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ABSTRACT

In this master’s thesis a multirotor with the ability to scan its surroundings
was built. To be able to produce these scans the multirotor will be equipped
with a custom built 3D LIDAR. In the future, the scans will be used to
generate a 3D map to visualize mineshafts in a well suited way for inspections.

This multirotor is designed with the purpose to map mineshafts that are
inaccessible to humans, due to safety reasons. To produce a 3D map of the
multirotor surroundings the absolute position is needed. Since the multirotor
will be used in an environment where GPS is unavailable, the positioning is
solved by utilizing an IMU and Computer Vision technology with a Ranging
device.

The functionality has been tested in a lab environment resembling real life
operational conditions, and confirms that it is possible to use this approach
to scan an environment where it is possible to have the multirotor in line-of-
sight for the camera.

The 3D scanning is relaying on a stable Wi-Fi connection and absolute po-
sition and as long as this is established it is possible to use this point cloud
for inspection.

The positioning of the multirotor is tested up to a range of 40 m, with a
maximum measured accuracy of ± 5 cm, which is well within the range of
the requirements of the application.
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CHAPTER 1

Introduction

1.1 Background

Autonomous robots of all sorts are going to be common in the future, in
everything from self driving cars, to Unmanned Aerial Vehicle (UAV)’s. One
branch of these UAVs that are being more frequently used are the ones that
have the ability of Vertical Take-Off and Landing like the multirotor. Since
they need less room to take-off and land and due to their stable flight perfor-
mance and fast maneuvers they can be used in many different applications.
One such application could for example be to fly inside underground mine-
shafts.

The local mining industry is struggling with mineshafts that are exposed to
wear and erosion which can widen the walls to unsafe levels. These shafts
need to be scanned at regular intervals, which is expensive due to the fact
that these shafts are inaccessible due to safety concerns. As of today the
only way of inspecting the shafts is to drill long holes, sometimes several
hundred meters and insert stationary scanners along the shafts. This method
is expensive and time-consuming and therefore a cheaper and faster method
is desired. This master’s thesis is a part of a project to build a prototype
of a drone system for underground mapping in the environments mentioned
above.

1.1.1 Project background

The primary objective of the project is to test if it is possible to produce a
multirotor that can fly autonomously through a mine shaft while at the same
time scanning its surroundings. It should also be cheaper than the current
method to use these drones. Output from a scan should be a 3D point cloud
that represents the mine shaft. Since the shafts are inaccessible there will not
be possible to retrieve the drone after a crash, therefore scanned data should
be continuously streamed to a base-station which enables the scanned data
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to be retrieved even if the drone is lost. The drone should be easily replaced
and the cost of each drone should be kept at a minimum.

Part of this project was already implemented before this master thesis started.
These parts were implemented by students (including me) in a project course
at the fall of 2016. The report that was written for this project course show-
ing what was already made can be viewed in the D70039E-E7025E report
written by K.Alkawati et al. [7]

Here is a list showing what is already implemented:

• The drone was airborne and able to carry its entire payload long enough
to safely map an entire mineshaft.

• Almost all hardware electronics was built and tested.

• Mounts for Light Detection And Ranging (LIDAR) and all hardware
electronics was done.

• Communication between the flight controller and the MCU was work-
ing.

• A simple collision avoidance was implemented.

• Ethernet stack was written, but not yet finished.

• Code for communication with the Inertial Measurement Unit (IMU)
was written, but not fully functional.

1.2 Goals

The primary goals of this thesis is to produce a 3D point cloud of the copters
surroundings, by utilizing a LIDAR and an IMU, and to visualize this point
cloud in a well suited way in order to detect larger defects on the surrounding
walls.

In order to do this the position of the copter is needed, and this is made
using a ranging device and Computer Vision. The position part of this thesis
is done in cooperation with another master’s thesis student, Unander [14].

Technical specification for this master’s thesis:

• Position of copter established up to 40 m with good enough refresh rate.

• Point cloud representing the copters surrounding where it is possible
to detect larger holes.
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• Data streamed wirelessly from the MCU.

What is considered ”good enough” will be determined through testing.

1.2.1 Scope

Some limitations regarding the goals of this thesis:

• No testing of the system inside a mine shaft is necessary, since this is
only a proof of concept.

• A corridor near the project room will be used as a proving ground
as it is about 40 m long and 3 m wide, making it equivalent with the
proportions of a mine shaft.

• Copter should only return scans as long as it is in line-of-sight for the
camera.

• Real time plotting of the scans is not required.

1.3 Motivation

Why are we doing this project, and where can it be used? The position part
could be used for applications that need to utilize some sort of positioning
in an environment where feature detection and/or positioning using GPS or
satellite is impossible. Since there is no need for great on board computa-
tional power, the cost for each unit will be lower than other autonomous mul-
tirotor that is relying on heavy-duty Simultaneous Localization And Mapping
(SLAM).

1.4 Outline

This thesis is organized as follows:

• Chapter 1 (this chapter) provides an introduction of the subject and
to the whole project. It provides information about what is already
implemented and what the goals are, as well as the structure of this
thesis.

• Chapter 2 presents the method and theory of how everything was im-
plemented, and which things that was needed to fulfill the requirements
for the project.

• Chapter 3 presents the results of this thesis.
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• Chapter 4 discusses and evaluates the results presented in chapter 3.

• Bibliography contains references to literature referred to in this thesis.

• Appendix A contains a component parts list.

• Appendix B contains schematic and layout of the Nucleo Shield.

• Appendix C contains schematic and layout of the Power distribution
board.
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CHAPTER 2

Method

To be able to determine the position of the walls of the shaft in 3D space
(x,y,z coordinates) we need to consider two major things. First we need to
know the position of the copter, or rather the position of the LIDAR. Second
thing we need to know is the position of the wall relative the copter. So how
is this really done?

Our approach is that we have mounted a couple of sensors on the quadro-
tor, we have an IMU, a LIDAR, a Ranging Device, a Wi-Fi module and a
bright shining LED. We will also need to have a base station (Laptop/micro
controller), which also has a couple of peripherals like a camera and Wi-
Fi connection. This setup is illustrated in the component chart shown in
Figure 2.1. A part list with all components is presented in Appendix A.

Figure 2.1: Component chart showing how the components are connected
with each other and which communication protocols that are being
used.
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As our Main Computational Unit where all the communication and on board
computations will be done, we are using a Nucleo development board with a
STM32F767ZI processor. On top of this development board we have mounted
a shield that, see Figure 2.2. This shield holds the connectors for the different
sensors and the other circuit boards that we need to use, like the power
distribution board, which isn’t shown in the Component chart above.

Figure 2.2: Picture showing the Shield mounted on top of the Nucleo devel-
opment board, it fits to the connectors mounted on the Nucleo and
can be easily detached. The IMU is inserted into its socket and at the
top right we can see the connector that connects to the power distri-
bution board, powering the entire board with 3,3V, 5V and connects
the stepper motor driver with the F7 processor pins.

The power distribution board connects directly to the 4S (≈ 16 V) Li-poly
battery and distributes power to all the peripherals on the copter as well as
the MCU. For complete wiring schemes of the shield and the power distri-
bution card see Appendix B and C. Why some of these components have
been chosen is written in the Conex Copter report by K.Alkawati et al. [see
7, Ch.5].
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2.1 Copter positioning

Determining the position of an object is usually done using a GPS but since
we are flying inside a mine the GPS is impossible to use. Another approach
is using some sort of Indoor Positioning System (IPS) like having a couple
of anchors with known position, or using the signal strength of the Wi-Fi.

Since we would like to have a position that has centimeter accuracy with
high refresh rate none of the above will work. Our approach is to combine
a Ranging device and computer vision with a multi-rate Kalman filter. The
Ranging Device will be used for measuring the distance from the base station
to the copter and the Computer Vision will determine the position of the
copter in the 2D plane. The Kalman filter will be used to filter out measured
noise and also increase the refresh rate in between measurements.

2.1.1 Ranging Device

The Ranging Device that we will use consists of two units, one is mounted on
the copter and one is mounted at the base station. The devices utilizes Ultra
Wide-Band (UWB) radio technology and uses this technology to measure the
range between the units. UWB is a radio transmission technology that uses
as the name says a wide bandwidth with low energy level, to not interfere
other currently licensed carrier based transmissions. Both units outputs the
distance between them in a serial stream. The device have an estimated
range up to 200 m with an uncertainty of about 5 cm. When they have good
connection with each other they have the ability to stream data at about
100 Hz.

