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Joint Channel and Clipping Level Estimation for
OFDM in IoT-based Networks

Ehsan Olfat, Student Member, IEEE, Mats Bengtsson, Senior Member, IEEE,

Abstract—We consider scenarios such as IoT-based 5G or
IoT-based Machine Type Communication (MTC), where a low-
cost low-power transmitter communicates with a high-quality
receiver. Then, digital pre-distortion of the non-linear power
amplifier may be too expensive. In order to investigate the
feasibility of receiver-side compensation of the transmitter RF
impairments, we study joint maximum-likelihood estimation of
channel and clipping level in multi-path fading OFDM systems.
In particular, we propose an alternative optimization algorithm
which uses frequency-domain block-type training symbols, and
prove that this algorithm always converges, at least to a local
optimum point. Then, we calculate the Cramér-Rao lower bound,
and show that the proposed estimator attains it for high Signal-
to-Noise Ratios. Finally, we perform numerical evaluations to
illustrate the performance of the estimator, and show that
iterative decoding can be done using the estimated channel and
clipping level with almost the same performance as a genie-
aided scenario, where the channel and clipping level are perfectly
known.

Index Terms—OFDM, clipping, channel, estimation.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is widely recognized as one of the key

techniques for high data rate communications in wireless
networks. Due to its capability to mitigate multipath effect and
eliminate inter-symbol interference, OFDM has been utilized
for current technologies, including Long Term Evolution
(LTE) or LTE-advanced, local area networks (802.11a/g/n),
digital broadcasting services like Digital Audio Broadcasting
(DAB) or Terrestrial Digital Video Broadcasting (DVB-T)
and internet access over copper wires like Asymmetric Digital
Subscriber Line (ADSL) and more recently Very High Speed
Digital Subscriber Line (VDSL). It is also considered as a
promising candidate for future cellular networks such as 5G
[1]. The massive interest in OFDM has resulted in tremendous
research for making the real systems using OFDM more
reliable and less expensive in practice.

Despite its impressive qualities, OFDM signals suffer from
large envelope fluctuations producing a high Peak-to-Average
Power Ratio (PAPR). This leads to an unwelcome tradeoff
between linearity of the transmitted signal and the cost of the
High Power Amplifier (HPA). A high PAPR causes the HPA
to work in the saturation region which introduces nonlinear
distortion at the transmitter output. One possible way to deal
with the high power peaks of OFDM signals and the saturation
of the HPA is to consider a high Input Back-Off (IBO).
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However, using a high IBO decreases the efficiency of HPA
due to the fact that the working point of the power amplifier
gets far from its saturation point. One important fact is that
for a given supply voltage level, HPAs with a large linear
dynamic range are less efficient than the ones with a smaller
linear dynamic range [2]. As a result, OFDM systems need
transmitting and receiving parts with a high dynamic range,
which leads to expensive RF components. Indeed, the low
efficiency and power utilization factor boost hardware cost as
well as power consumption [2]. It is also one main source of
concern for future wireless networks, when applying OFDM
to millimeter Wave (mmWave) spectrum in Internet of Thing
(IoT)-based 5G where constructing efficient HPAs are more
difficult and costly at those frequencies [1], or to IoT-based
Machine Type Communications (MTC) when devices need to
be low cost and low power consuming [3]. For these reasons,
several techniques to mitigate the high PAPR of OFDM signals
have been proposed in the literature (see [4] and the references
within).

The problem of dealing with the distortion introduced by
the HPA nonlinearity has captivated a lot of attention during
last twenty years and a myriad of works have been done on
this topic. Almost all of these works fall into three categories:
1) Using pre-distorters at the transmitter side, 2) signal design
to reduce PAPR and 3) distortion mitigating at the receiver
side.

A common approach is linearizing a HPA by using a digital
pre-distorter, deployed as a serial component prior to the HPA
at the transmitter side. A pre-distorter attempts to pre-distort
the signal in a way that the overall cascaded system of the
pre-distorter and HPA behaves as a linear system. A good
survey on these methods is provided in [5]–[11]. However, pre-
distorting methods increase the complexity of the transmitter
as well as its cost. The second approach is designing the
transmitted signal by means of using coding and scrambling to
reduce PAPR. A good survey on these methods is provided in
[4]. However, using such methods also increases the complex-
ity and cost at the transmitter side. The third approach to deal
with the HPA’s nonlinearity was first suggested in [12], [13] for
OFDM signals. This technique aims to estimate the distortion
created by the HPA, and mitigate it at the receiver side in an
iterative manner. However, it requires perfect knowledge of
the HPA model as well as its parameters at the receiver side
which is practically difficult. The performance of this iterative
approach integrated with HPA model estimation at the receiver
side has been investigated [14]. A further extension was the
introduction of joint cancellation of nonlinear distortion for
multiple transmitters [15]. Moreover, extensions to SC-OFDM
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was also studied [16] and [17]. To the best of our knowledge,
there is no work in the literature which considers joint channel
and nonlinearity parameter estimation.

