10th WORLD CONGRESS
on Water Resources and Environment

"Panta Rhei"

5-9 July 2017
Athens, Greece

PROCEEDINGS

Editors
George Tsakiris
Vassilios A. Tsihrintzis
Harris Vangelis
Dimitris Tigkas

Athens, 2017
10th WORLD CONGRESS
on Water Resources and Environment

“Panta Rhei”

5-9 July 2017
Athens, Greece

PROCEEDINGS

Editors
George Tsakiris
Vassilios A. Tsihrintzis
Harris Vangelis
Dimitris Tigkas

Athens, 2017
Invitation for Nominations

8th Award (2018)

Nominations open online until 31 December 2017

www.psipw.org e-mail: info@psipw.org
Organising and Scientific Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsakiris G.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>(chairman)</td>
<td></td>
</tr>
<tr>
<td>Karatzas G.</td>
<td>Technical University of Crete</td>
</tr>
<tr>
<td>Loukas A.</td>
<td>University of Thessaly</td>
</tr>
<tr>
<td>Safiolea E.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Tigkas D.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Tsirhintzis V.A.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Vangelis H.</td>
<td>National Technical University of Athens</td>
</tr>
</tbody>
</table>

International Scientific Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batelaan O.</td>
<td>Flinders University, Australia</td>
</tr>
<tr>
<td>Boulos P.</td>
<td>Innovyze, USA</td>
</tr>
<tr>
<td>Cancelliere A.</td>
<td>University of Catania, Italy</td>
</tr>
<tr>
<td>Canters F.</td>
<td>Free University of Brussels, Belgium</td>
</tr>
<tr>
<td>Chau K.W.</td>
<td>Hong Kong Polytechnic University, Hong Kong</td>
</tr>
<tr>
<td>Christodoulou S.</td>
<td>University of Cyprus, Cyprus</td>
</tr>
<tr>
<td>Franchini M.</td>
<td>University of Ferrara, Italy</td>
</tr>
<tr>
<td>Garrote L.</td>
<td>Technical University of Madrid, Spain</td>
</tr>
<tr>
<td>Grafton R.Q</td>
<td>Australian National University, Australia</td>
</tr>
<tr>
<td>Harmancioglu N.B.</td>
<td>Dokuz Eylül University, Turkey</td>
</tr>
<tr>
<td>Iglesias A.</td>
<td>Technical University of Madrid, Spain</td>
</tr>
<tr>
<td>Karnib A.</td>
<td>Lebanese University, Lebanon</td>
</tr>
<tr>
<td>Kavouras M.</td>
<td>National Technical University of Athens, Greece</td>
</tr>
<tr>
<td>Khalili D.</td>
<td>Shiraz University, Iran</td>
</tr>
<tr>
<td>Kindler J.</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Koutsoyiannis D.</td>
<td>National Technical University of Athens, Greece</td>
</tr>
<tr>
<td>Loucks D.P.</td>
<td>Cornell University, USA</td>
</tr>
<tr>
<td>Maia R.</td>
<td>University of Porto, Portugal</td>
</tr>
<tr>
<td>O’Connell P.E.</td>
<td>Newcastle University, UK</td>
</tr>
<tr>
<td>Pahl-Wostl C.</td>
<td>Osnabrück University, Germany</td>
</tr>
<tr>
<td>Pereira L.S.</td>
<td>University of Lisbon, Portugal</td>
</tr>
</tbody>
</table>
Reddy J. Indian Institute of Technology Bombay, India
Savic D. University of Exeter, UK
Sechi G. University of Cagliari, Italy
Schumann A. RUHR – University of Bochum, Germany
Shatanawi M. University of Jordan, Jordan
Shiau J.T. National Cheng Kung University, Taiwan
Srivastava P. NASA, USA
Starrett S.K. Kansas State University, USA
Simonović S.P. Western University, Canada
Singh V.P. Texas A & M University, USA
Srdjevic B. University of Novi Sad, Serbia
Tanyimboh T. University of Strathclyde, Scotland/UK
Tayfur G. Izmir Institute of Technology, Turkey
Todini E. University of Bologna, Italy
Tortajada C. Institute of Water Policy, Singapore
van Oel P. Wageningen University, The Netherlands

National Scientific Committee

Angelakis A. National Agricultural Research Foundation
Angelides P. Democritus University of Thrace
Antonopoulos V. Aristotle University of Thessaloniki
Argialas D. National Technical University of Athens
Baltas E. National Technical University of Athens
Bellos C. Democritus University of Thrace
Dercas N. Agricultural University of Athens
Dalezios N. University of Thessaly
Giakoumakis S. National Technical University of Athens
Hrissanthou V. Democritus University of Thrace
Ioannidis Ch. National Technical University of Athens
Kalavrouziotis I. Open University of Greece
Kangalou I. Democritus University of Thrace
Kerkides P. Agricultural University of Athens
Kanakoudis V. University of Thessaly
Katsifarakis K. Aristotle University of Thessaloniki
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaleris V.</td>
<td>University of Patras</td>
</tr>
<tr>
<td>Latinopoulos P.</td>
<td>Aristotle University of Thessaloniki</td>
</tr>
<tr>
<td>Laspidou C.</td>
<td>University of Thessaly</td>
</tr>
<tr>
<td>Loizidou M.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Mantoglou A.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Nalbantis I.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Papadopoulou M.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Papamichael D.</td>
<td>Aristotle University of Thessaloniki</td>
</tr>
<tr>
<td>Remoundaki E.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Sakellariou–Makrantonaki M.</td>
<td>University of Thessaly</td>
</tr>
<tr>
<td>Stamou A.</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td>Tzimopoulos C.</td>
<td>Aristotle University of Thessaloniki</td>
</tr>
<tr>
<td>Yannopoulos St.</td>
<td>Aristotle University of Thessaloniki</td>
</tr>
<tr>
<td>Yannopoulos P.C.</td>
<td>University of Patras</td>
</tr>
<tr>
<td>Zouboulis A.</td>
<td>Aristotle University of Thessaloniki</td>
</tr>
</tbody>
</table>
Editors’ Preface