2.1.2 Computer Vision

The Vision part of the positioning will be done using a web camera mounted
to a laptop. The computer vision algorithm is coded in Python using the
SimpleCV[12] framework, which is an open source framework for building
computer vision applications. SimpleCV stands for Simple Computer Vision.
SimpleCV is simple to use, straight forward, and quite powerful since it is
mainly a OpenCV[3] wrapper, that can be used without having to first learn
about bit depths, color spaces or buffer management. SimpleCV provides a
concise, readable interface for cameras, image manipulation, feature extrac-
tion, and format conversion. Pseudocode for the position tracking algorithm
is shown below:
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Algorithm 1 Position tracking

Take background snapshot
loop

Take snapshot
Subtract background from snapshot
Binarize the difference Image
Run blob detection algorithm
if Blob is found then

Get blob pixels
if pixel diff ≤ MAX pixel deviation then

Get distance from Ranging device
Calculate X,Y,Z position
Send coordinates to copter

end if
end if

end loop

In Figure 2.3 you can see what a raw picture from the camera looks like
before any vision algorithm is added.

Figure 2.3: Snapshot showing what the camera sees without any filtering or
algorithm

The first thing that is done within this algorithm is taking a background of
the environment (without the copter) that we are going to fly in, and then
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subtracting this background from the snapshots taken by the camera. This is
done because when flying in the corridor we need to take away all the bright
spots from the image, so that the only bright spot is the LED mounted on
the copter.

Since we only are taking one snapshot of the background before we are start-
ing to fly, it is very important that the camera is properly mounted and that
there are not any moving light sources. In Figure 2.4 we can see this problem,
where in Figure 2.4b we are using an old image background for subtraction
where the sun had not yet reached the window and thus we have a bright
spot on the floor that is not subtracted. In Figure 2.4a the background image
is updated and thereby the vision does not detect that blob.

(a) Single blob detected. (b) Multiple blobs detected.
Figure 2.4: Screenshots showing what the computer sees after running the

vision algorithm. a) showing one detected blob which is the LED
mounted on the copter, and this is marked both with a red and blue
border. b) showing two detected blobs, one is marked with a red and
blue border and the other only marked with a red border.

Next thing that is done is running the Blob Detection algorithm that is
available within the SimpleCV library. The Blob algorithm runs over each
pixel in the image and searches for chunks with bright pixels. How bright
and how large these chunks need to be to get detected can be tuned. The
algorithm can return the size, the brightness, and the pixel position of these
chunks.

For each blob that the algorithm detects it prints out a red border around
them, but it is only the one that is marked with a blue border that we are
tracking. This is determined with a max pixel deviation from the previous
blob we are tracking, and require that the first blob that we detect is the
copter LED, this can be seen in Figure 2.4b.

When we have the position of the blob that we want to track, we then
ask for a distance measurement from the Ranging device, and calculate the
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X,Y,Z coordinate by utilizing ”camera pixel to distance calculation” as will
be shown below. These positions are then sent within a User Datagram
Protocol (UDP) packet over Wi-Fi to the MCU.

An alternative algorithm to the one described earlier, has also been tested.
This version of the algorithm works almost the same as previously mentioned,
but instead of running blob detection on the whole image each time, the
region of interest within the image is cropped, and the blob detection is
run only in this region. Pseudo code for the alternative position tracking
algorithm will look like:

Algorithm 2 Position tracking (Crop)

Take background snapshot
loop

Take snapshot
Crop the snapshot and background around the latest blob
Subtract background from snapshot
Binarize the difference Image
Run blob detection algorithm
if Blob is found then

Get blob pixels
Get distance from Ranging device
Calculate X,Y,Z position
Send coordinates to copter

end if
end loop

The major difference between Algorithm 1 and 2 is that the blob detection
only runs at a small area where the interested blob is. To find this ”area of
interest” the blob detection needs to be applied to the whole image at the
first iteration, and the image will then be cropped around the latest blob
position.

2.1.3 Camera pixel to distance calculation

While running the blob detection algorithm it is possible to find at which
pixel we have a blob. But how do we convert the pixel into a distance in the
global coordinate system?

To do this we need to implement some sort of pixel-to-position conversion.
For this it is needed to know how wide each pixel is and at which distance
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from the camera the object is located.

To calculate the distance, Y , the relationship between the X and Z position
and the angle θ is needed since the measurement from the UWB only gives
the shortest distance to the copter (the hypotenuse). To more easily show
how this is done we can address this problem in two dimensions showing only
the XY-plane, see Figure 2.5.

Figure 2.5: Figure showing the global XY-plane with X as the position of the
copter in the X-direction and Y as the perpendicular distance from
the camera to the copter. Where θ is defined as the angle between
the X and Y position.

From Figure 2.5 we get that,

Y = UWBrangecos(θ) (2.1)

But since the position, X, is only known in pixels, and θ is unknown this
problem has to be addressed in another way.

By seeing the camera as the most basic camera model, the pinhole model
as described by Banerjee [2] and considering this problem in pixels, focal
lengths and Field Of View (FOV) instead, this will result in Figure 2.6.

The camera’s focal length expressed as f is not really the focal length, for
these calculation it is said that f is a crude approximation of the focal length
expressed as an imaginary pixel distance. In Figure 2.6 the width Xmax is
the maximum width that the camera can see at a given Distance, Y , from
the lens.

The Image Plane represents what is seen on the computer screen when taking
a picture with the camera, and thus W is represented as the Horizontal Pixel
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resolution. As the rays within the pinhole model goes straight through the
small aperture of the pinhole, the angle αh will be the same on both sides
and thus the FOV for the object plane equals the FOV of the image plane.

Figure 2.6: Figure showing the basic pinhole camera model in 2D showing
only the X-Y plane. Used for calculating the cameras Horizontal
Field Of View (HFOV) angle, αH as well as the cameras focal length
in pixels, f given the resolution of the camera and the diagonal FOV.

From Figure 2.6 we get that,

f =
W

2
cot

(
HFOV

2

)
(2.2)

Since the camera that is used in this project only have specification of the
Diagonal Field Of View (DFOV), it needs to be converted from HFOV into
DFOV. This is achieved by,

{
HFOV = 2tan−1

(
tan

(
DFOV

2

)
·
(
H
D

))
VFOV = 2tan−1

(
tan

(
DFOV

2

)
·
(
V
D

)) (2.3)

where H/D and V/D is the horizontal/diagonal and vertical/diagonal aspect
ratio. Another way to do this is to derive the focal length, f , directly from
the DFOV. To do this we need to take this concept into 3D space, which is
shown in Figure 2.7.
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Figure 2.7: Figure showing how the different vertical, horizontal and diago-
nal FOV is defined. Showing also the the pixel resolution of the Image
Plane as H ×W , where D is the diagonal pixel resolution [11].

Rewriting Equation 2.2 into DFOV gives,

f =
D

2
cot

(
DFOV

2

)
, (2.4)

where the diagonal pixel resolution, D, is calculated from Figure 2.7 by,

D =
√
H2 +W 2. (2.5)

It is now possible to set up how the width, Xmax depends on the distance to
the Object plane, Y from Figure 2.6 by,

Xmax

Y
=
W

f
. (2.6)

By substituting
xmax

W
with Pixelwidth the equation can be written as,

Pixelwidth =
Y

f

[ m

Pixel

]
(2.7)
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This equation gives the width of one pixel in meters at a given distance, Y
to the object plane. To simplify things the assumption that the pixels are
squares is made, thus the width of each pixel equals the height of each pixel.
To verify the correctness of this theory with the approximations that were
made, some tests were set up. Pictures were taken of a fixed size object at
different distances. An A4 paper were used at five different distances, 4, 8,
12, 16 and 20 meters from the camera. Two of these pictures are shown in
Figure 2.8.

(a) Distance = 4m (b) Distance = 16m
Figure 2.8: Pictures showing how the measurement for the pixel conversion

was taken.

The width of this object in pixels was measured on each picture and a function
for how the pixel size relates over distance was calculated and plotted, these
results can be seen in Section 3.1.3. Since the pixel size is calculated it is
possible to calculate the perpendicular distance to an object, if the pixel
position is known as well as the UWBrange. By mapping Figure 2.5 into the
image plane in 3D we will get something similar to Figure 2.9.

