
Ume̊a University

Department of Computing Science

SE-901 87 UMEÅ

Sweden

Dialogue Systems Using Web-based
Language Tools

André Niklasson

Spring 2017
Master’s Thesis in Computing Science, 30 credits

Supervisors at CS-UmU: Suna Bensch and Thomas Hellström
Examiner: Henrik Björklund

Abstract

Chatbots in commercial environments are on the rise with the release of several

web-based language understanding tools. The vast majority of the dialogue systems

deployed today uses very primitive state-machine architectures to model their in-

teractions. These primitive approaches are reliable and easy to implement but the

dialogue becomes very unnatural and the system always has the initiative in the

conversation. The positive features of being easy to build, and the ability to easily

retain control over the system normally supersedes the shortcomings.

This thesis proposes a dialogue model that utilizes new approaches for dialogue mod-

eling but aims to be easy to configure. The proposed dialogue management strategy

is implemented in a prototype dialogue system. Developers are able to model their

dialogues using an XML dialogue description. The system utilizes LUIS.ai, a re-

cently launched web-based language tool for sentence analysis. LUIS.ai is evaluated

together with the prototype dialogue system.

i

ii

Acknowledgements

I would like to thank Suna Bensch and Thomas Hellström for presenting the idea of

this thesis and providing great feedback. I would also like to thank my parents for

their support throughout this thesis.

iii

iv

Contents

Abstract i

1 Introduction 1

1.1 Thesis outline . 1

2 Background 3

2.1 Dialogue . 3

2.1.1 Turn-taking . 4

2.1.2 Grounding . 4

2.1.3 Implicature . 5

2.1.4 Accommodation . 5

2.2 Dialogue systems . 6

2.2.1 Components . 6

2.3 Natural language understanding . 7

v

vi CONTENTS

2.3.1 Semantic formats . 7

2.3.2 Machine learning . 8

2.4 Dialogue management . 8

2.4.1 Finite-state approaches . 9

2.4.2 Frame-based approaches . 10

2.4.3 Plan-based approaches . 10

2.4.4 Statistical approaches . 11

2.4.5 Handcrafted vs. Statistical approaches 12

2.5 Evaluation of dialogue systems . 12

2.5.1 Dialogue cost . 12

2.5.2 Task success . 13

2.5.3 Interaction quality . 13

3 Problem description 14

3.1 Purpose . 15

4 Related work in dialogue management 16

4.1 E-form . 16

4.2 Information-state . 16

4.2.1 Issue-based dialogue management 17

CONTENTS vii

4.3 The Topic Forest plan-based structure 17

4.4 RavenClaw . 18

5 Proposal of a frame-based dialogue management strategy 20

5.1 Weaknesses of frame-based systems 20

5.2 The frame . 21

5.3 Dialogue state . 22

5.4 Information merging . 23

5.5 Questions . 24

5.6 Summary . 24

6 LUIS.ai 26

6.1 Natural language understanding . 26

6.1.1 Intents and entities . 26

6.2 Creating and managing a LUIS.ai application 27

6.2.1 Training and test tool . 29

6.3 Integrating LUIS.ai with a system . 30

6.4 Limitations . 31

7 Implementation of the prototype system 33

7.1 Architecture . 33

7.2 Dialogue document . 34

7.2.1 Model with LUIS.ai . 36

7.3 Device.py . 36

7.4 Summary . 37

8 Evaluation 38

8.1 Evaluation method . 38

8.2 Evaluation results . 39

8.2.1 Wizard of Oz test . 39

8.2.2 Talkamatic Dialogue Strategies examples 40

8.2.3 Dialogue cost and task success 45

8.2.4 Dialogue modeling . 46

9 Conclusion 48

9.1 Purpose . 48

9.2 Future work . 49

Bibliography 50

A Dialogue document 53

viii

List of Figures

2.1 Example of grounding. 5

2.2 Example of implicature . 5

2.3 The traditional architecture of text-based dialogue systems 6

2.4 A simple example of a finite-state dialogue management approach. . . 9

4.1 Part of a topic forest (similar to [19, p. 2]) 18

5.1 A simple frame that covers the topic of reserving tickets for a movie . 22

5.2 A simple frame that covers the topic of acquiring of personal infor-

mation. 23

5.3 Example of how the system can switch between different topics. . . . 23

6.1 A view listing the current intents. 27

6.2 Adding an intent with an unique identifier. 28

6.3 A view listing the current entities and the different entity options. . . 28

6.4 An example of when creating a custom simple entity. 29

ix

x LIST OF FIGURES

6.5 The interface when training an application. 29

6.6 The training and test tool. 30

6.7 A sample JSON response of the prediction of the utterance ””My

airline is SAS”. 31

7.1 Architecture overview . 34

7.2 An example of a specified simple dialogue for reserving movie tickets.

”[value]” can be used in the Confirmation element to present the

obtained information to the user. 35

8.1 Example of over-answering provided by Talkamatic 40

8.2 Example of the prototype system handling over-answering 40

8.3 Example of other-answering provided by Talkamatic 41

8.4 Example of the prototype system handling other-answering 41

8.5 Example of a system correcting an error provided by Talkamatic . . . 42

8.6 Example of the prototype system when the user is correcting a mistake 42

8.7 Example of a topic shift provided by Talkamatic 43

8.8 Example of a topic shift by the prototype system 43

8.9 Example of several topic shifts by the prototype system 44

8.10 Example of task recognition provided by Talkamatic 44

8.11 Example of the prototype system successfully performs task recognition 45

8.12 The results of the first try. 45

8.13 The results of the second try. 46

xi

xii

Chapter 1

Introduction

Chatbots have existed for more than 60 years but the area has recently seen a massive

upswing. The ambition of this project is to design and implement a dialogue system

utilizing modern tools for sentence analysis and developing a domain-independent

dialogue-model for construction of simple web-based dialogue applications.

1.1 Thesis outline

The remainder of the thesis is structured as follows:

Chapter 2: Background

Introduces the fundamental concepts and methods used throughout the thesis.

Chapter 3: Problem description

Introduces the problem statement and the overall goals of the project.

Chapter 4: Related work in dialogue management

Introduces relevant work in the field of dialogue management.

Chapter 5: Proposal of a frame-based dialogue management strategy

Describes the proposed dialogue management strategy of the thesis.

Chapter 6: LUIS.ai

1

2 Chapter 1. Introduction

Introduces the web-based language tool LUIS.ai. Describes the functionality and

limitations of the web-based language service.

Chapter 7: Implementation of the prototype system

Describes the implemented prototype dialogue system and how it integrates with

LUIS.ai.

Chapter 8: Evaluation

Presents the evaluation of the work done in this thesis.

Chapter 9: Conclusion

Conclusions of the thesis are presented and tied back to the project goals. Discusses

future development.

Chapter 2

Background

This chapter introduces the fundamental concepts and methods used throughout

the thesis. We start off with relevant linguistic concepts that are important in the

field of dialogue management. We then move on to discuss how modern text-based

dialogue systems are designed and what components are of importance in modern

architectures. The thesis then moves on to definitions of dialogue management and

introduces the most common approaches and strategies used today. Finally we

discuss methodologies of how to evaluate a dialogue system in terms of task success

and dialogue cost.

2.1 Dialogue

Humans communicate with one another everyday through both text and speech. A

dialogue is an interaction between two or more agents that communicate with each

other through natural language. The dialogue fulfills social needs such as exchange

of information, building trust and relationships or coordination and collaboration.

The ability to engage and maintain a dialogue is something we start developing

through early childhood [1, p. 9]. One of the fundamentals of a dialogue is that

it is a collaborative activity with two or more agents that share information with

each other. The agents collaborate to obtain a mutual understanding of each other’s

desires and goals.

3

4 Chapter 2. Background

2.1.1 Turn-taking

One often-neglected aspect of dialogue is that agents take turns in sharing their

information with each other. The roles of who is writing or talking and who is

reading or listening change during the course of the dialogue. The agent who is

talking or writing has the initiative. The agent releases the control of the dialogue

when it is the other agent’s turn to have the initiative to control the conversation.

How these turns are passed between the agents during the conversation depends

heavily on the situation and on the participants. Techniques for how to allocate turns

are usually divided into two groups: (1) the next agent to hold the initiative and

speak is allocated by the current speaker; and (2) the next agent to hold the initiative

is allocated by self-selection [2, p. 696-735]. An example of the first technique is when

a person ask a direct question or is making an offer to another person. With that

action, the turn is passed to the other person to respond. An example of the second

technique is when a person decides to interrupt the current speaker.