In this paper, we propose algorithms to jointly estimate
channel and Clipping Amplitude (CA), when a limiter (clipper)
is deployed as the nonlinearity model. The importance of this
model comes from the fact that it can be used in different
scenarios. One way to reduce the PAPR at the transmitter side
is the intentional clipping of the OFDM signal. To model this
clipping, a limiter is used in the literature. Moreover, a limiter
itself can be considered as a simplified yet useful model of
nonlinear HPAs. Furthermore, even if a pre-distorter is used
at the transmitter side the cascaded combination of that and the
HPA often well approximated by a limiter. Considering low
cost devices in IoT-based networks, clipping the high PAPR
signal by a limiter can be a very promising approach to reduce
the cost of having highly efficient HPAs. Furthermore, clipping
the high PAPR signal increases the battery life, thanks to the
resulting increased power efficiency of the HPA.

Estimating the nonlinear parameter at the receiver side is
important, especially in IoT-based MTC because there are a
lot of sensors that need to send some information occasionally.
Then, at each time of transmission, the receiver (e.g. a fusion
center or a BTS) needs to estimate the CA to have an updated
value which will be deployed in the detection stage. Those
CAs for different nodes may change during time because of
environmental conditions such as temperature, humidity, and
unstable power supply. Furthermore, for low cost devices, the
manufacturing variations from unit to unit may be fairly large
and it would be too expensive to measure and calibrate each
unit separately. Moreover, electronic devices and components
suffer from process of aging, so even if this nonlinearity
parameter was known at the beginning, it would not later. The-
refore, these nonlinearity parameters will become unknown to
the transmitter during time and hence there is an essential
need to estimate them at the receiver side occasionally. There
are some works in the literature in which the estimation of
nonlinear parameters is studied [18]–[21]. In all of these works
the multi-path channel has been neglected or assumed to be
perfectly known at the receiver side. In fact, the channel
estimation in presence of unknown nonlinearity parameters is
a challenging task. In this paper the CA is assumed to be
a priory unknown to the transmitter (and the receiver), and
the receiver uses an alternating optimization algorithm to give
the jointly optimal estimate of the channel taps and the CA.
Once the CA and the channel has been estimated, the system
uses them to detect the transmitted symbols by deploying the
iterative detection method proposed in [12].

The remainder of this paper is organised as follows. Section
II provides the detailed description of the considered system
model in this paper. Section III discusses the proposed algo-
rithms of jointly estimating channel and clipping level. Section
IV discusses the performance of the estimators and provides
theoretical lower bounds on their performance. Section IV
depicts numerical and simulation results and illustrates the
performance of the proposed method. Finally, conclusions are
drawn in Section V.

II. SYSTEM MODEL

We consider an OFDM system with N number of sub-
carriers, in which s = [s0, . . . , sN−1]T is the frequency-
domain symbol vector selected from a constellation such
as QAM. The time-domain symbols are obtained by taking
the Inverse Discrete Fourier Transform (IDFT) from the
frequency-domain symbols as:

xn =
1√
N

N−1∑
k=0

ske
j 2πkn

N , n = 0, . . . , N − 1. (1)

We can rewrite (1) in matrix form as:

x = FHs, (2)

where F is the N × N unitary Discrete Fourier Transform
(DFT) matrix. The channel is slow-fading with L + 1 taps
(L � N ), denoted as h = [h0, . . . , hL]T. g(. ;A) is the
limiter nonlinearity with the following amplitude modulation
(AM)/AM and AM/phase modulation (PM) conversion cha-
racteristics:

F [r] =

{
r, r ≤ A
A, r > A,

(3)

Φ[r] = 0, (4)

where r is the magnitude of the limiter input signal, and
A is the CA. Combining AM/AM and AM/PM conversion
characteristics, g(u;A) as a function of complex scalar u (and
parameterized by A) can be written as

g(u;A) =

{
u, |u| ≤ A
Aej arg(u), |u| > A.

