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Abstract 
GPU acceleration is the concept of accelerating the execution speed of an application by 

running it on the GPU.  Researchers and developers have always wanted to achieve greater 

speed for their applications and GPU acceleration is a very common way of doing so. This has 

been done a long time for highly graphical applications using powerful dedicated GPUs. 

However, researchers have become more and more interested in using GPU acceleration on 

everyday applications. Moreover now a days more or less every computer has some sort of 

integrated GPU which often is underutilized. The integrated GPUs are not as powerful as 

dedicated ones but they have other benefits such as a lower power consumption and faster data 

transfer. Therefore this thesis’ purpose was to examine whether the integrated GPU Intel HD 

4600 can be used to accelerate the two applications Image Convolution and sparse matrix vector 

multiplication (SpMV).  This was done by analysing the code from a previous thesis which 

produced some unexpected results as well as a benchmark from the OpenDwarf’s benchmark 

suite. The Intel HD 4600 was able to speedup both Image Convolution and SpMV by about two 

times compared to running them on the Intel i7-4790. However, the SpMV implementation was 

not well suited for the GPU meaning that the speedup was only observed on ideal input 

configurations.
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1. Introduction 
In order to solve harder problems engineers have always striven to make computers faster. 

Traditionally the way to do this has been to increase the clock speed of the CPU. However, the 

clock speed has more or less stopped to increase because of the power wall, instruction level 

parallelism (running independent instructions in parallel) and memory wall. The “power wall” 

means that the processor clock frequency cannot be increased because it would produce too 

much heat, the “ILP wall” means that you cannot achieve more than 3-4 parallel instructions 

on the same processor because of control and data dependencies and the “memory wall” means 

that the speed of the memory access simply lags behind enough to set a bound on the processor 

speed [1]. Because of this the focus has changed from single core speed to the parallelization 

of programs. Parallelization enables a processing unit with several cores to run several 

processes in parallel, which in theory equals a faster execution time. Moreover, these days most 

computers have some form of GPU.  GPUs are massively parallel architectures which can be 

used in general computing for acceleration and freeing up resources for the CPU during 

everyday computing.  When GPUs are used in this way to speed up the computation of general 

everyday applications it is often called GPGPU, General Purpose Graphics Processing Units.  

1.1 Background and motivation 
The company Mindroad in Linköping is a software company interested in getting a deeper 

understanding within the GPGPU-area of computing in general and specifically within OpenCL 

programming. In line with this, two years ago A Söderholm and J Sörman did the thesis work 

”GPU-acceleration of image rendering and sorting algorithms with the OpenCL framework” [2] for 

Mindroad. In this thesis, the authors constructed a parallel implementation of the image 

processing algorithm “Image Convolution” and the sort algorithm “merge-sort” in the OpenCL 

framework. The applications execution time on the Intel i7-4790 CPU and the Intel HD graphics 

4600 GPU were then measured. OpenCL enabled them to run the same code on the Intel i7-

4790 CPU and its integrated Intel HD graphics 4600 GPU. 

Previous studies, such as the study by V. W. Lee et al. [3] have proven that GPU acceleration 

(the concept of accelerating the execution speed of an application, by running it on the GPU 

instead of on the CPU) can accelerate the execution speed of applications well suited for parallel 

work, when a dedicated GPU is used. A Söderholm and J Sörman’s [2] purpose was to find out 

if GPU acceleration can be effectively utilized (i.e. speedup is observed on the GPU compared 

to on the CPU) when an integrated GPU is used. The expected result was an observable speedup 

on the GPU, at least in the “Image Convolution” case. However, their result was that running 

the applications on the GPU was slower in every single case, independent of problem or 

partition size. In fact, the ratio between the execution time of the GPU and CPU 

implementations where constant. I.e. the CPU executed the application as much faster than the 

GPU for an image with a size of 480p as for an image with a size of 1440p, the same was true 

for different filter sizes. 

Why the merge sort ran slower on the GPU can be explained by the fact that it is not very well 

suited for the GPU. But because Image Convolution is such a suitable problem for parallel work 

and the fact that GPUs are built specifically for parallel graphics computations, the expectation 
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was that it would run faster on the GPU. This view is also supported by previous studies such 

as the studies by S. Kim et al. [4] and S. Azmath et al. [5]. In both of these studies the authors 

achieved GPU acceleration on low powered integrated GPUs with equally parallelizable 

algorithms. Furthermore B. R. Payne et al. [6] shows that the performance ratio between a GPU 

and a CPU performing convolution is logarithmically dependent on the image size. The larger 

the image is the better the ratio is for the GPU. This is because the larger the image is the more 

sequential work will have to be performed on the CPU, while on the GPU it mostly equals more 

parallel work. So the fact that A Söderholm and J Sörman’s performance ratio was constant 

was peculiar, therefore Mindroad wanted to know out what caused these results. Because A 

Söderholm and J Sörman’s thesis was on a bachelor level they did not have enough time to 

analyse their results more closely. Instead they explained their results by stating that the 

performance gap between the CPU and GPU was too big, basically, the GPU was not fast 

enough. This still does not explain their observed performance ratio between the GPU and CPU. 

This thesis will be a continuation of the thesis introduced above; we will analyse their Image 

Convolution implementation and compare it to another convolution implementation, in order 

to find out what caused their results. Their merge-sort implementation will however not be 

tested because it is not especially well suited for parallel work. Moreover we will choose a 

benchmark application from a commonly used benchmark suite, to get a more general 

comparison between the GPU and CPU. The benchmark application is also used in order to rule 

out the possibility that the result depends on the programming skills of the author, rather than 

on the hardware. 

Their results and code are interesting to examine in order to find out whether this specific GPU 

can be utilized for GPU acceleration or not. If it can, developers have an alternative to the more 

expensive dedicated GPUs when they need to speed up their applications. Furthermore, it can 

provide practical lessons for what a developer needs to consider when writing OpenCL 

programs for integrated GPUs. 

What kind of benchmark application is used is an important choice. In order to have any chance 

at all to achieve speed up on the GPU it has to be well suited for parallel work. An algorithm 

well suited for parallelization on a GPU consists, in general, of a set of operations which will 

be applied to all data points in the problem. These are generally known as data parallel 

algorithms, because the parallelization comes from performing the same operation on multiple 

data in parallel. They are suitable for GPU execution because each data point can very easily 

be mapped to each thread. 

Since the focus of this thesis is on GPGPU computing, the benchmark application should also 

be common enough to not be used only in scientific computing. The specific application is 

chosen based on its different characteristics. Of course since a pre-existing benchmark 

application should be used, the choice is also limited by which applications the existing 

OpenCL benchmark suits consist of.  

In order to find out what caused A Söderholm and J Sörman’s [2] results, the tests will be 

performed on the same hardware used by them. Therefore, we will run the applications on the 

Intel i7-4790 CPU and on its integrated Intel HD graphics 4600 GPU and see if we get the same 
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result as the previous thesis. If we get the same result, we will analyse the outcome in order to 

get a better understanding of what causes it, besides that the integrated GPU’s execution units 

are slower than the CPU’s. If the GPU implementation has a faster execution time we will 

analyse why that is the case and what kind of parameters it depends on, partition, number of 

cores, problem size and so on. This means that more time will be put on the analysis compared 

to the previous thesis.              

1.2 Purpose 
The purpose of this thesis is to test the results of the thesis “GPU-acceleration of image rendering 

and sorting algorithms with the OpenCL framework” to see if our results will be the same, and if 

so, to find out what causes this result. Thereby providing more knowledge of which types of 

algorithms that can be successfully GPU accelerated, and what one needs to consider when 

writing an application in OpenCL for an integrated GPU. 

Furthermore, we want to examine if running SpMV and Image Convolution equals a gain in 

performance on the Intel HD graphics 4600 GPU using the OpenCL framework. A performance 

gain is specified in this case as: when running the application on the GPU an execution time 

speed up can be observed compared to if it would have been run on the CPU. In previous works 

by e.g. S. Y. Kim et al. [7] and E. Ching et al. [8] they prove that the Intel HD graphics 4600 

can be used to speed up datacentre MapReduce tasks but it does not speed up database queries. 

However, there have not been very much research on whether it can speed up general purpose 

applications such as convolution and matrix vector multiplications which this thesis focus on.  

1.3 Delimitations 
This project will handle the testing of Image Convolution and Sparse Matrix Vector 

multiplication implementations. This means that no implementation will be made from scratch. 

Moreover, analysis of the execution times will be performed in order to compare it to the result 

of the previous thesis and figure out what causes them. The specific focus is on the execution 

time, not on for example the power consumption.  

1.4 Research questions 
The research questions of this report are the following. 

 Which are the most important factors determining the execution time of Image 

Convolution and SpMV on the Intel HD graphics 4600 GPU compared to the factors 

impacting the execution time on the Intel i7-4790 CPU?  

 Do you observe any speedup when running Image Convolution or SpMV on the Intel 

HD graphics 4600 GPU compared to when running them on the Intel i7-4790 CPU, 

furthermore what causes this result? 
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2. Theory 
In this chapter all theory regarding the platforms, OpenCL, parallel algorithms and analysis is 

presented. 

2.1 Parallel Computing 
Parallel computing is the computing model of running several instructions in parallel. This is 

achieved by running several threads on multiple cores simultaneously, instead of running 

everything sequentially on one core as in classical programming. In contrast to sequential 

programming where the main programming model is the von Neumann model, in parallel 

programming there are two competing architectures [9]. These are the distributed and shared 

memory architectures as well as a multitude of different models for both distributed and shared 

which are better suited for different problems.  

2.1.1 Distributed memory and Shared Memory 
Distributed memory systems are systems consisting of multiple processors with their own 

memory. These processors communicate with each other using a message passing interface over 

an interconnection network. In contrast, a shared memory architecture consists of multiple 

processors sharing the same memory, and a global clock controlling both the memory and the 

processors. Furthermore, there are no limits to how many processors which can access the 

memory simultaneously. The distributed memory architecture is often used in big clusters 

where you have several nodes of processors working together over an interconnection network, 

while in ordinary desktop computers the shared memory architecture is used. This thesis is 

performed on a shared memory architecture. 

2.1.2 The data parallel computing model 
While there are several parallel computing models, the one explained here is the data parallel 

model. This is because it is the one of the two supported by OpenCL which is highly suitable 

for GPU computing [10]. Furthermore, all the algorithms tested in this thesis are data parallel 

algorithms. 

Data parallelism works very well with SIMD execution (issuing the same operation to multiple 

cores) because it revolves around achieving parallelism by executing the same operation 

elementwise on big sets of independent data. Because the data is independent of each other the 

operations can be performed in parallel.   

2.2 CPU 
CPUs are designed to be general purpose machines; a CPU should be able to handle both 

parallel and sequential programs and in general whatever problem issued to it. Therefore, CPUs 

rely on MIMD execution, MIMD means that different operations are issued to the separate 

cores. This is done so that the different cores in multicore CPUs can perform different 

operations on different data. Consequently one core can execute an entire program on its own 

or the cores can split the program between themselves and share the workload. Moreover, the 

cores have access to advanced operations such as branch prediction and are in general faster 

and more flexible compared to GPU cores [11].   
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2.2.1 Intel i7-4790 CPU 
The Intel i7-4790 is one of Intel’s fourth generation (Haswell) i7 processors [12] [13]. It has 

four cores, eight threads (two per core) and a base clock frequency of 3.6 GHz. If needed it can 

also speedup one of the cores to 4 GHz using the Intel turbo boost feature. Moreover, it has 3 

levels of cache where the first (64kb) and second (256kb) is separate to each core, while the 

third (8 megabytes) is shared between the cores [14] [15]. The cache also has a bandwidth of 

64 bytes per cycle meaning it can load one entire cache line per cycle. Moreover, the memory 

system supports both transactional memory and gather instructions. The support for 

transactional memory is made possible by the transactional synchronization extension. In 

practice, what it does is to make operations protected by an atomic lock. This means that as 

long as they do not perform conflicting operations on the data they can be executed 

simultaneously by multiple threads. 

2.3 GPU 
In contrast to CPUs modern GPUs are designed with the assumption that they will be assigned 

highly parallel tasks and they focus solely on high throughput. This means that they are not as 

flexible as CPUs but can be utilized for speedup of many parallel problems [16]. In order to 

achieve this, they mainly rely on three architectural ideas: SIMD execution, a very high number 

of small and simple execution cores and abundant use of hardware multithreading [17]. 

 With SIMD execution you issue the same operation to multiple cores that handle 

different data. In this way you can easily perform the same operation on big sets of data 

[17]. 

 In GPUs many simple cores are used instead of the CPUs few but complex cores. The 

main thing these small cores are sacrificing is the possibility of out of order execution 

and branch prediction, but the spatial savings for the chip results in more cores which 

outweigh these sacrifices. It also works well with SIMD [17]. 

 Hardware multithreading enables highly parallel computations to be decomposed in to 

multiple serial tasks which equal an even higher degree of parallelism [17]. 