2.1.2 Grounding

Problems arise when utterances by the sender are perceived and understood incor-

rectly by the receiver. The agents must have a mutual understanding of each other’s

contribution to the dialogue. The agents must share a common ground of knowledge,

beliefs and assumptions that are established during the interaction [1, p. 14].

To obtain a common ground in a dialogue the sender can not simply send a message

and take it for granted that the receiver will understand the context in the correct

way. The sender and receiver must send feedback back and forth about the recep-

tion, comprehension and acceptance of the information that is communicated. This

process is commonly known as grounding [3, p. 33]. A typical phrase for grounding

if the receiver cannot make sense of a message is ”Excuse me?” or ”What did you

say?”, to give the sender a chance to rephrase his message. A common approach

of grounding is that receiver shows that the utterance is understood. An example

is shown in fig 2.1 below. Agent A shares information that he does not have any

friends and the respondent B shares how he interpreted the statement. Agent A ac-

knowledges that the interpretation of the information is correct and they now share

a common ground regarding that information.

2.1. Dialogue 5

A: ”I don’t have any friends.”

B: ”So you are lonely?”

A: ”Yes....”

Figure 2.1: Example of grounding.

2.1.3 Implicature

Semantic conclusions can be drawn from a message even though it is not specifically

stated but implied by the context [1, p. 13]. An implicature is something that is

inferred from an utterance and the context of the dialogue. An example is shown

below:

A: ”Is Bob coming to work today?”

B: ”Bob is sick.”

A: ”Ah, okay!”

Figure 2.2: Example of implicature

B does not specify directly that Bob is not coming to work today, but given the

context that Bob is sick he implicitly says that Bob will not show up at work. In

this case, B counts on A being able to draw that conclusion.

2.1.4 Accommodation

Adaptation or adjustment in dialogues is commonly known as accommodation. An

example of this could be a change of topic in the discussion or jumping in and out

of different contexts [31, p. 1]. A dialogue system’s ability to handle multiple topics

is not the same as supporting accommodation. For instance, a system may have

a static dialogue flow that is not affected by the user input. A system supporting

accommodation features can jump back and forth between topics and contexts by

recognizing the intention of the user.

6 Chapter 2. Background

2.2 Dialogue systems

A dialogue system is a software that communicates with a human user through nat-

ural language on a turn-to-turn basis. The main purpose of a dialogue system is to

provide an interface between a user and a computer-based application [4, p. 3]. The

sophistication of different dialogue systems varies immensely, ranging from systems

that are functioning on a question-answer basis, to systems that strives to achieve

a human-like performance of conversational interaction.

The goal of conversational dialogue systems is not to handle all kinds of human

dialogue due the complexity of the human language. Allen et al. [5, p. 3] claims

that the construction of a system with full understanding of the human language

is such a difficult task that it will not be achieved in the foreseeable future. A

constraint for most dialogue systems is therefore that the systems are focused on

accomplishing specific and concrete tasks [3, p. 12].

2.2.1 Components

The most common approach of constructing a text-based dialogue system is by

dividing it into three components. The three components are the natural language

understanding unit, the dialogue manager and the natural language generator.

Figure 2.3: The traditional architecture of text-based dialogue systems

The natural language understanding unit reads the input from the user and extracts

the semantic information of that utterance. The information is then modeled such

that it is readable by the dialogue manager.

2.3. Natural language understanding 7

The dialogue manager is the controller of the dialogue system. It is responsible of

maintaining and updating the state of the dialogue. Given a state it decides the

next action to be taken and the overall behavior of the system.

Given a chosen action that is decided by the dialogue manager, the natural language

generator choses the best linguistic realization for the abstract communicative goal

expressed in the action [1, p. 21]. One of the easiest approaches is to have a variety

of prepared answers that are mapped to specific actions [3, p. 28]. More sophisti-

cated approaches, such as statistical methods, have recently been an active topic of

research [1, p. 21].

2.3 Natural language understanding

The task of the natural language understanding unit is to parse the textual input

from the user into a semantic representation that can be interpreted by the dialogue

manager. A common approach is to use context-free grammar that is enhanced with

semantic information to parse the input [3, p. 22]. Another traditional approach is

to use keyword or pattern matching, where each word or pattern of words are paired

with semantic representations. A major drawbacks with these approaches is that

their simplicity can over-generalize the semantic context of complex utterances.

2.3.1 Semantic formats

A common format to represent the semantics of an utterance is key-value frames

[3, p. 23]. With this approach many aspects of the semantics are lost but the basic

information necessary to update the state of the dialogue is well represented. The

approach is quite primitive but can be improved by using nested frames. With

nested frames, complex utterance can be interpreted and modeled. A regular frame

that models the interpretation of the utterance: ”I want a cheeseburger with fries

and a coke!” could be presented as:

meal: { dish : cheeseburger

side : fries

drink : coke

}

8 Chapter 2. Background

With nested frames it is easier to model utterances with more information. A

nested frame model that models the interpretation of the utterance: ”I want one

cheeseburger with fries and a coke, and then I want to order a Hawaii pizza with

Fanta to drink!” could be presented as:

order: { [dish : cheeseburger

side : fries

drink : coke

]

[dish: Hawaii pizza

side : none

drink : Fanta

]

}

2.3.2 Machine learning

A modern approach is to use data-driven approaches who utilizes machine learning

algorithms. These approaches are deemed to be more robust but requires a large

corpus of interactions and utterances that can be classified by the machine learning

algorithms [3, p. 23].

2.4 Dialogue management

The dialogue manager (DM) has a central role in a dialogue system and coordi-

nates the activity of all components, controls the dialogue flow, and communicates

with external applications [12, p. 3]. The DM is responsible of maintaining and

updating a representation of the dialogue state as it receives new input from the

natural language understanding unit (NLU). The dialogue state should represent

all information that is relevant to the system [1, p. 20]. Based on the state of the

dialogue, the DM is responsible for selecting the next action to be performed by the

system. The action could range from a communicative action to a query search of

information, or no action at all. The DM is also responsible of handling errors and

unexpected input from the NLU.

2.4. Dialogue management 9

Several popular approaches have been studied and used for dialogue management.

All common approaches represent the dialogue state as a data structure and use

a decision mechanism dependent on the state that selects an appropriate action

[1, p. 23]. In the following four sections, four common approaches will be briefly

described: Finite-state, Frame-based, Plan-based and Statistical.

2.4.1 Finite-state approaches

The most simple and most common approach for dialogue management is the finite-

state, approach which is based on a finite-state automaton. This approach statically

maps each dialogue state to a state in a state machine. Each state has directed edges

to other states. Each edge represents dialogue moves and is labeled with conditions.

When a condition of an edge is satisfied the current state will move from the source

of the edge to its target state [1, p. 23]. All of the states and their possible transitions

must be designed in advance.

Figure 2.4: A simple example of a finite-state dialogue management approach.

Figure 2.4 shows a very primitive example of a finite-state architecture. The modeled

domain asks the user for a direction but only covers the input ”left” or ”right”. If

10 Chapter 2. Background

the user input is ”forward” or ”backwards” the system would ignore the input and

repeat the question of the first state.

The finite-state approach is appropriate when the relevant semantic information of

the dialogue may be represented as states in the state machine. It is not a flexible

approach in terms of dialogue and does not allow the user to ever hold the initiative

of the conversation [3, p. 26].

2.4.2 Frame-based approaches

In a frame-based, or slot-filling, approach the state of the dialogue is represented

by a frame of information. The frame comprises empty slots of desired information

that are gradually filled with user inputs during the course of the dialogue [1, p. 24].

In each turn the system decides what its next best suited question or response is to

fill the remaining slots of desired information. When sufficiently many slots in the

frame are filled with information the system performs an action, such as a query

search.

A system utilizing this approach does not have a fixed dialogue flow as in the finite-

state approach. The flow depends on the context of the dialogue, and the initiative

of the conversation may move between the user and the system throughout the

dialogue [14, p. 23]. If an input from the user contains information for multiple

slots, even though the system didn’t ask for it, the system acknowledges this and

fills the appropriate slots.

