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Harmonically Time Varying, Traveling Electromagnetic Fields
along a Plate and a Laminate with a Rectangular Cross

Section, Isotropic Materials and Infinite Length

Birger Marcusson* and Urban Lundin

Abstract—This article contains derivation of propagation factors and Fourier series for harmonically
time varying, traveling electromagnetic fields in a plate and a laminate with rectangular cross sections,
isotropic materials and infinite length. Different and quite general fields are taken into account on
all boundaries. Choices of boundary conditions and continuity conditions are discussed. Certain
combinations of types of boundary conditions make the derivation possible for a laminate. Comparisons
are made between results of Fourier series and finite element calculations.

1. INTRODUCTION

Results from measurements or calculations of magnetic or electric field on the boundary of a plate
or laminate can be used for calculations of the electromagnetic fields within the plate or laminate.
This is the main motive for the work presented in this article. Furthermore, analytical formulas can
give information about how material properties and geometrical parameters affect the electromagnetic
fields. An overview of analytical methods for calculation of magnetic fields are given by [1]. An integral
equation method [2] and the stream function method [3] have been suggested for estimation of eddy
currents in a plate where reaction fields have been neglected. Mukerji et al. have used Fourier’s method,
also called the method of separation of variables, in analyses of electromagnetic fields in a plate [4], and
a laminate [5, 6]. In [4] and [5], the magnetic field is assumed to be alternating as in a transformer.
In [6], traveling fields, simplified boundary conditions and no magnetic field in the stacking direction
on the boundary are assumed. However, in the end regions of a plate package and the end regions of
the stator core of an electric machine, the magnetic field in the stacking direction can be significant for
the eddy current loss because of the large plate surfaces without interruptions of eddy currents.

The subject of this article is to use Fourier’s method to derive analytical expressions for propagation
factors, traveling magnetic and electric field components in a plate and a laminate. The boundary
conditions are more general than in previous publications. The results are also approximately valid
for hollow cylindrical laminates such that the fundamental wave length is much shorter than the
circumference of the cylinder. Applications where linear or cylindrical laminates can be of interest
are magnetic cores in electrical machines, magnetic shielding, rail guns and rails for magnetic levitation.
In a synchronous generator, the field waves could be generated by the motion of magnetic poles of
alternating polarities, and the laminate could be a simplified stator core.

Harmonically time varying electromagnetic fields are studied in this article. Therefore, the
equations are written in complex form. This allows the time dependence to be removed from the
equations. A real, time dependent field is the real or imaginary part of the product of the time
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independent complex solution and ej(ωt+Φ) where j =
√−1, t is the time, and Φ is a reference phase

angle. All field components have Φ in common. It is chosen according to the initial conditions. Above a
letter,¯ denotes a complex quantity,˜ denotes a Fourier coefficient, and ̂ denotes an amplitude. Vectors
and matrices are denoted by bold letters.

Section 2 starts with fundamental equations and assumptions. In Section 2.1, Fourier series for
components of magnetic field strength, H̄, and electric field strength, Ē, in one plate are derived. The
choice of type of boundary conditions is discussed, and alternative expressions of eddy current loss
density, p, and Ē components are given. Section 2.1.1 contains derivation of the propagation factors.
In Section 2.2, Fourier series for H̄ and Ē components in a laminate of two plates are derived. After a
discussion that leads to continuity conditions, Section 2.2 proceeds with a choice of boundary conditions
for each plate. The Fourier series of H̄ and Ē components containing both the known and the unknown
Fourier coefficients are derived and used in continuity equations expressed per mode. Finally, these
equations are solved with respect to the unknown Fourier coefficients. In Section 2.2.1, equations for
Fourier coefficients of Neumann boundary functions are derived. In Section 2.3, equation systems for
the Fourier coefficients of the internal boundary functions in the case of an arbitrary number of material
layers are presented without solution. Section 3 describes comparisons between Fourier series and finite
element analyses (FEA). First, the methods are described. Finally, results from Fourier series and FEA
are shown in graphs. In Section 4, surface current density and the influence of lamination on the field
components are discussed.

2. DERIVATION OF HARMONICALLY TIME VARYING ELECTROMAGNETIC
FIELDS

In all studied cases, the z direction is the stacking direction, and the laminate has infinite extension in
the x direction. Electromagnetic waves with only one angular frequency, ω, and wave length, λ, in the
x direction are assumed to sweep along the laminate in the x direction. The wave propagation constant
in the x direction is

k =
2π
λ

(1)

Maxwell’s equations in complex form are

∇ · (εĒ) = ρ, (2)

∇ · B̄ = 0, (3)
∇× Ē = −jωB̄, (4)
∇× H̄ = J̄ + jωεĒ (5)

where ε is the permittivity, ρ the volume charge density, B̄ the magnetic flux density, and J̄ the current
density. With permeability, μ, and conductivity, σ, the relationships assumed between B̄ and H̄, and
between J̄ and Ē are

B̄ = μH̄, (6)
J̄ = σĒ. (7)

In general, ε, μ, and σ are tensors. For isotropic materials they are scalars.

2.1. One Rectangular, Infinitely Long, Isotropic Plate

Figure 1 shows the geometry and assumed coordinate system of a plate with width W and thickness T .
The properties ε, μ, and σ are assumed to be constant. Equations (3) to (7) give that the i component
of Eq. (4) multiplied by σ + jωε can be written as the wave equation

∂2H̄i

∂x2
+

∂2H̄i

∂y2
+

∂2H̄i

∂z2
= γ̄2H̄i, i = x, y or z (8)

where γ̄2 is given by
γ̄2 = −ω2με + jωμσ. (9)
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Figure 1. Plate with thickness T , width W and infinite extension in the x direction.

Wave equations for the components of Ē have the same form as Eq. (8) and the same γ̄. For derivation
of wave equations for the components of Ē in an uncharged medium, Eq. (2) with ρ = 0 would be used
instead of Eq. (3). The periodic boundary conditions are

H̄i(x, y, z) = H̄i(x + λ, y, z)
∂H̄i(x, y, z)

∂x
=

∂H̄i(x + λ, y, z)
∂x

, i = x, y or z. (10)

Equation (8) with boundary conditions can be solved with Fourier’s method if H̄i is written as the sum
of two contributions, H̄i1 and H̄i2. Here, H̄i1 has its inhomogeneous boundary conditions at z = 0
and z = T , and H̄i2 has its inhomogeneous boundary conditions at y = 0 and y = W . Each term
in the Fourier series of H̄i1 is of the form X̄m(x)Yn(y) ¯̃Zm,n(z) where ¯̃Zm,n(z) is a Fourier coefficient,
and the other functions are eigenfunctions. As shown below, also ¯̃Zm,n(z) could be regarded as some
kind of eigenfunction considering the type of equation it satisfies. With use of the Fourier series of
H̄i1, Eq. (8) can be written as a Fourier series that is zero everywhere. Because of the orthogonality
of the eigenfunctions, each Fourier coefficient can be extracted, one by one, from the Fourier series.
This is done by multiplication of the Fourier series by the eigenfunction that corresponds to the Fourier
coefficient and then integration over the domain of the eigenfunction. Such extraction of the Fourier
coefficients gives that all Fourier coefficients are zero in a Fourier series that is zero in every point. It
implies that

X̄ ′′
m

X̄m
+

Y ′′
n

Yn
+

¯̃Z ′′
m,n

¯̃Zm,n

= γ̄2, (11)

and that every term in H̄i1 also satisfies Eq. (8). All terms on the left-hand side must be constants
since they are independent and have a constant sum. Equation (11) can therefore be separated into the
three equations

X̄ ′′
m(x) + ϑ2

mX̄m(x) = 0, Y ′′
n (y) + K2

nYn(y) = 0, ¯̃Z ′′
m,n(z) = η̄2

m,n
¯̃Zm,n(z) (12)

where ϑm, Kn and η̄m,n are eigenvalues, but η̄m,n is referred to as a propagation factor below. Insertion
of Eq. (12) into Eq. (11) gives

η̄2
m,n = γ̄2 + ϑ2

m + K2
n. (13)

The general solution of the last equation (12) is
¯̃Zi,m,n(z) = C̄i,m,neη̄m,nz + D̄i,m,ne−η̄m,nz, i = x, y or z (14)

where subscript i has been added to mark that the Fourier coefficients are different for different
components of H̄. An arbitrary term in a Fourier series of H̄i2 can be written as X̄m(x) ¯̃Yl,m(y)Zl(z)
where ¯̃Yl,m(y) is a Fourier coefficient, and the other functions are eigenfunctions. As for H̄i1, to require
H̄i2 to satisfy Eq. (8) implies that an arbitrary term in the Fourier series also satisfies Eq. (8). That
gives

