
Group Learning and Performance in a Large-scale
Software Project: Results and Lessons Learned
Ricardo Britto

Blekinge Institute of Technology
SE 37179 Karlskrona, Sweden

ricardo.britto@bth.se

Darja Šmite
Blekinge Institute of Technology
SE 37179 Karlskrona, Sweden

darja.smite@bth.se

Lars-Ola Damm
Ericsson

SE 37133 Karlskrona, Sweden
lars-ola.damm@ericsson.com

ABSTRACT
Background: Research on teams originated from the social
sciences and brought a number of new topics into the repertoire of
software engineering. Teams and teamwork are recognized for the
promised benefits of i.e. increased performance. Performance is
often linked to experience gains, and along with individual
learning teamwork facilitates what is recognized as group
learning.
Aims: In this paper, we report our lessons learned from an attempt
to study the relationship between group learning and performance
in a large-scale software project.
Method: We conducted an exploratory case study of an on-going
large-scale distributed project in Ericsson. The data collected
included archival data and both unstructured and semi-structured
interviews. The data was analyzed using descriptive statistics,
charts and regression analysis.
Results: The results suggest that some teams improved their
performance over time until they were forced to work cooperate
with several other teams. However, it is not completely clear role
of accumulated experience and other aspects, such as team
stability and number of developers.
Conclusions: We believe that ad-hoc team formation and team
member rotation might have resulted in a failure to benefit from
group learning. In addition, the fact that developers worked
simultaneously on different tasks could have hindered their
performance. However, we believe that further research must be
conducted to provide a stronger evidence about the identified
result. Based on the experience acquired by conducting this study,
we report some lessons learned that can support researchers and
practitioners when investigating the topic addressed in this paper.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Programming
teams, Productivity.

General Terms
Performance, Human Factors.

Keywords
Group learning, Team performance, Large-scale software
development, team turnover.

1. INTRODUCTION
Instead of individual developers and their performance, modern
and especially innovative software organizations shifted their
focus towards teams as the basic work unit, giving rise to a
radically new approach to managing software projects [1]. This, in
turn, has inspired many researchers in software engineering and
related domains to conduct empirical studies with software teams
as the main units of analysis. Cultivation of teams and teamwork
has been associated with increased performance, innovation, and
employee satisfaction [1]–[5]. But what is the role of teamwork in
determining higher performance?

Performance is said to improve over time, as individuals and the
team accumulate experience doing their work (autonomous
learning), i.e. there is a learning curve that relates experience and
performance [6] (see Figure 1). When it comes to teamwork,
individuals in a team support each others learning through e.g.
asking questions, seeking feedback, experimenting, reflecting on
results, and discussing errors or unexpected outcomes of actions
[3]Error! Reference source not found.. Thus teamwork enables
greater performance improvements than individual work.

Interestingly, while performance of teams has attracted a lot of
attention, group learning as a construct has not been included in
the common agenda of software engineering research.

Figure 1: Examples of different learning curves (based on

Anzanello and Fogliatto [6])

In this paper, we aimed at investigating the relationship between
group learning, focusing on autonomous learning, and
performance in a large-scale software project that involved several
teams distributed around the globe. Our findings are a part of a
larger empirical investigation about how individuals and teams
learn in large-scale distributed software projects. Our empirical
study discussed in this paper addressed the following research
questions:

RQ1: Do software development teams in large-scale
distributed projects improve their performance over
time?

RQ2: What factors impact autonomous group learning in
large-scale distributed software projects?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM Conference’16, September 8–9, 2016, Ciudad Real, Spain.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

The main contribution of this paper is two-fold:

• We present empirical results on how newly on-boarded
software teams perform over time in a large-scale distributed
project that has evolved for over fifteen years.

• We share the lessons learned from our attempt to investigate
autonomous group learning in the aimed context.

The reminder of the paper is organized as follows. Related work
and the motivation for our study is summarized in Section 2.
Section 3 outlines our research methodology. Section 4 presents
and discusses our results. Section 5 presents the lessons learned
during the conduction of the study reported herein. Finally,
Section 6 concludes the paper with the summary of our findings
and plans for future work.

2. RELATED WORK
Research on teams originated from the social sciences and
brought a number of new topics into the repertoire of software
engineering, information systems and other related research
disciplines. These include teamwork, personality characteristics of
team members, interpersonal relationships among team members,
and issues with team composition [7], to name a few. Soon
teamwork in software teams has been recognized as an enabler
and determinant of performance [8].

Performance (e.g. productivity, quality, efficacy and efficiency)
in software development is expressed in different ways, such as
the effort needed for creating the wanted outcome or a number of
post-delivery defects, among others. Performance is often linked
with experience, which can be related to learning and the
acquisition and accumulation of knowledge, skill and competence
[9]. In this section, we summarize the key concepts and existing
research on learning, learning curves and their application in
software engineering.

2.1 Learning
Learning is defined as “the acquisition of knowledge or skills
through study, experience, or being taught” [10]. To better
understand the relationship between teamwork and learning, we
hereby describe the key concepts related to learning [11]:

Knowledge is the result of an interaction between the capacity and
the opportunity to learn. It is in general associated with formal
learning (organized and structured learning), although can
eventually be the result of non-formal (unplanned learning) or
informal learning (experiential or accidental learning).

Skill is the combination of mental and physical capabilities that
demand practice to acquire. In many cases, the previous
obtainment of knowledge is a pre-requisite for the achievement of
a particular skill. It is in general associated with informal learning,
although can eventually be the result of non-formal or formal
learning.

Competence is the extent to which individuals interact effectively
with the environment. It describes personality aspects associated
with better performance and higher motivation of individuals. It is
acquired through informal learning.

Most of the studies focusing on learning and performance are
based on the assumption that performance improvements are due
to autonomous learning (learning by doing). However,
individuals in a team support each others learning in a number of
ways. Group learning is a process of reflection and action, which
encompasses different learning behaviors, such as asking
questions, seeking feedback, experimenting, reflecting on results,

and discussing errors or unexpected outcomes of actions [3]. In
fact, team learning is about a new understanding shared by all the
team members about how the team is expected to behave [12].