Systems utilizing the frame-based approach are primarily suited for domains such

as ticket booking or reservations. It offers advantages over the finite-state approach

in domain modeling and dialogue control, but can still be improved. One such

improvement is to incorporate several contexts. With separate frames for different

contexts, the system can be used for more complex domains [14, p. 23-24].

2.4.3 Plan-based approaches

A plan-based system treats each utterance as a performed action to achieve a specific

goal. The system identifies the goal and intention of the user and then dynamically

builds a communicative plan that is believed to obtain the goal [3, p. 27]. A developer

2.4. Dialogue management 11

modeling a dialogue in the spirit of the plan-based approach must therefore break

down the overall task into smaller plans and goals [21, p. 24]. The system has access

to a library with dialogue moves, where each move is mapped with preconditions,

constraints and effects. These moves are then put together to fulfill the desired goal

and tasks [3, p. 27].

Plan-based systems that dynamically build the dialogue are usually complex. Most

dialogue systems operate in limited domains were such generalized and flexible mod-

els are not required. Skantze [3, p. 27] argues that an easier way is to define the

plans in advance, given that usually a limited number of plans are needed in a

given domain. See section 4.3 for an example of this, presented in the Topic-Forest

approach.

2.4.4 Statistical approaches

Statistical approaches to dialogue management are popular in dialogue systems re-

search. The statistical, or data-driven, approaches utilize learning algorithms to

develop a function that associates possible dialogue states to system actions [1,

p. 25]. The key motivation for this approach is to reduce the cost and complexity

of hand-crafted approaches such as the finite-state approach when the dialogue has

to be more complex.

One of the most popular methods is to utilize partially observable Markov decision

processes (POMDPs) [13, p. 1]. They work as a probabilistic transition model; given

the current dialogue state A, what is the likelihood that the system will go to state

B? [11, p. 13] All statistical approaches apply learning algorithms on a large set of

interaction data.

One of the major benefits of using statistical approaches is the improved ability to

handle unexpected events. Probabilistic reasoning techniques typically account for

uncertainty of input interpretations [1, p. 28]. However, one of the most apparent

challenges is the amount of data needed for learning. Statistical methods typically

need big data sets to estimate the parameters [1, p. 28]. Big corpora of interactions

are expensive and hard to obtain. Another issue is that the standard POMDP

methods are not tested enough of bigger domains and does not scale well enough

with the complexity of real-world dialogues [13, p. 3].

12 Chapter 2. Background

2.4.5 Handcrafted vs. Statistical approaches

The finite-state, frame-based, and plan-based approaches are all commonly referred

to as handcrafted approaches since, the dialogue needs to be modeled by an expert.

Most of today’s research focus on statistical approaches. As mentioned in the pre-

vious section, a very big drawback of these approaches is that they require large

corpora of interaction data to train for a particular domain. Acquiring this type of

data can be very difficult. Dialogue managers utilizing machine learning are also

not deterministic and can be very unpredictable [21, p. 30]. This makes them unfit

for applications where safety and security are big issues.

Handcrafted approaches are easier to implement in simple domains. They are also

to prefer when the dialogue has a clear goal, such as booking tickets or reservations.

In these cases, the actions can normally be derived from the input and the actions

that caused them [21, p. 30]. The weaknesses of the statistical approaches make

them unfit for commercial use as of today.

2.5 Evaluation of dialogue systems

There are many proposed methodologies on how to evaluate the quality of a dialogue

system. One of the most prominent is the PARADISE framework that has been

developed for spoken dialogue systems [15, p. 271-280]. Walker et al. presents the

idea of finding a relation between the satisfaction of the user and objective measures

of the systems. These measures are mainly task success and dialogue cost. Studies

have also shown that interaction quality, how enjoyable and smooth the conversation

is, may be of more importance than efficiency [16, p. 2].

2.5.1 Dialogue cost

One of the measurements we will focus on in this thesis is dialogue cost. This

measures the efficiency of a task-based dialogue system. This is typically measured

by the number of conversational turns or elapsed time to complete a task [15, p. 275].

2.5. Evaluation of dialogue systems 13

2.5.2 Task success

The second measurement is task success. Task success measures how well the system

completed the underlying goal of the dialogue [15, p. 273]. Did the system present

the right information or perform the right action at the end of the dialogue? Was

the user satisfied with the result?

2.5.3 Interaction quality

Interaction quality is usually evaluated by user testing. According Silvervarg et al.

[16, p. 2], user testing can be problematic since users tend to enjoy testing and

talking to a developed dialogue system and give positive feedback and thus do not

take factors such as elapsed time into account.

Chapter 3

Problem description

The vast majority of the commercial dialogue systems deployed today use simple

state machine architectures to model interactions [23, p. 216]. Stoyanchev et al.

claims that the main reasons for this is the need to retain control over the behavior

of the system, being able to easily modify the internal models and for the system to

scale to large number of users [23, p. 216]. These properties are often regarded as

more important than shortcomings such as only system-initiative dialogue. Another

reason for the use of primitive strategies is that the developers otherwise would have

to invest a lot of efforts to learn the more academic approaches to dialogue man-

agement [27, p. 1]. An additional major drawback of the state machine approaches

is the lack of abstraction between the dialogue strategy and the domain. If the

developer wants to create a new dialogue in a different domain, the whole dialogue

structure and strategy must be remodeled.

Markus M. Berg claims that there is a lack of systems where users easily can configure

their dialogues without implementing a whole system [27, p. 1]. During the last two

decades several toolkits and innovations utilizing more advanced dialogue strategies

has been developed but very few are being used in commercial environments [23,

p. 216].

With the recent launches of several web-based language tools provided by major

companies, Lison et al. proposed a dialogue system that utilizes a simple single

frame-based dialogue management approach [23]. The system uses trained web-

based language tools such as LUIS.ai for the language understanding and lets the

user configure a single frame for an information-seeking dialogue system. The pro-

14

3.1. Purpose 15

totype received a lot of positive feedback from fellow researchers [23, p. 218].

3.1 Purpose

The overall goal of the project is to investigate how modern tools for language

analysis can be used in combination with improved versions of common dialogue

system architectures to create a flexible and powerful dialogue system. In order to

reach this goal, the following objectives are defined.

• Evaluation of LUIS.ai as a natural language understanding module in a dia-

logue system for simple domains used by non-experts in machine-learning.

• Identification of the benefits and drawbacks of using a web-based language

tool such as LUIS.ai for sentence analysis.

• Investigation of how the known weaknesses of the trivial frame-based approach

of dialogue management can be addressed.

• Proposal of a dialogue management strategy that makes it easy to define di-

alogues for new applications. The strategy should be able to handle multiple

topics, accommodation, and mixed- initiative dialogues.

• Implementation of a prototype dialogue system that utilizes LUIS.ai for sen-

tence analysis and the proposed dialogue management strategy. Dialogue ap-

plications should be easily programmed using a markup or script language.

Chapter 4

Related work in dialogue

management

This chapter presents studies relevant for improvement of frame-based dialogue man-

agement strategies.

4.1 E-form

One early variation of the trivial frame-based approach is the E-form [20]. In the

E-form approach, the slots of the frame have associated prompts and priorities. The

priority dictates the order in which the system tries to acquire information of the

slot given the current state of the dialogue. The slots can be either optional or

mandatory.

4.2 Information-state

TrindiKit and Talkamatic Dialogue Manager are two dialogue toolkits utilizing the

information-state approach of dialogue management [29]. A dialogue manager uti-

lizing the information-state approach has a universal state of information that is

based on observed dialogue moves. The control-algorithm has a set of update-rules

with preconditions related to the information-state [3, p. 27]. Based on the current

16

4.3. The Topic Forest plan-based structure 17

information-state, the control-algorithm chooses the next dialogue move to react on

the input of the user [27, p. 2].

4.2.1 Issue-based dialogue management

The information-state is a very general approach that could be implemented in

different ways. A popular way of implementing it is by utilizing the issue-based

dialogue strategy proposed by Larsson et al. [30].

The issue-based strategy models the dialogue as issues that are raised during the

dialogue. Each issue contains a plan of how to be resolved. A plan can contain

other plans which forms a hierarchy of plans. A plan usually consists of desired

information that is to be extracted from the user by printing mapped prompts.

