analysed mortality rate of ruptures with and without prior EVAR. He concluded that an existing endograft did not provide any survival benefit in the rupture setting (Cho, 2010). Table 13 demonstrates post-implantation rupture frequency in different trials.
Table 13

Frequency of post-implantation rupture in different trials

<table>
<thead>
<tr>
<th>Trials</th>
<th>Design</th>
<th>Indication</th>
<th>No. of patients</th>
<th>Rupture frequency, n</th>
<th>Study period, year</th>
<th>Mean follow-up, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE (Becquemin, 2011)</td>
<td>RCT</td>
<td>Elective</td>
<td>150</td>
<td>3</td>
<td>2003-2008</td>
<td>36</td>
</tr>
<tr>
<td>DREAM (De Bruin et al., 2010)</td>
<td>RCT</td>
<td>Elective</td>
<td>173</td>
<td>2</td>
<td>2000-2003</td>
<td>24</td>
</tr>
<tr>
<td>EVAR 1 & 2 (Wyss et al., EVAR trials, 2010)</td>
<td>RCT</td>
<td>Elective</td>
<td>848</td>
<td>27</td>
<td>2000-2003</td>
<td>58</td>
</tr>
<tr>
<td>Medicare (Schmermerhorn et al., 2008)</td>
<td>Obs</td>
<td>Elective</td>
<td>22830</td>
<td>441</td>
<td>2001-2004</td>
<td>61</td>
</tr>
<tr>
<td>Study IV</td>
<td>Obs</td>
<td>Mixed</td>
<td>454</td>
<td>16</td>
<td>1998-2012</td>
<td>60</td>
</tr>
</tbody>
</table>

Predicting post-implantation rupture is not always easy, and spontaneous ruptures occur despite objection-free follow-up (Dellagrammaticas, 2015; Fransen, 2003; Karthikesalingam et al., 2010; Wyss et al., EVAR trials, 2010). In the study IV, 11 patients had imaging follow-up within 12 months before rupture, but only four ruptures were preceded by complications visible on the follow-up. In EVAR trials, there were no signs of any abnormality in five of 22 late ruptures. In the Eurostar registry, 12 of 34 ruptures were preceded by an unremarkable follow-up (Fransen et al., 2003).

Surveillance after EVAR is highly variable and divergence from existing guidelines is quite common (Garg et al., 2015). In addition, studies report incomplete adherence to EVAR surveillance without a clear effect on the outcome (AbuRahma et al., 2016; Leurs, 2005). Kret et al. reported no survival benefit for patients with complete surveillance and Garg et al. reported a lower rate of total complications, late ruptures and reinterventions in patients with incomplete surveillance (Garg, 2015; Kret, 2013). Five of 10 studies in a systemic review by Spanos et al. suggested that complete surveillance has no impact on survival. Only one study in this review
showed that incomplete surveillance was associated with higher rate of complications (Spanos, 2016).

Other reports underline the role of complete surveillance and compliance to prevent aneurysm expansion and rupture (de Mestral et al., 2017; Hicks, 2017; Jones, 2007). Table 14 shows the rate of compliance in different trials. Study IV and other studies reported fewer adherences to compliance as more time passes from the primary operation (Godfrey, 2015).

Table 14

<table>
<thead>
<tr>
<th>Reports</th>
<th>N of patients</th>
<th>Compliance rate, %</th>
<th>Follow-up time, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Schanzer, 2015)</td>
<td>19962</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>(AbuRahma, 2016)</td>
<td>565</td>
<td>43</td>
<td>25</td>
</tr>
<tr>
<td>(Garg et al., 2015)</td>
<td>9695</td>
<td>43</td>
<td>72</td>
</tr>
<tr>
<td>(Godfrey et al., 2015)</td>
<td>50</td>
<td>13</td>
<td>48</td>
</tr>
<tr>
<td>(Cohen, 2017)</td>
<td>517</td>
<td>82</td>
<td>30</td>
</tr>
<tr>
<td>(Chang, 2013)</td>
<td>1736</td>
<td>92</td>
<td>36</td>
</tr>
<tr>
<td>(Wu, 2015)</td>
<td>188</td>
<td>59</td>
<td>40</td>
</tr>
<tr>
<td>(Spanos et al., 2016)</td>
<td>36119</td>
<td>50</td>
<td>25-73</td>
</tr>
<tr>
<td>(Antoniou et al., 2015)</td>
<td>16974</td>
<td>37</td>
<td>---</td>
</tr>
<tr>
<td>(de Mestral et al., 2017)</td>
<td>4988</td>
<td>58</td>
<td>41</td>
</tr>
<tr>
<td>Study IV</td>
<td>454</td>
<td>59</td>
<td>59</td>
</tr>
</tbody>
</table>

Early graft limb occlusion and graft thrombosis are usually the result of a technical issues and are detectable on the early perioperative imaging. Late occlusions are usually not detectable with prior imaging (van Zeggeren, 2013). Late occlusions occurred in approximately 2% of the patients in studies I and II and presented with symptoms. Graft infection is usually a fatal complication but is rarely detectable or preventable with surveillance.

