This is the accepted version of a paper presented at *IEEE International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC 16, 04 Sep 2017, Valencia, Spain*.

Citation for the original published paper:

In: *IEEE International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC 16*

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-37060
channel is the best after energy harvesting, and then use this one for communication without causing harmful interference to the PUs. Although, the energy harvesting in underlay CRN is a promising technique, it still has some disadvantages such as short range communication due to power constraints given by the PU. Also, the spectrum sharing in the underlay CRN may cause mutual interference between the SU and PU as the power allocation policies are not well designed. Moreover, this may lead to leakage of confidential information to the eavesdroppers (EAVs), who want to illegally exploit the communication in CRNs. To overcome the security problems in CRN, works reported in [12]–[14] have focused on solutions at the physical layer in order to reduce the risk of eavesdropping or jamming attacks. In [12], the authors consider a system model where a friendly jammer harvests energy from the RF of the secondary transmitter (S-Tx) and then generates jamming signals to protect against EAV. Asymptotic closed-form expressions of the outage probability and the intercept probability for Nakagami-\(m\) fading channels have been obtained to analyze the system performance. In [15], an energy harvesting CRN in which multiple energy harvesting receivers may act as potential EAVs, was studied for small scale fading and path loss. Exact secrecy outage probability was derived. In [14], a wireless energy harvesting CRN has been analyzed, wherein the SU harvests energy from a wireless power source and then uses it to transmit data opportunistically on an idle channel licensed to the PUs. However, the performance of the SUs in this CRN may be degraded very fast due to jamming attacks by malicious users. To overcome these issues, learning algorithms have been proposed to reduce negative effects from unfriendly jammers.

Although many interesting results have been published in RF energy harvesting for CRN, no one addresses the problem of utilizing the interference from multiple PUs to harvest the energy, reduce the affect of EAV, and at the same time enhance the reliability of the communication for CRNs. Therefore, in this paper, we study underlay energy harvesting CRN to not only enhance spectrum efficiency and green energy utilization, but also guarantee a certain security constraint for the SU. In particular, we consider a CRN in which the SU can harvest energy radiated by multiple PUs operating in orthogonal channels and then uses this energy for communication. Here, the SU is overheard by multiple EAVs. To protect the confidential information of the SU from the EAVs and not to violate the interference constraint of the PU, the S-Tx must have a reasonable channel selection strategy and power allocation. Given these settings, the analysis for the considered CRN is twofold, namely as packet error probability and packet delay with retransmissions. Our main contributions are summarized as follows:

- An energy harvesting and communication protocol over multiple PU channels is proposed. Accordingly, an optimal energy harvesting time for the SU is derived.
- A power allocation policy and a channel selection strategy for the SU, which satisfy the interference constraint of the PU and its own security constraints for multiple EAVs is developed.
- To evaluate the system performance of the SU, closed-form expressions for the packet error probability and packet delay including retransmission for the SU are derived.

The rest of this paper is structured as follows. In Section II, the system model, power constraints, and energy harvesting and communication protocol for the energy harvesting CRN are introduced. In Section III, the power allocation and channel selection strategy are analyzed. Further, an optimal energy harvesting time, and algorithm for power allocation and channel selection are proposed. In Section IV, closed-form expressions of packet error probability and packet delay with retransmissions are obtained. In Section V, the numerical examples and discussions are provided. Finally, conclusions are given in Section VI.

II. SYSTEM MODEL

In this section, the system model, and energy harvesting and communication protocol are presented.