This volume of Proceedings includes the papers presented at the 10th World Congress of the European Water Resources Association (EWRA) on Water Resources and Environment “Panta Rhei”. “Panta Rhei” is the saying of the famous Greek philosopher Heraclitus meaning that everything flows. The Congress was held in Athens, Greece, 5-9 July 2017.

The Congress was set under the aegis of the Presidency of the Hellenic Republic, and it is part of the celebrations for the 100 years from the establishment of the School of Rural and Surveying Engineering and the 180 years from the foundation of the National Technical University of Athens. Also, the Congress coincides with the 30-year anniversary of WATER RESOURCES MANAGEMENT, the journal of EWRA published by Springer. Furthermore, for the first time the Congress is co-organized by the Environmental and Water Resources Institute of the American Society of Civil Engineers, in an effort to establish a constructive dialogue between Europe and America on water resources and environmental issues.

The task of the organisation of the Congress was undertaken by the Centre for the Assessment of Natural Hazards and Proactive Planning and the Laboratory of Reclamation Works and Water Resources Management of the School of Rural and Surveying Engineering of the National Technical University of Athens.

The aim of the Congress was the presentation of timely scientific research and studies by engineers and scientists on topics concerning Water Resources and the Environment. Other aims were the exchange of information, experiences and achievements in water resources and environmental protection, evaluation of new technologies, and presentation of innovative ideas for the protection of water resources and the environment. The Congress comprised the following nine specialised conferences:

I. Advances in Hydrological Processes
II. Climate and Water Resources
III. Water Resources Management
IV. Droughts and Water Scarcity
V. Water Quality and Environmental Processes
VI. Urban Water Networks
VII. Agricultural Water Management
VIII. Groundwater Hydrology and Contamination
IX. Legislation and Policies

These nine conferences cover a wide range of cutting edge topics on water resources and the environment. The final papers presented in each of the above conferences will comprise a number of Special Issues of the journal EUROPEAN WATER, which will be published in 2017. There were also 11 invited speeches in various topics of water resources and the environment which are included in the Special Issue of the journal WATER RESOURCES MANAGEMENT “Facets of Modern Water Resources Management” which was published in June 2017 (Vol. 31, Issue 10). Other presentations, such as those in the Round Table, the session of demonstration papers, and the seminars are not included in this volume.
The total number of authors contributing to this volume was 1046 coming from more than 50 countries of the world.

The editors would like to thank:

- The authors of the papers for contributing and sharing their own expertise.
- The reviewers of the papers for ensuring high scientific standards for the presentations.
- The sponsors of the conference for their financial support.
- All conference participants for their involvement in the exchange of knowledge, which is the essence of this Congress.

George Tsakiris
Vassilios A. Tsihrintzis
Harris Vangelis
Dimitris Tigkas
TABLE OF CONTENTS

I. Advances in Hydrological Processes ... 1

- **Water depth-damage functions for flood direct tangible damage evaluation in built-up areas in Sardinia (Italy)** ... 3
 - S. Frongia, A.Ruiu and G.M. Sechi
- **On urban inundation and damage modelling** ... 11
 - A. Radice, A. Bettiga, R. Figueiredo and D. Molinari
- **Flood risk and flood processes in a changing environment** 19
 - A.H. Schumann and S. Fischer
- **Numerical modeling of Samsun Mert River floods** 27
 - A. Ulke, N. Beden, V. Demir and N. Menek
- **Flood Directive implementation in Greece: Experiences and future improvements** .. 35
- **Spatial variability of flood source areas using "unit flood response" method** .. 43
 - M. Rezaei, M. Vafakhah and B. Ghermezcheshmeh
- **Evaluation of flood management plan on Cilemer river basin, Indonesia** 49
 - D. Indrawati, Y. Suryadi, D.P. Saputro, I. Taufik and M.B. Adiyawan
- **Cluster analysis and classification of storm events at Rethymno** 57
 - N. Martzios, A. Lykou, C. Makropoulos and V. Tsoukala
- **Daily runoff estimation in Musi river basin, India, from gridded rainfall using SWAT model** .. 63
 - V. Jothiprakash, C. Praveenkumar and M. Manasa
- **Distributed rainfall runoff modeling over Krishna river basin** 71
 - S. Nandi and M.J. Reddy
- **Application of HEC-HMS for the event and continuous simulation in high-altitude scarcely-gauged catchment under changing climate** .. 77
- **Prediction and validation of turbulent flow around a cylindrical weir** 85
 - N.G. Soydan, O. Şimşek, M.S. Aköz
- **Time series analysis of water characteristics of streams in Eastern Macedonia – Thrace, Greece** 93
 - T. Papalaskaris and G. Kampas
Application of Bayesian algorithm in continues streamflow modeling of a mountain watershed... 101
S. Sadeghi-Tabas, S.Z. Samadi and B. Zahabiyoun

