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Abstract

his thesis describes a project in Media Technology that was carried out at
the Scientiic Computing and Imaging Institute at the University of Utah and
the Department of Science and Technology at Linköping university.

OpenSpace is an interactive data visualization sotware system that portrays
the entire known universe in a 3D digital simulation. Interacting with the
application currently involves mouse and keyboard input as well as expert
knowledge of the architecture of the system and its graphical user interface.
Although navigation interaction for exploratory purposes are mostly possible
through mouse interaction it requires explanations and is locked to a single
person, which prohibits OpenSpace to be displayed efectively in public exhi-
bitions.

Research has been shown that using large tangible touch surfaces with a
multi-touch navigation interface is more engaging to users than mouse and
keyboard as well as enhances the understanding of navigation control, thus
decreasing the learning time of the systems user interface. his thesis shows
that combining a velocity-based interaction model together with a screen-
space direct-manipulation formulation produces a user-friendly interface. Giv-
ing the user precise control of objects and eicient travels in between in
the vastness of space. his thesis presents the work of integrating a multi-
touch navigation interface with a combined formulation of velocity-based in-
teraction and screen-space direct-manipulation into the sotware framework
OpenSpace.
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1. Introduction

his master’s thesis has been carried out together with OpenSpace, the Scientiic Com-
puting and Imaging Institute at the University of Utah and the Department of Science and
Technology at Linköping University. his chapter presents the partners in the OpenSpace
project as well as the motivations and goals for the thesis.

Figure 1.1: 3D Astronomical Visualization sotware OpenSpace using multi-touch to con-
trol the view in six degrees of freedom (DOF).

1.1 OpenSpace Project
OpenSpace [1] is an open-source astronomical visualization framework for interaction
with large dataset. Partially supported by NASA, it is designed to visualize the entire
known universe and the ongoing eforts of investigating the cosmos. he sotware sys-
tem originates from an academic collaboration between Sweden’s Linköping University
(LiU), American Museum of Natural History (AMNH) and NASA Goddard’s Community
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Coordinated Modeling Center (CCMC). It was developed several years ago with its initial
purpose to model space weather forecasting. Continued eforts resulted in visualizations
of NASA’s NewHorizons mission to Pluto and ESA’s Rosetamission. Recent NASA fund-
ing allowed the project to be extended in collaboration partners and areas of focus. With
the University of Utah’s Scientiic Computing and Imaging (SCI) Institute, New York Uni-
versity’s Tandon School of Engineering, multiple informal science institutions across the
United States, as well as several international vendors added to the list of collaborators.
Currently OpenSpace focuses on visualizing globe browsing tecniques and to visualize
dynamic simulations using interactive volumetric rendering to promote communication
of research in astrophysics. By utilizing NASA’s SPICE observational geometry system
with its Planetary Data Service (PDS) can space missions be visualized to evoke interest
and portray how science is gathered.

1.2 Motivation
Touch-based interaction has during the last few years, become a more and more common
way to interact with technology. Touch screen technology has advanced quickly and
become the standard in today’s smartphones. he interface control and the intuitive feel
is naturally highly dependant on the method that is implemented. A common approach
is to use the velocity in which the control points are moving across the touch surface.
Gestures are then used to interpret diferent types of interactions and at what speed those
interactions are desired. he challenge with this method is to design the gestures to be
well deined such that they do not overlap aswell as keeping them intuitive to users, which
can easily difer from person to person. Basing the interaction on the velocity of ingers
also enforces a mapping between the movements on the touch surface to interaction in
the application which the user has to account for.

Another approach is to design a type of direct-manipulation, which aims to give the
user the feeling of interacting with real objects. As the user moves their ingers along
the touch surface, virtual objects rotate, translate and scales appropriately such that the
object or area always remains underneath the same ingertip. his technique, oten called
Rotate-Scale-Translate (RST) interaction, has essentially become the de-facto standard in
2D touch environments to provide an intuitive and controllable mapping between points
in an object’s local space and points in screen space without the need for any explicit
gesture processing. Higher dimensional manipulation faces a challenge since it involves
the control of an increasing number of degrees of freedoms (DOF). With an increased
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complexity it becomes exceedingly diicult for the user to achieve the desired result. Ex-
tending themethodology to 3D environments and higher dimensional use cases have been
researched through variousmethods, themost prevalent formulations being Screen-Space
(SS) by Reisman et al. [2], Sticky tools by Hancock et al. [3] and Depth-Separated Screen-
Space (DS3) by Martinet et al. [4]

Astronomical visualizations has long been an interesting application for touch-based
interaction. However, due to the scale of the solar system compared to its celestial bodies,
any existing object becomes exceedingly small. A direct-manipulation solution alone be-
comes impossible in an application like this since its formulation require 3D points in the
scene to constrain the manipulation and such points cannot be traced in empty space. For
further reading about this problem, see Chapter 3. Given a solution, using touch screens
to interact with OpenSpace’s 3D visualizations raises as an interesting application for re-
search purposes and especially to public exhibitions with the aim to educate, stir interest
and make space science more accessible to the public.

1.3 Aim
he aim of this thesis is to investigate the concept of a user-intuitive multi-touch navi-
gation interface system to explore real-time astronomical visualizations. his is achieved
by intertwining a Screen-Space direct-manipulation formulation together with a velocity-
based model seamlessly for exploration in empty space as well as close to the surface of
celestial bodies.

Any issue addressing complex user-interface designs is based upon decisions between
freedom and simplicity. Simplicity and constraints oten go hand in hand, especially when
it comes to interfaces for 3D environments. hree dimensions means control over six
degrees of freedom; spatial position (x, y, z) as well as orientation oten described through
pitch, yaw and roll. Although evidence exists that touch provides a higher-bandwith input,
such as the study by Jacob et al. [5], allowing two dimensional data produced from touch
screens to control over all degrees of freedom requires eforts in classiication of DOFs.