A. System model and channel assumptions

Let us consider a spectrum underlay CRN as shown in Fig. 1 in which \(N\) PUs are operating on orthogonal frequency bands, i.e., they do not cause interference to each other. The S-Tx harvests energy from \(N\) P-Txs and then uses this harvested energy to send packets to the secondary access point (SAP). Further, there exist \(K\) EAVs wishing to overhear the packet transmitted from the S-Tx to the SAP. Here, the SAP is equipped with \(M\) antennas while the others (P-Tx, primary receiver (P-Rx), EAV, and S-Tx) is assumed to have a single antenna. Channel gains of the P-Tx\(_{n}\)→P-Rx\(_{n}\) and S-Tx→SAP communication links are denoted \(h_{n}\), and \(g_{m}\), \(n = 1, \ldots, N\), \(m = 1, \ldots, M\). Here, the channel gain \(g_{m}\) is to represent the link from the S-Tx to the \(m\)-antenna branches of the SAP. The channel gains of the P-Tx\(_{n}\)→EAV\(_{k}\), S-Tx→P-Rx\(_{n}\), P-Tx\(_{n}\)→SAP interference links are denoted by \(\beta_{nk}\), \(\alpha_{nk}\), and \(\rho_{nm}\), respectively. The channel gains of the S-Tx→EAV\(_{k}\) illegitimate links and the P-Tx\(_{n}\)→S-Tx energy harvesting links are expressed, respectively, by \(\delta_{k}\) and \(f_{n}\), \(k \in \{1, \ldots, K\}\). We assume that all channels are modeled as Rayleigh block flat fading, and the channel gains are random variables (RVs) distributed following exponential distribution. Accordingly, the probability density function (PDF) and...
cumulative distribution function (CDF) are expressed, respectively, as

\[f_X(x) = \frac{1}{\Omega_X} \exp\left(-\frac{x}{\Omega_X}\right), \] (1)

\[F_X(x) = 1 - \exp\left(-\frac{x}{\Omega_X}\right), \] (2)

where RV \(X \in \{g_m, h_n, f_n, \alpha_n, \delta_k, \beta_{nk}, \rho_{nm}\} \), refers to the channel gain, and \(\Omega_X = \mathbb{E}[X] \) is the channel mean gain, i.e., \(\Omega_g = \mathbb{E}[g_m], \Omega_{h_n} = \mathbb{E}[h_n], \Omega_{\alpha_n} = \mathbb{E}[\alpha_n], \Omega_\delta = \mathbb{E}[\delta_k], \Omega_{\beta_{nk}} = \mathbb{E}[\beta_{nk}], \Omega_{\rho_{nm}} = \mathbb{E}[\rho_{nm}]. \)

\section{B. Communication protocol}

The basic idea of the RF energy harvesting in the considered CRN is that the S-Tx can convert the P-Tx emitted power, which is considered as harmful interference to the SU, into useful energy for the SU communication. The total time used for energy harvesting and communication is showed in Fig. 2. Accordingly, the communication protocol is implemented in two steps as follows:

\begin{itemize}
 \item Step 1: The S-Tx harvests the energy of \(N \) P-Tx over \(N \) wireless links \(f_n, n \in \{1, 2, \ldots, N\} \).
 \item Step 2: After the energy harvesting process, the S-Tx is designed to not cause the harmful interference to the PU while obtaining the maximal power level to improve the performance. It is noted that the transmit power of the S-Tx in the remaining timeslot \((1-\tau)T \) and at the specific channel \(n \)-th is constrained by the harvested energy \(E_s \), i.e., \(P_{S-Tx}(1-\tau)T \leq E_s \). Accordingly, we have
\end{itemize}

\[P_{S-Tx}^{(n)} \leq P_{avg} = \frac{E_s}{(1-\tau)T} = \frac{\tau \theta P_p}{1-\tau} \sum_{n=1}^{N} \Omega f_n, \] (4)

where \(P_{avg} \) is called as average power threshold given by the S-Tx. On this basis, power allocation under various constraints and channel selection process for the SU can be derived.

\section{III. Power allocation and channel selection of the SU}

In order to deliver packets to the SAP, the S-Tx firstly calculates the power allocation strategy in each channel to guarantee the quality of service (QoS) constraint of the PU and not reveal its confidential information to the EAVs.