2.2 Learning curves
A learning curve describes the performance of teams or
individuals in a mathematical way. It was proposed by Wright
[13] based on observations of how the costs associated with
assembling airplanes decreased as the involved workers
accumulated experience in doing the same type of task.

Learning curves can be modeled using univariate or multivariate
models, e.g. log-linear, hyperbolic and exponential models [6].
Log-linear models are most frequently employed due to their
simplicity. The original model proposed by Write [13] is a log-
linear model, which is represented by Equation 1.

Y = CX% (1)

In Equation 1, y is the average time (or cost) per unit demanded to
produce X units (cumulative experience) and C is the time (or
cost) to produce the first unit. The parameter b, also known as
learning rate, represents the slope of the learning curve. Equation
1 has been modified by the research community and resulting in
other versions of the aforementioned power law, e.g. the De Jong
and S-curve models [6].

2.3 Learning curves in software engineering
The learning curve phenomenon is well explored in domains such
as electronic, automotive, construction and chemical industries
[6]. Nevertheless, the topic of learning curves in software
engineering is relatively recent, although the applicability of
learning curves models to relate cumulative experience and
performance in software development has been confirmed in a
number of studies, as described in related literature reviews [14],
[15].

In a systematic review on team learning in information systems
development, Spohrer et al. [15] concluded that accumulation of
experience determines team performance. However, none of the
five studies focusing on learning curves reviewed by the authors
provided an empirically based explanation for the identified
causal relationships.

In the following, we summarize the results of the studies on
learning curves in software engineering.

Tüzün and Tekinerdogan [14] investigated the impact of the
learning curve phenomenon on the return of investment (ROI) in
the software product line engineering and concluded that the
learning curve has a clear impact on the ROI of software
development companies, although such an impact gets lower
when the number of products of a particular software product line
increases.

Huntley [16] investigated the learning curve phenomenon in open-
source programming projects. He applied regression analysis on
the data collected from Apache and Mozilla projects to analyze
the relationship between experience and bug cycle times and
identified a higher impact of the learning curve for a mature
project compared to an emerging project, i.e. the learning curve
phenomenon is dependent on the context of each project.

Boh et al. [9] examined learning curves on an individual, group
and organizational level. The authors performed regression
analysis of data from 14 years of systems development work in a
telecommunication domain and concluded that specialized
experience impacts primarily the productivity associated with
tasks fulfilled independently by team members (the more

specialized experience from the same product, the greater the
productivity in doing individual tasks), while diverse experience
has the biggest impact on the productivity associated with tasks
performed by more than one person, on both group and
organizational levels (the more diverse experience from related
and unrelated products, the greater the productivity in doing group
or organizational tasks).

Huckman et al. [17] investigated the impact of team stability,
team familiarity and role experience on performance. The authors
performed regression analysis of 1,004 development projects
completed over two years and found that team familiarity and role
experience impacts the quality of the developed software (in terms
of number of post-delivery defects) and the adherence to the
planned budget and schedule; the more experience, the smaller the
number of post delivery defects and the greater the adherence.

Narayanan et al. [18] focused on investigating the relationship
between task variety and individual learning in software
maintenance tasks. They performed regression analysis of the data
from 88 individuals organized in 20 different groups, covering
5,711 different tasks fulfilled over six years. The authors
identified that specialized experience lowers the effort to fulfill a
task; task variety can lower effort and increase productivity,
however too much variety can hinder productivity. Finally, the
authors identified that team turnover impacts negatively the
productivity of teams; the higher the team turnover, the lower the
productivity.

Zorgios et al. [19] proposed an explanatory theory for team
learning related to software development. The authors modeled
the interaction between learning rates of development teams and
improvements in their productivity, establishing a causal
relationship between the human capital and different types of
learning of organizational teams and the productivity curve.
Regression analysis was conducted on the data from 3,104
projects extracted from the repository CD10 of the ISBSG1 and
confirmed the proposed theory; the learning curve model explains
the productivity variation caused by different types of
organizational learning.

The studies discussed above all focus on either confirming that
cumulative experience impacts performance in software teams or
to presenting models to estimate the effort/cost related to software
projects. However, none of the current studies have deeply
investigated the impact of different team-related factors on the
learning rate in the software development team context. They also
fall short of suggesting recommendations to speed up learning or
support decision-making process based on the learning profiles of
different teams.

3. RESEARCH METHODOLOGY
To address our original research question we have conducted an
exploratory case study [20]. The initial purpose of our study was
to explore team performance changes over time based on a
retrospective analysis of archival data, aiming at understanding
the relationship between autonomous group learning and
performance improvements in large-scale distributed software
projects (RQ1), and identifying factors that impact autonomous
group learning in this context (RQ2). However, our preliminary
findings from analyzing a subset of the gathered data indicated
that the expected analysis is not as straight forward as initially
planned.

1 International Software Benchmarking Standards Group.

3.1 Case and unit of analysis selection
The studied case is a large-scale distributed project at Ericsson, a
large telecommunication company headquartered in Sweden. The
company is one of the industry participants in the research project
focusing on global software development, and thus was selected
through convenience sampling. The project for the study was
selected in consultation with the company representatives as a
case suitable for studying multi-team project, whose degree of
global distribution increased significantly during the studied
period including a large ramp-up at one new site. The unit of
analysis in this case study is a software team. All teams in the
project are included in the overall investigation, and a subset of
teams (all teams in one location) are used for analysis in this
paper.

The studied project is related to the development of a part of a
large system in the telecommunication domain, which originated
in Sweden and has evolved for over 15 years. Many different
technical and methodological changes were introduced during this
time, such as changing the programming language used to
develop/maintain the product (from C++ to Java) and changing
the software development methodology (from plan-driven to
agile). By the time of our investigation, the product was being
developed/maintained by over 150 employees working in teams
located in Sweden, India, Italy, USA and Turkey.

The offshore locations were added in response to the growing
demands for resources and in order to implement market-specific
customizations. The last expansion happened in India, where ten
teams were on-boarded in the project in late 2013.