X̄ ′′
m

X̄m
+

¯̃Y ′′
l,m

¯̃Yl,m

+
Z ′′

l

Zl
= γ̄2. (15)
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Equation (15) can be separated into

X̄ ′′
m(x) + ϑ2

mX̄m(x) = 0, Z ′′
l (z) + κ2

l Zl(z) = 0, ¯̃Y ′′
l,m(y) = ν̄2

l,m
¯̃Yl,m(y) (16)

where κl and ν̄l,m are eigenvalues, but ν̄l,m is referred to as a propagation factor. Insertion of Eq. (16)
into Eq. (15) gives

ν̄2
l,m = γ̄2 + ϑ2

m + κ2
l . (17)

The general solution of the last equation (16) is
¯̃Yi,l,m(y) = C̄i,l,meν̄l,my + D̄i,l,me−ν̄l,my, i = x, y or z. (18)

For given harmonically time varying electromagnetic fields on a boundary, the type of boundary
conditions can be chosen arbitrarily among Dirichlet, Neumann and Robin conditions. The choice
affects the eigenfunctions and analytical expressions but not the numerical values of the sum of the
Fourier series of H̄i1 and H̄i2 except, possibly, exactly on the edges. There, the Fourier sums may
not converge to the field component. The Fourier sums converge slowly if the field component and
eigenfunctions do not satisfy the same Dirichlet conditions. This gives rise to the Gibbs phenomenon
at the edges [7]. For simplicity, in spite of slow convergence, Dirichlet conditions are here used on all
surfaces where y or z is constant. The Dirichlet conditions for H̄i1 are

H̄i1(x, 0, z) = 0, H̄i1(x,W, z) = 0, i = x, y or z, (19)

H̄i1(x, y, 0) = H̄i(x, y, 0) = f̄ z=0
i (y)e−jkx, H̄i1(x, y, T ) = H̄i(x, y, T ) = f̄ z=T

i (y)e−jkx (20)

where i = x, y or z. The Dirichlet conditions for H̄i2 are

H̄i2(x, 0, z) = H̄i(x, 0, z) = f̄y=0
i (z)e−jkx, H̄i2(x,W, z) = H̄i(x,W, z) = f̄y=W

i (z)e−jkx, (21)
H̄i2(x, y, 0) = 0, H̄i2(x, y, T ) = 0, i = x, y or z (22)

where f̄ z=0
i , f̄ z=T

i , f̄y=0
i and f̄y=W

i are boundary functions. The first equation (12) and the periodic
conditions in Eq. (10) are satisfied by the eigenfunctions

X̄m(x) = ejϑmx, ϑm = mk, m = . . . ,−2,−1, 0, 1, 2, . . . . (23)

Equation (19) and the second equation in Eq. (12) are satisfied by the eigenfunctions

Yn(y) = sin Kny, Kn =
nπ

W
, n = 1, 2, 3, . . . . (24)

Equation (22) and the second equation in Eq. (16) are satisfied by the eigenfunctions

Zl(z) = sinκlz, κl =
lπ

T
, l = 1, 2, 3, . . . . (25)

A Fourier series of H̄i1 with Fourier coefficients from Eq. (14) and eigenfunctions from Eqs. (23) and
(24) is

H̄i1(x, y, z) =
∞∑

n=1

∞∑
m=−∞

(
C̄i,m,neη̄m,nz + D̄i,m,ne−η̄m,nz

)
ejmkx sin Kny, i = x, y or z. (26)

Since the boundary conditions contain only one of the x dependent eigenfunctions, subscript m can be
skipped, and Eq. (26) is reduced to

H̄i1(x, y, z) = e−jkx
∞∑

n=1

(
C̄i,neη̄nz + D̄i,ne−η̄nz

)
sinKny, i = x, y or z. (27)

Similarly, a Fourier series of H̄i2 with Fourier coefficients from Eq. (18) and eigenfunctions from Eqs. (25)
and (23) with m = −1 is

H̄i2(x, y, z) = e−jkx
∞∑
l=1

(
C̄i,le

ν̄ly + D̄i,le
−ν̄ly
)
sin κlz, i = x, y or z. (28)
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Fourier series of the inhomogeneous Dirichlet boundary conditions in Eqs. (20) and (21) are

H̄i1(x, y, 0) = e−jkx
∞∑

n=1

¯̃
f z=0

i,n sin Kny, H̄i1(x, y, T ) = e−jkx
∞∑

n=1

¯̃
f z=T

i,n sin Kny, i = x, y or z, (29)

H̄i2(x, 0, z) = e−jkx
∞∑
l=1

¯̃fy=0
i,l sin κlz, H̄i2(x,W, z) = e−jkx

∞∑
l=1

¯̃fy=W
i,l sin κlz, i = x, y or z. (30)

Term-by-term identification of Eq. (23) with Eq. (29) at z = 0 and z = T gives

C̄i,n + D̄i,n = ¯̃
f z=0

i,n , C̄i,neη̄nT + D̄i,ne−η̄nT = ¯̃
f z=T

i,n . (31)
Equation (31) gives

C̄i,n =
¯̃
f z=T

i,n − ¯̃
f z=0

i,n e−η̄nT

eη̄nT − e−η̄nT
, D̄i,n =

¯̃
f z=0

i,n eη̄nT − ¯̃
f z=T

i,n

eη̄nT − e−η̄nT
. (32)

Insertion of Eq. (32) into Eq. (27) gives

H̄i1(x, y, z) = e−jkx
∞∑

n=1

( ¯̃
f z=0

i,n sinh η̄n(T−z) + ¯̃
f z=T

i,n sinh η̄nz
) sinKny

sinh η̄nT
, i = x, y or z. (33)

In the same way, Eqs. (28) and (30) give

H̄i2(x, y, z) = e−jkx
∞∑
l=1

(
¯̃fy=0
i,l sinh ν̄l(W−y) + ¯̃fy=W

i,l sinh ν̄ly
) sinκlz

sinh ν̄lW
, i = x, y or z. (34)

Equations (5), (33) and (34) give each Ē component as a sum of two contributions, Ēiη depending on
η and Ēiν depending on ν. These field components are

Ēxη(x, y, z) =
e−jkx

σ + jωε

∞∑
n=1

1
sinh η̄nT

·
[(

¯̃f z=0
z,n sinh η̄n(T−z) + ¯̃f z=T

z,n sinh η̄nz
)

Kn cos Kny

+η̄n

( ¯̃
f z=0

y,n cosh η̄n(T−z) − ¯̃
f z=T

y,n cosh η̄nz
)

sin Kny
]
, (35)

Ēxν(x, y, z) =
e−jkx

σ + jωε

∞∑
l=1

1
sinh ν̄lW

·
[
ν̄l

( ¯̃
fy=W

z,l cosh ν̄ly − ¯̃
fy=0

z,l cosh ν̄l(W−y)
)

sinκlz

−
( ¯̃
fy=0

y,l sinh ν̄l(W−y) + ¯̃
fy=W

y,l sinh ν̄ly
)

κl cos κlz
]
, (36)

Ēyη(x, y, z) =
e−jkx

σ + jωε

∞∑
n=1

sin Kny

sinh η̄nT
·
[
η̄n

(
¯̃f z=T
x,n cosh η̄nz − ¯̃f z=0

x,n cosh η̄n(T−z)
)

+ jk
(

¯̃f z=0
z,n sinh η̄n(T − z) + ¯̃f z=T

z,n sinh η̄nz
)]

, (37)

Ēyν(x, y, z) =
e−jkx

σ + jωε

∞∑
l=1

1
sinh ν̄lW

·
[( ¯̃

fy=0
x,l sinh ν̄l(W−y) + ¯̃

fy=W
x,l sinh ν̄ly

)
κl cos κlz

+ jk
( ¯̃
fy=0

z,l sinh ν̄l(W−y) + ¯̃
fy=W

z,l sinh ν̄ly
)

sin κlz
]
, (38)

Ēzη(x, y, z) = − e−jkx

σ + jωε

∞∑
n=1

1
sinh η̄nT

·
[
jk
( ¯̃
f z=0

y,n sinh η̄n(T−z) + ¯̃
f z=T

y,n sinh η̄nz
)

sin Kny

+
(

¯̃f z=0
x,n sinh η̄n(T−z) + ¯̃f z=T

x,n sinh η̄nz
)