Impact of extreme events on watershed dynamics.. 109
J. Kim, M. Dwelle, A. Warrnock, V. Ivanov and N. Katopodes

A decision support system for urban stormwater drainage management 115
F. De Paola, M. Giugni, F. Pugliese, P. Romano

Modelling of a combined sewer system and evaluation of mitigation measures using SWMM 123
I.M. Kourtis, V.A. Tshirintzis, E.A. Baltas

WRF-PDM: Prognostic approach for discharge prediction in ungauged catchment 131
P.K. Srivastava, T. Islam, G. Petropoulos, M. Gupta

Estimation of the Muskingum routing coefficients by using fuzzy regression 135
M. Spiiotis and L. Garrote

A simple model for low flow forecasting in Mediterranean streams 143
K. Risva, D. Nikolopoulos, A. Efstratiadis and I. Nalbantis

Influence of precipitation and land cover changes in a Mediterranean mountain watershed
(Guadalaviar River, Spain) ... 151

An implementation of a water balance model in the Evrotas basin 157
P.G. Marinou, E.G. Feloni, O. Tzoraki and E.A. Baltas

Multivariate modelling of meteorological droughts ... 165
E. Illiopoulos, V. Tsakiris, H. Vangelis, D. Tigkas and G. Tsakiris

Evaluation of different global optimization algorithms for calibration of a daily hydrological model. 173
H. Khoutyehnezhad, S. Sadeghi-Tabas, M. Pourreza-Bilandi

Ungauged drainage basins: Investigation on the basin of Peneios River, Thessaly, Greece 181
V. Gourgoulios and I. Nalbantis

Effect of land cover/use change on soil erosion assessment in Dubravica catchment (Croatia)... 189
N. Dragicevic, B. Karleusa and N. Ozanic

Development of flood and mudflow events for the spatio-temporal risk assessment of networks 197
J. Hackl, M. Heitzler, J.C. Lam, B.T. Adey and L. Hurni

Site suitability analysis of soil and water conservation structures in watershed using GIS 205
D.G. Regulwar and R.M. Ambhore

Imputation of erosivity values under incomplete rainfall data by machine learning methods 211
K. Vantasa and E. Sidirooulos

Impact of restoration measures in a densely urbanised area: The case of Buenos Aires 219
I.M. Arzuaga, G. Navarro’ and S.V. Viñes

Snowcover monitoring with MODIS product 10A2 ... 225
S. Karalis, G. Karakostas and I. Katsios

Presenting the mathematical model to determine retention in the watersheds 233
S Shamohammadi and A. Sharifi

Considering data uncertainty in the water and sanitation sector: Application to large number of
alternatives and criteria ... 241
F. Ezbakhe, A. Pérez-Foguet

Hydrological modelling of low flows for operational water resources management 249
L. Vasiliades, G. Sarailidis and A. Loukas
A network model simulation proposal for river basin management plans (RBMPs) in Turkey257
S. Burak, H. Bilge and D. Dernek

Assessment of bedload transport in gravel-bed rivers with a new fuzzy adaptive regression263
M. Spiliotis, V. Kitsikoudis and V. Hrissanthou

Modeling and optimization control of a hybrid water system ..271
H. Mu, T. Rauschenbach, D. Karamanzia and N. Cai

Experimental and numerical simulation of the flow over a spillway ...279
A. Serafeim, L. Avgier, V. Hrissanthou and K. Bellos

Methodological framework to estimate the coastal sediment supply of the island beaches287
I. Kontogeorgos, O. Tzoraki*, N. Moutafis, Th. Hasiotis and A. Velegkakis

Influence of river routing methods on integrated catchment water quality modelling293
A. Moreno Rodenas, V. Bellos; J. Langeveld, F. Clemens

Definition of critical support area revisited ...299
I. Papageorgaki and I. Naibantis

Integration of rain gauge errors in radar-rain gauge merging techniques ..305
F. Cecinati, A. Moreno Rödenas and M. A. Rico-Ramirez

Effect of varying calibration scenarios on the performance of a hydrodynamic sewer model313
F. Tscheikner-Gratl, P. Zeisl, C. Kinzel, J. Leimgruber, T. Ertl, W. Rauch and M. Kleidorfer

Surrogate modelling for simplification of a complex urban drainage model319
M. Mahmoodian; J.P. Carbajal, V. Bellos; U. Leopold, G. Schutz and F. Clemens

Multivariate autoregressive modelling and conditional simulation of precipitation time series for urban water models ...325
J.A. Torres-Matallana; U. Leopold and G.B.M. Heuvelink

A simplified methodology for flood simulation in urban catchments ...333
V. Bellos; I.M. Kourtis and V.A. Tsirhintzis

Comparison of different rainfall-runoff models performance: A case study of Liqvan catchment, Iran ..341
N. Sadeghi Louye and M. Rahimi Jamnani

Model selection techniques in SWAT-based hydrological modelling ...349
B. Asl-Rousta, S. Jamshid Mousavi and M. Ehtiat

Identification of potential locations for groundwater pumping and recharge to minimize the impact of floods and droughts in the Ganges basin ...355
L. Surinaidu, D. Kumar, U. Amarasinghe and M.J. Nandan

II. Climate and Water Resources ...363

The effect of storage under climate change in Southern European basins365
A. Granados, L. Garrote, A. Sordo-Ward and F. Martin-Carrasco