(5)

The output of the limiter is z = g(x;A), in which g(. ;A) is
taken element-wise. However, it is difficult to directly work
with the output of the limiter. To bypass this difficulty, we
invoke the technique described in [22], where the output of the
limiter can be represented in a linear fashion by introducing
N augmented binary variables cn for n ∈ {0, . . . , N − 1}
indicating whether the sample at time n has been clipped
(cn = 1) or not (cn = 0), i.e.

cn =

{
1 rn > A

0 rn ≤ A,
(6)

which leads us to

zn = (1− cn)xn +Acne
jφn , n = 0, . . . , N − 1, (7)

where xn = rn exp(jφn). It is easier to represent (7) in vector
form as:

z = (1− c)� x +Ac� ejφ, (8)

where 1 denotes an all one vector, ejφ = [ejφ0 , . . . , ejφN−1 ]T

denotes the phase vector of x, and � denotes the Hadamard
product. Also, note that x = r� ejφ.

To remove the Inter-Symbol Interference (ISI), a Cyclic
Prefix (CP) with a length Lcp (≥ L) is pre-added to the
time-domain symbols at the transmitter and is removed at
the receiver. After the process of adding and removing CP,
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Fig. 1: The system model.

the matrix form time-domain representation of the OFDM
transmission can be written as:

u = Hz + w, (9)

where H is an N × N circulant matrix whose first column
is [h,0N−L−1×1], which represents the circular convolution
operator, and w = [w0, . . . , wN−1]T is a zero-mean circu-
larly symmetric complex Gaussian noise vector, i.e., w ∼
CN (0, σ2I). Taking the DFT from both sides of (9), we
obtain the frequency-domain representation of the OFDM
transmission as:

y = Fu

=
√
NDHFz + w̃, (10)

where DH is a diagonal matrix with the N -point DFT of h
as its diagonal elements, and w̃ ∼ CN (0, σ2I) is the DFT
of time-domain noise vector. In (10), we have used the fact
that the circulant matrix H can be diagonalized by pre- and
post-multiplication with N -point DFT and IDFT matrices, i.e.,
FHFH =

√
NDH. Let F̆ be a semi-unitary matrix formed by

the first L+ 1 columns of F, then DH = diag(F̆h).

III. JOINT CHANNEL AND CLIPPING AMPLITUDE
ESTIMATION

In this section, we propose alternating optimization algo-
rithms to jointly estimate channel and CA. To do this, we use
frequency-domain block-type training symbols. Once we have
the estimates, we can use them to detect the transmitted sym-
bols in the subsequent OFDM blocks. The intuition behind this
algorithm is that CA is a slowly time-varying parameter (much
slower than channel variations). Moreover, wireless channels
are usually slowly time varying, so the block-fading channel
model, which remains the same during the transmission of
several OFDM blocks is reasonable.

Using frequency-domain block-type training symbols, the
problem of joint Maximum-Likelihood (ML) estimation of
channel and CA can be formulated as the following Least-
Squares (LS) using (10):

min
A>0,h

∥∥y −√NDHFz
∥∥2
, (11)

where ‖ · ‖ denotes the Euclidean norm.

A. Clipping Amplitude Estimation Given the Channel

We first solve (11) for A given h. To do so, we first sort
the elements in r, and construct a new vector denoted as r̊.
Note that, r̊ = Psr, in which Ps is the sorting permutation

matrix. Using the sorted vectors, the estimate of CA at the ith
iteration can be written as

Â = arg min
A>0

∥∥∥y −√ND
(i)
H FPᵀ

s z̊
∥∥∥2

, (12)

where
z̊ = x̊� (1− c̊) +Aejφ̊ � c̊, (13)

in which x̊ = Psx, c̊ = Psc, and φ̊ = Psφ. Note that c̊ is
constant within each interval r̊k−1 ≤ A ≤ r̊k, k = 0 . . . N −
1, consequently (13) is piecewise affine in A, therefore the
minimization problem (12) can be written as

Â = arg min
A>0

J(A), (14)

where

J(A) =


J0(A), 0 ≤ A < r̊0

J1(A), r̊0 ≤ A < r̊1

...
...

