The factor in front of the matrix in equation (2.34) should be $\sqrt{\frac{2}{3}}$.

L_{SR} in equation (2.41) should be replaced by L_{RR}.

The element L_{Dq} on row 5, column 1 in the inductance matrix in equation (2.43) should be replaced by L_{Dd}.

The sentence ending with "layers" just below equation (3.2) should be extended with "with cross sectional areas A_s and A_v parallel to the yz plane".

The next last sentence in section 3.2 can be skipped or extended with "also because of the tangential field boundary condition".

The beginning of sentence just before equation (3.12) should be "One model of the time average of the harmonically".

The sentence that ends next below equation (3.16) should end with "p_i is the time average of the loss density associated with the peak magnetic flux density \hat{B}_i".

The last sentence in section 3.3 and equation (3.19) should be "The time average of the eddy current losses caused by leakage fields have been calculated both in the laminated stator core and in selected slices of the clamping structure by

$$P_{ed, av} = \frac{1}{T} \int_0^T \int_V \frac{J^2(t)}{\sigma} dV dt \approx \frac{1}{n} \sum_{i=1}^n P_{ed}(t_i)$$

where J is the eddy current density, $T = 10$ ms is the period of the instantaneous loss, $P_{ed}(t)$, and n is the number of time steps during that period."

In section 3.4.1 on page 35, the text from "If the excitation ..." on line 8 to "... must be modeled." on line 3 from the end is replaced by "It is sufficient to include one spatial period of the machine and the nearest surrounding medium, usually air, in the calculation domain. In some simple machine models, the spatial period of the structure is just one pole pitch. In such cases, antiperiodic boundary conditions should be used. These force the
magnetic field vector in an arbitrary point on the so called slave surface to have the same magnitude and opposite direction as the corresponding (mirror) point on the so called master surface located half a wave length from the slave surface. In more detailed machine models including asymmetrically located damper windings and/or some stator coil ends, the spatial period of the structure is the same as that of the field and spans at least two pole pitches. In such cases, periodic (matching) boundary conditions can be used. Fig. 4.1 in section 4.1 shows an example where the spatial period spans four pole pitches. In 3-D the domain can be halved if both the field and the geometry have a symmetry plane along which the motion takes place.

On page 39
"\(v(\mathbf{r}, t) = \hat{v}(\mathbf{r}) \sin(\omega t - \phi(\mathbf{r})) \). A complex linear combination of these solutions is \(w(\mathbf{r}, t) = \hat{w}(\mathbf{r}) e^{j(\omega t - \phi(\mathbf{r}))} \)"

is replaced by
"\(v(\mathbf{r}, t) = j\hat{u}(\mathbf{r}) \sin(\omega t - \phi(\mathbf{r})) \). The sum of these solutions is \(w(\mathbf{r}, t) = \hat{u}(\mathbf{r}) e^{j(\omega t - \phi(\mathbf{r}))} \)"

Equation (3.22) should be

\[
\nabla A_\varphi \cdot \nabla \times (\hat{\varphi} \nabla A_\varphi) = \frac{A_\varphi}{\rho} \frac{\partial A_\varphi}{\partial z}
\]

At the end of the last sentence in section (3.6), "\(P_f = r_{av} F_f \)" should be replaced by "\(P_f = \omega_m r_{av} F_f \) where \(\omega_m \) is the mechanical angular speed."