o

http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2017), 24—28 September 2017, Vancouver,
Canada.

Citation for the original published paper:

Krishnan, R., Bjorsell, N., Smith, C. (2017)

Segmenting humeral submovements using invariant geometric signatures.

In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 6951-6958). IEEE

https://doi.org/10.1109/IR0S.2017.8206619

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-25214



Segmenting Humeral Submovements using Invariant
Geometric Signatures

Rakesh Krishnan 12, Niclas BjﬁrsellQ, and Christian Smith!

Abstract—Discrete submovements are the building
blocks of any complex movement. When robots collaborate
with humans, extraction of such submovements can be
very helpful in applications such as robot-assisted reha-
bilitation. Our work aims to segment these submovements
based on the invariant geometric information embedded
in segment kinematics. Moreover, this segmentation is
achieved without any explicit kinematic representation.
Our work demonstrates the usefulness of this invariant
framework in segmenting a variety of humeral move-
ments, which are performed at different speeds across
different subjects. Our results indicate that this invariant
framework has high computational reliability despite the
inherent variability in human motion.

I. INTRODUCTION

Recent advances in robotics require humans and
robots to interact at both physical and cognitive levels.
Currently, in robot-assisted rehabilitation, this interac-
tion design is a crucial factor that determines the success
of this technology. Moreover, such a situation requires
this interaction to be based on a computational structure
that meets the challenge of high computational relia-
bility [1]]. Consequently, this mathematical framework
must enable reliable perception of human intention,
planning and assisting in task execution.

Despite this need at a kinematic level, a lack of
agreement exists on a computational framework that
can meet this challenge [2]. Similarly, when using
kinematics to extract the neural policy, the choice of the
kinematic representation results in conclusions that are
coordinate sensitive [3]], [4]]. Importantly, many standard
machine learning algorithms have been criticized for be-
ing coordinate sensitive [S[]. A possible solution to this
problem is the use of an invariant kinematic framework.
The work presented in this paper is an important step
in this direction. Through the present work, we aim to
segment humeral submovements based on the invariant
geometric information underlying the motion of interest

(see Fig. [I).

Why is an invariant framework important? An in-
variant kinematic framework presents an unbiased per-
spective on the underlying neural computation [6].
Moreover, such knowledge of kinematic invariances
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Figure 1: The central concept of invariant motion segmentation
is presented above. This segmentation is achieved through
an invariant geometric profile from the twist-axis history
parameterizing the motion of interest.

can be helpful in reliable extraction of submovements.
Essentially, these submovements are an integral part
of human motion; they are of discrete nature [7]. It
is hypothesized that the geometric information related
to human intention is embedded in bone or segment
motion [[8]. Given this situation, we are motivated to
explore this problem of segmenting human intention on
the basis of segment kinematics.

In fact, the demands of this scientific problem pose
several mathematical and practical challenges. First, to
meet the high computational reliability requirement, the
movement segmentation must be coordinate insensitive.
A possible solution to this problem is a computational
framework that is free of any explicit representation,
which forms the core of our work. Second, reliable
measurements of segment kinematics pose practical is-
sues due to soft tissue artifacts (STAs) [9]. Additionally,
the non-commutative nature of 3D kinematics and the
variability inherent in human motion pose mathematical
issues [7]].

In this paper, we explore the performance of geo-
metric invariants that could potentially be extended to
intention segmentation, which is based on the invariant
framework proposed by Schutter [10]. Thus far, this
framework has not been investigated in the case of
human motion. In our work, we explore the invariant
geometric properties of the humeral segment. Impor-
tantly, the humeral segment acts as an end-effector to the
shoulder articulation. This articulation has the largest



known range of motion (ROM) in the human body
[11]]; thus, it results in a variety of unique movements.
Therefore, the set of possible motions for many other
segments in the human body may be viewed as subsets
of the motions of the humeral segment.