JN−1(A), r̊N−2 ≤ A < r̊N−1,

(15)

in which

Jk(A) = ‖y −
√
NDHFPᵀ

s z̊k‖2

= ‖B(̊ck � ejφ̊)‖2A2

− 2<
{[

y −B(̊x� ¯̊ck)
]H

B(̊ck � ejφ̊)
}
A

+
∥∥y −B(̊x� ¯̊ck)

∥∥2
, (16)

where B =
√
NDHFPᵀ

s , c̊k is an all one vector except its
first k elements which are 0, and ¯̊ck = 1 − c̊k. As we can
see, for each interval, (16) is a convex quadratic function of
A. Consequently, for each interval, we can easily find the
minimizer by taking the first derivative of (16) and setting
it to zero, and check if the solution lies in that interval or
not. If it lies in that interval we have already found the
minimizer, otherwise the minimum takes place at the interval’s
end point with the smaller cost function. Mathematically, for
each interval (̊rk−1, r̊k], the minimizer is

Âk =

 Ǎk, r̊k−1 ≤ Ǎk ≤ r̊k
r̊k−1, Jk (̊rk−1) < Jk (̊rk)
r̊k, o.w.

(17)

where

Ǎk =
<
{[

y −B(̊x� ¯̊ck)
]H

B(̊ck � ejφ̊)
}

‖B(̊ck � ejφ̊)‖2
. (18)

To find the global minimizer, we find the minimizer for
each interval using (17), and then find the minimizer among
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those minimizers. Since J(A) is a continuous function, in each
interval, we need just check the point at which the derivative
is zero and the rightmost corner point. Therefore, we have
Algorithm 1.

Algorithm 1 Estimation of Clipping Amplitude (A)

1: Inputs:
y, r and exp(jφ)
F and DH

c̊k for k = 0, . . . , N − 1

2: Initialize:
[̊r,Ps] = sort(r)

ejφ̊ = Pse
jφ

B =
√
NDHFPᵀ

s
r̊−1 = 0

3: for k = 0 to N − 1 do

4: Ǎk =
<
{
[y−B(̊x�¯̊ck)]

H
B(̊ck�ejφ̊)

}
‖B(̊ck�ejφ̊)‖2

5: if r̊k−1 ≤ Ǎk ≤ r̊k then
6: Âk = Ǎk
7: else
8: Âk = r̊k
9: end if

10: Ĵk = Jk(Âk)
11: end for
12: k̂ = arg min

0≤k≤N−1
Ĵk

13: Â = Âk̂

B. Channel Estimation given Clipping Amplitude

Here, we solve (11) for h given A. We can rewrite (11) as:

min
h

∥∥y −√N diag
(
Fz
)
F̆h
∥∥2
, (19)

therefore, the LS channel estimate can be computed as:

ĥ =
1√
N

(
F̆Hdiag

(
Fz
)H

diag
(
Fz
)
F̆
)†

F̆Hdiag
(
Fz
)H

y,

(20)
where (·)† denotes the Moore–Penrose pseudo–inverse.

C. Initialization of the Alternating Algorithm

We propose two alternative initialization strategies to the
alternating optimization algorithm as follows:

1) Initializing by the Channel: Since the value of A is
unknown at the beginning, channel can be estimated
using the un-clipped version of transmitted time-domain
symbols. It is equivalent to putting x instead of z in (20),
and using s = Fx. Therefore, the initializing channel
estimate is:

ĥ(0) =
1√
N

(
F̆Hdiag(s)Hdiag(s)F̆

)−1

F̆Hdiag(s)Hy.

(21)
2) Initializing by the Clipping Amplitude: By substituting

(20) into the cost function in (19), the resulting LS error
for A is:

E(A) = yH
(
I−T

)
y, (22)

where

T = diag
(
Fz
)
F̆
(
F̆Hdiag

(
Fz
)H

diag
(
Fz
)
F̆
)−1

× F̆Hdiag
(
Fz
)H
.

By minimizing (22) over A, the CA can be estimated.
However, (22) is a complicated function of A and is
not convex. Nevertheless, one can find its approximate
solution by using grid search methods. Therefore, we
can find the initializing CA by solving

Â(0) = arg min
A>0
E(A). (23)

Due to the non-convexity of E(A), it is highly possible
that even more advanced optimization methods than grid
search just find a local minimum.