1.4 Researchuestions
he research questions of this thesis are the following:

• What constraints should be set to the touch-interface such that the user inds the
interface intuitive without compromising the ability to manipulate all six degrees
of freedom for astronomical visualizations?
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• How can an interface be designed to seamlessly swap between two radically difer-
ent interaction modes?

• What design choices must be considered to ensure that interactions are decoupled
from frame time such that diferent hardware systems generate the same result?

• What type of screen-space direct-manipulation evaluation generates good results
while handling numerical computation limitations?

1.5 Delimitations
he delimitations for the thesis are speciied below.

• he touch framework TUIO proved to support the largest number of operating sys-
tems (OS) and has thus been used as the touch protocol to which OpenSpace listens.
A bridge application that translates Windows Touch events into TUIO was created
to ensure interaction with the most popular OS on public exhibition touch tables.

• Although numerous diferent curve-iting solvers exist, Levenberg-Marquardt al-
gorithm has been used to solve a non-linear least-square minimization function.

• Mitigation methods of rotational extrema to resolve issues such as rotational ex-
trema or ambiguous rotations have not been implemented in this thesis.

• he touch interface has been developed such that it collaborates well with themouse
and keyboard interface already in place. he most notable restriction being the
requirement to keep a node, ie. celestial body, in focus such that camera movements
are relative to the node’s position.

• Two types of user tests were conducted. A small group of returning participants at
diferent iterations of the interface guided by their feedback, as well as two sessions
with a larger group of people between the ages of 20-50 years old.

1.6 Method
he agile development framework Scrum [6] was employed to most areas in the develop-
ment process with the exceptions of daily meetings, since the thesis was held by a single
person. Each week had its speciic focus much like Sprints, with a backlog with features
partitioned into Stories and Tasks. Weekly meetings together with the code master of
OpenSpace and thesis handler functioned as sprint reviews as well as planning meetings
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for the coming week. Additionally, an weekly entry were posted to OpenSpace’s blog
website. A strength of developing alone was that a lot of time consuming procedures in
atempts to increase communication between teams could be exempt from the process.
However, the lack of multiple people with expert knowledge of the thesis caused the di-
rection to become unclear, at times, in terms of minor system architectual decisions.

Automatic build testing on all three major operating system and code analysis were
done by Jenkins for each commit submited to the git branch. his allowed for instant
notiication when faulty code had been submited and logs to trace where the error ap-
peared. Interface design decisions were guided by the feedback of two types of user tests.
he irst type had a large sample of people, all seeing the system for the irst timewhile the
second type was performed by inhouse developers that returned throughout the project
period to iterate the feedback ater changes. he irst user test type were done two times
and helped to evaluate how intuitive the interface was depending on prior knowledge
and expectations of touch screens. he reoccuring user tests were more helpful as qual-
ity assurance (QA) tests as it was more focused on processes and procedures rather than
conducting actual tests. his ensured that bugs were identiied and removed as well as
giving in-depth feedback to the overall interface system.

OpenSpace is a modular simulation system such that it can load diferent function-
alities depending on the use case. Multi-touch interaction could thus be developed by
introducing a new module that handled everything related to touch input. he touch
module introduces four new classes as well as the module class as seen in igure 1.2. he
TuioEar is the client-side of the TUIO protocol, and listens to input sent through a TCP/IP
or UDP port. Each frame the module class asks the client for new input and sends the
data further to the TouchMarker and TouchInteraction. he TouchMarker simply renders
the contact points with the chosen appearance while the TouchInteraction is the kernel of
the multi-touch interactivity wherein the camera is manipulated to a new state based on
the received input. he inal class is the LMA solver levmarq that, if active, computes the
gradient descent to help give the best-it camera parameters for the new state.
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Figure 1.2: Sotware architecture of the OpenSpace touch module that allows a user to
interact with the 3D astrovisualization sotware through multi-touch devices.
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2. Related Work

his chapter describes previous work which is relevant to this thesis, most notably the
history and current status of direct-manipulation formulations and how such methods
achieve user-friendly interfaces in 3D applications.

2.1 Touch Input
Touch frameworks encode the hardware contact data to a standardized input such that
build their projects without speciic hardware dependencies, the by far most used one
being Windows Touch protocol. However, it comes with the dependency of running a
Windows operating system on the used computer which might not be desired. Other
prevalent frameworks are mtdev or, the one used in OpenSpace, TUIO. TUIO is developed
by Kaltenbrunner et al. [7] and uses a client-server transmission protocol to transfer the
control data from hardware to sotware. It is designed as an abstraction layer for tangible
multitouch surfaces that allows the protocol to be agnostic of the operating system. In-
stead, the developed application becomes a client listening to either a TCP/IP or UDP port
that the server is sending its data through. Due to this the server, and thus the user, can
be far away from the client application and has freedom to choose whichever interactive
surface system that is desired. he user can interact with the client through a smartphone,
tablet or large touch table system running any operating system.

2.2 Beginning of Direct-Manipulation Formulations
One of the irst papers on a direct-manipulation method was proposed 1992 by Gleicher et
al. [8] focused onmoving the camera rather than any virtual object. he problemGleicher
et al. aimed to solve was the inlexibility of diferent camera model’s parametrizations.
he underlying model for camera formulations is the perspective projection, through
which each 3D view is completely speciied with the center of projection, the view plane
as well as the clipping volume. However, what parameters are used to control the camera
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can vary. he need for specialized control arises frequently but deriving those transforma-
tions pose a diicult problem. Gleicher et al. ofered a solution to this issue by having the
interaction constrained such that contact points remain inside the image. he key difer-
ence from previous methods was that Gleicher et al. formulated the problem to solve for
the time derivatives of the camera parameters rather than the parameters directly. Equa-
tion 2.1 describes the relation between a 3D point x and the projected 2D coordinates p
on the screen

p = h(V x), (2.1)

where V is a homogeneous matrix representing the combined projection and viewing
transformations. h is the function that converts the result into 2D image coordinates by
normalizing the x and y value with its fourth component as

h(x) =
[

x
w

y

w

]
. (2.2)

he V matrix is in this case the product of several matrices, each a function of one
or more of the camera parameters q. his allows the image point p to be described as a
non-linear function of the parameters q and 3D point x, assuming x is ixed. he 2D point
velocity ṗ can thus be computed as follows:

ṗ = h′(V x)(
δ(V x)
δq

)q̇, (2.3)

where h′(x) is the resulting matrix from the derivate of h(x). q has here been difer-
entiated with respect to time and δ(V x)

δq deines the derivative of the transformed point V x
with respect to q with a 4×nmatrix. Changing the notation for compactness can be done
by deining the 2× n matrix

J = h′(V x)
δ(V x)
δq

, (2.4)

such that

ṗ = J q̇. (2.5)

Although equation 2.5 shows a linear relationship can the matrix J not be solved
unless it is square and of full rank, which it seldomwill be. his is consistent with equation
2.1 since h(x) is nonlinear and in general so is V x. his prohibits an analytical solution to
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the constraint. Instead the camera parameters are constrained such that the interaction
follows the contact points with a minimized least-square error

E =
(q̇− q̇0)

2

2
subject to ṗ− J q̇ = 0, (2.6)

where ṗ − J q̇ = 0 is the enforcing constraint that ensures the image point velocity
to be consistent with the contact point’s movement. Rather than choosing a minimum
error, Gleicher et al. choose to limit the error E such that its gradient must be a linear
combination of the gradients of the constraints.

dE

dq̇
= q̇− q̇0 = JTλ ⇐⇒ q̇ = q̇0 + JTλ (2.7)

Equation 2.7 is the combination of the two constraints in a matrix equation for some
value of the two-vector λ of Lagrange multipliers. he only thing let to do is to update
the camera parameters q with its derivative q̇ through various diference schemes such
as Euler’s method, central diference or higher order methods.

2.3 Using Screen-Space
Many research eforts have gone into the the formulations based on freely rotating, trans-
lating, and scaling in the ield of touch interaction, such as the Fluid Integration of Rota-
tion and Translation study by Kruger et al. [9] or the older 1992 study by Rubine et al.
[10]. Previously rotation, translation and scaling were generally done sequentially which
resulted in Screen-Space formulations to be an improvement in interaction eiciency.

Amore recent publication called Screen-Space that was proposed by Reisman et al. [2]
has been the focus of this thesis. Reisman et al. extended the control of 4 DOF, generally
translation as well as one orientation axis, to all six degrees of freedom which in efect
removed the need of any explicit gesture processing and took the screen-space principles
from 2D to 3D. Much like equation 2.1, a function is deined which maps a point x in 3D
model view, manipulated by the DOF parameters q and projected back to screen-space
point p.

p = s(x,q) = h(PM(q)x), (2.8)

where h as before is the view matrix, P is the projection matrix and M is a matrix
parameterized by the vector q which maps x into world-space. M is, as before, a combi-
nation of several rotation, translatation and scaling matrices. By keeping the projection
matrix P constant, the only way to alter a model view point’s corresponding point in
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screen-space is by the local to world-space transformation, as no change is done to any
of the camera’s DOF.

Instead of using a diference scheme as Gleicher et al. [8], the best-it transform pa-
rameters M(q) is found by minimizing the non-linear L2 error function that measures
the total squared distance between the contact points’ screen-space projection and their
corresponding screen-space target positions. he error is deined as

E =
∑

i

||s(xi,q)− pi||
2, (2.9)

where xi and pi are the positions of the ith object-space contact point and screen-
space target points, respectively and the minimization of E is with respect to q. Note
that in cases with a large number of contact points the minimization method becomes
oversaturated as it only has control over six DOF in three dimensions and thus have no
perfect solution. Unless deploying an alternate scheme, the efect is seen as an even spread
of slippage across all contact points.

he type of transformation, and particularly its DOF, is central in ensuring the desired
interaction. As the screen-space formulation by Reisman et al. aims to extend previous
RST methodology to 3D, the type of desired transformation M(q) must contain rotation,
translation and scaling matrices. However, the DOF which parameterize these transfor-
mations interact with the projection matrix P which can cause diferent parameters to
generate the same results. For example, translation of an object towards the camera with
an orthographic projection will not change the object size in screen space, while with a
perspective projection it is indistinguishable to scaling. he seven DOF (translation, rota-
tion and scaling) that a user could have control over may not be useful. he screen-space
paper assumes the use of a projection matrix and thus ignores the redundant scale pa-
rameter to have control over a total of six DOF in 3D. he transform M(q and its vector
parameters q can then be deined as

q =
[
tx ty tz qx qy qz

]
(2.10)

M(q) = T (tx, ty, tz)Q(qx, qy, qz), (2.11)

where T is a translation matrix and Q a unit-quaternion matrix such that

qw =
√

1− q2x − q2y − q2z . (2.12)
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Multiple options exists for minimization methods of the non-linear least-square er-
ror, including the derivative scheme used by Gleicher et al. [8]. Reisman et al. chose
to employ a Levenberg-Marquardt algorithm (LMA) [11] to ensure control to remain re-
sponsive without any high-cost in performance. LMA imposes a constraint in that it can
only control as many DOF as the number of terms that gets sent into it. Each new con-
tact point adds two terms to equation 2.9 as each image point contains 2D coordinates.
his mean that with one contact point the formulation can only control two DOF, with
two-point interactions four DOF and so on. Efectively, this binds an additional of sets
of two DOF to the current number of contact points. his does not cause any issue when
mimicing the standard RST-style synergy for both single and dual-point interactions. All
of the transform’s DOF are included for minimizations, involving three or more contact
points. Reisman et al. found that their method had support of a number of unique manip-
ulations previous methods did not with the price of some unintended behaviour in cases
of rotational extrema due to rotational ambiguities or rotational exhuast.