 

2.4 Integrated GPU 
As stated above the Intel i7-4790 is a CPU with an integrated GPU, meaning that the CPU and 

the GPU exist on the same die. The potential big advantage gained by using an integrated GPU 

instead of a discrete GPU is that the PCIe link between the CPU and a discrete GPU can be a 

performance bottleneck. This is because in all GPU acceleration you will need to transfer the 

data at least two times, one time from CPU-GPU and one time back. As shown by C. Gregg 

and K Hazelwood [18] this data transfer can have a significant impact on the execution speed 

specifically on the bandwidth bounded types of algorithms. However, an integrated GPU shares 

the same cache and memory as the CPU. This means that you completely circumvent the PCIe 

link, which for bandwidth bounded algorithms can equal a higher execution speed on an 

integrated GPU than on a discrete one [19].  
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2.4.1 Intel HD graphics 4600 GPU 
The Intel HD graphics 4600 is the integrated, on die graphics processing unit of the Intel i7-

4790 CPU [20]. It is constructed to be a power efficient, cheap but not as powerful alternative 

to a dedicated GPU. It has a base clock frequency of 350 MHz but can be boosted up to 1.2 

GHz using the dynamic frequency scaling feature which can on the fly adjust the frequency of 

a processor in order to conserve power and/or heat. The 4600 is a part of Intel’s 7.5 generation 

of processor graphics. The GPUs in Generation 7.5 are structured in slices, each slice has two 

sub slices each containing 10 execution units. Moreover, all slices have one common level 3 

cache where each slice has access to a maximum of 256 kilo bytes. Within the level 3 cache 

there is also a shared memory location with a size of 64 kilo bytes for each sub slice which 

supports sharing local memory between kernels in OpenCL’s work groups. Each cache line is 

64 bytes and each sub slice has a data port with a read and write bandwidth of 64 bytes/cycle, 

supports gather scatter operations and coalescing memory accesses. Coalescing memory access 

means that given a SIMD read operation for 16 32-bit floating point values with different 

address offsets in the same cache line, the processor can coalesce the reads to one 64-byte read 

of the entire cache line. Each sub slice also has a sampler unit which handles a level 1 and level 

2 cache especially used for images and textures. The sampler just like the data port has a read 

bandwidth of 64 bytes/cycle [14].  

The 4600 has two slices, resulting in a total of 20 execution units. Each EU has 7 hardware 

threads resulting in 140 hardware threads. And each hardware thread can run a maximum of 32 

software threads. This means that the entire chip can run 32 * 140 = 4480 concurrent threads. 

Moreover, each hardware thread has access to 128 32-byte general purpose registers, resulting 

in each EU having access to 28 kilo bytes of local storage. 

2.5 OpenCL 
As stated in section “1.1 Background and motivation”, this thesis will be conducted on the Intel 

i7-4790 CPU and its integrated GPU Intel HD graphics 4600. In order to not have to use two 

different programming platforms which in itself can affect performance [10] and to replicate 

the results of A Söderhom and J Sörman [2], OpenCL is used. OpenCL is a programing 

standard, constructed with portability in mind meaning the same code can be run on different 

platforms, a CPU and a GPU in this case. Normally this is not possible because GPU and a CPU 

architectures are inherently different. To begin with CPUs use the MIMD model while GPUs 

uses SIMD. This means that the way in which parallel code is written differs a lot. Moreover, 

not only are there differences between CPUs and GPUs but there can also be major differences 

between different GPU models. This means the code will differ from model to model. This 

problem is solved by OpenCL. 

2.5.1 Platform model 
OpenCL is an open framework which produces highly portable code specifically for parallel 

programming, meaning you can use the same code across different platforms. The model, used 

by OpenCL, consists of a host and several devices. The host maps to the main controlling core 

of the program, e.g. if the program runs on a CPU it maps to the core that starts and merges the 

threads and if it runs on a GPU it will map to the systems CPU. Consequently, the devices can 
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map to either the rest of the cores on the CPU or the GPU’s cores. Note that the exact mapping 

is dependent on the relevant platform. 

2.5.2 Memory model 
OpenCL’s memory model consists of two main memory types, Host memory and Device 

memory. Not surprisingly the host memory is the memory the host has access to and the device 

memory is the memory the devices have access to.  

In turn the device memory consists of four memory regions where the kernels can allocate data 

depending on what kind of data it is and which kernels need access to it. There are two global 

memory regions which can be accessed by everyone in all work groups: Global memory and 

Constant memory. Global memory, as you might think is the standard global memory which all 

devices can read and write to/from. In the constant memory all data remain constant during 

execution time. Only the host can allocate data there and the devices can read from it. There is 

also a private memory region which is each kernels individual region. Lastly there is a local 

memory functioning like a shared memory between devices in the same workgroup meaning 

that all devices in the same workgroup can access it.    

2.5.3 Execution model 
The execution model consists of two entities which are mapped to the host and the devices in 

the platform. These are kernels and a host program, on the devices the kernels are run. The 

kernels are either mapped one to one or one to many, meaning that one kernel can run on either 

just one device or on several devices. However, on the host only one host program can execute 

at the same time. The host program is the main program that manages everything such as 

memory management and synchronization while the kernels handle the actual work in the 

computation. This work is executed in so called work-items more commonly known as software 

threads and they work together in so called work-groups. 

The kernels are defined in a context which consists of the devices it executes on, the OpenCL 

functions, the actual kernel implementation as well as the memory it needs for the variables it 

is operating on.   

Each kernel context is managed by the host program through a command queue which can be 

loaded with functions from the OpenCL API. Through the command-queue the host starts up 

new kernels, transfers data between for example host and device memory and manages 

synchronization between different kernels. Moreover each kernel can enqueue commands to a 

command queue specific for the device it executes on, through this command-queue, new child 

kernels can be started. 

Regardless of the command queue each command transition between the six states Queued, 

Submitted, Ready, Running, Ended and Complete. 

1. Queued: The command is placed in a command-queue. 

2. Submitted:  The command is submitted for execution. 

3. Ready: The prerequisites are met and the command is moved in to a work-pool, here it 

will be scheduled. 

4. Running: Execution starts and continues to run. 
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5. Ended: Execution is done. 

6. Complete: The command and its child commands are done. 

The commands in the same command queue execute in relation to each other either in order or 

out of order. However, different command queues in the same context execute independently 

from each other. In order execution means that the commands are executed in the same order 

as they were enqueued. Out of order execution means that the commands are executed in any 

order only constrained by synchronization and dependencies. The general communication and 

synchronization of commands are handled by event objects.  

When a kernel is executed an index-space is defined, the parameters of the index space coupled 

with the argument values to the kernel and the kernel itself defines a kernel instance.  When the 

kernel instance executes, it executes for each index in the index-space resulting in several 

instances of the kernel running concurrently. These separate kernels are the work-items, they 

all get an ID corresponding to their position in the index space and they are handled by the 

device in work-groups. 

2.5.4 OpenCL for CPUs 
While OpenCL have been developed for portability between different architectures the 

foremost focus and what it mostly has been used for is GPU architectures. This results in that 

while the code can run on CPUs as well as on GPUs the performance is not as portable [21]. In 

fact some of the specific optimizations for a GPU architecture in OpenCL can have the opposite 

effect on a CPU. Firstly, the work-items in OpenCL are quite small which suits the small 

execution units on a GPU, however mapping these simple tasks to a complex CPU core is 

somewhat of a mismatch. This mismatch leads to the CPU’s cache utilization being restricted, 

because the work-item running on one hardware thread processes such a small part of the entire 

problem. Secondly, the SIMD units within the CPU cores needs vectorised input which you 

normally do not use in GPU code, meaning that some of the cores computational power will 

not be utilized. Furthermore, if the default data transfer model used on GPUs is used it will 

result in unnecessary data transfer between host and device. Perhaps the most common GPU 

optimization, coalescing memory access, also has a bad effect on CPUs because it is orthogonal 

to the CPU’s cache accesses (GPUs reads from memory column wise while CPUs reads row 

wise) meaning it actually results in slower memory accesses on the CPU. Lastly, local memory 

which is prevalent on GPUs is non-existent on CPUs which means that these addresses gets 

mapped to the global memory, once again meaning that the intended optimization only results 

in extra overhead equal to the amount of memory being needlessly copied to the same memory. 

OpenCL code can of course also be optimized for CPUs which can have a negative impact on 

the performance if you run it on a GPU. 

2.6 Parallel Algorithms and Data parallel algorithms 
Parallel algorithms are algorithms designed to in one clock cycle perform multiple instructions. 

However, in order to gain performance from parallelizing an algorithm the algorithm in 

question needs to contain a lot of parallelization possibilities [22]. In other words the algorithm 

should handle a very big problem and have a suitable partition in order to be able to split the 

problem in parts, so that as many as possible can be run in parallel. Algorithms which are 

especially suitable for this are e.g. image processing and matrix operations. This is because of 
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their inherent nature of having very big problem sizes and independent data. Moreover, if the 

algorithms are data parallel they perform the same operation on every input element (every 

pixel in the image case and every index element in the matrix case) which then can be mapped 

to each thread/work-item, in theory [23]. 

Here follows five different data parallel algorithms which all are typical benchmark applications 

which have been used to compare CPUs to GPUs by e.g. V. W. Lee et al. [3] and C. Greg and 

K. Hazlewood [18]. There are several more data parallel algorithms which could have been 

considered, however because of time limitations only five were evaluated. The reason for 

evaluating these five was the following.  Firstly all of these have been tested before and this 

enabled a comparison of the results. Secondly they are all available in existing benchmark 

suites.  

2.6.1 Image Convolution  
Image Convolution is a data parallel image processing algorithm that coupled with a filter can 

alter the look of pixels in an image e.g. blur them, sharpen or mark the edges. The convolution 

itself is the action of producing a new value for a goal pixel. This is done by performing a 

mathematical operation on the value of the goal pixel together with the surrounding pixels and 

giving the result as a new value to the goal pixel. The specific filter used specifies what kind of 

operation that should be done on the goal pixel and its neighbours. For example, if an averaging 

filter is used the value of the goal pixel and its surrounding pixels are summed together, and 

then they are divided by the number of pixels used and this new value is given to the goal pixel. 

How many of the surrounding pixels needed to be used is determined by the size of the filter 

e.g. 3x3 (9 pixels) or 10 x 10 (100 pixels) [6]. This algorithm suits data parallelism very well 

because each operation is performed on one pixel, meaning that each thread can in theory handle 

one pixel each. 

2.6.2 DFT and FFT 
The Discrete Fourier transform is a way to transform an image from the spatial domain to the 

frequency domain. An image in the spatial domain is how we classically think an image is 

represented, by colour values at spatial locations in the image. An image in the frequency 

domain is represented by a set of sinus waves and their amplitudes and phase shifts. The reason 

for doing this transform is that some computations run much faster or are much easier to 

implement in the frequency domain. It is performed by applying the following function to the 

image represented as a vector with N elements.  

𝐹(𝑢) =
1

𝑁
 ∑ 𝑋𝑁𝑒−

𝑗2𝜋

𝑁𝑁−1
𝑥=0   

Where N is the number of samples or in this case pixels, x is the pixel value. The fast Fourier 

transform is simply a faster version of the discrete Fourier transform based on the divide and 

conquer method. Instead of applying this function and using all the pixel as the input you split 

it up and then put the results back together. If the size is optimized so that you always can split 

it in two parts you will get a final input size of one pixel, meaning that you perform the equation 

one pixel at a time and then combine the result to represent the entire image. This is very suitable 

for data parallelism, because in theory you could simply let each thread handle each pixel [24]. 
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2.6.3 Sparse matrix vector multiplication 
Sparse matrix vector multiplication is the operation of multiplying a sparse matrix (a matrix 

where most of the elements are zero) with a dense vector (a vector where most elements are 

non-zero). In normal matrix vector multiplication where both the matrix and vector are dense, 

you simply multiply each value in the matrix with the values on the corresponding indexes in 

the vector, adding those products together and place the resulting sum in a result vector. This 

means that you will access the same memory over and over for the different multiplications 

which means that the most prominent operation is memory accesses. This means that the 

algorithm is being bounded by bandwidth.  SpMV is still bounded by memory but not to as 

large a degree because there are simply not as many elements to access because many of them 

are zero (irrelevant). However, you do need to store the row and column indexes instead to be 

able to perform the correct multiplications. This problem does also fit neatly with data 

parallelism. The algorithm splits up the matrix elements to all the threads, couple the matrix 

element with the elements from the vector they should multiply it with, and lastly the threads 

place the resulting sums in the same result vector [25] [26].    

2.6.4 Radix sort 
Radix sort is a fast stable counting sort algorithm instead of the more common comparison 

sorts. The biggest difference is that it sorts each number independently from the others without 

any comparisons. Instead, the correct position is calculated by counting how many smaller 

numbers there are. It does this by counting the number of occurrences of each number and 

placing the result in a new array, where the index corresponds to which value it represents. It 

then calculates for each index/value how many occurrences of smaller numbers there are. This 

is done by adding the values at all the indexes to the left of itself. Thereby knowing where to 

place the current number. This independent calculation makes it possible to implement it as a 

data parallel algorithm where each thread handles one value in the array to be sorted [27]. 

2.6.5 Histogram computation 
Histogram computation is a way to calculate the number of results which fall into disjoint 

categories. It is a common operation in e.g. image recognition, pattern recognition or any sort 

of application which relies on statistical analysis. What a histogram computation does is to 

count every occurrence of a set of given disjointed categories. Each category is represented by 

a so called bin which holds a number (starting at 0), and for each occurrence of the respective 

category the algorithm adds 1 to the number in the categories bin. This can also be data 

parallelized on a GPU by simply giving each thread one point of the input and making it perform 

the addition in the appropriate bin. However, this can result in many stalls since the threads will 

try to access the same memory when adding in the bins. In order to resolve this a common 

solution is Replication. Replication means that the work-groups save their own private 

histogram which they add to. When every private histogram is done the private histograms are 

added together. This lessens the amount of stalls since there will be a smaller amount of threads 

accessing the same amount of memory locations [28]. 
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2.6.6 Performance considerations of parallel algorithms 

Because of the inherent nature of parallel algorithms, they are not analysed with the same 

metrics in mind as sequential algorithms [29]. First and foremost the reason for parallelizing 

algorithms is to gain a speedup in comparison to the sequential execution time, which is why 

this is normally the most important performance metric. The speedup is calculated with the 

following formula Ts/Tp = Speedup where Ts and Tp is the execution time for the sequential 

and the parallel implementation. There are some parameters which can have a bounding effect 

on how fast a parallel algorithm can run.  

Firstly, how big part of the algorithm can run in parallel. Every algorithm have some part of the 

code that has to be run sequentially. The size of the sequential section will bound the theoretical 

gain of running on multiple processors.  