1) Power constraint of the S-Tx under PU’s constraint: Since the SU utilizes one of the \(N \) channels licensed to the PUs, its power control policy should be designed to not cause the harmful interference to the PU while obtaining the maximal power level to improve the performance. These can be interpreted into the outage probability constraint given by the PU \(\eta_p \), and the average power threshold given by the S-Tx as follows:

\[\Pr\left\{ C_p^{(n)} \leq R_p \right\} \leq \eta_p, \] (5)

\[P_{S-Tx}^{(n)} \leq P_{avg}, \] (6)

where \(R_p, \eta_p, \) and \(P_{avg} \) are the target rate, outage constraint of the PU, and average power constraint of the
S-Tx, respectively. Symbol $C_p^{(n)}$ is the channel capacity of the PU at the n-th frequency band, defined as

$$C_p^{(n)} = B \log_2 \left(1 + \gamma_p^{(n)} \right), \tag{7}$$

where B is bandwidth and $\gamma_p^{(n)}$ is signal-to-interference-plus-noise ratio (SINR) of the PU given as

$$\gamma_p^{(n)} = \frac{P_p h_n}{P_{S-Tx}^{(n)} \alpha_n + N_0}, \tag{8}$$

in which the symbol N_0 is noise power.

By substituting (8) and (7) into (5), we can rewrite (5) as follows

$$\Pr \left\{ \frac{P_p h_n}{P_{S-Tx}^{(n)} \alpha_n + N_0} \leq \gamma_{th}^{(n)} \right\} \leq \eta_p, \tag{9}$$

where $\gamma_{th}^{(n)} = \frac{2}{2^\eta_p} - 1$. Further, using [16, Property 1], the expression (9) can be calculated as

$$1 - \frac{P_p \Omega_{h_n}}{P_{S-Tx}^{(n)} \alpha_n \gamma_{th}^{(n)} + P_p \Omega_{h_n}} \exp \left(-\gamma_{th}^{(n)} N_0 \right) \frac{P_p}{P_{S-Tx}^{(n)} \alpha_n} \leq \eta_p \tag{10}$$

By setting $A_n = \frac{\gamma_{th}^{(n)} \Omega_{h_n}}{P_p \Omega_{h_n}}$, $B_n = \frac{\gamma_{th}^{(n)} N_0}{P_p \Omega_{h_n}}$, we can rewrite (10) as

$$P_{S-Tx}^{(n)} \leq \frac{1}{A_n} \left[\exp \left(-B_n \right) \frac{1}{1 - \eta_p} - 1 \right]. \tag{11}$$

Combining (11) with (6), the transmit power of the S-Tx should satisfy both PU’s outage constraint and its own harvested energy as

$$P_{S-Tx}^{(n)} \leq \min \left\{ P_{PU}^{(n)}, P_{avg} \right\}, \tag{12}$$

where $P_{PU}^{(n)}$ is formulated as

$$P_{PU}^{(n)} = \frac{1}{A_n} \left[\exp \left(-B_n \right) \frac{1}{1 - \eta_p} - 1 \right]. \tag{13}$$

2) Power constraint of the S-Tx under the overhearing of multiple EAVs: The confidential communication of the SU is threatened by K EAVs. Therefore, the S-Tx should regulate its power to not reveal the information to the EAVs. This can be interpreted into the outage security and transmit power constraints of the S-Tx as follows

$$\Pr \left\{ \max_{k \in \{1, \ldots, K\}} \left\{ C_{e}^{(n,k)} \right\} \geq R_e \right\} \leq \xi, \tag{14}$$

$$P_{S-Tx}^{(n)} \leq P_{avg}, \tag{15}$$

where R_e and ξ are the secrecy target rate and the secrecy outage constraint, respectively. Symbol $C_{e}^{(n,k)}$ denotes the channel capacity of the EAV$_k$ over the S-Tx→EAV$_k$ link when the S-Tx selects the frequency band n to transmit, defined as

$$C_{e}^{(n,k)} = B \log_2 \left(1 + \gamma_{e}^{(n,k)} \right), \tag{16}$$

in which $\gamma_{e}^{(n,k)}$ is the SINR of the EAV$_k$ at the n-th frequency band, and it can be approximated as

$$\gamma_{e}^{(n,k)} = \frac{P_{S-Tx}^{(n)} \delta_k}{P_p \beta_{nk} + N_e} \approx \frac{P_{S-Tx}^{(n)} \delta_k}{P_p \beta_{nk}}, \tag{17}$$

where N_e is noise power at the EAVs. The approximation (17) is understood that the interference from the P-Tx to the EAV is much larger than the background noise power, i.e. $P_p \beta_{nk} \gg N_e$, and the EAVs only are affected by the interference from the P-Tx.

