
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2017

Passive gesture recognition on
unmodified smartphones using Wi-
Fi RSSI

MOHAMED ABDULAZIZ ALI HASEEB

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION

Passive gesture recognition on unmodified
smartphones using Wi-Fi RSSI

MOHAMED ABDULAZIZ ALI HASEEB

Master’s Thesis at CVAP, CSC
Supervisor: Petter Ögren & Ramviyas Parasuraman

Examiner: Patric Jensfelt
Swedish title: Passiv gest-igenkänning för en standardutrustad smartphone med hjälp

av Wi-Fi RSSI

iii

Abstract

The smartphone is becoming a common device carried by hundreds of mil-
lions of individual humans worldwide, and is used to accomplish a multitude
of different tasks like basic communication, internet browsing, online shopping
and fitness tracking. Limited by its small size and tight energy storage, the
human-smartphone interface is largely bound to the smartphones small screens
and simple keypads. This prohibits introducing new rich ways of interaction
with smartphones.

The industry and research community are working extensively to find ways
to enrich the human-smartphone interface by either seizing the existing smart-
phones resources like microphones, cameras and inertia sensors, or by intro-
ducing new specialized sensing capabilities into the smartphones like compact
gesture sensing radar devices.

The prevalence of Radio Frequency (RF) signals and their limited power needs,
led us towards investigating using RF signals received by smartphones to rec-
ognize gestures and activities around smartphones. This thesis introduces a
solution for recognizing touch-less dynamic hand gestures from the Wi-Fi Re-
ceived Signal Strength (RSS) received by the smartphone using a recurrent
neural network (RNN) based probabilistic model. Unlike other Wi-Fi based
gesture recognition solutions, the one introduced in this thesis does not require
a change to the smartphone hardware or operating system, and performs the
hand gesture recognition without interfering with the normal operation of other
smartphone applications.

The developed hand gesture recognition solution achieved a mean accuracy of
78% detecting and classifying three hand gestures in an online setting involv-
ing different spatial and traffic scenarios between the smartphone and Wi-Fi
access points (AP). Furthermore the characteristics of the developed solution
were studied, and a set of improvements have been suggested for further future
work.

iv

Sammanfattning

Smarta telefoner bärs idag av hundratals miljoner människor runt om i värl-
den, och används för att utföra en mängd olika uppgifter, så som grundläggande
kommunikation, internetsökning och online-inköp. På grund av begränsningar
i storlek och energilagring är människa-telefon-gränssnitten dock i hög grad
begränsade till de förhållandevis små skärmarna och enkla knappsatser.

Industrin och forskarsamhället arbetar för att hitta vägar för att förbättra och
bredda gränssnitten genom att antingen använda befintliga resurser såsom mik-
rofoner, kameror och tröghetssensorer, eller genom att införa nya specialiserade
sensorer i telefonerna, som t.ex. kompakta radarenheter för gestigenkänning.

Det begränsade strömbehovet hos radiofrekvenssignaler (RF) inspirerade oss
till att undersöka om dessa kunde användas för att känna igen gester och ak-
tiviteter i närheten av telefoner. Denna rapport presenterar en lösning för att
känna igen gester med hjälp av ett s.k. recurrent neural network (RNN). Till
skillnad från andra Wi-Fi-baserade lösningar kräver denna lösning inte en för-
ändring av vare sig hårvara eller operativsystem, och ingenkänningen genomförs
utan att inverka på den normala driften av andra applikationer på telefonen.

Den utvecklade lösningen når en genomsnittlig noggranhet på 78% för detekte-
ring och klassificering av tre olika handgester, i ett antal olika konfigurationer
vad gäller telefon och Wi-Fi-sändare. Rapporten innehåller även en analys av
flera olika egenskaper hos den föreslagna lösningen, samt förslag till vidare
arbete.

Contents

Contents v

1 Introduction 1
1.1 Motivation . 2
1.2 Project objective . 3
1.3 Report organization . 3

2 Theoretical background 5
2.1 Radio Frequency (RF) wave propagation 6
2.2 Wi-Fi overview . 7

2.2.1 IEEE 802.11 network architecture 7
2.2.2 IEEE 802.11 data frames . 8
2.2.3 RSSI measurements . 8
2.2.4 Different activities impact on Wi-Fi RSS 9

3 Related work 13
3.1 Non RF based gesture recognition 14
3.2 RF based gesture recognition . 14
3.3 Wi-Fi RSSI based gesture recognition 15
3.4 Summary of related work . 17

4 Problem formulation and modelling 19
4.1 Formulation . 20
4.2 Artificial neural networks . 21

4.2.1 Feed forward neural networks (FFNN) 21
4.2.2 FFNNs limitations . 21
4.2.3 Recurrent neural networks (RNN) 22
4.2.4 Long Short-Term Memory (LSTM) 23

4.3 Hand gesture recognition model . 24
4.3.1 Model evaluation . 24

5 Method 27
5.1 Solution description . 28

5.1.1 RSSI collection . 28

v

vi CONTENTS

5.1.2 Windowing . 28
5.1.3 Noise detection . 28
5.1.4 Preprocessing . 28
5.1.5 Inference (LSTM RNN model) 30
5.1.6 Logits thresholding . 30
5.1.7 Prediction decision rules . 30
5.1.8 Traffic induction . 31

5.2 System training . 31
5.2.1 Offline data preprocessing . 31
5.2.2 LSTM RNN model training 32
5.2.3 Thresholds selection . 33

6 Implementation 35
6.1 Used hardware . 36
6.2 Software tools . 36

6.2.1 Tools used for data collection 36
6.2.2 Tools used for offline analysis 36
6.2.3 Tool used for online experiments 38

7 Experiments 41
7.1 Performed hand gestures . 42
7.2 Data collection . 43

7.2.1 Spacial setup . 43
7.2.2 Traffic scenarios . 44
7.2.3 Collection procedure . 44
7.2.4 Gesture windows extraction 46

7.3 LSTM RNN model training and evaluation 46
7.4 Offline experiments . 48

7.4.1 Accuracy on different setups 48
7.4.2 Prediction accuracy of other algorithms 49
7.4.3 Effect of reducing the training data 50
7.4.4 Accuracy for different prediction window lengths 50
7.4.5 Accuracy for different number of samples per prediction window 50
7.4.6 Accuracy for different RNN model sizes 51

7.5 Online experiments . 51
7.5.1 Online gesture prediction accuracy 53
7.5.2 False positive predictions . 53
7.5.3 Gesture recognition time . 55

8 Discussion and conclusion 59
8.1 Results discussion . 60

8.1.1 Comparison to similar work 60
8.1.2 Generalization to different spatial setups 60
8.1.3 Performance of recognizing the hand gestures 61

CONTENTS vii

8.1.4 Robustness against interfering background activities 61
8.1.5 System parameters tuning . 61
8.1.6 Limitations . 63

8.2 Abandoned design and implementation choices 64
8.2.1 Wi-Fi link quality (LQ) . 64
8.2.2 Smoothing the RSSI stream 64

8.3 Improvements and future work . 64
8.3.1 Preamble gesture . 64
8.3.2 Improved sensing of Wi-Fi RSS 65

8.4 Ethical and sustainability aspects . 65
8.5 Conclusion . 66

Bibliography 67

Chapter 1

Introduction

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Smartphones are one of the few devices that humans carry and use on a daily basis
as they are becoming more and more affordable. Today, smartphones are responsi-
ble for the majority of internet search traffic [1] as well as online media consump-
tion [2]. Consumer reports reveal that users spend more time on smartphones than
they do on desktop computers [3]. Nevertheless, the human-smartphone interface
did not evolve significantly beyond the smartphone touch screens. Finding methods
to enrich and simplify how humans interact with their smartphones in efficient and
intuitive ways is an increasing necessity. Inherited smartphone limitations due to
their sizes, like screen space, computing capacity and battery power, make the task
of enriching and simplifying the human-smartphone interface even more challenging.

A multitude of techniques have been developed to enable new and intuitive interac-
tions with smartphones. This includes techniques aimed at understanding human
speech [4], techniques enabling touch-less gestures and others inferring activities
from non-cooperative subjects [5]. Within the gesture recognition area, techniques
that use inertial sensing were developed in [6]. Their sensing capabilities though
are limited to when a sensor or a smartphone is carried by the user. Due to their
ubiquitous presence on smartphones, cameras have also been exploited by a vari-
ety of techniques for gesture recognition [7]. However, these techniques suffer from
limiting the gestures to the camera range, being sensitive to the lighting conditions
and more importantly the high-power consumption of cameras.

Great interest has emerged in recent years to leverage Radio Frequency (RF) signals
for sensing human activities and gestures as in [8] and [9]. RF signal advantages
are manifested in their low-power footprint, abundance and ability to penetrate
objects, enabling non line-of-sight recognition capabilities. Project Soli of Google
[10] attempts to create a rich gesture recognition interface using specialized radar
hardware that can be embedded in wearables, phones, computers and Internet of
Things (IoT) devices. The ubiquitous nature of Wi-Fi makes it interesting to use
for gesture recognition in smartphone. A few techniques have been attempted to
use the Wi-Fi Received Signal Strength Indication (RSSI) for gesture recognition
[11] [5], but most required special hardware or software to operate, rendering them
not usable for the majority of existing smartphones without modification.

Using Wi-Fi RSSI for gesture recognition on unmodified smartphones is an open
problem and is the focus of this thesis work. Beside using a suitable method, solv-
ing this problem also depends on the ability to hone the right quantity and quality
of Wi-Fi RSSI values that enable recognizing hand gestures on smartphones while
avoiding modifications similar to those needed by the previous work.

Gesture recognition systems that just use the Wi-Fi signal without requiring mod-
ification to the smartphone hardware or core software, have a great potential for

1.2. PROJECT OBJECTIVE 3

wide adoption because of the improved human-smartphone interaction they bring
at very small or no cost, compared to the other approaches.

1.2 Project objective
The main objective of this thesis is to investigate and demonstrate the possibility of
using Wi-Fi Received Signal Strength (RSS) received by smartphones and applying
machine learning techniques to predict hand gestures near smartphones without
modifying the smartphone hardware or its core software. The demonstrated ges-
ture recognition capability is possible to enable in a smartphone via a regular user
application software installation.

The considered gestures are touch-less dynamic hand gestures which involve moving
the hand near the smartphone without touching it. A set of such unique gestures
will be considered, and the hand gesture recognition system will be designed to de-
tect the presence of any these gestures from the Wi-Fi RSS and the specific gesture
performed.

The focus is on predicting hand gestures while the smartphone is connected to
a Wi-Fi network, and the Wi-Fi RSSI is used for predicting the hand gestures.
RSSI is a proxy measurement of the received Wi-Fi radio signal power, commonly
generated by Wi-Fi receivers.

A mobile application is developed for demonstrating and evaluating the gesture
recognition system in an online setting. The evaluation contains both qualitative
and quantitative parts. In the quantitative analysis, the accuracy of the recognition
system to detect and classify different hand gestures is evaluated in a variety of
spatial and traffic scenarios.

1.3 Report organization
This chapter motivated the reasons for investigating the possibility of detecting
hand gestures on unmodified smartphones from Wi-Fi RSSI, and outlined the main
objectives pursued in this thesis.