D. Alternating Optimization Algorithm

Depending on which initialization is used, we have two
alternating algorithms denoted as Algorithms 2 and 3:

Algorithm 2 Alternating Optimization with Initializing Chan-
nel

1: Inputs:
y, r and exp(jφ)
F
c̊k for k = 0, . . . , N − 1

2: Initialize:
[̊r,Ps] = sort(r)

ejφ̊ = Pse
jφ

D̂
(0)
H = diag(F̆ĥ(0)), ĥ(0) is given by (21)

r̊−1 = 0
i = 1

3: while (convergence criteria not met) do

4: B =
√
ND̂

(i−1)
H FPᵀ

s

5: calculate Â(i−1) and k̂(i−1) using Algorithm 1
6: z̊ = x̊� (1− c̊k̂(i−1)) + Â(i−1)ejφ̊ � c̊k̂(i−1)

7: V = diag(FPᵀ
s z̊)F̆

8: ĥ(i) = (VHV)†VHy

9: D̂
(i)
H = diag(F̆ĥ(i))

10: i = i+ 1

11: end while

E. Convergence

Note that both algorithms of alternating optimization are
guaranteed to converge to a local optimum because in every
iteration we can find the unique optimal solution of the
optimization problem [23]. In particular, we have the following
proposition:
Proposition 1: Both algorithms 2 and 3 converge to a local
optimum point of the cost function given in (11) (or (12)).

Proof: let us denote the cost function in (11) by J(h, A),
then for Algorithm 2, we have

Â(i−1) = arg min
A>0

J
(
ĥ(i−1), A

)
. (24)
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Algorithm 3 Alternating Optimization with Initializing CA

1: Inputs:
y, r and exp(jφ)
F
c̊k for k = 0, . . . , N − 1

2: Initialize:
[̊r,Ps] = sort(r)

ejφ̊ = Pse
jφ

Â(0) by solving (23) using grid search
r̊−1 = 0
i = 1

3: while (convergence criteria not met) do

4: V = diag
(
FPᵀ

s z̊(i−1)
)
F̆

5: ĥ(i−1) = (VHV)†VHy

6: D̂
(i−1)
H = diag(F̆ĥ(i−1))

7: B = D̂
(i−1)
H FPᵀ

s

8: calculate Â(i) and k̂(i) using Algorithm 1
9: i = i+ 1

10: end while

Therefore

J
(
ĥ(i−1), Â(i−1)

)
≤ J

(
ĥ(i−1), A

)
, ∀A > 0. (25)

Also, note that

ĥ(i) = arg min
h
J
(
h, Â(i−1)

)
, (26)

hence

J
(
ĥ(i), Â(i−1)

)
≤ J

(
h, Â(i−1)

)
, ∀h ∈ CL+1. (27)

where CL+1 denotes the (L+ 1)–dimensional complex vector
space. From (24)–(27), we can conclude

J
(
ĥ(i), Â(i)

)
≤ J

(
ĥ(i−1), Â(i−1)

)
, i = 1, 2, . . . (28)

Therefore, the objective function is decreasing at each iteration
and eventually converges to a local minimum. The same
argument is also valid for Algorithm 3. 2

F. Computational Complexity

We first compute the worse case computational complexity
of Algorithm 1 using big–O notation. Note that the com-
plexity order of complex-valued and real-valued operations
are asymptotically equivalent. The complexity of initialization
part is dominated by the matrix multiplication which has
complexity of order O(N3). Lines 4 and 10 at each iteration
have complexity of order O(N2), hence the total complexity
of N iterations is of order O(N3). The min function at line
12 has complexity of order O(N), therefore Algorithm 1 has
complexity of order O(N3).

However, the computational complexity of Algorithm 1 can
be reduced by not forming B explicitly in the initialization
section, and instead computing (18) in line 4 as the following:

Ǎk =

<
{[

y −
√
NDHFFT{x� c̄k}

]H
DHFFT{ck � ejφ}

}
√
N‖DHFFT{ck � ejφ}‖2

(29)

where ck = Pᵀ
s c̊k, c̄k = 1− ck, and FFT{·} denotes the uni-

tary N–point Fast Fourier Transform (FFT). This will reduce
the complexity of Algorithm 1 from O(N3) to O(N2 log2N),
since the FFT with complexity O(N log2N) is repeated N
times.

In Algorithm 2, the complexity of the initialization part is
dominated by (21), which has complexity of order O(N2).
On the other hand, the complexity of the initialization part in
Algorithm 3 is dominated by the grid search algorithm which
has complexity of order O(N2) for function evaluation for
each grid point multiplied by the number of grid points (NGS)
plus the complexity of the min function. Therefore, overall,
the complexity of the initialization part of Algorithm 3 is of
order O(NGSN

2) = O(N2). Both Algorithms 2 and 3 have
the same order of complexity per iteration, which is dominated
by Algorithm 1 which has complexity of order O(N2 log2N).
According to this, both Algorithms 2 and 3 have the same
worse case asymptotic order of complexity.