Substituting (16) into (14), we have

$$\Pr \left\{ \max_{k \in \{1, \ldots, K\}} \left\{ B \log_2 \left(1 + \gamma_{e}^{(n,k)} \right) \right\} \geq R_e \right\} \leq \xi. \tag{18}$$

Since all channels are independent random variables, the expression (18) can be formulated as

$$1 - \prod_{k=1}^{K} \Pr \left\{ \frac{\delta_k}{\beta_{nk}} - \frac{\gamma_{th}^{(n)} P_p}{P_{S-Tx}^{(n)} \Omega_{\delta}} \right\} \leq \xi, \tag{19}$$

where $\gamma_{th}^{(n)} = \frac{2}{2^\eta_p} - 1$. Further, the probability in (19) can be derived as

$$I = \int_0^1 \Pr \left\{ \frac{\delta_k}{\beta_{nk}} - \frac{\gamma_{th}^{(n)} P_p}{P_{S-Tx}^{(n)} \Omega_{\delta}} \right\} f_{\beta_{nk}}(x) dx, \tag{20}$$

where $f_{\beta_{nk}}(x) = \frac{1}{\Omega_{\delta}} \exp \left(-\frac{x}{\Omega_{\delta}} \right)$. Accordingly, the integral I can be calculated as

$$I = 1 - \int_0^1 \frac{1}{\Omega_{\delta}} \exp \left[-\left(\frac{\gamma_{th}^{(n)} P_p}{P_{S-Tx}^{(n)} \Omega_{\delta}} + \frac{1}{\Omega_{\delta}} \right) x \right] dx \tag{21}$$

Substituting (21) into (19) and after some mathematical manipulations, we obtain the power constraint for the S-Tx to against multiple eavesdroppers as follows

$$P_{S-Tx}^{(n)} \leq \frac{\gamma_{th}^{(n)} P_p \Omega_{\delta} (1 - \sqrt[1-\xi]{\xi})}{\Omega_{\delta} \sqrt[1-\xi]{1-\xi}}. \tag{22}$$

Combining (22) with the energy harvesting constraint (15) yields

$$P_{S-Tx}^{(n)} \leq \min \left\{ P_{Eav}^{(n)}, P_{avg} \right\}, \tag{23}$$

where $P_{Eav}^{(n)}$ is expressed as

$$P_{Eav}^{(n)} = \frac{\gamma_{th}^{(n)} P_p \Omega_{\delta} (1 - \sqrt[1-\xi]{\xi})}{\Omega_{\delta} \sqrt[1-\xi]{1-\xi}} \tag{24}$$

As a consequence, the transmit power of the S-Tx in the n-th channel is obtained by combining (12) with (23) as

$$P_{S-Tx}^{(n)} = \min \left\{ \min \{P_{PU}^{(n)}, P_{Eav}^{(n)} \}, P_{avg} \right\}. \tag{25}$$
From (25), we consider two case as follows:

- **Case 1**: $P_{avg} > \min\{P_{PU}^{(n)}, P_{Eav}^{(n)}\}$, the transmit power of the S-Tx depends on the jointed constraints of the PU and EAV as
 \[
 P_{S-Tx}^{(n)} = \min\{P_{PU}^{(n)}, P_{Eav}^{(n)}\},
 \]
 where $P_{PU}^{(n)}$ and $P_{Eav}^{(n)}$ are defined in (13) and (24), respectively. Note that if the energy harvesting time τ in this case is increase further, the transmit power of the S-Tx can not increase further due to the joint constraint of the PU and EAVs.