The proportion of complications detected with surveillance imaging varies among studies. While some studies reported that most of the post-EVAR complications are symptomatic (Karthikesalingam et al., 2010; Nordon, 2010), 60% of complications in study IV were imaging-detected.
Norden et al. reported that no more than 9% of reinterventions are imaging-initiated (Nordon et al., 2010). Newer EVAR devices perform better than older devices regarding late complications and post-implantation ruptures (Al-Jubouri, 2013; Verzini et al., 2014).

All these aspects question the value of the EVAR surveillance programme in its current form with annual imaging.

EVAR follow-up - an increasing burden

The burden of repeated imaging grows larger every year. In Sweden, the number of EVAR operations has exceeded 600 operations per year since 2010 (Figure 27).

A CTA imaging requires approximately 90 ml of contrast agent and results in 10 mSv of ionising radiation exposure to the patient. The cost of a CTA is approximately 6000 Swedish crowns. The cost for DUS imaging is approximately 4600 Swedish crowns. Repeated annual imaging represents about one-third the total cost of EVAR (Mani, 2008; Sternbergh, 2008). A simple health cost calculation of the follow-up for the cohort in the study III results in a total cost of about 70000 euro to detect one aneurysm-related complication in the low-risk group compared to approximately 4500 euro in the high-risk group.

In addition to the cost and resources used, follow-up may affect the patient’s wellbeing (Figure 28). Additionally, reinterventions are not risk free.
Figure 28. Note in Swedish on the lower left corner of a post-EVAR follow-up scan: “The patient feels the follow-up scans are inconvenient and would like to quit surveillance”.

Type II endoleak and surveillance

The risk associated with presence of type II endoleak is a matter of debate. In the study III, most of the type II endoleaks could be detected on the first postoperative CTA. During follow-up time, 3 (1.4 %) in the low-risk vs 15 (13.2 %) in the high-risk group developed sac growth, p<0.001. In Study IV, there were 78 type II endoleaks, including 28 patients with type II with expansion. Two ruptures in this cohort could be related to type II endoleak by finding bleeding from lumbar arteries during open conversion. As most type II endoleaks are detected on the first postoperative CTA, and a very low percentage of the sac expansions are due to type II endoleak in the patients with adequate seal, is promising and supports that risk stratification based on first CTA is applicable even for this subgroup of patients. The significantly low percentage of sac expansion due to type II endoleaks in the low-risk group is also an interesting finding. Studies report that most causes of rupture were due to direct endoleaks and not type II (Antoniou et al., 2015). Study IV shows a similar trend (Table 15).
Table 15

Post-implantation ruptures in Study IV

<table>
<thead>
<tr>
<th>Patients</th>
<th>Time to rupture, months</th>
<th>Cause of rupture</th>
<th>Reinterventions</th>
<th>Survival time after rupture, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>Unknown</td>
<td>No reintervention</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>Type III</td>
<td>Extension inside the components</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>Type Ia</td>
<td>Proximal cuff</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>Type Ib</td>
<td>Limb extension</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>Type Ia</td>
<td>Proximal cuff</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
<td>Unknown</td>
<td>Conversion to open repair</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
<td>Unknown</td>
<td>No reintervention</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>Type Ia</td>
<td>Proximal cuff</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>53</td>
<td>Unknown</td>
<td>No reintervention</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>Type Ib</td>
<td>Limb extension</td>
<td>17 (Still alive)</td>
</tr>
<tr>
<td>11</td>
<td>69</td>
<td>Type II with expansion</td>
<td>Conversion to open repair</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>77</td>
<td>Type Ib</td>
<td>Conversion to open repair</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>86</td>
<td>Type Ib</td>
<td>Limb extension</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>92</td>
<td>Type II with expansion</td>
<td>Open ligation of collaterals</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>117</td>
<td>Type Ib</td>
<td>Limb extension</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>Unknown</td>
<td>No reintervention</td>
<td>0</td>
</tr>
</tbody>
</table>

