
Business Intelligence:
Multidimensional

Data Analysis

Per Westerlund

August 20, 2008
Master Thesis in Computing Science

30 ECTS Credits

Abstract

The relational database model is probably the most frequently used database model
today. It has its strengths, but it doesn’t perform very well with complex queries and
analysis of very large sets of data. As computers have grown more potent, resulting in the
possibility to store very large data volumes, the need for efficient analysis and processing
of such data sets has emerged. The concept of Online Analytical Processing (OLAP)
was developed to meet this need. The main OLAP component is the data cube, which
is a multidimensional database model that with various techniques has accomplished
an incredible speed-up of analysing and processing large data sets. A concept that is
advancing in modern computing industry is Business Intelligence (BI), which is fully
dependent upon OLAP cubes. The term refers to a set of tools used for multidimensional
data analysis, with the main purpose to facilitate decision making.

This thesis looks into the concept of BI, focusing on the OLAP technology and date
cubes. Two different approaches to cubes are examined and compared; Multidimensional
Online Analytical Processing (MOLAP) and Relational Online Analytical Processing
(ROLAP). As a practical part of the thesis, a BI project was implemented for the
consulting company Sogeti Sverige AB. The aim of the project was to implement a
prototype for easy access to, and visualisation of their internal economical data. There
was no easy way for the consultants to view their reported data, such as how many
hours they have been working every week, so the prototype was intended to propose a
possible method. Finally, a performance study was conducted, including a small scale
experiment comparing the performance of ROLAP, MOLAP and querying against the
data warehouse. The results of the experiment indicates that ROLAP is generally the
better choice for data cubing.

Table of Contents

List of Figures v

List of Tables vii

Acknowledgements ix

Chapter 1 Introduction 1
1.1 Business Intelligence . 1
1.2 Background . 2
1.3 Problem Statement . 2
1.4 Goals . 2
1.5 Development environment . 3
1.6 Report outline . 4

Chapter 2 The Relational Database Model 5
2.1 Basic definitions . 5
2.2 Normalization . 7
2.3 Indexing . 9

Chapter 3 Online Analytical Processing 13
3.1 OLAP and Data Warehousing . 13
3.2 Cube Architectures . 17
3.3 Relational Data Cubes . 17
3.4 Performance . 20

Chapter 4 Accomplishments 23
4.1 Overview . 23
4.2 Implementation . 24
4.3 Performance . 27

Chapter 5 Conclusions 29
5.1 Why OLAP? . 29
5.2 Restrictions and Limitations . 30
5.3 Future work . 31

References 34

Appendix A Performance Test Details 35

Appendix B Glossary 43

List of Figures

2.1 Graphical overview of the first three normal forms 10
2.2 Example of a B+-tree . 10

3.1 Example of a star schema . 14
3.2 Example of a snowflake schema . 15
3.3 Graph describing how group by operations can be calculated 20

4.1 System overview . 24
4.2 The data warehouse schema . 25
4.3 Excel screenshot . 26
4.4 .NET application screenshot . 27

A.1 Diagrams over query durations . 39

List of Tables

2.1 Example of a database relation . 6
2.2 Example of a relation that violates 1NF 8
2.3 Example of a relation satisfying 1NF . 8
2.4 Example of a relation satisfying 2NF . 9

3.1 Example table of sales for some company 18
3.2 Example of a pivot table . 18
3.3 Example result of a cube operation . 19
3.4 Example result of a rollup operation . 19
3.5 Example of bitmap indexing . 21
3.6 Example of bit-sliced indexing . 21

A.1 Performance test data sets . 35
A.2 Size of the test data . 36
A.3 Average query durations for the ROLAP 36
A.4 Average query durations for the MOLAP cube 37
A.5 Average query durations for the data warehouse, not cached 37
A.6 Average query durations for the data warehouse, cached 37
A.7 Queries used for the performance test . 40

Acknowledgements

First of all, I would like to thank my two supervisors: Michael Minock at Ume̊a Univer-
sity, Department of Computing Science; and Tomas Agerberg at Sogeti.

I would like to express my gratitude to Sogeti for giving me the opportunity to do my
master thesis there, and also to all employees who have made my time at the office a
pleasant stay. I would specifically like to thank, in no particular order, Ulf Smedberg,
Ulf Dageryd, Slim Thomsson, Jonas Osterman, Glenn Reian and Erik Lindholm for
helping me out with practical details during my work.

Thanks also to Marie Nordqvist for providing and explaining the Agresso data that I
have based my practical work on.

Finally I would like to thank Emil Ernerfeldt, Mattias Linde and Malin Pehrsson for
taking the time to proofread my report and for giving me valuable feedback. Thanks
also to David Jonsson for giving me some ideas about the report layout.

1
Introduction

This chapter introduces the thesis and Sogeti Sverige AB, the consulting com-
pany where it was conducted. A background to the project is given and the
problem specification is stated as well as the project goals and the tools used
during the process. The chapter ends with an outline of the report.

Business Intelligence (BI) is a concept for analysing collected data with the purpose
to help decision making units get a better comprehensive knowledge of a corporation’s
operations, and thereby make better business decisions. It is a very popular concept in
the software industry today and consulting companies all over the world have realized
the need for these services. BI is a type of Decision Support System (DSS), even though
this term often has a broader meaning.

One of the consulting companies that are offering BI services is Sogeti Sverige AB,
and this master thesis was conducted at their local office in Ume̊a. Sogeti Sverige AB is
a part of the Sogeti Group with headquarters in Paris, France, and Capgemini S.A. is the
owner of the company group. Sogeti offers IT Solutions in several sectors, for example
Energy, Finance & Insurance, Forest & Paper, Transport & Logistics and Telecom.

1.1 Business Intelligence

The BI concept can be roughly decomposed into three parts: collecting data, analysing
and reporting.

Collecting data for a BI application is done by building a data warehouse where data
from multiple heterogeneous data sources is stored. Typical data sources are relational
databases, plain text files and spread sheets. Transferring the data from the data sources
to the data warehouse is often referred to as the Extract, Transform and Load (ETL)
process. The data is extracted from the sources, transformed to fit, and finally the data
is loaded into the warehouse. The ETL process often brings issues with data consistency
between data sources; the same data can have a different structure, or the same data
can be found in several data sources without coinciding. In order to load it into the data
warehouse the data has to be consistent, and the process to accomplish this is called
data cleaning.

A common tool for analysing the data is the data cube, which is a multidimensional
data structure built upon the data warehouse. The cube is basically used to group data
by several dimensions and selecting a subset of interest. This data can be analysed with
tools for data mining, which is a concept for finding trends and patterns in the data.

2 Chapter 1. Introduction

The concept of data mining is outside the scope of this thesis and will not be discussed
any further.

Finally, reporting is an important issue with BI. Reporting is done by generating
different kinds of reports which often consists of pivot tables and diagrams. Reports can
be uploaded to a report server from which the end user can access them, or the end
user can connect directly to the data source and create ad hoc reports, i.e. based on the
structure of the data cube the user can create a custom report by selecting interesting
data and decide which dimensions to use for organizing it.

When analysing data with BI, a common way of organizing the data is to define
key performance indicators (KPIs), which are metrics used to measure progress towards
organizational goals. Typical KPIs are revenue and gross operational profit.

1.2 Background

Sogeti is internally using the business and economy system Agresso which holds data
about each employee, the teams they are organized in, which offices the employees are
located at, projects the company is currently running, the clients who have ordered
them and so on. There are also economical information such as costs and revenues, and
temporal data that describes when the projects are running and how many hours a week
each employee has been working on a certain project.

Agresso is used by the administration and decision making units of the company,
and the single employee can access some of this data through charts describing the
monthly result of the company. A project was initiated to make this data available to
the employees at a more detailed level, but since it had low priority, it remained in it’s
early start-up phase until it was adopted as an MT project.

1.3 Problem Statement

Since Agresso is accessible only by the administration and decision making units of the
organisation, the single employee can not even access the data that concerns himself. The
aim of the project was to implement a prototype to make this possible. All employees
should of course not have access to all data since that would be a threat to the personal
integrity; an ordinary consultant should for example not be able to see how many hours
another consultant have spent on a certain work related activity. Thus, what data to
make available has to be carefully chosen.

The purpose of the project was to make relevant information available to all employ-
ees, by choosing adequate KPIs and letting the employees access those. The preferred
way to present this information was by making it available on the company’s intranet.

1.4 Goals

The following is a list of the project goals, each one described in more detail below.

• Identify relevant data

• Build a data warehouse and a data cube

• Present the data to the end user

1.5. Development environment 3

• Automate the process of updating the warehouse and the cube

Identify relevant data

The first goal of the project was to find out what information could be useful, and
what information should be accessible to the single employee. When analysing this kind
of data for trends, KPIs are more useful than raw data, so the information should be
presented as KPIs. There are lots of possible KPIs to use, therefore a few had to be
chosen for the prototype.

Build a data warehouse and a data cube

The second goal was to design and implement a data warehouse and a data cube for the
Agresso data to be stored. The data warehouse model had to be a robust model based
on the indata structure, designed as a basis for building the data cube. With this cube
it should be possible to browse, sort and group the data based on selected criteria.

Present the data to the end user

The cube data had to be visualized to the end user in some way. Since the data has a
natural time dimension, some kind of graph would probably be appropriate. The third
goal was to examine different ways of visualizing the data, and to choose a suitable option
for the prototype. Preferably, the prototype should be available on Sogeti’s intranet.

Automate the process of updating the warehouse and the cube

The process of adding new data and updating the cube should preferably be completely
automatic. The fourth goal was to examine how this could be accomplished and integrate
this functionality in the prototype.

1.5 Development environment

The tools available for the project was Sybase PowerDesigner, Microsoft SQL Server,
Microsoft.NET and Dundas Chart. A large part of the practical part of the project
was to learn these tools, doing this was done by reading books [9, 11, 13] and forums,
and by doing several tutorials and reading articles on Microsoft Software Development
Network1. The employees at Sogeti has also been a great knowledge base.

PowerDesigner is an easy-to-use graphical tool for database design. With this tool,
a conceptual model can be developed using a drag-and-drop interface, after which the
actual database can be generated as SQL queries.

Microsoft SQL Server is not only a relational database engine, it also contains three
other important parts used for BI development; Integration Services, Analysis Services
and Reporting Services.

