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ABSTRACT 
Background: Research on teams originated from the social 
sciences and brought a number of new topics into the repertoire of 
software engineering. Teams and teamwork are recognized for the 
promised benefits of i.e. increased performance. Performance is 
often linked to experience gains, and along with individual 
learning teamwork facilitates what is recognized as group 
learning. 
Aims: In this paper, we report our lessons learned from an attempt 
to study the relationship between group learning and performance 
in a large-scale software project. 
Method: We conducted an exploratory case study of an on-going 
large-scale distributed project in Ericsson. The data collected 
included archival data and both unstructured and semi-structured 
interviews. The data was analyzed using descriptive statistics, 
charts and regression analysis. 
Results: The results suggest that some teams improved their 
performance over time until they were forced to work cooperate 
with several other teams. However, it is not completely clear role 
of accumulated experience and other aspects, such as team 
stability and number of developers.  
Conclusions: We believe that ad-hoc team formation and team 
member rotation might have resulted in a failure to benefit from 
group learning. In addition, the fact that developers worked 
simultaneously on different tasks could have hindered their 
performance. However, we believe that further research must be 
conducted to provide a stronger evidence about the identified 
result. Based on the experience acquired by conducting this study, 
we report some lessons learned that can support researchers and 
practitioners when investigating the topic addressed in this paper. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – Programming 
teams, Productivity. 

General Terms 
Performance, Human Factors. 

Keywords 
Group learning, Team performance, Large-scale software 
development, team turnover. 

 
 

1.   INTRODUCTION 
Instead of individual developers and their performance, modern 
and especially innovative software organizations shifted their 
focus towards teams as the basic work unit, giving rise to a 
radically new approach to managing software projects [1]. This, in 
turn, has inspired many researchers in software engineering and 
related domains to conduct empirical studies with software teams 
as the main units of analysis. Cultivation of teams and teamwork 
has been associated with increased performance, innovation, and 
employee satisfaction [1]–[5]. But what is the role of teamwork in 
determining higher performance?  

Performance is said to improve over time, as individuals and the 
team accumulate experience doing their work (autonomous 
learning), i.e. there is a learning curve that relates experience and 
performance [6] (see Figure 1). When it comes to teamwork, 
individuals in a team support each others learning through e.g. 
asking questions, seeking feedback, experimenting, reflecting on 
results, and discussing errors or unexpected outcomes of actions 
[3]Error! Reference source not found.. Thus teamwork enables 
greater performance improvements than individual work.  

Interestingly, while performance of teams has attracted a lot of 
attention, group learning as a construct has not been included in 
the common agenda of software engineering research.  

 
Figure 1: Examples of different learning curves (based on 

Anzanello and Fogliatto [6]) 

In this paper, we aimed at investigating the relationship between 
group learning, focusing on autonomous learning, and 
performance in a large-scale software project that involved several 
teams distributed around the globe. Our findings are a part of a 
larger empirical investigation about how individuals and teams 
learn in large-scale distributed software projects. Our empirical 
study discussed in this paper addressed the following research 
questions: 

RQ1:  Do software development teams in large-scale 
distributed projects improve their performance over 
time? 

RQ2:  What factors impact autonomous group learning in 
large-scale distributed software projects? 
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The main contribution of this paper is two-fold: 

•   We present empirical results on how newly on-boarded 
software teams perform over time in a large-scale distributed 
project that has evolved for over fifteen years. 

•   We share the lessons learned from our attempt to investigate 
autonomous group learning in the aimed context. 

The reminder of the paper is organized as follows. Related work 
and the motivation for our study is summarized in Section 2. 
Section 3 outlines our research methodology. Section 4 presents 
and discusses our results. Section 5 presents the lessons learned 
during the conduction of the study reported herein. Finally, 
Section 6 concludes the paper with the summary of our findings 
and plans for future work. 

2.   RELATED WORK 
Research on teams originated from the social sciences and 
brought a number of new topics into the repertoire of software 
engineering, information systems and other related research 
disciplines. These include teamwork, personality characteristics of 
team members, interpersonal relationships among team members, 
and issues with team composition [7], to name a few. Soon 
teamwork in software teams has been recognized as an enabler 
and determinant of performance [8].  

Performance (e.g. productivity, quality, efficacy and efficiency) 
in software development is expressed in different ways, such as 
the effort needed for creating the wanted outcome or a number of 
post-delivery defects, among others.  Performance is often linked 
with experience, which can be related to learning and the 
acquisition and accumulation of knowledge, skill and competence 
[9]. In this section, we summarize the key concepts and existing 
research on learning, learning curves and their application in 
software engineering. 

2.1   Learning 
Learning is defined as “the acquisition of knowledge or skills 
through study, experience, or being taught” [10]. To better 
understand the relationship between teamwork and learning, we 
hereby describe the key concepts related to learning [11]: 

Knowledge is the result of an interaction between the capacity and 
the opportunity to learn. It is in general associated with formal 
learning (organized and structured learning), although can 
eventually be the result of non-formal (unplanned learning) or 
informal learning (experiential or accidental learning). 

Skill is the combination of mental and physical capabilities that 
demand practice to acquire. In many cases, the previous 
obtainment of knowledge is a pre-requisite for the achievement of 
a particular skill. It is in general associated with informal learning, 
although can eventually be the result of non-formal or formal 
learning.  

Competence is the extent to which individuals interact effectively 
with the environment. It describes personality aspects associated 
with better performance and higher motivation of individuals. It is 
acquired through informal learning. 

Most of the studies focusing on learning and performance are 
based on the assumption that performance improvements are due 
to autonomous learning (learning by doing).  However, 
individuals in a team support each others learning in a number of 
ways. Group learning is a process of reflection and action, which 
encompasses different learning behaviors, such as asking 
questions, seeking feedback, experimenting, reflecting on results, 

and discussing errors or unexpected outcomes of actions [3]. In 
fact, team learning is about a new understanding shared by all the 
team members about how the team is expected to behave [12]. 