EVAR for ruptured AAA

Standard EVAR in elective cases with hostile anatomy has resulted in an acceptable outcome in some retrospective analyses (Lee et al., 2013). Ruptured AAAs are, in general, larger in diameter and often have more hostile anatomical characteristics. As an example, 36% of ruptured AAAs were outside IFU for EVAR in the IMPROVE trial (IMPROVE trial...
investigators, 2015) and 61 % were regarded as outside IFU in the AJAX trial (Reimerink et al., AJAX trail, 2013). Study II assessed outcomes after a ruptured EVAR, based on the aneurysm anatomy. Patients treated with rEVAR outside IFU had a higher rate of mortality, graft-related complications and reinterventions. Of the patients in the study, 40 % treated outside IFU. Neck diameter > 29mm was the strongest predictor of overall mortality, while short neck length was the main predictor of graft-related complications. Ruptured AAA with hostile anatomy may have better results when treated with more complex endovascular techniques, e.g. chimneys, branched or fenestrated grafts. However, using standard EVAR in these cases should be regarded as high-risk and should be followed by a vigilant surveillance programme.

Can the current studies change EVAR follow-up?

EVAR patients have different risks for post-implantation rupture, depending on several risk factors that have been described in the literature. Study I confirms that early sac dynamics predict EVAR outcome, showing that different degrees of sac shrinkage have different prognostic impacts. Eight of 149 patients in the major shrinkage group developed postoperative complications, of which only three were predictable with follow-up imaging: two type I and one type III endoleak. All three patients had postoperative characteristics that could predict increased risk (inadequate sealing zone and overlaps).

Many studies report the impact of aortic anatomy on the EVAR outcome, but almost all focus on elective cases (Leurs, 2006; Waasdorp, 2005). Study II includes an analysis of EVAR outcome in ruptured cases based on the preoperative aortic anatomy. This study clarifies that expanding EVAR beyond IFU results in increased risk for graft-related complications and overall mortality. However, EVAR outside IFU can be used as a damage control strategy in emergency cases with a more intensive follow-up programme.

Study III stratifies the follow-up based on the results of the first postoperative CTA. Two-thirds of all EVAR patients had adequate sealing proximally and distally and no endoleak in the first postoperative CTA. These patients developed very few complications in the first five years post-EVAR. Delaying subsequent imaging follow-up in this group would reduce surveillance workload remarkably.

Study IV demonstrates that the majority of the complications after EVAR is imaging-detected and occurs within the first five years post-EVAR. DUS has a high negative predictive value and can be used for EVAR follow-up.

Based on the current studies and the existing literature, a risk classification algorithm for EVAR follow-up is suggested below.
Low-risk

- Friendly anatomy (Study II)
- No endoleak and adequate sealing at first postoperative CTA (Study III)
- Major shrinkage at one year (Study I)

These patients have a low risk for complications in the first five years postoperatively, and may not require annual imaging during this period.

High-risk

- Hostile anatomy (Study II)
- Endoleak or inadequate sealing at first postoperative CTA (Study III)
- Increased or unchanged sac diameter at one year (Study I)

These patients are at high-risk for complications and need regular annual imaging (DUS, to be completed with CTA if needed) according to guidelines. Patients with direct endoleaks and sac expansion need further investigation and reintervention.

The role of other risk factors such as intraoperative adjunct procedures, initial aneurysm diameter and patent collateral is less clear. Ruptured AAA by itself is not a risk factor for post-EVAR complications, as shown in Study II.

Figure 29 shows a simplified illustration of a surveillance protocol suggestion, based mainly on first postoperative CTA results and sac dynamic.
Follow-up after five years from EVAR

Corriere et al. reported the occurrence of endoleaks as late as seven years post-EVAR (Corriere et al., 2004). The EVAR 1 trial’s 15-year follow-up report stated that increased aneurysm-related mortality after eight years from EVAR was mainly attributable to aneurysm sac rupture (Patel, EVAR trial 1, 2016). Hence, patients at low-risk for complications in the first five years post-EVAR would require imaging and reevaluation after five years. It is unclear if imaging and re-evaluation after five years should be performed yearly or with less intensity. However, it is important to bear in mind that mean survival after elective AAA repair is approximately 8 years (Mani, 2009), and many of the patients have reached an age at which it is not reasonable to continue follow up.
Future perspectives

Most of the studies done on risk stratification of EVAR follow-up are retrospective studies, which restrict generalisability. A prospective and preferably randomised study between the classic follow-up protocol and a risk-stratified protocol is recommended. However, initial attempts on the design of such study indicate that it would require a very large number of cases, and may be difficult to perform practically.