In Figure 2.9 an object is located at a pixel position Px and Pz in the image
plane, thus representing a Position X, Y, Z in the object plane. Since both
Px and Py is known from the Computer Vision algorithm, as well as the
UWBrange, the the perpendicular distance, Y , can be calculated by,

Y = UWBrangecos(Φ), (2.8)

with,

Φ = tan−1

(√
P 2
x + P 2

z

f

)
(2.9)

As this is only needed when the copter is close to the camera, small angle
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Figure 2.9: Figure showing how an Object at position X in the Object plane is
represented as position, PX in the Image plane. In Figure 2.5 you see
the representation of the same object, but in the object plane looking
from above, so that θ in the Image plane equals θ in Figure 2.5.

approximation can be used as the copter moves further away from the camera
and then,

y ≈ UWBrange (2.10)

2.1.4 Kalman Filter

The Kalman filter is an optimal recursive filter or algorithm that is often
applied on noisy measurements where there is knowledge of the dynamic
system. The Kalman filter can be divided in two major steps, there is the
Predict stage and the Update stage. These two stages can run at the same
frequency, and this is called a single rate filter. They can also run at different
frequencies, then it is a multi-rate filter. The multi-rate filter has the advan-
tage that it can run the update stage when we have incoming measurements,
and the predict stage can still run at very high frequency giving estimated
values between sensor measurements.

As we want to know the position of the copter in higher rates than we get from
the Image processing and we want to filter out some noise that is presented
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with the measurements we will utilize the multirate Kalman filter. The
theory behind the Kalman filter is given below:

First we need to determine our states that we are interested in. For this
application we are interested in the X,Y and Z position of the copter as well
as their velocities, and therefore we say that our states are,

x = [Px, Py, Pz, vx, vy, vz]
T . (2.11)

The Kalman filter model assumes that the true states is evolved from the
previous state according to:

xk = Akxk−1 + Bkuk + wk, (2.12)

where Ak is the transition model, Bk is the control-input model and wk is
the process noise. Since we have no control input the simplified model will
look like,

xk = Akxk−1 + wk. (2.13)

Another simplification of our model is that we say the we are always traveling
with constant velocity which gives us that the next estimated position is the
previous position plus the estimated velocity multiplied by dt which give this
transition model,

Ak =

[
I3 dt · I3
0 I3

]
(2.14)

where I3 equals a 3-by-3 Identity matrix.

Our measurement, zk which equals the position, can be written as

zk = Hkxk =
[
Px Py Pz

]T
(2.15)

where Hk is a matrix that maps the state x into the measurement zk.

The Kalman filter is a recursive estimator, which means that the only thing
that is needed to estimate the current state is the estimated state from the
previous time step and the current measurement.

From here the estimated states is notated x̂ and the true state is notated as
previous, x.

The Predict stage:
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Calculate the predicted state estimation as,

x̂k+1 = Akx̂k. (2.16)

Update the predicted estimate covariance with,

Pk+1 = AkPkA
T
k + Qk, (2.17)

where Qk equals the covariance of the process noise.
For keeping the covariance matrix non-singular we need to utilize,

Pk =
Pk + P T

k

2
(2.18)

The Update stage:

Calculate the error between the newest measurement and the predicted states,

ŷk = zk −Hkx̂k. (2.19)

Update the residual covariance,

Sk = HkPkH
T
k + Rk, (2.20)

where Rk is the covariance of the observation noise.

Calculate the Optimal Kalman gain,

Kk = PkH
T
k S

−1
k . (2.21)

Update the estimated states with the calculated Kalman gain,

x̂k+1 = x̂k + Kkŷk (2.22)

Update the estimated covariance (Joesph form)

Pk+1 = (I−KkHk)Pk(I−KkHk)T + KkRkK
T
k (2.23)

The Kalman filter will be implemented to run on the MCU since we need
real-time position to autonomously fly the quadrotor.

The Kalman filter will run the estimation stage each time the MCU receives
positions from the Image Processing and will run the predict stage to fill up
the gaps in between measurements.

By using the Ranging device with computer vision and running the output
through a multi-rate Kalman filter we now have positions of the Copter in
global coordinates with great refresh rate. But we do not yet know the
orientation of the copter. That is why we need an IMU.
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2.1.5 IMU

The IMU will be used for keeping track of Quadcopter frame orientation.
Since we have no clue of the orientation of the copter from the Image Pro-
cessing it is very import that the angles from the IMU are accurate, since
small angle deviations will make large error at measurements far away.

As we are trying to accomplish to fly inside a mine shaft it is not possible to
use a compass to keep reference of the orientation of the copter. Because the
IMU measures angular velocity and accelerations it will tend to drift since it
will need to integrate to get the angles. Therefore we will use the Mti-3 from
XSens, which have on board filtering with Vertical Reference Unit (VRU)
and each device is individually calibrated.

In the datasheet[17], it is stated that the IMU with VRU enabled have a drift
in unreferenced yaw less than 1 degree after 60 minutes, even in magnetically
disturbed environments.

As seen in Figure 2.1 the IMU and the MCU communicates with each other
using a UART communication protocol called Xbus. The Xbus protocol is
described in the datasheet[17] for the IMU. At the beginning of this thesis it
was stated that the communication between the IMU and the MCU should
have been working, however, this was unfortunately not the case.

To spend as little time as possible on this problem the communication now
only works one way. The MCU can only get data from the IMU if it is setup
to be in ”data sending mode” as it powers up. To change any settings in the
IMU you now need to plug it in the development board and programming it
through the MT Software Suite[16] from your computer.

But since we never need to change the settings of the IMU this is not a
problem.
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2.2 Distance Measurement

How do we measure distances from the copter, and how is this done in 3D?

There are many different sensors that can be used for distance measurement,
the two groups of sensors that are mainly used are the optical sensors or the
ultrasonic sensors.

For this application where long range is needed (up to 10 m) with good
enough accuracy to be able to detect objects the Ultrasonic sensor is of
no use since its measurements are too unreliable because of their sensitivity
against interference, and their range is often less than what is needed.

2.2.1 LIDAR

In this project a LIDAR was chosen for distance measurment, the LIDAR
consists of a Laser that produces optical pulses, these pulses is transmitted,
reflected on the surface and returned to the receiver that accurately measures
the travel time, so called time-of-flight measurement. This describes how a
regular distance measurement is done in one direction, so how to make this
work in 2D?

It’s actually pretty simple, just rotate the Laser diode and the receiving photo
detector and you will have a 2D LIDAR. But an even simpler way is to shoot
the laser onto a tilted mirror that reflects the laser in the wanted direction
and then just rotate the mirror, see Figure 2.10.

Figure 2.10: Figure showing the basic principle used by many a 2D LIDAR.

For this project we are using a 2D scanning Laser Rangefinder (LIDAR) from
Hokuyo that is using the same technique mentioned above. The model that
we are using is the Hokuyo UST-10LX which have from the datasheet[5] a
range of up to 10 m, with a resolution of 0,25◦.
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The LIDAR rotates at 40 Hz continuously, but cables to the small stepper
motor that is mounted on top of the LIDAR that rotates the mirror will
make a 90◦ dead zone. Because of this the LIDAR have a scan angle of 270◦,
see Figure 2.11.

Figure 2.11: Figure showing the scanning angle and the dead-zone of the
LIDAR in default setup[1].

But still we are only measuring in 2D so we need to somehow rotate it around
another axis to be able to get a measurement in 3D.

Figure 2.12: Figure showing the LIDAR and the stepper motor mounted on
the quad copter, also showing in which direction the stepper motor
and the LIDAR is rotating.

This is done by mounting the LIDAR vertically on a hollow shaft stepper
motor with the scanning dead zone facing the copter frame. The cables that
need to connect to the LIDAR are pulled through the hollow shaft of the
stepper motor and to be able to rotate the LIDAR multiple turns without
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twisting the cables they are mounted to a slip-ring as well. The stepper
motor will be rotating with constant speed in one direction, since this will
give a better estimation of the stepper motor position than rotating the
stepper motor back and forth like a windshield wiper. This setup is shown
in Figure 2.12. As this hardware solution already was made at the beginning
of this thesis, more can be read about it in the ConexCopter report [7].

With this solution the field of operation for the LIDAR will be almost a
complete sphere, which can be seen in Figure 2.13. The Dead Zone of the
LIDAR was chosen to be facing down because the copter frame would have
been hit by the LIDAR and the measurements would have become useless if
the Dead zone had been placed anywhere else.

Figure 2.13: The field of operation for the rotating LIDAR-setup. As the
stepper motor has a full 360◦ revolution and the LIDAR has a dead
zone of 45◦ we will get almost a complete sphere that the copter
can detect. Since the LIDAR is mounted on top of the drone, the
dead-zone is pointed towards the body of the copter to get the least
amount of bad hits.