Secondly, the load balance between the cores can slow down the execution time, if for example 

one core has a lot less to do than the others it will be an unused resource. This happens if one 

core is done a long time before the other cores and there is not any smart scheduler implemented 

which can give it more work. Then it will just be idle and wait for the other cores to finish. This 

can specifically have a big impact on the CPU implementation because of its MIMD 

architecture and the fact that it does not have a native queue like the GPU which simply 

schedules the first task in the que to a core when it goes idle. Instead, on the CPU the 

programmer has to pay close attention to the scheduling and partitioning of the problem [11].  

Thirdly the communication and synchronization between threads can also slow down execution 

time by making threads wait for one another a high amount of time. This becomes apparent if 

for example, one of the cores has to send a lot of data to the other cores, or when a shared 

resource is used by all the cores. This results in a lock being needed and the individual cores 

needing a lot of time to process the resource. This is similar to the load balancing problem with 

the difference that it cannot be solved by a smart scheduler. Instead then the entire program will 

have to wait for that one core to finish before the others can continue if you cannot utilize some 

sort of lock free synchronization. 

As mentioned earlier C .Gregg and K, Hazelwood [18] prove that data transfer between the 

GPU and CPU can have big performance ramifications on GPU programs meaning that the less 

data transfer the better for GPUs. This is especially true if an architecture with a discrete GPU 

is used and a PCIe express bus is used for the communication between the GPU and CPU. The 

communication cost is considerably lowered on a heterogeneous architecture with an integrated 

GPU but it still matters.  

The data access speed to cache and other memory can also have a big impact on the performance 

of an architecture. Especially in parallel algorithms because their data sets are in general very 

large meaning that a large number of memory accesses will have to be performed [8]. 

Lastly when parallelizing a program some overhead always occurs, largely due to the creation 

of threads, intra processor communication and the joining of threads. This will affect the 

performance and how much overhead there is will differ from architecture to architecture, in 

general it is much more prevalent on accelerator cards like GPUs than on CPUs [19].  
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2.7 Benchmarking parallel programs 
In order to eliminate the risk that the results will depend on our implementations of the 

algorithms, established benchmarks suites will be used to perform the tests. To test SpMV the 

OpenDwarf’s benchmark suite will be used. OpenDwarf’s is a benchmark suite constructed 

with the specific goal of supplying a common means for evaluating the multitude of different 

parallel architectures commonly used today. In order to achieve this it was built in OpenCL 

which can be run on most of today’s parallel architectures and the benchmarks themselves were 

modelled from Berkeley’s Dwarfs.  Berkeley’s Dwarfs is a set of applications (Dwarfs) which 

each captures a specific pattern of communication and/or computation commonly occurring in 

a class of common applications [30]. Another central idea utilized in OpenDwarf’s in order to 

achieve its goal is that none of the Dwarf implementations are optimized for a certain platform. 

This means that all the kernels are standard implementations none using techniques such as 

shared memory which is specifically suitable for GPUs. However, variables such as work-group 

sizes are set automatically by the OpenCL runtime, depending on the current architecture. This 

way they do not favour a specific architecture they instead favour all [31].  

In order to test convolution the code from the previous thesis is used as well as a standard 

implementation provided by AMD (the hardware company) which includes multiple kernels. 

Most of them are optimized for the CPU but one of them is a standard implementation without 

any optimizations. 

2.8 Software engineering Research methodology 
In the paper: Preliminary guidelines for empirical research in software engineering, B. 

Kitchenham et al. [32] presents a methodology for conducting experiments and empirical 

research within software engineering. Because our thesis can be defined as an experiment the 

relevant parts of their methodology has been followed. B. Kitchenham et al. [32] splits research 

in to six topics which all can be linked to the different parts of a study and constructs guidelines 

for each.  

The parts included in this thesis are the following: 

 Defining an experimental context 

 Defining an experimental design  

 Experiment and data collection guidelines 

 Result interpretation guidelines 

The experimental context consists of the background information of the industrial 

circumstances which the experiments are derived from, the research hypotheses and which 

theory pertaining to them and lastly the related research. Moreover, hypotheses and research 

questions should be stated clearly before any data is collected or analysed in order to know what 

to look for in the data and avoid bias in the hypotheses.  

The experimental design consists of stating what population the subjects or objects are drawn 

from, in this case from what population the algorithms and data sets are chosen from. If this is 

not done it is not possible to draw correct conclusions from the experiment.  
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The guidelines for conducting the experiment and data collection states that all measures should 

be explained because there are not any overarching standard for all software tests. More 

specifically all analysis procedures should be clearly described. 

Finally, the interpretation of the results. The most important part of the interpretation is that the 

conclusions should follow directly and in a clear manner from the results. Moreover what 

population the different conclusions pertain to should be defined as well as what kind of study 

it is.  

B. Kitchenham et al. [32]  describes a very general theoretical methodology for software 

experiments which we follow in order to present and handle the data in a suitable way. 

However, what to take in to consideration in this thesis practical analysis, is not handled. 

Therefore, in regards to the practical evaluation of the different implementations we follow the 

methodology used by V. W. Lee et al. [3]. 

From V. W. Lee et al. [3] we used the general methodology of how they performed the 

comparison between the CPU and GPU implementations. More specifically, how much the 

applications are optimized for the two platforms will be taken in to consideration during the 

analysis. Data transfer will also be taken into consideration because we want to evaluate the 

results as they would be in the real world. Moreover as stated by C Gregg and K Hazelwood 

[18] the data transfer can have a big impact. However this thesis is conducted on a CPU with 

an integrated GPU, while C Gregg and K Hazelwood used a dedicated GPU, it can be interesting 

to see how much impact data transfer has on our results compared to theirs.  

2.9 Related works 
Since the rise of multicore computers, GPU acceleration has been explored by many scientists. 

In “Debunking the 100X GPU vs. CPU Myth: An evaluation of throughput Computing on CPU 

and GPU” V. W. Lee et al. [3] examines how much performance that is actually gained by GPU 

acceleration on a NVidia GTX280 GPU, compared to running it normally on an Intel Core i7 -

960 CPU. The comparison was performed by running 14 different throughput computing 

kernels on the two processors. The kernels are modelled in order to capture the core 

computation and memory characteristics specified by the PARSEC and PARBOIL benchmark 

suit applications. Moreover their performance analysis outlines what the different kernels 

execution time was bounded by and lastly discusses how to optimize the code depending on 

which platform you use. Their conclusion showed that while GPU acceleration does equal a 

performance increase it is not in the orders of magnitude which is normally stated. According 

to their measures between the GTX 280 and i7-960 the performance increase lands around 2.5 

times faster execution time on the GPU. They believed that a major factor to previous recorded 

performance increases depends on which CPUs and GPUs were used and what kind of 

optimizations that were used on the code. 

In “Power Efficient MapReduce Workload Acceleration using Integrated-GPU” Kim et al. [7] 

uses the Intel HD graphics 4600 GPU to accelerate MapReduce tasks in the Apache Hadoop 

cluster framework for datacentres and compares it to an equivalent CPU implementation. The 

tests were performed on a 4-node cluster and a 1-node cluster and they used the HiBench 

benchmark suite for testing. The performance metrics they used were performance in time, IO 
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overhead isolation and power consumption. To evaluate the performance in time they simply 

measured the execution times and compared them. In order to minimize variations they ran the 

tests multiple times and used an average for the actual comparison. Since MapReduce is very 

IO dependent, the tests they performed isolated the impact of the IO on the performance. More 

specifically they measured how fast they could send data to the map task isolated from all other 

components. Finally, they measured the amount of power consumption from all 4 nodes 

combined on the 4-node cluster and the power consumption of the CPU and integrated GPU on 

the 1-node cluster. Their result was that on the integrated GPU the MapReduce task hade ben 

converted from a Compute bound kernel to an IO bound kernel and that the GPU offered a 

significant speedup over the CPU.       

In a similar study titled “Evaluating Integrated Graphics Processors for Data Center 

Workloads” S. Kim, I. Roy and V. Talwar [4] examine GPU acceleration in the integrated GPU 

on the AMD fusion architecture. Their goal was to evaluate it for Data centres however as a 

first step they evaluate it for the fusion architecture in isolation. The main difference from 

“Power Efficient MapReduce Workload Acceleration using Integrated-GPU” except that they 

use different hardware is that in this article they have more general tests targeted at GPGPU 

computing. More specifically they use the SpMV and Sort benchmarks from the SHOC 

(Scalable Heterogeneous Computing) suite which is a suite constructed specifically for GPGPU 

computing on heterogeneous systems (systems with multiple EUs). The comparison focuses on 

the energy efficiency and the raw performance (execution time) and is done on the architectures 

CPU compared to its GPU. They found that both SpMV and Sort ran faster and were more 

power efficient on the integrated GPU.  

In “Accelerating adaptive background modeling on low-power integrated GPUs” Azmat et al. 

[5] examine whether you can accelerate the multi-modal mean (MMM) algorithm on Nvidias 

low powered ION GPU compared to running it on a single core Atom-330 CPU. MMM is an 

image processing algorithm which segments the background from the foreground and maintains 

running means of the values of the background pixels. The pixels have up to 4 modes depending 

on what kind of background it represent and each mode contains separate means of all colour 

components (i.e. R G and B) of a pixel. This algorithm enables modelling of dynamic 

backgrounds, e.g. swaying trees. They continue to detail all of the optimizations done on the 

CUDA platform however they do not mention what implementation the Atom CPU runs. Their 

results state that they experienced a 6x speedup on the GPU compared to the CPU however 

because we do not know the specifics of the CPU implementation we are not sure how 

dependable these results are.  

In “Unleashing the Hidden Power of Integrated-GPUs for Database Co-Processing” Ching et 

al. [8] examine the potential of using integrated GPUs for the data bandwidth dependent work 

in Database processing such as queries instead of discrete GPUs. In their experiments, they 

used the Nvidia GTX 780 discrete GPU and the Intel HD 4600 integrated GPU. The main 

architectural differences are the memory interconnection speeds, the cache structure and the 

computational capacity. Both the interconnection speed and the cache structure favour the 

integrated GPU except the fact that the discrete GPU has access to a bigger cache. Regarding 

the computational capacity, it is a bit more complicated, the discrete GPU outperforms the 
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integrated by nine times purely in floating point operations. However, the integrated one has 

many more data lanes to run instructions on, resulting in a bigger amount of parallelism which 

favours many small jobs. Because of the faster memory connections and the extra parallelism, 

the integrated GPU outperforms the discrete in these kind of bandwidth dependent workloads. 

Moreover, they also compared the integrated GPU to running the database queries on the i7-

4770k CPU. In pure execution speed the CPU outperformed the GPU by a small amount (1-2 

ms), but when normalizing it to the power consumption, the GPU outperformed the CPU by a 

vast amount.   

In “On the Efficacy of a Fused CPU+GPU  Processor (or APU) for parallel computing” Daga 

et al. [19] study the AMD Fusion accelerated processing unit which is a CPU with an integrated 

GPU. More specifically they compare this APU architecture to the more traditional with a 

discrete CPU coupled with a discrete GPU and why APUs has the potential to overtake discrete 

GPUs performance wise. Like in many of the other works referenced here they too state that 

the major benefit of using an APU architecture is that you can get around the PCIe performance 

bottleneck. However, they also state that you do not always get better performance. In order to 

gain performance from not having to send data over the PCIe the amount of data has to be quite 

large. For small data sets, there are no significant performance gains. Moreover, they tested the 

architecture with four benchmark applications (MD, FFT, Scan and Reduction) from the SHOC 

benchmark suite in order to model real world workloads. The tests were performed on the AMD 

Zacate APU, the AMD Radeon HD 5870 GPU and the AMD Radeon HD 5450. The 5870 is a 

high performance GPU while the 5450 is more or less a discrete version of the APU. MD 

executes fastest on the 5870 but it executes faster on the APU than on the 5450.  FFT however 

is slowest on the APU because it depends too much on the computation and memory speed 

which is slower than both the others. However, both scan and reduction ran fastest on the APU 

given a large enough problem size. 

In summation, from these previous works it seems to be possible to achieve speedup on less 

powerful, integrated GPUs. However even though the application is well suited for parallelism 

it is not guaranteed to run faster on the GPU. Whether the GPU or the CPU runs the application 

faster seems to depend a lot on the specific application and what it is bounded by. Heavily 

compute bounded applications seems to favour CPUs, since they require higher single thread 

speed which CPUs provides. On the other hand bandwidth bounded applications usually seem 

to favour GPUs. However note, this in not always true, sometimes the shear amount of data can 

enable the GPUs parallelism to execute it faster. Then again, sometimes integrated GPUs 

simply are not fast enough, or has to small cache to compete with CPUs. 
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3. Method 
In this chapter the algorithm selection, the selected algorithm, implementation and how the 

analysis was done are presented. 

3.1 Benchmark Application Selection Factors 
That convolution would be examined was decided from the start since it is the one which A. 

Söderholm and J Sörman [2] examined. Besides, it is very well suited for data parallelism with 

the only apparent limiting factor on the GPU execution speed being the size of the filter. The 

bigger the filter the longer the processing of the pixel will take and the more memory each 

thread will need [6]. This means that for bigger filters it is computationally bounded [3]. 

Since there was not enough time to test all of the other algorithms, we choose the one best suited 

for the Intel HD graphics 4600 and which performance depended on other characteristics than 

convolution depends on (e.g. bandwidth or cache bounded).  

The one algorithm best suited for the GPU was the one which we thought would have the 

biggest chance of running faster on the GPU. This was based on the following factors from the 

previous studies and the architectural limitations.  

 Computationally bounded algorithms usually favours the CPU since they have a much 

higher clock speed.  

 Bandwidth bounded usually favours the GPU since most of the time the GPU at least 

has as fast data access as the CPU (if not faster). When the bounding factor is the same 

the GPU’s parallelism should outperform the CPU’s sequential speed. 

 Cache bounded algorithms favour the architecture with the biggest cache. 

Since the Intel i7-4790 has a much higher clock speed (3.6 GHz compared to 1.2 GHz) and a 

much bigger cache (8 Mb compared to 256 kb) but the same bandwidth (64 bytes/cycle) we 

wanted a bandwidth bounded algorithm. 