Integration Services is a set of tools used mainly for managing the ETL process, but
it is also usable for scripting and scheduling all kinds of database tasks. With this tool it
is possible to automate processes by scheduling tasks that are to be performed regularly.

1See http://www.msdn.com

4 Chapter 1. Introduction

Analysis Services is the tool used for building data cubes. It contains tools for
processing and deploying the cube as well as designing the cube structure, dimensions,
aggregates and other cube related entities.

Reporting Services is used for making reports for the end user, as opposed to the
tasks performed by Analysis Services and Integration Services, which are intended for
system administrators and developers. Reporting Services provides a reporting server
to publish the reports and tools for designing them.

1.6 Report outline

The rest of the report is structured as follows:

Chapter 2. The Relational Database Model explains the basic theory and con-
cepts of relational databases, which are very central to data cubes and Business
Intelligence.

Chapter 3. Online Analytical Processing describes the notion of Data Cubes. This
chapter describes how cubes are designed and used, and it also has a part covering
cube performance.

Chapter 4. Accomplishments describes the accomplishments of the whole project.
This includes the implemented prototype, how the work was done and to what
extent the goals were reached, and how the performance tests were made.

Chapter 5. Conclusions sums up the work and discusses what conclusions can be
reached.

Appendix A. Performance Test Details contains details of the performance tests,
such as the exact queries used and the test result figures.

Appendix B. Glossary contains a list of important terms and abbreviations used in
the report with a short description of each.

2
The Relational Database Model

This chapter explains the basic theory behind the relational database model.
Basic concepts, including Codd’s first three normal forms, are defined, de-
scribed and exemplified.

The relational database model was formulated in a paper by Edgar Frank Codd in
1970 [3]. The purpose of the model is to store data in a way that is guaranteed to
always keep the data consistent even in constantly changing databases that are accessed
by many users or applications simultaneously. The relational model is a central part
of Online Transaction Processing (OLTP), which is what Codd called the whole con-
cept of managing databases in a relational manner. Software that is used to handle
the database is referred to as Database Management Systems (DBMS), and the term
Relational Database Management Systems (RDBMS) is used to indicate that it is a
relational database system. The adjective relational refers to the models fundamental
principle that the data is represented by mathematical relations, which are implemented
as tables.

2.1 Basic definitions

Definition. A domain D is a set of atomic values. [7]

Atomic in this context means that each value in the domain is indivisible as far as
the relational model is concerned. Domains are often specified with a domain name and
a data type for the values contained in the domain.

Definition. A relation schema R, denoted by R(A1, A2, . . . , An), is made up of a rela-
tion name R and a list of attributes A1, A2, . . . , An. Each attribute Ai is the name of a
role played by some domain D in the relation schema R. D is called the domain of Ai

and is denoted by dom(Ai). [7]

Table 2.1 is an example of a relation represented as a table. The relation is an excerpt
from a database containing clothes sold by some company. The company has several
retailers that sell the products to the customers, and the table contains information
about what products are available, in which colours they are available, which retailer is
selling the product and to what price. According to the above definition, the attributes
of the example relation are: Retailer, Product, Colour and Price (e).

Example of related domains are:

• Retailer names: The set of character strings representing all retailer names.

6 Chapter 2. The Relational Database Model

• Clothing products: The set of character strings representing all product names.

• Product colours: The set of character strings representing all colours.

• Product prices: The set of values that represents possible prices of products;
i.e. all real numbers.

Retailer Product Colour Price(e)
Imaginary Clothing Jeans Blue 40
Imaginary Clothing Socks White 10
Imaginary Clothing T-shirt Black 15
Gloves and T-shirts Ltd. T-shirt Black 12
Gloves and T-shirts Ltd. Gloves White 12

Table 2.1: A simple example of a relation represented as a database table.

Definition. A relation (or relation state) r of the relation schema R(A1, A2, . . . , An),
also denoted by r(R), is a set of n-tuples r = {t1, t2, . . . , tm}. Each n-tuple t is an
ordered list of n values t = (v1, v2, . . . , vn), where each value vi, 1 ≤ i ≤ n, is an element
of dom(Ai) or is a special null value. The ith value in tuple t, which corresponds to the
attribute Ai, is referred to as t[Ai] (or t[i] if we use the positional notation). [7]

This means that, in the relational model, every table represents a relation r, and
each n-tuple t is represented as a row in the table.

Definition. A functional dependency, denoted by X → Y , between two sets of at-
tributes X and Y that are subsets of R specifies a constraint on the possible tuples that
can form a relation state r of R. The constraint is that, for any two tuples t1 and t2 in
r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y]. [7]

The meaning of this definition is that if attribute X functionally determines attribute
Y , then all tuples that have the same value for X, must also have the same value for
Y . Observe that this definition does not imply Y → X. In Table 2.1, the price of
the product is determined by the product type and which retailer that sells it, hence
{Retailer, Product} → Price. This means that for a certain product sold by a certain
retailer, there is only one possible price. Since the opposite is not true, knowing the
price doesn’t necessarily mean that we can determine the product or the retailer; the
product that costs 12 e could be either the gloves or the t-shirt sold by Gloves and
T-shirts Ltd.

Definition. A superkey of a relation schema R = {A1, A2, . . . , An} is a set of attributes
S ⊆ R with the property that no two tuples t1 and t2 in any legal relation state r of R
will have t1[S] = t2[S]. A key K is a superkey with the additional property that removal
of any attribute from K will cause K not to be a superkey any more. [7]

Hence, there can be only one row in the database table that has the exact same
values for all the attributes in the superkey set. Another conclusion of the definition
above is that every key is a superkey, but there are superkeys that are not keys. Adding
an additional attribute to a key set disqualifies it as a key, but it’s still a superkey. At
the other hand, removing one attribute from a key set disqualifies it as both a superkey
and a key. Since keys and superkeys are sets, they can be made out of single or multiple
attributes. In the latter case the key is called a composite key.

2.2. Normalization 7

Definition. If a relation schema has more than one key, each is called a candidate key.
One of the candidate keys is arbitrarily designated to be the primary key, and the others
are called secondary keys. [7]

Definition. An attribute of relation schema R is called a prime attribute of R if it is a
member of some candidate key of R. An attribute is called nonprime if it is not a prime
attribute - that is, if it is not a member of any candidate key. [7]

In a database system, the primary key of each relation is explicitly defined when the
table is created. Primary keys are by convention underlined when describing relations
schematically, and this convention is followed in the examples below. Two underlined
attributes indicates that they both contribute to the key, i.e. it is a composite key.

Definition. A set of attributes FK in relation schema R1 is a foreign key of R1 that
references relation R2 if it satisfies both: (a) the attributes in FK have the same do-
main(s) as the primary key attributes PK of R2; and (b) a value of FK in a tuple t1 of
the current state r1(R1) either occurs as a value of PK for some tuple t2 in the current
state r2(R2) or is null.

Having some attributes in relation R1 forming a foreign key that references relation
R2 prohibits data to be inserted into R1 if the foreign key attribute values are not found
in R2. This is a very important referential integrity constraint that avoids references to
non-existing data.

2.2 Normalization

The most important concept of relational databases is normalization. Normalization is
done by adding constraints to how data can be stored in the database, which implies
restrictions to the way data can be inserted, updated and deleted. The main reasons
for normalizing database design is to minimize information redundancy and to reduce
disk space required to store the database. Redundancy is a problem because it opens up
the possibility to make the database inconsistent. Codd talked about update anomalies,
which is classified into three categories; insertion anomalies, deletion anomalies and
modification anomalies [7].

Insertion anomalies occur when a new entry that is not consistent with existing
entries is inserted into the database. For example, if a new product sold by Imaginary
Clothing is added in Table 2.1, then the name of the company must be spelled the
exact same way as all the other entries in the database that contain the company name,
otherwise we have two different entries for the same information.

If we assume that Table 2.1 only contains products that currently are available, then
what happens when a product, for example gloves, run out of stock? The gloves entry
will be removed from the table, and we have lost the information that the gloves are
white and that they can be bought from Gloves and T-shirts Ltd. We have even lost
the information that gloves is a product! This is an example of a deletion anomaly.

Finally, suppose that the retailer Gloves and T-shirts Ltd. decides to start selling
jeans too, and therefore they change name to include the new product. All entries in
the database that contain the retailer name must now be updated, or else the database
will have two different names for the same retailer. This is an example of modification
anomalies.

These issues may seem insignificant when looking at small examples such as the
one above, but in a large and complex database that is constantly updated it is very

8 Chapter 2. The Relational Database Model

important that the data is consistent. A normalized database makes sure that every
piece of information is stored in only one place, thus modification of the data only has
to be done once. Storing the same data in one place instead of once per entry will also
save a lot of storage space.

Normalization is accomplished by designing the database according to the normal
forms. Below, Codd’s first three normal forms will be described. Those are the most
common normal forms used when designing databases, but there are several other normal
forms that are not mentioned here. Each one of the three first normal forms implies the
preceding one, i.e. 3NF implies 2NF, and 2NF implies 1NF.

Definition. A relation schema R is in first normal form (1NF) if, for all attributes Ai,
the domain D of Ai only contains atomic values, and for all n-tuples t, all values t[Ai]
are single values from D.

Retailer Product Colour Price(e)
Imaginary Clothing Jeans Blue 40
Imaginary Clothing Socks White, Blue 10
Imaginary Clothing T-shirt Black 15
Gloves and T-shirts Ltd. T-shirt Black 12
Gloves and T-shirts Ltd. Gloves White 12

Table 2.2: An example of a violation to 1NF, information about the blue and the white
socks sold by Imaginary Clothing must be separated into two different rows.

Retailer Product Id Product Name Colour Price(e)
Imaginary Clothing 1 Jeans Blue 40
Imaginary Clothing 2 Socks White 10
Imaginary Clothing 3 Socks Blue 10
Imaginary Clothing 4 T-shirt Black 15
Gloves and T-shirts Ltd. 4 T-shirt Black 12
Gloves and T-shirts Ltd. 5 Gloves White 12

Table 2.3: Example of how the relation in Table 2.2 could be changed into 1NF.

1NF simply means that in every row of a table, there can only be one value per
attribute. Table 2.2 exemplifies a violation of the first normal form by having two
different colours of socks in the same row. To turn this table into 1NF, every colour of
the same product has to be stored in a separate row. Table 2.3 illustrates how the table
could be modified to not violate 1NF.