The LIDAR is doing 1081 measurements for each scan and when rotating
at 40 Hz it measures over 43 000 distances per second. The LIDAR do have
knowledge at which angle each measurement is taken. Which is possible since
it knows that the stepper motor is rotating with constant speed and it know
each time the mirror passes the 0◦ mark, where a hall effect sensor is mounted.
Data from the LIDAR is sent through Ethernet with a Transmission Control
Protocol (TCP), and each scan is marked with a time stamp making it easier
when building up the whole 3D picture later on.

The output from the internally placed hall-effect sensor is also available as
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one of the outputs from the LIDAR, which will be used for synchronizing
and sending of data, which will be discussed later on in 2.4.4.

The same approach that is used with the hall-effect sensor internally will also
be used on the stepper motor to be able to know when it has finished one
rotation. Since it is critical to know the exact position of the stepper motor
for building up the surroundings in the right direction.
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2.3 Mapping of coordinate systems

To be able to determine the ”global coordinates” of the distances that is mea-
sured by the rotating LIDAR, lots of trigonometry and mapping is needed.
In this case we have three different coordinate systems. The camera has one
coordinate systems which is fixed with the camera, and we do know the cam-
eras global position, let us say that this position is located at x, y, z = (0, 0, 0)
[m].

The quad copter does also have its own coordinate system, which is fixed to
the copters frame and it is positioned in the copters point of rotation and
when dealing with spacecrafts we often use yaw, pitch and roll as names for
rotation about the principle axes, this is shown in Figure 2.14 and 2.15.

Figure 2.14: Figure showing the quadcopter attitude, yaw, pitch and roll
axes[18].

The last coordinate system is fixed to the rotating LIDAR. The copter fixed-
and LIDAR fixed coordinate system do share the same y-axis since both
rotate around the same point in the x-y plane.

So how to convert the LIDAR measurement to a x,y,z point represented in
the same coordinate system as the camera?
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2.3.1 Rotation and Translation matrices

This is done by utilizing linear algebra with rotation and translation matrices.
The three rotation matrices around the three axes, x, y and z is given by:



R(Φ, x) =

1 0 0
0 cos(Φ) −sin(Φ)
0 sin(Φ) cos(Φ)



R(Θ, y) =

 cos(Θ) 0 sin(Θ)
0 1 0

−sin(Θ) 0 cos(Θ)



R(Ψ, z) =

cos(Ψ) −sin(Ψ) 0
sin(Ψ) cos(Ψ) 0

0 0 1


(2.24)

and the translation matrix is given by:

T (x, y, z) =


1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1

 (2.25)

Since we will use both translation and rotation matrices our rotation matri-
ces will be extended by another column and row to a 4-by-4 matrix. The
extended rotation matrix will look like this:



Rext(Φ, x) =


1 0 0 0
0 cos(Φ) −sin(Φ) 0
0 sin(Φ) cos(Φ) 0
0 0 0 1



Rext(Θ, y) =


cos(Θ) 0 sin(Θ) 0

0 1 0 0
−sin(Θ) 0 cos(Θ) 0

0 0 0 1



Rext(Ψ, z) =


cos(Ψ) −sin(Ψ) 0 0
sin(Ψ) cos(Ψ) 0 0

0 0 1 0
0 0 0 1



(2.26)
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2.3.2 Mapping

Figure 2.15: Quadcopter-fixed coordinate system in relation to the camera
fixed coordinate system [6].

The first mapping that we need to do, is the mapping from the camera to the
LED that is mounted on the copter frame. This mapping is done by using
the translation matrix given in Equation 2.25. The translation matrix from
Camera to LED is given by:

TCam/Led =


1 0 0 LEDX

0 1 0 LEDY

0 0 1 LEDZ

0 0 0 1

 (2.27)

Where LEDx,y,z is given by computer vision and a ranging device. The next
step is to go from the coordinates of the LED to the copter fixed coordinate
system. This is done by applying a rotation matrix, this rotation matrix
is a multiplication of all the given rotation matrices in Equation 2.24. The
rotation matrix from camera- to quadcopter coordinate system is given by:

RCam/Quad =


CΨCΘ −SΨCΘ + CΨSΘSΦ SΨSΦ + CΨSΘCΦ 0
SΨCΘ CΨCΦ + SΨSΘSΦ −CΨSΦ + SΨSΘCΦ 0
−SΘ CΘSΦ CΘCΦ 0

0 0 0 1

 (2.28)
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with representation of Cangle = cos(angle) and Sangle = sin(angle) and where
[Ψ, Φ, Θ] = [Y aw, P itch, Roll]

Since the angles of the copter should be smaller than 10◦ we can use small
angle approximation to speed up computations. Substituting sin(x) = x
and cos(x) = (1− x2/2) in Equation 2.28 we get the approximated rotation
matrix,

R̂Cam/Quad ≈ RCam/Quad (2.29)

Mapping from the center of the copter frame to the rotation point of the
LIDAR is done by utilizing another translation matrix:

TLed/Lidar =


1 0 0 Lo

x

0 1 0 Lo
y

0 0 1 Lo
z

0 0 0 1

 (2.30)

with Lo
i = LIDAR offset x,y,z coordinates.

The LIDAR is mounted on top of a stepper motor, and the motor is mounted
in the center of the copter frame in the x,y plane with a offset in the z
plane. Thereby the rotation matrix for the mapping between the LIDAR
fixed coordinate system and the copter fixed system is only a rotation around
the z-axis, and this is given by:

RQuad/Stepper =


cos(α) −sin(α) 0 0
sin(α) cos(α) 0 0

0 0 1 0
0 0 0 1

 (2.31)

where αis the angle of the stepper motor. The LASER diode that is measur-
ing the distances is placed with an offset from the origin of the LIDAR fixed
coordinate system, and thereby another translation matrix is needed.

TLidar/Laser =


1 0 0 d
0 1 0 0
0 0 1 0
0 0 0 1

 (2.32)

where d = distance between LIDAR center of rotation to the LASER diode.
The last transformation matrix that is needed is a matrix that describes the
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measured distances.

TLaser/Point =


1 0 0 0
0 1 0 Ldsin(β)
0 0 1 Ldcos(β)
0 0 0 1

 (2.33)

This is a translation matrix where Ld is the measured distance from the
LIDAR, and β is the angle of the stepper motor mounted inside the LIDAR.

Multiplying all the matrices together will give the complete mapping from
the measured laser distance to the fixed camera global coordinate system,
Wp = Wall point

Wp = TCa/LeR̂Ca/QuTLe/LiRQu/StTLi/LaTLa/P

[
0 0 0 1

]T
(2.34)
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2.4 Software

To be able to build a 3D map of the surroundings from all the data that
is retrieved from the different sensors such as the LIDAR, the IMU, the
stepper motor and the position from the Kalman filter everything needs to
be synchronized. Since the MCU has its own SysTick timer, updating at
1 ms it is easy to add a timestamp to every incoming measurement. But
since the LIDAR does not go through the MCU there is almost impossible
to know which LIDAR scan that belongs to which position and angle of the
copter.

This problem is solved by synchronizing the MCUs timestamp with the times-
tamp of the LIDAR. Lots of code were written before beginning of this thesis,
this includes almost all drivers for the different peripherals and the most ba-
sic communication protocols where defined. Everything about this can be
read about in the in the ConexCopter report [7].

Since this is a time-critical system the software is interrupt based and a
high-level representation of the software that is used for this system is seen
in Figure 2.16.

2.4.1 Main function

The first thing that is done when booting the MCU is that it is initializing
the drivers for its peripherals and setting all the GPIOS to the right pins.

After all the drivers are set up it will wait until it has established a connection
to the LIDAR. If no connection is established, the MCU will just sit and wait,
this loop can be aborted by pressing on a button on the MCU. When there
is a stable connection to the LIDAR the MCU asks for its time stamp and
synchronizes their stamps with each other. Then it will disconnect so that
the base station can connect to the LIDAR, since only one device can be
connected at the same time.

As everything is setup, all the interrupts can be started. At the end of the
main function there is a infinite while loop that is used for sending of the
LIDAR and Accelerometer Measurement Protocol (LAMP) packets, what
these packets are is shown in Section 2.4.3.

The infinite loop checks which sending flag that is set and then sends the
corresponding packet over Ethernet. Which packets that can be sent can be
defined before compiling the code, since sometimes you only want a specific
packet to be sent. This is also shown in Figure 2.16 where #define shows
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Figure 2.16: Figure showing a high level schematic view over the interrupt
driven software that is running on the MCU.

29



which sending flag that can toggled on or off.