Assessment of climate-change impacts on precipitation based on selected RCM projections373
D.J. Peres, M.F. Caruso and A. Cancelliere

Evaluating the water resources and operation of the Boukan dam in Iran under climate change381
F. Emami and M. Koch
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkish Water Foundation (TWF) statistical climate downscaling model procedures and temperature projections</td>
<td>389</td>
</tr>
<tr>
<td>I. Dabanli and Z. Şen</td>
<td></td>
</tr>
<tr>
<td>Influence of the geographic location of dams on spring daily flows magnitude during the 2007-2008 La Niña event (Québec, Canada)</td>
<td>397</td>
</tr>
<tr>
<td>A.A. Assani and A. Pothier-Champagne</td>
<td></td>
</tr>
<tr>
<td>An informational entropy application to test the goodness of fit of probability functions</td>
<td>403</td>
</tr>
<tr>
<td>T. Baran, F. Barbaros, A. Gül and G. Onuşluel Gül</td>
<td></td>
</tr>
<tr>
<td>A snow variability analysis in Iran in relation to global warming and climate change</td>
<td>409</td>
</tr>
<tr>
<td>T. Raziei, I. Bordi and L.S. Pereira</td>
<td></td>
</tr>
<tr>
<td>Hydrological and water temperature modelling for dam decommissioning and climate change studies</td>
<td>417</td>
</tr>
<tr>
<td>S.J. Dugdale, A. St-Hilaire and R.A. Curry</td>
<td></td>
</tr>
<tr>
<td>Assessment of impact of climate change on streamflows using VIC model</td>
<td>425</td>
</tr>
<tr>
<td>A. Treesa, J. Das and U. Nanduri</td>
<td></td>
</tr>
<tr>
<td>Weather generator utilization in climate impact studies: Implications for water resources modelling</td>
<td>433</td>
</tr>
<tr>
<td>M.W. Gitau, S. Mehan and T. Guo</td>
<td></td>
</tr>
<tr>
<td>Causes of dimming/brightening in Greece and implications on reference evapotranspiration</td>
<td>441</td>
</tr>
<tr>
<td>G. Kitsara, G. Papaioannou and P. Kerkides</td>
<td></td>
</tr>
<tr>
<td>Using Weather Research and Forecasting (WRF) model for extreme precipitation forecasting in an Andean region with complex topography</td>
<td>449</td>
</tr>
<tr>
<td>G. Yañez Morroni, J. Gironás, M. Caneo and R. Delgado</td>
<td></td>
</tr>
<tr>
<td>Impact of climate change on irrigation need and groundwater resources in Pinos Basin</td>
<td>455</td>
</tr>
<tr>
<td>A. Panagopoulos, F. Herrmann, V. Pisinaras and F. Wendland</td>
<td></td>
</tr>
<tr>
<td>Investigations of trends in meteorological time series</td>
<td>463</td>
</tr>
<tr>
<td>M. Zeleňákove, P. Purcz, D.C. Diaconu, B. Pius, H. Hlavatá and M.M. Portela</td>
<td></td>
</tr>
<tr>
<td>Generation of daily synthetic flows for Switzerland</td>
<td>471</td>
</tr>
<tr>
<td>M.M. Portela, A.T. Silva, A.C. Santos and B. Schaefli</td>
<td></td>
</tr>
<tr>
<td>Impact of climate change on inflows using refined precipitation and temperature scenarios</td>
<td>481</td>
</tr>
<tr>
<td>J. Vieira and M.C. Cunha</td>
<td></td>
</tr>
<tr>
<td>Spatial analysis of large atmospheric oscillations and annual precipitation in lake Urmia basin</td>
<td>489</td>
</tr>
<tr>
<td>B. Vahedoost</td>
<td></td>
</tr>
<tr>
<td>Seasonal and annual trend analysis of meteorological data in Sanliurfa, Turkey</td>
<td>497</td>
</tr>
<tr>
<td>V. Gümüş, N.G. Soydan, O. Şimşek, H.M. Algin, M.S. Aköz and K. Yenigun</td>
<td></td>
</tr>
<tr>
<td>Quantile regression based method for investigating rainfall trends associated with flooding and drought conditions</td>
<td>503</td>
</tr>
<tr>
<td>Y. Xuan, S. A. Abbas, X. Song and D.E. Reeve</td>
<td></td>
</tr>
<tr>
<td>Parametric study of trends in flood stages over time in the regulated Guadalquivir River (years 1910-2016)</td>
<td>511</td>
</tr>
<tr>
<td>P. Bohorquez and J.D. Del Moral-Ercencia</td>
<td></td>
</tr>
<tr>
<td>Effects of climate and land use changes on runoff extremes</td>
<td>519</td>
</tr>
<tr>
<td>D. Pumo, E. Arnone, A. Francipane, V. Noto and G. La Loggia</td>
<td></td>
</tr>
<tr>
<td>Forecasting of geophysical processes using stochastic and machine learning algorithms</td>
<td>527</td>
</tr>
<tr>
<td>G.A. Papacharalampous, H. Tyralis and D. Koutsoyiannis</td>
<td></td>
</tr>
</tbody>
</table>
Reliability estimation of rainwater catchment system using future GCM output data (case study: Birjand city) ...535
A. Jafarzadeh, M. Pourreza Bilondi, A. Khashei-Siuki, A. Aghakhani Afshar, M. Yaghoobzadeh