Ambiguous rotations appear in normal use with three-point interactions. If two con-
tact points remain stationary while the third is brought closer to those points the rotation
will occur in the camera’sXY -plane. However, when all three points are at roughly equal
depths both counterclockwise and clockwise rotation with respect to the camera view are
solutions that bring the moving contact point closer to the others in screen-space. Which
one of the two that is chosen is dependant on the direction the solver determine to decent
in. Reisman et al. suggests two diferent methods to mitigate the ambiguity by weighting
one descent over the other, making the solver biased with initial values of the q vector
or determining rotational direction dependant on pressure input. Pressure input puts an
extra requirement on the installed hardware but adds a half dimension in which the user
can ”push” a contact point into the screen. Biasing the solver with initial values involves
binding movement direction to speciic rotation directions, for example moving let on
the screen indicate a desired clockwise rotation around the Y -axis.

Rotational exhuast happens when the object started out as rotated and the movement
is inverted from the rotational ambiguity case such that one contact points is brought
away from the two other stationary contact points. Eventually the object will rotate such
that it is parallel with the view plane which then causes the solver to produce a translation
in the camera’s Z-axis instead. his transition in interaction behaviour is desired and ex-
pected, however during the transition a new, perceptually perpendicular to previous axis,
rotation is introduced. By designing a plane out of the three contact points and consid-
ering the movement of its normal can such unexpected efects be monitored. During the
transition the plane’s normal typically becomes more and more parallel with the camera
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view direction until it reaches a maxima and starts to decline. he undesired behaviour
is introduced upon this change and can thus be mitigated by designing a function which
looks for the minima of the angle between the centroid of the contact point c’s normal
and the camera direction vector at c given transform parameters q with respect to time.

2.4 DS3 and Separation of DOF
Since 3D imposes six unique DOF, input devices that generate less perceptual structure
than that struggle to control all aspects at once. Screen-space proposes control of the six
DOF in an integral way, while previously mentioned Sticky-tools by Hancock et al. [3] a
separation between the degrees of freedom by allowing two contact points to function in
an RST-style while an additional third contact point indirectly control the rotation of the
object around the axis built by the two contact points that touch the virtual object.

Martinet et al. [4] investigated both these methods and found the sticky-tools sep-
aration to be diicult. Instead they implemented the depth-separated screen-space for-
mulation with a clear seperation between the control of translation and the control of
rotation. To support this the DS3 builds upon leting the screen-space method control the
orientation and the Z-technique, a previous publication by Martinet et al. [12], control
the position.

he Z-technique is designed to help the depth control in 3D positioning. Upon the irst
touch point’s contact with the surface, a ray is sent from the camera location through the
contact point position and into the scene to ind the closest intersected object. Positioning
is now constrained to the plane parallel to the camera plane passing through the object
center. A second contact point’s relative motion will then control the depth of the object’s
position by backward forward movements on the screen. Using a non-linear continuous
function that maps the object displacement speed to a scale factor can the depth control
be based on the velocity of the contact point. Repeated touch and releases can be used to
position the object at any arbitrary depth position.

Figure 2.1 shows how with one direct contact point objects can be translated across
the view plane. Translation in depth is performed indirectly through a second, indirect
contact point. Moving the indirect contact point up along the screen results in the virtual
object’s depth increasing and downward movement moves it closer to the view plane.
When two or more direct contact points are active, users can control only the orientation
of the object through the same constrain solver as described in section 2.3. Figure 2.2
compares how the screen-space, sticky-tools and DS3 formulations manipulate diferent
DOF under diferent types of interactions. Circles connected with a line represent the
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Figure 2.1: Formulation of Depth-Separated Screen-Space with the help of Z-technique.
1d stands for one active contact point which is in direct contact to the virtual object, 1d+1i
is thus with an additional indirect contact point to allow control over an additional DOF.

DOF that are integrated under that type of interaction, empty circles represent the indirect
control the additional indirect contact point gives.

Figure 2.2: Comparison between the existing approaches’ control of the 6DOF, based on
the number of contact points and their directness (e.g., 2d+1i: two contact points directly
touch the virtual object with one indirect inger).

A recent publication by Yu et al. [13] proposed a solution named Frame Interaction
with 3D spaces (FI3D) to control seven degrees of freedom without requiring present ob-
jects to constrain the mapping. Such a claim is deinitely of high interest in this thesis
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use case. However, unlike other formulations it comes with a drastic cost of screen real
estate as it requires an interface frame for its gesture interpretation. Due to the loss of
screen area and enforced two hand interaction was the model not further considered.
Another study, by Liu et al. [14], introduced a diferent method for 6DOF manipulation
independant of directness to a present object in the scene using exclusively two-inger
interactions. heir study proved the formulation to be eicient on small to medium touch
screens. However, its usefullness on exponentially larger touch screens quickly decays as
the interface was designed for use with a thumb and index inger and has thus not been
used in the thesis.
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3. heory

his chapter goes through the mathematics behind OpenSpace’s choice of DOF formula-
tion, discusses the complications the formulation causes to an analytical gradient for the
LM algorithm together with a tracing algorithm to ind diferent celestial bodies.