The second chapter presents the theoretical background necessary for understanding
how objects like a human hand effect radio signals including Wi-Fi. Chapter three
provides a review of the related work. In chapter four, the problem of recognizing
hand gestures from Wi-Fi RSSI values is formulated as a probabilistic classification
problem, and the model type used to solve the problem is described and justified.

The proposed gesture recognition method is detailed in chapter five. This is fol-
lowed by a description of the various implementation details in chapter six.

4 CHAPTER 1. INTRODUCTION

The data collected to train the system and the different performed offline and on-
line experiments are described in chapter seven. The report is concluded in chapter
eight which contains an assessment of the developed recognition solution based on
the obtained results, a comparison to similar work and a set of recommendations
for further improvements and future work.

Chapter 2

Theoretical background

5

6 CHAPTER 2. THEORETICAL BACKGROUND

2.1 Radio Frequency (RF) wave propagation

An RF signal propagating through a medium is subject to several environmental
factors that impact its characteristics. In the absence of nearby obstacles, the signal
strength will be reduced by the free-space path loss (FSPL) caused by the spread-
ing out of the signal energy in space. Friis transmission equation (Equation 2.1)
describes the relation between the power sent by a transmitting antenna and the
one received by a receiving antenna [12]. It also explains the impact of the FSPL
in the signal power. The received power is inversely proportional to the square of
the distance between the transmitter and the receiver (R) and also inversely pro-
portional to the square of the signal frequency (Cλ), where C is the speed of light
and λ is the signal wave length.

Pr = PtGrGt(
λ

4πR)2 (2.1)

In the above equation, Pt and Gt are the transmitter output power and its antenna
gain, Pr and Gr are the receiver input power and its antenna gain, R is the distance
between the antennas and λ is the signal wave length.

The RF signal can also be absorbed by the medium in which it propagates and
causes a reduction in its signal strength. This reduction is proportional to the
RF signal frequency and the conductivity of the propagation medium [13]. Conse-
quently, metal objects and human body absorb RF signal power more than wooden
objects.

The path of the signal can also be impacted by surrounding objects by reflect-
ing, refracting or diffracting the original signal [14]. Figure 2.1 and 2.2 illustrate
the impact of the different factors affecting the RF signal propagation path.

Figure 2.1: Reflection and diffraction illustration.

2.2. WI-FI OVERVIEW 7

Figure 2.2: Refraction illustration.

An antenna can receive multiple versions of the same signal from different paths
due to reflection, refraction and diffraction. These signals will then interfere (either
constructively or destructively) at the receiving antenna causing a multipath fading,
which is rendered as rapid fluctuations in the signal strength [15]. This explains the
different ways by which human body presence and movements impacts the strength
of the radio signal received by a nearby wireless device (e.g. mobile phone).

2.2 Wi-Fi overview

This section provides background information highlighting some aspects related to
the physical connectivity and the exchange of data in Wi-Fi networks.

Wi-Fi is a set of technologies that implement the Institute of Electrical and Electron-
ics Engineers’ (IEEE) 802.11 standards which define specification for the physical
(PHY) layer and the medium access (MAC) layer for a wireless connectivity of sta-
tions (STAs) within a local area[16]. The PHY layer corresponds to layer one of the
Open Systems Interconnect (OSI) model [17], and the MAC layer corresponds to a
sub-layer of layer two of the OSI model.

2.2.1 IEEE 802.11 network architecture

The basic building block of an IEEE 802.11 local area network (LAN) is the Basic
Service Set (BSS), which is comprised of two or more STAs as shown in Figure 2.3.
Each BSS is connected to a coverage area called Basic Service Area (BSA) within
which the member STAs remain in communication [18]. Within a BSS, all STAs
are connected to a single STA known as the access point (AP), which enables com-
munication within the BSS and to other networks. Each STA-AP connection uses
one or more signal carriers, each operating in a separate frequency, to carry data.

8 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: 802.11 components: Basic Service Set (BSS) illustration.

2.2.2 IEEE 802.11 data frames
In an IEEE 802.11 LAN, frames are used to transmit data and exchange network
management information [19]. Three types of data frames are exchanged between
STAs within an IEEE 802.11 LAN:

• Control frames : which include frames that facilitate the exchange of data
between STAs, like acknowledgement frames (ACK) which are sent by a re-
ceiving STA to a sending STA indicating a successful reception of a frame.

• Data frames : which carry the upper layers’ payload; e.g. web traffic.

• Management frames : which include several types of frames that allow the
management of the communication network. An example is the beacon frame
which is sent periodically by an AP to the STAs within its range. The beacon
frame contains information about the network, like capability information and
network synchronization information.

2.2.3 RSSI measurements
The Wi-Fi RSSI measurements are performed by the wireless system for each frame
received by the device as depicted by Figure 2.4. The traffic on an idle network will
consist mainly of beacon frames. Beacon frames are sent periodically by the AP.
The time between two beacon frame transmissions is configurable and typically set
to ∼102 milliseconds [20]. This means a smartphone connected to an IEEE 802.11

2.2. WI-FI OVERVIEW 9

LAN, and not actively receiving data, will at least have around nine new RSSI mea-
surements every second corresponding to the beacon frames received during that
second. However in reality, most applications in smartphones are regularly exchang-
ing data with their remote sources over the internet, and hence in practice, the RSSI
measurements are updated in frequencies higher than nine times per second.

Figure 2.4: Illustration of RSSI measurements in a smartphone for received Wi-Fi
frames.

2.2.4 Different activities impact on Wi-Fi RSS
This section shows how some objects movements within the vicinity of the AP and
the smartphone, impact the Wi-Fi RSS received by the smartphone. Figure 2.5
shows the RSSI stream recorded in a smartphone, placed in a table, while a person
is walking, and Figure 2.6 shows an RSSI stream recorded while a person is typing
on a computer keyboard. Figure 2.7 shows an RSSI stream recorded in a smart-
phone while a person is performing a Swipe hand gesture once every ten seconds.

Note the unique pattern in the RSSI stream created by the Swipe hand gesture.
This unique pattern will however hardly be recognizable if a nearby person was
walking at the same time as the gesture is performed.

10 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.5: RSSI stream as measured on a smartphone placed on table near a
person walking around in room. The red marker indicates when the person started
walking. The AP is placed ∼2 meters from the smartphone.

Figure 2.6: RSSI stream as measured on a smartphone placed ∼20 centimeters
from a person typing on a computer keyboard. The red marker indicates when the
typing was started. The AP is placed ∼2 meters from the smartphone.

2.2. WI-FI OVERVIEW 11

Figure 2.7: RSSI stream as measured on smartphone placed on table near a person
performing a Swipe gesture every ten seconds. The red markers indicate the gesture
starting time. The AP is placed ∼2 meters from the smartphone.

Chapter 3

Related work

13

14 CHAPTER 3. RELATED WORK

3.1 Non RF based gesture recognition

A variety of research work was dedicated to enriching the human-smartphone inter-
face via gesture recognition leveraging the multitude of sensors available in today’s
smartphones. Several gesture recognition techniques used the phone camera to
sense the environment and recognize gestures and activities. In [7] a hand gesture
recognition system using the phone’s camera RGB input is introduced. The system
achieved an accuracy of 93% classifying seven hand gestures. The solution though
was limited only to static gestures (in contrast to dynamic gestures like swipe). Sim-
ilar to other vision based gesture recognition techniques, the solution was limited
to spaces near the phone and within the line-of-sight of the phone camera and was
sensitive to the lighting conditions. More importantly, cameras have to be active all
the time which consumes a significant amount of power (which drains the battery
quickly).

Another family of gesture recognition solutions uses the reflected sound waves from
objects for gesture recognition. Gupta et al. [21] used a personal computer (PC)
speaker and a microphone to emit and receive 18-20 KHz sound waves. They used
the Doppler shift induced by the hand movement in the reflected sound waves to
detect gestures. A drawback of this approach is the use of still audible sound waves,
and porting them to smartphones is a challenge in itself.

Inertia based gesture recognition techniques are also widely used. Their main draw-
back lies on requiring the placement of the sensors on the human body. In [6] the
authors captured environmental electromagnetic waves like the one induced by the
AC power signals (50 - 60 HZ) by measuring the human body voltage via a contact
on the human subject’s neck. The recognition used the changes introduced in the
measured voltage signal when the subject body moved.

Note that most of the above mentioned research work was focused on gesture recog-
nition in laptops or PCs, instead of smartphones.

3.2 RF based gesture recognition

This category involves a variety of techniques that use RF waves to detect and rec-
ognize gestures and activities. These techniques involve detection using frequency
modulation (FM) radio signals, Global System for Mobile Communications (GSM)
signals, Wi-Fi signals, etc.

The gesture recognition techniques discussed here can be classified into online and
offline techniques. Online techniques performs the recognition while collecting the
sensory data (e.g. FM radio signal strength). In contrast, in offline techniques the
sensory data is collected first and the recognition is done in a separate subsequent

3.3. WI-FI RSSI BASED GESTURE RECOGNITION 15

analysis phase, typically on a PC.

In [8], Zhao et al. used mobile phone GSM signals, and a custom built 4-antennae
receiver to detect 14 hand gestures performed around a smartphone. The receiver
was attached to the back of the smartphone and was used to receive the GSM signals
sent by the smartphone. The received GSM signal was smoothed and split into 2.5
seconds overlapping windows. Samples from the 2nd derivative of each window were
then used as the input features to a support vector machine (SVM) model trained
to classify the gestures. Although a high average detection accuracy of 87.2% was
achieved, the method requires an additional receiver and works only when the user
of the smartphone is making a call.

In [22], Wan et al. used a portable radar sensor and a PC to design a body gesture
recognition system. The radar operated in the 2.4 GHz industrial, scientific and
medical (ISM) band, and output two analogue signals which were sampled at a
frequency of 200 Hz before feeding them to the PC. Using the difference in magni-
tude between the two radar signals as features for a K-Nearest Neighbours (K-NN)
classifier (K=3), a classification accuracy of 83.3% was achieved classifying between
three gestures: shaking head, hand lifting and hand pushing. When augmenting the
magnitude difference features with ones extracted from the signals’ Doppler profile,
the classification accuracy was increased to 96.7%. A sliding window of 2.56 seconds
was used to create the Doppler profiles.

Pu et al. [23] built a system that used Wi-Fi signals to sense and recognize body
gestures within a whole-home environment. The detected gestures involved a strong
movement of one or several parts of the user body. Their system consisted of one
(or more) transmitter continuously sending Wi-Fi signals and one Wi-Fi multiple-
input and multiple-output (MIMO) receiver built specifically for the purpose of this
experiment. Fast Fourier transform (FFT) was applied to 0.5 seconds overlapping
windows to compute consecutive frequency-time Doppler profiles. The positive and
negative shifts in frequency were detected from the computed Doppler profiles and
used as input features to the recognition system. The recognition system compared
each input sequence (of positive and negative frequency shifts) to a set of prede-
fined unique sequences each corresponding to a single gesture. In a two bedroom
apartment with two Wi-Fi transmitters and a single 5-antennae MIMO receiver,
the system scored an average accuracy of 94% classifying between nine whole-body
gestures.