As an additional modification that has to do with convenience and not with 1NF, the
attribute Product has been split into two: Product Id and Product Name. Every product
has been given a product id, and using this id we can determine the product name and
the colour. Product Id and Retailer together have been chosen to be the primary key.

Definition. A relation schema R is in second normal form (2NF) if every nonprime
attribute A in R is not partially dependent on any key of R. [7]

2NF means that every attribute that is not contained in the key set must provide
a fact about the key, the whole key and nothing but the key. For example, if the key

2.3. Indexing 9

is a composite key, then no attribute is allowed to provide a fact about only one of the
prime attributes. Table 2.3 violates 2NF because the product name and the colour is
determined only by product id, but the primary key for the table is a composition of
product id and retailer. Table 2.4 (a) and (b) illustrates a possible decomposition of the
table that doesn’t violate 2NF. Product Id has become the primary key in Table 2.4 (b),
and in Table 2.4 (a) it is part of the primary key, but also a foreign key that references
(b). Observe also how this restructuring removed the redundancy of the product names.

Retailer Product Id Price (e)
Imaginary Clothing 1 40
Imaginary Clothing 2 10
Imaginary Clothing 3 10
Imaginary Clothing 4 15
Gloves and T-shirts Ltd. 4 12
Gloves and T-shirts Ltd. 5 12

Table 2.4: (a) A decomposition into 2NF of Table 2.3.

Product Id Product Name Colour
1 Jeans Blue
2 Socks White
3 Socks Blue
4 T-shirt Black
5 Gloves White

Table 2.4: (b) A decomposition into 2NF of Table 2.3.

Definition. A relation schema R is in third normal form (3NF) if, whenever a nontrivial
functional dependency X → A holds in R, either (a) X is a superkey of R, or (b) A is
a prime attribute of R. [7]

The third normal form implies that there can be no transitional dependencies, that
is if A alone is the key attribute, A → B and A → C, then B 9 C must hold.

Figure 2.1 illustrates a schematic view of the functional dependencies allowed by the
different normal forms. Key is a single key attribute, prime1 and prime2 is together a
composite key. A and B are attributes that are determined by the key attribute(s), and
the arrows indicates functional dependencies. The figure also illustrates, just as stated
above, that all relations fulfilling the requirements for 3NF also fulfils the requirements
for 2NF and 1NF.

2.3 Indexing

An important issue of relational databases is how to optimize the database for querying.
The most common method is to use indexing, that is having an index structure contain-
ing pointers to the actual data in order to optimize search operations. A good index
structure can increase the performance of a search significantly. The index structure
that is the primary choice for most relational database systems today is the B+-tree [5].

10 Chapter 2. The Relational Database Model

Figure 2.1: Overview of what dependencies are allowed by the first three normal forms.
A and B are non-prime attributes, prime1 and prime2 are prime attributes that makes
a composite primary key, and key is a single primary key. Functional dependencies
between attributes are represented as arrows.

The B+-tree is a tree structure where every node consists of a maximum of d keys
and d + 1 pointers. The number d is fixed for a certain tree, but the exact number of
keys in each node can differ. Each pointer is referring to another tree node, or to the
indexed data if the node is a leaf node. The leaf nodes are also linked together with
pointers in order to get a fast sequential access. Figure 2.2 illustrates an example, the
actual data is marked with a dashed border.

Figure 2.2: An example of a B+-tree, the data that the leaf nodes point to is marked
with a dashed border.

2.3. Indexing 11

To find a specific value in the database, we have to find its key in the tree. Assume
we want to find the value that corresponds to the key X. The search starts in the root
node, and every key in the current node is compared to X until a key that is equal to or
greater than X is found, or until there are no more keys in the node. When this happens,
the associated pointer is followed to the next node, and the procedure is repeated. The
search stops when the leaf level is reached and if the key is found there, the data can be
retrieved by following the correct pointer.

The B+-tree is always kept balanced, i.e. every leaf node in the tree has the same
depth. This is accomplished by changing the structure of the tree during insertion and
deletion, but the details of these algorithms are not discussed here.

The B+-tree is an advantageous index structure for databases because of its perfor-
mance. Maintenance of the structure demands some extra time because of the restruc-
turing of the tree when inserting and deleting records, but this loss is small compared
to the gain of searching the tree. The fact that both random and sequential access is
possible is another reason why this type of indexing is so common.

3
Online Analytical Processing

This chapter describes the concept of data cubes and data warehousing in
the context of Online Analytical Processing (OLAP). The principles of data
cubes are explained as well as how they are designed and what they are used
for. The relationship between data cubes, data warehouses and relational
databases is also examined.

The strength of OLTP databases is that they can perform large amounts of small trans-
actions, keeping the database available and the data consistent at all time. The normal-
ization discussed in Chapter 2 helps keeping the data consistent, but it also introduces
a higher degree of complexity to the database, which causes huge databases to perform
poorly when it comes to composite aggregation operations. In the context of business
it is desirable to have historical data covering years of transactions, which results in a
vast amount of database records to be analyzed. It is not very difficult to realize that
performance issues will arise when processing analytical queries that requires complex
joining on such databases. Another issue with doing analysis with OLTP is that it re-
quire rather complex queries, specially composed for each request, in order to get the
desired result.

3.1 OLAP and Data Warehousing

In order to handle the above issues, the concept of Online Analytical Processing (OLAP)
has been proposed and widely discussed through the years and many papers have been
written on the subject.

OLTP is often used to handle large amounts of short and repetitive transactions in
a constant flow, such as bank transactions or order entries. The database systems are
designed to keep the data consistent and to maximize transaction throughput. OLAP
databases are at the other hand used to store historical data over a long period of
time, often collected from several data sources, and the size of a typical OLAP database
is often orders of magnitude larger than that of an ordinary OLTP database. OLAP
databases are not updated constantly, but they are loaded on a regular basis such as
every night, every week-end or at the end of the month. This leads to few and large
transactions, and query response time is more important than transaction throughput
since querying is the main usage of an OLAP database [2].

The core of the OLAP technology is the data cube, which is a multidimensional
database model. The model consists of dimensions and numeric metrics which are
referred to as measures. The measures are numerical data such as revenue, cost, sales

14 Chapter 3. Online Analytical Processing

and budget. Those are dependent upon the dimensions, which are used to group the
data similar to the group by operator in relational databases. Typical dimensions are
time, location and product, and they are often organized in hierarchies. A hierarchy is a
structure that defines levels of granularity of a dimension and the relationship between
those levels. A time dimension can for example have hours as the finest granularity, and
higher up the hierarchy can contain days, months and years. When a cube is queried
for a certain measure, ranges of one or several dimensions can be selected to filter the
data.

The data cube is based on a data warehouse, which is a central data storage possibly
loaded with data from multiple sources. Data warehouses tend to be very large in size,
and the design process is a quite complex and time demanding task. Some companies
could settle with a data mart instead, which is a data warehouse restricted to a depart-
mental subset of the whole data set. The data warehouse is usually implemented as a
relational database with tables grouped into two categories; dimension tables and fact
tables.

A dimension table is a table containing data that defines the dimension. A time
dimension for example could contain dates, names of the days of the week, week numbers,
months names, month numbers and year. A fact table contains the measures, that is
aggregatable data that can be counted, summed, multiplied, etc. Fact tables also contain
references (foreign keys) to the dimension tables in the cube so the facts can be grouped
by the dimensional data.

A data warehouse is generally structured as a star schema or a snowflake schema.
Figure 3.1 illustrates an example of a data warehouse with the star schema structure. As
seen in the figure, a star schema has a fact table in the middle and all dimension tables
are referenced from this table. With a little imagination the setup could be thought of
as star shaped.

In a star schema, the dimension tables do not have references to other dimension
tables. If they do, the structure is called a snowflake schema instead. A star schema
generally violates the 3NF by having the dimension tables being several tables joined
together, which is often preferred because of the performance loss that 3NF causes when
the data sets are very large. If it for some reason is desirable to keep the data warehouse
in 3NF the snowflake schema can be used. Figure 3.2 illustrates an example of how
Figure 3.1 could look like if it were to be structured as a snowflake schema.

Figure 3.1: Example of a star schema. The foreign keys are marked with <fk>.

In 1993, Codd et al. published a white paper [4] where the need for OLAP services

3.1. OLAP and Data Warehousing 15

Figure 3.2: Example of how Figure 3.1 could be organized as a snowflake schema. The
foreign keys are marked with <fk>.

is discussed, and the requirements for OLAP are summarized in the following twelve
rules:

1. Multidimensional Conceptual View
The end user’s view of the OLAP model must be multidimensional since the analy-
sis to be done is multidimensional by nature. Note that having a multidimensional
view doesn’t necessarily mean that the data is actually stored multidimensionally.

2. Transparency
The OLAP architecture should be transparent, i.e. facts such as if there is a client-
server architecture behind the application, or at what layer the OLAP functionality
lies, should be transparent to the user.

3. Accessibility
The OLAP tool must be able to map its own logical schema on data collected from
different, heterogeneous, relational and non-relational data sources. The end user
should not be concerned with where the data comes from, or how it is physically
stored; the data should appear as a single, consistent view.

4. Consistent Reporting Performance
As the number of dimensions and the size of the database increases, the user
should not notice any significant reporting performance degradation. In cases
where performance becomes an issue, the OLAP tool could propose alternative
strategies such as presenting the information in some other way.

5. Client-Server Architecture
It is mandatory for OLAP tools to be capable of operating in a client-server en-
vironment since a data cube often is a central storage accessed remotely by client
applications.

16 Chapter 3. Online Analytical Processing

6. Generic Dimensionality
Every data dimension must be equivalent in structure and operational capabilities.
There can be additional features granted to specific dimensions, but the basic
structure must be the same for all dimensions, and thus additional features must
be possible to grant any dimension.

7. Dynamic Sparse Matrix Handling
A typical data cube is very sparse. Therefore, the OLAP tool should handle sparse
matrices in a dynamic way to avoid letting the cube size grow unnecessary. There
is no need to calculate aggregations for each possible cell in a cube if only a small
fraction of the cells actually contains data.

8. Multi-User Support
OLAP tools must provide concurrent access to the data and the OLAP model, in
a way that preserves integrity and security.

9. Unrestricted Cross-dimensional Operations
An OLAP tool must be able to do calculations and other operations across dimen-
sions without requiring the user to explicitly define the actual calculation. The
tool should provide some language for the user to utilize in order to express the
desired operations.