WSMN: An in-situ monitoring network for soil moisture monitoring in West Wales, UK543
G.P. Petropoulos and J.P. McCalmont

Uncertainty in estimated water cycle determined with atmospheric budget, water budget and total water storage ...549
M. Birylo

Seasonal mean Baltic Sea level change in coastal zone ...557
K. Pajak and M. Birylo

A simple scaling procedure to assess the impact of climate change on extreme precipitation565
A. Forestieri, E. Arnone and L.V. Noto

Analysis of rainfall trend in southern Italy through the application of the ITA technique571
T. Caloiero, R. Coscarelli and Ennio Ferrari

Climate change mitigation and adaptation plan for West Athens ..579
V. Krommyda

Spatiotemporal evaluation of reanalysis and in-situ surface air temperature over Ethiopia587
T.W. Tesfaye, C.T. Dhanya and A.K. Gosain

An investigation of the use of Sentinel-2 data for mapping wetlands: A case study from Greece595
A. Chatziantoniou, G.P. Petropoulos, E. Psomiadis

On the use of climate-flood links and CMIP5 projections to predict flood hazard under climate change scenarios ...601
A.T. Silva, M.M. Portela and M. Naghettini

III. Water Resources Management .. 609

On the barriers to adapt to less water under climate change in Mediterranean countries611
Ana Iglesias, Luis Garrote

Sensitivity analysis of a probabilistic flood inundation mapping framework for ungauged catchments ...619
G. Papaioannou, A. Loukas, L. Vasiliiades and G.T. Aronica

Using cross-over analysis to support water user discussion about investments in water sources for irrigation ..627
M.J. Nikkels, J.H.A. Guillame, P. Leith, N.J. Mendham, P.R. van Oel and H. Meinke

Simulation and optimization of hydraulic-hydrologic complex system (case study in Iran)635
Ramin Mansouri, Hassan Torabi Pudeh, Mohammad Zounemat-Kermani, Ali Karbakhsh

Evaluation and development of spatial decision support system ...643
H. Alrayess and A. Ulke

Integrated water resources management in agro-economy using linear programming:
The case of lake Karla basin, Greece ...651
A. Alampanos, S. Xenarios, N. Mylopooulos and P. Stahnacke

A land accounting system for integrated water resources management659
G.E. Bariamis, E.A. Baltas, V.A. Tsihrintzis and M.A. Mimikou
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospects for sustainable water resources management within the River Djetinja catchment</td>
<td>667</td>
</tr>
<tr>
<td>B.B. Matić and Z. Simić</td>
<td></td>
</tr>
<tr>
<td>Towards the optimization of water resource use in the Upper Blue Nile river basin</td>
<td>673</td>
</tr>
<tr>
<td>A.-T. Stamou and P. Rutschmann</td>
<td></td>
</tr>
<tr>
<td>Indexing vulnerability of an embankment reach against breaching: A remote sensing and hydrodynamic based study</td>
<td>679</td>
</tr>
<tr>
<td>B. Talukdar, A. Baid and R. Das</td>
<td></td>
</tr>
<tr>
<td>Algiers water issue: Key indicators for a diagnosis of water resources carrying capacity</td>
<td>685</td>
</tr>
<tr>
<td>M. Naimi Ait-Aouida’ and E. Berezowska-Azzag</td>
<td></td>
</tr>
<tr>
<td>The seismic risk of new and existing dams</td>
<td>693</td>
</tr>
<tr>
<td>P.N. Psarropoulos</td>
<td></td>
</tr>
<tr>
<td>Water, energy and food nexus: The Q-Nexus model</td>
<td>701</td>
</tr>
<tr>
<td>A. Karnib</td>
<td></td>
</tr>
<tr>
<td>Small zoned earthfill dam simplified design with 3D solid modeling techniques</td>
<td>711</td>
</tr>
<tr>
<td>D. Myronidis</td>
<td></td>
</tr>
<tr>
<td>Different design techniques in determining reservoir capacity</td>
<td>719</td>
</tr>
<tr>
<td>H. Alrayess, U. Zeybekoglu and A. Ulke</td>
<td></td>
</tr>
<tr>
<td>Geo-Information analysis of the mini hydropower potential in the Liguria Region</td>
<td>729</td>
</tr>
<tr>
<td>A. Palla, I. Gnecco, P. La Barbera, M. Ivaldi and D. Caviglia</td>
<td></td>
</tr>
<tr>
<td>Trade-off between environmental flow policy and run-of-river hydropower generation in Mediterranean climate</td>
<td>737</td>
</tr>
<tr>
<td>A. Kuriqi, A.N. Pinheiro, A. Sordo-Ward and L. Garrote</td>
<td></td>
</tr>
<tr>
<td>Effects of crop pattern changes on hydroelectric power generation in Gediz river basin</td>
<td>745</td>
</tr>
<tr>
<td>C.P. Çetinkaya and M.C. Gınaçtı</td>
<td></td>
</tr>
<tr>
<td>GIS based analytic hierarchy process in determination of suitable site for water storage</td>
<td>753</td>
</tr>
<tr>
<td>I. Ahmad and M.K. Verma</td>
<td></td>
</tr>
<tr>
<td>Water resources management and lack of water in the Zayandehroud river basin, Iran</td>
<td>761</td>
</tr>
<tr>
<td>A. Sharifi and R. Mirabbasi</td>
<td></td>
</tr>
<tr>
<td>Effect of land use change on flood extent in the inflow stream of lake Paralimni, Cyprus</td>
<td>769</td>
</tr>
<tr>
<td>C. Sophocleous and I. Nalbantis</td>
<td></td>
</tr>
<tr>
<td>Robust prioritization for SEA with the missing data</td>
<td>777</td>
</tr>
<tr>
<td>D. Park</td>
<td></td>
</tr>
<tr>
<td>Research on conjunctive use of surface water and groundwater for managed aquifer recharge (MAR) at the River Nestos Delta, Greece</td>
<td>781</td>
</tr>
<tr>
<td>Land accounting perspective on water resources management</td>
<td>789</td>
</tr>
<tr>
<td>G.T. Paschos, G.E. Bariamis and E.A. Baltas</td>
<td></td>
</tr>
<tr>
<td>Environmental flow assessment through integrated approaches</td>
<td>795</td>
</tr>
<tr>
<td>M. Tegos, I. Nalbantis and A. Tegos</td>
<td></td>
</tr>
<tr>
<td>Sustainable management of water resources to safeguarding drinking water – The Water-Guard Project</td>
<td>803</td>
</tr>
<tr>
<td>S. Taskarisi, I. Boskidis and P. Symeonidis</td>
<td></td>
</tr>
</tbody>
</table>
IV. Droughts and Water Scarcity ... 811