3.1 Choices in DOF Separation
he choice to implement screen-space over other formulations for astronomical visual-
izations seem natural, as all other methods require an indirect contact point to perform
all types of interactions. As such the controlled object are not allowed to outgrow the
viewplane used for the manipulations, in which case contact points outside of the objects
surface would become impossible. To allow control over a celestial body from a space per-
spective as well as a street-view perspective, the chosen direct-manipulation formulation
had to be the screen-space method by Reisman et al. [2]

hemethods mitigating ambiguous rotations and rotational exhuasts explained in sec-
tion 2.3 have not been implemented in this thesis, as the chosen DOF setup heavily difers
from the one discussed in the screen-space publication. Reisman et al. [2] arranged the
control of an objects six degree of freedom, however in OpenSpace the objects, or celestial
bodies, themselves cannot be moved or rotated. Instead instead the camera state, and thus
its view plane, is manipulated during the user interaction. Due to the vastness of space
and inexplicit direction of up or down, the desired control in an astronomical visualization
sotware is vastly diferent from the user case of looking at one object. As such, all camera
movements have been designed such that it is always done in related to a focus. A focus
can be any type of celestial body, be it the sun, earth or a smaller asteroid. his naturally
creates a new deinition of the DOF. he screen-space formulation from equation 2.8 is
set up such that matrix V is a combination of multiple transformations including all six
DOF as

V = T (tx, ty, tz)Q(qw, qx, qy, qz), (3.1)
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where each added contact point explicitly adds two DOF to the transformation. V

is then multiplied to the current camera transform to get the inal camera state C . In
OpenSpace’s case, the DOF are instead deined through:

• Orbit - contains two euler angles, θ and ϕ, to decide the camera’s position and
look-at direction related to the focused celestial body.

• Zoom - single value related to the distance to the focus.

• Roll - contains one angle value that determines the roll orientation of the camera.

• Pan - consists of two angles that determine the local look direction of the camera
itself.

his formulation allows the user to freely traverse with the camera through space with
control of all its DOFwhile keeping the celestial bodies in context. In order to achieve this,
the camera orientation matrix Q needs to be separated in local and global rotations. his
is generally done through a look-at matrix that takes the camera location, the direction
it is facing as well as the up-direction and computes a resulting matrix L. L can then
be used to separate Q by deining a global rotation Rg = normalized(L−1) and a local
rotation Rl = R−1

g ·Q, such that

Q = Rg ·Rl. (3.2)

Equation 3.3 is then a three-part way to describe the desired DOF separation. he irst
part calculates the rotation and translation transformations from the orbit DOF, second
the zoom translation and third the local orientation of the camera, ie. roll and pan. he
translation terms from the orbit and zoom are merged for notational compactness.

C = (

Orbit translation = To
︷ ︸︸ ︷

(TdRgRoR
−1
g + Tc)− T̂d · z

︸ ︷︷ ︸

Zoom

) ·

Orbit rotation
︷ ︸︸ ︷

Q(M−1)

|Q(M−1)|
· RlRrRp
︸ ︷︷ ︸

Roll and Pan

, (3.3)

in which Q(M) is the quaternion of the 4× 4 look-at matrix

M =

[

s⃗ u⃗ −⃗f 0⃗
1 1 1 1

]

, (3.4)

where f̂ = −T̂o, ŝ = f̂ · (Rg ·





0
1
0



) and u⃗ = ŝ · f̂ . Rg and Rl are deined as

above, Td = T − Tf is the distance matrix between the camera position and the celestial
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Figure 3.1: OpenSpace’s DOF separation for direct-manipulation control. With the help
of one, two or more active contact point that touches the virtual object.

body in focus. To is the translation part of the orbit-interaction while Ro is the rotation
quaternion built from the orbit angles. Lastly Rr and Rp are quaternions goten from the
roll and pan angles respectively.

With equation 3.3 it is now clear how the camera state changes dependant on the
newly deined DOF seperation. he resulting control implemented into OpenSpace can be
seen in igure 3.1, where 1d represents one active contact point on the surface of a virtual
object, 2d two, etc. he ≥ 3d case generally has control over all six parameters, however
the orbit and roll DOF were muted by normalizing their individual partial derivatives. As
to why this was done will be discussed in detail in section 5.1.

3.2 Creating the Minimize Function and its Gradient
he Levenberg-Marquardt algorithm is at the core of direct-manipulation interaction and
is used as for a non-linear least-square curve iting. As the algorithm interpolates be-
tween the Gauss-Newton algorithm (GNA) [15] and gradient descent, it naturally requires
the gradient of the function that is subject to be minimized to operate.

Like discussed in section 2.3 the function s(x,q)maps the local point x to world coor-
dinates to later be projected back to screen-space for location comparison with its respec-
tive contact point. he main diference from equation 2.8 however is that the transforma-
tionM(q) parameterized by the DOF vector is not applied to the virtual object itself. he
point x remains constant while instead the camera position and orientation, and thus the
view plane to which x will be projected back to, is changed according to equation 3.3. As
such, the minimization function becomes

E =
∑

i

||h(PC(q)TfQfxi)− pi||
2, (3.5)
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where Tf and Qf are translation and rotation transformation that maps point x from
its local view to world coordinates. P is the projection matrix, pi the corresponding
screen-space point, C(q) according to equation 3.3 and h the function that converts the
3D point to screen-space coordinates. E is minimized with respect to the vector q that is
constructed by the parameters controlling the diferent DOF. Depending on the type of
interaction q thus contains two, four or six elements.

he issue that arise is how the function’s gradient changes dependant to q. An analyt-
ical solution for this becomes complex as the statement is non-linear and contains trans-
forms between 3D to 2D into a scalar value. Instead, a forward Euler method scheme is
used such that

∇Eq =
Eq+hq

− Eq

hq

, (3.6)

where the step size hq is a fraction of the respective value in q. his means that the
step size for the partial derivative changes as the DOF the function is derived with respect
to changes.