- **Case 2**: $P_{avg} \leq \min\{P_{PU}^{(n)}, P_{Eav}^{(n)}\}$, the maximal transmit power of the S-Tx depends on the harvested energy from the PUs, i.e., $P_{S-Tx}^{(n)} = P_{avg}$. Moreover, the S-Tx expects to have a high value of P_{avg} to obtain the high performance, this leads to a fact that the maximal P_{avg} is equal to $\min\{P_{PU}^{(n)}, P_{Eav}^{(n)}\}$, i.e., $P_{avg} = \min\{P_{SU}^{(n)}, P_{Eav}^{(n)}\}$. After some mathematical manipulations, we obtain the optimal energy harvesting time τ for maximizing the value of P_{avg} as
 \[
 \tau^* = \min\{P_{PU}^{(n)}, P_{Eav}^{(n)}\} \left(\frac{\theta P_{S-Tx}}{\theta P_{S-Tx} \sum_{n=1}^{N} \Omega_{fn}} + \min\{P_{PU}^{(n)}, P_{Eav}^{(n)}\} \right). \tag{27}
 \]
 Moreover, the S-Tx wants to select the best channel to maximize its transmit power to improve its performance, and this is given as
 \[
 n^* = \arg \max_{n \in \{1,2,\ldots,N\}} \left\{ P_{S-Tx}^{(n)} \right\}, \tag{28}
 \]
 where n^* is the selected channel such that the transmit power of the S-Tx is optimal, i.e.,
 \[
 P_{S-Tx}^{(n^*)} = \max_{n \in \{1,2,\ldots,N\}} \left\{ \min\left\{ P_{PU}^{(n)}, P_{Eav}^{(n)} \right\}, P_{avg} \right\}. \tag{29}
 \]

Finally, an algorithm for the power allocation and channel selection is shown in Algorithm 1.

Algorithm 1 Power allocation and channel selection

1. **procedure** PASA
2. \(P_{S-Tx}^{(n^*)} \) := 0;
3. for \(n = 1; n \leq N; n + + \) do
4. \(P_{PU}^{(n)} = \frac{1}{\lambda_n} \left(\frac{\exp(-\beta_n)}{1 - \exp(-\beta_n)} - 1 \right); \)
5. \(P_{Eav}^{(n)} = \frac{g_n P_{SU}^{(n)} \Omega_m}{\Omega_{fn}}; \)
6. \(\tau = \frac{\theta P_{S-Tx}}{\theta P_{S-Tx} \sum_{n=1}^{N} \Omega_{fn}} \min\{P_{PU}^{(n)}, P_{Eav}^{(n)}\}; \)
7. \(P_{avg} = \frac{\theta P_{S-Tx}}{\theta P_{S-Tx} \sum_{n=1}^{N} \Omega_{fn}}; \)
8. \(P_{S-Tx}^{(n)} = \min\left\{ \min\left\{ P_{PU}^{(n)}, P_{Eav}^{(n)} \right\}, P_{avg} \right\}; \)
9. if \(P_{S-Tx}^{(n)} \geq P_{S-Tx}^{(n^*)} \) then
10. \(n^* = n; \)
11. \(P_{S-Tx}^{(n^*)} = P_{S-Tx}^{(n)} \)
12. return \(n^* \) and \(P_{S-Tx}^{(n^*)} \);

IV. Performance Analysis

When the S-Tx sends packets, they may be in error due to channel impairment and other factors. Thus, the S-Tx needs to retransmit and retransmit. In order to measure this process, we will consider two performance metrics, called packet error probability (PEP) and average packet delay (APD), as follows:

1) **Packet Error Probability**: The PEP is defined as the probability that the SINR of the SU drops below a predefined threshold, i.e.,
\[
O = \Pr\left\{ \gamma_s \leq \gamma_{th} \right\}, \tag{29}
\]
where γ_{th} is the SINR threshold of the SU and γ_s is defined as
\[
\gamma_s = \max_{m \in \{1,2,\ldots,M\}} \left\{ \frac{P_{S-Tx}^{(n^*)} g_m}{P_{p} \rho_{n^*} + N_0} \right\}. \tag{30}
\]
Accordingly, the PEP can be calculated by using order statistics and the help of [16, Property 1] as follows:
\[
O = \Pr\left\{ \max_{m \in \{1,2,\ldots,M\}} \left\{ \frac{P_{S-Tx}^{(n^*)} g_m}{P_{p} \rho_{n^*} + N_0} \right\} < \gamma_{th} \right\} = \prod_{m=1}^{M} \Pr\left\{ \frac{P_{S-Tx}^{(n^*)} g_m}{P_{p} \rho_{n^*} + N_0} < \gamma_{th} \right\} = \left(1 - \frac{\exp\left(- \frac{\gamma_{th} N_0}{P_{S-Tx}^{(n^*)} \Omega_m} \right)}{\frac{\gamma_{th} P_{S-Tx}^{(n^*)} \Omega_m}{\rho_{n^*} + 1}} \right)^M. \tag{31}
\]

2) **Packet Delay With Retransmissions**: when a packet is transmitted unsuccessfully, the S-Tx needs to retransmit the energy and then retransmit. The probability that a packet is transmitted successfully after ℓ transmissions is expressed as follows:
\[
\Pr\{L = \ell\} = O^{\ell-1}(1 - O), \tag{32}
\]
where L is the number of transmissions. Accordingly, the average number of transmissions per packet can be calculated as
\[
E[L] = \sum_{\ell=1}^{\infty} \ell O^{\ell-1}(1 - O) = \frac{1}{1 - O}. \tag{33}
\]
Finally, the average delay to transmit a packet can be calculated as follows:
\[
D = T E[L] = \frac{T}{1 - O}, \tag{34}
\]
where T is total time frame and O is PEP defined in (29).
V. NUMERICAL RESULTS

In this section, we present numerical examples for the considered system. In particular, we investigate the impact of the P-Tx transmit signal-to-noise ratio (SNR), energy harvesting time, and the channel mean gains on the PEP and APD. Unless otherwise stated, the following system parameters are used for both analysis and simulation: System bandwidth: $B = 2$ MHz; Outage constraint of PU: $\eta_0 = 0.01$; Security constraint: $\xi = 0.01$; Energy harvesting coefficient efficiency: $\theta = 0.5$; Target rate of SU, PU, and EAVs are $R_s = 64$ Kbps, $R_a = 64$ Kbps, and $R_e = 3$ Mbps, respectively.

Fig. 3 illustrates the impact of channel mean gains of the P-Tx→EAVs links (Ω_{β_4}) on the S-Tx transmit SNR. We can see that the index C, which is equivalent to the channel 2 and $\Omega_{\beta_2} = 500$, provides the highest S-Tx transmit SNR. On the other hand, the index D, which is equivalent to the channel 3 and $\Omega_{\beta_3} = 100$, provides the lowest S-Tx transmit SNR. This is due to the fact that a higher channel mean gain of the P-Tx→EAVs leads to a stronger interference to the EAVs, i.e., the EAVs experience difficulties to decode the transmitted packet from the S-Tx. As a result, the S-Tx can increase its transmit power to enhance its performance without leaking confidential information to the EAVs. In other words, channel 2 will be selected for the SU communication. This phenomenon can be observed from Fig. 3, i.e., increasing the channel mean gains of the P-Tx→EAVs links (Ω_{β_4}) leads to scaling up of the P-Tx transmit SNR, or the interference from the P-Tx to the EAVs brings benefit for the S-Tx transmit SNR.