3.3 Wi-Fi RSSI based gesture recognition

Rajalakshmi et al. in [11] utilized the Wi-Fi RSSI and channel state information
(CSI) to recognize hand gestures. Compared to RSSI, CSI, which is defined by the
IEEE 802.11n standard, provides detailed radio channel information consisting of

16 CHAPTER 3. RELATED WORK

both the signal strength and phase information for each sub-carrier in the radio
channel [24]. The authors used consecutive windows of 300 ms to extract features
consisting of the signal peaks, the peaks count and the peaks slopes after subtract-
ing the window-average signal strength from all the samples within the window.
The detection algorithm consisted of comparing each window extracted features to
a set of four predefined feature values, each corresponding to a one hand gesture.
The system achieves a classification accuracy of 91% when tested on a notebook
PC. Their solution has two main limitations: first it requires a Wi-Fi transmitter
injecting Wi-Fi packets at a constant rate, and second it relies on the CSI informa-
tion that is supported only by a limited set of Wi-Fi devices (as per our knowledge,
only Intel’s Wi-Fi Link 5300 network adapter [25]).

One of the early works -if not the first- on detecting activities using Wi-Fi RSSI on
smartphones in a passive setup, without dedicated Wi-Fi signals transmitter, is pre-
sented in [26]. The features used for detection consisted of a set of statistical features
(mean, variance, maximum and difference between the maximum and minimum) ex-
tracted from a two seconds window. K-NN (K=20), decision tree and Naive Bayes
classifiers were used. The system achieved an average accuracy of 80% (comparable
results for the three classifiers) classifying between three activities (walking, holding
the phone, and phone lying on a table). However, the system required using a cus-
tom smartphone Operating System (OS), a special Wi-Fi firmware and putting the
Wi-Fi device in monitor mode (the monitor mode enables the smartphone wireless
interface to receive all Wi-Fi frames sent by nearby APs, but prevents the smart-
phon applications from sending or receiving traffic over Wi-Fi). Also, the firmware
is applicable to a specific Broadcom chipset family.

In [5], Sigg et al. extended their work in [26] by using more features and veri-
fying the system on hand gestures recognition task. Specifically, as features they
used the mean and the variance, the number of peaks within 10% of the maximum
and the fraction between the mean of the 1st and 2nd half of the window. An ac-
curacy of 50% was achieved when a K-NN (K=20) model was trained to classify
between 11 hand gestures (random guess is 9.09%). The system had the same lim-
itations as the one in [26].

Rauterberg et al. introduced an online passive hand gesture recognition system in
[27]. The data sensing, feature extraction and gesture recognition were performed
in the phone (online) using an Android application. From the RSSI measurements
stream, the variance and the number of data points calculated over two seconds
sliding windows were used as features. By employing a simple threshold based
recognition algorithm, the authors achieved an accuracy of 90% detecting the pres-
ence or absence of hand movement in front of the phone.

In [28], the authors presented an online version of [5]. They used a consecutive
windows of 0.25 seconds. The mean, the variance, the maximum, the minimum of

3.4. SUMMARY OF RELATED WORK 17

the RSSI value within the window as well as the source MAC-address representation
were used as features. With a K-NN(K = 5) as classifier, an accuracy above 90%
was achieved classifying between four gestures. Note that both [27] and [28] had
the same limitations as [26].

A passive hand gesture recognition system using Wi-Fi RSSI on unmodified devices
was recently introduced in [29]. The recognition algorithm involved first denoising
the raw RSSI measurements using the Discrete Wavelet Transform (DWT). Using
the denoinsed version of the signal, a further wavelet analysis was performed to
translate the signal into a stream of primitives formed out of three types of signal
primitives: rising edges, falling edges and pauses. The classification was then done
by comparing the primitives stream to a set of pre-defined streams corresponding
to the hand gestures. When tested on a notebook PC, the system achieved a clas-
sification accuracy of 96% classifying between seven hand gestures. Such a system
requires high frequency sampling of RSSI and also needs a lot of computation power.

Table 3.1 summarizes the reviewed work using Wi-Fi RSSI for gesture recognition.

3.4 Summary of related work
The main drawbacks in the existing techniques are that, either they require specific
hardware or they need high software customization of the smartphones. Another
drawback is the demanding computational needs of existing techniques; in [27] [28]
[5] [26], the wireless interface was put in monitor mode to capture all data frames
sent in the wireless network, and the method in [29] seems to require a high num-
ber of RSSI samples and heavy preprocessing to extract features. One of the main
challenges in this thesis is the acquisition of Wi-Fi RSSI at a high rate without de-
pending on a specific chipset or operating the wireless interface in the monitor mode.

The proposed solution in this thesis uses the Wi-Fi RSSI stream to predict contact-
less moving hand gestures in a passive online setting. Unlike [29], this thesis work
focus is hand gesture recognition in smartphones, whereas the system in [29] was
implemented in a PC. The proposed solution is similar to the system in [28] in the
sense that both are online methods, but this solution does not require special OS,
firmware or a special Wi-Fi operation mode.

This thesis ambition is to achieve gesture recognition in existing smartphones with-
out any modification, via a simple installation of a user mobile application.

18 CHAPTER 3. RELATED WORK

Table 3.1: Summary of the recent work on RSSI based gesture recognition. Mode
column indicates weather an active source was needed or not (passive), and if the
recognition was done offline or online [9].

paper task features model mode device extra results
[11] hand

gesture
recogni-
tion (4
gestures)

signal
peaks,
#peaks,
peaks slopes

hard-
coded

active,
offline

PC CSI toolkit 91%

[26] activity
recogni-
tion (3
activities)

mean, vari-
ance, max,
(max - min)

K-NN
(K=20)

passive,
offline

phone custom OS,
special Wi-
Fi firmware,
Wi-Fi in
monitor
mode

80%

[5] hand ges-
ture recog-
nition (11
gestures)

mean, vari-
ance, peaks
within 10%
of max, ...

K-NN
(K=20)

passive,
offline

phone custom OS,
special Wi-
Fi firmware,
Wi-Fi in
monitor
mode

50%

[27] hand
gesture
recogni-
tion (2
gestures)

variance,
number of
data points

hard-
coded

passive,
online

phone custom OS,
special Wi-
Fi firmware,
Wi-Fi in
monitor
mode

90%

[28] hand
gesture
recogni-
tion (4
gestures)

mean,
variance,
max, min,
source MAC
address

K-NN
(K=5)

passive,
online

phone custom OS,
special Wi-
Fi firmware,
Wi-Fi in
monitor
mode

90%

[29] hand
gesture
recogni-
tion (7
gestures)

sequence
of wavelet
edges

hard-
coded

passive,
online

PC N/A 96%

Chapter 4

Problem formulation and modelling

19

20 CHAPTER 4. PROBLEM FORMULATION AND MODELLING

This chapter presents a formulation for the problem of predicting hand gestures
from a sequence of Wi-Fi RSSI values. This will include a specification for the input
and output formats, a model to solve the problem, an objective function and an
optimization procedure to train the model using the objective function.

4.1 Formulation
The problem of recognizing hand gestures from Wi-Fi RSSI values, can be viewed
as a classification problem, where the goal is to learn a mapping from the input
Wi-Fi RSSI sequence x to a hand gesture y.

x→ y (4.1)

Where x = [x(1) x(2) . . . x(t) . . . x(τ)]T , x(t) ∈ R, y ∈ {0, 1, . . . ,K}, τ is the RSSI
sequence length and K is the number of gestures recognizable by the mapping.

In a classification setting, rather than estimating a single value for the output vari-
able y, instead it is most common to estimate the probability distribution over the
output variable y conditioned on the input x; precisely P (y|x). This conditional
probability can be estimated using a distribution family parametrized by a variable
θ. This mapping can be written as:

x→ P (y|x; θ) (4.2)

Assume a dataset of m sample gestures that is formed from the inputs X =
[x1 x2 . . . xi . . . xm] and their corresponding outputs Y = [y1 y2 . . . yi . . . ym]. A
maximum likelihood (ML) method can then be used to find a good estimation of θ
as below:

θML = arg max
θ

P (Y |X; θ) (4.3)

And assuming the dataset sample gestures are independent and collected following
the same procedure, we could assume that the dataset is independent and identically
distributed (i.i.d.). Equation 4.3 can be rewritten as follows:

θML = arg max
θ

m∏
i=1

P (yi|xi; θ) (4.4)

The above probability product can become very small and hence render the problem
computationally unstable. This can be solved by taking the logarithm of the likeli-
hood, which transform the product of probabilities into summation (the logarithm
does not change the arg max operation):

θML = arg max
θ

m∑
i=1

logP (yi|xi; θ) (4.5)

4.2. ARTIFICIAL NEURAL NETWORKS 21

This estimate of θ can be expressed as minimizing a loss function L (also referred
to as cost) defined as below

L =
m∑
i=1
− logP (yi|xi; θ) (4.6)

This loss is known as negative log-likelihood (NLL).

In this thesis a form of a recurrent neural network (RNN) is considered to model the
conditional probability P (y|x; θ). Using the negative log-likelihood loss, a maximum
likelihood estimation of the RNN parameters θ can be found using a gradient based
optimization procedure. In this thesis the RNN model is trained using a variant of
the Stochastic Gradient Descent (SGD) algorithm [30].

4.2 Artificial neural networks

4.2.1 Feed forward neural networks (FFNN)
Recurrent neural networks are a special form of Artificial Neural networks (ANN).
ANNs are powerful general function approximators inspired by the working of the
brain neurons. An ANN can be trained to learn an arbitrary approximation of a
function y = f(x), where x ∈ Rd1×d2...×dn and y ∈ Rd1×d2...×dm .

The most basic form of ANN are feed forward neural networks (FFNN), which
can be viewed as a layered directed acyclic computation graph, as depicted by Fig-
ure 4.1. A typical FFNN will be formed of an input layer, zero or more hidden
layer(s) and an output layer. The network input x will get processed by one layer
at a time, starting at the input layer. The output of each layer form the input of
the following layer. The output of the last layer (output layer), correspond to the
network output y.

Each layer on a FFNN is formed of a group of neurons. Each neuron applies a
non linear transformation to its high dimensional input I and produces a single
output, in two steps: (1) linearly transforming the input into single output using a
weight matrix W , and (2) then applying a non-linear transformation h. This can be
written as h(W T I). The weights W are the network parameters that will be tuned
to create the function approximation.

4.2.2 FFNNs limitations
FFNNs has been shown to be powerful function approximators. In the presence of
enough data, the network performance can be increased by increasing the model
capacity (by increased the number of layers and the number of neurons per layer).
Yet, FFNNs are not suited for processing sequential data (e.g. text, audio or video),
for the below reasons:

22 CHAPTER 4. PROBLEM FORMULATION AND MODELLING

Figure 4.1: A feed forward neural network (FFNN), with an input layer of two
inputs, a hidden layer of three neurons and single output output layer. The plot
in the right shows a compact form of the network. W and V are learned network
parameters.

• FFNNs use redundant network resources to be able to handle translation
on the inputs. As example, consider training a FFNN to predict the city
name from input sentences like ([Stockholm is a beautiful city], [I went to
Stockholm]). The network will have to learn to see the city name on any of
its inputs, by using a different set of parameters for each input, instead of
sharing a single set of parameters that learned to recognize the city name.

• FFNNs architecture does not explicitly capture the correlation present on the
inputs. (X is nice not Y) and (Y is nice not X) look the same for a FFNN,
even though the sentences bear different meanings.