2.4.2 Interrupts

This system do consist of many different peripherals and communicates with
a lot of sensors and other devices such as the flight controller and the base
station. Since the MCU needs to gather lots of information and that it needs
to always get the latest available data, all devices that are talking with the
MCU needs to be interrupt driven, since polling of data isn’t an alternative.
The main interrupts that is running on the MCU is shown in Figure 2.16 and
will be explained further below.

Stepper motor

To take a step with the stepper motor, a short pulse is sent to the stepper
motor driver. Each time that this pulse is sent, an interrupt on the MCU
will occur and a counter will count up the motor step, like motorstep =

motorstep + 1. The stepper motor driver is programmed in such a way
that 400 steps is one full revolution.

Hall-effect sensor

As the stepper motor only counts the steps that it has taken and not at
which angle the motor started. A hall-effect sensor and a magnet will be
used to make it possible to detect each turn the motor has taken. Each
time the magnet which is mounted on the motor passes the sensor it will
make an interrupt. This interrupt handler does only reset the motor step
with, motorstep = 0. Thus the position of the stepper motor is known, for
simplicity we can say that the stepper motor is rotating with constant speed
under one revolution.

Kalman Filter

The Kalman Filter mentioned in Section 2.1.4 has been ported into C-code
and is being executed by the MCU. The Kalman Filter will be running at
50 Hz since this is the maximum frequency we can run the MultiWii Serial
Protocol (MSP) commands and be talking to the flight controller. Run-
ning the Kalman filter at a higher frequency than the maximum frequency
of the MSP commands will be waste of computational power, as the MSP
commands depends on the positional controller [14] since sending the same
command twice is completely unnecessary.

To run the filter in the desired frequency a timer will be used, the timer will
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interrupt the main loop at 50 Hz and this interrupt handler will first run the
Kalman Filter, then set the Kalman Filter sending flag to one, then it will
run the positional controller and lastly it will send the MSP command to the
flight controller. More about this can be read about in the Master thesis by
Max Unander [14].

IMU

The IMU will interrupt the MCU each time it has new incoming measure-
ment, this will run in 100 Hz since that is the update rate of the IMU. In this
interrupt handler also the parsing of the data from the IMU will be made.
The communication between the IMU and the MCU is a UART communi-
cation protocol and to handle this large amount of data without occupying
the CPU the MCU utilizes Direct Memory Access (DMA).

Ethernet

Each times when there is incoming data on the Ethernet line to the MCU an
interrupt will occur. This interrupt handler will check whether the incoming
data is a position setpoint or whether it is a position sent from the computer
vision.

If it is a position it will update the old measurement and notify the Kalman
filter that there is a new measurement and then the next time the Kalman
filter runs it will do the update stage instead of the predict stage, see Sec-
tion 2.1.4.

If it is a setpoint it will only update the setpoint for the positional controller,
this is discussed further in the the Master Thesis by Unander [14].

LIDAR

As mentioned in Section 2.2.1 the LIDAR has an internal hall sensor that
keeps track of its rotation. This is also available as an output of the LIDAR
where the signal on the output pin goes low each time the internal part of the
LIDAR passes the sensor. This output is connected to the MCU and is set
up to trigger an interrupt each time the pin goes low. This interrupt handler
will only set the multilamp send flag to one. As this package consists of a
timestamp, stepper motor angle, IMU angles and copter position this is the
only package, plus the LIDAR scans of course that is needed to be able to
construct a 3D image.
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Sonar

The Sonars mounted on the copter uses ultrasonic sound to measure the
distance from the copter to objects, that could for example be a wall. The
Sonars will be used for collision avoidance, so that the copter will not collide
with anything. All sonars will trigger an interrupt after each measurement, in
each interrupt handler the measured distance of the sonar will be calculated.
More about how this is implemented can be read about in the ConexCopter
report, K.Alkawati et al. [7].

2.4.3 Data sending protocol

In order to encode sent and received data, a protocol was constructed. The
protocol got the name LAMP, LIDAR and Accelerometer Measurement Pro-
tocol. The protocol needs to pass along data from the LIDAR, the IMU and
data from the Kalman filter. All LAMP packages are passed along with a
time stamp and are currently sent using the Wi-Fi module that is mounted
on the copter.

The major objective of the LAMP protocol was to send LIDAR frames with
certain resolution and with stop and start angles for the given frame as well
as angle of the stepper motor, so it would be easy to piece together all the
data.

For now the LAMP protocol only handles the IMU, angle of stepper motor
and Kalman filter data. LAMP is now defined as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TYP SIZ STEP TIMESTAMP . . .

. . . up to 1460 byte DATA. . .

. . . CHK

Figure 2.17: LAMP protocol definition - LIDAR frames

Field definitions:

TYP: Contains type of the current frame.

0x00: IMU package

0x01: Kalman filter package
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0x02: Data (any available data up to 1460 bytes)

0x03: Multilamp (IMU, Kalman position, motor step)

SIZ: Total size of the whole frame, in bytes.

STEP: Current step position of the stepper motor, in total steps from zero
point. Should be set 0 for IMU and Kalman frames.

DATA: IMU: Current IMU angles, rotated around the copter fixed coordinate
system. Each angle represented by an int32 t.

0 1 2 3 4 5 6 7 8 9 10 11

Pitch Angle Roll Angle Yaw angle

KALMAN: Estimated Kalman filter data, POSx,y,z and V ELx,y,z all rep-
resented by an int16 t.

0 1 2 3 4 5 6 7 8 9 10 11

POSX POSY POSZ V ELX V ELY V ELZ

MULTILAMP: All necessary data to be able to construct a correct 3D
image from LIDAR scans.

0 1 2 3 4 5 6 7 8 9 10 11

Pitch Angle Roll Angle Yaw angle

POSX POSY POSZ

CHK: Checksum of the package, calculated as an XOR of every byte of the
frame.

2.4.4 Data acquisition

Now that everything is set up and done on the MCU end, all data that
is needed is sent through LAMP packages and the LIDAR can be easily
connected to over Ethernet. But how is this data handled in the other end,
on the base station?

On the PC that is used as a base station, a simple Python script is written
that decodes the incoming lamp packets and saves them into a Comma-
Separated Values (CSV) text-file that can easily be read by Matlab[8] to be
able to construct the 3D image later on.

This Python script is combined with the Python script that runs the Com-
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puter Vision algorithm so that only one script for both sending position to
the copter and retrieving data from the copter is needed.

Retrieving and decoding data from the LIDAR is also done using a Python
script. Since writing a script that can decode the encoded measurement data
sent by the LIDAR in a reliable way was a little bit tricky a Python library
named HokuyoLX[10] was found and used.

This library was easy to interface with and just writing a script for saving
all the data into a CSV-file was needed.
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2.5 3D model

The 3D model was built using Matlab [8] using the collected data and the
mapping of coordinate system is shown in Equation 2.34. The whole Matlab
script can be found in Appendix D.

In more detail the first thing that this script does is that it loads the LIDAR
and Multilamp data from their respective CSV-file. As both theses data sets
have their own timestamp (synced with each other though) they need to be
matched with each other, to prevent misalignment if some data is lost.

As the only thing that is needed for the mapping is the position of the
copter, the angle of the copter and the angle of the stepper motor for each
LIDAR scan. Since the Multilamp-packet is sent with the same frequency as
the LIDAR-frames we can for simplicity say that the copter angles and the
copter position is constant over one scan.

The timestamp syncing, loops through and checks which LIDAR timestamp
that belongs to which timestamp from the Multilamp-packet. If no match
is found that LIDAR frame is thrown away. With this syncing all data can
now be stored with the same timestamp.

The approximation that the stepper motor is standing still under one scan
can not be made since for one LIDAR scan the stepper motor will take a few
steps and this will induce an angular error for the mapping. The number of
steps the stepper motor will take under one LIDAR scan can be calculated
by,

steps/scan = steps · fstepper
fLIDAR

, (2.35)

where steps is the amount of steps that the stepper motor need to take
to make a full revolution, with fstepper and fLIDAR as the frequency of the
stepper motor and the LIDAR.

As the angle of the stepper motor is known when the LIDAR is at its starting
position from the LAMP protocol and also knowing how many steps the
stepper motor takes for one LIDAR scan. By saying that the stepper motor
is rotating with constant speed it is simple to use the Matlab’s linspace

function to make a linearly spaced vector with equally number of elements
as the scan has.

A vector containing the angles of the LIDAR is also needed and as one scan
goes from an angle of 45◦ to an angle of 315◦ linearly spaced with a resolution
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of 0,25◦ (see Figure 2.11), the linspace function will also be used here.