2.2   Learning curves 
A learning curve describes the performance of teams or 
individuals in a mathematical way. It was proposed by Wright 
[13] based on observations of how the costs associated with 
assembling airplanes decreased as the involved workers 
accumulated experience in doing the same type of task. 

Learning curves can be modeled using univariate or multivariate 
models, e.g. log-linear, hyperbolic and exponential models [6]. 
Log-linear models are most frequently employed due to their 
simplicity. The original model proposed by Write  [13] is a log-
linear model, which is represented by Equation 1. 

Y = CX% (1) 

In Equation 1, y is the average time (or cost) per unit demanded to 
produce X units (cumulative experience) and C is the time (or 
cost) to produce the first unit. The parameter b, also known as 
learning rate, represents the slope of the learning curve. Equation 
1 has been modified by the research community and resulting in 
other versions of the aforementioned power law, e.g. the De Jong 
and S-curve models [6].  

2.3   Learning curves in software engineering 
The learning curve phenomenon is well explored in domains such 
as electronic, automotive, construction and chemical industries 
[6]. Nevertheless, the topic of learning curves in software 
engineering is relatively recent, although the applicability of 
learning curves models to relate cumulative experience and 
performance in software development has been confirmed in a 
number of studies, as described in related literature reviews [14], 
[15].  

In a systematic review on team learning in information systems 
development, Spohrer et al. [15] concluded that accumulation of 
experience determines team performance. However, none of the 
five studies focusing on learning curves reviewed by the authors 
provided an empirically based explanation for the identified 
causal relationships.  

In the following, we summarize the results of the studies on 
learning curves in software engineering. 

Tüzün and Tekinerdogan [14] investigated the impact of the 
learning curve phenomenon on the return of investment (ROI) in 
the software product line engineering and concluded that the 
learning curve has a clear impact on the ROI of software 
development companies, although such an impact gets lower 
when the number of products of a particular software product line 
increases. 

Huntley [16] investigated the learning curve phenomenon in open- 
source programming projects. He applied regression analysis on 
the data collected from Apache and Mozilla projects to analyze 
the relationship between experience and bug cycle times and 
identified a higher impact of the learning curve for a mature 
project compared to an emerging project, i.e. the learning curve 
phenomenon is dependent on the context of each project. 

Boh et al. [9] examined learning curves on an individual, group 
and organizational level. The authors performed regression 
analysis of data from 14 years of systems development work in a 
telecommunication domain and concluded that specialized 
experience impacts primarily the productivity associated with 
tasks fulfilled independently by team members (the more 



specialized experience from the same product, the greater the 
productivity in doing individual tasks), while diverse experience 
has the biggest impact on the productivity associated with tasks 
performed by more than one person, on both group and 
organizational levels (the more diverse experience from related 
and unrelated products, the greater the productivity in doing group 
or organizational tasks). 

Huckman et al. [17] investigated the impact of team stability, 
team familiarity and role experience on performance. The authors 
performed regression analysis of 1,004 development projects 
completed over two years and found that team familiarity and role 
experience impacts the quality of the developed software (in terms 
of number of post-delivery defects) and the adherence to the 
planned budget and schedule; the more experience, the smaller the 
number of post delivery defects and the greater the adherence.  

Narayanan et al. [18] focused on investigating the relationship 
between task variety and individual learning in software 
maintenance tasks. They performed regression analysis of the data 
from 88 individuals organized in 20 different groups, covering 
5,711 different tasks fulfilled over six years. The authors 
identified that specialized experience lowers the effort to fulfill a 
task; task variety can lower effort and increase productivity, 
however too much variety can hinder productivity. Finally, the 
authors identified that team turnover impacts negatively the 
productivity of teams; the higher the team turnover, the lower the 
productivity. 

Zorgios et al. [19] proposed an explanatory theory for team 
learning related to software development. The authors modeled 
the interaction between learning rates of development teams and 
improvements in their productivity, establishing a causal 
relationship between the human capital and different types of 
learning of organizational teams and the productivity curve. 
Regression analysis was conducted on the data from 3,104 
projects extracted from the repository CD10 of the ISBSG1 and 
confirmed the proposed theory; the learning curve model explains 
the productivity variation caused by different types of 
organizational learning. 

The studies discussed above all focus on either confirming that 
cumulative experience impacts performance in software teams or 
to presenting models to estimate the effort/cost related to software 
projects. However, none of the current studies have deeply 
investigated the impact of different team-related factors on the 
learning rate in the software development team context. They also 
fall short of suggesting recommendations to speed up learning or 
support decision-making process based on the learning profiles of 
different teams. 

3.   RESEARCH METHODOLOGY 
To address our original research question we have conducted an 
exploratory case study [20]. The initial purpose of our study was 
to explore team performance changes over time based on a 
retrospective analysis of archival data, aiming at understanding 
the relationship between autonomous group learning and 
performance improvements in large-scale distributed software 
projects (RQ1), and identifying factors that impact autonomous 
group learning in this context (RQ2). However, our preliminary 
findings from analyzing a subset of the gathered data indicated 
that the expected analysis is not as straight forward as initially 
planned.  

                                                                    
1 International Software Benchmarking Standards Group. 

3.1   Case and unit of analysis selection 
The studied case is a large-scale distributed project at Ericsson, a 
large telecommunication company headquartered in Sweden. The 
company is one of the industry participants in the research project 
focusing on global software development, and thus was selected 
through convenience sampling. The project for the study was 
selected in consultation with the company representatives as a 
case suitable for studying multi-team project, whose degree of 
global distribution increased significantly during the studied 
period including a large ramp-up at one new site. The unit of 
analysis in this case study is a software team. All teams in the 
project are included in the overall investigation, and a subset of 
teams (all teams in one location) are used for analysis in this 
paper. 