10. Intuitive Data Manipulation
Drill-downs, roll-ups and other operations that lie in the nature of dimension
hierarchies1 should be accessible with ease via direct manipulation of the displayed
data, and should not require unnecessary user interface operations such as menu
navigation.

11. Flexible Reporting
The reporting should be flexible in the sense that rows, columns and page headers
in the resulting report must be able to contain any number of dimensions from the
data model, and that each dimension chosen must be able to display its members
and the relation to them, e.g. by indentation.

12. Unlimited Dimensions and Aggregation Levels
In the article, Codd et al. states that a serious OLAP tool must be able to handle
at least fifteen and preferably twenty dimensions within the same model. Maybe
this rule should be extended to allow an unlimited amount of dimensions, just as
the name of the rule implies. In either case, it is also stated that each dimension
must allow for an unlimited amount of user defined aggregation levels within the
dimension hierarchy.

The paper clearly states that OLAP should not be implemented as a new database
technology since the relational database model is ‘the most appropriate technology for
enterprise databases’. It also states that the relational model never was intended to
offer the services of OLAP tools, but that such services should be provided by separate
end-user tools that complements the RDBMS holding the data.

1 Codd et al. use the term consolidation path in their paper, but the term dimension hierarchy is
more common in recent research and literature.

3.2. Cube Architectures 17

3.2 Cube Architectures

Even though the basic cube principles are the same, the cube can be implemented in
different ways. Different vendors advocate different architectures, and some offers the
possibility to choose an architecture for each cube that is created.

There are two main architectures that traditionally have been discussed in the field of
database research; Multidimensional OLAP (MOLAP) and Relational OLAP (ROLAP).

Multidimensional Online Analytical Processing is based upon the philosophy that
since the cube is multidimensional in its nature, the data should be stored multidimen-
sionally. Thus, the data is copied from the data warehouse to the cube storage and
aggregations of different combinations of dimensions are pre-calculated and stored in
the cube in an array based data structure. This means that the query response time is
very short since no calculations has to be done at the time a query is executed. At the
other hand, the loading of the cube is an expensive process because of all the calculations
that have to be done, and therefore the data cube is scheduled to be loaded when it is
unlikely to be accessed, on regular intervals such as once every week-end or every night.

A problem that has to be considered when working with MOLAP is data explosion.
This is a phenomena that occurs when aggregations of all combinations of dimensions
are to be calculated and stored physically. For each dimension that is added to the cube,
the number of aggregations that is to be calculated increases exponentially.

Relational Online Analytical Processing is, just as the name suggests, based on the
relational model. The main idea here is that it is better to read data from the data
warehouse directly, than to use another kind of storage for the cube. As is the case with
MOLAP, data can be aggregated and pre-calculated in ROLAP too, using materialized
views, i.e. storing the aggregations physically in database tables. A ROLAP architecture
is more flexible since it can pre-calculate some of the aggregations, but leave others to
be calculated on request.

Over the years, there has been a great debate in the research field whether OLAP
should be implemented as MOLAP or ROLAP. The debate has however faded, and in
the last decade most researchers seem to argue that ROLAP is superior to MOLAP,
among others a white paper from MicroStrategy [10]. The arguments are that ROLAP
perform almost as good as MOLAP when there are few dimensions, and when there are
too many dimensions MOLAP can’t handle it because of the data explosion. Already
with about 10-20 dimensions the number of calculations becomes tremendously large
in consequence of the exponential growth. Another important aspect is the greater
flexibility of ROLAP; all aggregations don’t need to be calculated beforehand, they can
be calculated on demand as well.

3.3 Relational Data Cubes

One way to implement relational data cubes was proposed by Gray et al. 1997 [8].
In this paper the cube operator - which is an n-dimensional generalization of the well-
known group by - and the closely related rollup operator is described in detail. The cube
and the rollup operator has been implemented in several relational database engines to
provide data cube operability.

Consider the example figures in Table 3.1. A retailer company has sold jeans and
gloves in two colours; black and blue. The total amount of items sold during 2007
and 2008 is summed separately for each year and colour in the Sales column. Now, a
manager would probably want to look at the figures in the form of sums of the total

18 Chapter 3. Online Analytical Processing

Product Year Colour Sales

Jeans 2007 Black 231
Jeans 2007 Blue 193
Jeans 2008 Black 205
Jeans 2008 Blue 236
Gloves 2007 Black 198
Gloves 2007 Blue 262
Gloves 2008 Black 168
Gloves 2008 Blue 154

Table 3.1: Example table of sales for some company selling clothing products.

sales during one year, the total amount of jeans sold during 2007, or maybe the amount
of blue gloves sold during 2008. One intuitive way to arrange the data for this purpose
is to use a pivot table. In this kind of table, data is structured with both row and column
labels and is also summed along its dimensions in order to get a clear view of the data
set. Table 3.2 is an example of how Table 3.1 could be arranged as a pivot table.

2007 2007 2008 2008
Black Blue Total Black Blue Total Grand Total

Jeans 231 193 424 205 236 441 865
Gloves 198 262 460 168 154 322 782
Grand Total 429 455 884 373 390 763 1647

Table 3.2: Example of a pivot table.

The cube operator expresses the pivot table data set in a relational database context.
This operator is basically a set of group by clauses put together with a union operation.
It groups the data by the given dimensions (attributes), in this case Product, Year and
Colour, and aggregations are made for all possible combinations of dimensions. Table 3.3
illustrates the resulting data set when the cube operator is used combined with the SUM
operator.

The special ALL value has been introduced to indicate that a certain record contains
an aggregation over the attribute that has this value. The NULL value can be used
instead of the ALL value in order not to manipulate the SQL language.

The cube operator results in a lot of aggregations, but all aggregated combinations
are seldom desired and therefore the rollup operator was also proposed. This operator
works the same way as the cube operator, but with the difference that new aggregations
are calculated only from already calculated aggregations. Table 3.4 illustrates the results
from a rollup operation.

Algorithms have been developed in order to improve the performance of the cube
operator and a few of those are compared by Agarwal et al. [1]. All of the algorithms
compared utilize the fact that an aggregation using a group by operation (below simply
called a group by) in general does not have to be computed from the actual relation,
but can be computed from the result of another group by. Therefore only one group by
really has to be computed from the relation, namely the one with the finest granularity,
and all the others can be computed from this result.

Figure 3.3 illustrates how group by results can be used to compute other aggregations.

3.3. Relational Data Cubes 19

Product Year Colour Sales Product Year Colour Sales

Jeans 2007 Black 231 Gloves 2008 ALL 322
Jeans 2007 Blue 193 Gloves ALL Black 366
Jeans 2007 ALL 424 Gloves ALL Blue 416
Jeans 2008 Black 205 Gloves ALL ALL 782
Jeans 2008 Blue 236 ALL 2007 Black 429
Jeans 2008 ALL 441 ALL 2007 Blue 455
Jeans ALL Black 436 ALL 2007 ALL 884
Jeans ALL Blue 429 ALL 2008 Black 373
Jeans ALL ALL 865 ALL 2008 Blue 390
Gloves 2007 Black 198 ALL 2008 ALL 763
Gloves 2007 Blue 262 ALL ALL Black 802
Gloves 2007 ALL 460 ALL ALL Blue 845
Gloves 2008 Black 168 ALL ALL ALL 1647
Gloves 2008 Blue 154

Table 3.3: The resulting set of the cube operator aggregating the sum operator, applied
to Table 3.1.

Product Year Colour Sales Product Year Colour Sales

Jeans 2007 Black 231 Gloves 2007 Black 198
Jeans 2007 Blue 193 Gloves 2007 Blue 262
Jeans 2007 ALL 424 Gloves 2007 ALL 460
Jeans 2008 Black 205 Gloves 2008 Black 168
Jeans 2008 Blue 236 Gloves 2008 Blue 154
Jeans 2008 ALL 441 Gloves 2008 ALL 322
Jeans ALL ALL 865 Gloves ALL ALL 782
ALL ALL ALL 1647

Table 3.4: The resulting set of the rollup operator when it was applied on Table 3.1.

A, B, C and D are attributes in the relation, and every node in the graph represents
the resulting set of a group by on the attributes in the node. The ALL attribute in
the top node indicates the empty group by. The bottom node contains the attributes
{A,B, C, D}, which means the node represents the result of a group by on these four
attributes. Using this result, group by operations on {A,B, C}, {A,B, D}, {A,C, D}
and {B,C,D} can be computed. Following the graph upwards, we see that the result
of a group by on {A,B, C} can be used to compute the results of group by operations
on {A,B}, {A,C} and {B,C}, etc.

This technique improves performance by minimizing disk I/O, but also by minimizing
the number of aggregations by not actually aggregating all possible combinations that
is the result of the cube operator. The differences between the algorithms is basically
that they use different strategies for selecting which results to use for calculating new
results, or in other words: they choose different paths in a graph such as Figure 3.3.

20 Chapter 3. Online Analytical Processing

Figure 3.3: Graph describing how group by operations can be calculated using earlier
calculated group by operations instead of the data source.

3.4 Performance

As mentioned earlier, performance is one of the big issues when handling these amounts
of data. There are however methods developed for improving the performance of data
cubes, both for MOLAP and ROLAP.

3.4.1 Clustering

When talking about database performance, the disk I/O is a problematic bottleneck
since disk access results in a high latency compared to memory access. A solution
widely used for minimizing disk access is clustering [7]. The basic principle of clustering
is to organize the disk structure of the data in a way that makes sure that records that
are expected to be queried together are physically stored together. This means that
large blocks of data can be read once, instead of accessing the disk once for each record
which would be the case if the data was spread out.

3.4.2 Bitmap Indexing

A common way to index relational databases is to use a B+-tree for searching (see
Chapter 2), and using Row Identifiers (RIDs) in the leaf nodes to specify the physical
disk address where the row data is written. If the data is known to only be read, like in
an OLAP database, then the query performance can be essentially improved by using a
Bitmap Index [12]. If the data is not read-only as is the case in a typical OLTP database,
then the bitmap index is not a very good idea to use since its maintenance cost is too
high for insert and delete operations.

The basic idea of a bitmap index is that for each possible value in the column that
is to be indexed, a bitmap is created with one bit for each row in the table. In a certain

3.4. Performance 21

bitmap, all bits that correspond to the represented value is set to ‘1’ and all other bits
are set to ‘0’.