4.2.3 Recurrent neural networks (RNN)

Recurrent Neural Networks (RNN) addresses the FFNNs problems mentioned be-
fore, by introducing a recurrent connection on its hidden layers as illustrated in
Figure 4.2. At each time step t, the neuron output will be based on not only its
current input xt but also the neuron output from the previous time step t− 1. This
provides a mechanism for the network to capture dependence between correlated
input features. Also, since the network parameters are shared among all the time
steps, RNNs are more efficient than FFNNs. RNNs have successfully been used on
tasks involving correlated inputs, like speech recognition, language translation and

4.2. ARTIFICIAL NEURAL NETWORKS 23

Figure 4.2: A recurrent neural network with one hidden layer. Left is the network
diagram. Right is the network computation graph unrolled over time steps t −
1, t, t+ 1. W, K and V are learned network parameters.

image and video captioning.

RNN computation graphs are typically differentiable and hence trained with gradi-
ent decent methods. A loss function, typically a NLL, is defined and minimized (by
tuning the network parameters) using the SGD method.

4.2.4 Long Short-Term Memory (LSTM)

The function composed by RNNs involves repeated application of the same hidden
layer neuron functions. For the sake of simplicity, If we excluded the input x and
the non-linear transformation h and assumed a scalar hidden to hidden (recurrent
connection) weight k, the composed function will look something like kτ , where τ is
the number of time steps. For large τ values, the product kτ will vanish (becomes
very small) or explode (becomes very big) depending on whether k is smaller or
greater than one. And since the gradients calculated for this RNN are scaled by the
kτ product, they will eventually vanish or explode as well. This problem is known
as the vanishing and exploding gradient problem.

The vanishing and exploding gradient problem makes training RNNs hard: vanish-
ing gradients result in a very weak signal for the correct parameter update direction
that minimizes the loss function (and hence difficulty to learn dependencies over
long sequences), and the exploding gradients makes the training unstable (mani-

24 CHAPTER 4. PROBLEM FORMULATION AND MODELLING

Figure 4.3: Time-unrolled diagram of the LSTM RNN model used for predicting
hand gestures.

fested as rapid big fluctuations in the loss function value).

The exploding gradient problem is commonly solved by clipping the calculated
gradients that exceeds a threshold value that is learned through cross validation.
Long Short-Term Memory (LSTM) cells successfully address the vanishing gradient
problem. It does that by learning a different weight kt at each time step, such that
the final product

τ∏
t=1

kt neither vanish nor explode.

For a thorough treatment of FFNN, RNN and LSTM, the reader is referred to
chapters six and ten of [31].

4.3 Hand gesture recognition model
The RNN model proposed in this thesis to predict hand gestures from the Wi-Fi
RSSI sequences, is an LSTM based RNN model shown in Figure 4.3.

The LSTM cell variant used in this thesis is based on [32]. τ , N and the num-
ber of layers are model hyper parameters selected using cross validation.

4.3.1 Model evaluation
The model performance on predicting the correct hand gestures is evaluated using
the accuracy measure, which can be defined as the percentage of correctly predicted

4.3. HAND GESTURE RECOGNITION MODEL 25

gestures from the total performed test gestures. If the system was tested using a
set of gestures with inputs X = [x1 x2 . . . xi . . . xm] and corresponding true labels
Y = [y1 y2 . . . yi . . . ym], the accuracy is defined as:

accuracy = 1
m

m∑
i=1

Iyi(ŷi) (4.7)

Where ŷi is the model prediction for input xi, and Iyi(ŷi) is 1 if ŷi = yi and 0
otherwise.

Beside accuracy, the confusion matrix is used to provide a breakdown of the model
performance per individual gesture, where each gesture correct and missed predic-
tions are shown [33].

Chapter 5

Method

27

28 CHAPTER 5. METHOD

5.1 Solution description
Figure 5.1 shows a diagram for the proposed hand gesture recognition solution. The
following subsections explain the functional modules of the solution.

5.1.1 RSSI collection

This sub-module interfaces the wireless device of the smartphone and outputs a
stream of RSSI values at a specific rate (∼200 values per second in the imple-
mented system).

Unlike [27], [28], [5] and [26], the proposed solution did not use a custom firmware
and the wireless interface was not put in the monitor mode. Section 6.2.1 provides
information about the implementation details.

To generate enough activity between the AP and smartphone, an artificial traf-
fic is induced, as described in Section 5.1.8.

5.1.2 Windowing

This sub-module splits the incoming RSSI stream into equal length (T) overlapping
windows. Both the window length as well as the delay between consecutive windows
(d), are specified in seconds. Since the incoming RSSI stream rate is approximately
around ∼ 200 values per second, the output windows from the windowing step
will have a variable number of RSSI values per window. Different window sizes
T has been investigated in this thesis. In all the experiments the delay between
consecutive windows d was set to one second (using other values for the delay d
were not investigated).

5.1.3 Noise detection

Only windows with high enough activity, identified by the window variance exceed-
ing specific threshold, are likely to be caused by hand gestures. Such windows will
be forwarded to the subsequent steps of the gesture classification system. All win-
dows that have variance less than the threshold will be predicted as no gesture or
Noise. Section 5.2 describes the process of estimating the variance threshold value.

5.1.4 Preprocessing

This sub-module takes as input windows with a variable number of RSSI values per
window and outputs windows with an equal number of feature values (τ). Each
incoming window will be processed as below:

1. Mean subtraction: In this step, the mean RSSI value of the window is
calculated and then subtracted from each of the window’s RSSI values. As a

5.1. SOLUTION DESCRIPTION 29

Figure 5.1: Gesture recognition solution diagram.

30 CHAPTER 5. METHOD

result, the window values will be centred around zero. This step increases the
system robustness against changes in the RSSI values due to, for example, the
increase of RSSI when the phone is moved close to the AP or the decrease of
RSSI when the phone is moved away from the AP.

2. Sampling: This steps samples τ feature values with a time difference between
consecutive samples equal to T/τ on average.

3. Standardizing: Each one of the τ feature values is reduced by the training
data mean of that value.

4. Normalizing: Each one of the τ feature values (standardized in the previous
step) is divided by the training data standard deviation of that value.

Refer to Section 5.2.1 for more details about standardizing and normalizing the
windows feature values.

5.1.5 Inference (LSTM RNN model)

The LSTM RNNmodel takes an input of τ features and outputs three values propor-
tional to the conditional probability assigned by the model to each possible gesture
given the input.

During training, the RNN model outputs are used as inputs to the softmax layer (a
layer that computes the softmax function which is a generalization of the logistic
function) used for calculating the model loss. Since the softmax layer inputs are
known as logits, the RNN model outputs in this solution are referred to as logits as
well.

5.1.6 Logits thresholding

Low logits values indicates a low confidence assigned by the LSTM RNN model to
its prediction. This step disregards the model predictions that are below a specific
threshold and predict Noise for those inputs.

5.1.7 Prediction decision rules

This submodule keeps a short history of the previous predictions made by the
system, and applies a set of rules accepting or rejecting the current predictions
made by the preceding inference and thresholding steps. These rules are:

• Allow Pull gestures only after Push gestures. The Pull gesture signature
on the RSSI stream appears as a pause on the RSSI value followed by an
increase. This is similar to the increase in the RSSI values resulting from
some background activities like when the AP increases its output signal power.

5.2. SYSTEM TRAINING 31

This rule reduces the number of false positive Pull predictions caused by such
interfering background activities1.

• A prediction that is different from its immediate predecessor is ignored (and
Noise is predicted instead). Exempted from this rule are:

1. Swipe or Push following a Noise prediction
2. Pull prediction that follows a Push
3. Noise predictions

The reason for having this rule is because each prediction window overlaps
with the previous window (three seconds overlap in most experiments). If the
preceding window contained a gesture, the succeeding window RSSI stream
may look similar to another gesture than the performed one. For example, the
end of Swipe gestures look similar to Pull gestures (see Figure 7.5 and 7.7).
In all experiments a gap of two to three seconds is maintained between the
gestures, since the predictions made by the RNN model during this period
(i.e. the two seconds after the previous gesture) will be ignored as implied by
this rule.

5.1.8 Traffic induction
As discussed in Section 2.2.3, the wireless interface makes new RSS measurement
only when a new Wi-Fi frame is received. To guarantee that the wireless device
makes enough updated RSS measurements, this module induces traffic between the
AP and the smartphone by sending a continuous stream of Internet Control Message
Protocol (ICMP) echo requests to the AP. For every ICMP echo request, the AP
will send an ICMP echo reply back to the smartphone, and the smartphone wireless
interface will make an updated RSS measurement.

5.2 System training
Beside training the LSTM RNN model, training the system also involves deciding
the values for the other system parameters (i.e. thresholds). In this thesis, the
training is done in an offline setting.

5.2.1 Offline data preprocessing
For all offline experiments, the steps below were followed to preprocess the collected
training data (refer to Section 7.2 for details). Note that apart from steps one, four
and five, the online recognition solution preprocesses the incoming RSSI windows
in the way described below.

1The solution is also prune to confusing decreases in RSSI values caused by interfering back-
ground activities (e.g. the AP reducing its output signal power) as Push gesture, and no solution
was proposed in this thesis to harden the system against such interference.

32 CHAPTER 5. METHOD

1. The RSSI values stream is read from the collected data files, and then split
into D windows (corresponding to the gestures), each being T seconds long.
Section 7.2.4 describes the window extraction.

2. For each window, the mean is calculated and then subtracted from the indi-
vidual window values.

3. τ values that are equally spaced in time are then sampled from each window.
The result is a dataset of shape D windows each having τ features.

4. The dataset is then randomly split into training (Dtrain = 0.75D) and testing
(Dtest = 0.25D) sets. Furthermore, when a model hyper parameter selection is
done, 0.8Dtrain of the training set is used to train the model, and the remaining
Dval = 0.20Dtrain is used to select the hyper parameters (validation set).

5. Using the training set (Dtrain × τ), the mean and standard deviation of each
one of the τ features is calculated as below.

x
(i)
train_mean = 1

M

M∑
j=1

x
(i)
train,j (5.1)

x
(i)
train_std =

√
(1
M

M∑
j=1

(x(i)
train,j − x

(i)
train_mean)2) (5.2)

WhereM is the training setDtrain size and x(i)
train,j is feature value i of example

j from the training set.

6. All training and testing sets windows were standardized and normalized using
the training mean and standard deviation. Let x = [x(1) x(2) . . . x(i) . . . x(τ)] be
some input window (from training or testing sets), the output of the standard-
ization and normalization steps xo = [x(1)

o x
(2)
o . . . x

(i)
o . . . x

(τ)
o] can be described

as below:

x(i)
o =

x(i) − x(i)
train_mean

x
(i)
train_std

(5.3)

5.2.2 LSTM RNN model training
The LSTM RNN model outputs a conditional probability distribution over the pos-
sible gestures given the input. The model is trained to minimize the negative log
likelihood loss, using a variant of SGD known as Adaptive Moment Estimation, or
shortlyADAM which is described in [30]. Section 4.1 provides background informa-
tion on the model output and the used loss function.

Most of the model hyper parameters are selected by performing a grid search over
the space defined by the hyper parameters. Each parameter setting is evaluated
using a four folds cross validation.

5.2. SYSTEM TRAINING 33

5.2.3 Thresholds selection
The variance threshold used by the Noise detection step, is initially estimated as the
minimum training data windows variance. This value is then manually optimized
to maximize the online prediction accuracy. The same approach is followed to select
the threshold used in the logits thresholding step.