Due to the large size diferences in astronomical datasets, this raises a computer nu-
merical limitation issue in the choice of step size hq. Interactions under a street-view-like
distance with a small asteroid or at distances approaching an astronomical unit (A.U)
[16] should feel just as natural to the user. he extreme variance in interaction motion
causes the parameters in q to luctuate massively. For example, the zoom-parameter z
in q determines the distance the camera should move towards or away from the focus.
he identical interaction gesture on a large celestial body generates a greater traversed
distance in depth compared to a smaller planet, resulting in vastly diferent z values. To
keep the gradient ∇Eq convergent, the minimal step size hq must be large enough such
that the numerical diference

D = |Eq+hq
− Eq| > 0 (3.7)

can be quantiied.
It is also a topic of importance for optimization purposes as the number of iterations

LMA requires to converge can drastically be reduced with an appropriately deined nu-
merical gradient. A large step size makes the LMAmore prone to overstep resulting in an
increased number of iterations, while a step size small enough to generate a next to in-
distinguishable diferenceD, faces the opposite problem. he local minima is somewhere
in between, however an extensive analysis for the best-it step size hq for each iteration
is not feasible in real-time. Instead an iterative method were implemented to ind the it-
ting step size in between the two local maximas. Ater deining the minimum viable step
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size it is then scaled according to the size of the interacted object. Lastly the scaled step
size is constrained to prohibit it from becoming larger than a 1

1000
q of the corresponding

parameter in q.

3.3 Finding Selected Objects
In order to perform any type of minimization is the local 3D point x required. his point
is generated through general ray trace by sending a vector from the camera, through the
contact point in screen-space and into the 3D scene.

vr = V · (P−1 ·







x

y

−1
1






), (3.8)

where V and P are the view and projection matrix respectively while x and y the
contact point’s coordinates on the image screen. All celestial bodies in OpenSpace have a
rough bounding volume estimated by the objects radius, which allows for several methods
to ind if and where intersections occur between the line in the ray direction vr and an
object in the scene. If vo is the vector from the camera position c pointing towards an
objects position p, then one way to deine the distance between the line and the object
is through orthogonal projection. Note that vr is the direction of the traced line with
the the camera position on it, and thus of unit length one. Another, computionally more
eicient, method is to use the area of the parallelogram formed by vector vo and vr. If
the shortest interval between point p and the projected line is then less or equal to the
bounding sphere’s radius r, an intersection is considered.

|vr × vo| ≤ r. (3.9)

Disregarding the case where vr is the tangent to the bounding sphere’s brink, there
will always be two intersection points along the traced line while only the closest point
with respect to the camera is needed. Equation 3.10 deines how far t along vr starting
from the camera position it is required to traverse in order to reach the closest intersection
point.

t = vr · vo −
√

r2 − |vo|2 + |vr · vo|2 (3.10)

Note that if the summation under the root equals to zero the traced line tangents the
bounding sphere and only one intersection point exists. he desired local 3D point x can
then be determined by
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x = Q−1
f · (c+ vrt− Tf ), (3.11)

where Qf and Tf like before are the translation and rotation matrices that transform
a point from its local view to world coordinates. his step is done to ensure that a surface
position on an object remains static, since its’ world coordinates will change with regards
to time.
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4. Implementation

his chapter discusses how the theory was implemented into OpenSpace. Starting with
how the input is received from the touch surface to the scheme the multi-touch interface
is built upon.

4.1 Decoupling the Input
he irst stage in developing multi-touch interactability is to get the input. he touch
protocol chosen for this was TUIO [7], which works through server-client transmission.
he client was implemented into OpenSpace as a listener, receiving input through internet
protocols in the form of TuioCursor class objects. he TuioCursor contains a range of
sophisticated information about the input such as acceleration, pressure input or various
position ilters. However, the data OpenSpace uses can be reduced to

Listing 4.1: TuioCursor object
c l a s s TuioCursor : public Tu ioPo in t

double x ;
double y ;
double velX ;
double ve lY ;
TuioTime t ime ; / / s t o r e s t ime o b j e c t has e x i s t e d
in t i d ;
s t d : : l i s t <Tu ioPo in t > path ;

Since multiple contact points can be used at once was there need of a list to separate
the diferent touches. his is done through a vector < TuioCursor > as seen in igure
1.2. When the TUIO server recognizes a change on its tangible surface a callback is sent
to the client to update according to the change. In this thesis only three kinds of callbacks
were used.

• addCallback - adds a new TuioCursor to the list of contact points.

• removeCallback - remove the entry from the list with respective TuioCursor id.
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• updateCallback - push back the old TuioCursor position and time as an entry in
the list<TuioPoint> path and update the object’s state itself.

he add-callback is called once a new contact point touches the tangible surface, remove
once a contact point is removed and update if a current contact point changes its state.
hrough the update-callback could a tap-tracker be introduced by looking at the time a
contact point had existed and its total movement over the screen.

Since the server is a separate process from OpenSpace, it is imperative to decouple
the receival of input from the programs frame rate. Otherwise the input would vary
when running the program on a low-end system from a high-end one. his was done
by creating a list in the TuioEar object that only changes under mutex locks and having
the module class copy the list when the program started to render a new frame. he last
thing to consider was a safeguard against the case in where OpenSpace would render
faster than the client was receiving input. If this were the case, no new input would have
been received from the last frame and the desired interaction already executed. By forcing
interaction to only be done with new input, two processes, OpenSpace and the TUIO
client, could run concurrently while producing identical interaction behaviour given the
same input on diferent machines.

4.2 Putting Markers in Screen-Space
In order to improve the presentation capabilities of themulti-touch interface it was impor-
tant to render what type of interaction was performed on the touch screen. Customizable
circle markers were implemented for this with control over size, color, opacity o as well
as thickness. Figure 4.1 shows how the thickness parameter t manipulates the fall-of
function that deines the level of opacity at distance d ∈ [0, size] from the contact point
coordinates. Assuming within the size radius, the alpha level a for a pixel can thus be
deined by

a = min(dt, o). (4.1)

4.3 Determine Type of Interaction Scheme
In regards withwhat to dowith the input, it must irst be setledwhich interaction-scheme
is to be used. In conjunction with the screen-space direct-manipulation formulation a
velocity-based supplementary method have been added to handle the cases screen-space
solver does not.
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Figure 4.1: Alpha fall-of function dependant on the choice of thickness and transperancy
cap

he velocity-basedmethod irst interprets the type of interaction to then add a velocity
to the desired DOF to then decelerate with time to a chosen friction value. Exactly how
this is done will be explained below in section 4.4 and 4.5. As these two methods are
distinctly diferent, one maps the exact interactions through constraints and the other
maps input movement to an arbitrary velocity in a speciic DOF, it is imperative for them
to share a similar formulation to minimize confusion. his is achieved by having both
share identical DOF formulations for control and analogous gestures. Sharing identical
DOF scheme is no issue; it even simpliies the development as the updated camera state
computation can be shared by simply choosing where it receives the parameters which
are to be used for the update. With analogous gestures the velocity-based method is
constrained to use equivalent gestures for speciic DOF control as igure 3.1.