Kn cos Kny
]
, (39)

Ēzν(x, y, z) =
e−jkx

σ + jωε

∞∑
l=1

sin κlz

sinh ν̄lW
·
[
−jk

( ¯̃
fy=0

y,l sinh ν̄l(W−y) + ¯̃
fy=W

y,l sinh ν̄ly
)

+ ν̄l

(
¯̃fy=0
x,l cosh ν̄l(W−y) − ¯̃fy=W

x,l cosh ν̄ly
)]

. (40)
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The time average of the eddy current loss density is

p =
1
2
J̄ · Ē∗ =

σ

2
Ē · Ē∗ =

σ

2

(
Ê2

x + Ê2
y + Ê2

z

)
. (41)

With Ampère’s law, Eq. (5), the loss density can also be expressed as

p =
σ/2

σ2 + ω2ε2
·
(

∂H̄z

∂y

∂H̄∗
z

∂y
− 2Re

{
∂H̄z

∂y

∂H̄∗
y

∂z

}
+

∂H̄y

∂z

∂H̄∗
y

∂z
+

∂H̄x

∂z

∂H̄∗
x

∂z

−2Re
{

∂H̄x

∂z

∂H̄∗
z

∂x

}
+

∂H̄z

∂x

∂H̄∗
z

∂x
+

∂H̄y

∂x

∂H̄∗
y

∂x
−2Re

{
∂H̄y

∂x

∂H̄∗
x

∂y

}
+

∂H̄x

∂y

∂H̄∗
x

∂y

)
. (42)

According to Eq. (42), the loss density contributions from the H̄ components are coupled to each other
unless the coupling terms are zero. Considering that the loss density can be expressed directly into the Ē
components, measuring H̄ to get the loss density in a single plate is a detour if Ē can be measured. With
boundary conditions specified for Ē components, relatively simple Fourier series of the Ē components
can be derived in the same way as Eqs. (33) and (34). Only the boundary functions are different, g
instead of f . Hence,

Ēi1(x, y, z) = e−jkx
∞∑

n=1

(¯̃gz=0
i,n sinh η̄n(T−z) + ¯̃gz=T

i,n sinh η̄nz
) sin Kny

sinh η̄nT
, i = x, y or z, (43)

Ēi2(x, y, z) = e−jkx
∞∑
l=1

(
¯̃gy=0
i,l sinh ν̄l(W−y) + ¯̃gy=W

i,l sinh ν̄ly
) sin κlz

sinh ν̄lW
, i = x, y or z. (44)

2.1.1. Wave Propagation Factors η̄n and ν̄l

According to Eqs. (13) and (23) with m = −1, the real part, an, and imaginary part, b, of η̄2
n are

an = k2 + K2
n − ω2με, b = ωμσ. (45)

According to Eqs. (17) and (23) with m = −1, the real part, cl, and imaginary part, d, of ν̄2
l are

cl = k2 + κ2
l − ω2με, d = ωμσ. (46)

Since the material is isotropic, d = b. The propagation factors can be expressed as

η̄n = αn + jβn = ηnejθn , ν̄l = ξl + jυl = νle
jΘl (47)

where αn, βn, θn, ξl, υl and Θl are real numbers. With Eq. (47), η̄2
n can be expressed as

η̄2
n = an + jb = η2

nej2θn (48)
where the angle 2θn can be restricted to be between 0 and π since b is positive according to Eq. (45).
There is no point in adding a multiple of 2π to 2θn. Consequently, 0 < θn < π/2. The real part of
Eq. (48) is

η2
n cos 2θn = an =

√
a2

n + b2
(
2 cos2 θn − 1

)
(49)

which with 0 < θn < π/2 gives

cos θn =
1√
2

√
1 +

an√
a2

n + b2
, sin θn =

1√
2

√
1 − an√

a2
n + b2

. (50)

With use of Eqs. (47) and (50), αn and βn can be written as

αn = ηn cos θn =
1√
2

√√
a2

n + b2 + an, βn = ηn sin θn =
1√
2

√√
a2

n + b2 − an. (51)

The real part ξl and imaginary part υl of ν̄l can be derived and written in the same way as αn and βn,
i.e.

ξl = νl cos Θl =
1√
2

√√
c2
l + d2 + cl, υl = νl sin Θl =

1√
2

√√
c2
l + d2 − cl. (52)
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2.2. A Laminate of Two Rectangular, Infinitely Long, Isotropic Material Layers

Figure 2 shows a cross section of a laminate with two material layers.

y

z

z

0W
0

T

0
Material e    

 

Material s  
     

T

s

e

s

e

Figure 2. Cross section of a laminate with two material layers.

For a laminate, a distinction in this article is made between external and internal boundary
functions. The domains of the external and internal boundary functions are within short distances
from external and internal material interfaces, respectively. The H̄ and Ē fields in a laminate on
which only the field values on the outer laminate surfaces are known can be determined if the internal
boundary functions can be determined. For comparisons with FEA, it is convenient to solve for H̄ first
since H̄ is the primary unknown in the eddy current solver in ANSYS Maxwell. For H̄, there are six
unknown boundary functions per material interface, one boundary function per H̄ component and side
of the interface. The surface current density on material interfaces is assumed to be negligible for reasons
given in Section 4. That combined with Ampère’s law implies continuous tangential components of H̄ [8].
Furthermore, Faraday’s law implies continuous tangential Ē components. The continuity of tangential
Ē and H̄ components, in turn, implies continuity of the partial derivatives of the tangential Ē and H̄
components with respect to any tangential coordinate. Six continuity conditions per material interface
can be used for determination of the internal boundary functions. Together, one continuity condition per
H̄ component and one per Ē component are six conditions. However, these continuity conditions are not
independent [9]. Faraday’s law with the continuity of the tangential partial derivatives of the tangential
Ē components gives directly that the normal component of B̄ is continuous. Similarly, Ampère’s law
with the continuity of the tangential partial derivatives of the tangential H̄ components directly implies
continuity of the normal component of the total current density, J̄tot = (σ + jε)Ē. Alternatively, the
divergence of Ampère’s law can be expressed as ∇·J̄tot = 0, which together with the Divergence theorem
can be used to show that the normal component of J̄tot is continuous. Simultaneous use of continuity
conditions on B̄z, Ēx and Ēy can be meaningful when Ē is not used in the continuity expression of B̄z.
If, on the other hand, Ēz is expressed in terms of H̄, as in Eqs. (39) and (40), a continuity condition on
J̄tot,z does not give anything useful not already given by continuity conditions on H̄x and H̄y. Therefore,
one more continuity condition is needed. Continuity conditions on Ē components are ways to express
continuity conditions on combinations of the partial derivatives of H̄ components. The only partial
derivative of a H̄ component whose continuity at constant z is not implied by the other continuity
conditions mentioned so far is ∂H̄z

∂z . Continuity of ∂H̄z
∂z is implied by the combination of Eq. (3) and the

continuity of ∂H̄x
∂x and ∂H̄y

∂y on an interface at constant z. With local z coordinates according to Fig. 2,
the continuity conditions are

H̄ei(x, y, ze = Te) = H̄si(x, y, zs = 0), i = x or y, (53)
μeH̄ez(x, y, ze = Te) = μsH̄sz(x, y, zs = 0), (54)

∂H̄z

∂z
(x, y, ze = Te) =

∂H̄z

∂z
(x, y, zs = 0), (55)

Ēei(x, y, ze =Te) = Ēsi(x, y, zs =0), i = x or y, (56)
Ēez(x, y, ze =Te) = q̄Ēsz(x, y, zs =0) (57)

where

q̄ ≡ σ̄s

σ̄e
, σ̄i ≡ σi + jωεi, i = e or s. (58)
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The valid but redundant continuity condition in Eq. (57) will not be used in this article. There is no
need to solve for the Fourier coefficients appearing in Eqs. (43) and (44) if Ē is expressed in terms
of H̄. However, the orthogonality of the eigenfunctions cannot be used for obtaining the unknown
Fourier coefficients in Eqs. (35) and (39) since these expressions contain eigenfunctions from different
eigenfunction systems. Perhaps the simplest way to get rid of that obstacle is to use Neumann conditions
instead of Dirichlet conditions for H̄y at y = 0 and y = W . However, in this article the choice is to
use Neumann conditions for H̄x and H̄z at y = 0 and y = W , and Neumann conditions for H̄y on all
boundaries that have a constant z. Thereby the sum of the Fourier series for each H̄ component does
not have to be forced to zero on the edges by the sine eigenfunctions. For i = x and z, and for an
arbitrary plate in the laminate, the non-periodic boundary conditions, with valid Dirichlet conditions
repeated for convenience, are