Now that all the data is set up and synced it is time to use the translation
and rotation matrices given in Section 2.3. To get the global coordinate of
each point measured by the LIDAR, each point will be multiplied with the
matrices given in equation 2.34.

This will be computational heavy since each lidar scan consists of 1080 points
and the scans will be running at 40 Hz, thus will generate 43200 points per
scanned second.

The output from this equation is a vector containing x,y and z values rep-
resenting the global coordinates of the scanned surrounding. These vectors
are concatenated on top of each other, making a large matrix containing all
the x,y and z positions. This matrix is then made into a Point cloud using
Matlab’s Computer Vision System Toolbox[9]. With this toolbox the Point
Cloud can be plotted easily, and with greater performance than making the
3D plot with Matlab’s 3D figure tool.

A point cloud software for LIDAR data named VRMesh Studio[15] was
tested, and is shown in Figure 3.4.
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CHAPTER 3

Results

3.1 Copter Positioning

The results from the Copter Positioning which includes the results from the
Camera Pixel conversion as well as the results established from the Com-
puter Vision and the Kalman filter will be shown, and later on discussed in
Chapter 4.

3.1.1 Camera pixel conversion

Calculating the size of one pixel in relation to the distance from the camera
was done using the theory shown in Section 2.1.3 (Camera Pixel to distance
calculation). The ”imaginary” pixel focal length, f is calculated by,

f =
D

2
cot

(
DFOV

2

)
, (2.4 revisited)

with DFOV = 78◦ from the camera specification[2] and

D =
√
H2 +W 2, (2.5 revisited)

with H = 1920 and W = 2560 which is the camera’s maximum resolution.

The width of one pixel can thus be calculated by

Pixelwidth =
Y

f
, (2.7 revisited)

where the length from the camera to an object, Y can be varied.

A graph over how the pixel width relates to the distance can be seen in
Figure 3.1. In the same graph, the measurement of the pixel size from the
experiment with the fixed size paper, also explained in Section 2.1.3 is plotted
as stars.
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Figure 3.1: Plot showing how pixel width relates to distance from the cam-
era. Theoretical calculations plotted as a blue line, and measurements
plotted as red stars. All measurements can calculations is made using
the cameras highest resolution, 2560x1920.

From the graph the Pixelsize ≈ 0,51 mm/m at the resolution of 2560x1920,
but can be scaled linearly between different resolutions. The Computer Vi-
sion algorithm will run with the lowest camera resolution (640x480) to get
the maximum frame rate (will be discussed later). Calculating the scale of
Pixelsize into the wanted resolution is made by,

S =

√
2560x1920

Resolution
. (3.1)

With Resolution = 640x480 it gives S = 4, and thus Pixelsize needs to be
divided by 4 to scale it to the wanted resolution.

3.1.2 Computer Vision

A camera can be modeled to have about one to two pixels of noise, and from
the project specification it is said that the Computer Vision should work at
a distance up to 200 m. With the highest resolution one, pixel at 200 m will
have a size of 10 cm, and thus a noise of 20 cm is expected.

Lowering the resolution of the camera will increase the noise, but will give
a better refresh rate. This is a trade-off that will be discussed further in
Chapter 4.
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Both the Algorithms 1 and 2 were tested at different resolutions, giving the
following table:
Table 3.1: Frame rate with respect to resolution for two different Computer

Vision algorithms as well as the cameras maximum update rate.

Resolution Algorithm 1 Algorithm 2 Camera MAX
640x480 ≈ 23 FPS ≈ 70 FPS 60 FPS
1280x720 ≈ 8 FPS ≈ 50 FPS 30 FPS
2560x1920 ≈ 1 FPS ≈ 12 FPS 15 FPS

Running Algorithm 2 at higher frequency than the camera can manage is of
course just a waste of processing power, but this shows the maximum Frames
Per Second (FPS) the algorithms can run.

As most of the tests are made at short distances, (up to 40 m) it really doesn’t
matter that much which algorithm that is used, as long as the FPS is greater
than 10.

Algorithm 2 with the 1280x720 resolution is the one that will be used though,
but the frequency of the algorithm will be set to the camera’s maximum
supported FPS.

With this choice of algorithm it will give a fast refresh rate of 30 Hz and an
expected noise of less than 10 cm at 40 m.

3.1.3 Kalman Filter

A plot over the estimated position by the Kalman filter and the measured
position by the Computer Vision can be seen in Figure 3.2.

As the Kalman Filter is running at 50 Hz and the Computer Vision is running
at about 30 Hz you can not see that much of a difference between these
two. But the Kalman Filter do filter out noise, and if some data sent by
the Computer Vision is lost, the Kalman filter will continue to update the
position at 50 Hz, which is needed for the positional controller and the MSP
protocol.

By zooming in on the middle subplot in figure 3.2 (Y position) the noise
filtering established by the Kalman filter can easier be seen, this is shown in
Figure 3.3.
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Figure 3.2: Plot showing the position of the copter in X,Y and Z positions.
The blue line shows the Kalman filtered positions and the orange dots
represents the unfiltered positions from the Computer Vision.
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Figure 3.3: Plot showing the Kalman filtered position and the raw unfiltered
position from the Computer Vision. This is the same data that is
shown in the middle subplot in Figure 3.2 but over a shorter time
span, to easier see the difference between the filtered and unfiltered
data. The Kalman filtered data is marked with a red line and the
unfiltered Computer Vision data is marked with blue dots.
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3.2 3D point cloud

The initial test scan of the 3D LIDAR setup gave the following point cloud
illustrated in two separate plots of the same point cloud from different viewing
angles in Figure 3.4. As this test where only for testing the mapping from
the stepper motor to the measurement of the walls both the positions and
IMU angles were set to zero.

Figure 3.4: Plot of our first test scan, LIDAR mounted stationary at middle
of the project room. Each subplot is from the same data-set but
shown from different viewing angles. The software VRMesh[15] was
used for plotting of the point cloud data.

As said in Section 1.2 a corridor near the project room will be used for testing
during this thesis. A scan of this corridor with the LIDAR mounted on the
flying quadcopter, when also adding both the position from the Kalman filter
and the angle of the copter from the IMU is shown in Figure 3.5 to 3.7.

Figure 3.5 shows the corridor from above (X-Y plane) where Y is defined
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Figure 3.5: 30m test scan of a corridor which is about the same size as the
proposed mine shaft. This plot shows the corridor from above (X−Y
plane). Plotted in Matlab using the Vision-toolbox[9].

along the corridor and X is the width. As seen in this Figure there are
measurements that are not along the walls of the corridor and this is because
there are two glass doors along this corridor which the LIDAR can penetrate
(Y ≈ 5 and Y ≈ 15), and there are also two other crossing corridors (Y ≈ 22
and Y ≈ 30).

This can easy be seen in Figure 3.6, which is the same point cloud but shows
only the right part (positive X) of the corridor in the Z − Y plane.

Figure 3.7 represent the corridor standing where the camera is mounted. On
the right hand side the LIDAR measurements through the doors and the
crossing corridors can be seen, and as the copter is not standing still while
scanning these holes, the amounts of scans in these areas will not be that
many.

All positions in these plots is relative the camera, so a position of (0, 0,−1)
is positioned 1 m below the camera, and not 1 m below the floor since the
camera is mounted on a table in the middle of the corridor.
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Figure 3.6: 30m test scan of a corridor which is about the same size as the
proposed mine shaft. This plot shows the right wall from the inside
of the corridor. Plotted in Matlab using the Vision-toolbox[9].

Figure 3.7: 30m test scan of a corridor which is about the same size as
the proposed mine shaft. This plot shows the front entrance of the
corridor, the same place as the camera is located. Plotted in Matlab
using the Vision-toolbox[9].
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CHAPTER 4

Discussion

In this chapter, an evaluation of the results from the copter positioning and
the point cloud will be discussed. Conclusions are drawn from those evalua-
tions and some possible future work will be presented.

4.1 Copter Positioning

4.1.1 Camera pixel conversion

In Figure 3.1 it is seen that the theoretical calculations with approximations
is sufficiently correct since the measured points lies within a small margin of
the theoretical function. The measurement of the pixel size were made only
to verify the correctness of the theory.

4.1.2 Computer Vision

At the start of this thesis I had no experience in Computer Vision, and at
an early stage of this thesis lots of different tracking algorithms were tested.
Most of these algorithm that was tested, like the one used by face recognition
and color detection did not work that well at distances over 3 m.

