
17072

Examensarbete 15 hp
Oktober 2017

A Source-to-Source Transformer
for QD-locking

Robert Markovski

Institutionen för informationsteknologi
Department of Information Technology

2

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

A Source-to-Source Transformer for QD-locking

Robert Markovski

Locking is a common method of synchronization in parallel programming. Delegation
locking is a form of locking wherein threads may, under the right circumstances,
delegate critical sections to be executed by another thread instead of waiting for the
lock. Queue Delegation Locking (QD-locking) is a novel method of delegation locking
which drastically improves performance in situations where one or more locks are
moderately or heavily contented, and essentially lets a thread delegate a critical
section to the thread which currently holds the lock. QD-locking requires critical
sections to be written differently than standard phreads mutex locking.

In this thesis, we discuss the feasibility of taking a program which uses pthreads mutex
locks and automatically transforming it into a program using QD-locking. We describe
an implementation of this transformation, called QDTrans, using the qd_lock_lib
implementation of QD-locking in the C programming language.
We also discuss the quality and performance of code tranformed by QDTrans.
QDTrans is currently capable of successfully converting seven out of the nine
SPLASH2 benchmarks.

Tryckt av: Reprocentralen ITC
17072
Examinator: Olle Gällmo
Ämnesgranskare: Konstantinos Sagonas
Handledare: Kjell Winblad

4

Contents
1 Introduction 6

1.1 Overview . 6
1.2 Locks . 6

1.2.1 Contention . 6
1.2.2 Avoiding contention . 7

1.3 Queue Delegation Locking . 7
1.3.1 My contribution . 7

2 QDTrans 8
2.1 How QDTrans works . 8

2.1.1 How QDTrans works . 14
2.1.2 Step by step . 14

2.2 How QDTrans is used . 16

3 Obstacles 17
3.1 The C implementation . 17
3.2 Types of critical sections . 17

3.2.1 Type A . 17
3.2.2 Type B . 18
3.2.3 Type C . 18

3.3 Return handling . 19

4 Related work 22
4.1 Flat Combining . 22
4.2 Remote Core Locking . 22
4.3 Coccinelle . 22

5 Results 23
5.1 Implementation status . 23
5.2 Known limitations . 23

5.2.1 QDTrans currently only processes one file at a time . . . 23
5.2.2 QDTrans does not support all possible kinds of type A

critical section . 24
5.2.3 Other known limitations 27

5.3 Test results . 28
5.3.1 Setup . 28
5.3.2 Transformation rate . 28
5.3.3 Performance . 29

6 Conclusion 35
6.1 Future work . 35

5

1 Introduction
1.1 Overview
Traditionally, the most common way to increase the speed of a given computer
was to increase the clock speed [10]. However, a point was reached where it is no
longer feasible to do so — the increase in performance no longer outweighed the
increased power and cooling requirements. At that point, CPU designers instead
began adding multiple cores on CPUs [10], and concurrency and parallelism
went from only being relevant when programming big supercomputers to being
relevant when programming virtually anything.

However, when programming with parallelism, it is important to deal with
shared memory correctly. Multiple threads accessing the same shared memory
space can lead to serious problems if the threads are not somehow in agreement
about who is allowed to access what memory at what moment in time—multiple
threads attempting to modify the same data structure simultaneously can lead
to many kinds of data races1 and race conditions2.

Ensuring threads are in agreement over who is allowed to do what during
parallel execution is called synchronization. Various methods of synchronization
exist, such as semaphores, barriers, and various types of locks [12].

The purpose of this thesis is to present a source-to-source transformation
tool called QDTrans. The necessary transformation is outlined, described and
discussed. QDTrans and its design are also discussed and evaluated. Finally,
QDTrans was tested on the SPLASH2 benchmarks and the results of this are
also evaluated and discussed.

1.2 Locks
Mutally exclusive locks, commonly referred to as mutex locks, mutexes (mutex
being short for “mutual exclusion (locks)”) or simply locks, are a common subset
of methods of synchronization. The basic idea of a lock is as follows: A lock
may only be held by a single thread at a time. In order to access resource X,
a thread must first acquire the corresponding lock. If another thread is already
holding the lock in question, threads who wish to access resource X must wait
until the thread that currently holds the lock is done accessing resource X and
releases the lock [8].

1.2.1 Contention

Contention occurs when more than one thread want to access the same locked
resource at the same time, leaving threads waiting for others to finish. Slight
contention is usually a sign that a program is working in parallel as intended,
but heavy contention can cause severe performance degradation — threads get

1A data race is a type of error which is defined as a situation where two or more threads access
the same location simultaneously and at least one of those accesses is a write. This can potentially
lead to data corruption and race conditions [11].

2A race condition is a type of error which can arise when a program relies on a particular
sequence of operations across multiple threads or CPUs — if this sequence is not enforced properly
via some means of synchronization, operations may be carried out in violation of this required
sequence, breaking the program, potentially leading to problems such as data corruption, infinite
loops, crashes, etc. (Paraphrasing [21])

6

stuck for significant periods of time waiting to acquire contented locks when
they could be doing useful work [20].

1.2.2 Avoiding contention

There are solutions to this problem; for example, it might be possible to rewrite
the affected program to avoid contention, for example, by using finer grained
locking. However, other solutions also exist, such as various delegation locking
algorithms. The idea of delegation locking is to allow critical sections to be
delegated to the thread which holds the relevant lock. Delegation locking algo-
rithms include Remote Core Locking [17], Flat Combining [13], and a novel and
interesting solution called Queue Delegation Locking [14].

1.3 Queue Delegation Locking
Queue Delegation Locking, or QD-locking for short, is a scalable synchroniza-
tion mechanism devised by David Klaftenegger, Konstantinos Sagonas, and Kjell
Winblad. The idea behind QD-locking is to allow critical sections to be dele-
gated to the thread currently holding the lock, which may allow the delegating
thread to move on and do other useful work instead of waiting for the lock,
as well as enabling cache reuse by keeping consecutive operations on the same
shared piece of data on the same core [16].

Klaftenegger, Sagonas and Winblad have developed a pair of libraries imple-
menting QD-locking for C and C++. However, for an existing program which
uses mutexes to benefit from this library some rewriting is necessary due to the
difference in how critical sections need to be written.

1.3.1 My contribution

Rewriting a program to utilize QD-locking properly can be a tedious, manual
procedure. However, there is no reason why someone could not write a program
which automatically transforms source code to utilize QD-locking rather than
conventional mutex locks.

There are essentially two ways to automatically rewrite a program, source-
to-binary transformation and source-to-source transformation. Source-to-binary
transformation means the program is transformed as part of the compilation
process, similar to the various performance optimizations many compilers apply.

This thesis presents QDTrans, a source-to-source transformation tool which
automatically rewrites critical sections so use QD-locking. Source-to-source
transformation, however, is a transformation technique which consists of pars-
ing valid source code into an abstract syntax tree3 for a particular programming
language, possibly performing modifications, and finally outputting valid source
code.

3An Abstract Syntax Tree, or AST, is a tree containing an abstract representation of the structure
of programming source code [9]

7

2 QDTrans
First, a source-to-binary transformation tool would by nature be locked to the
compiler infrastructure in which it was implemented, in this case Clang, while
a source-to-source transformation tool could in theory be used with any C com-
piler capable of compiling the transformed program. It was decided that the
flexibility of being able to use any compiler would be preferable, so the deci-
sion was made to attempt source-to-source transformation. Finally, knowing
that the C programming language is quite flexible in what it lets you do, it did
not take long to realize that supporting transformation of “every possible valid
C program which uses pthreads mutex locking” would have been an enormous
undertaking, so a few limitations were defined:

• Only the simple “lock-access-unlock” structure will be fully supported.
Supporting multiple reader locks would probably be possible but more
complicated locking structures could be complicated to support.

• Due to the fact that mutex locks in C are not explicitly tied to a resource
(as in some other languages, e.g. Rust), optimizing critical sections per-
fectly (e.g. by factoring out pieces of code which do not actually need to
reside inside the critical section) would not be feasible since there is really
no consistent way to programmatically determine exactly which variable(s)
the lock is actually supposed to synchronize more accurately than “one or
more of the global variables accessed inside the critical section”.

2.1 How QDTrans works
This section will explain the required changes, and thus the transformation
procedure, between mutex locking and QD locking, by means of a couple of ex-
amples, one example written from scratch and a slightly more complex example
inspired by shared_int_example.c, which is included with the qd_lock_lib
library.