∂H̄i1(x, 0, z)
∂y

= 0,
∂H̄i1(x,W, z)

∂y
= 0, (59)

H̄i1(x, y, 0) = H̄i(x, y, 0) = f̄ z=0
i (y)e−jkx, H̄i1(x, y, T ) = H̄i(x, y, T ) = f̄ z=T

i (y)e−jkx, (20)
∂H̄i2(x, 0, z)

∂y
=

∂H̄i(x, 0, z)
∂y

= F̄ y=0
i (z)e−jkx,

∂H̄i2(x,W, z)
∂y

=
∂H̄i(x,W, z)

∂y
= F̄ y=W

i (z)e−jkx, (60)

H̄i2(x, y, 0) = 0, H̄i2(x, y, T ) = 0. (22)

The non-periodic boundary conditions for H̄y are

H̄y1(x, 0, z) = 0, H̄y1(x,W, z) = 0, (19)
∂H̄y1(x, y, 0)

∂z
=

∂H̄y(x, y, 0)
∂z

= F̄ z=0
y (z)e−jkx,

∂H̄y1(x, y, T )
∂z

=
∂H̄y(x, y, T )

∂z
= F̄ z=T

y (z)e−jkx, (61)

H̄y2(x, 0, z) = H̄y(x, 0, z) = f̄y=0
y (z)e−jkx, H̄y2(x,W, z) = H̄y(x,W, z) = f̄y=W

y (z)e−jkx, (21)

∂H̄y2(x, y, 0)
∂z

= 0,
∂H̄y2(x, y, T )

∂z
= 0. (62)

Eigenfunctions corresponding to Eq. (59) combined with Eq. (8) are

Yn(y) = cos Kny, Kn =
nπ

W
, n = 0, 1, 2, . . . . (63)

Eigenfunctions corresponding to Eq. (62) combined with Eq. (8) are

Zl(z) = cos κlz, κl =
lπ

T
, l = 0, 1, 2, . . . . (64)

For H̄x1 and H̄z1, Eq. (32) is still valid since the boundary conditions at z = 0 and T are still Dirichlet
conditions. The Fourier series of H̄i1 based on Eq. (59) and the Dirichlet conditions in Eq. (20) is

H̄i1(x, y, z) = e−jkx
∞∑

n=0

(
¯̃f z=0
i,c,n sinh η̄n(T−z) + ¯̃f z=T

i,c,n sinh η̄nz
) cos Kny

sinh η̄nT
, i = x or z. (65)

where subscript c marks Fourier coefficients corresponding to cosine eigenfunctions. Fourier coefficients
without subscript c correspond to sine eigenfunctions. The subscript is useful in equations that contain
Fourier coefficients but no eigenfunctions. Sine Fourier series of the inhomogeneous Neumann boundary
conditions in Eq. (60) are

∂H̄i2(x, 0, z)
∂y

= e−jkx
∞∑
l=1

¯̃F y=0
i,l sinκlz,

∂H̄i2(x,W, z)
∂y

= e−jkx
∞∑
l=1

¯̃F y=W
i,l sin κlz, i = x or z. (66)

The boundary condition in Eq. (60) combined with the Fourier series Eq. (28) gives a Fourier series
that, because of the orthogonality, should be identical, term by term, to the Fourier series in Eq. (66).
That gives

ν̄l

(
C̄i,l − D̄i,l

)
= ¯̃F y=0

i,l , ν̄l

(
C̄i,le

ν̄lW − D̄i,le
−ν̄lW

)
= ¯̃F y=W

i,l , i = x or z. (67)
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Equation (67) gives

C̄i,l =
¯̃F y=W
i,l − ¯̃F y=0

i,l e−ν̄lW

ν̄l(eν̄lW − e−ν̄lW )
, D̄i,l =

¯̃F y=W
i,l − ¯̃F y=0

i,l eν̄lW

ν̄l(eν̄lW − e−ν̄lW )
, i = x or z. (68)

Insertion of Eq. (68) into Eq. (28) gives

H̄i2(x, y, z) = e−jkx
∞∑
l=1

(
¯̃F y=W
i,l cosh ν̄ly − ¯̃F y=0

i,l cosh ν̄l(W−y)
) sin κlz

ν̄l sinh ν̄lW
, i = x or z. (69)

Considering the boundary conditions, H̄y1 must have the same form as H̄x2 and H̄z2, and H̄y2 must
have the same form as H̄x1 and H̄z1. Hence,

H̄y1(x, y, z) = e−jkx
∞∑

n=1

(
¯̃F z=T
y,n cosh η̄nz − ¯̃F z=0

y,n cosh η̄n(T−z)
) sinKny

η̄n sinh η̄nT
, (70)

H̄y2(x, y, z) = e−jkx
∞∑
l=0

(
¯̃fy=0
y,c,l sinh ν̄l(W−y) + ¯̃fy=W

y,c,l sinh ν̄ly
) cos κlz

sinh ν̄lW
. (71)

Equations (5), (65), (69), (70) and (71) give that Ē contributions can be written as

Ēxη(x, y, z) = − e−jkx

σ + jωε

∞∑
n=1

sin Kny

sinh η̄nT
·
[( ¯̃

f z=0
z,c,n sinh η̄n(T − z) + ¯̃

f z=T
z,c,n sinh η̄nz

)
Kn

+ ¯̃F z=T
y,n sinh η̄nz + ¯̃F z=0

y,n sinh η̄n(T−z)
]
, (72)

Ēxν(x, y, z) =
e−jkx

σ + jωε

∞∑
l=1

sin κlz

sinh ν̄lW
·
[(

¯̃F y=W
z,l sinh ν̄ly + ¯̃F y=0

z,l sinh ν̄l(W−y)
)

+
(

¯̃fy=0
y,c,l sinh ν̄l(W−y) + ¯̃fy=W

y,c,l sinh ν̄ly
)

κl

]
, (73)

Ēyη(x, y, z) =
e−jkx

σ + jωε

∞∑
n=0

cos Kny

sinh η̄nT
·
[
η̄n

( ¯̃
f z=T

x,c,n cosh η̄nz − ¯̃
f z=0

x,c,n cosh η̄n(T−z)
)

+ jk
( ¯̃
f z=0

z,c,n sinh η̄n(T−z) + ¯̃
f z=T

z,c,n sinh η̄nz
)]

, (74)

Ēyν(x, y, z) =
e−jkx

σ + jωε

∞∑
l=1

1
ν̄l sinh ν̄lW

·
[(

¯̃F y=W
x,l cosh ν̄ly − ¯̃F y=0

x,l cosh ν̄l(W−y)
)

κl cos κlz

+ jk
(

¯̃F y=W
z,l cosh ν̄ly − ¯̃F y=0

z,l cosh ν̄l(W−y)
)

sin κlz
]
, (75)

Ēzη(x, y, z) =
e−jkx

σ + jωε

∞∑
n=1

sin Kny

sinh η̄nT
·
[
jk

η̄n

(
¯̃F z=0
y,n cosh η̄n(T−z) − ¯̃F z=T

y,n cosh η̄nz
)

+
(

¯̃f z=0
x,c,n sinh η̄n(T−z) + ¯̃f z=T

x,c,n sinh η̄nz
)

Kn

]
, (76)

Ēzν(x, y, z) =
e−jkx

σ + jωε

∞∑
l=0

−1
sinh ν̄lW

·
[
jk
( ¯̃
fy=0

y,c,l sinh ν̄l(W−y) + ¯̃
fy=W

y,c,l sinh ν̄ly
)

cos κlz

+
(

¯̃F y=W
x,l sinh ν̄ly + ¯̃F y=0

x,l sinh ν̄l(W−y)
)

sin κlz
]
. (77)

Because of the orthogonality of the eigenfunctions from the same eigenfunction system, each of the
continuity equations (53) to (56) implies a continuity condition for each mode with a y dependent
eigenfunction. The procedure to get a continuity condition for each mode n of a field component is to
multiply the continuity equation for the field component by the eigenfunction of the mode and then