The studied project is related to the development of a part of a 
large system in the telecommunication domain, which originated 
in Sweden and has evolved for over 15 years. Many different 
technical and methodological changes were introduced during this 
time, such as changing the programming language used to 
develop/maintain the product (from C++ to Java) and changing 
the software development methodology (from plan-driven to 
agile). By the time of our investigation, the product was being 
developed/maintained by over 150 employees working in teams 
located in Sweden, India, Italy, USA and Turkey.  

The offshore locations were added in response to the growing 
demands for resources and in order to implement market-specific 
customizations. The last expansion happened in India, where ten 
teams were on-boarded in the project in late 2013.  

The work in the studied project follows agile software 
development principles. All teams are cross-functional by design, 
i.e. all members ought to be able to perform design, testing and 
programming duties. In India, there are ten development teams 
consisting of five-six members in each team. Teams receive an 
end-to-end responsibility for designing and implementing a 
development task, such as product customization in case of Indian 
teams. Indian teams and other remote teams are supported by 
software architects (eleven in our case) from the original 
development location in Sweden in addition to the the local 
supporting roles. The architects supported the teams in India by 
responding to questions related to the software architecture and 
also by providing feedback on their work results through code 
reviews. In some urgent or particularly complex situations, the 
architects also participated in actual code implementation. 

Some work items were co-developed by the teams in India and 
more experienced teams located in Sweden, the USA and Italy. In 
those work items, the more experienced teams supported the 
teams located in India, which were not experienced enough to 
conduct the demanded the work by themselves.   

In this paper, our analysis was based on a sub set of the collected 
data, specifically focusing on the Indian site. The decision to 
focus on the Indian site first was driven by the interest of the 
company in the results and ability to provide access to the data 
necessary for the researchers, since this was the last site to be 
incorporated in the project.  

3.2   Research design  
The first two authors of this paper conducted unstructured 
interviews with the main responsible for the investigated case. We 
learned that, when comparing the Indian teams with more 
experienced teams in other locations, there is a clear difference in 
the respective performances. Thus, project managers at Ericsson 



were interested in understanding the reasons for the perceived 
differences, leading to strategies to support the teams in India in 
improving their performance, and was for onboarding new teams 
in the future. 

To do so, we reviewed existing research literature on group 
learning and decided to first investigate whether the teams located 
in India were improving over time by doing their work, i.e. 
whether there is evidence of autonomous learning. Thus, we 
decided to conduct a quantitative analysis through descriptive 
statistics, charts and regression analysis. We complemented the 
quantitative approach with some unstructured and semi-structured 
interviews. 

3.3   Data collection  
The data in the study was collected from a number of sources and 
analyzed in iterations, as follows. 

We first conducted several unstructured interviews to 
understand the context and the motivation for the study, which 
were performed independently by the first and the second author, 
having as the interviewee the project responsible (the third 
author). 

To model the learning curves of the investigated teams, we 
surveyed archival data related to fifteen work items (product 
customizations) carried out over a period of two years, between 
2014 and 2015. The data was extracted from company project 
management systems into an Excel spreadsheet . 

The task complexity data for the studied work items was missing. 
Thus, we conducted four semi-structured group interviews with 
eight software architects who participated in the fulfillment of the 
work items and had extensive knowledge about the project. The 
group interviews were conducted by the first author, with 
participation of the third author and consultation of the second 
author. The relative complexity of the work items was measured 
by the architects, using a planning poker based approach. As a 
result, a numerical value was attributed to each of the investigated 
work items.  

We later on used the complexity values to calculate the 
productivity of each team in each work item. We calculated the 
productivity of a work item as the ration between its complexity 
and its associated actual effort. Note that we were not able to 
calculate in isolation the productivity of each team in a particular 
work item, since it was not possible to identify the part of the 
complexity carried by each team in each work item. We tried to 
do so by tracking the number of lines of code committed by a 
team during the fulfillment of a work item. However, in some 
work items no line of code was implemented, i.e. either testing 
was carried out or documentation was made and vice-versa.  

Rather, we calculated the productivity using the overall 
complexity and the total actual effort, including the effort spent by 
all the teams in each work item. For example, if team x and team 
y participated in work item 1, the productivity of both is 
considered as being the same in relation to work item 1. 

Finally, to be able to conduct a regression analysis and identify 
the impact of the cumulative experience (learning by doing) on 
team performance, we obtained the following additional variables: 

•   Cumulative experience – It is represented by X in the 
original power law used to calculate learning curves (see 
Equation 1). It is calculated by Equation 2, where Xki 
represents the cumulative experience of team k after the 

conclusion of work item i, with Xk1 = 1 (after the conclusion 
of the first work item). Note that we adapted this equation to 
the specifics of our study, i.e. by in the given work item we 
considered the cumulative experience from both finished and 
on-going work items. We did so because in our case there 
were several situations, in which the teams were conducting 
work items at the same time. 

𝑋 = 𝑋'()*	  , 𝑋 = 1	  	  .
(/* (2) 

•   Number of developers – It represents the number of 
developers of a particular team involved in the 
implementation of a work item. 

•   Team stability – It relates to the experience of working 
together and reflects the differences in the team composition, 
given the formal team boundaries, between two subsequent 
work items. This variable relates to the formal teams (in our 
case, five teams, as described in Section 4). It is calculated by 
Equation 3, where TSki represents the number of changes in 
participants from team k when comparing work item i and i-1, 
DOki represents the number of members from team k that were 
involved in work item i-1 but were not involved in i, while 
DIki represents the number of members from team k that were 
not involved in work item i-1 but were involved in i.  