However the available implementations in OpenDwarf’s will also be taken in to consideration. 

Even though we want the algorithm to be well suited for the GPU the implementation should 

not be specifically optimized for the GPU or the CPU. Since then the results would be more 

dependent on the specific implementation rather than on the hardware.  

3.2 Benchmark Application Selection 
While FFT is a widely used algorithm it is computationally bounded since the majority of its 

operations are computations. Furthermore, the OpenDwarf’s implementation is optimized for 

the GPU, meaning that it would not be a fair comparison between the hardware architectures. 

Because of these two factors it was not chosen [3].  

Both Histogram and Radix are cache bounded. Radix is cache bounded because each thread 

will need to save a big part of the original array in order to calculate the correct position of their 

values. Histogram is cache bounded because of the private histograms which are saved between 

the work-items in a work-group, needed to lessen the amount of stalls. Therefore neither 

Histogram nor Radix were chosen. 



 

17 
 

However SpMV is much like FFT one of the most widely used algorithms within its computing 

area. It is also used in many related studies such as in the studies by V. W. Lee et al. [3] and C 

Gregg and K Hazelwood [18] for conducting comparisons between CPUs and GPUs. Finally, 

it is bandwidth bounded and it does not have any other particular performance problems on 

GPUs [18].  

3.3 Benchmark Application Implementations 
Figure 1 shows the different implementations tested in this thesis, the Green boxes are the actual 

implementations. 

 

Figure 1: Blue boxes are the types of benchmark, the turquoise box is the code base it comes from and green boxes the actual 
implementation. 

In this section the implementations will be describe as well as the implementation procedure. 

3.3.1 Implementation procedure 

While none of the benchmark applications has been written from scratch by the authors they all 

needed some modification, because none of them were written for the exact system used by us. 

The AMD implementation was written for AMDs OpenCL implementation while we used 

Intel’s, hardly any changes were needed because the implementations are very similar. However 

one or two functions during the OpenCL setup had to be changed to the Intel equivalent, but 

this should not affect the performance of the kernel in any major way.  

The benchmark application from the OpenDwarf’s suite needed more modification because 

they were written for Linux while we used Windows. In order to avoid as much Linux specific 

code as possible the individual SpMV application were singled out and separated from the rest 

of the suite. However once again all the Linux specific code (using Linux specific libraries etc.) 

was located in the setup of the program which should not affect the performance of the OpenCL 

kernel. Although, there is one difference from running the original benchmark application, 

being  OpenDwarf’s has their own kernel timers which are based on Linux functions such as 

gettimeofday(), we instead used OpenCL’s built in event kernel timers. 
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3.3.2 AMDs Convolution kernel 
AMD provides a comprehensive convolution example in OpenCL which is mainly built for 

CPUs. In this example there are multiple OpenCL kernels each with its own type of 

optimizations for the CPUs as well as a standard kernel without any optimizations. There is also 

a standard convolution written in C which is used to validate the results of the kernels. However 

the only OpenCL kernel that we actually used in this thesis is the standard convolution in order 

to avoid favouring any of the two platforms.  

In the ordinary C implementation the convolution consists of four nested for loop. The two 

outer loops iterates over the pixels in the image while the two inner loops iterates over each 

pixels filter area and performs the actual calculation. AMDs standard OpenCL convolution 

kernel showed in figure 2 is very similar to their C convolution. The only important difference 

is that in the OpenCL implementation one kernel handles one input pixel each, meaning that 

the two outer loops can be left out. The correct input pixel is chosen for each thread depending 

on the threads global index which correlates to the index of the pixel in the image. The pixels 

corresponding filter is then iterated over and the calculations are performed. 

 

Figure 2: AMD convolution kernel: 
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3.3.3 A Söderholm and J Sörman’s Convolution kernel  
A Söderholm and J Sörman [2] developed two convolution kernels, one standard and one which 

is optimized for GPUs in that it utilizes the GPUs local memory.  

 

Figure 3: EU memory access 

As mentioned earlier the local memory is faster than the global memory, however as you can 

see in figure 3, it resides within the level 3 cache, meaning it has the same bandwidth as rest of 

the cache. The reason for that the local memory is faster is that it is more highly banked. This 

means that it will achieve max bandwidth even when the data is not 64-byte aligned or 

contiguously adjacent in memory.  

In order to utilize the local memory the first thing the optimized version does is to load the 

image to local memory, this is shown at line 29-32 in figure 4. Each work-group shares a 32x32 

array in local memory and each kernel loads four pixels to this array. Then the operations are 

performed in the local memory instead of the global memory. 

  

Figure 4: Write to local memory in optimized kernel 
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In both the optimized and unoptimized kernel, the image is stored in a two dimensional float4 

array meaning that at each index one pixel is stored and each pixel consists of 3 RGB values, 

one for red, one for green and one for blue. After the image has been loaded the computation is 

performed by simply looping over the filter and image, multiplying the corresponding pixel 

values together and adding the results to one value for each RGB value. After the computation 

they make sure that the RGB values are between 0-255. Lastly the goal pixels RGB values are 

given the resulting values of the summations and multiplications and it is placed in the output. 

This process is showed in figure 5. 

 

Figure 5: Convolution computation 

However one thing in their setup code was changed, namely the time measuring code, they used 

C++ high_resolution_clock to measure the kernel which seemed to give weird results. For 

example when running the original code on the GPU with a 480p image and a 3x3 filter both 

VTune (OpenCL profiler described in section 3.6) and the built in OpenCL timers returned a 

total time of 0,009 seconds, while the high_resolution_clock returned a total time of 0,06 

seconds. Since high_resolution_clock is a standard C++ timer it measures the time it takes for 

the CPU to get from the code line before the kernel invocation to the code line after the kernel 

invocation. This is not necessarily the same amount of time as the GPU executes and sends 

data. Therefore we used OpenCL’s built in profiling timers which measures the actual GPU 

execution time, as well as the data transfer times giving extra and more accurate information. 

However since data transfer from the CPU is not needed when the computation is done on the 

CPU the data transfer was only taken in to consideration when computing on the GPU. 
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They also have a specific setup code for testing 8k images since this GPU’s OpenCL Image2d 

memory was capped to 4013x4014 pixels. Because of this they load the image to four different 

memory objects and each part is computed on its own and lastly the individual results are 

combined. 

3.3.4 SpMV in Open Dwarfs 
Open Dwarfs has one implementation of SpMV in OpenCL using the compressed sparse row 

format. In the CSR format (illustrated in figure 6) you take all the non-zero elements from the 

sparse-matrix and place them in a dense vector. Moreover a vector with the column index of 

each element and a vector that specifies at which position each row starts in the dense vector 

are created. The last entry in the vector specifies the position where the next row would start if 

there were any more values. Open dwarfs has a separate program that generates CSR formats, 

these are then supplied as input to the SpMV program which in turn specifies the vectors and 

sends them as input to the kernel. 

 

Figure 6: The CSR format 

 In the OpenCL kernel (shown in figure 7) each work-item is given the row corresponding to 

its global index and the indexes of the row is taken from the vector with row indexes. The start 

value for the vector (the start of the row in the dense vector) is stored at the corresponding 

position to the work-items index and the end value (the start of the next row in the dense vector) 

is stored at the next position in the vector. Then that part of the dense vector is iterated over and 

the matrix value is multiplied with the corresponding vector value by using the stored column 

index. Finally, the individual products of one row are summed up and saved in the results vector.  
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Figure 7: The SpMV kernel 

3.3.5 Data transfer 
In 3.2.2-3.2.4 the OpenCL kernels have been described since that’s the code which mainly 

impact the performance. However, all OpenCL programs has quite a lot of setup much of it is 

more or less the same standard boilerplate code needed by all OpenCL programs. But when 

working with integrated graphics there are two ways to handle the data transfer from CPU to 

the GPU. Either, you simply send it from the CPU to the GPU as you would when using a 

dedicated GPU and thereby using the GPU’s specific memory space. Otherwise, you can skip 

the data transfer and instead use the CPU’s memory space. This is possible since the GPU is 

located on the same hardware die as the CPU which means it has access to the CPU’s memory 

as well. 

A Söderholm and J Sörman and the OpenDwarf’s benchmark application transfers the data 

while the AMD example uses the CPU’s memory. If you do not transfer the data you of course 

avoid the data transfer time however in some cases when the data is not transferred the 

computation takes a bit longer.  A Söderholm and J Sörman’s code is such a case, it probably 

has to do with the fact they handle an actual image which the GPUs sampler is specifically built 

to handle. The OpenDwarf’s benchmark application transfers the data so that the code can run 

on both dedicated and integrated GPUs. We did not manage to modify the code to use the CPU’s 

memory therefore we do not know if there is any speed increase or not when the data is located 

on the GPU. The AMD example is originally built for CPUs which is why it does not transfer 

data. We tested to transfer the data but there was not any significant speedup. 

3.4 Problem Configurations 
Since one of the research questions is to examine which factors that impact the performance of 

the application on the two different execution units, the applications will have to be tested with 

several configurations. In this section first all the different configurations, which will be tested, 

are presented. Then the general configurations that impact all applications are explained in 

detail and lastly the application specific ones are explained. 
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3.4.1 Configuration summary 
The following configurations (illustrated in figure 8) will be tested. 

 

Figure 8: The green boxes are the implementations the orange boxes are the tests, the yellow ones details what part of the 
code that is timed.  
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As you can see only one of the parameters are tested on the Optimized version. This is because 

the optimized version is not important to the parameter tests at large. Since as specified in 

section “3.1 Benchmark Application Selection Factors” optimized versions gives more 

information about the specific implementation instead of the hardware. The reason it is tested 

is instead to examine A Söderholm and J Sörman’s [2] results in which case, altering the input 

size is enough. 

In the following sections the parameters are explained. 

3.4.2 General configurations 
The general parameters of the applications are the following. 

 The data type of the input. 

 The size of the input. 

 The work-group sizes 

The data type could impact the performance of all of the applications, since they all perform 

mathematical operations on their data and bigger data-types take longer for the execution unit 

to operate on. Since a larger data type will mean more sequential execution, it should execute 

faster on the CPU compared to the GPU. However as noted in figure 7 the data type is only 

tested on the unoptimized implementation. This was because it was the only implementation 

where you could change the data type without breaking the computation, why is explained 

section “3.4.3 Application Specific Configurations”. 

As was stated in the introduction, B.R. Payne [6] showed that in convolution on their GPU the 

speedup depended logarithmically on the input size. More specifically meaning that the 

relationship GPU_time(x)/CPU_time(x) is described by the function f(x) = k*log2 𝑥 where x is 

the input size and k is a constant. Moreover bigger input should in general be better for the 

GPU. While this should be true for our convolution implementations it is probably not true for 

the SpMV implementation used in this thesis, since each kernel gets an entire row to compute. 

This means that the bigger the problem gets not only are more work-items needed but each 

work-item will have to compute a bigger chunk of data. More work-items are favoured by the 

GPU but bigger work-items are favoured by the CPU. Moreover since the CPU is about 3-4 

times faster than the GPU the larger work-items will most likely cancel out the benefit the GPU 

gains from the larger amount of work-items. This means it would be a linear relation between 

the CPU-GPU execution time favouring the CPU as a function of the input size. I.e. 

GPU_time(x)/CPU_time(x) is described by f(x) = k*x where x is the input size. Since the input 

size increase equals a linear increase in the amount of operations performed by each kernel and 

a linear (but smaller) increase of the amount of kernels. 

This means that larger input for SpMV should be executed faster on the CPU compared to on 

the GPU. 

Lastly, the workgroup size: the workgroup size is the parameter through which you can impact 

the utilization degree (how many work-items that work concurrently) on the GPU and the CPU. 

If the workgroup-size is not chosen with care the hardware could be underutilized which of 

course impacts the performance. The number of work-groups is the input size divided by the 
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work-group size, meaning the bigger the work-groups the fewer there are.  Intel states that the 

number of work-groups should always be greater than the number of execution units since a 

work group can in theory be executed on one EU. They also state that they should be as large 

as possible in order to reduce overhead and that the size should be a multiple of 8. If it is a 

multiple of 8 the work-groups can utilize the built in vectorization module making it easier to 

parallelize. Intel generally recommends a size of about 64-128 work-items. As long as the sizes 

does not deviate to far from those sizes (not bigger than 256) and is devisable by eight the 

speedup should not vary with more than 0.05 units. 

The sizes of the work-groups tested are the same for all the applications. They are 32x16, 16x16 

and 8x8. 16x16 is the size which was used in the former thesis, 8x8 and 32x16 are used because 

we want one size quite a lot bigger size then Intel’s recommended as well as one of Intel’s 

recommended sizes. This means that as long as 32x16 is the only size impacting the 

performance of the applications in any significant way the hypotheses holds. If 8x8 or 16x16 

impact the performance in a significant way the hypothesis does not hold. 

 

3.4.3 Application specific configurations 
Convolution 

The input used for A Söderholm and J Sörman’s [2] implementation are images, however what 

kind of images they are (what they depict) does not have any real impact on the performance 

as long as they are standard pictures (i.e. not any extremes such as an entirely black picture 

which would mean that all the pixel values would be 0). This is because the convolution consists 

of a number of addition and multiplications and the images are represented in some sort of array 

of pixel values, each value representing what colour the picture has. This means that different 

pictures will only result in different numbers to perform the same operation on and it does not 

take noticeably longer for a computer to add/multiply two number of different sizes as long as 

they are of about the same magnitude. However, if there are many pixels with the value zero in 

one image and in another all pixels have the value 255 there could potentially be a 

computational difference. This means besides standard images, which should not have any 

specific impact on the performance, images either resulting in an array of only zeros or in arrays 

with only 255’s will be tested.    

 

The AMD implementation is in a way a more theoretical implementation than the two others, 

by which we refer to the fact that it does not perform the operation on actual images, but instead 

on a float array with randomized values. This should however not be a problem since as stated 

above the exact values should not impact the performance (i.e. what an image depict should not 

impact the performance). 