126 Marcusson and Lundin

integrate the continuity equation for the field component from y = 0 to W . In that way, Eq. (65) with
i = x inserted in Eq. (53) gives

¯̃f ze=Te
ex,c,n = ¯̃f zs=0

sx,c,n, n = 0, 1, 2, . . . . (78)

Similarly, Eqs. (70) and (71) inserted in Eq. (53) give

W

2

¯̃F ze=Te
ey,n cosh η̄e,nTe − ¯̃F ze=0

ey,n

η̄e,n sinh η̄e,nTe
+ Īey,n =

W

2

¯̃F zs=Ts
sy,n − ¯̃F zs=0

sy,n cosh η̄s,nTs

η̄s,n sinh η̄s,nTs
+ Īsy,n (79)

where n = 1, 2, 3, . . ., and

Īey,n =
∫ W

0

∞∑
l=0

( ¯̃
fy=0

ey,c,l sinh ν̄e,l(W−y) + ¯̃
fy=W

ey,c,l sinh ν̄e,ly
) (−1)l

sinh ν̄e,lW
sin Knydy, (80)

Īsy,n =
∫ W

0

∞∑
l=0

( ¯̃
fy=0

sy,c,l sinh ν̄s,l(W−y) + ¯̃
fy=W

sy,c,l sinh ν̄s,ly
) 1

sinh ν̄s,lW
sin Knydy. (81)

Equation (65) with i = z inserted in Eq. (54) gives

μe
¯̃f ze=Te
ez,c,n = μs

¯̃f zs=0
sz,c,n, n = 0, 1, 2, . . . . (82)

Insertion of Eqs. (72) and (73) into Eq. (56) gives

F̄ ze=Te
ey,n + Knf̄ ze=Te

ez,c,n

σ̄e
=

F̄ zs=0
sy,n + Knf̄ zs=0

sz,c,n

σ̄s
, n = 1, 2, 3, . . . . (83)

Insertion of Eqs. (74) and (75) into Eq. (56) gives

(1 + δn,0)W
2σ̄e sinh η̄e,nTe

[
η̄e,n

(
¯̃f ze=Te
ex,c,n cosh η̄e,nTe − ¯̃f ze=0

ex,c,n

)
+ jk ¯̃f ze=Te

ez,c,n sinh η̄e,nTe

]
+

Īex,n

σ̄e

=
(1 + δn,0)W

2σ̄s sinh η̄s,nTs

[
η̄s,n

( ¯̃
f zs=Ts

sx,c,n − ¯̃
f zs=0

sx,c,n cosh η̄s,nTs

)
+ jk

¯̃
f zs=0

sz,c,n sinh η̄s,nTs

]
+

Īsx,n

σ̄s
, n = 0, 1, 2, . . . (84)

where δn,0 = 1 if n = 0, δn,0 = 0 if n �= 0, and

Īex,n =
∫ W

0

∞∑
l=1

(
¯̃F y=W
ex,l cosh ν̄e,ly − ¯̃F y=0

ex,l cosh ν̄e,l(W−y)
) (−1)lκe,l cos Knydy

ν̄e,l sinh ν̄e,lW
, (85)

Īsx,n =
∫ W

0

∞∑
l=1

(
¯̃F y=W
sx,l cosh ν̄s,ly − ¯̃F y=0

sx,l cosh ν̄s,l(W−y)
) κs,l cos Knydy

ν̄s,l sinh ν̄s,lW
. (86)

Strictly, κe,l and κs,l depend on the slice thickness, not the material, but with one slice thickness per
material, the subscripts should not be confusing. With i = z, Eqs. (65) and (69) inserted in Eq. (55)
give

(1 + δn,0)Wη̄e,n

2 sinh η̄e,nTe

( ¯̃
f ze=Te

ez,c,n cosh η̄e,nTe − ¯̃
f ze=0

ez,c,n

)
+ Īez,n

=
(1 + δn,0)Wη̄s,n

2 sinh η̄s,nTs

( ¯̃
f zs=Ts

sz,c,n − ¯̃
f zs=0

sz,c,n cosh η̄s,nTs

)
+ Īsz,n (87)

where n = 0, 1, 2, . . ., and

Īez,n =
∫ W

0

∞∑
l=1

(
¯̃F y=W
ez,l cosh ν̄e,ly − ¯̃F y=0

ez,l cosh ν̄e,l(W−y)
) (−1)lκe,l cos Knydy

ν̄e,l sinh ν̄e,lW
, (88)

Īsz,n =
∫ W

0

∞∑
l=1

(
¯̃F y=W
sz,l cosh ν̄s,ly − ¯̃F y=0

sz,l cosh ν̄s,l(W−y)
) κs,l cos Knydy

ν̄s,l sinh ν̄s,lW
. (89)
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The integrals given by Eqs. (80), (81), (85), (86), (88) and (89) are here referred to as interface integrals.
Equations (78), (79), (82), (83), (84) and (87) are linear equations that completely determine the
unknown Fourier coefficients for modes with number n, each corresponding to a y dependent sine or
cosine eigenfunction. Equations (82) and (87) give

¯̃f zs=0
sz,c,n =

Γ̄e,n
¯̃
f ze=0

ez,c,n + Γ̄s,n
¯̃
f zs=Ts

sz,c,n + Īsz,n − Īez,n
μs

μe
Λ̄e,n + Λ̄s,n

(90)

where n = 0, 1, 2, . . ., and

Γ̄i,n =
(1 + δn,0)Wη̄i,n

2 sinh η̄i,nTi
, Λ̄i,n =

(1 + δn,0)Wη̄i,n

2 tanh η̄i,nTi
, i = e or s. (91)

Since all parameters on the right hand side of Eq. (90) are known, Eq. (90) determines ¯̃
f zs=0

sz,c,n fully.

Combined with Eqs. (82) and (90), ¯̃
f ze=Te

ez,c,n is also determined. Equations (58), (78), (82) and (91)
inserted in Eq. (84) give

¯̃
f zs=0

sx,c,n =
1

R̄e,n + R̄s,n

[
Ḡe,n

¯̃
f ze=0

ex,c,n + Ḡs,n
¯̃
f zs=Ts

sx,c,n +
(

Ōs,n − Ōe,n
μs

μe

)
¯̃
f zs=0

sz,c,n +
Īsx,n

σ̄s
− Īex,n

σ̄e

]
(92)

where n = 0, 1, 2, . . ., and

Ḡi,n =
Γ̄i,n

σ̄i
, R̄i,n =

Λ̄i,n

σ̄i
, Ōi,n = jk

(1 + δn,0)W
2σ̄i

, i = e or s. (93)

which with Eq. (90) makes ¯̃
f zs=0

sx,c,n fully determined. Because of Eq. (78), Eq. (92) also gives ¯̃
f ze=Te

ex,c,n .
Equations (82) and (58) inserted in Eq. (83) give

¯̃F zs=0
sy,n = q̄ ¯̃F ze=Te

ey,n +
(

q̄
μs

μe
− 1
)

Kn
¯̃
f zs=0

sz,c,n, n = 1, 2, 3, . . . . (94)

Equation (94) inserted in Eq. (79) gives

¯̃F ze=Te
ey,n =

1
C̄e,n + q̄C̄s,n

(
S̄e,n

¯̃F ze=0
ey,n + S̄s,n

¯̃F zs=Ts
sy,n + C̄s,n

(
1 − q̄

μs

μe

)
Kn

¯̃
f zs=0

sz,c,n + Īsy,n − Īey,n

)
(95)

where n = 1, 2, 3, . . ., and

S̄i,n =
W

2η̄i,n sinh η̄i,nTi
, C̄i,n =

W

2η̄i,n tanh η̄i,nTi
, i = e or s. (96)

Finally, Eqs. (95) and (90) in Eq. (94) fully determine ¯̃F zs=0
sy,n for n = 1, 2, 3, . . .. From the solutions

above, it can be concluded that the boundary conditions on a material interface depend partly on the
boundary conditions on the laminate at y = 0 and W via interface integrals. In numerical examples
mentioned in Section 3, the interface integrals are significant and, for H̄z, dominate the contributions
to the Fourier coefficients of the internal boundary functions. The large influence of Īez and Īsz on H̄z

is caused by a rapid change of H̄z with y at y = 0 and W . It should be noted that the continuity
Equations (79) and (83) are only needed for determination of ¯̃F ze=Te

ey,n and ¯̃F zs=0
sy,n and do not exist for

n = 0.