The work in the studied project follows agile software
development principles. All teams are cross-functional by design,
i.e. all members ought to be able to perform design, testing and
programming duties. In India, there are ten development teams
consisting of five-six members in each team. Teams receive an
end-to-end responsibility for designing and implementing a
development task, such as product customization in case of Indian
teams. Indian teams and other remote teams are supported by
software architects (eleven in our case) from the original
development location in Sweden in addition to the the local
supporting roles. The architects supported the teams in India by
responding to questions related to the software architecture and
also by providing feedback on their work results through code
reviews. In some urgent or particularly complex situations, the
architects also participated in actual code implementation.

Some work items were co-developed by the teams in India and
more experienced teams located in Sweden, the USA and Italy. In
those work items, the more experienced teams supported the
teams located in India, which were not experienced enough to
conduct the demanded the work by themselves.

In this paper, our analysis was based on a sub set of the collected
data, specifically focusing on the Indian site. The decision to
focus on the Indian site first was driven by the interest of the
company in the results and ability to provide access to the data
necessary for the researchers, since this was the last site to be
incorporated in the project.

3.2 Research design
The first two authors of this paper conducted unstructured
interviews with the main responsible for the investigated case. We
learned that, when comparing the Indian teams with more
experienced teams in other locations, there is a clear difference in
the respective performances. Thus, project managers at Ericsson

were interested in understanding the reasons for the perceived
differences, leading to strategies to support the teams in India in
improving their performance, and was for onboarding new teams
in the future.

To do so, we reviewed existing research literature on group
learning and decided to first investigate whether the teams located
in India were improving over time by doing their work, i.e.
whether there is evidence of autonomous learning. Thus, we
decided to conduct a quantitative analysis through descriptive
statistics, charts and regression analysis. We complemented the
quantitative approach with some unstructured and semi-structured
interviews.

3.3 Data collection
The data in the study was collected from a number of sources and
analyzed in iterations, as follows.

We first conducted several unstructured interviews to
understand the context and the motivation for the study, which
were performed independently by the first and the second author,
having as the interviewee the project responsible (the third
author).

To model the learning curves of the investigated teams, we
surveyed archival data related to fifteen work items (product
customizations) carried out over a period of two years, between
2014 and 2015. The data was extracted from company project
management systems into an Excel spreadsheet .

The task complexity data for the studied work items was missing.
Thus, we conducted four semi-structured group interviews with
eight software architects who participated in the fulfillment of the
work items and had extensive knowledge about the project. The
group interviews were conducted by the first author, with
participation of the third author and consultation of the second
author. The relative complexity of the work items was measured
by the architects, using a planning poker based approach. As a
result, a numerical value was attributed to each of the investigated
work items.

We later on used the complexity values to calculate the
productivity of each team in each work item. We calculated the
productivity of a work item as the ration between its complexity
and its associated actual effort. Note that we were not able to
calculate in isolation the productivity of each team in a particular
work item, since it was not possible to identify the part of the
complexity carried by each team in each work item. We tried to
do so by tracking the number of lines of code committed by a
team during the fulfillment of a work item. However, in some
work items no line of code was implemented, i.e. either testing
was carried out or documentation was made and vice-versa.

Rather, we calculated the productivity using the overall
complexity and the total actual effort, including the effort spent by
all the teams in each work item. For example, if team x and team
y participated in work item 1, the productivity of both is
considered as being the same in relation to work item 1.

Finally, to be able to conduct a regression analysis and identify
the impact of the cumulative experience (learning by doing) on
team performance, we obtained the following additional variables:

• Cumulative experience – It is represented by X in the
original power law used to calculate learning curves (see
Equation 1). It is calculated by Equation 2, where Xki
represents the cumulative experience of team k after the

conclusion of work item i, with Xk1 = 1 (after the conclusion
of the first work item). Note that we adapted this equation to
the specifics of our study, i.e. by in the given work item we
considered the cumulative experience from both finished and
on-going work items. We did so because in our case there
were several situations, in which the teams were conducting
work items at the same time.

𝑋 = 𝑋'()*	 , 𝑋 = 1	 	 .
(/* (2)

• Number of developers – It represents the number of
developers of a particular team involved in the
implementation of a work item.

• Team stability – It relates to the experience of working
together and reflects the differences in the team composition,
given the formal team boundaries, between two subsequent
work items. This variable relates to the formal teams (in our
case, five teams, as described in Section 4). It is calculated by
Equation 3, where TSki represents the number of changes in
participants from team k when comparing work item i and i-1,
DOki represents the number of members from team k that were
involved in work item i-1 but were not involved in i, while
DIki represents the number of members from team k that were
not involved in work item i-1 but were involved in i.

𝑇𝑆'(= 𝐷𝑂'(+ 𝐷𝐼'((3)

• Cross-team cooperation – The number of other teams in
addition to the investigated team that are involved in the
fulfillment of a work item.

• Cross-team cooperation continuity – It relates to the
difficulties of inter-team cooperation (on a team level) and
dispersed work (on a site level) and represents the changes in
the number of additional teams between two subsequent work
items and it is calculated by Equation 4, where TDki represents
the number of changes in the composition of teams/sites
working on two sequential work item i and i-1, TOki
represents the number of teams that were involved in work
item i-1 but were not involved in i, while TIki represents the
number of teams/sites that were not involved in work item i-1
but were involved in i.

𝑇𝐷'(= 𝑇𝑂'(+ 𝑇𝐼'((4)

• Number of architects – It represents the number of software
architects involved in the execution of a particular work item.

3.4 Data analysis
Before performing the data analysis, we performed a sanity check
of the data, to remove any existing inconsistency. To do so, the
first and third authors of this paper performed independent
analysis of the data.

To analyze the data, we calculated descriptive statistics, we
plotted charts for each team to show the relationship between
productivity and cumulative experience, and we also employed
linear regression analysis to identify factors impacting
autonomous group learning.

The preliminary analysis results were discussed in a feedback
meeting and a number of informal follow-up discussions.
Reflections from the feedback were discussed among the authors
and resulted in the formulation of the lessons learned presented in
this paper (see Section 5).

4. RESULTS FROM THE CASE STUDY
When investigating the fifteen work items, we identified that out
of the ten teams located in India, only seven teams participated
actively in the implementation (coding and testing) of the studied
work items (T1, T2, T3, T4, T6, T8 and T9). Five other teams,
located respectively in Italy (IT), Sweden (ST1, ST2, ST3) and
the USA (UST) also participated in the analyzed work items.
Eleven software architects located in Sweden participated actively
supporting the execution of the work items.