IV. CRAMÉR-RAO LOWER BOUND

The Cramér Rao Lower Bound (CRLB) expresses a lower
bound on the achievable variance of unbiased estimators. The
ML estimator asymptotically achieves the CRLB under some
regularity conditions [24]. Here, the estimation parameters
comprise of complex-valued channel taps and a real-valued
CA. Therefore, to calculate the CRLB, we denote the para-
meter vector as θ = [hᵀ,hH, A]T, which is used to derive
the complex Fisher Information Matrix (FIM). The logarithm
of the Probability Density Function (PDF) of the frequency-
domain observation vector y given in (10) can be written as:

log p(y;θ) = − 1

σ2

∥∥y −√NDHFz
∥∥2

+ const., (30)

where const. comprises the terms which are independent of
the estimation parameter vector θ. The log PDF (30) is a
differentiable function of h in the whole parameter space.
On the other hand, the log PDF is a smooth function of
A in R+ = [0,∞] except at the points {r0, . . . , rN−1}.
In this case, the regularity conditions just hold for the set
S+
A = R+ \ {r0, . . . , rN−1}, and not for the whole parameter

space. To solve this problem, we limit our attention just to
the set SA = S+

A \ {0}, partition it into disjoint intervals
(̊rk−1, r̊k), k = 0 . . . N − 1, and calculate the constrained
CRLB for each interval. To do this, we use the following
lemma:
Lemma 1. The constrained CRLB is identical to the uncon-
strained CRLB at the regular points [25].

Using Lemma 1, we can simply find the derivative of z
given in (8) with respect to A at any regular point of the
parameter space, which will be used in the CRLB derivation,
as follows:

∂z

∂A
= c� ejφ, ∀A ∈ SA (31)

Now, we can use the following lemma to calculate the CRLB
for all the regular points belonging to set SA:
Lemma 2. For the mixed complex-valued and real-valued
estimation parameters θ = [θᵀ

1 ,θ
H
1 ,θ

ᵀ
2 ]T, where θ1 ∈ Cn1 ,
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θ2 ∈ Rn2 , the unconstrained complex FIM and its correspon-
ding CRLB have the following structure [26, Lemma 1], [27]:

I(θ) =

 C1 C∗2 P
C2 C∗1 P∗

PH Pᵀ Q

 , (32)

where

C1 = E

{
∂ log p(y;θ)

∂θ∗1

∂ log p(y;θ)

∂θ∗1

H
}
, (33)

C2 = E
{
∂ log p(y;θ)

∂θ1

∂ log p(y;θ)

∂θ1

ᵀ}
, (34)

P = E
{
∂ log p(y;θ)

∂θ∗1

∂ log p(y;θ)

∂θ2

ᵀ}
, (35)

Q = E
{
∂ log p(y;θ)

∂θ2

∂ log p(y;θ)

∂θ2

ᵀ}
. (36)

Then

CRLB(θ2) =
[
Q− 2<

{
PH∆P + PᵀΛP

}]−1
(37)

CRLB(θ1) = ∆ + (∆P + ∆∗P∗) CRLB(θ2)

×
(
PH∆H + Pᵀ∆ᵀ

)
, (38)

where

∆ =
(
C1 −C∗2C∗1

−1C2

)−1

, (39)

Λ = −C∗1
−1C2C1

−1. (40)

In our case, θ1 = h, and θ2 = θ2 = A, and we have:

∂ log p(y;θ)

∂h∗
=

√
N

σ2
F̆Hdiag(Fz)

H(
y −
√
NDHFz

)
. (41)

Therefore, using Lemma 2, we find

C1 =
N

σ2
F̆Hdiag(Fz)

H
diag(Fz)F̆, (42)

C2 = 0, (43)

P = p =
N

σ2
F̆Hdiag(Fz)

H
DHF(c� ejφ), (44)

Q = q =
2N

σ2

∥∥DHF(c� ejφ)
∥∥2
, (45)

then

∆ = C−1
1 , (46)

Λ = 0. (47)

Therefore
CRLB(A) =

1

q − 2pHC−1
1 p

, (48)

and

CRLB(h) = C−1
1 +

1

q − 2pHC−1
1 p

C−1
1 ppHC−H1 . (49)