Drought management and policy: Changing the paradigm from crisis to risk management 813
 D.A. Wilhite

Near-real time hydrological drought monitoring in the European Drought Observatory 821
 C. Cammalleri, J. Vogt, and P. Salamon

Modification of the Palmer Drought Severity Index for Mediterranean environments:
Model and application ... 827
 A. Paulo, D.S. Martins, P. Paredes, R.D. Rosa, L.S. Pereira

Climate change and water valuation in Souss-Massa region: Management
and adaptive measures .. 835
 L. Bouchaou, R. Choukr-Allah, A. Hirich, M.S. Ennasr, M. Malki, H. Abahous, B. Bouaakaz
 and A. Nghira

Analysis of drought severity in Seyhan river basin ... 843
 G. Onusuel Gul and A. Kuzucu

Coastal aquifer response to drought scenarios: The case of Rhodes island 851
 H. Vangelis, G. Kopsiatitis, D. Tigkas and V. Christelis

Comparison of hedging rule curves depending on available water and current storage in
reservoir operation under droughts .. 859
 S. Lee, Y. Jin and P. Jinhyeog

Monitoring drought in Shiraz, Iran, using Reconnaissance Drought Index (RDI) and
Standardized Precipitation Index (SPI) .. 865
 S. Ansarifard and S.A. Shamsnia

Regional drought analysis for derivation the drought SAF curve using bivariate copula in the
Lake Urmia basin, Iran .. 873
 M. Montaseri, B. Amirataee and H. Rezaie

Assessing the use of SPI in detecting agricultural and hydrological droughts and their temporal
Cyclicity: Some Slovakian case studies .. 881
 M.M. Portela, A.T. Silva, J.F. Santos, M. Zeleňáková and H. Hlavatá

Peak drought severity time analysis of Cheongmicheon watershed using meteorological and
Hydrological drought index .. 889
 S.H. Kim and E.-S. Chung

Wavelet transform based trend analysis for drought variability over 566 stations in India 895
 M.K. Goyal and A. Sharma

Frequency and severity of dry spell phenomenon in Ghezala Dam reservoir (Tunisia) 903
 M. Mathlouthi and F. Lebdi

Drought analysis with SPI index and entropy .. 911
 T. Baran, U. Guner Bacanli and F. Dikbas

Long-term variation of PDSI and SPI computed with reanalysis products 919
 D.S. Martins, A.A. Paulo, C. Pires and L.S. Pereira

Water shortage characterisation for surface water systems with storage 927
 I. Nalbantis

Sustainable management of rainwater harvesting systems: A case study of semi-arid area 933
 M. Nanekely and M. Scholz
The effect of reservoir networks on drought propagation
P.R. van Oel, E.S.P.R. Martins and A.C. Costa

<table>
<thead>
<tr>
<th>Low flow conditions evaluation within the western Morava river basin</th>
<th>947</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. Simić and B.B. Matić</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stochastic generation of low stream flow data of Perigiali Stream, Kavala city, NE Greece</th>
<th>953</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Papalaskaris and T. Panagiotidis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop pattern modification for long term mitigation planning against persisting droughts</th>
<th>961</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Tsakiris, D. Tigkas and H. Vangelis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characterization of drought in Italy applying the Reconnaissance Drought Index</th>
<th>967</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Zucaro, C. Antinoro and G. Giannerini</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPI analysis over Greece using high resolution precipitation gridded datasets</th>
<th>973</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.G. Feloni, K.G. Kotsifakis, P.T. Nastos and E.A. Baltas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System based multivariate drought characterisation for surface water</th>
<th>981</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Nalbantis and G. Tsakiris</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drought Identification and Trend Analysis in Peloponnese, Greece</th>
<th>989</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Saita, I. Papageorgaki and H. Vangelis</td>
<td></td>
</tr>
</tbody>
</table>

V. Water Quality and Environmental Processes

Unusual river turbidity and water quality hysteresis in the most urbanised catchment in the UK
D.M. Lawler