Fig. 5 shows the impact of the fraction of the energy harvesting time τ and channel mean gains of P-Tx→S-Tx energy harvesting links (Ω_{β_5}) on the S-Tx transmit SNR. It can be seen that when the channel mean gain of the P-Tx→S-Tx harvesting link is the highest, i.e., $\{\Omega_{\beta_5}\}_n=1 = 5$, the S-Tx transmit SNR is increased very fast and saturated at $\tau = 0.1$. Also, all S-Tx transmit SNR is saturated at the same value 13 dB as $\tau > 0.4$, i.e., the energy harvesting time does not affect the S-Tx transmit SNR. This can be explained as follows: the higher channel mean gain of the P-Tx→S-Tx link leads to a higher energy harvested from the P-Txs, thus the time consumed τ to harvest the energy is shorter. However, increasing the energy harvesting time further, i.e. $\tau > 0.4$, the S-Tx cannot harvest more energy due to the fixed transmit SNR of the P-Txs $\gamma_{P-Tx} = 12$ dB, i.e., the S-Tx transmit SNR is saturated.

Fig. 6 shows the impact of the P-Tx→EAV interference links on the PEP by considering the following cases:

- Case 1: Channel mean gains of the P-Tx→EAVs interference links are identical: $\{\Omega_{\beta_6}\}_n=1 = 10$;
- Case 2: Channel mean gain of from the P-Tx5→EAVs interference links is the highest: $\Omega_{\beta_5} = 50$, the other is identical: $\{\Omega_{\beta_6}\}_n=1 = 10$;
- Case 3: Channel mean gain of from the P-Tx3→EAVs interference links is the highest: $\Omega_{\beta_3} = 100$, the other is identical: $\{\Omega_{\beta_6}\}_n=2 = 10$;
- Case 4: Channel mean gains of the P-Tx→EAVs
interference links are identical as in Case 1. But the number of antennas of the SAP is greater than the one of Case 1, i.e., $M = 3$.

It can be seen from Case 1 to Case 3 that if one of the channels has the strongest P-Tx→EAV interference links, it is selected for communication and the PEP is degraded significantly. More specifically, the PEP in Case 3 is better than the one in Case 1 and Case 2. This can be explained by the fact that the strong interference from the P-Tx to the EAVs degrades the quality of packets decoded at the EAVs. Accordingly, the S-Tx can increase its transmit SNR to enhance its performance without leaking confidential information to the EAVs. Further, we see that the PEP in Case 4 is better than the one in Case 1. Because the number of antennas of the SAP in Case 4 is higher than Case 1, and hence its received signal is better than Case 1. As a result, the PEP in Case 4 is reduced.

Fig. 7 shows the impact of the S-Tx→EAVs and S-Tx→SAP links on the packet delay. We can see that at the low P-Tx transmit SNR regime, e.g., $\gamma_{P-Tx} < -2$ dB, the packet delay goes to infinity. However, as the P-Tx transmit SNR increases further, the packet delay of the SU is reduced significantly. This is because the S-Tx only harvests small amounts of energy at the low P-Tx transmit SNR, thus the power required to deliver the packet is very low, which increases the packet error rate. Hence, the S-Tx requires several retransmissions to deliver the packet, i.e., the packet delay increases. Further, as the channel mean gain of the S-Tx→EAVs links increase from $\Omega_g = 5$ to $\Omega_g = 10$, the packet delay is improved significantly. It is easy to understand that as all constraints are satisfied, a strong channel gain between the source and the destination will guarantee a low packet error rate, i.e, the S-Tx does not have to retransmit the packet.

VI. CONCLUSIONS

In this paper, we have proposed an energy harvesting and communication protocol for CRNs, in which the S-Tx is subject to the harvested energy constraint, security constraints due to multiple EAVs, and outage probability constraint of the PU. The optimal energy harvesting time, a power allocation policy and a channel selection strategy have been derived. Moreover, performance analysis in terms of packet error probability and average packet delay including retransmissions for the secondary network has been obtained. Further, our numerical results show that the proposed power allocation policy and channel selection strategy can provide reliable and secure communication for the SU without violating the security constraints and interference constraints due to multiple PU. Finally, the analytical results are verified by simulations.

ACKNOWLEDGEMENT

The research leading to these results has been performed in the SafeCOP project which is funded from the ECSEL Joint Undertaking under grant agreement n° 692529 and from National funding, and the research project of Ministry of Education and Training, Vietnam (No.B2017-TNA-50).
REFERENCES