Our paper introduces the concept and presents a
brief overview of kinematic invariances in Section
Subsequently, we present the coordinate-free kinematic
framework that is used to segment the submovements
in Section The experimental design and data pro-
cessing procedure used in our study is detailed in Sec-
tion We successfully demonstrate the effectiveness
of the submovement classification using the invariant
framework for a variety of humeral movements in
Section |[V| We conclude our work by emphasizing the
high reliability of this framework in classifying the
submovements (see Section [VI).

II. KINEMATIC INVARIANCES

Geometrically, a mathematical formulation that pro-
vides a complete description of motion by using a
minimal set of parameters can be defined as an invariant
framework [12]. Importantly, invariant features provide
insights into underlying neural control [[12] and move-
ment generating principles [9]]. Notably, the property of
invariance might hold irrespective of the speed of mo-
tion and muscle stiffness rescaling [[12]. Mathematically,
the invariants present a unifying framework in which
analysis of both observed motion and motion generation
can be performed [10].

These invariances have primarily been investigated
in the case of rhythmic motor tasks. However, the
originating principles underlying rhythmic and discrete
movements might be different [9]]. Therefore, investigat-
ing invariances in discrete movements is also important
because it will enable both intra-subject and inter-
subject comparisons of human upper limb kinematics
[13]]. Furthermore, such knowledge of kinematic invari-
ants can be of immense help in robot-assisted rehabili-
tation, in which the reliability of cognitive human-robot
interaction could be enhanced.

A. A Brief Overview of Kinematic Invariances

A major challenge in investigating invariances is
their generalizability across a variety of movements [7].
Therefore, diverse invariances exist in the literature.
First, invariances at a kinematic level during highly
skilled tasks have been studied by Viviani et al. [|14]. In
this study, it was found that irrespective of the speed of
writing an alphabet, the relative time ratios of important
kinematic features remained well preserved. The recent
study by Karklinsky et al. [15] on the rhythmic ellipse
drawing task demonstrated that human hand kinematics
follows the two-thirds power law. Although this study
verified the property, the origins of this behavior are
debatable [9]]. Furthermore, this law cannot explain the

motion of accompanying joints that in turn drives the
hand motion [9].

Invariances in the form of submovements during arm
reaching movements have been investigated by Berman
et al. [7]. They suggested that most of the existing liter-
ature in extracting submovements is hypothesis driven.
Note that such an extraction requires a pre-specified
geometric arm model. Importantly, in the case of shoul-
der movements, it has been shown that the shoulder
movement does not follow the convex-concave principle
that underlies such geometric simplifications [[16]], [[17]].
Therefore, extracting submovements using the humeral
kinematics needs to be explored further. Our work is an
important step toward extracting submovements based
on pure kinematic data, without the need for any explicit
geometric model.

III. INVARIANT RIGID BODY MOTION

The invariant geometric framework presented in [[10]
uses twist velocities. These geometric twists can effec-
tively handle simultaneous rotations and translations [7]].
In general, they are represented using 6D spatial vectors

denoted by
w
n= M (1)

Depending on the choice of the twist components, there
are different types of geometric twists [I1]. In this
paper, we will use angular velocities referred to the
body-fixed coordinate frame and the linear velocity of
the center of mass (COM) of the rigid body. The use of
these respective frames is motivated by the experimental
ease with which these quantities can be estimated from
the observed motion data.

Now, we briefly present the invariant geometric
framework proposed by Schutter in [10]. Given a rigid
body motion, six geometric invariants can be extracted
using this framework. The first two invariants w; and
vy parametrize the instantaneous kinematics about the
twist-axis, and they are defined as

W] = W - ex 2)

and

V] =V - €ex. 3)
Here, ex is the unit vector along the twist axis. Note
that wy, v; and ey are signed quantities. The next two

invariants wy and vy parametrize the first-order motion
properties of the twist-axis, and they are defined as

and

vy = ey Pu. 5)



Here, e, = £%2“  and p, = Y. The second-order
y waw\ IIwH

motion properties of the twist-axis are parametrized by

ws and vs, and they are expressed as

(wxw) X (wxd)

w3 = NS T €ex (6)
[[(w x @)l
and
vz =ex PL—D| @)
Here, py = —%=PL and the relationship between the
I ws

unit vectors e, = ex X ey holds. Furthermore, it was
shown in that these parameters do indeed satisfy
the concept of the invariant framework mentioned in
Section |m Note that in our work, an algorithm to
estimate these twist velocities is presented in Section
Now, we explore how this framework can be used
in submovement segmentation.