Product Colour B1 B2 B3

Jeans Blue 1 0 0
Socks Black 0 0 1
T-shirt Black 0 0 1
T-shirt Blue 1 0 0
Gloves White 0 1 0

Table 3.5: An example of bitmap indexing.

Table 3.5 illustrates the idea of a bitmap index; it contains a few products and their
colours, where the colour column is the one to be indexed. For every possible colour, a
bitmap Bi is created that keeps track of all tuples in the relation that has that colour as
the value, e.g. all tuples with the attribute value ‘Blue’ is represented by B1=‘10010’.

Provided that the cardinality of a column isn’t too high, i.e. the number of possible
values for that column isn’t too large, there are two improvements introduced by bitmap
indices. The first is that the disk size required to store the indices are reduced compared
to using B+-trees. In the above example, three bits are required for each value, compared
to the size of a disk address when using RIDs. The second improvement is performance.
The bitwise operators AND, OR and NOT are very fast, and using those it is possible
to execute queries with complex WHERE clauses in a very efficient way. Aggregation
operations like SUM and AVG is also affected by the choice of index.

It doesn’t take long to realize that a bitmap index isn’t of much use if the value to
be indexed is an integer which can have several thousand possible values. Instead, a
variant called bit-sliced index can be used in such cases to preserve the benefit of bitmap
indices. We assume that the target column is populated by integer values represented
by N bits. The bit-slice index assign one bitmap for each of the N bits, instead of one
bitmap for each possible value. Table 3.6 illustrates the idea; the amount of sold items
for each product is represented by its binary encoding with column B3 representing the
least significant and column B1 representing the most significant bit. Reading these
binary codes column by column gives the bitmaps in the index, e.g. B1 = ‘1100’.

Product Amount sold B1 B2 B3

Jeans 5 1 0 1
Socks 7 1 1 1
T-shirt 3 0 1 1
Gloves 2 0 1 0

Table 3.6: An example of bit-sliced indexing.

Using this index method, a great query performance increase will will be gained when
it comes to aggregating.

If a relation scheme has a high cardinality, the size of the bitmap index will grow
large rather quickly because every possible value will give rise to another bitmap, with as
many bits as there are tuples in the relation. In these cases there are efficient compression
techniques that reduce the bitmap sizes.

Two common compression schemes that have these properties are the byte-aligned

22 Chapter 3. Online Analytical Processing

bitmap code (BBC) and the word-aligned hybrid code (WAH), examined thoroughly by
Wu, Otoo and Shoshani [14, 15]. The BBC is based on byte operations and the WAH is a
variant of BBC that is based on words which helps word-based CPUs handle this scheme
more efficiently. Basically, both methods work by finding sequences of consecutive bits
that have the same value, and replacing these with the bit value and a counter that
keeps track of how many bits there are in the sequence. Wu et al. have shown that
these compression techniques result in indices that in worst case are as large as the
corresponding B+-tree, but often much smaller. Besides, many logical operations can
be performed on the data without decompressing it.

3.4.3 Chunks

Another technique that aims at speeding up OLAP queries was proposed by Desh-
pande, Ramasamy, Naughton and Shukla in 1998 [6]. The idea is to cache the results
of requested queries, but in chunks instead of the whole result. In a multidimensional
environment, different queries requests results along different dimensions, and often the
result sets intersects, resulting in common subsets. Using traditional query caching,
these common subsets can not be cached and reused other than if the whole query is
passed again. Using chunks, smaller parts of each query is cached, and when a new query
is requested the caching engine finds which chunks exist in the cache, and send those
to the query along with newly calculated chunks that don’t exist in the cache. With
this technique, query results can be reused in a more efficient fashion, which means that
frequently requested data can be stored in chunks in the memory and doesn’t have to
be read from disk for every query.

A further optimization proposed by Deshpande et al. is to organize the backend file
system by chunks, either by implementing support for chunk files in the DBMS, or by
letting an existing RDBMS index the files by a chunk attribute that is added to the
tables. This is a form of clustering that is shown to be efficient for multidimensional
data.

4
Accomplishments

This chapter describes the implementation process step by step, how the work
was done and the problems that occurred during the development. It describes
the different parts of the implementation and the last part of the chapter
describes the performance study that was conducted.

4.1 Overview

The first goal of the project was to identify relevant data. In order to do this, an
understanding of the source data, how it was structured and what it was used for was
essential, which in turn requires an overall understanding of the company’s organisation.
This was acquired through discussions with economic administration employees, and
these discussions were the basis for learning about the KPIs used by the company and
for understanding the layout of the Excel spreadsheet containing the source data. When
this was done, a few KPIs of interest were chosen as focus during the project; Utilization
Rate, Vacation Excluded (URVE) and Bonus Quotient.

URVE is calculated by dividing billable hours by the total number of hours worked,
not counting hours of vacation (vacation hours are inserted into the database, but as
the name of the KPI suggests, vacation is excluded). Billable hours are hours that the
client can be charged with, in contrast to non-billable hours which are for example hours
spent on internal education or parental leave. URVE was chosen because it represents
something that is very important to every consulting company: the number of billable
hours compared to the total number of hours that the employees has worked. This is
strongly connected to the company’s profitability since billable hours are paid by the
clients while all other hours are paid by the company itself.

Bonus Quotient is the number of bonus generating hours during one month divided
by possible hours the very same month. Bonus generating hours is a set of hour types
that generate bonus, mainly billable hours. This second KPI was chosen because it is
interesting to the consultants. Being able to access this figure gives an indication how
much bonus they will acquire.

The next goal was to build a data warehouse and a data cube. Both were developed
in parallel because the cube is based on the data warehouse and a change in the latter
implies a restructure of the cube. An existing but incomplete database model was given
in the beginning of the project. This first draft was an internal experiment which was
made by a small project group at Sogeti, but it was abandoned due to lack of time until
it became an MT project.

24 Chapter 4. Accomplishments

The third goal was to present the data to the end user. There are plenty of ways to
access a data cube and look at the data, so three methods were examined within the
limits of the project. These methods are: using Reporting Services, connecting directly
to the cube via Microsoft Excel, and finally implementing a .NET application for data
visualization using Dundas Chart.

The last goal was to automate the process of updating the warehouse and the cube.
In order to fill the data warehouse and the cube with data, several queries to convert
the data were written. These queries were executed through scripting in Integration
Services. Cube loading and processing tasks were also incorporated in these scripts,
which were written with the purpose to avoid manual handling of the cube update
process as much as possible. However, the indata was received as Excel spreadsheets
via e-mail, and even though the Integration Services script handled the update process
it still had to be started manually.

4.2 Implementation

Figure 4.1 shows a rough overview of the components used in the system. The different
parts will be described in more details below.

Figure 4.1: Overview of the system.

4.2. Implementation 25

4.2.1 Data Storage

The origin of the data was the economy system Agresso. However, Agresso itself wasn’t
directly accessible during the development process, so the data source used was an
Excel spreadsheet containing an excerpt of the data at a given time. The data in
the spreadsheet was imported into a temporary table in the database with columns
corresponding to the ones in the Excel file. A set of SQL queries were written to extract
the data from the temporary table, transform and insert it into the data warehouse.

The data warehouse model was developed using Sybase PowerDesigner, which is an
easy-to-use graphical design tool for designing databases. This tool was used to create a
conceptual model of the data warehouse and from there generate the actual database in
terms of SQL queries. The first model of the database was completely normalized, which
turned out not to be useful at all. A normalized data warehouse makes it difficult to build
the cube, and the cube operations will perform quite poorly because of the additional
joins that the normalization introduces. A better way to design a data warehouse is to
build it as a star schema. The model implemented in this project was structured close
to a star schema, but for practical reasons some of the tables are somewhat normalized.
Figure 4.2 illustrates the final data warehouse model.

Figure 4.2: The data warehouse schema.

The data cube was built using Analysis Services. Before building the actual cube,
a data source and a data source view have to be defined. The data source in this case
was the data warehouse, and the data source view contains most of the tables as is. The
KPIs chosen for the prototype were calculated by creating a named query each.

26 Chapter 4. Accomplishments

4.2.2 Presentation

Excel was examined as an alternative for reporting, see Figure 4.3 for a screenshot of
an Excel connection to the cube. To the right the dimensions and measures of interest
can be selected, and the pivot table to the left displays the result. This is generally a
very flexible way do to reports; the user can select exactly the data to be displayed, and
what dimensions to group the data by. As seen in the screenshot, drill-down and roll-up
operations are done by clicking on the small boxes with plus and minus signs. Of course,
it is also possible to create diagrams of the data in traditional Excel fashion.

Figure 4.3: Screenshot of reporting using Excel.

Another option investigated was Reporting Services which offers similar possibilities.
Reports are created that contains pivot tables and diagrams of data selected by the
author of the report, and here the drill-down and roll-up operations can be performed
too. Reports can also be linked together via hyperlinks that directs the end user to
another report which gives the reporting approach additional potential. The reports
are updated on a report server from where the end user can download it. However, the
Excel approach is more flexible since it enables the end user to create custom reports.

Since the goal was to make information accessible on an individual level, there was
no need to have the possibility to browse the whole cube. On the contrary, that would
make the user interface more complicated (the cube has to be browsed to find the current
user) and it also introduces security issues; only the sub cube that contains information
about the connected user should be accessible. These were the main reasons why Excel
and Reporting Services were excluded from the list of options.

Instead, a prototype application were developed in .NET that visualizes the data
read from the cube, see Figure 4.4 for a screenshot. This application requires the name
and employee number of the user currently logged in from Windows Active Directory.
Filtering the cube data by this information, data is received from the cube and visualized

4.3. Performance 27

as a graph. The user can specify which KPIs to display and the time period for which
to display the data.

Figure 4.4: Screenshot of the .NET application developed to present the data.

4.3 Performance

In order to measure and compare the performance, test data were generated and loaded
into the data warehouse and the cube. Query performance was tested for MDX queries
against the cube when it was configured for ROLAP and MOLAP respectively. Per-
formance was also measured for SQL queries run against the data warehouse directly,
without any optimizing techniques to see what difference it makes. A set of five test
queries were written in MDX, and a set of five corresponding SQL queries that gives the
same information were written for the data warehouse. The MDX and the SQL queries
didn’t produce the exact same result depending on architecture differences. MDX is
by nature multidimensional and the result set can be compared to a spreadsheet with
column and row labels, e.g. hours worked on rows and resource id on columns. The
SQL queries, at the other hand, produce tables which only has column labels. However,
the information that can be interpreted from the data is the same.