Chapter 6

Implementation

35

36 CHAPTER 6. IMPLEMENTATION

6.1 Used hardware
The setup used for carrying out the different experiments of this thesis used the
below hardware devices:

• A smartphone is used to collect the Wi-Fi RSSI measurements stream while
performing hand gestures. The device was also used to evaluate the developed
hand gesture recognition solution. The smartphone was a Samsung Galaxy
S7 Edge running Android 6.0 OS.

• Two Wi-Fi access points: one operates in both 2.4 GHz and 5 GHz fre-
quency bands, and the other operates in the 2.4 GHz frequency band only.

• A notebook PC for performing the offline analysis and training the hand
gesture recognition solution. The PC had 16 GB of memory and a quad-core
Intel processor (Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz). It also had
a 384 cores Nvidia GPU (GeForce GT 740M) which was used for training the
LSTM RNN model. The PC was running a Mint Linux distribution.

6.2 Software tools

6.2.1 Tools used for data collection

To be able to collect the Wi-Fi RSSI measurements while performing the hand
gestures and save them for later processing, an Android mobile application was de-
veloped using Java.

The Android API provided a way for reading the RSSI values measured by the
wireless interface, but these values were updated by the Android API at a maxi-
mum rate of approximately one time per second. To overcome this limitation, the
RSSI measurements is collected directly from the wireless extension for Linux user
interface [34], which is exposed as a pseudo file named /proc/net/wireless. The
implementation continuously reads the /proc/net/wireless file and reports the RSSI
measurements at a rate of ∼200 values per second.

The Wi-Fi RSSI collection application provides a mean to start, stop and name
measurements. It also provides a mean to export and delete saved measurements.
Figure 6.1 shows screenshots from the data collection application. The data collec-
tion application source code can be found in [35].

6.2.2 Tools used for offline analysis

The offline analysis phase involves exploring the collected RSSI data and evaluating
and tuning a set of different classification algorithms. Python was the main language
used in this phase, and that is due to:

6.2. SOFTWARE TOOLS 37

Figure 6.1: Screenshots from the developed Wi-Fi RSSI data collection application

• Python have a set of powerful libraries for data and signal processing like
numpy, pandas and scipy.

• The abundance of off-the-shelf machine learning algorithm implementations.

• Many python based machine learning frameworks provides support for ex-
porting trained models to be used on other setups. For instance, Tensorflow
provides a way to export a trained model, and then utilize the exported model
on a mobile application.

The Tensorflow framework [36] was used to build and train the LSTM RNN model
model. The implementation of most of the other machine learning algorithms eval-
uated in this thesis were mainly provided by the UEA and UCR Time Series Clas-
sification Repository [37], except the LTS Shapelets and DTW-KNN which were
implemented in python as part of the thesis work. Section 7.4.2 provides details on
these algorithms.

38 CHAPTER 6. IMPLEMENTATION

Figure 6.2: Screenshots from the developed hand gesture recognition application

All the written code for performing the offline analysis can be found in [38]. The
source code of the developed LTS Shapelets algorithm implementation can be found
in [39]

6.2.3 Tool used for online experiments

To evaluate the proposed gesture recognition solution described in Section 5.1, an
Android mobile application was developed. The mobile application makes a predic-
tion every second, and it updates the smartphone screen text and color based on
the current hand gesture predicted by the solution. Figure 6.2 shows screen-shots
from the developed application.

As mentioned earlier, the LSTM RNN model was developed and trained using
Tensorflow on a PC. The trained model is then exported and included in the An-
droid recognition application. The mobile application interacted with the trained

6.2. SOFTWARE TOOLS 39

model via Tensorflow provided Android libraries. The source code for the developed
application can be found in [40].

Chapter 7

Experiments

41

42 CHAPTER 7. EXPERIMENTS

This chapter presents the different experiments performed to evaluate the devel-
oped gesture recognition solution, like its prediction accuracy and its generalization
to different spatial setups.

The chapter starts by describing the gestures considered in this thesis and the
collected datasets. The offline and online experiments are then presented.

7.1 Performed hand gestures

Three hand gestures shown in Figure 7.1 are considered. In all performed experi-
ments, the smartphone was placed on a flat surface table.

• Swipe gesture: it involves moving the hand above the smartphone (around
five centimetres above the phone) from one side to the other and back to the
starting position.

• Push gesture: here the hand is moved downward towards the smartphone
and placed steadily above it (around five centimetres) for around two seconds.

• Pull gesture: it involves placing the hand above the smartphone (around
five centimetres) steadily for around two seconds before moving it upward.
Notice that, the gesture recognition solution allows Pull gestures only after
Push gestures.

Figure 7.1: The three hand gestures considered in the experiments.

7.2. DATA COLLECTION 43

Figure 7.2: single room with line of sight (LoS) setup

7.2 Data collection

A dataset was collected to train the LSTM RNN model and to tune the different
recognition system parameters. The dataset is also used for the offline evaluation
of the solution.

7.2.1 Spacial setup

Data was collected under two different spatial placements of the Wi-Fi AP and the
smartphone:

• The AP and the smartphone were placed in the same room with a line of sight
(LoS) between them (same room + LoS), as illustrated in Figure 7.2. The
distance between the AP and the smartphone was around two meters. The
AP was placed on a table slightly lower than the table where the smartphone
was placed.

• The AP and the smartphone were placed in two different rooms separated by a
wall made mainly of wood and gypsum (two rooms) as illustrated in Figure 7.3.
The distance between the AP and the smartphone was ∼4.5 meters. Both the
AP and the smartphone were placed on tables of similar height.

44 CHAPTER 7. EXPERIMENTS

Figure 7.3: two rooms with no line of sight (no-LoS) setup

7.2.2 Traffic scenarios
Three traffic scenarios between the smartphone and the AP were considered when
collecting the data:

• (Internet access + traffic induction): in this scenario the AP is connected to
the internet and hence the smartphone (via the AP). At the same time the
smartphone is continuously sending ICMP requests to the AP (pinging the
AP) at a rate of ∼700 times/second.

• (No internet access + traffic induction): neither the AP nor the smartphone
has internet access, but the smartphone is continuously pinging the AP at a
rate of ∼700 times/second.

• (No internet access + no traffic induction): the smartphone has neither inter-
net access (via the AP), nor does it ping the AP.

7.2.3 Collection procedure
The dataset was collected during times with minimal human activity (i.e. walking),
to reduce the interfering noise introduced by such activities in the Wi-Fi signal.
This also made it difficult to have more than one subject to perform the gestures as
it was usually done late at night. Refer to Section 2.2.4 and Section 8.1.4 for more
details and a discussion on the subject.

A mobile application was developed specifically for recording the Wi-Fi RSSI data.

7.2. DATA COLLECTION 45

Figure 7.4: Recorded RSSI stream while performing Push and Pull gestures. The
red lines marks the beginnings of the Push gestures.

The application records the RSSI provided by the smartphone wireless interface at
a frequency of ∼200 samples/second. The data collection application is described
on Section 6.2.1.

A typical collection session commenced as below:

1. The AP and the smartphone are placed as per one of the spatial setups de-
scribed earlier.

2. The subject performing the experiment sits in a chair facing the smartphone.

3. The smarthphone is connected to the AP.

4. The RSSI collection application is started.

5. At a specific point in time (start time), the subject starts performing the
gestures. Consecutive gestures are separated by a ten seconds gap (gap time).
Both the start and gap times are noted down and used later to extract the
gesture windows (portions of the collected RSSI stream that correspond to
hand gestures).

6. The collected RSSI stream is stored by the phone in a text file with a name
specifying the preformed gesture. The file is then exported to a PC.

Figure 7.4 shows the RSSI steam collected while performing Push and Pull gestures.
The collected dataset details are summarized in Table 7.1.

46 CHAPTER 7. EXPERIMENTS

Name location traffic
induction

internet
access

total size (Swipe +
Push + Pull)

Dataset1 same room (LoS)
Figure 7.2

√
440 (144 + 148 + 148)

Dataset2 same room (LoS)
Figure 7.2

√ √
432 (145 + 144 + 143)

Dataset3 same room (LoS)
Figure 7.2

434 (174 + 145 + 115)

Dataset4 two rooms
(no-LoS)
Figure 7.3

√
337 (112 + 113 + 112)

Table 7.1: Summary of the collected datasets

Figure 7.5: Four seconds windows of Swipe gestures

7.2.4 Gesture windows extraction

To successfully train the recognition model, the correct RSSI windows which cor-
respond to the gestures have to be used, and hence extracted from the collected
RSSI stream. The window extraction is done using the start and gap times values
introduced in previous section. Figures 7.5, 7.6 and 7.7 show sample windows for
Swipe, Push and Pull gestures respectively.

7.3 LSTM RNN model training and evaluation

The model is trained with an SGD variant known as ADAM as described in section
5.2.2. Unless explicitly specified otherwise, the model parameters used on all offline
and online experiments are shown in Table 7.2.

7.3. LSTM RNN MODEL TRAINING AND EVALUATION 47

Figure 7.6: Four seconds windows of Push Gestures

Figure 7.7: Four seconds windows of Pull Gestures

48 CHAPTER 7. EXPERIMENTS

The reported mean accuracies in offline experiments are calculated by evaluating
the RNN model ten times on the specific configurations being tested, each using a
different random split of the data into training and testing sets.

parameter value
RNN time steps (T) 50
Number of hidden LSTM layers 2
Number of units (or neurons) per LSTM (N) 200
Learning rate 0.001
SGD batch size 50
Dropout probability 0.5
Model parameters initial random values boundaries ±0.08
Maximum gradient norm (for clipping big gradients) 25
Number of training iterations 600

Table 7.2: LSTM RNN model parameters and hyper parameters

7.4 Offline experiments
When evaluating the gesture recognition accuracy for the experiments described in
this section, the data was first preprocessed as described in Section 5.2.1.

7.4.1 Accuracy on different setups

Evaluating the model accuracy on the different collected datasets gives an indication
on how the model might perform on the different scenarios under which the data was
collected. It also shows the quality of the collected datasets under these different
scenarios in term of how easy or hard it is for the model to learn to predict a gesture
from these datasets. Table 7.1 lists the recognition model accuracy when evaluated
on the different datasets.

dataset accuracy (±standard deviation)
Dataset1 91% (±3.1)
Dataset2 83% (±2.5)
Dataset3 78% (±2.4) 1

Dataset4 87% (±2.9)
Dataset1 + Dataset2 + Dataset4 94% (±1.6)

Table 7.3: LSTM RNN model accuracy on the collected datasets

1When excluding the Swipe gesture from Dataset3, the accuracy of predicting Push and Pull
gestures jumps to 97% (±1.5).

7.4. OFFLINE EXPERIMENTS 49

Note, when the model was trained using (Dataset1 + Dataset2 + Dataset4)
dataset, 1000 training iterations were used instead of 600, due to the increased data
size.

7.4.2 Prediction accuracy of other algorithms
The LSTM RNN model used in the recognition solution was compared to several
time series classification algorithms including state-of-the-art ones. Below is a brief
description of these algorithms:

• K-Nearest Neighbour Dynamic Time Warp (K-NN DTW): K-NN
classification algorithm, assigns a class label to a test input, by first finding K
samples from the training set that are nearest to the test input, and uses the
prevalent label among the K nearest training samples as the test input label.
One neighbour (K=1) was used in this thesis experiments. DTW provides a
way to measure the distance between two sequences of arbitrary lengths. DTW
is used as the distance measure between the test inputs and the training set
samples in the K-NN DTW algorithm.