  

A specific parameter to test for convolution is the size of the filter, because it equals more 

operations. The larger the filter is the faster the code will run on the CPU compared to the GPU 

[6]. This is because each kernel will have more work to do which means you will gain more 

from single core speed which the CPU has more of [3]. The time increase should be more or 

less linear to the filter size increase, since a larger filter equals a linear increase in sequential 



 

26 
 

operations. I.e. the relationship GPU_time(x)/CPU_time(x) is described by f(x) = k*x where x 

is the filter size. 

 

The sizes of the tested inputs are 480p (853x480), 720p (1280x720), 1080p (1920x2080), 1440p 

(2560x1440), 4k (3840x2160) and 8k (7680x4320) and the filter sizes 3x3, 5x5 and 9x9. This 

enables us to compare our results with the former thesis results, because they used the same 

sizes. 

 

The data types which are tested are cl_float, cl_half_float, because they are of distinct sizes 

which is needed to test our hypothesis regarding data-types. cl_float and cl_half_float are 

specific image channel types which can be used in the former thesis convolution example since 

they use real images. However in the AMD example you cannot test different data types because 

it uses an ordinary float array. If it is changed to an int array the operations fail and the intel 

HD 4600 does not support double precision operations (using double instead of float) therefore 

only float have been tested. 

 

SpMV 

As described in section “3.1.5 SpMV” in OpenDwarf’s the CSR format is used as input for the 

application because the OpenCL kernel is specifically written for the CSR format. Moreover 

the CSR format is one of the most widely used formats in SpMV implementations and it gives 

an acceptable result [33]. 

The CSR formatted vectors are created by an independent application from OpenDwarf’s which 

outputs a text file with the generated numbers. When it creates the CSR format it also makes 

sure that the nonzero numbers are distributed equally between the rows to ensure good load 

balancing. This file is used as input by the SpMV application.  

A specific parameter for SpMV that is tested is the density of non-zero values in the matrix. 

The reason that this can have an effect on the performance is that a higher density equals more 

operations.  

Our hypothesis is that a denser matrix will equal a faster execution speed on the CPU compared 

to on the GPU. It should be a linear relation since what happens with a denser matrix is that 

there will be more nonzero numbers on the same row. A density increase in SpMV affect the 

application much like a filter size increase in Image Convolution. It simply increases the amount 

of sequential operations performed by each kernel. More specifically it means that the 

relationship CPU_time(x)/GPU_time(x) is described by the function f(x) = k*x where x is the 

density and k is a constant. This reasoning is based on the simple fact that the CPU has a much 

higher clock speed and executes sequential instructions much faster [3]. 

However based on S. Kim, I. Roy and V. Talwars [4] result the CPU should only outperform 

the GPU on the bigger density’s and sizes. 

The sizes which will be tested are 512x512, 1024x1024, 1536x1536 and 2048x2048, the 

densities of non-zero values being tested are 5%, 10% and 15%. These sizes and densities are 
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used because they enables us to test our hypotheses that the density relation will be 

logarithmical and the input relation will be linear.  

We were not able to test different data types on SpMV since a float type was needed and the 

Intel HD 4600 does not support the use of the type double (double precision) instead of float. 

3.5 Hypotheses summary  
Figure 9 shows all my hypotheses which are tested in the results. 

 

Figure 9: Convolution and SpMV hypotheses 

 

3.6 Analysis 
The analysis consists of two parts, firstly check which implementation that is faster and 

secondly why it is faster.   

The first part relies entirely on the execution time of the two implementations, which was 

measured with OpenCL’s built in profiling tool. The OpenCL profiling functions measures the 

time it takes for a specified event to be completed. The events are bound to commands in the 

command queue, this means in practice that it is the commands that are timed. The commands 

we timed were the OpenCL kernel itself as well as the different data transferral commands, e.g. 

the reading and writing to the buffers sent between host and device.       

The programs were run with the configurations specified in section “3.3 Problem 

Configurations”. Each of the configuration for A Söderholm and J Sörman’s code ran 5 times 

since there was not an especially big difference between runs. The AMD examples 

configurations were run 100 times since there was rather large differences between runs. The 

SpMV implementation configurations were run 10 times on the CPU and 5 times on the GPU 
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since there was bigger variation the CPU. Out of the results from these runs a mean value for 

the data transferal, kernel and transferal + kernel time was calculated for each configuration. 

The second part was conducted by using Intel Vtune Amplifier xe in order to locate the 

performance bottlenecks in the code relating to the different hardware features. Intel VTune 

amplifier is a performance measuring tool geared towards multicore applications for Intel CPUs 

and GPUs. VTune has a variety of analysis types, each focusing on a specific set of 

measurements.  

For the CPU analysis we mainly used two analysis types:  

 Advanced hotspots, which focuses on the most time consuming parts of the code and 

can be used to analyse the OpenCL kernels. 

 Memory access, which focuses on how bound the application is by the memory 

bandwidth. 

However the main part of the analysis was conducted on the GPU runs since it was on the GPU 

that the programs did not behave as expected. The analysis being used were GPU Hotspots, 

which is quite thorough and focuses on the most time consuming parts of the code run on the 

GPU, (i.e. the kernels). Furthermore, it shows hardware related metrics such as memory speed 

and concurrency of the GPU execution units. These three analysis types were chosen because 

they are the ones available in VTune that shows relevant data. There are for example a 

performance characterization analysis and a locks-and-waits analysis, however they are not 

meant for OpenCL programs. This meant that the data they produced was completely irrelevant, 

this was true for all of the other analysis types. 

These analyses were run on the most interesting problem configurations for each application. 

The problem configurations analysed are specified in chapter 4 Results. The different results 

were compared in order to see which of the variables that had the biggest impact on the 

execution time. Why these were the ones which had the biggest impact was checked in the 

analysis results as well as in the literature. 
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4. Results 
In this chapter the results of all the tests will be presented. 

4.1 Convolution 
The presentation of the results will follow the structure of the method. This means that first the 

results of the time measurements will be presented and then the relevant results from the 

analysis of that test. In this section the results of the two Image Convolution implementations 

are presented. 

4.1.1 A Söderholm and J Sörman Convolution code results 
We begin with the results of the original non-modified code of A Söderholm and J Sörman [2].  

The application code itself is unchanged, however the time measuring code is changed to 

OpenCL’s profiling tools as mentioned in section “3.2.3 Previous thesis Convolution kernel”. 

This change in itself solved the question why the ratio between the CPU execution and GPU 

execution that they observed stayed constant. They simply used the wrong timers which did not 

measure the times accurately enough.  

Figure 10 and 11 showcases our results for the image size and filter size tests: 

 

Figure 10: The CPU kernel speedup as a function of the image size with a 3x3 filter and 16x16 workgroup. 
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Figure 11: The CPU kernel speedup as a function of the filter size on a 480p image and 16x16 workgroup. 

Just as in the previous thesis results the CPU is always faster, however you can clearly see in 

figure 10 and 11 that the results does in fact depend on both the filter size and the image size. 

However, the relation is the opposite of what is expected, instead of favouring the GPU on 

smaller filters and bigger images it favours the CPU.   

If you take in to account the time it takes to send the data to the GPU the results just gets even 

better for the CPU. As shown in figure 12 and 13. 

 

Figure 12: The CPU kernel speedup as a function of the image size with a 3x3 filter and 16x16 workgroup including data 
transfer time to the GPU. 
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Figure 13: The CPU kernel speedup as a function of the filter size on a 480p image and 16x16 workgroup including data transfer 
time to the GPU. 
Furthermore on both image size graphs (figure 10 and 12) we see that between 4k and 8k there 

is a much bigger difference than between any other of the sizes. In order to find out why that 

was the case the GPU hotspot analysis was run with a size of 4k and of 8k. The difference was 

that when the size was 4k only one kernel was needed to run the entire program, but on 8k 4 

kernels which had to run sequentially was needed. Figure 14 and 15 shows the Vtunes graphics 

pipeline output on 4 input and 8k input respectively.  

 

Figure 14: Intel VTune intelHD graphics pipeline showing only one convolution kernel on 4k. 

 

Figure 15: Intel VTune intelHD graphics pipeline showing four sequential convolution kernels on 8k. 

Why this is the case is explained in the next chapter. 

In order to examine why the application always ran faster on the CPU and the relations were 

the opposite of what was expected, the GPU hotspots analysis was run on a 480p image with 

the different filter sizes. The analysis showed that the execution on the GPU was significantly 

hampered by a high number of memory stalls. This meant that a significant amount of the 

execution time the GPU’s execution units spent waiting to get access to specific memory 

locations. This can be explained by the fact that the different kernels will try to access the same 

memory locations in the image when computing the filter. However there were a very high 

percentage of stalls and the number of stalls were basically independent from the filter size 

(shown in figure 16) which should not be the case. Because the bigger the filter is the more 

memory locations are shared between the EUs, meaning that bigger filters should have more 

stalls than small filters. 
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Figure 16: Percentage of execution time which the GPU’s EUs were stalled on a 480p image with the different filter sizes. From 
left to right: 3x3, 5x5 and 9x9. 

This caused a closer inspection of how they handled the filters in the kernel.  

 

Figure 17: The beginning of the original kernel. 

As you can see on line 3 in figure 17 they send their one dimensional filter (inFilter) to their 

kernel. Then as stated in the comment on line 15 they convert it to a 2D filter for easier 

management. However, when they created their 2D filter (line 17) they statically used the size 

13x13 which was their largest filter size. When the exact size of the filters were used instead, 

(i.e. 3x3, 5x5 and 9x9) the percentage of stalls lowered dramatically for 3x3, a bit for 5x5, 

hardly anything for 9x9 (shown in figure 18) but the time measurement results were very 

different.  
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Figure 18: Percentage of execution time which the GPUs EUs were stalled on a 480p image with the different filter sizes, after 
the code was modified. From left to right: 3x3, 5x5, and 9x9. 

 

Figure 19 shows the new results for the image sizes. 

 

Figure 19: The GPU kernel speedup as a function of the image size with a 3x3 filter and 16x16 workgroup. 

As you can see in figure 19 there is a small increase from 480p to 1440p and it is a very large 

step in size. Because of this 720p and 1080p was added in figure 20 in order to see if anything 

interesting happened in between. 

 

Figure 20: The GPU kernel speedup as a function of the image size with a 3x3 filter and 16x16 workgroup. 
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    480 720 1080 1440 4k 8k 

CPU time 0,0055 s 0,0129 s 0,0281 s 0,0483 s 0,1056 s 0,4027 s 

Time 

increase 

 

 

2,31 

times 

2,17 

times 

1,71 

times 

2,18 

times 

3,81 

times 

GPU time 0,0026 s 0,0055 s 0,0125 s 0,0217 s 0,0488 s 0,2283 s 

Time 

increase 

 2,12 

times 

2,27 

times 

1,73 

times 

2,24 

times 

4,67 

times 

Table 1: Kernel execution time and time increase on the different image sizes on the CPU and GPU using a 3x3 filter and a 
16x16 workgroup. 

As you now clearly can see in figure 20 the GPU is faster than the CPU, however the varying 

relation between the image size and the speedup still did not behave as expected. Table 1 shows 

clearly that the only size increase where the GPU is favoured is from 480p to 720p. Therefore, 

the GPU hotspot analysis was once again run with the sizes 480p, 720p and 1080p in order to 

see what differentiated the three sizes. 

   

Figure 21: Percentage of execution time which the GPUs EUs were stalled and idle with a 3x3 filter with different image sizes. 
From left to right: 480p, 720p, 1080p. 

As you can see in figure 21, with a size of 480p the GPU is not fully utilized. 19% of the 

execution time, execution units are idle but if you increase the size to 720p more or less the 

entire GPU is utilized and at 1080p the utilisation is basically the same. This means that the 

performance gain is the largest on the GPU going from 480p to 720p, this will be explained 

further in the next chapter. 

Figure 22 shows the results of the filter size tests. 

 

Figure 22: The CPU kernel speedup as a function of the filter size on a 480p image and 16x16 workgroup. 
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 3x3     5x5 9x9 

CPU time 0,0055 s 0,0130 s 0,0372 s 

Time 

increase  

 2,34 times 2,84 times 

GPU time 0,0026 0,0115 0,0376 

Time 

increase 

 4,42 times 3,27 times 

Table 2: Kernel execution time and time increase when using different filter sizes on the CPU and GPU on a 480p image and 
16x16 workgroup. 

As expected the bigger filter sizes impact the GPU significantly more and on smaller sizes the 

GPU outperforms the CPU. Why the difference between 5x5 and 9x9 is so small is explained 

in the next chapter as well as the mathematical relation.  

Figure 23 and 24 shows the same graphs as 20 and 22 but with the data transfer included and 

as expected some of the GPUs advantage is nullified. 

 

Figure 23: The GPU kernel speedup as a function of the image size with a 3x3 filter and 16x16 workgroup including data 
transfer time to the GPU. 
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Figure 24: The GPU kernel speedup as a function of the filter size on a 480p image and 16x16 workgroup including data transfer 
time to the GPU. 

    480p 720p 1080p 1440p 4k 8k 

GPU time 0,0026 s 0,0055 s 0,0125 s 0,0217 s 0,0488 s 0,2283 s 

Transfer 

time 

0,0014 s 

 

0,0031 s 0,0066 s 0,0116 0,0270 0,1566 

Transfer/

GPU 

0,56 % 0,56 % 0,53 % 0,53 % 0,55 % 0,68 % 

Table 3: The GPU execution time and the transfer time as well as how big part of the time that is spent in transfer with a 3x3 
filter and 16x16 workgroup. 

As shown in table 3 the transfer time relation to the execution time stays more or less the same 

for different sizes.  

A Söderholm and J Sörman [2] also made an “optimized” GPU version using the GPUs shared 

local memory in order to lessen the amount of accesses to global memory which is slower. 