The first example is shown in listing 1.

8

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <pthread.h>

5 pthread_mutex_t lock;
6 int counter;

8 int main() {

10 counter = 0;
11 pthread_mutex_init(&lock, NULL);
12 pthread_mutex_lock(&lock);
13 printf("Line␣1\n");
14 counter++;
15 printf("Line␣3\n");
16 pthread_mutex_unlock(&lock);
17 pthread_mutex_destroy(&lock);

19 }

Listing 1: A simple example using Mutex locking

The things that need to happen in order to fully transform this example are:

• A message struct would need to be defined. This struct will contain the
values of whatever local variables the critical section accesses. However,
this example does not access any local variables and thus does not need a
message struct.

• The critical section needs to be factored out into a new delegatable func-
tion.

• Any and all unlock statements belonging to the critical section need to be
deleted.

• The declaration of the lock needs to have its type changed from
pthread_mutex_t to QDLock.

• The calls to pthread_mutex_init() and pthread_mutex_destroy() need
to be changed into calls to LL_initialize() and LL_destroy().

• The lock statement needs to be replaced with a call to LL_delegate_wait().

The end result is shown in listing 2.

9

1 #include "locks/locks.h"

3 #include <stdlib.h>
4 #include <stdio.h>
5 #include <pthread.h>

7 QDLock lock;
8 int counter;

10 void main_critSec0(unsigned int sz, void* msgP) {
11 printf("Line␣1\n");
12 counter++;
13 printf("Line␣3\n");
14 }

16 int main() {

18 counter = 0;
19 LL_initialize(&lock);
20 LL_delegate(&lock, main_critSec0 , 0, NULL);

22 pthread_mutex_destroy(&lock);

24 }

Listing 2: A simple example using QD locking

The next example is shown in listing 3.

10

1 #include <pthread.h>
2 #include <semaphore.h>
3 #include <stdio.h>
4 #include <stdlib.h>

6 typedef struct{
7 pthread_mutex_t lock;
8 int value;
9 }SharedInt;

11 sem_t sem;
12 SharedInt* sip;

14 int foo = 0;

16 void *funcWCritSec(int* v2) {
17 // Do some work
18 pthread_mutex_lock(&(sip->lock));
19 sip->value = sip->value + *v2;
20 int currvalue = sip->value;
21 pthread_mutex_unlock(&(sip->lock));
22 printf("Current␣value␣was␣%i.\n", currvalue);
23 foo = currvalue;
24 // Do some more work
25 sem_post(&sem);
26 }

28 int main() {
29 sem_init(&sem, 0, 0);
30 SharedInt si;
31 sip = &si;
32 sip->value = 0;
33 int v2 = 1;
34 pthread_mutex_init(&(sip->lock), NULL);
35 pthread_t thread1;
36 pthread_t thread2;
37 pthread_create (&thread1,NULL,funcWCritSec ,&v2);
38 pthread_create (&thread2,NULL,funcWCritSec ,&v2);
39 sem_wait(&sem);
40 sem_wait(&sem);
41 pthread_mutex_destroy(&(sip->lock));
42 sem_destroy(&sem);
43 printf("%d\n", sip->value); // Should print "2".
44 if(sip->value+foo == 3 || sip->value+foo == 4) {
45 return 0;
46 } else {
47 return 1;
48 }
49 }

Listing 3: A more complex example using Mutex locking

11

This example requires a few more operations than the last example:

• A message struct needs to be defined. This struct will contain the values
of whatever local variables the critical section accesses (the critical section
in the last example does not access any local variables and thus needs no
message struct).

• The critical section needs to be factored out into a new delegatable func-
tion containing the following:

1. Code for copying values out of the message struct into local variables.
2. The entire critical section (without lock and unlock statements).
3. Code for copying values from variables local to the critical section

back to the memory locations of the corresponding variables outside
the critical section, which are stored as pointers in the message struct.

4. A return handler if necessary (necessary to handle return statements
inside the critical section).

• Any and all unlock statements belonging to the critical section need to be
deleted.

• The declaration of the lock needs to have its type changed from
pthread_mutex_t to QDLock.

• The calls to pthread_mutex_init() and pthread_mutex_destroy() need
to be changed into calls to LL_initialize() and LL_destroy().

• The lock statement needs to be replaced with the following:

1. A declaration of a message struct.
2. A declaration of the variable currvalue, which was originally de-

clared inside the critical section but also used after the critical sec-
tion. Since the critical section has been factored out, int currvalue
no longer exists after the critical section and thus needs to be declared
before the call to LL_delegate_wait.

3. Code for copying values from local variables into the message struct.
4. A call to LL_delegate_wait.
5. A return handler if necessary (necessary to handle returning from

inside the critical section rather than at the end of it).

The end result is shown in listing 4.

12

1 #include "locks/locks.h"

3 #include <pthread.h>
4 #include <semaphore.h>
5 #include <stdio.h>
6 #include <stdlib.h>

8 typedef struct{
9 QDLock lock;
10 int value;
11 }SharedInt;

13 sem_t sem;
14 SharedInt* sip;

16 int foo = 0;

18 struct funcWCritSec_critSec0_msg {
19 int * v2;
20 int * currvalue;
21 };

23 void funcWCritSec_critSec0(unsigned int sz, void* msgP) {
24 struct funcWCritSec_critSec0_msg* funcWCritSec_cs0msg = (struct

funcWCritSec_critSec0_msg*)msgP;
25 int * v2 = funcWCritSec_cs0msg ->v2;
26 sip->value = sip->value + *v2;
27 int currvalue = sip->value;
28 ;
29 *(funcWCritSec_cs0msg ->currvalue) = currvalue;
30 }

32 void *funcWCritSec(int* v2) {
33 // Do some work
34 struct funcWCritSec_critSec0_msg funcWCritSec_cs0msg;
35 funcWCritSec_cs0msg.v2 = v2;
36 int currvalue;
37 funcWCritSec_cs0msg.currvalue = &currvalue;
38 LL_delegate_wait(&(sip->lock), funcWCritSec_critSec0 ,

sizeof(funcWCritSec_cs0msg), &funcWCritSec_cs0msg);

40 printf("Current␣value␣was␣%i.\n", currvalue);
41 foo = currvalue;
42 // Do some more work
43 sem_post(&sem);
44 }

46 int main() {
47 sem_init(&sem, 0, 0);
48 SharedInt si;
49 sip = &si;
50 sip->value = 0;
51 int v2 = 1;
52 LL_initialize(&(sip->lock));

Listing 4: A more complex example using QD locking
13

2.1.1 How QDTrans works

QDTrans is written using the libTooling interface to access the LLVM/Clang
framework. QDTrans uses a series of RecursiveASTVisitors to identify critical
sections and variables accessed therein, and performs the actual modification by
applying Replacements to a Rewriter. We explain these notions below.

A RecursiveASTVisitor is a template from which classes can be derived
which recursively visit every node in the AST [2], a Replacement is an object
which contains a range of source code and a string with which the range is to be
replaced [4], and a Rewriter is an object which gives access to functions which
manipulate an underlying source code buffer and which Replacements can be
applied to [3].

The Replacements are stored inside a map (std::map) from filenames
(std::string) to Replacement vectors (std::vector<Replacement>), and are
applied at the very end.

2.1.2 Step by step

This section will show what the AST for one of the two examples above looks
like and further explain the inner workings of QDTrans.