• Fast Shapelets (FS): Shapelets are time series portions that appear on
members of a specific class, and maximally discriminate these class members.
Shapelets can appear on any part of the time series. Most Shapelet based
classification algorithms start by first identifying (via search or learning) all
or a subset of the Shapelets that are most discriminative to different classes.
FS first finds the K-best Shapelets, and then incorporates them in a decision
tree based classifier as described in [37].

• Shapelet Transform ensemble (STE): This algorithm first finds the top
K Shapelets, and then use these to transform the data into a new form. Using
the new dataset, a classifier is formed of an ensemble of standard classifiers
(K-NN, Naive Bayes, C4.5 decision tree, Support Vector Machines, Random
Forest, Rotation Forest and a Baysian network). The algorithm is described
in detail in [37].

• Learning Time-series Shapelets (LTS): This method builds a classifier in
the form of a differentiable parameterized computation graph that incorporate
the Shaplets parameters in its computation. The graph parameters, including
the Shapelets ones, are learned with a standard gradient descent algorithm,
minimizing a logistic loss error function. More details are provided in [41].

• Elastic Ensemble (EE): This algorithm forms a classifier by combining a
set of nearest neighbour classifiers that use elastic distance measures. Refer
to [37] for details.

• Collective of Transformation Ensembles (COTE): An ensemble formed
of the classifiers of STE and EE above beside other classifiers. The algorithm
is described in detail in [37].

50 CHAPTER 7. EXPERIMENTS

Algorithm accuracy
(±standard
deviation)

Training time
(minutes)

Per sample
prediction time
(milliseconds)

K-NN DTW 90% (±28) N/A 964.15
FS 85% (±4.6) 0.19 0.01
STE 91% (±1.1) 4.91 26.86
LTS 93% (±2.3) 19.09 9.29
EE 93% (±1.7) 10.95 23.09
COTE 94% (±2.4) 50.68 178.20
LSTM RNN 91% (±3.1) 3.29 7.04

Table 7.4: Prediction accuracies, training and prediction times for different algo-
rithms evaluated using Dataset1.

Table 7.4 shows the mean prediction accuracies of these algorithms evaluated us-
ing Dataset1. The algorithms mean training time and the per sample prediction
time are reported as well. Note, no training step is required for the K-NN algorithm.

Dataset1 was preprocessed as described at the beginning of this section. The re-
ported accuracies, training and prediction times are calculated using at least three
evaluations of the respective algorithm, each using a different random training/test-
ing dataset split. Refer to Section 6.1 for information on the machine used for
training.

7.4.3 Effect of reducing the training data

In this experiments the LSTM RNN model was trained using different fractions of
Dataset1 + Dataset2 + Dataset4 to understand how the model accuracy is effected
by training data size. The results of the experiments are summarized by Figure 7.8.

7.4.4 Accuracy for different prediction window lengths

To understand how the window length impacts the LSTM RNN model prediction
accuracy, the model accuracy was evaluated on Dataset1 five times, each using a
different window length. Figure 7.9 shows the obtained results.

7.4.5 Accuracy for different number of samples per prediction window

The LSTM RNN model was evaluated on Dataset1 five times, each using a dif-
ferent number of samples per prediction window. The results are summarized in
Figure 7.10.

7.5. ONLINE EXPERIMENTS 51

0.1(123)

0.25(222)

0.5(444)

1(1111)

83

88

92
94

dataset fraction (number of sampels)

ac
cu

ra
cy

Figure 7.8: The LSTM RNN model accuracy when trained with fractions of
(Dataset1 + Dataset2 + Dataset4) as indicated in the horizontal access. The stan-
dard deviation is indicated by the error bars.

7.4.6 Accuracy for different RNN model sizes

This experiments was performed to demonstrate the impact of the RNN model
complexity on the prediction accuracy. Specifically, the accuracy was evaluated on
Dataset1 for different LSTM RNN configurations where different number of hidden
(LSTM) layers were used. The results are shown in Figure 7.11.

7.5 Online experiments

In the online experiments, the developed recognition mobile application described
in Section 6.2.3 was deployed in a smartphone, and used to perform online predic-
tions for different typical operations scenarios.

In all online experiments, the LSTM RNN model was trained as described in Sec-
tion 7.3, except no dropout regularization was used due to a limitation in the Tensor-
flow Android library. The different system thresholds were estimated as described
in Section 5.2.3.

52 CHAPTER 7. EXPERIMENTS

1 2 3 4 5

75

96

9191

87

prediction window length in seconds

ac
cu

ra
cy

Figure 7.9: Prediction accuracy as a function of the prediction window length in
seconds. The standard deviation is indicated by the error bars.

10 20 30 40 50 80 100

85

8888
89

91

89

83

number of samples per window

ac
cu

ra
cy

Figure 7.10: Prediction accuracy as a function of the number of samples per
prediction window. The standard deviation is indicated by the error bars.

7.5. ONLINE EXPERIMENTS 53

1 2 3

91
92

90

number of layers

ac
cu

ra
cy

Figure 7.11: Prediction accuracy as a function of the number of the hidden
(LSTM) layers. The standard deviation is indicated by the error bars.

7.5.1 Online gesture prediction accuracy

The gesture recognition accuracy is evaluated for different smartphone-AP spa-
tial setups and different training datasets. Table 7.5 summarizes the experiments
performed and the obtained results. Note, in experiment six, the Swipe gesture
accuracy was 70%. The results are further broke down in Figure 7.16, showing the
detailed predictions made by the system in each experiment.

Experiment eight was performed using a different AP than the one used in col-
lecting the training data. This AP operates in the 2.4 GHz frequency band, while
the data collection and all other experiments were performed on the 5 GHz fre-
quency band.

From the results in Table 7.5, the average accuracy over the line-of-sight setups
between the phone and the AP (experiments one, two, four and five) is 81%, and
when there is no line-of-sight (experiments three, six, seven and eight) the average
accuracy is 74%. Figure 7.17 shows a breakdown of the same results.

7.5.2 False positive predictions

To estimate the robustness of the system against noisy RSSI changes caused by
interfering background activities, the prediction application was left running for a
period of thirty minutes on a table inside a room. One person was in the room

54 CHAPTER 7. EXPERIMENTS

No. setup traffic
induc-
tion

internet
access

dataset accuracy

1 same room (LoS)
Figure 7.2

√
Dataset1 85%

2 same room (LoS)
Figure 7.2

√ √
Dataset2 67%

3 two rooms
Figure 7.3

√
Dataset4 93%

4 same room (LoS)
Figure 7.2

√ √
Dataset1 + Dataset2 +

Dataset4
83%

5 Hall (LoS)
Figure 7.12

√ √
Dataset1 + Dataset2 +

Dataset4
90%

6 Hall & corridor
Figure 7.13

√ √
Dataset1 + Dataset2 +

Dataset4
30%

7 room & corridor
Figure 7.14

√ √
Dataset1 + Dataset2 +

Dataset4
87%

8 room & corridor
(different AP)
Figure 7.15

√ √
Dataset1 + Dataset2 +

Dataset4
87%

Table 7.5: Online experiments summary. Each gesture was performed twenty
times for experiments one to four, and ten times for the remaining experiments.
The overall mean accuracy is 78%

Figure 7.12: Online experiment Hall setup

7.5. ONLINE EXPERIMENTS 55

Figure 7.13: Online experiment Hall-Corridor setup

Figure 7.14: Online experiment Room-Corridor setup

typing on a computer (placed on the same table as the smartphone), and moving
occasionally in the room. Table 7.6 summarizes the results.

7.5.3 Gesture recognition time

For all experiments, a four seconds window was used. The time between performing
the hand gesture and until a prediction is made is the sum of two components,
explained below.

1. The first is the time from the end of performing a hand gesture until the
recognition application receives the full four second window that contains
the RSSI stream corresponding to the gesture. In these experiments, the

56 CHAPTER 7. EXPERIMENTS

Figure 7.15: Online experiment 2nd Room-Corridor setup

Gesture number of predictions (%)
Noise (correct prediction) 1652 (92.1%)
Swipe (False positive) 61 (3.4%)
Push (False positive) 62 (3.5%)
Pull (False positive) 18 (1.0%)

Table 7.6: Predicted gestures distribution when no hand gesture is performed over
a period of thirty minutes.

time to perform a Swipe, Push or Pull gesture is between 1.5 seconds (for
Push and Pull) to 2 seconds (for Swipe). Hence, the window received by the
system after two seconds will contain the gesture RSSI on its first half followed
by an additional two seconds context of RSSI. Consequently, the first delay
component will be around two seconds from performing the gesture.

2. The second component is the time spent by the algorithm to process the
RSSI window, evaluate the LSTM RNN model and produce a prediction.
Experiments showed that, this time is around 40 milliseconds.

Note, this two seconds delay is only the case for Swipe and Push gestures. Pull
gestures predictions are usually made with a shorter delay (around one second).
This is because the Pull gestures are always made after Push gestures, and the last
part of the Push gestures (steady hand above and close to the phone) constitutes
the first part of the Pull gesture. Refer to Section 7.1 for a description on Push and
Pull gestures.

7.5. ONLINE EXPERIMENTS 57

Figure 7.16: Online experiments gesture predictions breakdown. Refer to Sec-
tion 7.5.2 for details about the system false positive prediction rate

58 CHAPTER 7. EXPERIMENTS

Figure 7.17: Left: Gesture recognition accuracies averaged over all line-of-sight
(LoS) scenarios. Right: same quantity for scenarios where there is no line-of-site
(no-LoS). Refer to Section 7.5.2 for details about the system false positive prediction
rate

Chapter 8

Discussion and conclusion

59

60 CHAPTER 8. DISCUSSION AND CONCLUSION

8.1 Results discussion

This section examines the fulfilment of the thesis objectives following the performed
experiments results. An assessment of different aspects of the solution is presented
as well, including performance, generalization and limitations.

8.1.1 Comparison to similar work

The online experiments presented on Section 7.5, show that it is possible to detect
and classify multiple hand gestures on smartphones, with an accuracy that reaches
78% classifying between three gestures, across a variety of spatial and traffic sce-
narios, without modifying the smartphone hardware, operating system or firmware
(as in [27], [28], [5] and [26]). Although the work on [29] demonstrated hand ges-
ture recognition on unmodified devices, the reported solution was implemented on
a PC. As far as the literature review reveals, the work of this thesis is the first to
demonstrate this.

In [28], the wireless interface was in the Monitor mode, and hence captured all Wi-
Fi traffic exchanged by other smartphones and APs in the recognition smartphone
vicinity. As a result, the recognition system had access to more RSS measurements
and achieved a 90% accuracy. Placing the wireless interface in the Monitor mode
came at the cost of prohibiting all the smartphone applications from sending or
receiving traffic over Wi-Fi. Also, a modified Android OS and a custom firmware
had to be installed.

The hand gesture recognition solution in [29] had an accuracy of 96% for a PC
implementation. In [29], the Wi-Fi RSS value collection was not explained. Note
that, [11] reported an offline hand gesture recognition accuracy of 91% on a PC
using the Channel State Information (CSI) available on Intel’s Wi-Fi Link 5300
adapters [25].

8.1.2 Generalization to different spatial setups

When summarizing the online experiment results shown in Section 7.5, it can be
concluded that the developed hand gesture recognition solution: (1) generalizes
to AP-smartphone spatial placements, that are different from the training ones,
and (2) performs better on settings where there is a line-of-sight (LoS) between the
smatphone and the AP (81% accuracy), than where there is no LoS (74% accuracy).