The information-state of an issue-based dialogue manager contains a stack where all

the issues that are to be resolved are stored. When a dialogue move from the user

raises an issue that already exists on the stack, it is taken from the stack and set

as the active issue. The dialogue system then proceeds to follow the plan of that

issue, until the plan is finished or the user raises another issue with a dialogue move.

The information stored by the issue is not forgotten when a change of issue occurs.

When an issue is resolved, the system fetches a new issue from the top of the stack

and proceeds with its plan.

The information-state extended with the issue-based strategy provides great inspi-

ration of how to provide accommodation features. The information-state is however

a complex approach and requires more theoretical knowledge to configure simple

dialogues [27, p. 2].

4.3 The Topic Forest plan-based structure

In 2001 Xiao-Jun et al. [19] proposed a plan-based dialogue management model

that could handle a dialogue with multiple topics called Topic Forest. The model

consist of one or several topic trees, where each tree starts with a topic node. A

topic node represents a dialogue topic and has three types of branches: Primary

property (PP), Secondary Property (SP) and Auxiliary property (AP). The leaves

18 Chapter 4. Related work in dialogue management

of these branches represent information that is to be stored during the course of the

dialogue. The leaf nodes are all connected to a shared information index (SSI) that

gathers the information of all the leaves in a shared entity. Fig 4.1 shows a part of

a topic forest that models a dialogue for a flight booking application.

Figure 4.1: Part of a topic forest (similar to [19, p. 2])

The idea behind the different kind of branches is to divide the information into

groups of different importance. The leaf nodes under the PP branch represents

dominant information that needs to be present before any kind of query is executed.

The SP branch represents information that is deemed relevant but not mandatory.

The nodes in the AP branch represents optional information that only will be rel-

evant if the user mentions it specifically. As shown in 4.1, the mid nodes have a

logical operation that dictates if one or both branches below need to be filled with

information.

4.4 RavenClaw

Rudnicky et al. [22] have developed a framework RavenClaw, which is a plan-based

and task-independent dialog management framework. One of the key features of

RavenClaw is the separation of the task specification and the conversational strate-

gies. Since the conversational strategy is not dependent on the task specification, a

set conversational strategy could be used for various tasks [18, p. 15].

The tasks are arranged in a hierarchy and utilize a frame-based-like approach to

acquire information during the dialogue. The frames do not need to be filled in a

4.4. RavenClaw 19

specific order; the dialogue can jump between different contexts due to the hierar-

chical structure [21, p. 24].

Chapter 5

Proposal of a frame-based

dialogue management strategy

This chapter describes the proposed strategy developed inspired by the work re-

viewed in Chapter 4. We have developed a simple dialogue management design for

an information-seeking dialogue system that utilizes the frame-based approach of

dialogue management. The solution addresses known weaknesses of a trivial frame-

based system. The design is domain-independent. We wanted to achieve these goals

while maintaining a simple design such that developers with minimal knowledge in

the field can easily model new dialogues.

5.1 Weaknesses of frame-based systems

Trivial frame-based systems do not support handling of multiple topics. One solution

is to have several frames where each frames covers one topic, but these systems

usually do not support any kind of accommodation. They require a frame to be

finished before moving on to the next frame. This is where the issue-based dialogue

strategy have an advantage since these systems can jump between issues that are

not yet resolved [32, p. 15].

The necessity of the slots in the frame should depend on context. The system should

be able to adapt if the triggered system action of a finished frame does not present

a proper result. It should also be able to avoid asking for redundant information in

20

5.2. The frame 21

situations where information in certain slots do not affect the result of the system

action.

Frame-based approaches do not have any standardized way to answer wh-questions.

A wh-question is a sentence that starts with what, where or when [30, p. 26]. An

example could be: Where do you want to go?. The proposal must have an efficient

way to model the answering to these questions.

To summarize, to address the weaknesses of the trivial frame-based approach, the

proposed strategy should fulfill the following:

• The strategy must be able to handle multiple topics.

• Dynamically check to see if slots are necessary to avoid improper system action

results and to avoid having the system asking for unneeded information.

• Provide accommodation features: Be able to jump between contexts and re-

member input over topic boundaries.

• Able to answer user wh-questions.

5.2 The frame

We will start by introducing the design of the frame. Each possible topic of the

dialogue is represented by a frame of its own. Just as in the standard approach,

each slot in the frame defines one or more prompts that the system prints to ask

the user for the missing information. The frame has three different types of slots,

namely primary, secondary and auxiliary. Inspired by the Topic Forest approach

described in Section 4.3, the three types of slots represents their augmented priority.

Primary slots store mandatory information and the frame will not be complete until

all of these slots are filled. The system will initiate and print suitable prompts for

each of these slots that are currently empty. The secondary slots will be initiated

by the system if the information from the primary slots alone is not able to generate

a proper result. One example is a case where the information in the primary slots

generates a query search that returns one hundred items and has to be narrowed

down. The auxiliary slots are optional and will only be relevant if the user mentions

them specifically. If the user does not mention them, neither will the system.

22 Chapter 5. Proposal of a frame-based dialogue management strategy

Each slot can also have a defined confirmation prompt that is printed if the system

is uncertain about the input or if the information of a particular slot is of more

importance. This is to maintain a common ground of knowledge with the user. The

system should ask for a confirmation that lists the relevant acquired information

when the frame is complete.

Primary: Number of tickets
Primary: Date
Primary: Name of the movie

Secondary: 3D
Secondary: Time

Auxiliary: Student discount
Auxiliary: Wheelchair space

Figure 5.1: A simple frame that covers the topic of reserving tickets for a movie

An example of a frame is shown in fig 5.1. This frame covers a topic in a very simple

movie ticket reservation application where the objective is to identify and reserve

tickets to a movie. The primary slots cover the name and date of the movie, as well

as the number of tickets. If the name and date of the movie results in more than one

possibility, the system will print suitable prompts for the secondary slots, namely

time or 3D to narrow the search. These are of course also filled if the user mentions

them by his/her own initiative before the primary slots are filled. The auxiliary slots

cover the options of having extra space due to a wheelchair and student discounts.

5.3 Dialogue state

Similar to the Information-state approach described in Section 4.2, the design will

utilize an universal state that manages the overall flow of the conversation and

handles all the possible topics. As mentioned in Section 5.2, each possible topic

is represented by a dialogue frame. The dialogue state contains a topic-queue that

stores the topics in the order the system should initiate them. The topic that should

be discussed first is to be placed on the top of the queue. If a user utterance matches

a different topic different from the one currently active, the state will switch to the

new topic and set it as active. This will not however, change the position of the

topics in the queue and the filled slots will not be cleared following a change of topic.

This behavior will provide accommodation in a similar fashion as the issue-based

approach described in Section 4.2.1. Instead of issues with plans, our proposal treats

a topic as an issue and the frame represents the plan.

5.4. Information merging 23

When a topic is finished it is removed from the queue and the system fetches the

next topic that is on the top of the queue to be set as active. This could be a new

topic that has not yet been introduced or a topic that is partially finished due to

a change of topics. A topic does not have to be in the queue at the start of the

dialogue. If the utterance matches a topic that is not present in the queue, the topic

is added and set as active.

Primary: Phone number
Primary: Full name Secondary: Email Auxiliary:

Figure 5.2: A simple frame that covers the topic of acquiring of personal information.

An example of how the state operates can be shown by introducing a second topic

to the movie ticket reservation application from the previous section. The second

topic covers personal information and the frame is shown in 5.2. A good way to

model the dialogue could be to have both topics placed in the queue, with the topic

of reserving a movie on top. The dialogue will start with the system initiates the

movie reservation topic. If the frame is not complete and the user write something

similar to ”and my name is...”, the topic of personal information will activate. The

system then proceeds to focus on filling the slots of the new active frame until it

is complete or another topic change occurs. We introduce a third topic that covers

buying snacks for the film and is not in the queue to begin with. If the user write

something similar to ”..and i want some chips”, the topic will be set as active and

be placed at the end of the topic queue.

S: Hello, what movie do you want to see? [Movie reservation topic]

U: My name is Sven.

S: Okay, your name is Sven. What is your email? [Personal information topic]

U: I want to buy some chips.

S: Okay, you want to buy chips. What do you want to drink? [Snacks topic]

Figure 5.3: Example of how the system can switch between different topics.

5.4 Information merging

Two different topics may share the same partial information. One example is a

travel application with one topic for booking flights and one for booking a hotel.