4.1 Teams, team composition and work items
As aforementioned, we focused on the teams located in India.
Thus, first we ordered the work items by their respective starting
dates, to see whether the productivity of each team improved over
time, as it is advocated by other studies on learning curves in
software development teams [9], [14], [16]–[18].

To identify the work items (i.e. product customizations - PC)
related to each team, we analyzed time reports made available by
Ericsson. Table 1 shows the number of developers of team
involved in the investigated PCs. The highlighted cells show
situations where all members of a particular team participated in a
PC. Note that only four teams located in India participated in at
least one PC with all their members at once (T1 twice, T2 twice,
T3 three times, T8 once and T9 once).

Table 1: Number of developers from each team per work item.

PC T1 T2 T3 T4 T6 T8 T9 UST IT ST1 ST2 ST3 A
1 2 3 1 0 1 0 0 0 0 0 0 0 2
2 3 1 3 0 1 0 0 0 0 5 0 0 0
3 0 2 4 0 1 0 0 0 0 0 0 0 0
4 0 1 0 0 0 1 0 0 0 0 0 0 3
5 0 2 6 0 0 1 0 0 0 0 0 0 5
6 5 5 6 1 1 3 0 0 5 0 0 0 7
7 0 0 0 2 0 0 0 3 0 0 0 0 2
8 0 0 0 0 0 6 3 0 0 0 0 4 6
9 0 0 0 0 0 2 5 0 0 0 0 0 3

10 0 0 4 0 0 0 0 0 0 0 0 0 2
11 0 0 2 0 0 0 0 0 0 0 0 0 2
12 6 1 0 0 0 1 0 0 0 0 1 0 4
13 0 0 1 0 0 0 0 0 0 0 0 0 2
14 0 5 2 0 1 0 0 0 0 0 0 0 6
15 0 0 6 0 0 0 0 0 0 0 0 0 0

Table abbreviations: T1, T2, T3, T4, T6, T8, T9 – the studied teams, UST – supporting team from
the USA, IT – supporting team from Italy, ST1, ST2 and ST3 – supporting teams from Sweden, A
– supporting architects.

Since it was not possible to measure the productivity of each team
in isolation, we analyzed each team using the overall productivity
in each PC, i.e. the ratio between the complexity of the PC and the
effort spent by all the teams involved in the PC.
Tables 2 to 9 show descriptive statistics related to the variables
that we accounted for in our analysis of the studied teams
(complexity of the work item, actual effort, productivity,
cumulative experience, number of developers, team stability,
involvement of other teams, distribution stability and number of
architects). Only those teams that participated in at least four work
items were included in the tables. Descriptive statistics about
cumulative experience are not displayed because this variable has
values in an incremental scale with step equals to 1.

Table 2: Descriptive statistics related to team productivity.

Team Average Std. dev. Max Min
T1 20.49 5.93 26.73 12.44
T2 29.19 11.68 12.44 51.19
T3 39.17 25.82 12.44 104.17
T6 25.61 9.24 12.44 35.75
T8 39.30 28.36 12.44 90.84

From Table 2 we see that T3 and T8 have the best average
productivity, although it is hard to find any pattern based on the
data presented in this table because the standard deviation is high
in relation to all teams, especially for T3 and T8.

Table 3: Descriptive statistics related to the work complexity.

Team Average Std. dev. Max Min
T1 80 63.77 170 20
T2 72.5 52.51 170 15
T3 63.89 53.10 170 10
T6 77 60.17 170 20
T8 135 116.88 350 15

Table 3 shows that T8 dealt with more complex PCs on average.
However, again, the standard deviations in this table are too high
to indicate it as a pattern.

Table 4: Descriptive statistics related to the team actual effort.

Team Average Std. dev. Max Min
T1 5017.30 5836.68 3208 954
T2 3480.13 4279.68 13662 293
T3 2884.89 4209.88 13662 144
T6 4190.2 5372.34 13662 954
T8 4653 4600 13662 293

In Table 4 we see that T1 and T8 were involved in PCs that
demanded the greatest effort to be fulfilled, although there is no
huge difference between the average actual effort figures between
the teams. The standard deviations are also too high to identify
any patterns in this table.

Table 5: Descriptive statistics related to the number of
developers.

Team Average Std. dev. Max Min
T1 4 1.83 6 2
T2 2.5 1.69 5 1
T3 3.78 1.92 6 1
T6 1 0 1 0
T8 2.33 1.97 6 1

Table 5 shows that there is no significant difference between the
average number of developers of the teams involved in a task,
except for T6, which despite of having six members, had only one
developer participating in the investigated PCs.

Table 6: Descriptive statistics related to the team stability.

Team Average Std. dev. Max Min
T1 1 0.82 2 0
T2 2 1.51 4 0
T3 1.56 1.33 4 0
T6 0 0 0 0
T8 1.83 1.47 4 0

In Table 6 we can see that involvement of team members working
together from one task to another changes often, i.e. the ‘task

teams’ are unstable. Note that team stability for T6 reflects the
fact that one and the same developer participated in the
investigated PCs.

Table 7: Descriptive statistics related to cross-team cooperation.

Team Average Std. dev. Max Min
T1 3.50 1.73 6 2
T2 2.63 1.60 6 1
T3 1.67 2 6 0
T6 3 1.73 6 2
T8 2.17 1.94 6 1

Table 7 shows the number of teams involved in the execution of
supporting a particular team. The highest number of sites involved
in a single PC execution was six. Except for T3, all teams
cooperated with other teams on task completion, most of which
were located also in India, except the few teams from other
locations, UST, IT, ST1, ST2 and ST3.

Table 8: Descriptive statistics related to the stability of cross-
team cooperation.

Team Average Std. dev. Max Min
T1 1.25 0.96 2 0
T2 2 1.31 4 0
T3 1.67 1.66 5 0
T6 1.6 1.34 3 0
T8 0.8 0.84 3 0

In Table 8 we looked at the stability of the cross-team cooperation
and it shows that it was often the case that the investigated teams
cooperated with a different sets of team over time.

Table 9: Descriptive statistics related to the number of architects.