V. SIMULATION RESULTS

In this section, the performance of the proposed estima-
tion algorithm is investigated by computer simulation. The
number of sub-carriers (N ) considered here are 128, 256 and
512. Moreover, the subcarrier modulation is 16QAM. The
Rayleigh fading channel model used here is the exponential

channel model (IEEE 802.11b model) [28], which has L+ 1
complex Gaussian distributed taps hl having a mean power
of σ2

l = E{|hl|2} = σ2
0e
−Ts/τrmsl for l = 0, . . . , L in

which σ0 is chosen such that
∑L
l=0 σ

2
l = 1, Ts = 50ns

is the sampling rate, and τrms = 30ns and 150ns are the
RMS delays leading to channel lengths L + 1 = 7 and
31, respectively. Our model follows the slow-time varying
condition in which the channel is fixed during several OFDM
blocks. We generate N symbols drawn randomly from the
16QAM constellation to construct the block-type pilots, since
it is not needed to design the pilot symbols. Furthermore, in all
simulations we keep the average energy of the input signal to
the limiter equal to 1. Therefore, the clipping level is defined
as CL = 20 log10(A)[dB]. Moreover, to simulate the effect of
the receiver noise, we keep the average energy of the input
signal to the limiter fixed, and decrease the variance of the
noise. For Symbol Error Rate (SER) simulations, we use the
iterative detection algorithm introduced in [12], but with the
estimated channel and CA as follows:

Algorithm 4 Iterative Detection Algorithm [12]

1: Inputs:
y, F, and Nq
ĥ and Â calculated by Algorithm 2 (or 3)

2: Initialize:
D̂H = diag(F̆ĥ)

κ = 1− e−Â2

+ Â
√

π
2 erfc(Â)

d(0) = 0

3: for i = 1 to Nq do

4: ŝ(i) =
〈

1
κ

(
1√
N

D̂−1
H y − d(i−1)

)〉
5: x̂(i) = FHŝ(i)

6: d(i) = F
(
g(x̂(i); Â)− κx̂(i)

)
7: end for

where Nq is the maximum number of algorithm iterations, κ
is the optimal linear gain for the limiter (calculated, e.g., in
[29]), erfc(u) = 2/

√
π
∫∞
u
e−t

2

dt, and 〈·〉 denotes element-
wise hard detecting function.

Figs. 2 and 3 show the Normalized Mean Square Error
(NMSE) performance of estimating CA (A) and channel taps
(h), when L+ 1 = 7, N = 128 and CL = 1 dB, respectively.
As we can see from the figures the NMSEs are decreasing by
increasing the SNR and both of them reach CRLB in a medium
SNR regime. In Figs. 4 and 5, we have increased the number
of sub-carriers to N = 512, and also the clipping level to
CL = 3dB which corresponds to a HPA with higher dynamic
range. Again, in these figures the NMSEs are decreasing and
both of them reach CRLB in a medium SNR regime. By
comparing all these figures, we can see that for higher number
of sub-carriers the NMSE reaches its CRLB faster. This can be
justified by the fact that for a given channel length, the higher
the number of sub-carriers, the higher the number of clipped
observations, which results in more accurate estimates.

Figs. 6 and 7 show the SER performance of Algorithms 2
and 3, integrated with the iterative detection method (Algo-
rithm 4), when L+ 1 = 7, and CL = 1 dB for N = 128 and
N = 512, respectively. We have used two maximum number
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Fig. 2: NMSE performance of the CA estimation using Algo-
rithms 2 and 3, when L+ 1 = 7, N = 128 and CL = 1 dB.
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Fig. 3: NMSE performance of the channel estimation using
Algorithms 2 and 3, when L+1 = 7, N = 128 and CL = 1dB.

of iterations for Algorithm 4 as Nq = 2 and 3. As illustrated
in the figures the SER performance of different schemes when
we estimate the CA and the channel taps using Algorithms 2
and 3 almost perfectly coincide with a genie-aided scenario,
where the channel and CA are perfectly known at the receiver
side.