14

Tr
an

sl
at

io
nU

ni
tD

ec
l
0x

9e
19

27
0

<
<

in
va

li
d

sl
oc

>
>

<
in

va
li

d
sl

oc
>

Va
rD

ec
l
0x

9e
d9

89
0

<
/h

om
e/

re
dh

ot
sm

as
he

r/
qd

st
uf

f/
ne

wm
ut

ex
es

.n
oq

d.
c:

5:
1,

co
l:

17
>

co
l:

17
us

ed
lo

ck
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'
Va

rD
ec

l
0x

9e
d9

90
8

<
li

ne
:6

:1
,
co

l:
5>

co
l:

5
us

ed
co

un
te

r
'i

nt
'

Fu
nc

ti
on

De
cl

0x
9e

d9
9c

0
<

li
ne

:8
:1

,
li

ne
:1

9:
1>

li
ne

:8
:5

ma
in

'i
nt

()
'

Co
mp

ou
nd

St
mt

0x
9e

da
11

8
<

co
l:

12
,

li
ne

:1
9:

1>
Bi

na
ry

Op
er

at
or

0x
9e

d9
aa

0
<

li
ne

:1
0:

5,
co

l:
15

>
'i

nt
'

'=
'

De
cl

Re
fE

xp
r
0x

9e
d9

a5
8

<
co

l:
5>

'i
nt

'
lv

al
ue

Va
r
0x

9e
d9

90
8

'c
ou

nt
er

'
'i

nt
'

In
te

ge
rL

it
er

al
0x

9e
d9

a8
0

<
co

l:
15

>
'i

nt
'

0
Ca

ll
Ex

pr
0x

9e
d9

c3
0

<
li

ne
:1

1:
5,

co
l:

35
>

'i
nt

'
Im

pl
ic

it
Ca

st
Ex

pr
0x

9e
d9

c1
8

<
co

l:
5>

'i
nt

(*
)(

pt
hr

ea
d_

mu
te

x_
t

*,
co

ns
t
pt

hr
ea

d_
mu

te
xa

tt
r_

t
*)

'
<

Fu
nc

ti
on

To
Po

in
te

rD
ec

ay
>

De
cl

Re
fE

xp
r
0x

9e
d9

ac
8

<
co

l:
5>

'i
nt

(p
th

re
ad

_m
ut

ex
_t

*,
co

ns
t
pt

hr
ea

d_
mu

te
xa

tt
r_

t
*)

'
Fu

nc
ti

on
0x

9f
35

51
0

'p
th

re
ad

_m
ut

ex
_i

ni
t'

'i
nt

(p
th

re
ad

_m
ut

ex
_t

*,
co

ns
t
pt

hr
ea

d_
mu

te
xa

tt
r_

t
*)

'
Un

ar
yO

pe
ra

to
r
0x

9e
d9

b1
8

<
co

l:
24

,
co

l:
25

>
'p

th
re

ad
_m

ut
ex

_t
*'

pr
ef

ix
'&

'
De

cl
Re

fE
xp

r
0x

9e
d9

af
0

<
co

l:
25

>
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'
lv

al
ue

Va
r
0x

9e
d9

89
0

'l
oc

k'
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'
Im

pl
ic

it
Ca

st
Ex

pr
0x

9e
d9

c6
8

<
/u

sr
/l

oc
al

/b
in

/.
./

li
b/

cl
an

g/
5.

0.
0/

in
cl

ud
e/

st
dd

ef
.h

:1
05

:1
6,

co
l:

25
>

'c
on

st
pt

hr
ea

d_
mu

te
xa

tt
r_

t
*'

<
Nu

ll
To

Po
in

te
r>

Pa
re

nE
xp

r
0x

9e
d9

b9
8

<
co

l:
16
,

co
l:

25
>

'v
oi

d
*'

CS
ty

le
Ca

st
Ex

pr
0x

9e
d9

b7
0

<
co

l:
17
,

co
l:

24
>

'v
oi

d
*'

<
Nu

ll
To

Po
in

te
r>

In
te

ge
rL

it
er

al
0x

9e
d9

b3
8

<
co

l:
24

>
'i

nt
'

0
Ca

ll
Ex

pr
0x

9e
d9

d6
0

<
/h

om
e/

re
dh

ot
sm

as
he

r/
qd

st
uf

f/
ne

wm
ut

ex
es

.n
oq

d.
c:

12
:5

,
co

l:
29

>
'i

nt
'

Im
pl

ic
it

Ca
st

Ex
pr

0x
9e

d9
d4

8
<

co
l:

5>
'i

nt
(*

)(
pt

hr
ea

d_
mu

te
x_

t
*)

'
<

Fu
nc

ti
on

To
Po

in
te

rD
ec

ay
>

De
cl

Re
fE

xp
r
0x

9e
d9

c8
0

<
co

l:
5>

'i
nt

(p
th

re
ad

_m
ut

ex
_t

*)
'

Fu
nc

ti
on

0x
9f

35
af

0
'p

th
re

ad
_m

ut
ex

_l
oc

k'
'i

nt
(p

th
re

ad
_m

ut
ex

_t
*)

'
Un

ar
yO

pe
ra

to
r
0x

9e
d9

cd
0

<
co

l:
24

,
co

l:
25

>
'p

th
re

ad
_m

ut
ex

_t
*'

pr
ef

ix
'&

'
De

cl
Re

fE
xp

r
0x

9e
d9

ca
8

<
co

l:
25

>
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'
lv

al
ue

Va
r
0x

9e
d9

89
0

'l
oc

k'
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'
Ca

ll
Ex

pr
0x

9e
d9

e3
0

<
li

ne
:1

3:
5,

co
l:

22
>

'i
nt

'
Im

pl
ic

it
Ca

st
Ex

pr
0x

9e
d9

e1
8

<
co

l:
5>

'i
nt

(*
)(

co
ns

t
ch

ar
*,

..
.)

'
<

Fu
nc

ti
on

To
Po

in
te

rD
ec

ay
>

De
cl

Re
fE

xp
r
0x

9e
d9

d9
0

<
co

l:
5>

'i
nt

(c
on

st
ch

ar
*,

..
.)

'
Fu

nc
ti

on
0x

9e
7d

96
0

'p
ri

nt
f'

'i
nt

(c
on

st
ch

ar
*,

..
.)

'
Im

pl
ic

it
Ca

st
Ex

pr
0x

9e
d9

e7
8

<
co

l:
12

>
'c

on
st

ch
ar

*'
<

Bi
tC

as
t>

Im
pl

ic
it

Ca
st

Ex
pr

0x
9e

d9
e6

0
<

co
l:

12
>

'c
ha

r
*'

<
Ar

ra
yT

oP
oi

nt
er

De
ca

y>
St

ri
ng

Li
te

ra
l
0x

9e
d9

db
8

<
co

l:
12

>
'c

ha
r
[8

]'
lv

al
ue

"L
in

e
1\

n"
Un

ar
yO

pe
ra

to
r
0x

9e
d9

eb
8

<
li

ne
:1

4:
5,

co
l:

12
>

'i
nt

'
po

st
fi

x
'+

+'
De

cl
Re

fE
xp

r
0x

9e
d9

e9
0

<
co

l:
5>

'i
nt

'
lv

al
ue

Va
r
0x

9e
d9

90
8

'c
ou

nt
er

'
'i

nt
'

Ca
ll

Ex
pr

0x
9e

d9
f4

8
<

li
ne

:1
5:

5,
co

l:
22

>
'i

nt
'

Im
pl

ic
it

Ca
st

Ex
pr

0x
9e

d9
f3

0
<

co
l:

5>
'i

nt
(*

)(
co

ns
t

ch
ar

*,
..

.)
'

<
Fu

nc
ti

on
To

Po
in

te
rD

ec
ay

>
De

cl
Re

fE
xp

r
0x

9e
d9

ed
8

<
co

l:
5>

'i
nt

(c
on

st
ch

ar
*,

..
.)

'
Fu

nc
ti

on
0x

9e
7d

96
0

'p
ri

nt
f'

'i
nt

(c
on

st
ch

ar
*,

..
.)

'
Im

pl
ic

it
Ca

st
Ex

pr
0x

9e
d9

f9
0

<
co

l:
12

>
'c

on
st

ch
ar

*'
<

Bi
tC

as
t>

Im
pl

ic
it

Ca
st

Ex
pr

0x
9e

d9
f7

8
<

co
l:

12
>

'c
ha

r
*'

<
Ar

ra
yT

oP
oi

nt
er

De
ca

y>
St

ri
ng

Li
te

ra
l
0x

9e
d9

f0
0

<
co

l:
12

>
'c

ha
r
[8

]'
lv

al
ue

"L
in

e
3\

n"
Ca

ll
Ex

pr
0x

9e
da

03
0

<
li

ne
:1

6:
5,

co
l:

31
>

'i
nt

'
Im

pl
ic

it
Ca

st
Ex

pr
0x

9e
da

01
8

<
co

l:
5>

'i
nt

(*
)(

pt
hr

ea
d_

mu
te

x_
t

*)
'

<
Fu

nc
ti

on
To

Po
in

te
rD

ec
ay

>
De

cl
Re

fE
xp

r
0x

9e
d9

fa
8

<
co

l:
5>

'i
nt

(p
th

re
ad

_m
ut

ex
_t

*)
'