The actual query performance were measured with the SQL Server Profiler, a tool
used to log all events that occur during any operation on the database, with timestamp
and duration. The test was made by doing three implementations: (a) a test data
generator; (b) a test executioner that loads the data warehouse and the cubes, and then
executes the test queries; and finally (c) a test result parser for the trace log files that
were produced by the profiler.

When implementing the test data generator, the intention was to make the test
data look like real data, but without too much effort put on the small details. Given a
number of employees, a data file of the same format as the authentic data sheets were
to be generated. Every employee in the test data set work 40 hours a week, every week
of the year, distributed over randomly selected activity types and projects.

The first version of the generator wrote Excel files as output because the source

28 Chapter 4. Accomplishments

data were provided in this format. When the implementation was done and tested, the
problem with this approach was soon clear; when generating large sets of data, Excel
couldn’t handle it. Due to Microsoft’s specification1, Excel 2003 has a limit of 65 536
rows per spreadsheet. It seemed like the next version, Excel 2007, could handle about
1 000 000 rows, which would possibly be sufficient for the performance tests. However,
this was not an option since Integration Services 2005 - which was the tool used for
importing Excel data into the database - doesn’t support the 2007 file format.

Another solution to the problem could be storing several sheets in one file, but this
idea didn’t seem very flexible and was not tested. Instead, the generator was rewritten
to output plain text files. When the implementation was ready, 9 data sets of different
sizes were generated.

The test executioner used the same script that was written to import the real data.
Every data set was imported into the data warehouse one by one, and for each data set,
both a MOLAP and a ROLAP cube was loaded with the data. After the data set was
loaded into the cubes, each MDX query was executed 10 times on each cube and the
SQL queries were executed 10 times each against the data warehouse.

Finally the test result parser was given the trace log files that were produced by the
profiler. In these log files, timestamps and durations of every operation was written.
The log files were parsed and the average query duration for each combination of cube,
query and data set (or query and data set for the non-cube tests) was calculated.

Details on the performance test such as the exact queries, the sizes of the data files,
average durations, etc. can be found in Appendix A.

1See http://office.microsoft.com/en-us/excel/HP051992911033.aspx for details

5
Conclusions

This chapter presents the conclusions reached while working on the project.
The goals of the practical part, and how they were met in the resulting imple-
mentation is discussed as well as the conclusions from the more theoretical
part.

The need for multidimensional data analysis as a support for business decisions has
emerged during the last decades. The well accepted OLTP technology was not designed
for these tasks and therefore, the OLAP technology was developed as a solution. But do
we really need a technology like OLAP? Even though OLTP wasn’t designed for these
tasks, isn’t it possible to exploit the all-purpose relational database technology? The
short answer is that it is quite possible to implement data cubes directly in a relational
database engine without modifications, but it has its limitations.

5.1 Why OLAP?

One way to do cubing without OLAP is of course to write SQL queries that extracts the
result sets that is desired, and that contains the same data that would result from equiv-
alent OLAP operations. This was done as a comparison during the performance tests
of the project, see Appendix A for details. There are however some major drawbacks
with this approach.

First of all, the performance would be unacceptable when the database is very large
with many relations involved, for example a database of a complex organisation that
hold many years of historical data. The joins and aggregations required would slow down
query response time enormously, and this can clearly be seen in the test results. However,
the tests were performed with realtime calculations, and the query response time could
be optimized with materialized views or maybe some explicit indexing. At the other
hand, the queries were executed against the star schema shaped data warehouse, which
is filled with redundant data to minimize the number of joins required. To do the same
queries against a normalized data source would deteriorate performance. Anyhow, since
the OLAP tools are specifically developed for these kind of queries, they are of course
optimized for short query response times. Some of these optimizations take advantage
of the read-mostly nature of OLAP models and can hardly be found in an all-purpose
relational database engine.

Second, the reporting would be limited. A great advantage of OLAP tools is that
the user view is multidimensional and the reporting is very flexible. The cube operator
proposed by Gray et al. is helpful to avoid the complex queries required to do all

30 Chapter 5. Conclusions

necessary aggregations, but it is still presented in relational form which in this context
is a limitation. OLAP is very flexible with both column and row labels, and even if it is
not so common, reporting in more than two dimensions is fully possible. Adding to this
the drill-down and roll-up operations makes these kind of tools superior to relational
databases when it comes to analyzing data.

Of course, the need for multidimensional data analysis for a smaller organisation
with a limited database may not require all the extensive capacity of OLAP tools, which
often are expensive even though there are open source alternatives for BI solutions as
well1. During the performance test, the largest data set tested was a 2 GB raw data
file imported to the data warehouse. This file contains weekly hour reports for 20 000
employees during one year, about 9 000 000 rows of data. This is quite a lot of data,
and the slowest query executed had a duration of about 25 seconds.

As an intellectual experiment we assume that a small to medium sized, local clothing
store wants to analyze their sales, and they sell about 1 product every minute in average
as long as they are not closed. This will result in 480 transactions a day, and if we assume
there are 50 weeks in a year, compensating for holidays, and each week containing 6
working days, that will sum up to about 150 000 transactions during one year. This
is not even close to the test data set mentioned above, and thus querying this data set
without any OLAP tools or specific optimizations would not be a problem.

As stated above, OLAP is a requirement for large scale data analysis. Most recent
research papers concerning data cubes and data warehouses seem to agree that ROLAP
is the most suitable architecture for OLAP, and basically that was what Codd et al.
stated in their white paper back in 1993. The benefit that MOLAP brings is better
performance, but the question is if it is worth reduced flexibility. ROLAP is more
flexible than MOLAP in the sense that not all cells in the data cube has to be pre-
aggregated, this is also an important aspect of the scalability of OLAP applications.
When the number of dimensions increases the data explosion problem grows, primarily
with MOLAP, and at some point it becomes overwhelming.

However, there are researchers who still advocate MOLAP as the superior technology
and they are supported by some vendors, one of them being Microsoft, offering the user
a choice between the two architectures in Analysis Services. Even if both options are
available, the MOLAP is strongly recommended because of its increased performance [9].

The performance tests conducted during this project indicate that MOLAP indeed
has a better performance with Analysis Services, which is quite expected since aggre-
gating data is a demanding task. However, I did expect that the difference between
MOLAP and ROLAP would be greater. It would be interesting to do tests on more
complex models of larger scale, especially models with many dimensions. If the perfor-
mance gain coming from using MOLAP isn’t very large, then there is really no reason
to chose MOLAP. It also seems that there are many solutions for optimizing ROLAP
performance, and by using these, ROLAP can probably compete with MOLAP when it
comes to performance issues.

5.2 Restrictions and Limitations

The implementation was done in two different versions; one as an ASP.NET web page,
and one as a .NET Windows application. The Windows application seemed to work

1Pentaho BI Suite is an example of a completely free, open source solution for BI,
http://www.pentaho.com/

5.3. Future work 31

properly, but the ASP.NET web page could only be run in the development environ-
ment since a problem with the Active Directory (AD) emerged. When the application
was launched on the intranet, the communication with the AD didn’t work and the ap-
plication couldn’t receive the employee number needed to filter the data from Analysis
Services. One of the project goals was to make the information available on Sogeti’s in-
tranet, but since there wasn’t enough time to fix the above problem, only the Windows
application was made available for download on the intranet.

In this implementation, the .NET application has full access to the data cube without
restrictions, and this could be considered a potential security risk. It is possible to set
security in the cube, but it would be quite complicated because there are lots of users
that got to have access to the cube, and the information about them is stored in the
Windows Active Directory (AD). Setting the security in the cube for each user would
require some kind of connection between the AD and the cube, which most likely is
possible, but there was not enough time to investigate this option and therefore the
whole cube was made accessible with just one login, giving the responsibility of managing
security to the application prototype.

5.3 Future work

During this project I didn’t have direct access to Agresso, instead I received excerpts of
the database stored as Excel spreadsheets. These spreadsheets were manually extracted
from Agresso and then sent by e-mail. With these prerequisites, an automation of
the updating process is complicated to implement. It is probably possible to trigger
the loading process when an e-mail with new data arrives, but it requires the Excel
spreadsheet to have an exact structure in order to import the data correctly, and the
email has to be sent regularly when new data is available. Another option is that
somebody manually starts the loading process every month, and makes sure that the data
structure is correct. This is how the loading process was done during the development
of the prototype. The best option for a running system would however be direct access
to the data source.

The management of Sogeti Sverige AB has shown interest in the project, and by the
time my work was finished, a large scale project was initiated at a national level of the
company to implement similar functionality on the intranet.

References

[1] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrish-
nan, and S. Sarawagi. On the Computation of Multidimensional Aggregates. In
VLDB ’96: Proceedings of the 22th International Conference on Very Large Data
Bases, pages 506–521, San Francisco, CA, USA, 1996. Morgan Kaufmann Publish-
ers Inc.

[2] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Tech-
nology. SIGMOD Rec., 26(1):65–74, 1997.

[3] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.
ACM, 13(6):377–387, 1970.

[4] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP to User-Analysts: An
IT Mandate. 1993.

[5] D. Comer. Ubiquitous B-Tree. ACM Comput. Surv., 11(2):121–137, 1979.

[6] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton. Caching Multidi-
mensional Queries Using Chunks. In SIGMOD ’98: Proceedings of the 1998 ACM
SIGMOD international conference on Management of data, pages 259–270, New
York, NY, USA, 1998. ACM.

[7] R. Elmasri and S. Navathe. Fundamentals of Database Systems. Addison-Wesley,
2004.

[8] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

[9] R. Jacobson and S. Misner. SQL Server 2005 Analysis Services Step by Step.
Microsoft Press, Washington, 2006.

[10] MicroStrategy. The Case for Relational OLAP. 1995 .
https://www.microstrategy.com/Solutions/5Styles/olap analysis.asp.

[11] S. Misner. SQL Server 2005 Reporting Services Step by Step. Microsoft Press,
Washington, 2006.

[12] P. E. O’Neil and D. Quass. Improved Query Performance with Variant Indexes. In
Joan Peckham, editor, SIGMOD Conference, pages 38–49. ACM Press, 1997.