A. Submovement Segmentation

The strength of the geometric framework presented
above is that it enables us to compare movements at
three different levels, namely, they are normalizations
based on execution speed, motion amplitude and motion
profile.

The first two level comparisons based on time and
motion amplitude can be achieved by

ault) =2 o103 ®)
and O
Mﬂzwgfi:LZ& )

Here, if t; is the final time in a given motion, then
t = i is the dimensionless time. The amplitude
normalization is achieved by the angular and linear
scale magnitudes given by © = fotf |wildt and L =

fg / vy |dt. Note that the normalized invariants in (8)
and (9) are dependent on the motion profile.

To normalize the invariants with respect to the mo-
tion profile, we need to compute the geometric degree
of advancement, which is given by
|| v

) =it 2,

Here, O, and L, are the user-defined angular and
linear scaling factors, respectively, and w represents the
scaling weight. Since the motion of the humeral segment
is not purely rotational, we choose a value of w = 0.5
as in [[10]. This choice results in the six dimensionless
geometric invariants,

i (t(6) u(t(€)
£(t(6)) £(t(6))
where 7 = 1,2,3. Applying the approprlate trans-

formations presented in I.I to results in ;(€)
and V;(§), which are the six dlmenswnless geometric

+(1-w) 0<w<1. (10)

Q(8) = Vi(€) = ;3D

Figure 2: Figure illustrates the marker cluster for the humeral
segment with labels H1-H8

invariants normalized with respect to the motion profile.
The submovements can be extracted depending on the
nature of these invariants computed from the motion of
interest. Let us present the aspects of the experimental
design of our study.

IV. MEASUREMENTS AND DATA PROCESSING

This section begins with an overview of the ex-
perimental protocol, which is followed by the data
processing method used to estimate the twist velocities.
Subsequently, the humeral movements used in the study
are presented.

A. Setup and Instructions

Six healthy subjects with fully functional upper
arms were recruited (see Tab. [[). Eight passive optical
markers H1-H8 were attached on the humeral segment
using double-sided tape (see Fig. 2) and were tracked
using a 17-camera OptiTrack Motive motion capture
system. The data were sampled at a rate of 120 fps
(frames per second). The volunteers were instructed to
perform five different movements in a standing position
(see Section [[V-C). Moreover, they were specifically
instructed to minimize elbow and wrist motion when
performing these tasks. Additionally, these movements
were performed at different speeds (see Section [[V-C).
Estimating the twist velocities in (I) from the non-
rigid marker cluster is a challenging problem, which
we explore in the next subsection.

B. Estimating Twist Velocities from Non-rigid Marker
Cluster

Computing the twist velocities in (I) from the sur-
face marker cluster is an open problem. Therefore, mit-
igation of soft tissue artifacts is an important challenge
that should be addressed before the geometric invariants
can be analyzed. As a solution to this problem, we adapt
the SHAPE algorithm presented in molecular dynam-
ics [18]]. The SHAPE algorithm is based on a non-
Lagrangian approach; therefore, it is computationally
less expensive compared to its Lagrangian counterparts.

Let r; be the position coordinate of the ¢th particle
of an n particle cluster with respective fictitious mass



m;; then, the COM of the cluster is

ZZL:l riym;

rcomMm =
2?21 m;

12)

To estimate the angular velocity, the coordinates of the
ith particle are computed with respect to the COM by

r =r; — rcom (13)

The fictitious angular momentum of the particle cluster
computed at the COM is given by

LP = Zr}’ X m;vP (14)
i=1

Note that the velocity vP is computed from using
a forward difference approximation. If r? e {x,yi, 2}
are the body-fixed coordinates of the ith particle, then
the moment of inertia of the marker cluster is given by

> ml(y? + 212) — > miTy; =Y mxz;
I = | =Y myiwi  Yomi(af+27) = miyizi
=2 MiZiT; =2 miziyi > om(Ti+y;)
(15)