Fu
nc

ti
on

0x
9f

35
fd

0
'p

th
re

ad
_m

ut
ex

_u
nl

oc
k'

'i
nt

(p
th

re
ad

_m
ut

ex
_t

*)
'

Un
ar

yO
pe

ra
to

r
0x

9e
d9

ff
8

<
co

l:
26

,
co

l:
27

>
'p

th
re

ad
_m

ut
ex

_t
*'

pr
ef

ix
'&

'
De

cl
Re

fE
xp

r
0x

9e
d9

fd
0

<
co

l:
27

>
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'
lv

al
ue

Va
r
0x

9e
d9

89
0

'l
oc

k'
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'
Ca

ll
Ex

pr
0x

9e
da

0e
8

<
li

ne
:1

7:
5,

co
l:

32
>

'i
nt

'
Im

pl
ic

it
Ca

st
Ex

pr
0x

9e
da

0d
0

<
co

l:
5>

'i
nt

(*
)(

pt
hr

ea
d_

mu
te

x_
t

*)
'

<
Fu

nc
ti

on
To

Po
in

te
rD

ec
ay

>
De

cl
Re

fE
xp

r
0x

9e
da

06
0

<
co

l:
5>

'i
nt

(p
th

re
ad

_m
ut

ex
_t

*)
'

Fu
nc

ti
on

0x
9f

35
75

8
'p

th
re

ad
_m

ut
ex

_d
es

tr
oy

'
'i

nt
(p

th
re

ad
_m

ut
ex

_t
*)

'
Un

ar
yO

pe
ra

to
r
0x

9e
da

0b
0

<
co

l:
27

,
co

l:
28

>
'p

th
re

ad
_m

ut
ex

_t
*'

pr
ef

ix
'&

'
De

cl
Re

fE
xp

r
0x

9e
da

08
8

<
co

l:
28

>
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'
lv

al
ue

Va
r
0x

9e
d9

89
0

'l
oc

k'
'p

th
re

ad
_m

ut
ex

_t
':

'p
th

re
ad

_m
ut

ex
_t

'

Fi
gu

re
1:

T
he

A
bs
tr
ac
t
Sy

nt
ax

Tr
ee

fo
r
th
e
ex
am

pl
e
sh
ow

n
in

lis
tin

g
1

15

Step by step:

1. Each critical section is identified by finding its lock statement (call to
pthread_mutex_lock(lock)) and iterating through the nodes inside it
to find its last unlock statement (call to pthread_mutex_unlock(lock)
where lock is the same lock as in the lock statement).

• In this case, there is one critical section, its lock and unlock state-
ments have been coloured orange, and its lock has been coloured red
in the above graph.

2. Identify any variables which are accessed inside each critical section.

• In this case, the critical section accesses the variable counter.

3. For each critical section, if there are any variables which are accessed in-
side the critical section and are either local to the function that originally
contained the critical section or declared inside the critical section, gen-
erate a message struct which will be used to pass these variables into the
critical section.

• In this case, counter is a global variable and thus does not need to
be passed in, thus no variables which need to be passed in exist, and
thus no message struct is generated.

4. Transform and factor out each critical section, removing lock and unlock
statements and adding code for copying variables from the message struct
before the critical section and code for writing values back after the critical
section as necessary.

5. At the original program point of each critical section, add a call to
LL_delegate or LL_delegate_wait as applicable (LL_delegate is used iff
the critical section contains no variables which need returning, otherwise
LL_delegate_wait is used in order to wait for the result), preceding it
with code for setting up and populating the message struct if one was
generated.

6. For each critical section, change the type of the declaration of its lock
from pthread_mutex_t to QDLock and change all calls referring to this
lock to pthread_mutex_init and pthread_mutex_destroy into calls to
LL_initialize and LL_destroy.

The manipulations cannot really be shown individually at the tree level because
they are not happening at the tree level; QDTrans never actually modifies the
tree but instead uses a Clang class called Replacement, which is essentially an
interface to automated text editing.

2.2 How QDTrans is used
QDTrans can be obtained from its GitHub repository4.
QDTrans is built by following the build instructions in the file README.md
in the repository, and is run by typing ./bin/qdtrans [filename], where
[filename] is the name of the file containing the C source code to transform.

4QDTrans’ GitHub repository is located at https://github.com/Redhotsmasher/QDTrans.

16

https://github.com/Redhotsmasher/QDTrans

3 Obstacles
This section will detail several obstacles I had to overcome in making QDTrans
work, and will thus also serve as an explanation of many of the inner workings
of QDTrans.

3.1 The C implementation
The first attempted implementation was written in C, using libClang, but lib-
Clang did not allow modification of the AST, so the proposed solution at the
time was to simply recreate the AST in a struct based tree. This coupled with
the general verbosity of libClang led to a large codebase which proved to be
difficult to understand and debug, so the approach was ultimately abandoned
in favour of a new implementation written in C++, against libTooling.

3.2 Types of critical sections
To facilitate the implementation, three types of critical sections were defined:

(A) Critical sections for which the lock and unlock are both located below the
same node in the Clang AST.

(B) Critical sections for which the lock and unlock are both contained in the
same function but not both located immediately below the same node in
the Clang AST.

(C) Critical sections for which the lock and unlock are not both contained in
the same function.

Critical sections with several unlock statements are explained in Section 3.3.
The transformation works as follows.

3.2.1 Type A

The transformation of type A critical sections is relatively straightforward:

1. Move everything between lock and unlock to a separate function which
takes a message struct as input.

2. Add code to the beginning of new function for copying values from the
struct to local variables.

3. Replace lock and unlock with code for setting up the message struct and its
contents and a call to LL_delegate or LL_delegate_and_wait, followed
by code for handling early returns (see Section 3.3) if necessary.

4. Add the declaration of the message struct.
An example of a type A critical section is shown in listing 1.

17

3.2.2 Type B

Transformation of type B critical sections is not currently implemented. The
transformation of type B critical sections would be similar to that of type A sec-
tions, although special attention must be paid to recreating control statements
when factoring out the critical section, and leaving closing braces intact in some
cases.

As an example,

6 void *functionWithCriticalSection(int* v2) {
7 // Do some work
8 pthread_mutex_lock(&(sip->lock));
9 sip->value = sip->value + *v2;
10 if(sip->value = 1) {
11 printf("Value␣is␣currently:␣%i\n", sip->value);
12 pthread_mutex_unlock(&(sip->lock));
13 } else {
14 pthread_mutex_unlock(&(sip->lock));
15 }
16 // Do some more work
17 sem_post(&sem);
18 }

Listing 5: Type B example pre transformation

has the unlock statements inside an if else clause, and becomes

6 void critSec0(unsigned int sz, void* msgP) {
7 sip->value = sip->value + *v2;
8 if(sip->value = 1) {
9 printf("Value␣is␣currently:␣%i\n", sip->value);
10 } else {
11 }
12 }

14 void *functionWithCriticalSection(int* v2) {
15 // Do some work
16 LL_delegate_wait(&(sip->lock), critSec0 , 0, NULL);
17 // Do some more work
18 sem_post(&sem);
19 }

Listing 6: Type B example post transformation

3.2.3 Type C

Transformation of type C critical sections is also not implemented but would be
similar to performing type B transformation after inlining the inner function.

18

3.3 Return handling
Variables which need to be “returned” (written back) because they are refer-
enced again after a critical section has accessed (and thus potentially modified)
them have a corresponding pointer in the message struct, and are copied from
this pointer at the beginning of the new function and copied back at the end of
it.

Return statements inside critical sections are a different story. First off, the
reason this is not as uncommon as it may sound is due to QDTrans’ handling
of critical sections with multiple locks: A critical section, as far as QDTrans is
concerned, has exactly one lock statement, exactly one “main” unlock statement,
which is the one which appears last in the code, and zero or more additional
inner return statements. Thus, one may end up with a critical section which,
in QDTrans terms, contains one or more unlock statements followed by returns,
located before the “main” unlock statement. Consider the following example,
shown in listing 7, containing a critical section with a return statement.