Team Average Std. dev. Max Min
T1 3.25 2.99 7 0
T2 3.38 2.62 7 0
T3 3 2.5 7 0
T6 3 3.32 7 0
T8 4.67 1.63 7 3

Table 9 shows that all teams have been often supported by the
architects from the original development location. The maximum
number of architects supporting each of the studied teams was
seven, which occurred in the PC that demanded greatest effort and
support by architects to be fulfilled (PC:6, see Table 1).

4.2 Productivity curves
To graphically see whether the productivity of each team was
going up as they accumulated experience (autonomous learning),
we plotted the relationship between cumulative experience
(participation in work items – x-axis) versus overall productivity
(y-axis). The charts for all teams are presented in Figure 1.

Figure 1: Team cumulative experience vs overall productivity.

Figure 1 shows that T1 improved from the first PC to the second,
then showed decreased performance in the third PC and returned
to a similar productivity level in the forth PC. Interestingly, lowest

productivity point, the disruption point in the productivity curve,
was PC:6, the one that involved the largest number of teams and
architects, including also a team from another site located in Italy.
Although this was not the most complex PC in terms of
complexity points assigned in the expert evaluation, it was the one
that demanded most effort to be carried out, which was related to
the criticality of the PC for the client.

The data on T2 from in Figure 1 shows that T2 improved its
performance steadily in the first four tasks, and then showed a
decrease in the next two PCs, and finally continuous increase in
the last two PCs. In contrast to T1, T2 curve demonstrates two
periods of gradual performance improvements over time. Like T1,
T2 also participated in PC:6, which is the lowest performance
point on its curve.

T3 curve does not show any significant improvement over time,
although this team was assigned two PCs that did not involve
other teams (carried out within one team). Teams best
performance was achieved in PC:13, which involved only one
developer assisted by two architects from the original
development location. This means that the “team’s” peak
performance is not related to team cooperation and group
learning.

When it comes to T6, the productivity curve reflects individual
performance of the one developer involved in the investigated
PCs. Thus, it is not possible to related it to group learning within
T6, although the curve does reflect a continuous performance
improvement in the first three tasks. The disruption, as for the
other teams, occurred in PC:6.

Interestingly, T8 demonstrates a decrease in performance in the
second and the third tasks, in comparison with the first one, then
an increase, with the peak performance for the fifth task, and a
relatively low performance in the subsequent task. The forth task
was PC:8, in which T8 participated as a complete team. In both
forth and fifth tasks (PC:9) T8 worked only with T9 and the
architects, and thus means that the cumulative experience from
working together (and potentially group learning) could determine
the better performance.

4.3 Identifying the role of different factors
Based on the analysis of the teams’ engagement in different work
items presented above was, we performed linear regression
analysis for each team. The tested model included productivity as
the dependent variable, cumulative experience as the dependent
variable and as control variables – complexity of the work item,
actual effort, productivity, cumulative experience, number of
developers, team stability, cross-team cooperation, cross-site
cooperation and the number of architects (see Section 3.3 for
details about each variable).

We designed the following hypotheses to be analyzed herein:

H1: The bigger the experience of a team, the better is its
performance.

H2: The more stable is a team from one work item to another,
the better is its performance.

H3: The fewer teams involved in one work item, the better is
the performance.

H4: The more stable is the cross-team cooperation setting, the
better is the performance of the involved teams.

H5: The more architects involved, the better is the
performance.

H1 is about the impact autonomous learning in the development
teams’ productivity. H2 relates to the role of team stability in
relation to team performance. H3 aims at show the relationship
between performance and the number of other teams supporting a
particular. H4 is about the stability of the cross-team cooperation
setting, i.e. how stable is the composition of teams supporting a
particular team. Finally, H5 relates to the impact of architects in
team performance.

We used SPSS to run the linear regression analysis, first using the
enter method and second using stepwise method. The significance
of the results was evaluated at ∝= 0.05. Unfortunately, all the
calculated models were statistically insignificant, which does not
allow us to use such a results to evaluate our hypothesis. The only
statistically significant model was the stepwise regression for T8,
where the obtained model is presented in Equation 4 with R2 of
0.516.

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 42.98 − 5.25 ∗ 𝐶𝑟𝑜𝑠𝑠_𝑡𝑒𝑎𝑚_𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	 (4)

The results of the significant model demonstrate support for H3,
i.e. the fewer teams involved in the execution of a work item, the
better the performance.

The results of the regression analysis do not support H1, H2, H4
and H5. However, we can see some indication in the plotted
charts that teams that worked in more PCs (H1), specially in a
more continuous way, performed better (see Figures 1; curves of
T1, T2 and T6). The curve of T8 indicates that the longer different
teams work together, the better their performance may get (H4).

The results of the conducted regression analysis support only H3,
i.e. the fewer teams involved, the better the performance of the
involved teams.

4.4 Discussion of the results
The results of our investigation provide partial support for the
research questions. In relation to RQ1, we can see that most of the
investigated teams improved over time until they faced a work
item that was more critical (time wise), which demanded the
participation of several teams distributed in different locations. As
per the result of the conducted regression analysis (H3), the
learning process of the teams might be disturbed by the need for
working with several other teams (PC:6). This is also indirectly
supported by existing literature on global software development
suggesting that projects employing many distributed teams and
especially complex projects that require great amount of domain
expertise are less successful [21], which was the case with PC:6.
Unfortunately, based on our results we don’t have an explanation
for why T3 and T8 did not improved over time in the same way as
compared to T1, T2 and T3.

In relation to RQ2, the conducted regression analysis did not show
a significant correlation between team productivity and
accumulated experience. Nevertheless, the charts plotted for T1
and T2 show that the teams’ performance improved over time
until a certain point, which indicates that maybe there is some
relationship between productivity and accumulated experience in
the investigated case. We intend to investigate further such aspect,
incorporating data from work items to be conducted during 2016.