𝑇𝑆'( = 𝐷𝑂'( + 𝐷𝐼'(  (3) 

•   Cross-team cooperation – The number of other teams in 
addition to the investigated team that are involved in the 
fulfillment of a work item. 

•   Cross-team cooperation continuity – It relates to the 
difficulties of inter-team cooperation (on a team level) and 
dispersed work (on a site level) and represents the changes in 
the number of additional teams between two subsequent work 
items and it is calculated by Equation 4, where TDki represents 
the number of changes in the composition of teams/sites 
working on two sequential work item i and i-1, TOki 
represents the number of teams that were involved in work 
item i-1 but were not involved in i, while TIki represents the 
number of teams/sites that were not involved in work item i-1 
but were involved in i.  

𝑇𝐷'( = 𝑇𝑂'( + 𝑇𝐼'(  (4) 

•   Number of architects – It represents the number of software 
architects involved in the execution of a particular work item. 

 

3.4   Data analysis 
Before performing the data analysis, we performed a sanity check 
of the data, to remove any existing inconsistency. To do so, the 
first and third authors of this paper performed independent 
analysis of the data. 

To analyze the data, we calculated descriptive statistics, we 
plotted charts for each team to show the relationship between 
productivity and cumulative experience, and we also employed 
linear regression analysis to identify factors impacting 
autonomous group learning. 

The preliminary analysis results were discussed in a feedback 
meeting and a number of informal follow-up discussions. 
Reflections from the feedback were discussed among the authors 
and resulted in the formulation of the lessons learned presented in 
this paper (see Section 5). 



4.   RESULTS FROM THE CASE STUDY 
When investigating the fifteen work items, we identified that out 
of the ten teams located in India, only seven teams participated 
actively in the implementation (coding and testing) of the studied 
work items (T1, T2, T3, T4, T6, T8 and T9). Five other teams, 
located respectively in Italy (IT), Sweden (ST1, ST2, ST3) and 
the USA (UST) also participated in the analyzed work items. 
Eleven software architects located in Sweden participated actively 
supporting the execution of the work items.  

4.1   Teams, team composition and work items  
As aforementioned, we focused on the teams located in India. 
Thus, first we ordered the work items by their respective starting 
dates, to see whether the productivity of each team improved over 
time, as it is advocated by other studies on learning curves in 
software development teams [9], [14], [16]–[18]. 

To identify the work items (i.e. product customizations - PC) 
related to each team, we analyzed time reports made available by 
Ericsson. Table 1 shows the number of developers of team 
involved in the investigated PCs. The highlighted cells show 
situations where all members of a particular team participated in a 
PC. Note that only four teams located in India participated in at 
least one PC with all their members at once (T1 twice, T2 twice, 
T3 three times, T8 once and T9 once). 

Table 1: Number of developers from each team per work item. 

PC T1 T2 T3 T4 T6 T8 T9 UST IT ST1 ST2 ST3 A 
1 2 3 1 0 1 0 0 0 0 0 0 0 2 
2 3 1 3 0 1 0 0 0 0 5 0 0 0 
3 0 2 4 0 1 0 0 0 0 0 0 0 0 
4 0 1 0 0 0 1 0 0 0 0 0 0 3 
5 0 2 6 0 0 1 0 0 0 0 0 0 5 
6 5 5 6 1 1 3 0 0 5 0 0 0 7 
7 0 0 0 2 0 0 0 3 0 0 0 0 2 
8 0 0 0 0 0 6 3 0 0 0 0 4 6 
9 0 0 0 0 0 2 5 0 0 0 0 0 3 

10 0 0 4 0 0 0 0 0 0 0 0 0 2 
11 0 0 2 0 0 0 0 0 0 0 0 0 2 
12 6 1 0 0 0 1 0 0 0 0 1 0 4 
13 0 0 1 0 0 0 0 0 0 0 0 0 2 
14 0 5 2 0 1 0 0 0 0 0 0 0 6 
15 0 0 6 0 0 0 0 0 0 0 0 0 0 

Table abbreviations: T1, T2, T3, T4, T6, T8, T9 – the studied teams, UST – supporting team from 
the USA, IT – supporting team from Italy, ST1, ST2 and ST3 – supporting teams from Sweden, A 
– supporting architects. 

Since it was not possible to measure the productivity of each team 
in isolation, we analyzed each team using the overall productivity 
in each PC, i.e. the ratio between the complexity of the PC and the 
effort spent by all the teams involved in the PC.  
Tables 2 to 9 show descriptive statistics related to the variables 
that we accounted for in our analysis of the studied teams 
(complexity of the work item, actual effort, productivity, 
cumulative experience, number of developers, team stability, 
involvement of other teams, distribution stability and number of 
architects). Only those teams that participated in at least four work 
items were included in the tables. Descriptive statistics about 
cumulative experience are not displayed because this variable has 
values in an incremental scale with step equals to 1. 
 
 
 

Table 2: Descriptive statistics related to team productivity.  

Team Average  Std. dev. Max Min 
T1 20.49 5.93 26.73 12.44 
T2 29.19 11.68 12.44 51.19 
T3 39.17 25.82 12.44 104.17 
T6 25.61 9.24 12.44 35.75 
T8 39.30 28.36 12.44 90.84 

From Table 2 we see that T3 and T8 have the best average 
productivity, although it is hard to find any pattern based on the 
data presented in this table because the standard deviation is high 
in relation to all teams, especially for T3 and T8. 

Table 3: Descriptive statistics related to the work complexity.  

Team Average  Std. dev. Max Min 
T1 80 63.77 170 20 
T2 72.5 52.51 170 15 
T3 63.89 53.10 170 10 
T6 77 60.17 170 20 
T8 135 116.88 350 15 

Table 3 shows that T8 dealt with more complex PCs on average. 
However, again, the standard deviations in this table are too high 
to indicate it as a pattern. 