19

1 #include <pthread.h>
2 #include <semaphore.h>
3 #include <stdio.h>
4 #include <stdlib.h>

6 typedef struct{
7 pthread_mutex_t lock;
8 int value;
9 }SharedInt;

11 sem_t sem;
12 SharedInt* sip;

14 void *funcWCritSec(int* v2) {
15 // Do some work
16 pthread_mutex_lock(&(sip->lock));
17 sip->value = sip->value + *v2;
18 if(sip->value < 3) {
19 sip->value = sip->value + *v2;
20 pthread_mutex_unlock(&(sip->lock));
21 return NULL;
22 }
23 sip->value = sip->value - *v2;
24 pthread_mutex_unlock(&(sip->lock));
25 // Do some more work
26 }

28 void* funcWFunc(int* v2) {
29 funcWCritSec(v2);
30 sem_post(&sem);
31 }

33 int main() {
34 sem_init(&sem, 0, 0);
35 SharedInt si;
36 sip = &si;
37 sip->value = 0;
38 int v2 = 1;
39 pthread_mutex_init(&(sip->lock), NULL);
40 pthread_t thread1;
41 pthread_t thread2;
42 pthread_create (&thread1,NULL,funcWCritSec ,&v2);
43 pthread_create (&thread2,NULL,funcWCritSec ,&v2);
44 sem_wait(&sem);
45 sem_wait(&sem);
46 pthread_mutex_destroy(&(sip->lock));
47 sem_destroy(&sem);
48 printf("%d\n", sip->value); // Should print "2".
49 return sip->value -2;
50 }

Listing 7: An example of a critical section with returns

In QDTrans terms, the critical section spans from the lock statement on line

20

16 to the unlock statement on line 24, and there is an unlock and a return on
lines 20 and 21. A field in the message struct is needed to carry the return
value back to the delegating function within which the return statement was
originally located and which the return statement is supposed to return from.

However, this is not quite enough, since line 23 modifies the value of sip->value,
something which only happens if the return on line 23 does not happen. The
solution to this is to add another field in the message struct which indicates if
we returned before the end of the critical section or not, which is checked imme-
diately after the LL_delegate_wait to know if we should return immediately
or not.

The resulting conversion:
8 typedef struct{
9 QDLock lock;
10 int value;
11 }SharedInt;

13 sem_t sem;
14 SharedInt* sip;

16 struct funcWCritSec_critSec0_msg {
17 int * v2;
18 void * * __retval__;
19 int * __earlyReturn__;
20 };

22 void funcWCritSec_critSec0(unsigned int sz, void* msgP) {
23 struct funcWCritSec_critSec0_msg* funcWCritSec_cs0msg = (struct

funcWCritSec_critSec0_msg*)msgP;
24 int * v2 = funcWCritSec_cs0msg ->v2;
25 sip->value = sip->value + *v2;
26 if (sip->value < 3) {
27 sip->value = sip->value + *v2;
28 *(funcWCritSec_cs0msg ->__retval__) = ((void

*)0);
29 *(funcWCritSec_cs0msg ->__earlyReturn__) = 1;
30 return;
31 }
32 ;
33 sip->value = sip->value - *v2;
34 }

36 void *funcWCritSec(int* v2) {
37 // Do some work
38 struct funcWCritSec_critSec0_msg funcWCritSec_cs0msg;
39 funcWCritSec_cs0msg.v2 = v2;
40 int __earlyReturn__ = 0;
41 void * __retval__ = NULL;
42 funcWCritSec_cs0msg.__earlyReturn__ = &__earlyReturn__;
43 funcWCritSec_cs0msg.__retval__ = &__retval__;
44 LL_delegate_wait(&(sip->lock), funcWCritSec_critSec0 ,

sizeof(funcWCritSec_cs0msg), &funcWCritSec_cs0msg);
45 if(__earlyReturn__ != 0) {
46 return __retval__;
47 }

50 // Do some more work
51 }

53 void* funcWFunc(int* v2) {

Listing 8: A transformed example of a critical section with returns

21

As stated, we have a field in the struct (__retval__) for the return value and
another field (__earlyReturn__) to indicate whether we have returned early or
not. We also have lines 46-48 to return the return value immediately if the
critical section returned early, i.e, if the original non-transformed code would
have returned before the “main” unlock statement.

4 Related work
There are some existing works similar to QDTrans.

Delegation locking is a family of synchronization algorithms where the idea
is to increase the scalability of programs with lock contention by allowing crit-
ical sections to be delegated to the thread holding the relevant lock. Queue
Delegation locking is a form of delegation locking.

4.1 Flat Combining
Flat Combining [13] is a form of delegation locking where a data structure
protected by a lock has a publication list to which threads write their access/-
modification requests. When a thread needs to access the resource protected
by the lock, it will attempt to acquire the lock, and, upon successful acquisi-
tion of the lock, become a combiner, scanning the publication list and applying
combined requests until the list is empty and releases the lock. If the lock was
not acquired, meaning it is currently owned by some other lock, the lock seek-
ing thread will write its requests to the publication list and wait for the lock
owning thread to indicate that the request has been fulfilled. The disadvantage
compared to QD-locking is that in Flat Combining, a lock seeking thread has to
wait until its request is fulfilled, while in QD-locking, a thread may, under the
right circumstances, delegate a critical section and continue executing without
having to wait for the critical section to finish executing.

4.2 Remote Core Locking
Remote Core Locking [17] (RC-Locking) is another form of delegation locking
wherein critical sections are delegated to one or more cores dedicated solely to
executing critical sections. The main difference between QD-locking and RC-
locking is that, with RC-locking, one or more cores are completely dedicated
to executing critical sections, whereas with QD-locking, critical sections are
executed by whichever core happens to be holding the relevant lock when the
critical section is delegated. Another difference worth mentioning is that, much
like Flat Combining, RCL requires the lock seeking thread to wait until its
critical section to finish executing, while QD-locking, as previously mentioned,
under the right circumstances, allows a thread to delegate a critical section and
continue executing without waiting.

4.3 Coccinelle
Coccinelle [18] is a tool which was mainly developed as a tool for performing
collateral evolutions in Linux, but can be used to perform many different kinds of
transformations of C code. It is essentially an advanced patching tool, which can

22

patch C code based on various semantic properties of the code. An automatic
source-to-source transformation tool for enabling code to utilize RC-Locking
[17] was implemented using Coccinelle, but after Coccinelle was looked into, we
concluded that it would not be possible to implement QDTrans in Coccinelle
because we did not think Coccinelle supported the kind of advanced function
manipulation QDTrans requires and thus Coccinelle would not be a suitable
way forward.

5 Results
QDTrans is a source-to-source transformation tool developed with the goal of
being able to fully automatically transform a C program using conventional
mutex locks into a C program using QD-locking (qd_lock_lib [15]).

This is what has been accomplished thus far:

5.1 Implementation status
The implementation is currently unfinished — it will currently find critical sec-
tions as long as the lock and unlock statements are inside the same function
(and possibly sometimes even if they are not) and transform type A critical
sections only.

5.2 Known limitations
5.2.1 QDTrans currently only processes one file at a time

QDTrans currently only processes a single file at a time, which can be problem-
atic in certain cases. An example is shown in listings 9 and 10.

1 #include <pthread.h>
2 #include <stdio.h>
3 #include <stdlib.h>

5 typedef struct{
6 pthread_mutex_t lock;
7 int value;
8 }SharedInt;

Listing 9: common.c

23

5 #include "common.c"

7 sem_t sem;
8 SharedInt* sip;

10 void *functionWithCriticalSection(int* v2) {
11 // Do some work
12 pthread_mutex_lock(&(sip->lock));
13 sip->value = sip->value + *v2;
14 pthread_mutex_unlock(&(sip->lock));
15 // Do some more work
16 sem_post(&sem);
17 }

19 int main() {
20 sem_init(&sem, 0, 0);
21 SharedInt si;
22 sip = &si;
23 sip->value = 0;
24 int v2 = 1;
25 pthread_mutex_init(&(sip->lock), NULL);
26 pthread_t thread1;
27 pthread_t thread2;
28 pthread_create (&thread1,NULL,functionWithCriticalSection ,&v2);
29 pthread_create (&thread2,NULL,functionWithCriticalSection ,&v2);
30 sem_wait(&sem);
31 sem_wait(&sem);
32 pthread_mutex_destroy(&(sip->lock));
33 sem_destroy(&sem);
34 printf(%dn, sip->value); // Should print 2.
35 return 0;
36 }

Listing 10: main.c

When QDTrans is invoked on common.c it will not detect any critical sections
and thus return the original code verbatim, and when it is invoked on main.c,
it will detect the critical section but fail to find the lock itself and thus again
returns the original code verbatim.