2.2.1. Determination of Neumann Boundary Functions

The use of Neumann conditions instead of Dirichlet conditions requires more calculation steps, but not
necessarily more measurements if boundary conditions are measured. The Neumann boundary Fourier
coefficients in Eqs. (69) and (70) are needed. Fortunately, direct measurement of the normal derivatives
of H̄ in the laminate is not necessary. Because of the continuity condition on the normal component of
B̄, Ampère’s law and continuity conditions on tangential Ē components, it is sufficient to measure some
H̄ components and certain tangential Ē components on the laminate surface, and then calculate the
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needed normal derivatives within the laminate materials. From known H̄ on a boundary it is possible to
calculate tangential derivatives of H̄ but not the normal derivative of a tangential H̄ component since
the dependence of H̄ on the coordinate of the normal direction is not given by the boundary values of
H̄. Furthermore, it is sufficient to do the measurements along lines at some constant x coordinate. The
continuity condition of H̄y at plane boundaries with constant y between an ambient material, a, and an
arbitrary material, s, in the laminate is

H̄sy =
μa

μs
H̄ay. (97)

For the boundary surfaces at constant y, the z component of Ampère’s law in material s combined with
Eq. (97) gives

∂H̄sx(x, 0, z)
∂y

=
μa

μs

∂H̄ay(x, 0, z)
∂x

− (σs + jωεs)Ēz(x, 0, z), (98)

∂H̄sx(x,W, z)
∂y

=
μa

μs

∂H̄ay(x,W, z)
∂x

− (σs + jωεs)Ēz(x,W, z) (99)

where material indicator subscript has been skipped for Ēz since Ēz is a tangential component at
constant y and therefore continuous there. According to Eq. (66), ∂H̄x(x,0,z)

∂y and ∂H̄x(x,W,z)
∂y are Fourier

series expressed with sin κlz eigenfunctions. It is appropriate to express also the functions on the
right hand sides of Eqs. (98) and (99) as Fourier series of sin κs,lz. Then the orthogonality of these
eigenfunctions can be used to determine Fourier coefficients in the Neumann boundary functions in
Eq. (66). Fourier series of H̄y(x, 0, z) and H̄y(x,W, z) expressed with sin κs,lz functions are needed for
the sole purpose of determining Fourier coefficients in Neumann boundary functions. The additional
Fourier series required are given by Eq. (30) with i = y. This gives

∂H̄ay(x, 0, z)
∂x

= −jke−jkx
∞∑
l=1

¯̃fy=0
ay,l sin κs,lz,

∂H̄ay(x,W, z)
∂x

= −jke−jkx
∞∑
l=1

¯̃fy=W
ay,l sin κs,lz. (100)

The Fourier series of Ēi(x, 0, z) and Ēi(x,W, z) can be obtained from Eq. (44). These Fourier series and
Eq. (100) inserted in Eqs. (98) and (99) multiplied by sinκs,lz and then integrated from z = 0 to Ts

give the Fourier coefficients of the Neumann boundary functions with i = x in Eq. (69) in the laminate
material s. The coefficients are

¯̃F y=0
sx,l = −jk

μa

μs

¯̃
fy=0

ay,l − (σs + jωεs)¯̃g
y=0
z,l , ¯̃F y=W

sx,l = −jk
μa

μs

¯̃
fy=W

ay,l − (σs + jωεs)¯̃g
y=W
z,l . (101)

The other Fourier coefficients in Eqs. (69) and (70) are determined similarly and are given by
¯̃F y=0
sz,l = −κs,l

μa

μs

¯̃fy=0
ay,c,l + (σs + jωεs)¯̃g

y=0
x,l , ¯̃F y=W

sz,l = −κs,l
μa

μs

¯̃fy=W
ay,c,l + (σs + jωεs)¯̃g

y=W
x,l , (102)

¯̃F z=0
sy,n = −Kn

μa

μs

¯̃
f z=0

az,c,n − (σs + jωεs)¯̃gz=0
x,n , ¯̃F z=T

sy,n = −Kn
μa

μs

¯̃
f z=T

az,c,n − (σs + jωεs)¯̃gz=T
x,n . (103)

In FE results, all field values can be taken from material s. In that case, Eqs. (101), (102) and (103)
are valid with subscript a replaced by subscript s.

2.3. A Laminate with an Arbitrary Number of Rectangular, Infinitely Long, Isotropic
Plates

The material layers and interfaces are numbered from one end to the other according to Fig. 3.
With interface number as a superscript, material number as a subscript, and mode subscript n

skipped for compactness everywhere, including the eigenvalue Kn, some parameters that make the
equations more compact are

σ̄i ≡ σi + jωεi, q̄i ≡ σ̄i+1

σ̄i
, M i ≡ μi

μi+1
, (104)

D̄i
x ≡ Īi

i+1,x

σ̄i+1
− Īi

i,x

σ̄i
, D̄i

y ≡ Īi
i+1,y − Īi

i,y, D̄i
z ≡ Īi

i+1,z − Īi
i,z (105)
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Figure 3. Cross section of a laminate with m + 1 material layers.

where Īi
i,x, Īi

i+1,x, Īi
i,y, Īi

i+1,y, Īi
i,z and Īi

i+1,z are given by Eqs. (85), (86), (80), (81), (88) and (89),
respectively, with e = i and s = i + 1. The six linear continuity equations per material interface and
mode n, Eqs. (78), (79), (82), (83), (84) and (87), can be written as

¯̃f i
i,x = ¯̃f i

i+1,x, n = 0, 1, 2, . . . , (106)

C̄i
¯̃F i
i,y − S̄i

¯̃F i−1
i,y = S̄i+1

¯̃F i+1
i+1,y − C̄i+1

¯̃F i
i+1,y + D̄i

y, n = 1, 2, 3, . . . , (107)
¯̃
f i

i+1,z = M i ¯̃
f i

i,z, n = 0, 1, 2, . . . , (108)
¯̃F i
i+1,y = q̄i ¯̃F i

i,y + K
(
q̄i ¯̃

f i
i,z − ¯̃

f i
i+1,z

)
, n = 1, 2, 3, . . . , (109)

R̄i
¯̃f i
i,x − Ḡi

¯̃f i−1
i,x + Ōi

¯̃f i
i,z = Ḡi+1

¯̃f i+1
i+1,x − R̄i+1

¯̃f i
i+1,x + Ōi+1

¯̃f i
i+1,z + D̄i

x, n = 0, 1, 2, . . . , (110)

Λ̄i
¯̃
f i

i,z − Γ̄i
¯̃
f i−1

i,z = Γ̄i+1
¯̃
f i+1

i+1,z − Λ̄i+1
¯̃
f i

i+1,z + D̄i
z, n = 0, 1, 2, . . . . (111)

For mode n = 0, there are only four continuity equations per internal material interface since the sine
eigenfunctions in the Fourier series in Eqs. (70) and (72), and consequently Eqs. (107) and (109), do
not have this mode. For each mode, the continuity equations (106), (108), (110) and (111) evaluated
for all internal material interfaces can be combined to an equation system that can be solved, with
respect to the unknown Fourier coefficients with subscripts x and z, independently of the the other
continuity equations. The latter determine unknown Fourier coefficients with subscript y and can be
solved after, but not before, the Fourier coefficients with subscripts x and z have been determined. The
sizes of the equation systems can be reduced if the unknown Fourier coefficients of either the higher
or the lower numbered material at each internal interface are eliminated from Equations (107), (110)
and (111) by use of Eqs. (106), (108) and (109), before the equation systems of first Eqs. (110) and
(111), and later, Eq. (107), are solved. After that is done, Eqs. (106), (108) and (109) can be reused
to calculate the previously eliminated Fourier coefficients. Three main cases can be distinguished for
each continuity equation depending on which Fourier coefficients are known. The first case has only
one internal material interface. The second case has two interfaces. The third case has more than two
interfaces. Below, each continuity equation is arranged with only known terms on the right hand side,
which is convenient for subsequent matrix formulation. Each of the following equations involves more
than one interface and is referred to by the interface number of the D̄ term. For interface 1 when m > 1,
Eqs. (106) and (108) inserted in Eq. (110) give(

R̄1 + R̄2

) ¯̃
f1
1,x +

(
Ō1 − Ō2M

1
) ¯̃
f1
1,z − Ḡ2

¯̃
f2
2,x = Ḡ1

¯̃
f0
1,x + D̄1

x, n = 0, 1, 2, . . . . (112)
For interface 1 when m > 1, Eq. (108) inserted in Eq. (111) gives(