This conclusion though has to be taken with caution: for the no-LoS online ex-
periment number three, an accuracy of 93% was achieved, which is higher than
all LoS experiments accuracies. This might be due to the fact that the amount
by which the hand gesture effects the Wi-Fi RSS received by the smartphone, is
highly subject to the Wi-Fi signal path between the AP and the smartphone which

8.1. RESULTS DISCUSSION 61

is defined by the spatial placement of the AP, the smartphone and all the objects
present in the vicinity. Consequently, there will be several no-LoS scenarios that
have higher recognition accuracies than some LoS ones. Refer to Section 2.1 for
more information about RF signal propagation.

8.1.3 Performance of recognizing the hand gestures

As per the results in Table 7.5, the Push gesture has the highest recognition accuracy
of 82%± 0.29 standard deviation (std), followed by the Swipe gesture (78%± 0.15
std) and finally the Pull gesture (74%± 0.3 std). Furthermore all gestures are best
recognized on LoS scenarios as shown by Figure 7.17. The Push gesture showed
the highest degradation in accuracy between LoS and no-LoS scenarios (from 89%
LoS to 75% no-LoS) compared to Swipe (from 80% to 75%) and Pull (from 75% to
73%). Also, in no-LoS scenarios, more hand gestures are misclassified as Noise.

Although Push has the highest average accuracy, Push (as well as Pull) accuracy
has a wider variation across the different test scenarios (0.29 std for Push and 0.3
std for Pull) compared to the Swipe gesture (0.15 std). For example, in online
experiment number six, the accuracy for both Push and Pull was 0.1. Note that,
in experiment six, the AP and the smartphone were placed nine meters apart, and
the path between the two was blocked by a wall, a dishwasher and a fridge (i.e. a
no-LoS scenario).

8.1.4 Robustness against interfering background activities

Most of the changes in the Wi-Fi RSS stream that are caused by activities near the
smartphone (other than hand gestures) are similar to those caused by hand ges-
tures (see Figure 2.5 and 2.6), and as a result the hand gesture recognition system
occasionally confuses these activities to hand gestures.

The experiments in Section 7.5.2 shows that the system has a false positive predic-
tion rate of 8% (i.e. 8% of the time, the system predicts hand gestures even when no
gesture is performed). Section 8.3 proposes adaptations that improves the system
robustness against background activities.

8.1.5 System parameters tuning

Traffic induction

As discussed in Section 2.2.3, the Wi-Fi RSS is measured by the Wi-Fi wireless
interface only when a Wi-Fi frame is received by the smartphone. In the absence
of any user generated traffic (e.g. by applications running on the smartphone), only
as few as nine RSS measurements, corresponding to the Wi-Fi Beacon frames ex-
changed during that second, are made by the wireless interface.

62 CHAPTER 8. DISCUSSION AND CONCLUSION

Figure 8.1: Left: four seconds window of RSSI values while performing Swipe
gesture and artificial traffic is induced between the smartphone and the AP. Mid-
dle and Right: Swipe and Push gestures respectively performed while no traffic is
induced between the smartphone and the AP.

The offline experiments of Section 7.4.1 demonstrate that the gesture recognition
accuracy is proportionally correlated to the amount of traffic exchanged between the
smartphone and the AP. Specifically, when an artificial traffic is induced between
the smartphone and the AP (refer to Section 5.1.8 for details), the offline accuracy
significantly increased from 78% to 91% (Table 7.3).

The impact of Wi-Fi traffic throughput between the smartphone and the AP on
the prediction accuracy can be demonstrated visually. The left plot in Figure 8.1
shows the RSSI values recorded for a Swipe gesture performed while an artificial
traffic is being induced between the smartphone and the AP. The middle and right
plots show the RSSI values for a Swipe and Push gesture performed while no traf-
fic is being induced. It is clear that, with no traffic induction, the RSSI values
corresponding to the Swipe gesture are not distinguishable from those of the Push
gesture, and consequently the classifier will severely be impacted by that.

Prediction window length

Figure 7.9 shows how the prediction window length impacts the model accuracy as
evaluated on Dataset1 (on offline setting). The model achieves the highest accuracy
for the two seconds window length. However, online experiments showed that a
two seconds window length provides a short context that results in higher rate of
confusion between gestures and false positive predictions.

Figure 8.2 shows, when a two seconds window is used, how the beginning of a
Swipe gesture (middle plot) roughly looks similar to the Push gesture (right plot),
thus it is likely to be confused as a Push gesture by the model.

Number of samples per prediction window

Although LSTM cells enable training an RNN with longer input sequences (refer to
Section 4.2.3 for details), the RNN model size (and hence complexity) also increases
and causes the model accuracy to degrade because of overfitting. The results in

8.1. RESULTS DISCUSSION 63

Figure 8.2: Left: RSSI values recorded while a Swipe gesture is performed (after
the third second). The red markers specify the boarders of a two seconds recognition
window, which has been enlarged in the middle plot. Right: A two seconds window
of RSSI values recorded for a Push gesture. The RSSI values of the Swipe gesture
(middle plot) and Push gesture (right plot) are roughly similar.

Figure 7.10 shows that the model accuracy increases as the number of samples per
window increases, and after a specific point the model overfits the training data,
and the accuracy decreases.

8.1.6 Limitations

This subsection lists the known limitations of the developed gesture recognition
solution as well as those emerged from the implementation choices. Section 8.3
proposes improvements to overcome or limit the impact of these limitations.

False positive predictions

As discussed in Section 8.1.4, the gesture recognition solution is prune to interfer-
ence from background activities other than hand gestures. This problem limits the
situations where the solution can be used to those with no or minimal ongoing back-
ground activities. This is similar to speech recognition systems fragility to noisy
environments.

Accepting only Pull predictions after Push ones (as described in Section 5.1.7),
reduces the false positives to some extent. Further improvements are suggested in
Section 8.3.

Resource consumption

The smartphone resources used the most by the gesture recognition solution are:
(1) the phone CPU (to read the RSSI stream, process it, apply the recognition al-
gorithm and display the recognition results) and (2) the Wi-Fi interface (to induce
traffic to the AP). The recognition mobile application was found to utilize around
∼ 13% of the total CPU time (9% system time + 4% user time) while no traffic is
induced. The utilization increases to ∼ 25% (13% system time + 12% user time)
when traffic is induced between the smartphone and the AP.

64 CHAPTER 8. DISCUSSION AND CONCLUSION

No CPU or power usage figures were reported by similar work.

New training data to support new gestures

For supporting new hand gestures, a new dataset for the new gesture is needed. The
developed recognition solution is trained with a dataset of 1000+ sample gestures
(300+ samples per gesture). Figure 7.8 shows that a comparable accuracy as the
original solution can be achieved when a subset of the dataset is used to train the
system. For instance, when the training data size is reduced drastically to a tenth
of the original set (100+ samples), the accuracy decreases to only 83% from 94%
(and not to the tenth of the original accuracy as one may guess).

Note that, the solution in [29] does not require training data, but uses an algo-
rithm that is not extendible to support new gestures beside Push and Pull gestures.

8.2 Abandoned design and implementation choices
Below are some of the design and implementation choices that were abandoned since
they had negative or no impact on the model accuracy.

8.2.1 Wi-Fi link quality (LQ)
The initial exploration of the collected RSSI and LQ data showed a high correlation
between the two, and neither provided additional information that is not present
in the other. Consequently, using the LQ data as extra input signal for detecting
hand gestures was not done.

8.2.2 Smoothing the RSSI stream
As can be seen from Figure 7.5, 7.6 and 7.7, windows belonging to the same gesture,
have roughly the same general RSSI pattern mixed with an additional noise compo-
nent. At first, smoothing the RSSI stream appears to be a sound approach to remove
the noisy components which may improve the model accuracy. However, the ex-
periments performed showed that smoothing reduced the model accuracy. This can
be due to fact that the smoothing removed noisy components of the RSSI stream
as well as gesture specific ones. Both exponential and window based smoothing
techniques were tried.

8.3 Improvements and future work

8.3.1 Preamble gesture
Leaving the recognition application running for a long time while no gesture is
performed, increases the probability of false positive predictions and wastes the

8.4. ETHICAL AND SUSTAINABILITY ASPECTS 65

smartphone battery power. These drawbacks can largely be reduced by introducing
a new mode of operation in which the recognition application waits for a special
preamble gesture that has two characteristics: (1) hard to confuse with background
noise, and (2) requires small resource utilization to be detected. The recognition
application starts in the preamble detection operation mode, and after the preamble
gesture is detected the application enters the full detection operation mode where it
starts predicting the full set of supported gestures. The preamble detection opera-
tion mode is resumed when no gesture is detected for some time while the system
is on the full detection operation mode.

The proposed preamble gesture is a sequence of n Push and Pull gestures. For
example, for n = 2, the preamble gesture will be the sequence Push-Pull-Push-Pull.
The higher n is, the lower the probability of false positives.

The results in Table 7.3 show that Push and Pull gestures can be recognized with
a high accuracy of 97% when no traffic is induced between the smartphone and the
AP. Thus, during the preamble detection operation mode, traffic induction can be
stopped and only resumed for the full detection operation mode.

8.3.2 Improved sensing of Wi-Fi RSS
Following the discussion on Section 8.1.5, measuring the RSS at a higher rate re-
sults in a richer RSSI stream that is more accurately reflecting the true Wi-Fi signal
change due to some activity like a hand gesture. A detailed RSSI stream will contain
features that increase the model ability to detect and classify an increased number
of gestures with high accuracy (see how Swipe gesture in Figure 8.1 is not separable
from Push gesture when fewer RSS measurements are made by the wireless inter-
face).

Designing the smartphone wireless interface with the goal of improving the RSS
sensing by allowing sampling the RSS at high frequencies, native support for traffic
induction and providing simplified access to the RSSI values, have several benefits.
It will enable better gesture recognition capabilities than what is demonstrated by
this thesis, at a cheaper cost and shorter time-to-market compared to other ap-
proaches like designing specialized sensing hardware for detecting gestures, such as
the Google Soli project [10].

8.4 Ethical and sustainability aspects
The achieved hand gesture recognition accuracy of 78%, qualifies the solution for ap-
plications where false negatives and false positives are tolerated. Further research
and improvements are needed to increase the solution accuracy and robustness
against interference.

66 CHAPTER 8. DISCUSSION AND CONCLUSION

A robust recognition of several hand gestures enables a reliable rich interaction
with the smartphone via hand gestures. Such capability will help visually impaired
people and those with problems using their fingers to have a more convenient ex-
perience interacting with smartphones. The capability also makes it possible to
use inexpensive screens to produce cheap smartphones that are accessible to more
people worldwide.

The screen is among the most power consuming components in the smartphone [42].
Consequently, reducing the screen usage by using hand gestures, results in a consid-
erable reduction in the smartphone overall power consumption. The fact that the
hand gesture recognition solution does not require additional hardware components
or smartphone modifications, makes it an environmental friendly addition that is
also cheap for both smartphone manufacturers and users.

8.5 Conclusion
The work in this thesis demonstrated that it is possible to recognize and classify
contact-less moving hand gestures near smartphones without modification to the
smartphone hardware or software. The implemented solution uses an LSTM RNN
model to predict the performed hand gesture from the smartphone Wi-Fi RSSI
stream. The solution achieved an average recognition accuracy of 78% when tested
on several online scenarios including ones that are different from the scenarios un-
der which the system was trained. This accuracy qualifies the gesture recognition
solution for non mission critical mobile applications.