<table>
<thead>
<tr>
<th>Pyrosequencing analysis of ammonia oxidizing bacteria in municipal activated sludge system</th>
<th>1003</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.O. Awolusi, S. Kumari and F. Bux</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation of membranes as promising technique for reclamation and reuse of wastewater</th>
<th>1011</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Maryam, S. Ustun and H. Buyukgungor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The effect of polymer concentration on electrospun PVDF membranes for desalination by direct contact membrane distillation</th>
<th>1017</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.B. Armand, A. Fouladitajar, F.Z. Ashtiani and M. Karimi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High performance functionalized MWCNT/PES membrane for oil-in-water treatment</th>
<th>1023</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.M. Abedan Dehkordi, F. Zokaee Ashtiani and A. Fouladitajar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purification of Humic acids contained simulated wastewater using membrane ultrafiltration</th>
<th>1029</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Saha and C. Das</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Removal of diclofenac in drinking water with fenton process</th>
<th>1037</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Ustun Odabasi and H. Buyukgungor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFD-aided modelling for hydrodynamic analysis of biological reactor</th>
<th>1043</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Manenti, S. Todeschini, M.C. Collivignarelli and A. Abbà</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bimetal doping on TiO₂ for photocatalytic water treatment: A green route</th>
<th>1049</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Rao and A.K. Goldar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFD modelling of wind effect on rectangular settling tanks of water treatment plants</th>
<th>1057</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Gkesouliand A. Stamou</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investigation of preparation conditions of Nano-SiO₂ embedded PES membranes for producing clean water from wastewater</th>
<th>1065</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Fouladitajar, M.B. Ghandashtani and F.Z. Ashtiani</td>
<td></td>
</tr>
</tbody>
</table>
Understanding the anaerobic fluidized membrane bioreactor for wastewater treatment 1071
J. Wang, A.G. Fane and J.W. Chew

Moving towards a water-sustainable chemical industry: Novel water recovery processes 1075
G. Kolliopoulos, E. Shum, J. Marial and V.G. Papangelakis

Biological treatment of a low strength domestic wastewater in a membrane bioreactor 1083
A. Bezirgianididis, N. Marinakis, S. Ntougias and P. Melidis

Influence of clay lens on contaminant transport in unconfined coastal aquifers .. 1087
B. Sharma, D.S. Rishi, B.K. Mudai and R.K. Bhattacharjya

Application of nanostructured materials in fluoride removal from contaminated groundwater 1093
S. Bhattacharya

Distribution and assessment of heavy metals and physicochemical parameters in riverine basin 1101
M. Khalilzadeh Poshteghal, S.A. Mirbagheri and M. Noury

Desalination and alternative water resources .. 1109
N.X. Tsiouris

Source separation technologies, opportunities for sustainable wastewater management 1117
T. Zinati Shoia, M. Barjenbruch and A. Wriege-Bechtold

Assessing ecological flow conditions for wetlands fed from ungauged stream reaches 1125
A. Güll, K. Ayyildiz, F. Barbaros and T. Baran

Evaluation of streamflow habitat relationships using habitat suitability curves and HEC-RAS 1133
Christina Papadaki, Vasilis Bellos, Maria Stoumboudi, George Kopsiaftis and Elias Dimitriou

Simulation of organics and nitrogen removal from wastewater in constructed wetland 1141
M. Taheriyoun and M. Rad

Assessing the source of nitrate and heavy metals in groundwater resources of Abarkooh plain, central Iran .. 1149
M. Meraat, H. Jafari and A. Qishlaqi

Case studies investigating hydraulic parameters in full-scale constructed wetlands 1157
V.G. Ioannidou and J.M. Pearson

Modelling of nickel dynamics in vertical subsurface flow constructed wetlands using a System Thinking Environment ... 1165
C. Defo and R. Kaur

Multi-criteria evaluation of wastewater treatment technologies in constructed wetlands 1171
B. Srdjevic, Z. Srdjevic and K. Suvocarev

Assessment at mid-Black Sea coast of Turkey for recovery valuable heavy metals from sediments .. 1179
A. Şimşek and G. Bakan

Evaluation of clogging in HSF pilot-scale CWs using tracer experiments 1185
G.D. Gikas, V.A. Papaevangelou, K. Moutsopoulos and V.A. Tsihartizis

Earth Observation based monitoring in Natura-2000 sites, providing ecosystem services for their adaptive management .. 1191
A. Zouboulis, A. Tsirika, E. Terzopoulou, G. Skoufas, I.-D. Adamakis, S. Kyriakidis,
V. Liakopoulos, N. Tziolas and G. Zalidis

Water quality estimation in Greek lakes from Landsat 8 multispectral satellite data 1199
E. Kontopoulos, P. Kolokoussis and K. Karantzas
Assessment of the environmentally minimum lake level based on morphological features 1205
C. Doulgeris, P. Georgiou, A. Apostolakis, D. Papadimos, Di. Zervas, O. Petriki, D. Bobori,
D. Papamichail, V. Antonopoulos, C. Farcas and P. Stålnacke

Critical review of adaptation strategies for the restoration of Lake Koronia 1211
D. Malamataris, E. Kolokytha, I. Mylopoulos and A. Loukas

Evaluating the ecological restoration of a Mediterranean reservoir 1217
P. Sidiropoulos, M. Chamoglou and I. Kagalou

Adaptive management of Koronia ecosystem based on external-internal dynamics 1225
E. Ntonou, C. Mitraki, V.A. Tsirhintzis, T.L. Crisman and G.C. Zalidis