The results depicted in Fig. 8 shows the SER performance
of Algorithms 2 and 3, integrated with the iterative detection
method (Algorithm 4), when L + 1 = 7, and CL = 3 dB
for N = 256, where the maximum number of iterations for
Algorithm 4 is set to Nq = 2. Here, since the CL is higher,
the result for Nq’s higher than 2 is almost the same as the
case when Nq = 2, so by increasing Nq , we do not earn any
tangible gain. Again, we can see from the figures that the SER
of different schemes when we estimate the CA and the channel
taps using Algorithms 2 and 3 almost perfectly coincide with
the genie-aided case.
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Fig. 4: NMSE performance of the CA estimation using Algo-
rithms 2 and 3, when L+ 1 = 7, N = 512 and CL = 3 dB.
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Fig. 5: NMSE performance of the channel estimation using
Algorithms 2 and 3, when L+1 = 7, N = 512 and CL = 3dB.

Fig. 9 shows the SER performance of Algorithms 2 and 3,
integrated with the iterative detection method (Algorithm 4)
with Nq = 3, when L + 1 = 31, CL = 1dB for N = 128.
Note that the channel length L + 1 = 31 is the maximum
allowed length for Lcp = 32 which is used conventionally for
an OFDM system with N = 128 number of sub-carriers. In
this case the channel frequency selectivity is higher. As can
be seen from the figure, both estimation algorithms provide
really good results.

Figs. 10 and 11 show the SER performance of Algorithms
2 and 3, integrated with the iterative detection method (Al-
gorithm 4), versus CL, when L + 1 = 7, SNR = 20 dB for
N = 128 and N = 256, respectively. Here, the maximum
number of iterations for Algorithm 4 is set to Nq = 2. As we
can see from these figures, the linear and the clipping without
compensation systems provide lower and upper bounds for the
iterative algorithm. All the curves converge together as CL
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Fig. 6: SER performance of the iterative detection (Algorithm
4) vs. SNR, when L+ 1 = 7, N = 128 and CL = 1 dB.
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Fig. 7: SER performance of the iterative detection (Algorithm
4) vs. SNR, when L+ 1 = 7, N = 512 and CL = 1 dB.

increases. Moreover, as illustrated the results of Algorithm 2
and 3, and the result of the genie-aided knowledge are on top
of each other.

Fig. 12 shows a contour plot for the SER performance
versus CL and SNR using Algorithms 2 and 3, when L+1 = 7,
and N = 128. The performance of Algorithms 2 and 3 are
really close together which makes their difference negligible.
This figure shows for a given PAPR (or number of sub-carriers)
what CL and SNR regions provide a good performance.
For instance, to achieve SER of 10−2, we need to look at
the corresponding contour curve which shows the locus of
different SNRs and CLs. As can be seen from the figure, for
CL = 0.6 dB, SER = 10−2 can be achieved by SNR = 30 dB,
and for CL = 3 dB, this SER is achieved by a lower SNR of
22 dB.

It should be mentioned that, the comparisons here may seem
unfair since the amount of training overhead, and thereby the
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(0) (Alg. 2) with Nq = 2
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Fig. 8: SER performance of the iterative detection (Algorithm
4) vs. SNR, when L+ 1 = 7, N = 256 and CL = 3 dB.
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Fig. 9: SER performance of the iterative detection (Algorithm
4) with Nq = 3 vs. SNR, when L + 1 = 31, N = 128 and
CL = 1 dB.

spectral efficiency (or energy per bit) is not the same for
the different schemes. However, to make a completely fair
comparison, we need to make additional assumptions on how
often the CL estimation and the channel estimation is done.
In fact, the main point of these plots is to show that the SER
performance is virtually unaffected by the estimation errors.

VI. CONCLUSION

In this paper, we have studied joint maximum-likelihood
estimation of channel and clipping level at the receiver side
in future IoT-based OFDM networks, where there are lots of
low-cost low-power nodes transmitting to and receiving from
more complex nodes such as a BTS. In particular, we have
proposed two alternating optimization algorithms, in which we
have optimally solved a non-smooth non-convex optimization
problem. We have also computed the theoretical lower bounds
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Fig. 10: SER performance of the iterative detection (Algorithm
4) vs. CL, when L+ 1 = 7, N = 128 and SNR = 20 dB.
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Fig. 11: SER performance of the iterative detection (Algorithm
4) vs. CL, when L+ 1 = 7, N = 256 and SNR = 20 dB.

(CRLB) on the performance of these estimators, and showed
that they attain these lower bounds. Next, we have combined
the channel and the CA estimates with the iterative detection
method from [12] to perform symbol detection at the receiver.
Finally, we have showed by simulations that the performance
of the iterative detection method using the proposed algorithms
is almost the same as the one of the case that the receiver has
genie-aided knowledge of the channel and CA.
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