24 Chapter 5. Proposal of a frame-based dialogue management strategy

Both the destination city of the flight and the location city of the hotel will share

the same information. In this case the slots can be designed as pointers to a shared

index where both slots can change and acquire the same information.

5.5 Questions

Frames can be designed to handle questions by modeling the different kind of wh-

questions as topics of their own. A frame can consist of only auxiliary slots. Since

such frame has no primary or secondary slots, the system action triggers as soon

as the topic is brought up. This means that the topic will never be placed in the

topic-queue since it is deemed finished as soon as it is brought up. If an utterance

brings up the topic but do not fill any of the slots with information, a standardized

response could be prompted. If the utterance do fill any of the slot the system action

can use them to give a more specific answer.

An example could be shown by introducing a new topic in the movie reservation

application that is to answer questions about the available films. The topic is named

WhatMovies? and the frame consists of two auxiliary slots; a date and the name of a

movie. An utterance like ”What movies are showing tomorrow?”, would be identified

as the topic WhatMovies? and ”tomorrow” would be extracted as information for

the date-slot. With this information the system can list the movies that are showing

tomorrow. The utterance ”When is spider-man showing on Saturday?” would result

in listing the timestamps when spider-man is showing upcoming Saturday, hence

the utterance fills both slots.

5.6 Summary

A frame-based dialogue management design has been presented. It is domain-

independent and is able to handle dialogues with multiple topics. The design pro-

vides accommodation features in a similar fashion as the issue-based strategy where

the frame represents the plans of the topics. It utilizes a universal state where

the developer can specify a general dialogue flow by putting initial topics in the

topic-queue. Inspired by the Topic-Forest approach, the design utilizes augmented

5.6. Summary 25

priorities to achieve a dynamic use of slots. The design of the frame makes it possible

to handle wh-questions in an easy way.

By utilizing frames the design aims to be simple enough for novice users to model

their dialogues. The design is flexible in the sense that the developer can utilize the

augmented priorities of the slots in different ways.

Chapter 6

LUIS.ai

LUIS.ai, or Language Understanding Intelligent Services, is a web-based tool for

sentence analysis that can be trained for a particular domain. It is developed by

Microsoft and strives to be the most comprehensive and easy-to-use tool for language

understanding for applications and devices [8].

6.1 Natural language understanding

LUIS utilizes machine learning based methods to process and analyze textual ut-

terances. To be able to apply machine learning methods, LUIS breaks down the

utterances into smaller pieces called tokens [6], by a process called tokenization [7].

One of the major benefits of a LUIS application is that it employs active learning

to improve itself after deployment. LUIS identifies what utterances it finds difficult

to classify and lets the user label them [6].

6.1.1 Intents and entities

LUIS represents the extracted semantic information of an utterance as intents and

entities. An intent represents what the user wants to achieve with the utterance,

the overall goal [11, p. 30]. An intent of the utterance ”I want to go to Germany!”

could be that the user wants to book a flight. The intent is heavily influenced by the

26

6.2. Creating and managing a LUIS.ai application 27

context and the domain. The same utterance could also mean that the user needs

a car or buy a train ticket.

Every important fact of a sentence is mapped to an entity. The intent represents

the purpose of an utterance while the entities represents the specific details and

information. Examples of entities are dates, locations or specific products. In the

previously mentioned utterance, ”I want to go to Germany!”, the intent is to book

a flight while the entity is Germany.

LUIS lets the user create its own sets of intents and entities. LUIS presents a decimal

value between 0 and 1 indicating how sure it is that the identified intent is the actual

intent of an utterance. This is to make it easier for developers to handle unexpected

events and misunderstandings.

6.2 Creating and managing a LUIS.ai application

Figure 6.1: A view listing the current intents.

Microsoft provides a graphical web interface for creating and training an application.

When a new application is created there is one intent present, namely the None

intent. The None intent fires if none of the added intents were recognized in the

utterance. As shown in fig 6.1 there are two choices when creating an intent; a

regular intent or a prebuilt domain intent. A prebuilt intent is pretrained with

28 Chapter 6. LUIS.ai

10 utterances in a popular domain such as reserving tickets or booking flights. A

prebuilt intent is a good choice for the novice user to learn how to use the service.

A regular intent requires a unique name and has no prior training.

Figure 6.2: Adding an intent with an unique identifier.

Figure 6.3: A view listing the current entities and the different entity options.

There are no entities present when a new application is created. As shown in Figure

6.3 there are three different kind of entities to choose from. The first kind is a

custom entity, which the developer names by an identifier. There are two types

of entities. A simple entity is a freetext entity where the value can be any string

the developer teaches the system. For a list entity, the user can define the values

that the entity may take, e.g. the names of cities or countries. The developer can

also choose from a set of prebuilt entities. These are already learned by the engine

to identify different type of values commonly used by information seeking dialogue

systems, such as email and phone numbers.

Training is done by providing example utterances for each intent of the application.

6.2. Creating and managing a LUIS.ai application 29

Figure 6.4: An example of when creating a custom simple entity.

Figure 6.5 shows an example where the utterance ”I want to fly with sas” has been

provided for the intent ReserveTicket. When the utterance has been provided the

developer can mark the word or words that should be mapped to specific entities.

In our example the string ”sas” is marked as an airline entity.

Figure 6.5: The interface when training an application.

6.2.1 Training and test tool

The train and test tool provides a useful interface to evaluate the behavior of the

application. The developer can type an utterance and see how the application

30 Chapter 6. LUIS.ai

understands it. The identified entities are shown directly in the utterance and the

top scoring intent is shown in the result window to the right as shown in Figure 6.6.

The resulting intent is also imbued with the certainty of the system.

Figure 6.6: The training and test tool.

6.3 Integrating LUIS.ai with a system

The published application serves as an HTTP endpoint utilizing a REST API. The

communication is done using JSON packages. For the application to accept the

HTTP request, the subscription key and application ID must be attached as head-

ers. The subscription key is the identifier of the developers Microsoft account and

provides access to the API. The application ID is the identifier of the specific appli-

cation.

A prediction of an utterance is simply made by sending a GET request to the

application with the utterance attached. The sample JSON response is shown in

Figure 6.7. The top scoring intent is set in its own element and all the identified

entities are present in the entities list.

6.4. Limitations 31

{
”query ” : ”My a i r l i n e i s SAS” ,
” topScor ing In tent ” : {

” i n t en t ” : ”ReserveTicket ” ,
” s co r e ” : 0 .93267872

} ,
” i n t e n t s ” : [
{

” i n t en t ” : ”ReserveTicket ” ,
” s co r e ” : 0 .93267872

} ,
{

” i n t en t ” : ”None” ,
” s co r e ” : 0 .06732128

}
] ,
” e n t i t i e s ” : [
{

” en t i t y ” : ”SAS” ,
” type ” : ” A i r l i n e ” ,
” s co r e ” : 0 .9303394

}
]

}

Figure 6.7: A sample JSON response of the prediction of the utterance ””My airline
is SAS”.

6.4 Limitations

There are always drawbacks with depending on external systems and services. A

dialogue system relying on web-based language tools will render useless if the service

of the tools are down or under maintenance. Alan Nichol [9] believes that the future

of web-based language tools lies in prototyping but not in industrial use. Companies

want to be independent and not having their fate decided by a third party. More

open source tools will probably be released in the future by big players.

LUIS.ai provides 1000 free endpoint hits a month. If the developer wishes to use it

more extensively, he or she has to pay a monthly fee.

There is a set limit for the number of intent and entities the developer can specify.

An application may have at most 80 intents and 30 entities. These constraints are

32 Chapter 6. LUIS.ai

set to reduce the chance of over-fitting. A way for the developer to work around

this is using multiple applications in parallel [10].

Chapter 7

Implementation of the prototype

system

This chapter describes the implemented proof of concept prototype dialogue system.

The dialogue manager of the prototype utilizes the proposed dialogue management

strategy described in Chapter 5. The system the users to configure their own dia-

logues by providing an XML-based dialogue description. It is required by the user

to provide a trained and published LUIS.ai application for language understand-

ing. The system can be integrated with a Facebook-page by utilizing the Facebook

messenger application.