[13] P. Turley, J. Kasprzak, S. Cameron, S. Iizuka, and P. Guzman. SQL Server 2005
Integration Services Step by Step. Microsoft Press, Washington, 2007.

34 References

[14] K. Wu, E. J. Otoo, and A. Shoshani. A Performance Comparison of Bitmap Indexes.
In CIKM ’01: Proceedings of the tenth international conference on Information and
knowledge management, pages 559–561, New York, NY, USA, 2001. ACM.

[15] K. Wu, E. J. Otoo, and A. Shoshani. On the Performance of Bitmap Indices for
High Cardinality Attributes. In Mario A. Nascimento, M. Tamer Özsu, Donald
Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors,
VLDB, pages 24–35. Morgan Kaufmann, 2004.

Appendix A

Performance Test Details

The performance tests were made with generated test data. 9 test data file were gen-
erated based on a given number of employees, and for each employee, hour data were
generated for each working day during one year. The data files were imported separately
into a data warehouse, and for each data set a MOLAP and a ROLAP cube were loaded.

To do the test, five different MDX queries and five corresponding SQL queries were
written. The SQL queries return the same result as the MDX queries, but the result is
not exactly the same due to fundamental differences in the database models; the MDX
queries on the cubes returns a two-dimensional result set with both row and column
labels while the SQL queries on the data warehouse returns ordinary relations with only
column labels. However, the meaning of the resulting data is the same.

For every data set, the five MDX queries were run 10 times each on the two cubes,
and the SQL queries were run 10 times on the data warehouse. SQL Server Profiler was
used to measure the duration of the queries, and the average durations were calculated
and are listed below.

The computer used for the performance testing was a virtual server running Win-
dows Server 2003 R2, Standard edition. According to the Windows system, the virtual
machine was running on an Intel Pentium 4 2,8 GHz processor with 640 MB of RAM.

Table A.1 describes the 9 data sets that were generated. The number of employees
in each data set and the number of rows generated is provided.

Data Set # Employees Rows Generated

1 100 46 042
2 1 000 442 230
3 2 000 888 841
4 5 000 2 218 487
5 7 500 3 342 743
6 10 000 4 468 858
7 13 000 5 811 294
8 16 500 7 351 367
9 20 000 9 268 325

Table A.1: Test data sets used during performance testing

The disk size of each data file and the corresponding databases (MOLAP cube,
ROLAP cube and data warehouse) is described in Table A.2. Note that the data stored
in the data warehouse is often redundant due to its non-normalized structure. Project
names and activity type names are examples of string data that is redundant and thereby

36 Appendix A. Performance Test Details

occupy much more space than required. This is probably the main reason why the cubes
are far more compact than the data warehouse.

Data Set # Data File DW ROLAP Cube MOLAP Cube

1 10 285 18 560 2 233 2 740
2 98 817 148 544 2 235 5 191
3 198 591 296 021 2 256 9 831
4 495 728 746 581 2 254 21 434
5 746 897 1 106 176 2 275 35 246
6 998 519 1 477 888 2 259 45 511
7 1 298 472 1 921 408 2 302 66 795
8 1 642 247 2 428 864 2 309 89 130
9 2 070 770 3 069 760 2 304 112 842

Table A.2: Sizes in kB of the test data files, the data warehouse (DW) and the data
cubes.

Table A.3 and Table A.4 list the query durations measured for the five MDX queries
on the ROLAP and the MOLAP cube. The execution of queries 2 and 5 on data sets 5
to 9 (the entries marked with -) gave rise to the following error during execution:

Memory error: While attempting to store a string, a string was found that
was larger than the page size selected. The operation cannot be completed.

The queries were sent to the cube engine from a .NET application that was developed
for testing the performance. The problem seemed to arise when the result set was too
large, it couldn’t be sent back to the application due to limitations on the page size.
The result of this was that the durations from these erroneous queries were a lot shorter
than they were expected to be, considering the durations of queries with no errors. The
erroneous durations have been removed and are represented by zero in Figure A.1.

Data Set # Query 1 Query 2 Query 3 Query 4 Query 5

1 541 234 170 363 466
2 1 145 1 024 196 319 3 294
3 1 351 1 926 217 458 5 083
4 2 175 18 375 313 773 24 308
5 1 682 - 562 588 -
6 1 879 - 516 616 -
7 2 417 - 564 874 -
8 2 808 - 712 696 -
9 2 248 - 829 954 -

Table A.3: Average query durations for the ROLAP cube (µs).

The SQL queries were executed against the data warehouse in two modes; cached
and not cached. These results are listed in Table A.5 and Table A.6. As can be seen,
the problem with large result sets was not an issue when querying the data warehouse.

Figure A.1 visualizes durations for the five MDX queries as well as the five SQL
queries. The reason for separating the data series and for putting the MDX and the SQL
query durations in different graphs becomes quite clear when looking at the magnitude;

37

Data Set # Query 1 Query 2 Query 3 Query 4 Query 5

1 25 31 21 30 122
2 22 456 30 24 1 258
3 91 628 51 33 3 486
4 89 18 125 65 36 21 470
5 92 - 97 35 -
6 119 - 142 34 -
7 134 - 140 89 -
8 113 - 184 30 -
9 265 - 255 38 -

Table A.4: Average query durations for the MOLAP cube (µs).

Data Set # Query 1 Query 2 Query 3 Query 4 Query 5

1 247 039 170 586 54 348 169 028 227 137
2 575 582 926 258 201 807 519 521 1 395 206
3 1 002 062 1 457 348 225 316 804 587 2 801 574
4 2 200 032 4 981 525 594 383 1 803 914 6 982 024
5 2 390 159 5 158 413 520 625 2 077 508 8 684 045
6 2 714 874 7 180 407 1 017 350 2 038 647 12 259 188
7 2 769 751 9 286 215 858 818 1 976 891 15 485 503
8 3 035 573 10 824 070 1 359 450 2 423 688 21 212 824
9 2 965 990 16 376 624 1 692 932 2 563 666 23 808 536

Table A.5: Average query durations for the data warehouse, not cached (µs).

Data Set # Query 1 Query 2 Query 3 Query 4 Query 5

1 19 531 69 822 19 742 10 779 109 996
2 13 607 327 378 107 630 7 177 854 689
3 16 327 863 099 68 164 5 501 2 184 572
4 283 171 1 908 062 128 297 19 742 3 590 072
5 216 904 3 308 682 164 555 14 388 6 036 926
6 251 473 4 868 164 236 568 15 805 8 132 516
7 310 104 5 493 966 280 917 21 800 11 884 609
8 288 938 7 544 958 373 537 20 092 15 237 895
9 269 348 9 906 479 405 336 20 542 19 961 023

Table A.6: Average query durations for the data warehouse, cached (µs).

the SQL queries, even when they are cached, are often more than 1000 times slower than
the MDX queries. Comparing them in the same diagram would not make any sense.

There are some irregularities in the data series of the ROLAP queries and the data
warehouse series that wasn’t cached. These irregularities might be explained by the fact
that the server used for the tests was a virtual server running on a machine hosting
several virtual servers. Thus all servers shared the same hardware, and activity in other
servers could affect the test result by slowing down the test server for some of the queries.

Finally, Table A.7 lists the queries used for testing. All queries are listed in MDX as

38 Appendix A. Performance Test Details

well as SQL, and a short description explains the meaning of the queries.

39

Figure A.1: Diagrams visualizing query durations for both the cube and the data ware-
house.

40 Appendix A. Performance Test Details

M
D

X
S
Q

L
M

e
a
n
in

g

4
S
E

L
E

C
T

S
E

L
E

C
T

W
eek

T
a
b
le.M

o
n
th

Id
,

‘F
o
r

ea
ch

m
o
n
th

d
u
rin

g
2
0
0
7
,
select

{
[R

eso
u
rce].[R

eso
u
rce

Id
].[1

]}
S
U

M
(B

H
o
u
rs)

/
S
U

M
(W

eek
T
a
b
le.W

o
rk

in
g
H

o
u
rs)

b
o
n
u
s

q
u
o
tien

t
fo

r
em

p
lo

y
ee

w
ith

id
1
.’

O
N

C
O

L
U

M
N

S
,

F
R

O
M

B
o
n
u
s,

W
eek

T
a
b
le

{
[C

a
len

d
a
r].[M

o
n
th

].[2
0
0
7
0
1
]:

W
H

E
R

E
B

o
n
u
s.W

eek
Id

=
W

eek
T
a
b
le.W

eek
Id

A
N

D
[C

a
len

d
a
r].[M

o
n
th

].[2
0
0
7
1
2
]}

B
o
n
u
s.R

eso
u
rceId

=
1

A
N

D
O

N
R

O
W

S
W

eek
T
a
b
le.M

o
n
th

Id
>

=
2
0
0
7
0
1

A
N

D
F
R

O
M

[K
o
b
i]

W
eek

T
a
b
le.M

o
n
th

Id
<

2
0
0
8
0
1

W
H

E
R

E
[B

o
n
u
s];

G
R

O
U

P
B

Y
R

eso
u
rceId

,
W

eek
T
a
b
le.M

o
n
th

Id
;

5
S
E

L
E

C
T

S
E

L
E

C
T

R
eso

u
rceId

,
M

o
n
th

Id
,

‘S
elect

b
o
n
u
s

q
u
o
tien

t
fo

r
ev

ery
em

p
lo

y
ee

{
[R

eso
u
rce].[R

eso
u
rce

Id
].m

em
b
ers}

S
U

M
(B

H
o
u
rs)

/
S
U

M
(W

eek
T
a
b
le.W

o
rk

in
g
H

o
u
rs)

ea
ch

m
o
n
th

d
u
rin

g
2
0
0
7
.’

O
N

C
O

L
U

M
N

S
,

F
R

O
M

B
o
n
u
s,

W
eek

T
a
b
le

{
[C

a
len

d
a
r].[M

o
n
th

].[2
0
0
7
0
1
]:

W
H

E
R

E
B

o
n
u
s.W

eek
Id

=
W

eek
T
a
b
leW

eek
Id

[C
a
len

d
a
r].[M

o
n
th

].[2
0
0
7
1
2
]}

G
R

O
U

P
B

Y
R

eso
u
rceId

,
M

o
n
th

Id
;

O
N

R
O

W
S

F
R

O
M

[K
o
b
i]

W
H

E
R

E
[B

o
n
u
s];

T
able

A
.7:

M
D

X
and

their
corresponding

SQ
L

queries
used

during
the

perform
ance

testing
(continued).