Although we did not conduct a regression analysis including
learning as a dependent variable, we believe that it is possible to
relate our results with group learning. The regression analysis
indicates that the number of teams supporting a particular team
(cross-team cooperation) is negatively correlated to team

performance and thus is probably also negatively correlated with
group learning. As per existing literature [3], [4], [12], to enable
group learning it is mandatory to have an environment that fosters
learning behaviors such as sharing of information, asking for help
and talking about errors, to name a few. Team members are able
to exercise these behaviors only when there is psychological
safety within the team, i.e. the shared belief that team members
feel safe for interpersonal risk taking [3]. In our investigation it is
fair to assume that a lack of cooperative tasks for the entire team
over time negatively influenced the team safety and hindered the
exercise of learning behaviors, since a team or a fraction of a
team often had to work with members of several other teams.

Challenges with team psychological safety and learning behaviors
were probably also introduced by the changes in team members
working together over time. Although our results did not support
H2, the fact that the members of the studied teams were involved
in different work items at the same time, and every next task
brought along new cooperation mates hindered group learning and
thus better performance of the teams over time. We identified that
it was often the case that “temporary task teams” were composed
to work on the work items. As identified by Narayanan et al. [18],
turnover of the members in a team was found to be negatively
correlated to team performance. In our case, the involved assets
did not leave the company within the investigated time period.
However, they were very often allocated to different temporary
task teams that changed very often. The high turnover of work
mates must have hindered the cultivation of psychological safety
within the formal teams (determined by the formal membership).

While discussing the results of our investigation with the project
responsible in Ericsson, we focused on understanding why the
work items were often assigned to “ad-hoc teams” rather than to
the formal teams. The project responsible reported the following:
“The heavy ramp-up puts management in a tough spot. They cannot give
features to completely new teams to develop and at the same time keep the
other teams intact. The new teams will get nothing done then. So they
instead need to add new people to existing teams and move out some
experienced developers to build new teams instead. The “fork” approach
is simply taken. This is from a practical point of view the best way to deal
with the situation, but of course not optimal from a group learning
perspective.

Management people in general and in particular in our site located in
India have to very often deal with work items that risk becoming delayed.
So, they deal with that by putting more experienced people on the
prioritized task.”
Thus, the fact that the investigated work items were mainly done
by ad-hoc teams is related to tight time restrictions and to the fact
that there were many new developers in the teams, who had to be
supported by experienced developers from other teams.
Performance is higher when assigning tasks to the most competent
people (e.g. in many situations software architects). However,
while cultivating individual competence in focused areas might be
economically feasible short term, research suggests that higher
performance can be achieved by cultivating teamwork and thus
fostering group learning [2], [3]. Companies accumulating what is
regarded as social capital, i.e. knowledge resources that can be
obtained through teamwork and networking, are rewarded with
higher performance [22]. To achieve such a thing, it is mandatory
to keep team members working closely with the other members of
their formal team, reducing as much as possible the fulfilment of
work items by ad-hoc teams with high team member turnover.
The differences between formal teams and ad-hoc teams have
probably one additional important implication. It is fair to assume

that formal teams will show higher performance than groups.
However, the vast majority of performance oriented studies in
software engineering are based on archival data, often coming
from publicly available repositories. However, what has been
studied as a “software team” is not always clear and/or accurate
(formal or ad-hoc). As such, many team- and learning-related
aspects in these studies might be overlooked or impossible to
judge due to the missing or incomplete data.

Hackman in 1987 has defined a team as a work group that exists
within the context of a larger organization and shares
responsibility for a team product or service [23]. Katzenbach and
Smith suggest looking into four key elements that determine a
team – common commitment and purpose, performance goals,
complementary skills, and mutual accountability [24]. And finally
there are project teams of often temporary nature. The question is
then whether it is sufficient to simply put individual programmers
together and expect them to work effectively.

Furthermore, existing software engineering literature related to
learning and performance does not make any distinction between
individual learning within teams and group learning and more
research is required to better understand the impact of the
teamwork on performance [9], [14]–[16], [18], [19].

Thus, we believe that it is mandatory for software engineering
researchers to clarify whether what is being studied are formal or
ad-hoc teams. It is also important to distinguish between what is
being learned by individuals within a team (individual learning)
and what is learned by a team as an “atomic” entity (group
learning), since group learning is different than the aggregation of
what is learned by team members; rather, team learning is about a
new understanding shared by all the team members about how the
team is expected to function [12].

We intend to further investigate how team stability and cross-team
cooperation stability relates to psychological safety of teams and
thus to learning behaviors and team performance. To do so, we
plan to conduct semi-structured interviews with software
architects involved in the investigated work items, focus groups
with the involved teams, and apply the instrument developed by
Edmondson to measure psychological safety and learning
behaviors [3]. At the same time we also consider studying
individual learning curves for members of unstable formal teams
or projects employing temporary task team strategy.

In this paper. we focused on the role of autonomous learning in
development teams involved in large-scale projects. However,
individuals and teams can also learn by means of deliberated
activities, which is know as induced learning, i.e. this kind of
learning is triggered by activities like trainings and investments in
research & development [25]. This type of learning has been very
rarely investigated by software engineering researchers [19].
Thus, we also intend to investigate what is the interplay between
autonomous learning and induced learning in teams involved in
large-scale software projects.

4.5 Validity threats
The threats to the validity of findings in this paper are discussed
using the classification by Runeson and Höst [20].

Reliability validity threats are related to the repeatability of a
study, i.e. how dependent are the research results on the
researchers who conducted it [20]. We minimized this threat by
involving several researchers in the design and execution of our
investigation. Furthermore, our observations and findings were
verified with the company representatives to avoid false

interpretations. We also designed an explicit case study protocol,
following the guidelines by Runeson and Höst [20].

Internal validity threats are related to factors that the researcher is
unaware of or cannot control the extent of their effect in the
investigated causal relationship [20]. Learning and productivity
are constructs that are influenced by a myriad of factors, such as
task complexity and personnel attrition, which make the
identification of causal relationship between the two constructs
challenging; there are several confound factors. To mitigate such
threats, we accounted for factors that are reported by related
literature. In addition, we performed a sanity check of the factors
based on the expertise of the third author.