7.1 Architecture

An overview of the system architecture is shown in Figure 7.1. The prototype sys-

tem consists of four different modules. The Messenger Communicator contains the

endpoint that receives and handles the Facebook messenger webhook requests. The

LUIS.ai Communicator requests and reads the responses of the provided LUIS.ai

application. The DialogueManager handles the dialogue management of the system

and maintains the dialogue state.

The webhook endpoint of the Messenger-communicator is implemented by utilizing

the python Flask Micro framework. When a user utterance is received through the

webhook it is sent via the LUIS-Communicator module to the LUIS.ai application.

33

34 Chapter 7. Implementation of the prototype system

Figure 7.1: Architecture overview

The LUIS-Communicator then receives a response with the extracted intent and

entities of the utterance. The intent and entities are then passed on to the Dia-

logueManager that updates the dialogue state and returns a textual response to be

presented to the user.

The dialogue manager is very loosely coupled to the rest of the system such that it

can be extracted and integrated to another system. It parses the DialogDoc.XML

when instantiated. A new instance of the DialogueManager is instantiated for each

unique user.

7.2 Dialogue document

In the prototype system we propose a way to configure the dialogue structure ac-

cording to an XML-based dialogue description. The choice of XML is motivated

with the positive results obtained by the dialogue system NADIA [27] and the wide

7.2. Dialogue document 35

usage of VoiceXML [18]. The document covers the whole dialogue between the user

and the system. It defines all possible topics and the the required information to

perform the system actions. A description of a simple dialogue in XML is shown in

Figure 7.2.

<Dialogue>
<In i tGree t ing>Hel lo ! You are now ta l k i n g to a chatbot !</ In i tGree t ing>
<EndPrompt>That was a l l i needed !</EndPrompt>
<UnknownTopic>I ’m so r ry I did not that !</UnknownTopic>
<Frame Topic=”ReserveTicket”>

<S lo t Entity=”MovieName”>
<Prompt lang=”en”>What movie do you want to see ?</Prompt>
<Type>primary</Type>
<Confirmation lang=”en”>you want to see [va lue]</Confirmation>

</Slot>
<S lo t Entity=”NumberOfTickets”>

<Prompt lang=”en”>How many t i c k e t s do you want?</Prompt>
<Type>primary</Type>
<Confirmation lang=”en”>you want [va lue] t i c k e t s </Confirmation>

</Slot>
<\Frame>
<Frame Topic=”Per sona l In f o”>

<S lo t Entity=”FullName”>
<Prompt lang=”en”>What i s your f u l l name?</Prompt>
<Type>primary</Type>
<Confirmation lang=”en”>your name i s [va lue]</Confirmation>

</Slot>
</Frame>
<TUD>

<Topic>ReserveTicket</Topic>
<Topic>Persona l In fo</Topic>

</TUD>
</Dialogue>

Figure 7.2: An example of a specified simple dialogue for reserving movie tickets.
”[value]” can be used in the Confirmation element to present the obtained informa-
tion to the user.

The document consists of the Dialogue root element and five different child elements.

The first three child-elements have textual values as they are prompts used by the

system during the interaction. The InitGreeting and EndPrompt elements specifies

the initial greeting and the goodbye message. They are presented by the system to

the user at the start and the end of the dialogue respectively. The UnkownTopic

36 Chapter 7. Implementation of the prototype system

element specifies textual response from the system if no relevant information can be

extracted from the given user utterance.

The Frame element has two types of child-elements; the unique name of the frame

topic of and the slots of the frame. The frame contains one or more slots where each

slot element has a unique specified Entity. The slot also needs a specified Type, which

indicates the importance of the slot, see Section 5.2 for more information. The type

is set by one of the lower case values; primary, secondary and auxiliary. The slot

can also have a Prompt and a Confirmation element. The Prompt element describes

the textual act that the system presents to help the user filling the corresponding

slot with information. The Confirmation element is presented when the system has

filled the slot with information. While these elements are not mandatory, they are

useful for grounding and to navigate the dialogue in the right direction.

The TUD element represents the queue of topics that are to be brought up by the

system during the interaction. It only has one type of child-element which is the

name of the topics that are to be placed in the queue. Every topic specified in the

queue must have a matching frame element.

7.2.1 Model with LUIS.ai

This dialogue system utilizes LUIS.ai for sentence analysis. As mentioned in chapter

6, a LUIS.ai application structures the semantic information as intents and entities.

We interpret the intents of the LUIS.ai application as the possible topics of the

dialogue and the entities as the slot entities.

The dialogue document in Figure 7.2 shows a small LUIS.ai application with two

intents, namely ReserveTicket and PersonalInfo. Furthermore, it describes a total

of three different entities; MovieName, NumberOfTickets and FullName.

7.3 Device.py

A major feature of the dialogue system is the Device.py file. It has to be implemented

by the developer and is responsible for determining if a topic is finished or not. The

file can be configured by the developer to have the system communicate with external

7.4. Summary 37

tools and systems such as databases and web services. The developer can also utilize

it to validate the input of the frames; if an input is not deemed valid the slot can be

emptied and the system will proceed the dialogue to reacquire information for that

slot.

The python file must define a class that extends an abstract class called Abstract-

Device. Doing so, it inherits one abstract method called frameAction. The method

is called by the system every dialogue turn when all the primary slots of the active

frame are filled. The method has two input parameters; the frame topic in the

format of a string and a dictionary of the filled slot entities.

The frameAction method must return an instance of the class SystemActionResult.

SystemActionResult is a class that specifies how the system should behave following

a filled frame. The developer can set a prompt that should be presented as a response

to the user and specify if any slots of the frame should be emptied because of invalid

input.

SystemActionResult takes one out of three defined parameters in the constructor,

namely complete, continue or error. The complete value is set as the parameter if

the information of the frame in question is sufficient. The topic is then deemed to be

finished and the topic is removed from the topic queue. The continue value is set as

the parameter if the result of the information stored in the frame is not enough for

the application and the system needs to continue pursuing the topic. Examples of

this could be when a slot has obtained an invalid value and needs to be emptied, or

when a query search using the frame information in a database results in multiple

rows. The error value is set as the constructor parameter if a serious error has

occurred with the external systems and the dialogue system should terminate.

7.4 Summary

This chapter has described the implemented prototype that is to be used for the

evaluation of the dialogue management strategy proposed in chapter 5 together with

LUIS.ai as a natural language understanding module. A developer that intends to

use the system and configure a new chatbot should at have at least basic knowledge

of Python and XML.

Chapter 8

Evaluation

This chapter describes the evaluation of the proposed and developed dialogue man-

agement strategy and of LUIS.ai as a natural language understanding module. First

we present the method of how the evaluation is performed, followed by the results.

8.1 Evaluation method

Williams et al. [24, p. 1] claim that a developer can train and publish a working

natural language understanding module using LUIS.ai within minutes. To test this

claim we obtained a small training set for a chosen simple domain by utilizing

the Wizard of Oz method. Wizard of Oz is a method to evaluate unimplemented

software by having a person simulating the behavior of the system [25, p. 277].

In the presented experiments the author of this thesis acted as a wizard and thus

simulated the behavior of the proposed dialogue model. A LUIS.ai application

was trained by using roughly 70% of the recorded interactions, and evaluation was

done by testing the remaining of the examples using the LUIS.ai training interface

mentioned in Section 6.2.1. This tested if the sample of interactions was enough

to fire the correct intents and entities. This also served as a good indicator of the

effectiveness of the proposed dialogue model.

The trained language understanding application was then integrated with the imple-

mented prototype dialogue system that utilizes the proposed dialogue model. The

system was tested with scenarios listed in Talkamatic Dialogue Strategies examples

38

8.2. Evaluation results 39

[33]. These examples covers a number of dialogue functionalities together with a

rough idea of how common it is that they are provided by commercial dialogue

systems. Talkamatic AB is a company that develops conversational interfaces and

works with researchers from the computational linguistic department at Gothenburg

University [34]. The Talkamatic dialogue manager was described briefly in Section

4.2.

The dialogue system was further evaluated by user-testing in terms of dialogue cost,

task success and interaction quality as stated in Section 2.5. The proposed dialogue

model was then evaluated by having participants modeling a dialogue from a trained

LUIS.ai application. The result was evaluated by semi-structured interviews.

8.2 Evaluation results

A simple domain for reserving movie tickets was chosen as evaluation. The dia-

logue document modeling the desired information can be found in Appendix A.