The first test of the blob detection algorithm, which is the one that is used
in the algorithms described in Section 2.1.2 was not that successful. It did
not just detect the LED mounted on the copter, but all roof lights as well.
That is why the background subtraction and the binarizing of the difference
image was added, to get rid of light sources that are not wanted.

The first algorithm (Algorithm 1) that was coded does work well within the
tested range up to 40 m, which is the length of the whole corridor. By using
the lowest resolution the frame rate will be over 20 FPS and the expected
noise will be less than 8 cm, which is okay for the goals of this thesis.

But as the goals of the project is to get the Vision working well up to a
range of 200 m, the expected noise with this setup will be 40 cm to 80 cm,
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and this is of course way too much. By doubling the resolution of the camera,
the noise could be reduced by 2, and thus the expected noise would be less
than 20 cm to 40 cm. But increasing the resolution will decrease the FPS as
shown in Table 3.1, and an FPS greater than 15 is wanted since otherwise
the Kalman filter will not perform as good.

Therefore a modified algorithm was needed, and thus Algorithm 2 was coded.
With this algorithm it is possible to run at a higher resolution while keeping
the FPS sufficiently high, since the time consuming blob detection algorithm
only need to iterate over a small portion of the image, instead for over the
whole image.

4.1.3 Kalman Filter

The Kalman filter that was used is based on a simple approximation that
the copter is moving with constant speed between measurements. As the
incoming position measurements have high refresh rate, this approximation
is good enough. But if the incoming position is updated too seldom, this
approximation will cause the Kalman filter’s prediction between the mea-
surements to be unreliable. A solution to this could have been to fuse the
IMU which has a high update rate, but tends to drift with the absolute posi-
tion from the Computer Vision which has a lower update rate, but no drift.
How this fusion can done can be read about in the Quaternion kinematics
for the error-state KF [see 13, chap 3]. As this implementation should alone
have been enough material for one Master Thesis this is something that was
directly discarded to fit within this project. One such Master Thesis where
sensor fusion and a Kalman filter for a drone utilizing an IMU and a GPS for
positioning is done can be read about in UAV Pose Estimation using Sensor
Fusion of Inertial, Sonar and Satellite Signals, [4].

4.2 3D point cloud

Figure 3.4 shows a scanning with the LIDAR kept stationary and Figure 3.7
shows a scan where the lidar was mounted on the multirotor that was carried
through the corridor. If you compare Figure 3.4 with Figure 3.7 you can see
that the point cloud from the stationary scan has less noise than the moving
point cloud. Thus we can say that most of the noise that is generated in the
point clouds comes from the measured position and angles of the copter. To
reduce the noise in the point clouds some filters could have been used, but
this will not be handled in this thesis.

In Figure 3.6 it is seen that is is possible to detect holes that are about 30 cm
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wide, as the side window to the door located at about 14 m is 30 cm wide.

4.3 Future Work

If this project does not end here, there are some things that is needed to be
done.

• Computer Vision: Test and evaluation of the algorithm at longer ranges
than 40 m. If this algorithm does not work that well at long distances,
a new algorithm is needed. Maybe some GPU based algorithm could
have been used to get better FPS at higher resolutions.

• Point cloud: As discussed above, some filtering and denoising of the
point cloud is needed. Maybe some feature detection could be of use,
to be able to localize the copter even if there is some drift in the IMU.

• 3D Scanner: A better construction of the 3D scanner, where the ro-
tation of the stepper motor is mounted to the center of mass of the
LIDAR (now it has a little offset).

• Software: All data should be parsed within the MCU and sent with
LAMP-packets as proposed in the Conex Copter report[7]. As for now
the LIDAR data is sent directly to the base station through Wi-Fi.
With parsing of the LIDAR data in the MCU all synchronizing of
timestamps will be done there. Each LAMP packet should hold the
starting angle of the LIDAR, the angle of the stepper motor, the amount
of LIDAR data and of course the LIDAR data itself. With this protocol
working, there will not be any hassle with timestamps that drifts nor
synchronization problems.

4.4 Conclusions

As said in the Introduction in Section 1.2 ”The primary goals of this thesis is
to produce a 3D point cloud of the copters surroundings, by utilizing a LIDAR
and an IMU, and to visualize this point cloud in a well suited way to be able
to detect larger defects on the surrounding walls. But to do this the position
of the copter is needed, and this is made using a ranging device and Computer
Vision.” Based on the measurements from the Kalman filter which can be
seen in Figure 3.2 and 3.3 a position of the copter can be established up to
at least 32 m, with an appreciated accuracy of about 10 cm at this distance.
From the point clouds shown in Figure 3.6 it is seen that it is possible to
detect holes in the walls that are about 30 cm wide.
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Since positioning of the copter is established up to at least 30 m and it is
possible to detect holes in the corridor walls from the point clouds that is at
least 30 cm wide, I will say that the goals for this master thesis have been
reached.
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APPENDIX A

Parts list

• STM32F767, mbed-Enabled Development Nucleo STM32F7 MCU
32-Bit ARM Cortex-M7 Embedded Evaluation Board.

• Hokuyo UST-10LX Scanning Laser Rangefinder.

• MTI-3-8A7G6T, Accelerometer, Gyroscope, Magnetometer,
3 Axis Sensor.

• Logitech B910 HD Webcam.

• ALFA AIP-W512 wireless router.

• FLIP32 F3 AIO-Lite Flight Controller.

• Turnigy TGY-i10 10ch 2.4GHz Digital Proportional RC System with
Telemetry.

• Afro 30A Muti-Rotor ESC (SimonK Firmware).

• Dualsky ECO 3508x (580 Kv) BLDC motor.

• Zippy 8000 mA 30C 4S Li-poly battery.

• Ultrasonic sensor, HC-06 and LV-MaxSonar-EZ1.
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APPENDIX B

Nucleo Shield

Figure B.1: Part of the schematic of the Nucleo shield, showing the DW1000
UWB module (not in use), the shield connector to the development
board, the IMU socket, the power board connector, LIDAR connector
and battery to ADC connection
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Figure B.2: The remaining part of the schematic of the Nucleo shield. Show-
ing of connectors to the receiver, the flight controller, sonar, hall
sensor and some GPIO LED.
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Figure B.3: Board layout of the nucleo shield.
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APPENDIX C

Power Distrubution board

Figure C.1: Schematic of the power distribution board with two Buck con-
verters and one voltage regulator is used.
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Figure C.2: PCB layout of the power distribution board.
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APPENDIX D

Matlab code

D.1 Pointcloud generation script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MAPPING OF A 3D ENVIRONMENT USING A LIDAR,

% STEPPER MOTOR AND POSITIONING DEVICE

% LAMP_data3D.m

% Lars Jonsson - aloja-2@student.ltu.se

% 2017-05-20

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc; clear;

tStart = tic;

disp(’Started running LAMP_data3D.m’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% OFFSETS AND LIMITATIONS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

time_offset = 10;

dMAX = 5;% max distance of LIDAR measurment

dMIN = 0.8; % min distance of LIDAR measurment

IMU_OFFSET = [0 0 0]’;

motorstep_offset = 48;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% LOADING LIDAR, POS, MOTORSTEP and IMU DATA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

filename_LIDAR_timestamp = ...

filename_LIDAR = ...

filename_LAMP = ...

data_LIDAR = importdata(filename_LIDAR)’;

data_LAMP = importdata(filename_LAMP);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% REMOVE START NOISE %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

data_LAMP = data_LAMP(round(length(data_LAMP)/10):end,2:end);

LIDAR_dist = data_LIDAR(:,time_offset:end);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SORTING OF DATA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% data_LAMP = sortrows(data_LAMP);
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% Timestamp

tstamp_LIDAR = importdata(filename_LIDAR_timestamp);

tstamp_LIDAR = tstamp_LIDAR(time_offset+1:end);

tstamp_LAMP = data_LAMP(:,1);

tstamp_LAMP = tstamp_LAMP - tstamp_LIDAR(1);

tstamp_LIDAR = tstamp_LIDAR - tstamp_LIDAR(1);

% Check FPS

dtLIDAR = diff(tstamp_LIDAR);

dtLAMP = diff(tstamp_LAMP);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% TIMESTAMP SYNCING

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

j = 1;

for(i=1:length(tstamp_LIDAR))

for(k = 1:length(tstamp_LAMP))

if(abs(tstamp_LIDAR(i) - tstamp_LAMP(k)) < 10)

TSTAMP(1,j) = tstamp_LAMP(k);

TSTAMP(2,j) = tstamp_LIDAR(i);

LAMP(j,:) = data_LAMP(k,2:end);

LIDAR_DIST(:,j) = LIDAR_dist(:,i);

j = j + 1;

end

end

end

% clearvars -except TSTAMP LAMP LIDAR_DIST LIDAR_ANGLE tStart

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Defines

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dataLd = 1081; % FULL LIDAR RESOLUTION

N = size(LAMP); % NUMBER OF RECIEVED MOTORSTEPS

N = N(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% LIDAR DATA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ld = LIDAR_DIST; % raw Lidar data in [mm]

% Ld = LIDARfilter(Ld); % filter of raw data.