Table 4: Descriptive statistics related to the team actual effort.  

Team Average  Std. dev. Max Min 
T1 5017.30 5836.68 3208 954 
T2 3480.13 4279.68 13662 293 
T3 2884.89 4209.88 13662 144 
T6 4190.2 5372.34 13662 954 
T8 4653 4600 13662 293 

In Table 4 we see that T1 and T8 were involved in PCs that 
demanded the greatest effort to be fulfilled, although there is no 
huge difference between the average actual effort figures between 
the teams. The standard deviations are also too high to identify 
any patterns in this table. 

Table 5: Descriptive statistics related to the number of 
developers.  

Team Average  Std. dev. Max Min 
T1 4 1.83 6 2 
T2 2.5 1.69 5 1 
T3 3.78 1.92 6 1 
T6 1 0 1 0 
T8 2.33 1.97 6 1 

Table 5 shows that there is no significant difference between the 
average number of developers of the teams involved in a task, 
except for T6, which despite of having six members, had only one 
developer participating in the investigated PCs. 

Table 6: Descriptive statistics related to the team stability.  

Team Average  Std. dev. Max Min 
T1 1 0.82 2 0 
T2 2 1.51 4 0 
T3 1.56 1.33 4 0 
T6 0 0 0 0 
T8 1.83 1.47 4 0 

In Table 6 we can see that involvement of team members working 
together from one task to another changes often, i.e. the ‘task 



teams’ are unstable. Note that team stability for T6 reflects the 
fact that one and the same developer participated in the 
investigated PCs. 

Table 7: Descriptive statistics related to cross-team cooperation.  

Team Average  Std. dev. Max Min 
T1 3.50 1.73 6 2 
T2 2.63 1.60 6 1 
T3 1.67 2 6 0 
T6 3 1.73 6 2 
T8 2.17 1.94 6 1 

Table 7 shows the number of teams involved in the execution of 
supporting a particular team. The highest number of sites involved 
in a single PC execution was six. Except for T3, all teams 
cooperated with other teams on task completion, most of which 
were located also in India, except the few teams from other 
locations, UST, IT, ST1, ST2 and ST3. 

Table 8: Descriptive statistics related to the stability of cross-
team cooperation.  

Team Average  Std. dev. Max Min 
T1 1.25 0.96 2 0 
T2 2 1.31 4 0 
T3 1.67 1.66 5 0 
T6 1.6 1.34 3 0 
T8 0.8 0.84 3 0 

In Table 8 we looked at the stability of the cross-team cooperation 
and it shows that it was often the case that the investigated teams 
cooperated with a different sets of team over time. 

Table 9: Descriptive statistics related to the number of architects.  

Team Average  Std. dev. Max Min 
T1 3.25 2.99 7 0 
T2 3.38 2.62 7 0 
T3 3 2.5 7 0 
T6 3 3.32 7 0 
T8 4.67 1.63 7 3 

Table 9 shows that all teams have been often supported by the 
architects from the original development location. The maximum 
number of architects supporting each of the studied teams was 
seven, which occurred in the PC that demanded greatest effort and 
support by architects to be fulfilled (PC:6, see Table 1). 

4.2   Productivity curves 
To graphically see whether the productivity of each team was 
going up as they accumulated experience (autonomous learning), 
we plotted the relationship between cumulative experience 
(participation in work items – x-axis) versus overall productivity 
(y-axis). The charts for all teams are presented in Figure 1.  

 
Figure 1: Team cumulative experience vs overall productivity.  

Figure 1 shows that T1 improved from the first PC to the second, 
then showed decreased performance in the third PC and returned 
to a similar productivity level in the forth PC. Interestingly, lowest 

productivity point, the disruption point in the productivity curve, 
was PC:6, the one that involved the largest number of teams and 
architects, including also a team from another site located in Italy. 
Although this was not the most complex PC in terms of 
complexity points assigned in the expert evaluation, it was the one 
that demanded most effort to be carried out, which was related to 
the criticality of the PC for the client.  

The data on T2 from in Figure 1 shows that T2 improved its 
performance steadily in the first four tasks, and then showed a 
decrease in the next two PCs, and finally continuous increase in 
the last two PCs. In contrast to T1, T2 curve demonstrates two 
periods of gradual performance improvements over time. Like T1, 
T2 also participated in PC:6, which is the lowest performance 
point on its curve.  

T3 curve does not show any significant improvement over time, 
although this team was assigned two PCs that did not involve 
other teams (carried out within one team).  Teams best 
performance was achieved in PC:13, which involved only one 
developer assisted by two architects from the original 
development location. This means that the “team’s” peak 
performance is not related to team cooperation and group 
learning.  

When it comes to T6, the productivity curve reflects individual 
performance of the one developer involved in the investigated 
PCs. Thus, it is not possible to related it to group learning within 
T6, although the curve does reflect a continuous performance 
improvement in the first three tasks. The disruption, as for the 
other teams, occurred in PC:6. 

Interestingly, T8 demonstrates a decrease in performance in the 
second and the third tasks, in comparison with the first one, then 
an increase, with the peak performance for the fifth task, and a 
relatively low performance in the subsequent task. The forth task 
was PC:8, in which T8 participated as a complete team. In both 
forth and fifth tasks (PC:9) T8 worked only with T9 and the 
architects, and thus means that the cumulative experience from 
working together (and potentially group learning) could determine 
the better performance. 

4.3   Identifying the role of different factors 
Based on the analysis of the teams’ engagement in different work 
items presented above was, we performed linear regression 
analysis for each team. The tested model included productivity as 
the dependent variable, cumulative experience as the dependent 
variable and as control variables – complexity of the work item, 
actual effort, productivity, cumulative experience, number of 
developers, team stability, cross-team cooperation, cross-site 
cooperation and the number of architects (see Section 3.3 for 
details about each variable). 