The LUIS.ai application used simple entities for the information of MovieName and

FullName, while prebuilt entities were utilized for the information of numbers, email

and dates.

8.2.1 Wizard of Oz test

The Wizard of Oz method provided 21 interactions with a total of 148 utterances.

16 of these interactions were used to train the created LUIS.ai application. The rest

of the interactions were used to observe if the LUIS.ai application would fire the

correct intents and entities.

The results showed that 55.7% of the utterances fired the correct intent. This

result may sound discouraging but closer analysis revealed that the 90% of one-

word utterances failed and utterances containing more than three words had a 90%

success rate. Evidently, LUIS.ai is much more efficient in identifying the intent of

the utterance if it contains more words.

40 Chapter 8. Evaluation

8.2.2 Talkamatic Dialogue Strategies examples

The Talkamatic Dialogue Strategies examples were tested by integrating the trained

LUIS.ai application from the previous section with the developed prototype system.

Below we present dialogue examples provided by Talkamatic covering each func-

tionality feature followed by an example of the prototype system covering the same

functionality in the movie ticket reserving domain.

Over-answering

Over-answering is the ability to acknowledge more information than was initially

requested by the system. This was not a problem since it is a standard feature of

the frame-based approach. This is according to Talkamatic a feature that is provided

by several but not all other commercial solutions.

U (User): Make a call

S (System): OK, who do you want to call?

U: John’s mobile [mobile not requested by the system]

S: OK, placing the call

Figure 8.1: Example of over-answering provided by Talkamatic

Figure 8.2: Example of the prototype system handling over-answering

8.2. Evaluation results 41

Other-answering

Other-answering is the ability to acknowledge information that is different than the

actually requested information. This is something state-machine architectures are

unable to do. For this example, the prototype system has PersonalInfo as the active

topic and requests the name of the user. The user presents his email instead and the

system acknowledges the information. According to Talkamatic, this functionality

is covered by a few other commercial solutions.

U: Make a call

S: Who do you want to call?

U: The mobile number [not requested by the system]

S: OK. Who do you want to call?

U: John

S: Calling John’s mobile

Figure 8.3: Example of other-answering provided by Talkamatic

Figure 8.4: Example of the prototype system handling other-answering

42 Chapter 8. Evaluation

Correcting the system

A dialogue system providing this functionality makes it possible for the user to

correct mistakes or incorrect input. The prototype system has no direct way to clear

a slot of information by an utterance but the user is able to provide new information

as long the topic is not finished. According to Talkamatic, this functionality is

provided by very few other commercial solutions.

S: Who do you want to call?

U: Call John

S: John’s home or mobile number?

U: Not John, Steve!

S: OK, Steve’s home or mobile number?

Figure 8.5: Example of a system correcting an error provided by Talkamatic

Figure 8.6: Example of the prototype system when the user is correcting a mistake

8.2. Evaluation results 43

Topic shifts

A dialogue system providing this functionality makes it possible for the user to jump

between different topics or tasks before they are finished. In the second example

of the prototype system presented in Figure 8.9 the system jumps between three

topics. The WhatMovies topic is finished and removed from the queue as soon it

is presented since it is designed to only answer primitive wh-questions. The system

then proceeds with the previous topic. According to Talkamatic, this functionality

is provided by extremely few other solutions.

U: Call John

S: What number? Work, home or mobile?

U: What time is it? [Time and date domain]

S: 10 pm. Returning to calling. What number do you

want to call?

U: The home number

Figure 8.7: Example of a topic shift provided by Talkamatic

Figure 8.8: Example of a topic shift by the prototype system

44 Chapter 8. Evaluation

Figure 8.9: Example of several topic shifts by the prototype system

Task recognition

The functionality of task recognition is the ability to recognize a task or topic by a

single word that states information. The prototype system has no way of doing this

by its dialogue manager alone, this functionality depends on the natural language

understanding module. As stated in Section 8.2.1, LUIS.ai was found to have a hard

time to understand one-word utterances. The prototype system does therefore not

support the functionality reliably.

U: 7 pm

S: Do you want add to the calendar or set the alarm?

U: Set the alarm

S: You alarm is set for 7pm.

Figure 8.10: Example of task recognition provided by Talkamatic

8.2. Evaluation results 45

Figure 8.11: Example of the prototype system successfully performs task recognition

8.2.3 Dialogue cost and task success

The prototype system was evaluated by having four users conversing with the dia-

logue system to reserve tickets to a movie. All users were given two tries to complete

the overall task. This was to see if prior knowledge of what information the system

required would speed up the process by having the users utilizing more advanced

dialogue functionalities.

The modeled domain is the same as in the previous sections. The dialogue document

can be found in Appendix A. If the user were to fill one mandatory slot of information

each turn, the dialogue cost would result in five turns.

Number of dialogue turns Task succeeded?
User1 10 Yes
User2 9 Yes
User3 N/A No
User4 15 Yes

Figure 8.12: The results of the first try.

46 Chapter 8. Evaluation

Number of dialogue turns Task succeeded?
User1 4 Yes
User2 6 Yes
User3 6 Yes
User4 6 Yes

Figure 8.13: The results of the second try.

The language understanding posed a problem in the first test. The users were

using a lot of one word utterances to provide the information. This led to a lot

of wasted dialogue turns and one of the users got frustrated and gave up. This

motivated a modification to the dialogue document by adding extra information to

the UnkownTopic element in the dialogue document stating that the user should

use whole sentences.

The second test results shows a major decrease in the number of dialogue turns

needed when the users got prior knowledge of the information required. The users

did not need to ask the system questions about what movies that were showing

and they utilized over-answering functionalities. When using whole sentences, the

language understanding posed no longer a problem and User3 was able to complete

the task.

8.2.4 Dialogue modeling

The dialogue modeling was evaluated by having two developers, both with a bachelor

degree in computer science, to model a dialogue using the XML dialogue document.

They did not develop any further functionalities using Device.py due to time con-

straints. They were both provided a trained LUIS.ai application with three intents

and five entities. Both participants spent one hour each and were able to ask the

author simple questions when problems occurred.

The overall idea of the frame-based approach was easy for both participants to

understand. However, due to being beginners in the field of dialogue management,

the different type of slots in the frames made no sense to them in the start. They

both experienced a fast learning curve for how the confirmation prompts would be

presented by the system. Both participants were quickly able to configure working

8.2. Evaluation results 47

dialogue systems. One of the participants stated during the development that the

dialogue model felt designed to fit the functionality of LUIS.ai.

The dialogue model received criticism because the dialogue felt non-alive with only

one specified response to be presented when the system did not understand an utter-

ance. Since neither of the participants designed a topic to handle primitive questions,

they both found the topic-queue unnecessary. The reason was that they thought

the system should just bring up every specified topic. Overall both participants felt

that the system had a good design that was easy to learn, but both stated that they

had nothing to compare it with.

Chapter 9

Conclusion

This chapter summarizes what goals we have achieved and what we have learned.

We end the conclusion with a brief look at future work.

9.1 Purpose

LUIS.ai proved to be a very useful tool for rapid creations of dialogue systems. An

application does not require a lot of training to be a sufficient natural language

understanding module. We have discussed the drawbacks and limitations of using

external tools. LUIS.ai is tool that still is the development phase, the API and

functionality changes continuously.

A dialogue model that supports functionalities of competitive commercial dialogue

systems has been presented. It is easy to configure for non-experts. By this combi-

nation of LUIS.ai with improved versions of state-of-the-art techniques for dialogue

management, the set goal of the project is seen as fulfilled.

We have, inspired by related work, proposed solutions to how some weaknesses of the

trivial frame-based approach can be addressed. We have achieved accommodation

features and the handling of multiple topics by representing each topic as a frame

and by using a universal dialogue state. The state keeps track of the current topic

and stores the rest of the topics that are to be discussed in a queue. The slots of

the frame have augmented priorities to dynamically check their necessity.

48

9.2. Future work 49

9.2 Future work

The developed dialogue model shows promising performance but should be evaluated

further to identify possible ways of improvements. One of the biggest observed

weaknesses of the prototype system is the inability to handle one word utterances

in a reliable manner. The system is fully dependent on the LUIS.ai application for

language understanding. A solution to address the problem could be to equip the

prototype with a simple keyword or pattern matcher mechanism to be able to handle

one word utterances when the LUIS.ai application fails.