Most of the reports on post-implantation rupture comprise very small cohorts. To better understand different mechanisms behind post-implantation rupture, a national or international analysis of all ruptured cases in an accident-investigation manner may be of interest. The Swedish vascular registry, Swedvasc, is an excellent tool for finding ruptures cases for such a study.

One limitation of almost all randomised trials on elective EVAR includes that the devices they were used were of the older generation. Newer devices and better experiences in endovascular and imaging technology are expected to result in better outcome. Further studies to compare the outcome of EVAR with newer devices and open repair will be of interest, especially when the vascular surgeon's experience in the open repair diminishes.

In addition to risk stratification to reduce the burden of follow-up, preventive measurements to reduce the risk of complications, have been discussed. One option is collateral arteries embolisation to reduce the risk of type II endoleak. Another one is total coverage of aneurysm neck and iliac landing zones to obtain as long sealing as possible and to reduce the risk for future disease progression. Studying long-term effects of these measurements may be beneficial to ensure more durable EVAR results.

Endograft devices are constantly being improved. Distal sealing is a subject of special importance as it is a usual cause of the failure. Developing graft limbs with distal hooks, equivalent to TEVAR grafts with distal component, may have an impact on reducing this kind of complications. Non-invasive sac pressure monitoring using implantable sensors was a hot subject for several years ago. Unfortunately, the method had many limitations. Newer sensors, preferably integrated with EVAR devices may be a future solution to surveillance issues.

Type II endoleak, as a potential cause of secondary sac rupture is a matter of continual debate. Further studies needed to clarify the nature of type II endoleaks and their role in EVAR failure.
Conclusion

- Sac shrinkage early after EVAR is associated with low risk for late complications and reinterventions.

- Patients with hostile anatomy have less favourable outcomes after ruptured EVAR.

- No endoleak and adequate sealing in the first postoperative CTA is a predictor for a low rate of late complications and reinterventions post-EVAR.

- Most post-EVAR complications are imaging-detected and occur in the early years after surgery.

- DUS is as good as CTA in detecting clinically significant complications after EVAR.
Sammanfattning på svenska (Summary in Swedish)

Bukaortaaneurysm är en vidgning av stora kroppspulsådern, som normalt har en diameter under 30mm. Aneurysmet ökar successivt i storlek för att till slut spricka (rupturera). För att förbygga det dödliga ödet som en ruptur innebär, brukar man operera patienter med en förebyggande operation då aortadiameteren överstiger 55mm hos män och 52mm hos kvinnor.

Traditionellt har man opererat bukaortaaneurysm med öppen teknik. Man öppnar buken, tar bort aneurysmet och bytt ut den mot ett konstgjort rör, ett så kallad graft. Operationen är komplex och förenad med risker för organsvikt och 4-7 % risk för död i elektiva fall och över 40 % i akuta fall. Sedan början av 90-talet har man utvecklat en operationsmetod som är minimalinvasiv och baserad på kateterteknik, Endovascular aneurysm reparation, eller EVAR. Istället för att patienten är sövd och hela buken öppnas, så gör man i lokalbedövning små snitt i ljumskarna och placerar ett syntetiskt stentgraft som förstärkning på insidan av stora kroppspulsådern och aneurysmet exkluderas från cirkulationen. Metoden har mindre behov av intensivvård, mindre blodförlust och kortare vårdtid. Flera randomiserade studier har visat minskad dödlighet vid minimalinvasiv kirurgi jämfört med öppen operation.

I de flesta länder har EVAR blivit standard metod för behandling av aortaaneurysm. I Sverige görs ca 600 EVAR årligen. För att EVAR skall lyckas måste vissa anatomiska förutsättningar uppfyllas.

Komplikationer med EVAR är bl.a. att aneurysmet inte alltid helt lyckas isoleras från cirkulationen. I vissa fall kan man hitta fortsatt eller nytillkommet flöde till aneurysmsäcken, så kallad endoläckage. Endoläckage kan leda till fortsatt vidgning av aneurysmsäcken vilket till slut kan leda till ruptur med ofta hög dödlighet. Andra komplikationer som kan uppstå är migration av stentgraftet, säck tillväxt, trombotisering av graft skänklarna och graft infektion.