Ld = Ld./1000; % convert to [m]

% INTENS = zeros(N*dataLd,1);

LidarDataSize = 0;

for i=1:N

for j=1:dataLd

if(Ld(j,i) < dMAX && Ld(j,i) > dMIN)

LidarDataSize = LidarDataSize + 1;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Copter position

%% (LED Position, determined by Camera and UWB) [m]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pos_x = LAMP(:,5);

pos_y = LAMP(:,6);

pos_z = LAMP(:,7);

copter_pos = [pos_x pos_y pos_z];
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Yaw, Pitch, Roll angles of the copter

%% (should be < 10 degrees)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% copter_angles = zeros(3,N); % No tilting of the copter

pitch = -LAMP(:,2); %PITCH

roll = LAMP(:,3); %ROLL

yaw = LAMP(:,4); %YAW

yaw = yaw-yaw(1);

copter_angles = [pitch-pitch(1) roll-roll(1) yaw]’;

copter_angles = (copter_angles - IMU_OFFSET)*pi/180;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Stepper motor position

%% (angle of stepper motor, alpha)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

motorstep = LAMP(:,1);

motorstep_degree = motorstep/400*360;

motorstep_degree = motorstep_degree + motorstep_offset;

lidarstepper_conv = 7.006*(360/400); % one LASER lap = xx degree turn of stepper motor

alpha = zeros(dataLd,N);

alpha(1,:) = motorstep_degree;

% Interpolating motorstep over 1 lidar rotation

for k = 1:N

for i = 2:dataLd

alpha(i,k) = alpha(i-1,k) + lidarstepper_conv/1080;

if(alpha(i,k) >= 360)

alpha(i,k) = alpha(i,k) - 360;

end

end

end

alpha = alpha.*(pi/180);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% LASER position

%% (angle of the emitting LASER, beta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

beta = linspace(-135*pi/180,135*pi/180,1081);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% LOOPING THORUGH ALL LIDAR DATA

%% AND COPTER POSITIONS AND MAPPING

%% TO CAM FIXED SYSTEM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

LIDAR_XYZ = zeros(LidarDataSize,4);

tic

disp(’Looping throug LIDAR and Position data.....’)

percent = 0;

k = 0;

l = 1;

fprintf(’Percent of loop finished: %i%%’, percent);

for i=1:round(N)

for j = 1:dataLd

if(Ld(j,i) < dMAX && Ld(j,i) > dMIN)

LIDAR_XYZ(l,:) = mapping3D(copter_pos(i,:),copter_angles(:,i),...

alpha(j,i),beta(1,j),Ld(j,i));
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l = l + 1;

end

end

k = k + 1;

if(k == round(N/100))

percent = percent + 1;

if percent > 10

fprintf(’%c%c%c%d%%’,8,8,8,percent);

else

fprintf(’%c%c%d%%’,8,8,percent);

end

k = 0;

end

end

fprintf(’%c%c%c100%%\n’,8,8,8);

toc

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %% SAVING DATA

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

prompt = ’Want to save the Point Cloud to file? [y/n] ’;

X = LIDAR_XYZ(:,1);

Y = LIDAR_XYZ(:,2);

Z = LIDAR_XYZ(:,3);

str = input(prompt,’s’);

if str == ’y’

tic

disp(’Saving to file....’)

% data = [X,Y,Z,INTENS];

data = [X,Y,Z];

dlmwrite(’ptcloud.xyz’,data)

disp(’Saving successful!’)

toc

else

disp(’No file was saved’);

end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

tEnd = toc(tStart);

fprintf(’Total time elapsed is: %f seconds.\n’, tEnd);
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D.2 Mapping of coordinate systems

function [Wall_point] = mapping3D(copter_pos,copter_angles,alpha,beta,Ld)

%% Constant variables

persistent d LIDAR_offset LOa T_lidar_laser R_copter_stepper_offset_x ...

T_led_lidar cam_offset_angle_x cam_offset_angle_z

% offset from LED to LIDAR in [m]

LIDAR_offset = [-0.1 0.2 0.2];

LOa = 2.0*pi/180; % LIDAR OFFSET ANGLE

% Offset of LASER diode from center of LIDAR [m]

d = 0.03;

% Offset of the camera

cam_offset_angle_x = -1.9*pi/180;

cam_offset_angle_z = 0*pi/180;

Psi = copter_angles(3); Phi = copter_angles(1); Theta = copter_angles(2);

%% CAM TO LIDAR

% copter_angle = [yaw pitch roll] = [Psi, Phi, Theta]

% (yaw == Psi, pitch = Phi, roll = Theta)

% copter_pos = [copter_pos_x copter_pos_y copter_pos_z]

% LED_LIDAR_offset = [LED_offset_x LED_offset_y LED_offset_z]

%

% Camera offset angle matrices

camera_angle_matrix_x = [1 0 0 0;

0 cos(cam_offset_angle_x) -sin(cam_offset_angle_x) 0;

0 sin(cam_offset_angle_x) cos(cam_offset_angle_x) 0;

0 0 0 1];

camera_angle_matrix_z = [cos(cam_offset_angle_z) -sin(cam_offset_angle_z) 0 0;

sin(cam_offset_angle_z) cos(cam_offset_angle_z) 0 0;

0 0 1 0;

0 0 0 1];

% Translation matrix from Camera to LED

T_cam_led = [1 0 0 copter_pos(1);

0 1 0 -copter_pos(2);

0 0 1 copter_pos(3);

0 0 0 1];

% Cam to copter rotation matrix

R_cam_copter = [cos(Psi)*cos(Theta) -sin(Psi)*cos(Theta)+cos(Psi)*sin(Theta)*sin(Phi)

sin(Psi)*sin(Phi)+cos(Psi)*sin(Theta)*cos(Phi) 0;

sin(Psi)*cos(Theta) cos(Psi)*cos(Phi)+sin(Psi)*sin(Theta)*sin(Phi)

-cos(Psi)*sin(Phi)+sin(Psi)*sin(Theta)*cos(Phi) 0;

-sin(Theta) cos(Theta)*sin(Phi) cos(Theta)*cos(Phi) 0;

0 0 0 1];

% Small Angle approximation sin(x)~x and cos(x)~(1-x^2/2)

% R_cam_copter_approx = [(1-Psi^2/2)*(1-Theta^2/2)

-Psi*(1-Theta^2/2)+Phi*Theta*(1-Psi^2/2) Psi*Phi+Theta*(1-Psi^2/2)*(1-Phi^2/2) 0;

% Psi*(1-Theta^2/2) (1-Psi^2/2)*(1-Phi^2/2)+Psi*Theta*Phi

-(1-Psi^2/2)*Phi+Psi*Theta*(1-Phi^2/2) 0;

% -Theta Phi*(1-Theta^2/2) (1-Theta^2/2)*(1-Phi^2/2) 0;

% 0 0 0 1];

T_led_lidar = [1 0 0 LIDAR_offset(1);

0 1 0 LIDAR_offset(2);

63



0 0 1 LIDAR_offset(3);

0 0 0 1];

%% LIDAR measurement

R_copter_stepper = [cos(alpha) -sin(alpha) 0 0;

sin(alpha) cos(alpha) 0 0;

0 0 1 0;

0 0 0 1];

R_copter_stepper_offset_x = [1 0 0 0;

0 1-LOa^2/2 -LOa 0;

0 LOa 1-LOa^2/2 0;

0 0 0 1];

T_lidar_laser = [1 0 0 d;

0 1 0 0;

0 0 1 0;

0 0 0 1];

T_laser_wall = [0 0 0 0;

0 0 0 Ld*sin(beta);

0 0 0 Ld*cos(beta);

0 0 0 1];

Wall_point = camera_angle_matrix_x*camera_angle_matrix_z...

*T_cam_led*T_led_lidar*R_cam_copter*R_copter_stepper...

*R_copter_stepper_offset_x*T_lidar_laser*T_laser_wall*[0 0 0 1]’;

end
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