We designed the following hypotheses to be analyzed herein: 

H1:  The bigger the experience of a team, the better is its 
performance. 

H2:  The more stable is a team from one work item to another, 
the better is its performance. 

H3:  The fewer teams involved in one work item, the better is 
the performance. 

H4:  The more stable is the cross-team cooperation setting, the 
better is the performance of the involved teams. 

H5:  The more architects involved, the better is the 
performance. 



H1 is about the impact autonomous learning in the development 
teams’ productivity. H2 relates to the role of team stability in 
relation to team performance. H3 aims at show the relationship 
between performance and the number of other teams supporting a 
particular. H4 is about the stability of the cross-team cooperation 
setting, i.e. how stable is the composition of teams supporting a 
particular team. Finally, H5 relates to the impact of architects in 
team performance.   

We used SPSS to run the linear regression analysis, first using the 
enter method and second using stepwise method. The significance 
of the results was evaluated at ∝= 0.05. Unfortunately, all the 
calculated models were statistically insignificant, which does not 
allow us to use such a results to evaluate our hypothesis. The only 
statistically significant model was the stepwise regression for T8, 
where the obtained model is presented in Equation 4 with R2 of 
0.516. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 42.98 − 5.25 ∗ 𝐶𝑟𝑜𝑠𝑠_𝑡𝑒𝑎𝑚_𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	  (4) 

The results of the significant model demonstrate support for H3, 
i.e. the fewer teams involved in the execution of a work item, the 
better the performance.  

The results of the regression analysis do not support H1, H2, H4 
and H5. However, we can see some indication in the plotted 
charts that teams that worked in more PCs (H1), specially in a 
more continuous way, performed better (see Figures 1; curves of 
T1, T2 and T6). The curve of T8 indicates that the longer different 
teams work together, the better their performance may get (H4).  

The results of the conducted regression analysis support only H3, 
i.e. the fewer teams involved, the better the performance of the 
involved teams.  

4.4   Discussion of the results 
The results of our investigation provide partial support for the 
research questions. In relation to RQ1, we can see that most of the 
investigated teams improved over time until they faced a work 
item that was more critical (time wise), which demanded the 
participation of several teams distributed in different locations. As 
per the result of the conducted regression analysis (H3), the 
learning process of the teams might be disturbed by the need for 
working with several other teams (PC:6). This is also indirectly 
supported by existing literature on global software development 
suggesting that projects employing many distributed teams and 
especially complex projects that require great amount of domain 
expertise are less successful [21], which was the case with PC:6. 
Unfortunately, based on our results we don’t have an explanation 
for why T3 and T8 did not improved over time in the same way as 
compared to T1, T2 and T3. 

In relation to RQ2, the conducted regression analysis did not show 
a significant correlation between team productivity and 
accumulated experience. Nevertheless, the charts plotted for T1 
and T2 show that the teams’ performance improved over time 
until a certain point, which indicates that maybe there is some 
relationship between productivity and accumulated experience in 
the investigated case. We intend to investigate further such aspect, 
incorporating data from work items to be conducted during 2016.  

Although we did not conduct a regression analysis including 
learning as a dependent variable, we believe that it is possible to 
relate our results with group learning. The regression analysis 
indicates that the number of teams supporting a particular team 
(cross-team cooperation) is negatively correlated to team 

performance and thus is probably also negatively correlated with 
group learning. As per existing literature [3], [4], [12], to enable 
group learning it is mandatory to have an environment that fosters 
learning behaviors such as sharing of information, asking for help 
and talking about errors, to name a few. Team members are able 
to exercise these behaviors only when there is psychological 
safety within the team, i.e. the shared belief that team members 
feel safe for interpersonal risk taking [3]. In our investigation it is 
fair to assume that a lack of cooperative tasks for the entire team 
over time negatively influenced the team safety and hindered the 
exercise of learning behaviors, since a team or a fraction of  a 
team often had to work with members of several other teams.  

Challenges with team psychological safety and learning behaviors 
were probably also introduced by the changes in team members 
working together over time. Although our results did not support 
H2, the fact that the members of the studied teams were involved 
in different work items at the same time, and every next task 
brought along new cooperation mates hindered group learning and 
thus better performance of the teams over time. We identified that 
it was often the case that “temporary task teams” were composed 
to work on the work items. As identified by Narayanan et al. [18], 
turnover of the members in a team was found to be negatively 
correlated to team performance. In our case, the involved assets 
did not leave the company within the investigated time period. 
However, they were very often allocated to different temporary 
task teams that changed very often. The high turnover of work 
mates must have hindered the cultivation of psychological safety 
within the formal teams (determined by the formal membership). 

While discussing the results of our investigation with the project 
responsible in Ericsson, we focused on understanding why the 
work items were often assigned to “ad-hoc teams” rather than to 
the formal teams. The project responsible reported the following: 
“The heavy ramp-up puts management in a tough spot. They cannot give 
features to completely new teams to develop and at the same time keep the 
other teams intact. The new teams will get nothing done then. So they 
instead need to add new people to existing teams and move out some 
experienced developers to build new teams instead. The “fork” approach 
is simply taken. This is from a practical point of view the best way to deal 
with the situation, but of course not optimal from a group learning 
perspective. 