För att upptäcka komplikationer i tid och förebygga ruptur, rekommenderas regelbunden uppföljning av alla EVAR patienter, vanligtvis med ultraljud eller datortomografi. Det brukar vara kontroller efter 1, 6, 12 månader och sen årligen eller varannat år om allt ser bra ut.

Problem med uppföljningen att den är kostsam, den innebär stor arbetsbelastningen för sjukvården och kan orsakar ångest och oro hos
patienterna. Det vore önskvärt att i framtidens kunna skräddarsy uppföljningen efter EVAR baserad på patienternas risk för att utveckla komplikationer.

Delarbete I

Tidig krympning av aneurysmsäcken efter EVAR operation är associerad med lägre risk för sena komplikationer.

I 284 fall (48 %) hade aneurysmsäcken blivit större eller var oförändrad, vid kontrollundersökning i medel 1 år efter operation. I 142 fall (24 %) hade aneurysmsäcken krympt 5-9mm, och i 171 fall (29 %) hade den krympt 10mm eller mer.

Patienter där aneurysmsäcken hade krympt 10mm eller mer på ett år efter EVAR hade en mycket liten risk för komplikationer upp till fem år efter ingreppet (6 %). Hos patienter där aneurysmsäcken hade krympt 5-9mm var risken för komplikation 12 % och hos patienter med ingen krympning eller tillväxt av aneurysmsäcken var risken 16 %. Slutsatsen av studien var att patienter där aneurysmsäcken krymper redan vid ett års kontroll efter EVAR lopper mycket mindre risk för sena komplikationer, och därmed inte behöver lika tät uppföljning.

Delarbete II

Komplex aortaanatomi indikerar högre risk för mortalitet och komplikationer efter EVAR vid rupturerat bukaortaneurysm.

I andra delarbetet, studerades om det finns skillnad i utfallet efter EVAR operation för rupturerat aneurysm hos patienter som behandlas inom anatomiska riktlinjer för stentgraft behandling (s.k. instructions for use eller IFU), eller utanför IFU.

Hundratolv patienter opererades med EVAR på grund av ruptur 2000-2012 på de tre sjukhus som ingick i det första arbetet. Åtta patienter saknade adekvat preoperativ datortomografi och exkluderas från analyserna då kroppspulsåderns anatomi inte kunde utvärderas. Sextioen patienter (55 %) opererades inom IFU och 43 (38 %) utanför IFU.

Medel uppföljningstiden var 2,9 år. Tre år efter operationen var komplikationsfrekvensen 44 % för gruppen som behandlats utanför IFU och
9 % inom IFU, p=0,003. Totalmortaliteten var 56 % utanför IFU och 34 % inom IFU, (p=0,016).

Studien visar att EVAR utanför IFU vid rupturerat AAA är associerad med större risk för komplikationer, reinsertioner och högre mortalitet.

Delaarbete III

Uppföljning efter endovaskulär aneurysmoperation kan stratifieras baserat på resultatet av första postoperativa datortomografin.

I den här studien undersöktes om patienter som har bra tättningszon mellan stentgraftet och aorta (minst 10 mm) och saknar endoläckage vid första postoperativa datortomografin har mindre risk för sena komplikationer.

Alla EVAR patienter från Uppsala och Gävle (326 patienter) som hade genomgått en första postoperativ datortomografi inom 1 år från EVAR, inkluderades i studien. 35 % klassades som hög risk, d v s de hade ett endoläckage vid första kontrollen eller en tättningszon <10 mm i aneurysmhal sensor av iliaca. Resten klassades som låg risk.

Fem år efter operation hade 3 % i låg risk gruppen och 47 % i hög risk gruppen drabbats av någon komplikation relaterad till aneurysmet, p<0,001. Under samma tidsperiod hade 2 % i låg risk gruppen och 39 % i hög risk gruppen genomgått aneurysmrelaterade reinterventioner, p<0,001.

Studien visar att tillräckligt lång tättningszon och inget endoläckage vid första postoperativa datortomografin är associerad med mycket liten risk för aneurysmrelaterade komplikationer upp till 5 år efter EVAR.

Delaarbete IV

Upptäckten av sena komplikationer efter endovaskulär aneurysmoperation och betydelsen för uppföljning.

I den här studien analyserades hur sena komplikationer efter EVAR upptäcktes. Hypotesen var att de flesta komplikationer resulterar i symptom och således upptäcks oavsett uppföljningsrutiner. I studien analyserade också om ultraljud kunde upptäcka komplikationer lika bra som datortomografi.