Another important aspect in intertwining the two schemes is to automatically and
seamlessly swap between them. Direct-manipulation can be used in all cases where ev-
ery active contact point touches a virtual object but fall short when generally traversing
through space. his since during those interactions there is no contact with celestial bod-
ies and thus no local 3D point x can exist. Velocity-interaction struggles with scaling
values deciding the magnitude of the velocity when the context changes drastically. Get-
ting appropriate scaling values when the context can vary from a detailed street-view on
an object to traversing through entire solar systems is not a trivial task. A decision solver
was implemented to elect the type interaction scheme based on two queries:
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• Are all contact points on the surface of a virtual object?

• Is the focused object large enough on the screen?

If both are true direct-manipulation can be used while the velocity-method takes all
other cases. he irst condition can be determined through the methods in section 3.3 but
the second depend upon a size deinition of an object in image space. Since the object’s
radius r in the world is known and the projection matrix P scales objects depending on
the distance to the camera can the scaling coeicients be found by choosing an arbitrary
vector v as well as an abitrarily choosen distance d. he scaling value s can be deined as

s =
|P · v|

|P · (v+





0
0
d



)|

, (4.2)

where p and c are the positions of the object and camera respectively. s deines the
amount the radius of an object decreases as the distance from the camera increases. Note
that it makes no diference to what axis d is applied to. An object-speciic screen radius
rs can thus be deined as

rs =
r

(|p− c| − r) · s
, (4.3)

where r is the original radius of the celestial body. r is used in the denominator to
measure the distance between the camera and an object’s surface rather than its center.
rs ∈ [0, r] deines the star, planet or asteroid’s size on the image screen. As the view plane
is deined in normalized device coordinates (NDC) before aspect ratio distortions, an ob-
ject with rs = 0.5 would cover the entire y-plane on parts of the screen. he threshold hr

which rs ≥ hr to activate direct-manipulation can be chosen readily by the user, however
hr = 0.2 gave the best results from user tests during development.

4.4 Interaction Types and Interpretation
In order to apply a velocity to the desiredDOF the input has to be interpreted and classiied
to a distinct interaction. here are ive diferent kinds of gesture interpretations:

• Refocus on a celestial body can be done by double tapping, a double tap in space
decreases the ditance between the camera and the focused object by a ixed about.

• Orbit control around the focus is done by single inger interaction.
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• he zoom DOF is controlled by two or more contact point with the preponderance
motion of increasing the distance between a contact point and their centroid.

• he roll value determined by the total angle change between contact points and
their centroid or a static contact point.

• Panning is done by having three active contact points which average distance be-
tween each other remains constant.

As the orbit control is the only gesture with one contact point are there no conlicts
in the interpretation. he choice to pan with three, in relation to each other static, con-
tact points is to maintain the similarity with the direct-manipulation control. Although
the screen-space formulation give access to more than just pan DOF it is not distinctly
diferent and continue to interact in a way users expect. he ability to traverse through
space is greatly improved by allowing the user to refocus on a new celestial body through
double taps.

However, pan and zoom are only separated by the type of movement and can have
overlap in its interpretation. For example, movement with two contact points solely along
the y-axis or x-axis generate a huge changes in angle to the centroid in a way that is not
expected. A way to limit this behaviour could be to lock the roll to be the angle change
related to one static contact point instead of the centroid. User tests showed that this
was a natural gesture for controlling the roll when interacting with a small area of the
touch surface but decreased once larger screens were in use. Instead a safeguard for this
speciic interaction was implemented, allowing both gesture versions to generate DOF
control over the roll.

4.5 Velocity-based Method
Ater interpreting the type of gesture, themotion of the input are used as themain variable
determining the magnitude of the added velocity in the determined DOF direction. Each
DOF requires a sensitivity scalars in order to ensure consistency with diferent screen
sizes and aspect ratios. he zoom DOF is particularly interesting as its expected velocity
value largely depends on the context the pinch-gesture is performed with. Keeping the
sensitivity static would either make interaction illsupported when traversing from one
celestial body to another or when the camera comes closer to an object. Using the distance
between an objects surface and the camera position as a linear scale factor resolves cases
where the distance is large tomedium, however the issue remains on distances comparable
the radius of the sun.
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As the interaction adds velocity, to prevent ininite movement this has to decay with
time. DOF speciic friction parameters were introduced to control this deceleration. he
computation can only be done once for each frame, which caused inconsistency in the
velocity deceleration between diferent systems or inconsistent render times. he de-
celeration was thus decoupled from the frame time by introducing a time tracker. Each
frame, the time since last computation is considered to determine how much the velocity
should decelerate such as

v′ = v · (1− f)λ, (4.4)

where f is the friction scalar and λ the strength of decay controlled by

λ =
dt

hf

, (4.5)

with dt as the frame time and hf as the decoupled decay frequency.

26



5. Results

his chapter brings up the resulting multi-touch interface and discusses why the imple-
mented methods were used over others alternate approaches. With the described imple-
mentation the user can interact with any celestial body in the scene and traverse in an
expected way through the multi-touch gestures. Figure 5.1 shows the resulting navigation
interface in use in both close range over the Salt Lake City area in Utah, USA on 5.1b and
when traversing the solar system in 5.1d.