However, their results showed that their optimization actually made the program run slower.  
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My results with their optimized version shown in figure 25 showed the same. 

 

Figure 25: The GPU basic kernel speedup compared to the optimized GPU kernel as a function of the image sizes with a 3x3 
filter and 16x16 workgroup size. 

The reason for this is that the optimized version is stalled about 15% more of the execution time 

(showed in figure 26). Why this is the case is explained in the next chapter. 

 

Figure 26: Percentage of execution time which the GPUs EUs were stalled with a 3x3 filter and a 1080p image. 

Finally, the results of the workgroup size and data types tests in figure 27 and 28 respectively. 

 

Figure 27: The GPU kernel speedup as a function of the workgroup size on a 1440p image and 3x3 filter. 

When looking at figure 27, the scale should be noted, the speedup difference between the 

different workgroup sizes are very small. 

1,55

1,6

1,65

1,7

1,75

1,8

1,85

1,9

1,95

480p 720p 1080p 1440p 4k 8k

U
n

o
p

ti
m

iz
ed

 S
p

ed
u

p

Image Size

2

2,1

2,2

2,3

2,4

2,5

8x8 16x16 32x16

G
P

U
 s

p
ee

d
u

p

WG Sizes



 

38 
 

 

Figure 28: The GPU kernel speedup as a function of the data type on a 720p and a 480p image and 3x3 filter. 

 

 

 

 

 

 

 

 

As expected, with a smaller data type the GPU performs better than the CPU and the ratio stays 

more or less the same for different image sizes. In fact with a bigger data type the CPU executes 

it faster as seen in table 4. 

As specified in section “3.3 Problem Configurations” the intention was also to test the execution 

time on one entirely white image and one entirely black image in order to test the extreme cases. 

However, for some reason the program crashed when the black and the white image were used 

as input. Therefore the extreme cases are only tested on the AMD example.  

4.1.2 AMD Convolution results 
The AMD convolution example was used as a standard implementation to compare the previous 

convolution kernel to. In this section the results from the tests performed on the AMD example 

are presented. Worth to mention is that there are no data transfer times included in any of the 

AMD tests (se figure 8), being figure 29, 30, 31 or table 5, 6, 7  since the GPU uses the CPUs 

memory. Figure 29 and table 5 shows the results of the image size tests. 
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720p

4k

                       Half float float 

CPU time 0,0135 s 0,0129 s 

Time 

increase 

 0,95 times 

GPU time 0,0048 s 0,0055 s 

Time 

increase 

 1,13 times 

Table 4:  Kernel execution time and time increase on data types using a 3x3 filter on a 720p image and a 16x16 workgroup. 
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Figure 29: The CPU kernel speedup as a function of the image size with a 3x3 filter and 16x16 workgroup. 

    480p 720p 1440p 4k 8k 

CPU time 0,00026 s 0,00056 s 0,00270 s 0,00615 s 0,02685 s 

Time 

increase 

 

 

2,10 times 4,77 times 2,27 times 4,36 times 

GPU time 0,00065 s 0,00127 s 0,00495 s 0,01100 s 0,04017 s 

Time 

increase 

 1,95 times 3,88 times 2,21 times 3,65 times 

Table 5: Kernel execution time and time increase on the different image sizes on the CPU and GPU using a 3x3 filter and a 
16x16 workgroup. 

The big difference from the same tests with A Söderholm and J Sörman’s [2] code is that the 

CPU actually is faster. However, the relation between the speedup and the image sizes behaves 

as expected. In this case (figure 29) the 8k size fits on the GPU since it is only an array with 

ints instead of an image. Therefor it does not favour the CPU the same way as it did with A 

Söderholm and J Sörman’s [2] code. And here too we can see that the larger image sizes impact 

the CPUs execution time more. Note that 1080p is not included in this test, therefore the time 

increase is so big from 720p to 1440p.  

We continue with the filter size tests in figure 30 and table 6. 
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Figure 30: The GPU kernel speedup as a function of the filter size on a 480p image and 16x16 workgroup. 

 

 3x3     5x5 9x9 

CPU time 0,00026 s 0,00045 s 0,00110 s 

Time 

increase  

 1,7 times 2,4 times 

GPU time 0,00065 s 0,00141 s 0,00415 s 

Time 

increase 

 2,16 times 2,94 times 

Table 6: Kernel execution time and time increase when using different filter sizes on the CPU and GPU on a 480p image and 
16x16 workgroup. 

As you can see in figure 30 the CPU is faster than the GPU on all the different filter sizes but it 

follows the expected relation, the bigger the filter the better for the CPU and vice versa.  

And on the next side in figure 31 you can see that the execution time is basically not impacted 

at all by the workgroup size.  
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Figure 31: The GPU kernel speedup as a function of the workgroup size on a 1440p image and 3x3 filter. 

The big difference (as mentioned before) from the other implementation is that the CPU runs 

the application faster. In order to examine why this is the case, the GPU hotspots analysis was 

used on the code to test all the different problem sizes. The only real problem that the analysis 

found was that the GPU sometimes created too many threads resulting in some overhead. 

However this overhead is not big enough to be the sole reason for the program executing faster 

on the CPU. As can be seen in figure 32 the difference in execution time is not that big when 

too many threads are started compared to when not too many threads are started. 

 

Figure 32: The amount of threads created on five different runs with an image size of 8k and their execution times, the ones 
marked in red is when too many are created. 

Finally we also tested if extreme inputs had any impact on the performance, i.e. if the array only 

consisted of zeros or only consisted of the largest value possible generated by the random 

function  (32 767 in this case). 

 

  

 

 

Table 7: The execution times in seconds for filling the array with only min number, only max number and random numbers for 
the GPU and CPU. With a size of 720p, 3x3 filter and 16x16 workgroup size. 

As you can see in table 7 there is hardly any difference at all, and the small difference there is, 

most likely comes down to the fact that the execution time is not deterministic. 
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4.2 SpMV 
In this section the result of the SpMV implementation is presented. We begin with the Density 

tests in figure 33 and table 8. 

 

Figure 33: The GPU kernel speedup as a function of the nonzero density with an input size of 512 and a 16x16 workgroup. 

 5%  10% 15% 

CPU time 0,03534s 0,04107 s 0,04790 s 

Time 

increase  

 1,16 times 1,15 times 

GPU time 0,01976 s 0,03398 s 0,04728 s 

Time 

increase 

 1,71 times 1,39 times 

Table 8: The CPU and GPU kernel execution times and the time increase between the different densities. 

As expected on lower densities the GPU outperforms the CPU the relation is discussed in the 

next chapter. 
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The input size tests is displayed in figure 34 and table 9. 

 

Figure 34: The CPU kernel speedup as a function of the input size with a nonzero density of 5% and a 16x16 workgroup. 

 512 1024 1536 2048 

CPU time 0,03534s 0,0479 s 0,080095 s 0,011052 s 

Time 

increase  

 1,35 times 1,67 times 1,37 times 

GPU time 0,01976 s 0,07497 s 0,264816 s 0,47120 s 

Time 

increase 

 3,79 times 3,53 times 1,77 

Table 9: The CPU and GPU kernel execution times and the time increase between the different densities. 

Figure 34 and table 9 shows that as expected with smaller sizes the GPU is faster and on the 

bigger sizes the CPU is faster. The relation is discussed in the next chapter.  

Both these graphs and tables were without the data transfer time on the GPU, with the transfer 

time the GPU basically does not stand a chance. This is shown in figure 35, 36 and table 10, 

11. 

 

Figure 35: The CPU kernel speedup as a function of the input size with a nonzero density of 5% and a 16x16 workgroup with 
the data transfer time. 
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 512 1024 1536 2048 

GPU time 0,01976 s 0,07497 s 0,264816 s 0,47120 s 

Transfer 

time  

0,05593 s 0,08724 s 0,13478 s 0,19208 s 

Transfer/

GPU 

283% 116 % 50% 40% 

Table 10: The GPU execution and transfer time with a nonzero density of 5% and a 16x16 workgroup. 

 

Figure 36: The CPU kernel speedup as a function of the nonzero density with an input size of 512 and a 16x16 workgroup with 
the data transfer time. 

 

 5% 10% 15% 

GPU time 0,01976 s 0,03398 s 0,04728 s 

Transfer 

time  

0,05593 s 0,06644 s 0,07049 s 

Transfer/

GPU 

283% 195% 149% 

Table 11: The GPU execution and transfer time with an input size of 512 and a 16x16 workgroup. 

As you can see in figure 35 and 36 the transfer time had a much bigger impact on SpMV than 

on Image Convolution on the smaller sizes. The bigger the size the longer it will take for the 

GPU to process the data, meaning that the transfer times matters less. The relation between the 

execution time and transfer time follows the same downward trend when you look at the 

densities, but it is slower since it is a smaller total work increase for the GPU. 
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Finally, in figure 37 the workgroup size tests are shown. 

 

Figure 37: The CPU kernel speedup as a function of the workgroup size with a nonzero density of 5% and an input size of 1024. 

 8x8 16x16 16x32 

CPU time 0,04799s 0,04790 s 0,07176 s 

Time 

increase  

 1,002 times 1,49 times 

GPU time 0,07536 s 0,07497 s 0,07673 s 

Time 

increase 

 0,99 times 1,02 times 

Table 12: The CPU and GPU kernel execution times and the time increase between the different workgroup sizes. 

This result is quite different from the workgroup tests on the two convolution implementations. 

8x8 and 16x16 stays more or less the same, however as you can see in table 12 at 16x32 the 

CPU execution time increases by 50%. This will be discussed in the next chapter. 
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4.3 Results summary 
The following table (table 13) summarises which configurations ran faster on which 

architecture. 

 

Configurations running faster on the 

GPU 

Configurations running faster on the 

CPU 

  A Söderholm and J Sörman  Convolution A Söderholm and J Sörman  Convolution 

All input sizes with and without data transfer 

when a 3x3 Filter was used. 

All the configurations of the original code 

  

Using a 3x3 or 5x5 filter with and without data 

transfer. 

Using a 9x9 filter with and without data transfer. 

Using the Half_float and Float data types with 

a 3x3 filter. 

 

 

All workgroup sizes with a 3x3 filter.  

AMD Convolution AMD Convolution 

 All input sizes, filter sizes and workgroup sizes. 

SpMV SpMV 

All densities on the input size 512 without 

data transfer. 

5% and larger densities on the input sizes 1024, 

1536 and 2048 without data transfer. 

 5% and larger densities and all input sizes with 

data transfer. 

 

 

All workgroup sizes on the input size 1024 with a 

5% density. 

Table 13: Results summary 
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5. Discussion  
5.1 Convolution results 
Here the most interesting results presented in 4.1 Convolution is explained and discussed. 

5.1.1 4k -> 8k difference 
As shown and explained in section “4.1.1 Previous Convolution Results” the big performance 

difference between a 4k image and an 8k image, is caused by the fact that at 8k the GPU runs 

4 sequential kernels instead of just one. But why does it run 4 kernels and how does it behave 

on the CPU? 

It runs four sequential kernels because of the GPUs memory limitations. A 4k image the GPU 

can manage to process in parallel however as A Söderholm and J Sörman discovered, the 8k 

image is too big for the GPU. This meant they had to split the picture in to four parts, giving 

one part to each kernel. Resulting in four kernels, theses four kernels will be processed in 

sequential order on the GPU. However, the CPUs memory is big enough for the 8k image which 

means that it can process the four kernels in parallel. Since one kernel on its own runs faster on 

the CPU, it is logical that four kernels running in parallel on the CPU will be a lot faster than 

four running sequentially on the GPU. Hence the dramatic speedup difference for 8k images.   

5.1.2 GPU EU stalling 
As shown in figure 12 when running the original code on the GPU, the GPU execution units 

were stalled just under 80% of the execution time. This was partially solved by using the correct 

filter sizes, but why did the filter size cause stalling? Moreover, even after the filter sizes were 

modified, 3x3 filters had about 40% stalling, 5x5 70% and 9x9 still had 80%. What causes this 

stalling and why did the fix work so much better for 3x3 than on any of the other filter sizes? 
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First what cause the original stalling, let’s have a look at the code again. 

 

Figure 38: Array creation and convolution computation. 

The first assumption was that the main loops on line 31 and 33 in figure 38 used the size of the 

newly created 2D array filter as the end value. Thereby always using the same filter size which 

would explain why the stalling percentage did not change. However, they in fact use the variable 

filterWidth, which is the actual filter width i.e. 3, 5 or 9, this is supplied from the host code and 

sent to the kernel. This meant that the filter sizes did change which implicates that this was not 

the problem.  

The next theory was that it was a memory problem because a 13x13 int array takes up a lot of 

memory.  

As stated in section “2.4.1 Intel HD graphics 4600 GPU”, the GPUs Execution units have 28 

kilo bytes of local storage. One int is 4 bytes long and in a 13x13 array there are 169 ints 

equalling 676 bytes and the other structures in the kernel takes up 60 bytes which equals 767 

bytes per work-item. Furthermore each EU has 7 hardware threads which in turn runs 32 work-

items in parallel which means, at full capacity there are 224 work items on one EU and 224 * 

767 = 171,808 kilo bytes which is a lot more than 28 kilo bytes. This means that the rest of the 

data instead is put in the GPU cache, which all of the EUs will have to access more or less at 

the same time. This results in a very big percentage of stalls.  

If you use the correct filter sizes, work-items with a 3x3 filter will take up 21 kilo byte of 

storage, 5x5 35 kilo byte and 9x9 86 kilobyte. This is why the fix worked so much better for 

3x3 because then only the EUs local storage is needed, while the other sizes need to use the 

GPU cache. 
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However, even though 3x3 does not use too much memory it still has 40% stalls. This is caused 

by line 37 in the code above. That is when the kernel accesses the image stored in the GPUs 

sampler. Since you access the neighbouring pixels when calculating the filter the kernels 

handling neighbouring pixels will use the same pixels (i.e. access the same memory addresses). 