A possible solution could be to simply assume in the first case that critical
sections exist elsewhere and will be QD-transformed and to assume in the second
case that the lock itself exists elsewhere and will be converted into a QD lock,
but this effectively makes the assumption that the user actually runs QDTrans
on all relevant files. One possible solution could be to print a warning of the
form Warning: lock and unlock calls found but no definition for lock
'[lock]' was found!, but this is currently not implemented.

5.2.2 QDTrans does not support all possible kinds of type A critical
section

While QDTrans is able to handle critical sections with inner unlocks followed by
returns (see section 3.3), it is currently only able to handle such critical sections
which do not have any code between the inner unlock and the following return.

24

A program containing such a critical section with code between the inner unlock
and the following return is shown in listing 11.

1 #include <pthread.h>
2 #include <semaphore.h>
3 #include <stdio.h>
4 #include <stdlib.h>

6 typedef struct{
7 pthread_mutex_t lock;
8 int value;
9 }SharedInt;

11 sem_t sem;
12 SharedInt* sip;

14 void *funcWCritSec(int* v2) {
15 // Do some work
16 pthread_mutex_lock(&(sip->lock));
17 sip->value = sip->value + *v2;
18 if(sip->value < 3) {
19 sip->value = sip->value + *v2;
20 pthread_mutex_unlock(&(sip->lock));
21 sem_post(&sem);
22 return NULL;
23 }
24 sip->value = sip->value - *v2;
25 pthread_mutex_unlock(&(sip->lock));
26 // Do some more work
27 sem_post(&sem);
28 }

30 int main() {
31 sem_init(&sem, 0, 0);
32 SharedInt si;
33 sip = &si;
34 sip->value = 0;
35 int v2 = 1;
36 pthread_mutex_init(&(sip->lock), NULL);
37 pthread_t thread1;
38 pthread_t thread2;
39 pthread_create (&thread1,NULL,funcWCritSec ,&v2);
40 pthread_create (&thread2,NULL,funcWCritSec ,&v2);
41 sem_wait(&sem);
42 sem_wait(&sem);
43 pthread_mutex_destroy(&(sip->lock));
44 sem_destroy(&sem);
45 printf("%d\n", sip->value); // Should print "2".
46 return sip->value -2;
47 }

Listing 11: A program with a critical section QDTrans will not transform
correctly

QDTrans attempt at transforming this program is shown in listing 12.

25

8 typedef struct{
9 QDLock lock;
10 int value;
11 }SharedInt;

13 sem_t sem;
14 SharedInt* sip;

16 struct funcWCritSec_critSec0_msg {
17 int * v2;
18 void * * __retval__;
19 int * __earlyReturn__;
20 };

22 void funcWCritSec_critSec0(unsigned int sz, void* msgP) {
23 struct funcWCritSec_critSec0_msg* funcWCritSec_cs0msg = (struct

funcWCritSec_critSec0_msg*)msgP;
24 int * v2 = funcWCritSec_cs0msg ->v2;
25 sip->value = sip->value + *v2;
26 if (sip->value < 3) {
27 sip->value = sip->value + *v2;
28 sem_post(&sem);
29 *(funcWCritSec_cs0msg ->__retval__) = ((void *)0);
30 *(funcWCritSec_cs0msg ->__earlyReturn__) = 1;
31 return;
32 }
33 ;
34 sip->value = sip->value - *v2;
35 }

37 void *funcWCritSec(int* v2) {
38 // Do some work
39 struct funcWCritSec_critSec0_msg funcWCritSec_cs0msg;
40 funcWCritSec_cs0msg.v2 = v2;
41 int __earlyReturn__ = 0;
42 void * __retval__ = NULL;
43 funcWCritSec_cs0msg.__earlyReturn__ = &__earlyReturn__;
44 funcWCritSec_cs0msg.__retval__ = &__retval__;
45 LL_delegate_wait(&(sip->lock), funcWCritSec_critSec0 ,

sizeof(funcWCritSec_cs0msg), &funcWCritSec_cs0msg);
46 if(__earlyReturn__ != 0) {
47 return __retval__;
48 }

51 // Do some more work
52 sem_post(&sem);
53 }

Listing 12: An incorrectly transformed program with a critical section with
returns

QDTrans is not aware of this extra line of code, which is on line 21 in listing
11 and line 28 in listing 12, so the line is simply left inside the critical section.

26

The correct transformation would be to move this line so that it sits between
lines 46 and 47 in listing 12. The correct transformation of the relevant part of
the program is shown in listing 13.

22 void funcWCritSec_critSec0(unsigned int sz, void* msgP) {
23 struct funcWCritSec_critSec0_msg* funcWCritSec_cs0msg = (struct

funcWCritSec_critSec0_msg*)msgP;
24 int * v2 = funcWCritSec_cs0msg ->v2;
25 sip->value = sip->value + *v2;
26 if (sip->value < 3) {
27 sip->value = sip->value + *v2;
28 sem_post(&sem);
29 *(funcWCritSec_cs0msg ->__retval__) = ((void *)0);
30 *(funcWCritSec_cs0msg ->__earlyReturn__) = 1;
31 return;
32 }
33 ;
34 sip->value = sip->value - *v2;
35 }

37 void *funcWCritSec(int* v2) {
38 // Do some work
39 struct funcWCritSec_critSec0_msg funcWCritSec_cs0msg;
40 funcWCritSec_cs0msg.v2 = v2;
41 int __earlyReturn__ = 0;
42 void * __retval__ = NULL;
43 funcWCritSec_cs0msg.__earlyReturn__ = &__earlyReturn__;
44 funcWCritSec_cs0msg.__retval__ = &__retval__;
45 LL_delegate_wait(&(sip->lock), funcWCritSec_critSec0 ,

sizeof(funcWCritSec_cs0msg), &funcWCritSec_cs0msg);
46 if(__earlyReturn__ != 0) {
47 return __retval__;
48 }

51 // Do some more work
52 sem_post(&sem);
53 }

Listing 13: A correctly (manually corrected) transformed version of the same
program

5.2.3 Other known limitations

• QDTrans dos not currently perform any analysis of execution paths.

• QDTrans therefore currently only performs very limited optimization of
the end result.

27

5.3 Test results
The Splash2 benchmarks were downloaded [7] and a patch for modern computers
from UDEL was applied [6]. QDTrans was successfully able to convert seven
of the nine SPLASH2 benchmarks. QDTrans was able to transform nearly all
critical sections.

5.3.1 Setup

The benchmarks were transformed using a modified makefile and modified
macro files. A patch file containing these changes is available here5. You will
need to supply your own qd_lock_lib headers and static library file. Seven out
of nine SPLASH2 benchmarks were successfully transformed, compiled and run,
both non-transformed (using the c.m4.null.POSIX_BARRIER_RFIX macros) and
transformed (using the c.m4.null.POSIX_BARRIER_RFIX_QD macros).

5.3.2 Transformation rate

Benchmark Critical sections Transformation rate
Type A Type B Type C Total Transformed

ocean/contiguous_partitions 4 0 0 4 4 100%
ocean/non_contiguous_partitions 4 0 0 4 4 100%
radiosity 27 3 0 30 27 90%
raytrace 11 0 0 11 11 100%
water-nsquared 8 0 0 8 8 100%
water-spatial 8 0 0 8 8 100%
volrend 14 0 0 14 14 100%

Total 76 3 0 79 76 approx. 98.57%

Table 1: Transformation rates

5This patch file technically contains modified parts of SPLASH2 files. To avoid any potential
legal issues in the future (the SPLASH2 license is not entirely clear on the matter), if you are one
of the authors of SPLASH2 and take issue with this, contact me via email and I will take the file
down if requested.

28

https://drive.google.com/file/d/0B7RvOELQs4k9aURWUTRKc0xlQXc/view?usp=sharing

On average, QDTrans was able to transform approximately 98.6% of all critical
sections and 100% of all type A critical sections.

5.3.3 Performance

All benchmarks were run, both non-transformed and transformed, on a machine
with a Haswell Intel i7 4770K CPU, running Ubuntu 16.04 LTS, after a fresh
boot with no other programs running. The benchmarks were automatically run
5 times each, under 3 different threading configurations, for a total of 15 times.
They were run on 1 thread, to get an idea of how much overhead QDTrans
adds, 4 threads, to gauge performance when using all available physical cores,
and 8 threads, to gauge performance when using all available hardware threads.
All numbers were measured by the benchmarks themselves except the volrend
numbers, which was measured by the shell script running the benchmarks be-
cause that benchmark does not print any timing information.