If 0t is the data rate, by applying the law of conservation
of angular momentum, the rigid angular velocity can be
estimated by

Whgia(t + 0t/2) = I ' Lnon(t + 6t/2)

Equation is solved iteratively until the error norm is
||[LP,, — Lpigiall < € where € denotes a scalar positive
tolerance. The readers are advised to refer to [18] for
details regarding the implementation of this algorithm.
The approximation error of the angular velocity estimate
is on the order of dt2. Note that this tolerance limit
of e can only be achieved by using eight humeral
markers, and its convergence is dependent on the rate
of deformation. The twist velocities in (I)) are computed

using (I6) and (12).

C. Measurements

(16)

Our study is primarily based on naturalistic un-
constrained arm motion, which is very challenging
to investigate [[19]. As mentioned in Section. [III-A]
we aim to segment the submovements from different
stereotypical humeral movements performed under dif-
ferent speeds. Our hypothesis is that, irrespective of
the speed of movement execution, we can segment the
submovements, as the properties of the six dimension-
less geometric invariants (27 — Q3, Vi — V3) depend
only on the geometry of the motion being performed.
Therefore, three basic shoulder movements in three
different cardinal planes were selected. Initially, in the
coronal plane, vertical abduction and adduction were
chosen. During abduction, the humerus moves away
from the midline of the body. When this movement
is reversed, it results in adduction. When a similar
movement is performed with reference to the transverse

Table I: Details of healthy subjects involved in the study
(F:Female, M:Male).

[ Subject | Age (years) | Weight (kg) [ Height (m) [ Handedness |

I 25(F) 70 1.36 Right
) 24(M) 70 WL Right
3 32(M) 78 1.80 Right
7 24(F) 59 1.59 Right
5 21(M) 82 1.83 Right
6 25(M) 79 1.84 Right

plane, it results in horizontal abduction-adduction. In
the sagittal plane, when the humeral angle increases
with respect to the thorax, it results in flexion. The
reversal of this motion results in extension; when this
reversal continues beyond the neutral position of the
humerus, it results in hyperextension.

Additionally, the above movements were performed
with the help of a metronome at three different
speeds, namely, ultra-slow (10 bpm (beats per minute)),
slow (12 bpm), and normal (15 bpm), and without a
metronome at a random (self-selected pace) speeds.
The subjects were specifically instructed to finish the
complete movement cycle in one beat cycle. Therefore,
the transition times in the self-selected pace trials must
demonstrate high variability. To ensure high quality of
the recorded movements, the subjects were allowed to
take short breaks in between various trials.

The above analysis was extended to two composite
motion tasks performed at normal speed, in which
each submovement occurred in different cardinal planes.
The first task was composite motion I, which con-
sisted of 90° flexion followed by horizontal abduction
and vertical adduction. Similarly, composite motion II
begins with a vertical abduction of 90°, followed by
horizontal adduction and 90° extension. All movements
were repeated six times in each set.

V. RESULTS AND DISCUSSION

This section begins with the analysis of the invariant
geometric information for the five movements presented
in Section A video accompanying this submis-
sion emphasizes the relation between the geometric
invariants and the various submovements of interest. In
this section, these movements are analyzed using the
mathematical framework presented in Section and
Section The movements are presented in order of
increasing number of submovements and complexity.

A. Vertical Abduction-Adduction

As illustrated in Fig. (3] from the humeral marker
cluster, the twist velocities referred to the body-fixed
frame are computed. From these estimated twist ve-
locities, the six dimensionless geometric invariants can
be extracted. Subsequently, by computing the geomet-
ric degree of advancement £(t), the six dimensionless
geometric invariants are computed. The transition from
the vertical abduction to adduction phase is marked by
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Figure 3: Representative illustration of extraction of invariant geometric signatures for Subject 2 during vertical abduction-
adduction task performed at ultra-slow speed for a single cycle. From the estimated rigid body twist velocities wy and vcom,
the six time and amplitude normalized invariants are computed @w; — @3 and U1 — 3. Following this extraction, the six geometric
invariants with respect to motion profile are computed €2; — €23 and Vi — V3. We follow the exact steps as detailed in .

the transition in sign of i,, which is accompanied by
an instantaneous peak in ;. Corresponding changes can
also be observed in the higher order invariants.