Construct validity threats reflect whether the measures used
really represent the intended purpose of the investigation [20]. To
mitigate this threat, we used data from different sources, such as
archival data and interviews with the project responsible and
software architects. However, it should be noted that our work has
a severe limitation related to the way we dealt with teams’
productivity. We were not able to isolate the productivity of each
team in each related work item. Thus, it may be the case that our
results would be different with we had managed to isolate the
productivity of each team in each work item. However, in practice
it was impossible, which is one of the lessons we learned and
share in this paper. Nonetheless, we made an attempt to mitigate
this threat by plotting the charts and cross checking them with the
data related to other accounted factors, such as the number of
involved developers in each team and the number of other
involved teams. We intend to further conduct interviews with
people from the management level and try to elicit at least a rough
estimate about the contribution of each team to the task (the share
of work from the total size expressed in complexity points).

External validity threats limit the generalization of the findings of
the investigation [20]. Since we employed the case study method
to conduct the investigation reported herein, i.e. our findings are
strongly bounded by the context of our study. In addition, the
investigated case involved only one company. To mitigate this
threat, we made an attempt to detail the context of our study as
much as possible, complying with corporate confidentiality
concerns. We believe that the results reported herein are of
particular interest for researchers and practitioners involved in
large-scale distributed software projects that share a similar
context, and generally to anyone studying learning in software
teams.

5. LESSONS LEARNED
During the course of our research reported herein, we learned
some lessons that can help other researchers when conducting
studies related to learning and performance, and in particular in
the context of large-scale software development projects.

First of all, we would like to emphasize that most existing
research on autonomous learning in teams in general and in
software development teams in particular relies on quantitative
data and thus quantitative data analysis methods, such as
regression analysis. However, to achieve statistically significant
results, it is mandatory to have a considerable amount of data
points. Green [26] argues that a sample must be as big as 104 data
points + K, where K means the number of independent variables
in the model. Maxwel [27] extended the work by Green,
accounting for the correlation between independent variables in
the model. According to him, the smallest size of a sample that is
able to lead to significant regression analysis results is 191 data
points. These points in software teams are related to the work
items performed by the teams.

In our case, we have studied teams responsible for implementation
of product customization tasks. Although we collected data that
covered two years of the project, the involved teams managed to
implement only fifteen unique work items, which appears to be
way too few to enable statistically significant regression analysis.
In practice, we believe that the product customization tasks must
have been broken down to smaller tasks carried out by individual
task team members, or sub-groups of members. Unfortunately, we
could not identify any sub-tasks in our case, which would have the
actual effort data measured, and involve cooperative work. Thus,
the first two lessons learned are:

Lesson #1: Gathering the required number of data points to perform
regression analysis in large-scale projects may be hard.

Lesson #2: Consider what is a work item in a particular context and
whether larger tasks can be broken down to smaller yet
traceable and measurable sub-tasks.

Based on the first few learnings we assumed that studying teams
that have been working for a prolonged period of time (such as
teams from the original development location in our case) would
have provided enough data points to study group learning
successfully. However, to be able to analyze whether teams are
learning by doing (autonomous learning), it is necessary to detect
the inception date of the teams and the sequence of each work
item carried out [6].

In the attempt to define the inception of teams we also tried to
understand what a team is. What we learned severily challenged
our further analysis. First of all, for many teams that have existed
for a long time, the team inception date was difficult to trace, and
what is more important, since the team members changed and
teams were also reformed, studying group learning for those
teams retrospectively became meaningless. Therefore, the third
lesson learned is:

Lesson #3: Historical data from team inception maybe hard to collect
if teams are unstable due to attrition or frequent team
reformation.

In our case, many work items were carried out in parallel, which
made it hard to identify the experience accumulated through on
going work items. Hence, the fourth lesson learned is:

Lesson #4: Detecting the step-wise accumulation of experience may be
hard when teams carry out parallel work.

Our attempt to understand who are the members of teams working
on the fifteen customization tasks led us to one of the most
important findings. We identified that work items were very
seldom assigned to a single formal team. Instead, we found that it
was often the case that temporary ad-hoc task teams were created
for the work items. This means that in practice we could not study
group learning, where the group boundary was related to the
formal boundaries of the teams. We also assumed that formation
of task teams, in fact, might have prevented group learning, since
unstable working groups were not exposed to the benefits of
teamwork. Thus, the fifth lesson learned is:

Lesson #5: Due to specific circumstances, work may be carried out by
temporary “ad-hoc” teams rather than “official” teams,
which should be taken into account when collecting and
analyzing the data.

To check and supplement the archival data used in our
investigation, we conducted some interviews. However, as time

goes by it becomes harder and harder for people to remember
details regarding work items finished long time ago, maybe
limiting the usefulness of the data collected through interviews.
Thus, the sixth lesson learned is:

Lesson #6: Retrospective correction or supplement of historical data
may decrease data reliability or even be impossible to
perform.

When surveying existing literature from other more mature
research fields (e.g. management sciences and pscychology) to
define the theoretical framework of our investigation, we
identified that learning and performance have been treated as
independent constructs by researchers who investigate group
learning and its impact on team performance. Based on our
experiences and related literature we also believe that it is
important to study learning and performance as distinct
constructs, because:

• Performance can be affected by many factors, such as project
or organizational environment changes [28], task complexity,
personnel attrition, fatigue and boredom [4], or by inclusion of
multiple teams as in our case, while these factors might have
no influence on the team learning process.

• A team or individual may have learned something that would
not necessarily lead to performance improvement [5], [12], or
a team or individuals may not have the opportunity to employ
what was learned [28].

Hence, the seventh and last lesson learned is:

Lesson #7: Data collection shall focus on eliciting learning-related
factors and team performance data, while data analysis
shall recognize them as distinct constructs.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we report the results and lessons learned of an
investigation related to group learning and performance in large-
scale software development teams. We investigated two years of
work performed by offshore teams recently onboarded in a large-
scale project in Ericsson.

Our results show that four out of five teams demonstrated steady
productivity improvements in the few first tasks, then stopped
improving when confronted with a large complex work item, and
in what followed showed random performance. We determined
that the large complex task required the participation of a large
number of teams distributed across multiple sites, which
introduced performance challenges. This was partially supported
by the results of a regression analysis that we conducted.
However, our attempts to understand other reasons for
performance variance were unsuccessful.

We believe that more research must be conducted to clarify the
relationship between team stability, cross-team cooperation,
psychological safety and learning behaviors in large-scale
software development teams.