Management people in general and in particular in our site located in 
India have to very often deal with work items that risk becoming delayed. 
So, they deal with that by putting more experienced people on the 
prioritized task.” 
Thus, the fact that the investigated work items were mainly done 
by ad-hoc teams is related to tight time restrictions and to the fact 
that there were many new developers in the teams, who had to be 
supported by experienced developers from other teams.  
Performance is higher when assigning tasks to the most competent 
people (e.g. in many situations software architects). However, 
while cultivating individual competence in focused areas might be 
economically feasible short term, research suggests that higher 
performance can be achieved by cultivating teamwork and thus 
fostering group learning [2], [3]. Companies accumulating what is 
regarded as social capital, i.e. knowledge resources that can be 
obtained through teamwork and networking, are rewarded with 
higher performance [22]. To achieve such a thing, it is mandatory 
to keep team members working closely with the other members of 
their formal team, reducing as much as possible the fulfilment of 
work items by ad-hoc teams with high team member turnover. 
The differences between formal teams and ad-hoc teams have 
probably one additional important implication. It is fair to assume 



that formal teams will show higher performance than groups. 
However, the vast majority of performance oriented studies in 
software engineering are based on archival data, often coming 
from publicly available repositories. However, what has been 
studied as a “software team” is not always clear and/or accurate 
(formal or ad-hoc). As such, many team- and learning-related 
aspects in these studies might be overlooked or impossible to 
judge due to the missing or incomplete data. 

Hackman in 1987 has defined a team as a work group that exists 
within the context of a larger organization and shares 
responsibility for a team product or service [23]. Katzenbach and 
Smith suggest looking into four key elements that determine a 
team – common commitment and purpose, performance goals, 
complementary skills, and mutual accountability [24]. And finally 
there are project teams of often temporary nature. The question is 
then whether it is sufficient to simply put individual programmers 
together and expect them to work effectively.  

Furthermore, existing software engineering literature related to 
learning and performance does not make any distinction between 
individual learning within teams and group learning and more 
research is required to better understand the impact of the 
teamwork on performance [9], [14]–[16], [18], [19].  

Thus, we believe that it is mandatory for software engineering 
researchers to clarify whether what is being studied are formal or 
ad-hoc teams. It is also important to distinguish between what is 
being learned by individuals within a team (individual learning) 
and what is learned by a team as an “atomic” entity (group 
learning), since group learning is different than the aggregation of 
what is learned by team members; rather, team learning is about a 
new understanding shared by all the team members about how the 
team is expected to function [12].  

We intend to further investigate how team stability and cross-team 
cooperation stability relates to psychological safety of teams and 
thus to learning behaviors and team performance. To do so, we 
plan to conduct semi-structured interviews with software 
architects involved in the investigated work items, focus groups 
with the involved teams, and apply the instrument developed by 
Edmondson to measure psychological safety and learning 
behaviors [3]. At the same time we also consider studying 
individual learning curves for members of unstable formal teams 
or projects employing temporary task team strategy. 

In this paper. we focused on the role of autonomous learning in 
development teams involved in large-scale projects. However, 
individuals and teams can also learn by means of deliberated 
activities, which is know as induced learning, i.e. this kind of 
learning is triggered by activities like trainings and investments in 
research & development [25]. This type of learning has been very 
rarely investigated by software engineering researchers [19]. 
Thus, we also intend to investigate what is the interplay between 
autonomous learning and induced learning in teams involved in 
large-scale software projects. 

4.5   Validity threats 
The threats to the validity of findings in this paper are discussed 
using the classification by Runeson and Höst [20].  

Reliability validity threats are related to the repeatability of a 
study, i.e. how dependent are the research results on the 
researchers who conducted it [20]. We minimized this threat by 
involving several researchers in the design and execution of our 
investigation. Furthermore, our observations and findings were 
verified with the company representatives to avoid false 

interpretations. We also designed an explicit case study protocol, 
following the guidelines by Runeson and Höst [20].  

Internal validity threats are related to factors that the researcher is 
unaware of or cannot control the extent of their effect in the 
investigated causal relationship [20]. Learning and productivity 
are constructs that are influenced by a myriad of factors, such as 
task complexity and personnel attrition, which make the 
identification of causal relationship between the two constructs 
challenging; there are several confound factors. To mitigate such 
threats, we accounted for factors that are reported by related 
literature. In addition, we performed a sanity check of the factors 
based on the expertise of the third author.  

Construct validity threats reflect whether the measures used 
really represent the intended purpose of the investigation [20]. To 
mitigate this threat, we used data from different sources, such as 
archival data and interviews with the project responsible and 
software architects. However, it should be noted that our work has 
a severe limitation related to the way we dealt with teams’ 
productivity. We were not able to isolate the productivity of each 
team in each related work item. Thus, it may be the case that our 
results would be different with we had managed to isolate the 
productivity of each team in each work item. However, in practice 
it was impossible, which is one of the lessons we learned and 
share in this paper. Nonetheless, we made an attempt to mitigate 
this threat by plotting the charts and cross checking them with the 
data related to other accounted factors, such as the number of 
involved developers in each team and the number of other 
involved teams. We intend to further conduct interviews with 
people from the management level and try to elicit at least a rough 
estimate about the contribution of each team to the task (the share 
of work from the total size expressed in complexity points). 

External validity threats limit the generalization of the findings of 
the investigation [20]. Since we employed the case study method 
to conduct the investigation reported herein, i.e. our findings are 
strongly bounded by the context of our study. In addition, the 
investigated case involved only one company. To mitigate this 
threat, we made an attempt to detail the context of our study as 
much as possible, complying with corporate confidentiality 
concerns. We believe that the results reported herein are of 
particular interest for researchers and practitioners involved in 
large-scale distributed software projects that share a similar 
context, and generally to anyone studying learning in software 
teams. 

5.   LESSONS LEARNED 
During the course of our research reported herein, we learned 
some lessons that can help other researchers when conducting 
studies related to learning and performance, and in particular in 
the context of large-scale software development projects.  

First of all, we would like to emphasize that most existing 
research on autonomous learning in teams in general and in 
software development teams in particular relies on quantitative 
data and thus quantitative data analysis methods, such as 
regression analysis. However, to achieve statistically significant 
results, it is mandatory to have a considerable amount of data 
points. Green [26] argues that a sample must be as big as 104 data 
points + K, where K means the number of independent variables 
in the model. Maxwel [27] extended the work by Green, 
accounting for the correlation between independent variables in 
the model. According to him, the smallest size of a sample that is 
able to lead to significant regression analysis results is 191 data 
points. These points in software teams are related to the work 
items performed by the teams.  