8Excludes the first timestep of the simulation.

29

./OCEAN -n1026 -p8
With initialization Without initialization8

Mutex locking QD locking Mutex locking QD locking

1 thread
All runs

932259 µs 817823 µs 428184 µs 430585 µs
811970 µs 814044 µs 432022 µs 428860 µs
800895 µs 814872 µs 427630 µs 435277 µs
801914 µs 820820 µs 429342 µs 433519 µs
812894 µs 821756 µs 429536 µs 435190 µs

Average 831986.4 µs 817863 µs 429342.8 µs 432686.2 µs
Difference -1.70% +0.78%

4 threads
All runs

540352 µs 491067 µs 318207 µs 299740 µs
486601 µs 544220 µs 293834 µs 317037 µs
513940 µs 508720 µs 309320 µs 315751 µs
535845 µs 537887 µs 312860 µs 309435 µs
513402 µs 537862 µs 307972 µs 315258 µs

Average 518028 µs 523951.2 µs 308438.6 µs 311444.2 µs
Difference +1.14% +0.98%

8 threads
All runs

482960 µs 475069 µs 294470 µs 293930 µs
491996 µs 481598 µs 308256 µs 298830 µs
481137 µs 475365 µs 296562 µs 292886 µs
484845 µs 494735 µs 301467 µs 304977 µs
478743 µs 487059 µs 293817 µs 303783 µs

Average 483936.2 µs 482765.2 µs 298914.4 µs 298881.2 µs
Difference -0.24% -0.01%

Table 2: ocean/contiguous_partitions

./OCEAN -p8
With initialization Without initialization8

Mutex locking QD locking Mutex locking QD locking

1 thread
All runs

56845 µs 56731 µs 33662 µs 34041 µs
59520 µs 60619 µs 36108 µs 37092 µs
57576 µs 56401 µs 34235 µs 33909 µs
60629 µs 59858 µs 36946 µs 36371 µs
56551 µs 55989 µs 33806 µs 33711 µs

Average 58224.2 µs 57919.6 µs 34951.4 µs 35024.8 µs
Difference -0.52% +0.21%

4 threads
All runs

23784 µs 23518 µs 13919 µs 13928 µs
23442 µs 23361 µs 13933 µs 13218 µs
32484 µs 23800 µs 19704 µs 14139 µs
23890 µs 24265 µs 13874 µs 14406 µs
33638 µs 33462 µs 19645 µs 19851 µs

Average 27447.6 µs 25681.2 µs 16215 µs 15108.4 µs
Difference -6.44% -6.83%

8 threads
All runs

23734 µs 25243 µs 13294 µs 13588 µs
24535 µs 23825 µs 13705 µs 13699 µs
25127 µs 24555 µs 14919 µs 13777 µs
23853 µs 27919 µs 13723 µs 15969 µs
25071 µs 23780 µs 14023 µs 13598 µs

Average 24464 µs 25064.4 µs 13932.8 µs 14126.2 µs
Difference +2.45% +1.39%

Table 3: ocean/non_contiguous_partitions
30

The ocean benchmarks, shown in tables 2 and 3, only show tiny differences
between pthreads mutex locking and QD-locking, which may be due to poor
threading; we are only just about seeing a doubling of performance going from 1
thread to 8, QD locking or not. The 4 thread runs of non_contiguous_partitions
appear to show significant improvement until we consider the variance between
runs as well as the 8 thread runs which are inconsistent with this, telling us that
this apparent improvement is insignificant. The main reason for the increased
variance in non_contiguous_partitions compared to contiguous_partitions
is that contiguous_partitions was run with the -n1026 parameter, increas-
ing the grid size of the simulation from 258*258 to 1026*1026, making each run
longer and in effect lowering the impact of background processes, giving more
stable numbers. This was not done with non_contiguous_partitions because
that benchmark does not support grid sizes above 258*258 without non-trivial
modifications which were not done.

The radiosity benchmark turns out to have broken threading as it runs on
one single CPU core regardless of what -p parameter is given for both Mutex
and QD versions, thus no table was generated. It turns out that this is due to
a known race condition [19]. The numbers indicated no significant difference in
single core performance.

./RAYTRACE -m64 -a16 -p8 ./inputs/car.env
With initialization Without initialization

Mutex locking QD locking Mutex locking QD locking

1 thread
All runs

1174977 µs 1199371 µs 1174967 µs 1199370 µs
1166883 µs 1188579 µs 1166883 µs 1188579 µs
1167209 µs 1193945 µs 1167199 µs 1193944 µs
1170403 µs 1184223 µs 1170403 µs 1184223 µs
1173775 µs 1194041 µs 1173765 µs 1194040 µs

Average 1170649.4 µs 1192031.8 µs 1170643.4 µs 1192031.2 µs
Difference +1.83% +1.83%

4 threads
All runs

355833 µs 330270 µs 355764 µs 330195 µs
388364 µs 334734 µs 388287 µs 334657 µs
410143 µs 331251 µs 410066 µs 331185 µs
385050 µs 332290 µs 385018 µs 332223 µs
356150 µs 331309 µs 356090 µs 331251 µs

Average 379108 µs 331970.8 µs 379045 µs 331902.2 µs
Difference -12.43% -12.44%

8 threads
All runs

295935 µs 272410 µs 295857 µs 272361 µs
295006 µs 269742 µs 294942 µs 269686 µs
294223 µs 269152 µs 294170 µs 269089 µs
293887 µs 272450 µs 293808 µs 272388 µs
295488 µs 275416 µs 295414 µs 275337 µs

Average 294907.8 µs 271834 µs 294838.2 µs 271772.2 µs
Difference -7.82% -7.82%

Table 4: raytrace

The raytrace benchmark, shown in table 4, shows significant performance im-
provements for both multithreaded configurations with insignificant additional
overhead on the single threaded runs. I would speculate that a big part of the

31

reason for the improvement is that this benchmark appears to benefit well from
threading; the performance nearly quadruples going from 1 thread to 4. The
below graph illustrates the difference in runtime between Mutex locking and
QD locking.

1 4 8
0

20

40

60

80

100

120

Number of cores

Re
la
tiv

e
ru
nt
im

e
(p
er
ce
nt
)

Raytrace runtime difference between Mutex locking and QD locking

Mutex locking
QD locking

For water-nsquared and water-spatial, shown in tables 5 and 6, the thread-
ing appears to be good (3.5 to 4 times the performance going from 1 thread to
4) but there are no consistent performance differences, only random fluctuations
due to background processes. This is probably due to the very short length (on
modern systems) of these benchmarks.

32

./WATER-NSQUARED < ./input
Mutex locking QD locking

1 thread
All runs

61303 µs 63496 µs
61050 µs 63342 µs
61027 µs 63251 µs
61342 µs 62613 µs
62932 µs 63243 µs

Average 61530.8 µs 63189 µs
Difference +2.70%

4 threads
All runs

25985 µs 18815 µs
18670 µs 18786 µs
18529 µs 18940 µs
18563 µs 18836 µs
18746 µs 18812 µs

Average 20098.6 µs 18837.8 µs
Difference -6.27%

8 threads
All runs

16172 µs 15896 µs
15158 µs 20504 µs
14040 µs 15772 µs
13777 µs 14121 µs
15098 µs 14425 µs

Average 14849 µs 16143.6 µs
Difference +8.72%

Table 5: water-nsquared

./WATER-SPATIAL < ./input
Mutex locking QD locking

1 thread
All runs

87129 µs 87269 µs
87314 µs 86933 µs
91926 µs 89237 µs
92352 µs 89289 µs
87213 µs 88165 µs

Average 89186.8 µs 88178.6 µs
Difference -1.13%

4 threads
All runs

23410 µs 30765 µs
24314 µs 23189 µs
23440 µs 23077 µs
30667 µs 23863 µs
23704 µs 23059 µs

Average 25107 µs 24790.6 µs
Difference -1.26%

8 threads
All runs

20418 µs 15578 µs
15452 µs 15673 µs
15417 µs 16659 µs
17895 µs 15614 µs
18235 µs 18252 µs

Average 17483.4 µs 16355.2 µs
Difference -6.45%

Table 6: water-spatial
33

./VOLREND 8 ./inputs/head
Mutex locking QD locking

1 thread
All runs

383022 µs 382353 µs
381808 µs 383624 µs
382876 µs 380247 µs
381667 µs 393252 µs
383257 µs 384513 µs

Average 382526 µs 384797.8 µs
Difference +0.59%

4 threads
All runs

249504 µs 237734 µs
238627 µs 248889 µs
236519 µs 238342 µs
250272 µs 237165 µs
273073 µs 259135 µs

Average 249599 µs 244253 µs
Difference -2.14%

8 threads
All runs

248082 µs 234396 µs
236983 µs 228606 µs
256211 µs 225960 µs
232419 µs 245173 µs
226024 µs 225341 µs

Average 239983.8 µs 231895.2 µs
Difference -3.37%

Table 7: volrend

Again, very minor differences between mutex locking and QD-locking for volrend,
shown in table 7. Threading seems to be quite poor for this benchmark, not
even doubling performance going from a single thread to 4 or 8 threads. As
mentioned previously, this benchmark does not print any timing information
and was therefore timed by the shell script which ran the benchmarks.