Furthermore, as you can see in the code they do not use any special data access pattern instead 

they just go from left to right when calculating the filter for each pixel. The amount of stalling 

is worsened because when accessing the image they use the address clamping mode built in to 

OpenCL. Address clamping means that if a pixel outside the boundary is selected instead the 

nearest pixel inside the image is selected. This happens on all the boundary pixels and results 

in even more shared memory locations between the threads, which in turn equals more stalling. 

This assumption is supported by the GPU hotspot analysis (figure 39) which shows that the 

sampler is bottlenecked when a 3x3 filter is used. When the sampler is bottlenecked it has more 

requests than it can handle, i.e. its input queue is full. Or rather, it cannot handle the requests 

fast enough since it stalls on accessing the same memory locations at the same time. 

 

Figure 39: The percentage of execution time that the sampler is bottlenecked on a 1440p image with a 3x3 filter. 

5.1.3 Image and filter size relation to execution time 
As stated by B. R. Payne et al. [6] the GPU speedup should be logarithmically dependent on 

the image size. However their tests are performed on a much more powerful, dedicated GPU. 

Therefore it is not surprising that we do not get the exact same result.  

As described in the results it in fact is only beneficial for the GPU to have a bigger image size 

up to 720p from there on out it only gets better for the CPU. Since at 720p it is already fully 

utilized. The decrease is cause by two implementation details favouring the CPU. 

1. The GPU still stalls quite heavily. 

2. It is a big convolution kernel, in which they except perform the main computation, does 

some not entirely necessary work (create an entirely new array and clamps the RGB 

values). 

The biggest part is that the GPU still stalls 40% of the execution time while the CPU hardly 

stalls anything at all (on the big sizes 4k-8k it sometimes stall around 10%). Secondly the extra 

computations is making it more computationally bound which favours the CPU’s fast cores. 

These two characteristics coupled with the fact that the GPU is not very fast nullifies the 

performance gained by the GPU on bigger sizes.     

In order to examine the specific relation of the two parameters and the execution time regression 

analysis was performed over the input data. The hypotheses are the following:  

1. Speedup should be logarithmically dependent on the input size. 

2. Speedup should be linearly dependent on the filter size. 
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Input size relation 

The regression analysis showed the following. 

 

Figure 40: Regression analysis over the input sizes and execution time with a logarithmic trend line. 

Figure 40 shows whether the relation between the CPU execution speed and the GPU 

execution speed over a number of input sizes can be fitted to a logarithmic trend line. If it can 

it means that the relation is logarithmic. As you can see the data points does not fit that well to 

the trend line. Moreover the R2 value which estimates how well the data fits to the trend line 

(going from 0-100%) has a value of 63%. Since this was quite a low value I also calculated 

Pearsons correlation coefficient which produces a value between -1 and 1. This value 

indicates whether there is a negative correlation (-1), no correlation (0) or a positive 

correlation (1) between the two data sets (GPU time and CPU time). The correlation 

coefficient over the image sizes are 0.99 which means that there is a strong positive 

correlation. Therefore I can confidently say that the speedup is dependent on image size 

however it does not seem to be logarithmically dependent because of the low R2 value. 
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Filter size relation 

The regression analysis showed the following: 

 

Figure 41: Regression analysis over filter sizes and execution time with a linear trend line. 

As you can see in figure 41 the data fits the trend line very well, the R2 value is at 99% and 

the correlation coefficient is 0.99. Therefore I can say that the hypothesis was accurate and the 

speedup is linearly dependent on the filter size following the function y = 1.1033x – 0.033. 

5.1.4 Why the optimized version causes more stalling 
As showed in the results the optimized version causes more stalls. What they do in the optimized 

kernel is transferring the image from the global memory to the faster shared memory. Each 

workgroup shares one two dimensional array with the size 32x32 = 1024 containing 1024 pixels 

of the image. The work-groups have the size 16x16=256 and each kernel transfers 4 pixels to 

the array, thereby filling up the entire array 256*4=1024. After that all the actual filter 

operations can be done from the faster shared local memory instead of from the slower global. 

This lowers the amount of global memory accesses. However, the writing from global memory 

to local memory causes the sampler to be bottlenecked once again, not as much but it equals 

some extra stalling (figure 42). When writing from the global memory to the local memory they 

overwrite some of the local memory positions which also equals some stalls. Those two together 

causes about 6% of execution time spent in stalls, the rest of the stalls is caused by their data 

access pattern which is worse for local memory than global. 

 

Figure 42: Percentage of execution time which the GPUs EUs were stalled with a 3x3 filter and a 1080p image without writing 
to the local memory from the sampler. 
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It is worse for local memory because of the way they handle each workgroups edge pixels, if 

they want a pixel outside of the local 32x32 array e.g. -1,-1 they instead take 31,31. They simply 

use the corresponding pixel on the other side of the array. The main difference from the basic 

implementation is that those pixels would use their actual neighbour pixels. Those neighbouring 

pixels would be handled by work-items in another workgroup which it is possible, does not run 

at the same time. The work-items in the optimized version on the other hand only uses pixels 

from its own workgroup, and all work-items in the same workgroup runs concurrently. 

Basically there are more stalls since work-items in the same work-group share more memory 

locations. And there is a higher chance that the work-items in the same workgroup will run in 

parallel than the work-items in different work-groups. Furthermore, because there are more 

stalls the performance gain from using the faster local memory is nullified. Instead the 

optimized version loses time on the extra writing from global memory to local memory.   

5.1.5 AMD example results 
The biggest difference between A Söderholm and J Sörman’s code and the AMD example is 

that the AMD example always runs faster on the CPU. This is because it is written for CPU and 

the setup and data access is written in a way to favour the CPU. For example within the kernel 

they access the data row wise which favours the CPU while the GPU wants to access it column 

wise. They also create too many threads sometimes as shown in the results which causes extra 

overhead. 

Regarding the different parameters however, the AMD example more or less confirms the 

hypotheses which are the following: 

1. The bigger the input the better it is for the GPU. 

2. The smaller the filter the better it is for the GPU. 

3. As long as the workgroup size is not bigger than 256, not smaller than 24 and is 

devisable by 8 the speedup should not vary with more than 0.05 units. 

5.1.6 Parameter impact 
The two parameters that had the biggest impact on the execution times of the two architectures 

was the input size and the filter size. In order to compare these two parameters accurately I 

compared the number of operations that the image size and filter sizes added. Since increasing 

the image size and the filter size means adding on extra operations in two different ways to the 

computation. If you convert the different parameter tests to the number of operations you see 

that a good comparisons point is between a 480p image with a 9x9 filter and a 1440p image 

with a 3x3 filter since both of them converts into 33 million operations. If you look at the 

execution times of these two tests in table 1, 2, 5 and 6 you will see that the larger image time 

takes a longer time to execute in both the previous thesis convolution as well as in the AMD 

example. This means that the image size actually has a larger impact on the execution time of 

both architectures. 

Moreover you can also see on the AMD example that the larger image sizes impacts the CPU 

more than the GPU. And that the filter size impacts the GPU more than the CPU. 
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The data type did not impact the architectures that much individually since the CPU lost some 

time on the smaller data type while the GPU gained some. In relation to each other the 

difference was on par with the impact of the input size.  

The workgroup size did hardly impact the execution time at all. Even though 16x32 is four 

times larger than Intel recommends.  

5.2 SpMV results 
The most surprising part of the SpMV results were that the GPU performed as bad as it did 

compared to the CPU since S. Kim, I. Roy and V. Talwar [4] got much better results. This was 

because of the usage of the CSR format and the fact that each kernel on the bigger sizes gets a 

large chunk of the problem. This means that when using CSR on a GPU you would either want 

a matrix with short rows and long columns or one with a very small density. This would ensure 

each kernel only got a handful of numbers each instead of the 25-300 numbers that they got in 

our tests. 

In order to confirm this, a test was performed with a 2048x2048 matrix with a 0.5% density 

meaning that each work-item got about 10 nonzero numbers each. 

 

 

 

 

Table 14: The CPU and GPU SpMV execution times without data transfer on a 2048 input and 0.5% density. And the speed up 
on the GPU compared to the CPU and vice versa. 

As you can see in table 14, with a low enough density the GPU outperforms the CPU. 

However if the matrix has a high density a implementation better suited for a GPU would be 

for example to split each row between a number of threads/work-items. In order to ensure that 

each work-item does not get to many operations, thereby utilizing the parallelism better. This 

kind of implementation is used in the SHOC benchmark suit which S. Kim, I. Roy and V. 

Talwar [4] used. Consequently as stated in section “2.9 Related works” their results were that 

the GPU outperformed the CPU when running SpMV with a 16 megabyte input. In comparison, 

our largest test 2048 with 15% density was 8 megabyte and ran faster on the CPU. However 

they do not specify how high density of nonzero numbers they use. 

5.2.1 Transfer times 
That the transfer times had such a big impact is not that surprising because instead of just 

sending one big buffer with all the data as in Image Convolution, in SpMV you need to transfer 

each of the arrays used to compute the results. This equals significantly more overtime since 

you need to start and stop the individual data transfers of each array. This means that this type 

of algorithm would be ideal for using the CPU’s memory instead of sending it to the GPU. As 

mentioned before, this could equal a bit slower kernel execution, however it would probably 

not be as big of a time sink as the data transfer currently is. This is supported by the fact that, 

as mentioned in section “3.2.5 Data transfer”, when we tested to transfer the data in the AMD 

example there was not any significant speedup. There was however a significant speedup when 

 CPU GPU 

Execution time 0,04845 s 0,03404 s 

Speed up 0,70 times 1,42 times 
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the data was transferred in A Söderholm and J Sörman’s code. The reason for this had probably 

to do with their kernels heavy use of the sampler memory which is located on the GPU. 

5.2.2 Workgroup sizes 
The workgroup sizes had practically no impact at all on the GPU, however on the CPU the 

16x32 size slows down the execution time by 1.5 times. The fact that it was slowed down at 

16x32 is not that weird since it is four times as big as Intel recommends. However why it 

impacted the CPU and not the GPU is another question. The most likely reason is that it in this 

case affects the load balancing more on the CPU. Each CPU hardware thread handles one 

workgroup each, the Intel I7-4790 has 8 hardware threads. At a size of 64 there are 32 

workgroups, at 256 there are 8 workgroups, both of which utilizes the entire CPU. While at 512 

there are only four workgroups utilizing only half of the CPU.  Since the CPU is fully utilized 

at both 32 and 8 workgroups we do not see any specific difference scaling down from 32 to 8. 

However why we do not see a change on the GPU from 8x8 (32 workgroups) to 16x16 (8 

workgroups) is a bit strange. Since at 32 workgroups the GPU is fully utilized while at 8 it is 

not. It could be because the kernels handle too big parts of the problem nullifying the gain and 

loss of more/less parallelization. 

5.2.3 Density and input size relation 
My hypotheses regarding how the density and input size related to the speedup were the 

following: The speedup should be linearly dependent on the input size and the speedup should 

be logarithmically dependent on the density. 

Ones again regression analysis was performed in order to examine these relations. 

Input size relation. 

 

Figure 43: Regression analysis over the input sizes and execution time with a linear trend line. 

In figure 43 the linear trend line fits quite well and the correlation coefficient is 0.94. 

Therefore I can say that the speedup is linearly dependent on the input size following the 

function y = 6.1608x – 0.2511.  

 

y = 6,1608x - 0,2511
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Density size relation. 

 

Figure 44: Regression analysis over the density sizes and execution time with a linear trend line. 

In figure 44 you can see the linear trend line fitting more or less perfectly to the data, the R2 

value is at 99% and the correlation coefficient is 0,99. Therefore I can confidently say that the 

hypothesis is accurate and the speedup depends linearly on the density described by y = 2.26 

*x – 0.0598. 

5.2.4 Parameter Impact 
At first glance my tables seem to show that the input size has a much bigger negative impact 

on the GPU than the density. This is true since a doubling of the input size means that the 

number of operations are quadrupled while a doubling of the density means that the number of 

operations are doubled. However if you want a more equal comparison you would have to 

compare a large size with a small density to a smaller size with a high density, in order to ensure 

that the number of operations is the same. 

Therefore a complementary test was performed. The test was between an input of 4096 with 

2.5% density and 2048 with 10 % density. This means that both configurations have the same 

number of operations to perform. The results of the complementary test are shown in table 15. 

 

  

 

Table 15: Execution time of kernel on GPU with input size 2048 and density 10% as well as input size 4096 and density 2.5%. 

And as you can see in table 15, the bigger input size with a smaller density outperforms the 

smaller input size with a higher density. This is because the higher density adds extra operations 

to each work-item while a larger input spreads out the extra operations over more work-items. 

This makes perfect sense since the GPU is built for many small work-items.  

y = 2,2629x - 0,0598
R² = 0,9973

0

0,01

0,02

0,03

0,04

0,05

0,06

0 0,01 0,02 0,03 0,04 0,05

G
P

U
 e

xe
cu

ti
o

n
 t

im
e

CPU execution time

 2048, 10% 4096, 2,5% 

Execution time 1,18 s 0,90 s 



 

56 
 

The CPU on the other hand is impacted more or less the same amount by the density and the 

input size. This also makes sense because both of them equals more sequential operations. As 

explained in the previous section the Workgroup size did not have any impact on the GPU but 

on the CPU 16x32 did have a larger impact than both the input size and the density. Since 16x32 

is too large for the CPU it is not that weird either, as long as Intel’s recommended sizes are used 

it did not have any real impact. 

5.3 General Results 
How does these results compare to other studies and what do they actually mean? 

As showed in the results, Image Convolution executes faster on the GPU for small enough 

filters i.e. when it is bandwidth bounded. For bigger filters when the algorithm is 

computationally bounded, the CPU executes it faster. This aligns well with both the results of 

B. R. Payne et al. [6] and E. Ching et al. [8]. B. R. Payne et al. [6] show that their dedicated 

GPU can outperform the CPU on the smaller filter sizes and E. Ching et al. [8] that bandwidth 

bounded applications are favoured by a GPU.  