Even if no participant mentioned it specifically during the interviews, writing code in

XML can be quite tedious. A graphical interface to configure the dialogue document

could improve the experience of designing dialogues.

Bibliography

[1] Pierre Lison, Structured Probabilistic Modelling for Dialogue Management, PhD

Thesis, 2013.

[2] Harvey Sacks, Emanuel A Schegloff, Gail Jefferson. A simplest systematics for

the organization of turn-taking for conversation, Language, 1974.

[3] Gabriel Skantze , Error handling in spoken dialogue systems, PhD Thesis, 2007.

[4] Michael F. McTear, Spoken Dialogue Technology: Enabling the Conversational

User Interface, 2002.

[5] James F. Allen, Donna K. Byron, Myroslava Dzikovska, George Ferguson, Lucian

Galescu, Amanda Stent, Towards Conversational Human-Computer Interaction,

2001.

[6] Microsoft Cognitive Services, https://www.microsoft.com/

cognitive-services/en-us/luis-api/documentation/home#Localization,

visited 06/04/2017.

[7] The Natural Language Processing Group at Stanford University, https:

//nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html, vis-

ited 06/04/2017.

[8] Language Understanding Intelligent Service (LUIS), https://www.luis.ai/

about, visited 06/04/2017.

[9] Alan Nichol, PhD in machine learning from the University of Cambridge, https:

//www.developereconomics.com/nlp-wit-luis-api-ai, visited 07/05/2017.

[10] Jayme M Perlman, Denise Mak, Robert standefer, Den Delimarsky,

Troubleshooting general problems, https://docs.microsoft.com/en-us/

bot-framework/troubleshoot-general-problems, visited 07/05/2017.

50

BIBLIOGRAPHY 51

[11] Roland Meertens, A Scalable Mixed Initiative Dialogue Manager, Master’s The-

sis, 2015.

[12] Cheongjae Lee, Sangkeun Jung, Kyungduk Kim, Donghyeon Lee, Gary Geun-

bae Lee, Recent Approaches to Dialog Management for Spoken Dialog Systems,

2010.

[13] Steve Young, Fellow, IEEE, Milica Gasic, Member, IEEE, Blaise Thomson,

Member, IEEE, Jason D Williams, Member, IEEE, POMDP-based Statistical Spo-

ken Dialogue Systems: a Review, 2013.

[14] A.F. van Woudenberg, Chatbots and Dialogue Systems: A Hybrid Approach,

Master’s Thesis, 2014.

[15] Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, Alicia Abella, PAR-

ADISE: A Framework for Evaluating Spoken Dialogue Agents, 1997.

[16] Annika Silvervarg, Arne Jonsson, Subjective and Objective Evaluation of Con-

versational Agents in Learning Environments for Young Teenagers, 2011.

[17] Xiao-Jun Wu, Fang Zheng, Wen-Hu Wu, A hybrid dialogue managament ap-

proach, a hybrid dialogue for a flight spoken dialogue system, 2002.

[18] Pavel Cenek, Hybrid Dialogue Management in Frame-Based Dialogue Systems

Exploiting VoiceXML, Ph.D. thesis proposal, 2004.

[19] Xiaojun Wu, Fang Zheng, Mingxing Xu, Topic Forest: a plan-based dialog

management structure, 2001.

[20] David Goddeau, Helen Meng, Joe Polifroni, Stephanie Seneff, Senis

Busayapongchai, A form-based dialogue manager for spoken language applica-

tions, 1996.

[21] Deeno Burgan, Dialogue Systems & Dialogue Management, 2017.

[22] Alexander I. Rudnicky, Dan Bohus, The RavenClaw dialog management frame-

work: Architecture and systems, 2008.

[23] Svetlana Stoyanchev, Pierre Lison, Srinivas Bangalore, Rapid Prototyping of

Form-driven Dialogue SystemsUsing an Open-source Framework, Proceedings of

the SIGDIAL 2016 Conference, 2016.

52 BIBLIOGRAPHY

[24] Jason D. Williams, Eslam Kamal, Mokhtar Ashour, Hani Amr, Jessica Miller,

Geoff Zweig, Fast and easy language understanding for dialog systems with Mi-

crosoft Language Understanding Intelligent Service (LUIS), Microsoft Research

[25] David Maulsby, Saul Greenberg, Richard Mander, Prototyping an intelligent

agent through wizard of oz, In Proceedings of the INTERACT93 and CHI93 con-

ference on Human factors in computing systems, 1993.

[26] Jenny Brusk, Torbjrn Lager, Anna Hjalmarsson, Preben Wik,DEAL Dialogue

Management in SCXML for Believable Game Characters, 2007.

[27] Markus M Berg, NADIA: A Simplified Approach Towards the Development of

Natural Dialogue Systems, 2015.

[28] Peter Ljunglof, Staffan Larsson, A Grammar Formalism for Specifying ISU-

based Dialogue Systems, 2008.

[29] Staffan Larsson, Alexander Berman, Domain-specific and General Syntax and

Semantics in the Talkamatic Dialogue Manager, Empirical Issues in Syntax and

Semantics 11, 2016.

[30] Staffan Larsson, Issue-based Dialogue Management, PhD Thesis, 2002.

[31] Fredrik Kronlid, Jessica Villing, Alexander Berman, Staffan Larsson, Com-

paring system-driven and free dialogue in in-vehicle interaction, Proceedings of

Interspeech 2011, Conference paper 2011.

[32] Robin Persson, Constructing a Prototype Spoken Dialogue System for World

Wide Named Places, Master’s Thesis, 2012.

[33] Talkamatic AB, TDM Dialogue Strategy Examples, 2016.

[34] Talkamatic AB, http://www.talkamatic.se/, visited 08/06/2017.

Appendix A

Dialogue document

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<Dialogue>

<In i tGree t ing>Hel lo ! You are now ta l k i n g to a chatbot that w i l l he lp

you to book t i c k e t s to the f i lm you want to see !</ In i tGree t ing>

<EndPrompt>That was a l l i needed ! Now go and enjoy your movie !</

EndPrompt>

<UnknownTopic>I ’m sor ry I did not understand what you said , p l e a s e

use whole s en t ence s to communiate with me!</UnknownTopic>

<Frame Topic=”ReserveTicket”>

<S lo t Entity=”MovieName”>

<Prompt lang=”en”>What movie do you want to see ?</Prompt>

<Type>primary</Type>

<Confirmation lang=”en”>you want to see [va lue]

</Confirmation>

</Slot>

<S lo t Entity=”bu i l t i n . number”>

<Prompt lang=”en”>How many t i c k e t s do you want?</Prompt>

<Type>primary</Type>

<Confirmation lang=”en”>you want [va lue] t i c k e t s </

Confirmation>

</Slot>

<S lo t Entity=”bu i l t i n . datetimeV2 . date”>

<Prompt lang=”en”>What day do you wish to see the movie?</

Prompt>

<Type>primary</Type>

<Confirmation lang=”en”>you want to see the movie on [va lue

]</Confirmation>

</Slot>

53

54 Appendix A. Dialogue document

<S lo t Entity=”bu i l t i n . datetimeV2 . time”>

<Prompt lang=”en”>At what time do you wish to see the movie

?</Prompt>

<Type>secondary</Type>

<Confirmation lang=”en”>you want to see the movie at [va lue

]</Confirmation>

</Slot>

</Frame>

<Frame Topic=”Per sona l In f o”>

<S lo t Entity=”FullName”>

<Prompt lang=”en”>What i s your f u l l name?</Prompt>

<Type>primary</Type>

<Confirmation lang=”en”>your f u l l name i s [va lue]</Confirmation

>

</Slot>

<S lo t Entity=”bu i l t i n . emai l”>

<Prompt lang=”en”>What i s your email</Prompt>

<Type>primary</Type>

<Confirmation lang=”en”>your emai l i s [va lue]</Confirmation>

</Slot>

</Frame>

<Frame Topic=”WhatMovies”>

<S lo t Entity=”MovieName”>

<Type>aux i l i a r y </Type>

</Slot>

<S lo t Entity=”bu i l t i n . datetimeV2 . date”>

<Type>aux i l i a r y </Type>

</Slot>

</Frame>

<TUD>

<Topic>ReserveTicket</Topic>

<Topic>Persona l In fo</Topic>

</TUD>

</Dialogue>