In conclusion, given that only a single benchmark, raytrace, showed signif-
icant improvement, it is hard to draw any solid conclusions about what perfor-
mance benefits QDTrans may be able to provide.

34

6 Conclusion
I have written a (reasonably) well thought out implementation which works
reasonably well and produces code which performs reasonably well. I have
effectively demonstrated the feasibility of automated source code transformation
from conventional mutex locking to QD-locking.

It is possible that source-to-binary (or possibly even binary-to-binary) trans-
formation might be a better idea in the long run, especially given how particular
the libTooling Clang parser (and by extension QDTrans) can be at times.

Another possible solution may be to use the GCC plugin API to do source-
to-binary (or possibly even source-to-source transformation somehow) trans-
formation, which appears less messy than the libTooling API by reading the
documentation [5], although that API is also unstable across releases, like the
libTooling API, and I have no actual experience with it outside of skimming
through the documentation, so while I do not know, it is certainly possible that
the GCC plugin API may not be as friendly as it first seems.

I believe QDTrans is a legitimately useful tool for automatically converting
programs which use conventional mutex locks into programs which use QD-
locking with some manual work, which could in the future be improved to
the point of being able to fully automatically transform the vast majority of
programs

6.1 Future work
The implementation could be given support for “delegate and copy” [22]. It
could also, of course, be given a nice GUI and some settings to control exactly
how it balances attempting to optimize for ideal performance against attempting
not to break any functionality.

Better optimization would be nice, for example analyzing execution paths
(probably using the Clang Static Analyzer [1] as a library), which would allow
for more sophisticated optimizations (based on things like being able to know
whether a variable is accessed again or not in every case, as QDTrans currently
only scans the function containing the critical section it can only know if a
variable is accessed within this function after the critical section as opposed to
knowing whether it is ever accessed again in the entire program), which would
improve the performance of the resulting code. QDTrans currently errs on the
side of caution, which means that QDTrans will sometimes make suboptimal
decisions in trying to avoid the possibility of outputting broken code.

Furthermore, QDTrans could also be rewritten to consider all files involved
in a project simultaneously (perhaps by following includes). This would make
QDTrans able to handle programs which have locks which are included from
one file to another (see section 5.2.1 of this document).

35

References
[1] Clang static analyzer. http://clang-analyzer.llvm.org/. [Online; ac-

cessed 21-12-2016].

[2] clang::recursiveastvisitor< derived > class template reference. https://
clang.llvm.org/doxygen/classclang_1_1RecursiveASTVisitor.html.
[Online; accessed 10-05-2017].

[3] clang::rewriter class reference. https://clang.llvm.org/doxygen/
classclang_1_1Rewriter.html. [Online; accessed 10-05-2017].

[4] clang::tooling::replacement class reference. https://clang.llvm.org/
doxygen/classclang_1_1tooling_1_1Replacement.html. [Online; ac-
cessed 10-05-2017].

[5] Gnu compiler collection documentation, chapter 23 plugins. https://
gcc.gnu.org/onlinedocs/gccint/Plugins.html. [Online; accessed 21-
08-2017].

[6] The modified splash-2 home page. http://www.capsl.udel.edu/splash/
Download.html. [Online; accessed 21-08-2017].

[7] Splash benchmarks - gem5. http://gem5.org/Splash_benchmarks. [On-
line; accessed 21-08-2017].

[8] Andrei Alexandrescu. Modern C++ Design: Generic Programming and
Design Patterns Applied. C++ in-depth series. Addison-Wesley, 2001.

[9] A.W. Appel and M. Ginsburg. Modern Compiler Implementation in C.
Cambridge University Press, 2004.

[10] Krste Asanovic et al. The Landscape of Parallel Computing Research:
A View from Berkeley” (PDF). http://www.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-183.pdf. [Online; accessed 11-05-2016].

[11] E.H. D’Hollander, G.R. Joubert, F. Peters, and U. Trottenberg. Parallel
Computing: Fundamentals, Applications and New Directions. Advances in
Parallel Computing. Elsevier Science, 1998.

[12] V. Gramoli. More than you ever wanted to know about synchroniza-
tion: Synchrobench, measuring the impact of the synchronization on con-
current algorithms. http://sydney.edu.au/engineering/it/~gramoli/
doc/pubs/gramoli-synchrobench.pdf. [Online; accessed 11-05-2016].

[13] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining
and the synchronization-parallelism tradeoff. In Proceedings of the Twenty-
second Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’10, pages 355–364, New York, NY, USA, 2010. ACM. https:
//www.cs.bgu.ac.il/~hendlerd/papers/flat-combining.pdf [Online;
accessed 06-08-2016].

[14] David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad. Queue Del-
egation Locking. http://www.it.uu.se/research/group/languages/
software/qd_lock_lib. [Online; accessed 12-05-2016].

36

http://clang-analyzer.llvm.org/
https://clang.llvm.org/doxygen/classclang_1_1RecursiveASTVisitor.html
https://clang.llvm.org/doxygen/classclang_1_1RecursiveASTVisitor.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1Replacement.html
https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1Replacement.html
https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
http://www.capsl.udel.edu/splash/Download.html
http://www.capsl.udel.edu/splash/Download.html
http://gem5.org/Splash_benchmarks
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://sydney.edu.au/engineering/it/~gramoli/doc/pubs/gramoli-synchrobench.pdf
http://sydney.edu.au/engineering/it/~gramoli/doc/pubs/gramoli-synchrobench.pdf
https://www.cs.bgu.ac.il/~hendlerd/papers/flat-combining.pdf
https://www.cs.bgu.ac.il/~hendlerd/papers/flat-combining.pdf
http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.it.uu.se/research/group/languages/software/qd_lock_lib

[15] David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad. Delegation
locking libraries for improved performance of multithreaded programs. In
Euro-Par 2014 Parallel Processing, volume 8632 of Lecture Notes in Com-
puter Science, pages 572–583. Springer International Publishing, 2014.

[16] David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad. Queue del-
egation locking. IEEE Transactions on Parallel and Distributed Systems,
2017. To appear.

[17] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia L Lawall, Muller,
Gilles, et al. Remote core locking: Migrating critical-section execution to
improve the performance of multithreaded applications. In USENIX Annual
Technical Conference, pages 65–76, 2012. [Online; accessed 09-12-2015].

[18] Gilles Muller, Julia Lawall, Jesper Andersen, Julien Brunel, René Ryd-
hof Hansen, Yoann Padioleau, and Nicolas Palix. Coccinelle: A Pro-
gram Matching and Transformation Tool for Systems Code. http://
coccinelle.lip6.fr. [Online; accessed 09-12-2015].

[19] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros.
Splash-3: A properly synchronized benchmark suite for contemporary re-
search, 04 2016.

[20] R.C. Seacord. Secure Coding in C and C++. SEI Series in Software
Engineering. Pearson Education, 2013.

[21] David A. Wheeler. Secure Programming HOWTO Chapter 7: Design Your
Program for Security. http://www.dwheeler.com/secure-programs/
Secure-Programs-HOWTO/avoid-race.html. [Online; accessed 06-08-
2016].

[22] Kjell Winblad. qd_lock_lib Tutorial. https://github.com/
kjellwinblad/qd_lock_lib/wiki/Tutorial. [Online; accessed 19-05-
2016].

37

http://coccinelle.lip6.fr
http://coccinelle.lip6.fr
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/avoid-race.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/avoid-race.html
https://github.com/kjellwinblad/qd_lock_lib/wiki/Tutorial
https://github.com/kjellwinblad/qd_lock_lib/wiki/Tutorial