Moreover V. W. Lee et al. [3] state that on the dedicated GTX 280 GPU (which is faster than 

the Intel HD 4600 GP) they achieved a 2.8 times speedup (data transfer omitted) when running 

Image Convolution, compared to running it on the i7-960 CPU. We achieved a 2.35 times 

speedup at best, with a suboptimal implementation. This coupled with the fact that our 

integrated GPU’s data transfer most likely is faster, running Image Convolution on an integrated 

GPU could actually be preferable. As long as the entire image fits in the GPU memory. 

The SpMV results differed from the related studies as mentioned in section “5.2 SPMV results” 

which is caused by OpenDwarf’s usage of the CSR format in SpMV. And as stated by V. W. 

Lee et al. [3]:  

Algorithms where each thread computes a large set of the problem benefits from 

architectures which have a higher single threaded performance. 

The CPU has a much higher single threaded performance, which is why this standard 

implementation of SpMV is better suited for CPUs, unless the density is small enough.  

When the density was low enough we could see a speedup on the GPU of 1.5-2x which is not 

so far behind the 2-2.5x speedup presented by V. W. Lee et al. [3] for SpMV. 

The main difference being that the dedicated GPU get those kind of results in general while our 

result was a best case scenario. This is most likely since V. W. Lee et al. [3] used optimized 

versions for their architectures while we used a standard implementation. 

 

C. Gregg and K. Hazlewood [18] tests the data transfer between a CPU and four different 

dedicated NVIDIA GPUs: the Tesla C2050, the GTX480, the 9800 GT and the 330 M. 
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Their result for Image Convolution on a problem size of 1536x1536 which is a bit larger than 

our 1920x1080p image is shown in table 16. 

 Tesla C2050 GTX 480 

 

9800 GT 

 

330 M 

 

Transfer  

time 

10 ms 

 

16 ms 

 

15 ms 

 

17 ms 

 

Table 16: C. Gregg and K, Hazlewoods [18] GPU-CPU transfer times on a 1536x1536 image. 

Compared to our result on a 1920x1080 image where the transfer time was 6 milliseconds it is 

obvious that the transfer times are much faster on our integrated GPU.  However, the execution 

times are faster on all of the dedicated GPUs they test, but unfortunately they did not specify 

the filter size. Therefore we cannot have a fair comparison between the execution times. 

They did test SpMV too, however they used another format than CSR and a bigger input, 

therefore we cannot compare our transfer results to theirs. This is because the amount of data 

sent is format dependent.  

5.4 Method 
The method consisted of three parts, benchmark application selection, benchmark application 

implementation and analysis. In this section we will discuss them one by one starting with the 

benchmark application selection. 

Benchmark application selection 

The biggest problem during benchmark application selection was the availability of relevant 

benchmarks. For example the results would have a higher validity if I would have been able to 

find a benchmark suit used in related studies which included an Image Convolution application. 

Instead the AMD example was used, while the AMD example in itself is not badly coded it has 

however not been proven by researchers to be suitable for benchmarking. Moreover since they 

state that it is written for CPUs it could be that there are some optimizations for a CPU which I 

simply missed. It simply is not that well suited for benchmarking.  

This problem was somewhat negated when SpMV was chosen because checking whether the 

application was included in benchmarking suites was a part of the selection process. 

However as mentioned before the specific SpMV implementation used differs from the 

implementations used in the related studies. This caused somewhat unexpected results which 

made the analysis of SpMV take an unnecessary amount of time. Moreover, it makes it difficult 

to compare our results to other studies results. This could have been avoided if the OpenDwarf’s 

implementation were compared to the implementation used earlier in the project.  

When choosing a benchmark application I searched for standard implementations which were 

not optimized for either architecture. However it would probably have produce more relevant 

results if I instead used optimized benchmarks for both the CPU and the GPU. Because in the 

real world the applications will most likely be optimized for the relevant architecture. On the 

other hand if the benchmarks were equally optimized the relation should stay more or less the 

same. 

 



 

58 
 

Benchmark application implementation 

The majority of OpenCL benchmark suits are written for Linux while this thesis has been 

performed on a windows computer. Because of this the original plan was to perform the test in 

a virtual Linux environment. I spent about a week to set up Intel’s OpenCL distribution on a 

Linux virtual machine only to realize that the GPU cannot be accessed through a virtual 

machine. If I had checked that before a lot of time could have been saved. 

Instead, as described in section “3.2.1 Implementation procedure” the Linux benchmark 

applications were converted from Linux to Windows. Since the main part of the time measuring 

and analysis have been focused on the kernel which did not need any changes, the modifications 

should not hurt the validity in a meaningful way. However since I have not been able to test the 

original version, or found results on the same hardware, I cannot be 100% sure that my 

modifications did not have any impact on the performance.  

The only way to ensure reliability is to use my code since as mentioned I cannot 100% guarantee 

that the modifications did not impact the performance. Moreover if the same tests were to be 

performed on a Linux machine with the original OpenDwarf’s code and the results are different 

from mine. I cannot say if that has to do with my modifications or the change of operating 

system.   

In order to ensure replicability you need to use the same hardware, software and the same code. 

The hardware and software are easy to replicate since they are detailed in the report and the 

code will be available on github, therefore replicability should not be a problem.  

Analysis 

There was two problems during the analysis, the number of times to run the tests and the chosen 

input sizes.  

On the GPU the test times were in general very stable, the individual runs differentiated 

normally between 0.1-03 milliseconds, that is why almost all the GPU test were run only 5 

times. This was also true for the CPU when running the previous Image Convolution. However 

the CPU could vary noticeably between executions up to 10-20 milliseconds running SpMV. 

That is why that one was run 10 times instead of 5, the results would have a higher validity if 

more tests were run. However one of the tests were run 50 times and the mean was 

approximately the same as the mean of 10 runs. Therefore I deemed 10 runs to be enough. The 

reason for running the AMD example 100 times per test was that it does multiple kernel runs 

and calculates the mean execution time automatically.  The other ones I had to run manually 

and calculate the mean times in excel. 

It would have been better to set up a similar system as in the AMD example in the SpMV code, 

this would have given a higher validity to the tests. The reason it was not done was because I 

deemed that the test results validity was high enough and that it was more valuable to spend the 

time on the analysis instead. The validity was deemed to be high enough since when calculating 

the mean from the specified number of runs over multiple sets of runs, the calculated means 

were within 0.1 milliseconds from each other.  

The reason that the inputs 512, 1024, 1536 and 2048 was chosen and not the much bigger sizes 

which the related studies used was that the GPU’s cache was not big enough. Instead the sizes 

were meant to be of about the same magnitude as the convolution input sizes and be able to 
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show a linear relation, which they are. However the amount of work-items are significantly 

lower since each work-item gets one entire row. Since the amount of work-items are low it 

means that the thread creation overhead will matter more and could possibly skew the results 

somewhat. Note also that bigger sizes would not produce entirely different results. Since the 

amount of operations per work-item also increases as the input increase the CPU GPU relation 

stays basically the same. However with bigger sizes you can see more clearly what happens 

since then the thread overhead does not matter as much. 

Sources 

When it comes to the sources used in this thesis, depending on what they are used for I have 

had different standards for them.  

All the related studies I wanted to be published and peer reviewed sources since they are the 

ones that the thesis is based on and compared to. The sources detailing performance measuring 

I have not had as high standards for since some of them I have had to use e.g. the ones about 

OpenDwarf’s. Even though they are not the most well cited and there could be some bias (since 

the authors are the developers) they are the only published sources I found.  

The sources about the hardware and parallel computing has had the lowest standards since much 

of it is more or less established facts. E.g. what it means that an algorithm is data parallel and 

how a SIMD architecture executes. Moreover, in the case of the hardware, Intel themselves 

does have the most in-depth explanation of their own hardware even though one can expect it 

to be somewhat biased. Therefore I have tried to only to cite the specific architectural 

specifications from the Intel sources.  

5.5 The work in a wider context 
This thesis shows that a cheaper GPU with less power consumption can be used to speed up 

Image Convolution and SpMV almost as much as more powerful, dedicated GPUs. This 

information enables both companies and individuals to choose the cheaper alternative if they 

want to use it for applications of this sort. While at the same time having a smaller budget and 

retaining a comparable speed to dedicated GPUs. The Intel HD 4600 is not always as fast as 

dedicated GPUs but it does consume less power. This makes it a prime candidate for companies 

or individuals whose main focus is to lower their power consumption. Thereby lowering their 

electricity costs and favouring the environment. Note however that this thesis has handled GPU 

performance, to optimize for power consumption is an entirely different matter. While we in 

this work always have striven to have as many of the GPU cores active at the same time as 

possible. When programing for a low power consumption the number of cores is much more 

delicate. Since the more cores that are active the more power is consumed and some applications 

does not gain any performance by using all cores. In those cases you want to find the optimal 

number of cores to use in order to maximise the speed at the same time as minimizing the power 

consumption [34]. 

This thesis presents results from different versions of the same Image Convolution application 

one of which is considerably slower than the other. Moreover, as stated earlier, even the faster 

of the two versions still has performance problems, specifically on bigger filters. This enables 

misinterpretation of the results, both from a careless reader who only looks at the graph and a 

reader with vested interests. A reader with vested interests can use the graphs to showcase worse 



 

60 
 

performance on the hardware without specifying that it is caused by the implementation. This 

could be somewhat alleviated if figure 9, 10, 11 and 12 were not shown which shows the 

original implementations results. However, the graphs could still be taken out of context since 

the implementation is suboptimal and the results would lose some of its validity if not the earlier 

results were shown. Moreover the validity of the conclusions of why the previous code run 

worse would be significantly hampered.  
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6. Conclusions 
The purpose of this thesis was to provide more information about GPGPU computing in 

OpenCL on the Intel HD 4600 GPU. Moreover what caused the unexpected results of the 

previous thesis? This should be achieved by examining the code from the thesis “GPU-

acceleration of image rendering and sorting algorithms with the OpenCL framework” as well 

as testing a SpMV benchmark application and a standard Convolution implementation.  

In regards to this several general lessons can be drawn from this work which are valuable to 

consider when writing OpenCL applications for an integrated GPU. 

1. When choosing an integrated GPU be aware of its memory limitations, if the problem 

size is too big it will hamper the performance significantly. Since the GPU will have to 

run multiple kernels sequentially as in the case of the 8k images.  

2. When writing a kernel you need to be aware of how much private memory the EUs has 

access to since if you use to much you will instead store private data without any reason 

in the much slower cache. Moreover it can also cause stalling as it did in A Söderholm 

and J Sörman’s code. 

3. When writing applications such as Convolution where the same data is used by several 

EUs, data access patterns can have a significant impact on the performance. This is even 

more important when the shared memory is used. Since more data will be shared 

between work-items which run in parallel.  

4. Lastly and one of the most important things when constructing a kernel. Do the least 

amount of work in each one as possible when optimizing for the GPU, in order to gain 

as much as possible from the massive parallel architecture. 

These lessons are the reasons why the previous convolution code performed so badly on the 

GPU. I.e. the kernels used to much private memory, the data access pattern was not optimized 

and the kernel performed unnecessary extra operations not needed for the computation. 

Moreover when timing their application they did not use the intended OpenCL timers instead 

they used a built in C++ timer which did not give the correct execution times.  

Furthermore the research questions were the following: 

 Which are the most important factors determining the execution time of Image 

Convolution and SpMV on the Intel HD graphics 4600 GPU compared to the factors 

impacting the execution time on the Intel i7-4790 CPU?  

 Do you observe any speedup when running Image Convolution or SpMV on the Intel 

HD graphics 4600 GPU compared to when running them on the Intel i7-4790 CPU, 

furthermore what causes this result? 

 

The answer to the first question is that the image size had the biggest impact on the execution 

time of Image Convolution on both of the architectures. For SpMV the density of nonzero 

numbers had the biggest impact on the execution time on the GPU. While on the CPU both the 

density and input size impacted the execution time the most.  

Note however that if the workgroup size was especially poorly chosen so that not the entire 

architecture was utilized this could impact the performance more than the other parameters. 
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However as long as you stay within Intel’s recommendations it does not seem to have that much 

of an impact at all.  

The answer to the second question is, yes for both applications a speedup was observed when 

running them on the GPU. A Söderholm and J Sörman’s [2] code ran consistently faster on the 

GPU as long as the filter was not bigger than 3x3. This is simply because Image Convolution 

is a very suitable problem for data parallelization. The SpMV implementation did run faster on 

the CPU as long as the individual work-items did not get to big part of the problem each. I.e. 

either on small sizes or on big sizes with a very small density since the CSR format (which the 

implementation used) allocates one entire row to each work-item. This meant that most of the 

time SpMV ran faster on the CPU. With a more suitable format where the work-items never 

gets allocated to big a part of the problem it would run faster on the GPU most of the time 

instead of only for ideal input and density sizes.  

A more general answer to this question would be: yes this GPU can be used to successfully 

GPU accelerate applications. However which applications it can accelerate is very dependent 

on the specific implementation. 

This thesis has contributed some guidelines to consider when programming for GPUs in 

OpenCL. Furthermore it has shown that the Intel HD 4600 can be successfully used to GPU 

accelerate applications within the GPGPU computing area. More specifically it showed that 

two applications when bandwidth bounded (Conv with small filters and SpMV) can be 

accelerated on the Intel HD 4600. While when computationally bounded (Conv with big filters) 

they ran faster on the CPU. However this is only two applications on one GPU, in order to get 

a general answer to which types of applications that are suitable to GPU accelerate on Integrated 

GPUs, you would need to test several more applications and GPUs.  

Future works within the same area would be to test more applications on the Intel HD 4600, in 

order to achieve some sort of general classification over what kind of algorithms that are 

suitable for integrated GPUs. A good starting point could be to test the Berkley dwarfs on the 

GPU and the CPU. Then you could set up a classification for this specific GPU and draw 

conclusions about similarly powerful integrated GPUs. 
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