Fyrahundrafemtyfyr på patienter som opererades med standard EVAR i Uppsala och Gävle från 1998 till 2012 inkluderades i studien. Femton patienter dog inom 30 dagar och uteslöts från analyserna. Hundraarton (27 %) av patienterna fick 176 komplikationer. Sextiotvå procent av komplikationerna upptäcktes tack vare uppföljningsundersökningar och var asymptomatiska. Åttiofem procent av komplikationerna skedde inom första fem åren efter EVAR, framförallt under första året. Överenskommelsen mellan ultraljud och datortomografi för att upptäcka komplikationer var mycket bra i den här kohorten, med ett kappavärde på 0,91.
Studien visar att de flesta komplikationerna efter EVAR upptäcks tack vare uppföljningsundersökningar, och därför är fortsatt uppföljning nödvändig. Ultraljud är tillräcklig som uppföljningsmetod för att upptäcka kliniskt signifikanta komplikationer.
Acknowledgement

I wish to express my sincere gratitude to all those who have supported me during the process of working on and writing this thesis. I especially want to thank:

My main supervisor, Associate Professor Kevin Mani, for your friendship, unfailing support and encouragement, for being available for silly questions at any time!

My co-supervisor and head of the section of vascular surgery, Professor Anders Wanhainen, for your never-ending support and enthusiasm, for your brilliant mind and your extraordinary way to find solutions to every problem.

My co-supervisor, Professor Martin Björck for introducing me to the world of scientific research, for being such a great scientist, for suggesting Kevin as the main supervisor when he was still in London, for always sharing your knowledge so generously and for all your stories and histories at the dinner tables.

For my co-authors Frederico Bastos Gonçalves, Professor Hence J. M. Verhagen, Nelson Gomes Oliviera and all other co-authors of the research team in Rotterdam for excellent and fruitful collaboration.

For my co-author Olov Haller for your unconditional and always very prompt response every time I needed your help.

Claes Juhlin, former head of the Department of Surgery at Uppsala University Hospital, Kristiina Kask, present head of the department, and Per Hellman, head of the Department of Surgical Sciences, for providing me with the resources and conditions to make this work possible.

As my first mentor in vascular surgery, Torbjörn Tuvesson, for your professional clinical guidance and encouraging mentorship, for everything I have learned from you, for being such a great person. Lars Strindberg, my first endovascular mentor, I am still missing working with you.

Lars Karlsson, my clinical supervisor at Gävle Hospital, for always being patient and supportive. Khatereh Djavani, Kerry Filler, Knut Torbjörnsson, Kim Gunnarsson and Samuel Ersryd, former vascular colleagues at Gävle Hospital for great support.

Christer Ljungman, Björn Kragsterman, Gustaf Tegler, Nakisa Esfahani, Achilleas Karkamanis, Demos Dellagrammaticas, Marek Kuzniar, Kalle Sörelius, Jacob Eriksson, Jon Unosson, Olivia Grip and
Tina Hellgren, for all your help, support, joyful moments and making vascular surgery such an amazing job.

My friend Fuad Bahram, director of the research centre at Södersjukhuset, Stockholm and excellent graphic designer, for providing me with the cover picture and illustrations of different kinds of endoleaks.

My former colleagues and the staff at the Department of Surgery at Gävle Hospital, for all years we have worked together.

My colleagues and the staff at the Department of Surgery at Uppsala University Hospital and vascular unit for support and encouragement.

For my colleagues and friends Mahmud, Zakaria, Ismail, Zirek, Karim, Kajal and Shahban for being such wonderful friends.

My best friend Muhamad Ali for being a very dear friend, always able to cheer me up.

In heaven, my father, who was always proud of me. My mother, for everything she has done for me. It is difficult to thank her enough. For all my sisters and brothers for their unrestricted support.

My family: Harman, Miro, Meivi and Sharo, for all love and patience all those times I have been busy working on this thesis. For giving me endless love and hope whenever I needed them.
References

83

Acta Universitatis Upsaliensis

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1402

Editor: The Dean of the Faculty of Medicine

A doctoral dissertation from the Faculty of Medicine, Uppsala University, is usually a summary of a number of papers. A few copies of the complete dissertation are kept at major Swedish research libraries, while the summary alone is distributed internationally through the series Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine. (Prior to January, 2005, the series was published under the title “Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-334369