In continuation of our study, we intend to complement the
research presented herein by:

• Clarifying whether teams are really improving performance
over time by extending the number of data points through
incorporation of work items to be finished until the end of
2016;

• Separating temporary task team and formal team performance
by “filtering” the contribution of each team in terms of actual
effort and the size of respective work expressed in complexity
points;

• Investigating how team stability and continuity of cross-team
cooperation relates to psychological safety of teams and thus
to learning behaviors and team performance.

As a result of our preliminary analysis we also proposed seven
lessons learned that may help other researchers when conducting
new research related to group learning, and especially when
collecting data for such research studies from large-scale software
development teams.

ACKNOWLEDGMENTS
This research was partially funded by CNPq, UFPI, INES and
KKS within TEDD project, grant no. 20120200. We are very
thankful to all the company employees involved and being
sincerely interested in our research.

REFERENCES
[1] N. B. Moe, T. Dingsøyr, and T. Dybå, “Overcoming

barriers to self-management in software teams,” IEEE
Softw., vol. 26, no. 6, pp. 20–26, 2009.

[2] A. C. Edmondson and I. M. Nembhard, “Product
development and learning in project teams: The
challenges are the benefits,” J. Prod. Innov. Manag., vol.
26, no. 2, pp. 123–138, 2009.

[3] A. Edmondson, “Psychological safety and learning
behavior in work teams,” Adm. Sci. Q., vol. 44, no. 2, pp.
350–383, 1999.

[4] A. C. Edmondson, J. R. Dillon, and K. S. Roloff, “Three
Perspectives on Team Learning Outcome Improvement,
Task Mastery, and Group Process,” Acad. Manag. Ann.,
vol. 1, pp. 269–314, 2007.

[5] A. C. Edmondson, R. M. Bohmer, and G. Pisano,
“Speeding Up Team Learning,” Harv. Bus. Rev., vol. 79,
no. 9, pp. 125–132, 2001.

[6] M. J. Anzanello and F. S. Fogliatto, “Learning curve
models and applications: Literature review and research
directions,” Int. J. Ind. Ergon., vol. 41, no. 5, pp. 573–
583, 2011.

[7] T.-P. Liang, C.-C. Liu, and T.-M. L. Lin, “Effect of team
diversity on software project performance,” Ind. Manag.
Data Syst., vol. 107, no. 5, p. 636653, 2007.

[8] E. Weimar, A. Nugroho, J. Visser, and A. Plaat,
“Towards high performance software teamwork,” in
Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering -
EASE’13, 2013, pp. 212–215.

[9] W. F. Boh, S. Slaughter, and J. A. Espinosa, “Learning
from Experience in Software Development: A Multilevel
Analysis,” Manage. Sci., vol. 53, no. 8, pp. 1315–1331,
2007.

[10] Oxford English Dictionary, 7th Editio. OUP Oxford,
2012.

[11] J. Winterton, F. Delamare-Le Deist, and E. Stringfellow,
Typology of knowledge, skills and competences:
clarification of the concept and prototype. Office for
Official Publications of the European Communities,

2006.

[12] P. S. Goodman and L. a. Dabbish, “Methodological
Issues in Measuring Group Learning,” Small Gr. Res.,
vol. 42, no. 4, pp. 379–404, 2011.

[13] T. P. Wright, “Factors Affecting the Cost of Airplanes,”
J. Aeronaut. Sci., vol. 3, pp. 122–128, 1936.

[14] E. Tüzün and B. Tekinerdogan, “Impact of Experience
Curve on ROI in Software Product Line Engineering,”
Inf. Softw. Technol., vol. 59, no. C, pp. 136–148, 2015.

[15] K. Spohrer, B. Gholami, and A. Heinzl, “Team Learning
in Information Systems Development-A Literature
Review,” in European Conference on information
Systems - ECIS’12, 2012.

[16] C. L. Huntley, “Organizational learning in open-source
software projects: an analysis of debugging data,” Eng.
Manag. IEEE Trans., vol. 50, no. 4, pp. 485–493, 2003.

[17] R. S. Huckman, B. R. Staats, and D. M. Upton, “Team
Familiarity, Role Experience, and Performance:
Evidence from Indian Software Services,” Manage. Sci.,
vol. 55, no. 1, pp. 85–100, 2009.

[18] S. Narayanan, S. Balasubramanian, and J. M.
Swaminathan, “A Matter of Balance: Specialization,
Task Variety, and Individual Learning in a Software
Maintenance Environment,” Manage. Sci., vol. 55, no.
11, pp. 1861–1876, 2009.

[19] Y. Zorgios, O. Vlismas, and G. Venieris, “A learning
curve explanatory theory for team learning valuation,”
Vine, vol. 39, no. 1, pp. 20–39, 2009.

[20] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case
Study Research in Software Engineering: Guidelines and
Examples. John Wiley & Sons, 2012.

[21] S. Darja, F. Calefato, and C. Wohlin, “Cost Savings in
Global Software Engineering Where’s the Evidence?,”
IEEE Softw., vol. 32, no. 4, pp. 26–32, 2015.

[22] C. Wohlin, D. Smite, and N. B. Moe, “A general theory
of software engineering: Balancing human, social and
organizational capitals,” J. Syst. Softw., 2015.

[23] J. R. Hackman, “The design of work teams,” in
Handbook of Organizational Behavior, Prentice-Hall,
1987.

[24] J. R. Katzenbach and D. K. Smith, “The Discipline of
Teams,” Harvard Bus. Rev. Bus. Rev., vol. 71, no. 2, pp.
111–120, 2005.

[25] J. M. Dutton and a. Thomas, “Treating Progress
Functions as a Managerial Opportunity.,” Acad. Manag.
Rev., vol. 9, no. 2, pp. 235–247, 1984.

[26] S. B. Green, “How many subjects does it take to do a
regression analysis,” Multivariate Behav. Res., vol. 26,
no. 3, pp. 499–510, 1991.

[27] S. E. Maxwell, “Sample size and multiple regression
analysis.,” Psychol. Methods, vol. 5, no. 4, pp. 434–458,
2000.

[28] J. M. Wilson, P. S. Goodman, and M. A. Cronin, “Group
learning,” Acad. Manag. Rev., vol. 32, no. 4, pp. 1041–
1059, 2007.