The different parameters that impacts the performance of the model were studied,
including the prediction window size and the RSS sensing frequency. Furthermore,
the performed experiments showed that the recognition accuracy can be increased
by increasing the training data (Section 7.4.3) and the model size (Section 7.4.6).

The main limitations of the developed solution are its vulnerability to interfering
background activities and its power consumption. These limitations are addressed
by the preamble detection mode described in Section 8.3.1 which reduces the false
positive prediction rate and reduces the system power consumption.

The performed experiments showed that the model capacity to recognize more ges-
tures with high accuracy can be improved by measuring the Wi-Fi RSS at higher
frequencies. This can be achieved by enhancing the smartphones’ wireless interface
designs to support improved RSS sensing as suggested in Section 8.3.2. By doing
so, there is a great potential for the smartphone vendors to enrich the human-
smartphone interface with reliable dynamic hand gesture recognition support, at a
lower cost and shorter lead time compared to other approaches of developing new
specialized hardware for gesture recognition on smartphones.

Bibliography

[1] Greg Sterling. It’s official: Google says more searches now
on mobile than on desktop. http://searchengineland.com/
its-official-google-says-more-searches-now-on-mobile-than-on-desktop-220369,
May 2015. [Online; accessed 17-May-2016].

[2] Sarah Perez. Majority of digital media consumption now takes
place in mobile apps. http://techcrunch.com/2014/08/21/
majority-of-digital-media-consumption-now-takes-place-in-mobile-apps/,
2014. [Online; accessed 17-May-2016].

[3] Dave Chaffey. Mobile marketing statistics compilation. http://www.
smartinsights.com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/, 2016. [Online; accessed 17-May-2016].

[4] Anuj Kumar, Anuj Tewari, Seth Horrigan, Matthew Kam, Florian Metze, and
John Canny. Rethinking speech recognition on mobile devices, 2011.

[5] S. Sigg, U. Blanke, and G. Tröster. The telepathic phone: Frictionless activ-
ity recognition from wifi-rssi. In Pervasive Computing and Communications
(PerCom), 2014 IEEE International Conference on, pages 148–155, 2014.

[6] Gabe Cohn, Daniel Morris, Shwetak Patel, and Desney Tan. Humantenna:
Using the body as an antenna for real-time whole-body interaction. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, pages 1901–1910, New York, NY, USA, 2012. ACM.

[7] Jie Song, Gábor Sörös, Fabrizio Pece, Sean Ryan Fanello, Shahram Izadi, Cem
Keskin, and Otmar Hilliges. In-air gestures around unmodified mobile devices.
In Proceedings of the 27th Annual ACM Symposium on User Interface Software
and Technology, UIST ’14, pages 319–329, New York, NY, USA, 2014. ACM.

[8] Chen Zhao, Ke-Yu Chen, Md Tanvir Islam Aumi, Shwetak Patel, and
Matthew S. Reynolds. Sideswipe: Detecting in-air gestures around mobile
devices using actual gsm signal. In Proceedings of the 27th Annual ACM Sym-
posium on User Interface Software and Technology, UIST ’14, pages 527–534,
New York, NY, USA, 2014. ACM.

67

http://searchengineland.com/its-official-google-says-more-searches-now-on-mobile-than-on-desktop-220369
http://searchengineland.com/its-official-google-says-more-searches-now-on-mobile-than-on-desktop-220369
http://techcrunch.com/2014/08/21/majority-of-digital-media-consumption-now-takes-place-in-mobile-apps/
http://techcrunch.com/2014/08/21/majority-of-digital-media-consumption-now-takes-place-in-mobile-apps/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/

68 BIBLIOGRAPHY

[9] Stephan Sigg, Shuyu Shi, Felix Buesching, Yusheng Ji, and Lars Wolf. Leverag-
ing rf-channel fluctuation for activity recognition: Active and passive systems,
continuous and rssi-based signal features. In Proceedings of International Con-
ference on Advances in Mobile Computing & Multimedia, MoMM ’13,
pages 43:43–43:52, New York, NY, USA, 2013. ACM.

[10] Project soli. https://atap.google.com/soli/, 2016. [Online; accessed 1-
June-2016].

[11] Rajalakshmi Nandakumar, Bryce Kellogg, and Shyamnath Gollakota. Wi-fi
gesture recognition on existing devices. CoRR, abs/1411.5394, 2014.

[12] H. T. Friis. A note on a simple transmission formula. Proceedings of the IRE,
34(5):254–256, May 1946.

[13] Abdollah Ghasemi, Ali Abedi, and Farshid Ghasemi. Basic Principles in Ra-
diowave Propagation, pages 23–55. Springer New York, New York, NY, 2012.

[14] Ian Poole. Electromagnetic waves and radio propagation. http://www.
radio-electronics.com/info/propagation/em_waves/electromagnetic_
waves.php. [Online; accessed 16-May-2016].

[15] Lecture slides: Multipath fading and reflections. https://www.eecis.udel.
edu/~bohacek/Classes/419/Lectures/Multipathfading.ppt. [Online; ac-
cessed 17-May-2016].

[16] Overview in Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications . Standard, Institute of Electrical and Elec-
tronics Engineers, 3 Park Avenue, New York, NY 10016-5997, USA, 2012.

[17] The osi model’s seven layers defined and functions explained. https://
support.microsoft.com/en-us/kb/103884. [Online; accessed 12-June-2016].

[18] General description in Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications . Standard, Institute of Electrical and
Electronics Engineers, 3 Park Avenue, New York, NY 10016-5997, USA, 2012.

[19] Frame formats in Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications . Standard, Institute of Electrical and
Electronics Engineers, 3 Park Avenue, New York, NY 10016-5997, USA, 2012.

[20] Jim Geier. 802.11 beacons revealed. Wi-Fi Planet, 2002.

[21] Sidhant Gupta, Daniel Morris, Shwetak Patel, and Desney Tan. Soundwave:
Using the doppler effect to sense gestures. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’12, pages 1911–1914,
New York, NY, USA, 2012. ACM.

https://atap.google.com/soli/
http://www.radio-electronics.com/info/propagation/em_waves/electromagnetic_waves.php
http://www.radio-electronics.com/info/propagation/em_waves/electromagnetic_waves.php
http://www.radio-electronics.com/info/propagation/em_waves/electromagnetic_waves.php
https://www.eecis.udel.edu/~bohacek/Classes/419/Lectures/Multipathfading.ppt
https://www.eecis.udel.edu/~bohacek/Classes/419/Lectures/Multipathfading.ppt
https://support.microsoft.com/en-us/kb/103884
https://support.microsoft.com/en-us/kb/103884

BIBLIOGRAPHY 69

[22] Q. Wan, Y. Li, C. Li, and R. Pal. Gesture recognition for smart home ap-
plications using portable radar sensors. In 2014 36th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pages
6414–6417, Aug 2014.

[23] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. Whole-
home gesture recognition using wireless signals. In Proceedings of the 19th
Annual International Conference on Mobile Computing & Networking,
MobiCom ’13, pages 27–38, New York, NY, USA, 2013. ACM.

[24] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. Tool release:
Gathering 802.11n traces with channel state information. SIGCOMM Comput.
Commun. Rev., 41(1):53–53, January 2011.

[25] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. Tool release:
Gathering 802.11n traces with channel state information. ACM SIGCOMM
Computer Communication Review (CCR), January 2011, 2011.

[26] Stephan Sigg, Mario Hock, Markus Scholz, Gerhard Tröster, Lars Wolf,
Yusheng Ji, and Michael Beigl. Mobile and Ubiquitous Systems: Computing,
Networking, and Services: 10th International Conference, MOBIQUITOUS
2013, Tokyo, Japan, December 2-4, 2013, Revised Selected Papers, chapter
Passive, Device-Free Recognition on Your Mobile Phone: Tools, Features and
a Case Study, pages 435–446. Springer International Publishing, Cham, 2014.

[27] Christoph Rauterberg, Mathias Velten, Stephan Sigg, and Xiaoming Fu. Sim-
ply use the force - implementation of rf-based gesture interaction on an android
phone. In IEEE/KuVS NetSys 2015 adjunct proceedings, 2015.

[28] C. Rauterberg and X. Fu. Demo abstract: Use the force, luke: Implementation
of rf-based gesture interaction on an android phone. In Pervasive Computing
and Communication Workshops (PerCom Workshops), 2015 IEEE Interna-
tional Conference on, pages 190–192, March 2015.

[29] Heba Abdelnasser, Moustafa Youssef, and Khaled A. Harras. Wigest: A ubiq-
uitous wifi-based gesture recognition system. CoRR, abs/1501.04301, 2015.

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[32] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. CoRR, abs/1409.2329, 2014.

http://www.deeplearningbook.org

70 BIBLIOGRAPHY

[33] Simple guide to confusion matrix terminology. http://www.dataschool.
io/simple-guide-to-confusion-matrix-terminology/, 2017. [Online; ac-
cessed 18-March-2017].

[34] Wireless extensions for linux. http://www.labs.hpe.com/personal/Jean_
Tourrilhes/Linux/Linux.Wireless.Extensions.html, 1997. [Online; ac-
cessed 16-May-2016].

[35] Thesis data collection software source code. https://gits-15.sys.kth.se/
moaah/winiff/tree/master/Winiff, 2017. [Online; accessed 07-Jan-2017].

[36] Tensorflow. https://www.tensorflow.org/, 2017. [Online; accessed 07-Jan-
2017].

[37] Anthony Bagnall, Aaron Bostrom, James Large, and Jason Lines. The great
time series classification bake off: An experimental evaluation of recently pro-
posed algorithms. extended version. CoRR, abs/1602.01711, 2016.

[38] Thesis offline analysis source code. https://gits-15.sys.kth.se/moaah/
winiff/tree/master/analysis, 2017. [Online; accessed 07-Jan-2017].

[39] Python implementation of the learning time-series shapelets algorithm. https:
//github.com/mohaseeb/shaplets-python, 2017. [Online; accessed 07-Jan-
2017].

[40] Thesis online gesture recognition software source code. https://gits-15.
sys.kth.se/moaah/wisture/tree/master/wisture, 2017. [Online; accessed
07-Jan-2017].

[41] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme.
Learning time-series shapelets. In Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’14,
pages 392–401, New York, NY, USA, 2014. ACM.

[42] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a
smartphone. In Proceedings of the 2010 USENIX Conference on USENIX An-
nual Technical Conference, USENIXATC’10, pages 21–21, Berkeley, CA, USA,
2010. USENIX Association.

http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
http://www.labs.hpe.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html
http://www.labs.hpe.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html
https://gits-15.sys.kth.se/moaah/winiff/tree/master/Winiff
https://gits-15.sys.kth.se/moaah/winiff/tree/master/Winiff
https://www.tensorflow.org/
https://gits-15.sys.kth.se/moaah/winiff/tree/master/analysis
https://gits-15.sys.kth.se/moaah/winiff/tree/master/analysis
https://github.com/mohaseeb/shaplets-python
https://github.com/mohaseeb/shaplets-python
https://gits-15.sys.kth.se/moaah/wisture/tree/master/wisture
https://gits-15.sys.kth.se/moaah/wisture/tree/master/wisture

www.kth.se