Λ̄1 + Λ̄2M
1
) ¯̃
f1
1,z − Γ̄2

¯̃
f2
2,z = Γ̄1

¯̃
f0
1,z + D̄1

z , n = 0, 1, 2, . . . . (113)
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Equations (112) and (113) are valid also when m = 1, but then the terms Ḡ2
¯̃
f2
2,x and Γ̄2

¯̃
f2
2,z are known

and should be on the right hand side of Eqs. (112) and (113), respectively. For interface i ∈ [2,m − 1]
when m > 2, Eqs. (106) and (108) inserted in Eq. (110) give

−Ḡi
¯̃f i−1
i−1,x +

(
R̄i + R̄i+1

) ¯̃f i
i,x +

(
Ōi − Ōi+1M

i
) ¯̃f i

i,z − Ḡi+1
¯̃f i+1
i+1,x = D̄i

x, n = 0, 1, 2, . . . . (114)

For interface i ∈ [2,m − 1] when m > 2, Eq. (108) inserted in Eq. (111) gives

−Γ̄iM
i−1 ¯̃

f i−1
i−1,z +

(
Λ̄i + Λ̄i+1M

i
) ¯̃
f i

i,z − Γ̄i+1
¯̃
f i+1

i+1,z = D̄i
z, n = 0, 1, 2, . . . . (115)

For interface m when m > 1, Eqs. (106) and (108) inserted in Eq. (110) give

−Ḡm
¯̃
fm−1

m−1,x+
(
R̄m+R̄m+1

) ¯̃
fm

m,x+
(
Ōm−Ōm+1M

m
) ¯̃
fm

m,z =Ḡm+1
¯̃
fm+1

m+1,x + D̄m
x , n=0, 1, 2, . . . . (116)

For interface m when m > 1, Eq. (108) inserted in Eq. (111) gives

−Γ̄mMm−1 ¯̃fm−1
m−1,z +

(
Λ̄m + Λ̄m+1M

m
) ¯̃fm

m,z = Γ̄m+1
¯̃fm+1
m+1,z + D̄m

z , n = 0, 1, 2, . . . . (117)

For each mode n, the linear equation system of Eqs. (110) and (111) for m internal material interfaces
can be written as

Ā̃̄fx,z = h̄x,z (118)

where Ā is a matrix with 2m× 2m elements that can be identified with the coefficients on the left hand
sides of Eqs. (112)–(117), ¯̃fx,z is a vector with 2m elements containing the lower material numbered
Fourier coefficients with subscripts x and z for each internal material interface, and h̄x,z is a vector
with 2m elements containing the known right hand sides of Eqs. (112)–(117). The block tridiagonal
structure of Ā can be illustrated by the case of m = 4. In this case, Eq. (118) can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ā11 ā12 ā13 0 0 0 0 0

0 ā22 0 ā24 0 0 0 0

ā31 0 ā33 ā34 ā35 0 0 0

0 ā42 0 ā44 0 ā46 0 0

0 0 ā53 0 ā55 ā56 ā57 0

0 0 0 ā64 0 ā66 0 ā68

0 0 0 0 ā75 0 ā77 ā78

0 0 0 0 0 ā86 0 ā88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

¯̃f1
1,x

¯̃
f1
1,z

¯̃
f2
2,x

¯̃
f2
2,z

¯̃
f3
3,x

¯̃f3
3,z

¯̃
f4
4,x

¯̃f4
4,z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̄1
x

h̄1
z

h̄2
x

h̄2
z

h̄3
x

h̄3
z

h̄4
x

h̄4
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(119)

For interface 1 when m > 1, Eqs. (108) and (109) inserted in Eq. (107) give(
C̄1 + C̄2q̄

1
) ¯̃F 1

1,y − S̄2
¯̃F 2
2,y = C̄2K

(
M1 − q̄1

) ¯̃f1
1,z + S̄1

¯̃F 0
1,y + D̄1

y, n = 1, 2, 3, . . . (120)

where ¯̃F 0
1,y can be calculated from the ambient material according to Eq. (103). Equation (120) is valid

also when m = 1, but then the term S̄2
¯̃F 2
2,y is known and should be on the right hand side of Eq. (120).

For interface i ∈ [2,m − 1] when m > 2, Eqs. (108) and (109) inserted in Eq. (107) give

−S̄iq̄
i−1 ¯̃F i−1

i−1,y +
(
C̄i + C̄i+1q̄

i
) ¯̃F i

i,y − S̄i+1
¯̃F i+1
i+1,y

= S̄iK
(
q̄i−1 − M i−1

) ¯̃
f i−1

i−1,z + C̄i+1K(M i − q̄i) ¯̃
f i

i,z + D̄i
y, n = 1, 2, 3, . . . . (121)

In the special case of interface m when m > 1, Eqs. (108) and (109) inserted in Eq. (107) give

−S̄mq̄m−1 ¯̃Fm−1
m−1,y +

(
C̄m + C̄m+1q̄

m
) ¯̃Fm

m,y = S̄m+1
¯̃Fm+1
m+1,y

+S̄mK
(
q̄m−1 − Mm−1

) ¯̃
fm−1

m−1,z + C̄m+1K (Mm − q̄m) ¯̃
fm

m,z + D̄m
y , n = 1, 2, 3, . . . . (122)
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For each mode with n > 0, the linear equation system of Eq. (107) for all internal material interfaces
can be written as

A ¯̃Fy = h̄y (123)

where A is a matrix with m × m elements that can be identified with the coefficients on the left hand
sides of Eqs. (120)–(122), ¯̃Fy is a vector with m elements containing the lower material numbered
Fourier coefficients with subscript y for each internal material interface, and h̄y is a vector with m

elements containing the known right hand sides of Eqs. (120)–(122). The tridiagonal structure of A can
be illustrated by the case of m = 4. In this case, Eq. (123) can be written as⎡⎢⎢⎣

ā11 ā12 0 0
ā21 ā22 ā23 0
0 ā32 ā33 ā34

0 0 ā43 ā44

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

¯̃F 1
1,y

¯̃F 2
2,y

¯̃F 3
3,y

¯̃F 4
4,y

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
h̄1

y

h̄2
y

h̄3
y

h̄4
y

⎤⎥⎥⎥⎥⎦ (124)

3. COMPARISONS BETWEEN FOURIER SERIES AND FINITE ELEMENT
ANALYSIS IN THE CASE OF A LAMINATE OF TWO INFINITELY LONG,
CONDUCTING PLATES

3.1. Methods

MATLAB 2015b [10] and the harmonic eddy current solver in the FEA software ANSYS Maxwell
2015.1.0 (within Electromagnetics Suite 16.1.0) [11] have been used for comparisons with the analytical
expressions. In the FEA without moving parts, the electromagnetic waves have been generated by the
currents in 18 conductor bars, one per 10 electrical degrees, along the laminate, as shown in Fig. 4.

Figure 4. Geometry of a FE model of one 90 mm long part of a magnetic field source and a laminate of
two plates with thicknesses T1 = 16 mm and T2 = 18 mm. The laminate width is 30 mm but W in the
formulas is less than the width if boundary data are taken from locations within the laminate. Current
bars are numbered 1–18.

The current in bar number ι is iι(t) = î cos(ωt − 5◦ − (ι − 1) · 10◦) with î = 100 A. The source
is separated from the laminate by 12 mm air gap. That is large enough for the H̄ components to be
approximately sinusoidally distributed in the x direction in the laminate. The source current distribution
can be approximated by

i(x, t) = î cos(ωt − kx). (125)
This current has been used as a reference signal for the phase of H̄ and Ē components in the laminate.
The H̄ and Ē components in the laminate can also be expressed as an amplitude multiplied by a cosine
function. With i = x, y or z, component Hi is

Hi(x, y, z, t) = Ĥi(y, z) cos(ωt − kx + ϕi(y, z)). (126)
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Consequently, ϕi(y, z) is a phase angle relative to the source current given by Eq. (125). The phase
angle is negative if Hi lags i. Because of the harmonic variation, the amplitude and phase of a field
component in a point in the laminate or on its boundary can be calculated from the instantaneous
values π/2 apart. The amplitude is

Ĥi(y, z) =
√

H2
i (x, y, z, t) + H2

i

(
x, y, z, t +

π

2ω

)
. (127)

Since Hi(0, y, z, π
2ω ) = −Ĥi(y, z) sin ϕi(y, z), Eq. (126) at x = 0, with ϕi(y, z) chosen to be within

[−π, π], gives

ϕi(y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arccos

Hi(0, y, z, 0)

Ĥi(y, z)
if Hi

(
0, y, z,

π

2ω

)
≤ 0

− arccos
Hi(0, y, z, 0)

Ĥi(y, z)
if Hi

(
0, y, z,

π

2ω

)
> 0

. (128)

Field components and eddy current loss density have been evaluated along lines at constant x on the
boundaries and in the interior of the laminate in the FE model. A way to increase the accuracy with a
given FE mesh is to calculate averages in small boxes along the mentioned lines of evaluation. A faster
way is to skip the boxes and calculate averages between lines at different x with the phase differences
between the lines taken into consideration. This is based on the observation that, with an ideal FE
mesh, a field component should be the same at (x, y, z, t) and (x + Δx, y, z, t + Δt) with Δt = kΔx/ω
since the laminate cross section at constant x is independent of x.