In our case, we have studied teams responsible for implementation 
of product customization tasks. Although we collected data that 
covered two years of the project, the involved teams managed to 
implement only fifteen unique work items, which appears to be 
way too few to enable statistically significant regression analysis. 
In practice, we believe that the product customization tasks must 
have been broken down to smaller tasks carried out by individual 
task team members, or sub-groups of members. Unfortunately, we 
could not identify any sub-tasks in our case, which would have the 
actual effort data measured, and involve cooperative work. Thus, 
the first two lessons learned are: 
 

Lesson #1:  Gathering the required number of data points to perform 
regression analysis in large-scale projects may be hard.   

Lesson #2:  Consider what is a work item in a particular context and 
whether larger tasks can be broken down to smaller yet 
traceable and measurable sub-tasks.  

 

Based on the first few learnings we assumed that studying teams 
that have been working for a prolonged period of time (such as 
teams from the original development location in our case) would 
have provided enough data points to study group learning 
successfully. However, to be able to analyze whether teams are 
learning by doing (autonomous learning), it is necessary to detect 
the inception date of the teams and the sequence of each work 
item carried out [6].  

In the attempt to define the inception of teams we also tried to 
understand what a team is. What we learned severily challenged 
our further analysis. First of all, for many teams that have existed 
for a long time, the team inception date was difficult to trace, and 
what is more important, since the team members changed and 
teams were also reformed, studying group learning for those 
teams retrospectively became meaningless. Therefore, the third 
lesson learned is:  
 

Lesson #3:  Historical data from team inception maybe hard to collect 
if teams are unstable due to attrition or frequent team 
reformation. 

 

In our case, many work items were carried out in parallel, which 
made it hard to identify the experience accumulated through on 
going work items. Hence, the fourth lesson learned is: 
 

Lesson #4:  Detecting the step-wise accumulation of experience may be 
hard when teams carry out parallel work. 

 

Our attempt to understand who are the members of teams working 
on the fifteen customization tasks led us to one of the most 
important findings. We identified that work items were very 
seldom assigned to a single formal team. Instead, we found that it 
was often the case that temporary ad-hoc task teams were created 
for the work items. This means that in practice we could not study 
group learning, where the group boundary was related to the 
formal boundaries of the teams. We also assumed that formation 
of task teams, in fact, might have prevented group learning, since 
unstable working groups were not exposed to the benefits of 
teamwork. Thus, the fifth lesson learned is: 
 

Lesson #5:  Due to specific circumstances, work may be carried out by 
temporary “ad-hoc” teams rather than “official” teams, 
which should be taken into account when collecting and 
analyzing the data. 

 

To check and supplement the archival data used in our 
investigation, we conducted some interviews. However, as time 

goes by it becomes harder and harder for people to remember 
details regarding work items finished long time ago, maybe 
limiting the usefulness of the data collected through interviews. 
Thus, the sixth lesson learned is: 
 

Lesson #6:  Retrospective correction or supplement of historical data 
may decrease data reliability or even be impossible to 
perform. 

 

When surveying existing literature from other more mature 
research fields (e.g. management sciences and pscychology) to 
define the theoretical framework of our investigation, we 
identified that learning and performance have been treated as 
independent constructs by researchers who investigate group 
learning and its impact on team performance. Based on our 
experiences and related literature we also believe that it is 
important to study learning and performance as distinct 
constructs, because: 

•   Performance can be affected by many factors, such as project 
or organizational environment changes [28], task complexity, 
personnel attrition, fatigue and boredom [4], or by inclusion of 
multiple teams as in our case, while these factors might have 
no influence on the team learning process.  

•   A team or individual may have learned something that would 
not necessarily lead to performance improvement [5], [12], or 
a team or individuals may not have the opportunity to employ 
what was learned [28]. 

Hence, the seventh and last lesson learned is: 
 

Lesson #7:  Data collection shall focus on eliciting learning-related 
factors and team performance data, while data analysis 
shall recognize them as distinct constructs. 

 

 

6.   CONCLUSIONS AND FUTURE WORK 
In this paper, we report the results and lessons learned of an 
investigation related to group learning and performance in large-
scale software development teams. We investigated two years of 
work performed by offshore teams recently onboarded in a large-
scale project in Ericsson.  

Our results show that four out of five teams demonstrated steady 
productivity improvements in the few first tasks, then stopped 
improving when confronted with a large complex work item, and 
in what followed showed random performance. We determined 
that the large complex task required the participation of a large 
number of teams distributed across multiple sites, which 
introduced performance challenges. This was partially supported 
by the results of a regression analysis that we conducted. 
However, our attempts to understand other reasons for 
performance variance were unsuccessful. 

We believe that more research must be conducted to clarify the 
relationship between team stability, cross-team cooperation, 
psychological safety and learning behaviors in large-scale 
software development teams.  

In continuation of our study, we intend to complement the 
research presented herein by: 

•   Clarifying whether teams are really improving performance 
over time by extending the number of data points  through 
incorporation of work items to be finished until the end of 
2016; 



•   Separating temporary task team and formal team performance 
by “filtering” the contribution of each team in terms of actual 
effort and the size of respective work expressed in complexity 
points; 

•   Investigating how team stability and continuity of cross-team 
cooperation relates to psychological safety of teams and thus 
to learning behaviors and team performance. 

As a result of our preliminary analysis we also proposed seven 
lessons learned that may help other researchers when conducting 
new research related to group learning, and especially when 
collecting data for such research studies from large-scale software 
development teams. 
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