(a) (b)

(c) (d)

Figure 5.1: Shows diferent interactions in OpenSpace. (a) and (b) has two contact point
interacting with the Moon and Earth respectively to control the camera. (d) illustrates the
gesture to control the roll DOF.

he gradient in the levenberg-marquardt algorithm had to be computed numerically
through inite diference rather than analytically, which resulted in discussed issues re-
lating to the used step size. Central diference as well as higher order schemes were
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Figure 5.2: he red and blue lines are the LMA minimization paths for each iteration
step for respective contact point for this particular interaction. Large circles denotes the
contact points initial location and the smaller ones the goal position.

compared with the implemented forward diference. Although higher order schemes of-
fered a higher accuracy on the resulting gradient it became a performance issue since the
calculations had to be done for each contact point as well as LMA iteration, which could
vary between 30 to 200 before converging. he forward diference generated the high-
est number of required iterations but still maintained the most efective method in terms
of performance, especially in cases with more than one contact point. Figure 5.2 shows
the path the algorithm took in screen-space with two contact points for each iteration
towards its goal position. Note that as the least-square error is non-linear to the camera
parameters q, which results in the seemingly erratic iteration steps.

5.1 Discussion
Evaluating a user interface is a subjective mater. An interface is intuitive only when
users understand its behaviour and efect without use the of experimentation, reason or
assistance. Such intuition requires prior knowledge, either from experience in the real
world or with other sotware. One way to assist the interface’s innateness is to match the
number of controllable DOF with the with the structure of the input data. For example,
using a 3Dmouse or a handheld six DOF tracking device allows for intuitive direct manip-
ulation in as many dimensions concurrently. his was the main reason why the ≥ 3 case
for direct-manipulation was limited to the control of only three DOF. A tangible surface
can only generate 2D, or 2.5D if the surface is pressure sensitive, input points on multiple
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locations on the screen simultaneously. his allows for clear control in up to four DOF,
however not more. here was also next to no drawback in this decision as all six DOF
remained controllable, albeit under diferent gestures.

Several diferent ideas for DOF formulations were considered during the thesis, par-
ticularly ones without a relative focus point in the scene. Some users expressed initial
confusion that the zoom parameter took them closer or further away from an object and
not in the direction the camera was looking. One way to alleviate this would be to keep
the camera free of any relations andmovement would be done according to its orientation.
However, this raises a more concerning regarding inding new points of interests from far
distances. Even experienced users would struggle to ind their way between planets in
the solar system, not to mention a user at public exhibitions. As exhibition use were the
focus for this thesis it was determined that focus points in the scene were necessary in
order to maintain celestial bodies in context over empty space.

he velocity-based method initially had control over the zoom and roll parameters
with two or more contact points, much like the direct-manipulation scheme. his was
commented on during user tests as undesired. he depth control was far more common
compared to the roll, which made the feature result in undesired wiggle back and forth of
the roll during the pinch-to-zoom gesture motion.

Tests to how the screen size afected the gestures were done using a 55” touch table as
well as a 5.5” smartphone. Scaling the sensitivities scalars of the velocity-based method
became an interesting point of discussion to maintain consistency between real-world
distances and resulting interaction in the sotware. It became apparent that a linear so-
lution for this would not be desired as the way a tangible surface is handled by the user
drastically changes with its size. For example, more than three contact points were never
used on the smartphone device while it was a common occurance on the 55” screen. Users
expressed they expected the smaller touch screen to generate an interaction with higher
sensitivity much like the way it naturally did.
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6. Conclusions and Future Work

his chapter answers the research questions and discusses potential improvements or
extensions that could be made to the navigational interface for the future.

6.1 Conclusions
It has been shown that the combination of a velocity-based interactionmodel and a screen-
space direct-manipulation scheme allows for a precise control of objects and efective
traversal ability through the vastness of space. he user confusion when swapping be-
tween these interaction mode is minimized by having both methods share an identical
DOF formulations and a similar set of interaction gestures. Since both schemes have the
same formulation the computations to update the camera state can be shared and the
parameters it would use are readily taken from the appropriate interaction mode.

To maintain the interaction intuitive in large 3D visualizations it is required to limit
the number of controllable DOF for diferent gestures such that it matches the structure of
the input device. By keeping all interaction in relation to a user chosen celestial body can
the points of interest of the visualization be kept in context throughout the vast space. In
order to safeguard the application from inconsistencies on diferent hardware systems it
was required to ensure that all input that have happened since last frame is stored before
use. With the velocity-based interaction mode it is also important to make sure that the
decelerate phase is computed with respect to the time passed since last frame.

he evaluation on the screen-space direct-manipulation method is a non-linear min-
imization problem, as thus the Levenberg-Marquardt algorithm to solve the least-square
error is a iting solution to maintain the sotware performance. To resolve the numerical
computation limitations for astronomical distances the quality of the numerical gradient
LMA uses is maintained through a low-cost iterative method to ind an appropriate step
size h.
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6.2 Future Work
he current multi-touch interface is suiciently good for public exhibitions and general
control of camera through the solar system. For increased control over the application the
additions of butons and sliders would greatly help. For example, dedicated butons for
speciic camera states would help users to easilymove back to a point of interest from their
current perspective or diferent visualization layers to display data could help improve the
understanding of space. Sliders could give the user direct control over the time dimension
as well.

he linear distance scaling of the zoom parameter in velocity-based interactions could
be improved to more accurately mimic the desired interaction by performing a more de-
tailed analysis of input data in consideration of the context. his goes hand in hand with
the interpretation solver and gesture conlicts between roll and zoom. Using machine
learning could help the solver learn in which contexts diferent interactions are desired
and favour them accordingly.

he direct-manipulation mode uses a rough bounding sphere to compute the local sur-
face position on a celestial body. As planets and asteroids are seldom perfect circles, per-
forming another type of intersection algorithm, such as Möller-Trumbore[17], to ind the
touched face of the object could help improve precise control of small arbitrarily shaped
objects.
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