MATLAB has been used for calculation of 1: the amplitude and phase of the external boundary
functions, 2: smooth functions, as explained below, that fit the real and imaginary parts of the external
boundary functions, 3: the Fourier coefficients of the smooth functions, 4: the interface integrals, 5:
the Fourier coefficients of the internal boundary functions, and 6: H̄ components, Ē components and p
along selected lines within the plates.

According to the sampling theorem, a band limited function with a shortest wave length λmin

can be reconstructed by function values at spatial points that are strictly less than λmin/2 apart.
Consequently, Fourier coefficients of higher harmonics cannot be accurately calculated if only the values
of field components in the rather few sample points along the evaluation lines are used. Therefore,
smoothing splines and, for abruptly changing functions, shape preserving piecewise cubic polynomials
have been fitted to values of the real and imaginary parts of each boundary function along the evaluation
lines. The Fourier series of the field components have been approximated by up to 901 terms but 600
terms are sufficient to get very good agreement between FEA and Fourier series in the whole plates
if both are non-magnetic. With plates of different permeability, the continuity condition of B̄z and
especially H̄y were badly satisfied within two finite element lengths from the plate edges, although
finite elements of higher order than default were used. Higher order elements had to be specified in
the analysis options in the FEA in order to make the tangential Ē components continuous across the
interface between the plates and interfaces between plate parts of the same material but with different
FE sizes.

A requirement for calculation of normal derivatives according to Subsection 2.2.1 is that boundary
values of Ē are available. However, the eddy current solver in ANSYS Maxwell 3D was not intended
for calculation of useful Ē values outside conducting materials when this work was done. Therefore,
the laminate materials were chosen to be conductors, oxygen free copper with conductivity 58.5 MS/m
in the top plate, and more or less cold worked stainless steel 201 L with conductivity 1.5 MS/m and
relative permeability 1, 2 or 36 [12] in the bottom plate. The annealed condition gives the non-magnetic
steel. The relative permeability in the source core is 8000. All the boundary values were taken from
inside the laminate, typically 10–100 nm from the boundaries. In the case with relative permeability 36
in the bottom plate, field data were taken from y = 0.8 mm instead of y = 0, and from y = 29.2 mm
instead of y = 30 mm because of the bad accuracy of the FEA closest to the edges of the magnetic
plate. In this case, W = 28.4 mm in the analytical expressions.
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3.2. Results

Chosen for plotting is the case with relative permeability 36 in the bottom plate. The continuous curves
in each figure are from the Fourier series. The discrete plot symbols are FEA results. Fig. 5 and 6 show
the amplitude of components of H̄ and Ē, respectively, along selected lines in the plates. The lines at
constant z have been chosen to be relatively close to the interface between the plates since the results
along these lines are relatively sensitive to the satisfaction of the continuity conditions at the interface
between the plates. Fig. 7 shows the time averaged eddy current loss density along the selected lines.
The purpose of the plots is just to show the agreement between FEA and Fourier series.
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4. DISCUSSION

One of the conclusions in [6] is that there is a surface current density on the material interfaces in a
laminate as a consequence of the deposition of charges caused by the normal component of the total
current density. If a charge can reach the surface of a conducting plate, it seems reasonable that it can
also slide on the surface. However, Ampère’s law and the continuity of the normal component of the
total current density imply that a surface current density, if it exists, must be divergence free. Hence,
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the surface current density is source free and cannot get any contribution from charges from the interior
of the laminate plates and is not a consequence of capacitive effects. Hence, the volume current density
along the material interface has finite values all the way out to and across the interface. Even if it would
be possible to redirect the small normal component of current to a tangential direction at the material
interfaces, the resulting surface current density would be negligible compared to H in a laminated core
of, e.g., a conventional power generator operating at power grid frequency. Because of the continuity
of J̄tot,z and the low conductivity of the dielectric, almost all the induced voltage from the main pole
flux in the laminate appears across the dielectric layers. An estimate of Êdielectric,z can be obtained
from the integral form of Eq. (4) applied to half a wave length of the laminate. Laminate stacking
factor 0.95, ω = 100π rad/s and a pole flux amplitude of 1 Vs through a square with area 1m2 gives
Êdielectric,z ≈ 3.14 kV/m. The amplitude of J̄tot,z at the interface between a conductor and a dielectric
can be estimated by ωεÊdielectric,z ≈ 31µA/m2 if the dielectric is epoxy with relative permittivity
3.6. Therefore, in this article, the surface current density is assumed to be zero which implies that
the tangential component of H̄ is continuous. This is correct for non-perfect conductors according to
Cheng [9] and is used in ANSYS Maxwell.

The magnetic field concentration along the edges of magnetic plates can lead to local saturation
along the edges. In that case, the precondition of uniform permeability in each plate is not fulfilled.
The saturation makes the magnetic field less concentrated at the edges. This limits the usefulness of
the derived Fourier series.

Mathematical expressions of Fourier series and propagation factors offer a mathematical explanation
of the influence that lamination has on the electric and magnetic field components. The propagation
factors can be dominated either by frequency and material properties or by plate dimensions and the
pole pitch of the primary source of the electromagnetic field. For conducting plates with sufficiently
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large width, thickness and length or pole pitch, the propagation factors are dominated by frequency
and material properties, and the skin depth is approximately the well known δ =

√
2/(ωμσ).

Demonstrated in this article is that each field component of an infinitely long, linear laminate can
be expressed as the sum of two Fourier series. The two series are here referred to as the η̄n series and the
ν̄l series. In the special case when the thickness of a material layer is small, ξl is large. This makes the ν̄l

series decrease rapidly in the y direction, into the laminate, except for mode l = 0, if it exists. It exists
if the Fourier series is expressed with cosine instead of sine eigenfunctions such as for H̄y2 in Eq. (71).
If the plate thickness is much smaller than the plate width and the wave length along the laminate, a
field component in most of the interior of the laminate becomes approximately the η̄n series plus the
zero mode term of the ν̄l series. In a numerical example of a large machine operating at 50 Hz with
k = 2π/m, T = 0.5 mm and W = 25 cm, each term in a sine series like (34) at y ∈ [0.001W, 0.999W ] is
smaller than 21% of its value at y = 0 or W .

5. CONCLUSIONS

The derived Fourier series make it possible to calculate the time harmonic, traveling electric and
magnetic fields within a plate or laminate of isotropic materials from measured or calculated field
values on the boundaries of the plate or laminate.

The values of three of the six Cartesian components of the magnetic and electric fields on each
boundary surface are sufficient for the complete determination of the harmonically time varying electric
and magnetic fields within the plate or laminate. Which three components that must be known on
any particular surface of a laminate depends on the choice of combination of boundary conditions. For
certain combinations of different Neumann and Dirichlet conditions on all four boundaries of an infinitely
long, linear laminate with rectangular cross section, it is possible to use the method of separation of
variables and the orthogonality of the eigenfunctions for electromagnetic field calculation.

Via integrals along a material interface in a laminate, the fields at the interface can be strongly
affected by the laminate boundary values at the ends of the interface. Each field component of an
infinitely long, linear laminate can be expressed as the sum of two Fourier series. In the special case
when the plate thickness is much smaller than the plate width and the wave length along the laminate,
one of the series, the ν̄l series, is negligible except near some boundaries and except for mode l = 0, if it
exists. However, since the Fourier coefficients of the other series, the η̄n series, depend on the ν̄l series,
via interface integrals, Fourier coefficients of both series are needed for the calculation of the η̄n series.
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