Similarly, the final set of invariants with respect
to the motion profile {2; and V; also exhibit marked
transitions. Corresponding changes can also be observed
in the higher order invariants. Note that the higher the
derivative level of the invariant descriptor is, the more
sensitive the interpretation is to noise [20]]. Therefore,
we will henceforth use Q7 and V; to segment the
submovements.

As shown in Fig. [] it is clear that by using the
geometric invariants, it is possible to reliably segment
the submovements at different speeds. The transition
from vertical abduction to adduction is clearly marked
by the transition from a positive to negative region of
Q; and the instantaneous trigger in V3. Note the high
instantaneous linear velocity effect in Fig. ] Such an
effect in the invariants occurs when the subject attempts
to complete a submovement in a shorter time than usual.
This is accompanied by a high instantaneous linear
velocity during execution of the submovement, which
has also been reported by other studies [[14].

B. Horizontal Abduction-Adduction

As shown in Fig.[5] during the horizontal abduction-
adduction task, the change from horizontal abduction to
adduction is marked by a clear change in the sign of €,
and an event trigger in the plots of V.

C. Flexion-Extension-Hyperextension

As shown in Fig. [6] the change from flexion to
extension-hyperextension and the reversal of hyperex-
tension are clearly marked by transitions in the value of
); and two event detectors in V7. We note here that,
the reversal of motion from hyperextension to reverse
hyperextension is accompanied by STA effects. This
might be due to large acceleration of the marker cluster

during this instantaneous reversal. As we previously
mentioned (see Section. [V-B)), the SHAPE algorithm
has limitations handling large rates of deformations.
Therefore, improving the algorithm would be a possible
solution to mitigate these effects.

D. Composite Motions I & 11

As shown in Fig[7] composite motions I and II are
both accompanied by two clear transitions. During com-
posite motion I, the changes from flexion to horizontal
abduction and from horizontal abduction to vertical
adduction are marked by clear transitions in the values
of ; and V. The invariants for composite motion II
are also similar.

To further elucidate our analysis, we plot the relative
submovement transition times for the various move-
ments in Fig. [8] Note that in the case of both verti-
cal and horizontal abduction-adduction only a single
submovement transition time exists. Whereas, in the
case of flexion-extension-hyperextension, the change
from flexion to extension and hyperextension to reverse
hyperextension is marked by two different transion
times as seen in third column of Fig. [§] In general,
the standard deviation of submovement transition time
during the self-paced trial (case 4) is seen to be greater
than other cases. This is not surprising as the sub-
jects were specifically instructed to randomly select
the submovement transition time (see Section [[V-C).
Therefore, the standard deviations of the submovement
transition times demonstrate the high reliability of our
submovement segmentation.

Interestingly, despite the approximate estimation of
twist velocities from the marker cluster, we are able
to segment the submovements with high reliability. Of
course, improving the twist velocity estimation algo-
rithm is key to the full exploitation of this invariant
geometric framework. Currently, the invariant geometric
framework presented in this paper is computed offline.
Extending this framework to online implementation is
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for Subject 1 at a normal speed.

an important question that we would like to explore
further. This framework would be very useful in appli-
cations such as high-intensity repetitive robot-assisted
therapy. In the future, high-reliability HRI would require
an invariant framework that would enable seamless
communication between humans and robots. This work
is an important step in this direction.

VI. CONCLUSIONS

Through this paper, we have successfully demon-
strated that solely based on the invariant geometric
information embedded in the segment kinematics, it is
possible to segment the submovements with high relia-
bility. This approach has been successfully tested across
diverse naturalistic humeral movements, at different ex-
ternally cued and self-selected speeds. In conclusion, the
presented framework has high reliability of submove-

ment segmentation for a large variety of movements.
This consistent segmentation is achieved despite the
inherent variability in the observed movements.
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