41

M
D

X
S
Q

L
M

e
a
n
in

g

1
S
E

L
E

C
T

S
E

L
E

C
T

W
eek

Id
,
A
V

G
(U

rv
e)

‘F
o
r

ea
ch

w
eek

d
u
rin

g
2
0
0
7
,
select

U
rv

e
{
[R

eso
u
rce].[R

eso
u
rce

Id
].[1

]}
F
R

O
M

fo
r

th
e

em
p
lo

y
ee

w
ith

id
1
.’

O
N

C
O

L
U

M
N

S
,

(S
E

L
E

C
T

W
eek

T
a
b
le.W

eek
A

S
W

eek
Id

,
U

rv
e.U

rv
e

{
[C

a
len

d
a
r].[C

a
len

d
a
r

W
eek

].[0
7
0
1
]:

F
R

O
M

U
rv

e,
W

eek
T
a
b
le

[C
a
len

d
a
r].[C

a
len

d
a
r

W
eek

].[0
7
5
2
]}

W
H

E
R

E
W

eek
T
a
b
le.W

eek
Id

<
2
0
0
8
0
1

A
N

D
O

N
R

O
W

S
W

eek
T
a
b
le.W

eek
Id

>
=

2
0
0
7
0
1

A
N

D
F
R

O
M

[K
o
b
i]

R
eso

u
rceId

=
1

A
N

D
W

H
E

R
E

[U
rv

e];
U

rv
e.W

eek
Id

=
W

eek
T
a
b
le.W

eek
Id

)
A

S
F
o
o

G
R

O
U

P
B

Y
W

eek
Id

;

2
S
E

L
E

C
T

S
E

L
E

C
T

R
eso

u
rceId

,
A
V

G
(U

rv
e)

A
S

U
rv

e
‘S

elect
U

rv
e

fo
r

a
ll

em
p
lo

y
ees

d
u
rin

g
{
[R

eso
u
rce].[R

eso
u
rce

Id
].m

em
b
ers}

F
R

O
M

J
a
n
u
a
ry

2
0
0
7
.’

O
N

C
O

L
U

M
N

S
,

(S
E

L
E

C
T

R
eso

u
rceId

,
U

rv
e,

W
eek

T
a
b
le.W

eek
Id

{
[C

a
len

d
a
r].[M

o
n
th

].[2
0
0
7
0
1
]}

F
R

O
M

U
rv

e,
W

eek
T
a
b
le

O
N

R
O

W
S

W
H

E
R

E
W

eek
T
a
b
le.W

eek
Id

=
U

rv
e.W

eek
Id

A
N

D
F
R

O
M

[K
o
b
i]

W
eek

T
a
b
le.M

o
n
th

Id
=

2
0
0
7
0
1
)

A
S

F
o
o

W
H

E
R

E
[U

rv
e];

G
R

O
U

P
B

Y
R

eso
u
rceId

;

3
S
E

L
E

C
T

S
E

L
E

C
T

A
ctiv

ity
T

y
p
e.A

ctiv
ity

T
y
p
eId

,
S
U

M
(H

o
u
rs)

‘S
elect

th
e

to
ta

l
n
u
m

b
er

o
f
h
o
u
rs

fo
r

{
[A

ctiv
ity

T
y
p
e].[A

ctiv
ity

T
y
p
e].m

em
b
ers}

F
R

O
M

H
o
u
rsP

erW
eek

,
A

ctiv
ity

T
y
p
e,

W
eek

T
a
b
le

ea
ch

a
ctiv

ity
ty

p
e

d
u
rin

g
M

a
rch

2
0
0
7
.’

O
N

C
O

L
U

M
N

S
,

W
H

E
R

E
H

o
u
rsP

erW
eek

.A
ctiv

ity
T

y
p
eId

=
{
[C

a
len

d
a
r].[M

o
n
th

].[2
0
0
7
0
3
]}

A
ctiv

ity
T

y
p
e.A

ctiv
ity

T
y
p
eId

A
N

D
O

N
R

O
W

S
W

eek
T
a
b
le.W

eek
Id

=
H

o
u
rsP

erW
eek

.W
eek

Id
A

N
D

F
R

O
M

[K
o
b
i]

W
eek

T
a
b
le.M

o
n
th

Id
=

2
0
0
7
0
3

W
H

E
R

E
[M

ea
su

res].[H
o
u
rs];

G
R

O
U

P
B

Y
A

ctiv
ity

T
y
p
e.A

ctiv
ity

T
y
p
eId

;

T
able

A
.7:

M
D

X
and

their
corresponding

SQ
L

queries
used

during
the

perform
ance

testing.

Appendix B

Glossary

1NF
Abbreviation of First Normal Form.

2NF
Abbreviation of Second Normal Form.

3NF
Abbreviation of Third Normal Form.

– A –

Aggregation
Applying an operator, for example sum
or average, on all values in a data set
is called aggregating. Aggregations are
often applied on a data set in combina-
tion with the group by operator.

Agresso
Agresso is a commercial business and
economy system used by Sogeti.

Analysis Services
A tool for building data cubes and
analysing data, a component of
Microsoft SQL Server.

– B –

BI
Abbreviation of Business Intelligence.
Term referring to a technology used to
gather and analyze data in order to find
what factors are affecting a business.

– C –

Candidate Key
Any key of a relational schema.

Cardinality
The cardinality of an attribute is the
number of values in the domain asso-
ciated with that specific attribute. For
example, a relation with the attribute
gender would have a cardinality of 2
since possible values are male and fe-
male.

Composite Key
A key that consists of multiple at-
tributes.

44 Appendix B. Glossary

– D –

Data Cube
A database model used for analysing
data multidimensionally.

Data Mining
Term describing tools used to find
trends and patterns in large data sets.

Data Warehouse
A central data storage used as a base for
building data cubes and do data mining.
The data in a data warehouse is often
collected from multiple, heterogeneous
data sources.

DBMS
Abbreviation of DataBase Manage-
ment System. Software that manages
databases and transactions.

Dimension Hierarchy
A division in granularity levels of a
dimension. For example, a typi-
cal time dimension hierarchy contains
years, months and days.

Dimension Table
A database table that contains dimen-
sion data, i.e. data that is used to group
measures.

Domain
The set of values that can be applied to
a certain attribute.

Drill-down
Operation on a data cube that traverses
a dimension hierarchy down towards a
finer granularity.

DSS
Abbreviation of Decision Support Sys-
tem. A computer system designed to
help making decisions based on given
facts.

– E –

ETL
Abbreviation of Extract, Transform and
Load. Term describing the process
of collecting data from multiple data
sources and load it into a data ware-
house.

– F –

Fact Table
A database table that contains mea-
sures and references to dimension ta-
bles.

Foreign key
A foreign key in a relation is a set of
attributes that references a primary key
in another relation; that is, the values of
the foreign key attributes must be found
in the referenced table.

– G –

Granularity
Level of detail of data in the data cube.
The data in the data warehouse deter-
mines the finest level of granularity of
the cube, aggregations on this data cre-
ates higher levels of granularity.

45

– I –

Integration Services
Tool used to schedule data transfer
tasks, for example importing data into
a data warehouse. This tool is a com-
ponent of Microsoft SQL Server.

– K –

Key
A minimal super key, meaning that if
one attribute is removed, the set is no
longer a super key.

KPI
Abbreviation of Key Performance Indi-
cator. A figure to measure efficiency in
a business, helpful when making busi-
ness decisions.

– M –

MDX
Abbreviation of Multidimensional Ex-
pression. Query language used for
querying data cubes. Syntactically sim-
ilar to SQL.

Measure
A numerical value in a data cube that
can be used in aggregations.

MOLAP
Abbreviation of Multidimensional On-
line Analytical Processing. OLAP ar-
chitecture that is based on multidimen-
sional matrices.

– N –

Named Query
Database views are called Named
Queries in Microsoft Analysis Services.

Normalization
A concept for designing databases. A
normalized database has a set of rules,
or constraints, that determine how data
can be inserted, updated or deleted.

– O –

OLAP
Abbreviation of Online Analytical Pro-
cessing. Term describing tools for stor-
ing and analysing data multidimension-
ally.

OLTP
Abbreviation of Online Transaction
Processing. Term describing tools
for handling relational databases and
transactions.

– P –

Primary Key
The primary key of a relation is one of
the relations keys, arbitrarily chosen.

Prime Attribute
An attribute of a relation schema that
is member of some candidate key of the
relation.

46 Appendix B. Glossary

– Q –

Query
A text string sent to a DBMS in order
to modify or read from a database, for
example update, receive or insert data.

– R –

RDBMS
Abbreviation of Relational DataBase
Management System. Software that
manages relational databases and trans-
actions.

ROLAP
Abbreviation of Relational Online An-
alytical Processing. OLAP architecture
that is based on a relational database.

Roll-up
Operation on a data cube that traverses
a dimension hierarchy up towards a
coarser granularity.

– S –

Secondary Key
All keys in a relation that is not chosen
to be the primary key.

Snowflake Schema
A way to structure data warehouses.
The snowflake schema is a star schema
that has been normalized.

Star Schema
A way to structure data warehouses
with a fact table in the middle, refer-
encing surrounding dimension tables.

Super Key
A set of attributes that functionally de-
termines all other attributes in a rela-
tion.

SQL
Abbreviation of Structured Query Lan-
guage. Language used for querying re-
lational databases.

– T –

Tuple
An ordered list of values, which are el-
ements of a specific domain.

– U –

URVE
Abbreviation of Utilisation Rate Vaca-
tion Excluded. One of the KPIs used
during the project.

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction
	1.1 Business Intelligence
	1.2 Background
	1.3 Problem Statement
	1.4 Goals
	1.5 Development environment
	1.6 Report outline

	2 The Relational Database Model
	2.1 Basic definitions
	2.2 Normalization
	2.3 Indexing

	3 Online Analytical Processing
	3.1 OLAP and Data Warehousing
	3.2 Cube Architectures
	3.3 Relational Data Cubes
	3.4 Performance

	4 Accomplishments
	4.1 Overview
	4.2 Implementation
	4.3 Performance

	5 Conclusions
	5.1 Why OLAP?
	5.2 Restrictions and Limitations
	5.3 Future work

	References
	A Performance Test Details
	B Glossary