A comparative study of water quality in a highly frequented seacoast in Albania 1233
E. Hamzaraj, P. Lazo, A. Paparisto and R. Bami

Performance of direct contact membrane distillation for simulated dyeing
wastewater treatment .. 1239
M. Lou, L. Ding, F. Zhao, F. Li, C. Ma, Q. Tian and Y. Liu

Stable isotopes (dD & dO) and major ion chemistry of surface waters in Tajikistan,
arid Central Asia ... 1245
Q. Li, J. Wu and H. Zeng

New, energy saving, cleaning procedures in MBR systems ... 1253
L. Lintzos, K. Chatzikonstantinou, N. Tzamtzis and S. Malamis

Comparative study of the environmental state of Ohrid and Prespa Lakes, Albania 1261
A. Shehu, M. Vasjari, S. Duka, L. Vallja and N. Broli

Water quality in Osumi, Devolli and Shkumbini rivers, using benthic invertebrates 1269
B. Pepa, A. Paparisto, E. Keci and E. Halimi

Assessment of pollution pressure over water bodies in Thessaly region 1275
D. Dinouli, P.T. Nastos and A. Papaioannou

Study of contamination of the transboundary river Kura in Georgia 1283
E. Bakradze, G. Kuchava and L. Shvilashvili

Biodiversity indices and nutrient load assessment in Ishmi River, Albania, during 2012-2013 1289
E. Keçi, B. Pepa, A. Paparisto and S. Duka

Possibility of artificial beach nourishment using crushed limestone aggregate 1295
S. Juradin, M. Rajkovic and M. Vranjes

The impact of drinking water on the prevalence of H. Pylori in humans in Elbasan, Albania .. 1301
S. Mali, L. Vrushi and N. Hila

Groundwater contamination from uninsulated sewage tanks in an eastern
Hungarian settlement ... 1305
T. Mester, G. Szabó, G. Karancsi and D. Balla

Linkages between physicochemical status and hydromorphology in Greek lakes
under WFD policy .. 1311
E. Mavromati, I. Kagalou, D. Kemitzoglou, A. Apostolakis and V. Tsiaoussi

Relationship between water yield and water quality in broadleaf forested watersheds 1319

Water quality model of Alibeykoy watershed and LID implementation 1325
S. Gulbaz and C.M. Kazezyilmaz-Alhan
Change of land use and soil coverage in the area of influence of natural national park
Los Nevados .. 1331
D.A. Patino Rincon, S.A. Camargo, D. Rey, J.J. Velez and J. Zambrano

Comparison of two habitat modeling approaches for the determination of the ecological flow 1339
G. Papadonikolaki, A. Stamou, E. Dimitriou, M.-D. Bui and P. Rutschmann

Annual sediment yield prediction by means of three soil erosion models at the basin scale 1345
K. Kaffas, V. Hrissanthou

Bioavailability of metals in soils irrigated by synthetic wastewater: Metal speciation 1353
S.I. Korfali and H. Karaki

Finding a sustainable balance in the water food nexus – Socio-economic transformation in an
agricultural catchment .. 1361
M. Roobavannan, J. Kandasamy, S. Pande, S. Vigneswaran and M. Sivapalan

Assessing the quality of bottled water brands using a new water quality index 1369
V. Tsakiris, D. Alexakis and V.A. Tsirhrintzis

GIS-based spatial decision support system for the optimum siting of offshore windfarms 1375
E. Sourianos, K. Kyriakou and G.A. Hatiris

Development of an updated water quality index based on legislation and experts’ opinion .. 1383
F. Iakovidou, E. Trikoloidou, G. Samiotis, A. Stamos, L. Tsikritzis and E. Amanatidou

Water management in nuclear power plant using advanced low-temperature systems 1393
G. Zakrzewska – Koltuniewicz

Productivity analysis based on fuzzy logic on paddy area irrigated by varied water sources 1399
B. Aydin and Y. Ahi

Wastewater treatment by solar air gap multi-stage membrane distillation 1407
I.J. Siddique, R. Bahar, S. Ibrahim and M.H.F. Al Hazza

VI. Urban Water Networks .. 1411

Efficient parallel evolutionary optimization algorithm applied to a water distribution system 1413
T.T. Tanyimbohand A.G. Seyoum

Modeling and optimization control of a hybrid water system .. 1421
H. Mu, T. Rauschenbach, D. Karamanzia and N. Cai

Using bayesian networks for risk assessment of real losses in water distribution systems 1429
M. Tabesh, N.R. Faghihi, A. Roozbanah, R. Heidarzadeh and B. Roghani

Diagnosis of water pipeline systems by frequency domain analysis 1437
M. Ferrante and C. Capponi

Reliability-based design of water distribution networks considering mechanical failures 1445
S. Sirsant and M.J. Reddy

Stochastic gradient methods for the optimization of water supply systems 1453
A.A. Gaivoronki, J. Napolitano and G.M. Sechi

Spectral analysis and topological and energy metrics for water network partitioning of
Skiathos island .. 1461
and D. Kofinas
Waterloss detection in streaming water flow timeseries using change-point anomaly methods...... 1467
S.E. Christodoulou, E. Kourt and A. Agathokleous

Towards resilient water networks by using resilience key performance indicators 1473
D. Ayala-Cabrera, O. Piller, J. Deuerlein and M. Herrera

Data mining for household water consumption analysis using self-organizing maps...................... 1481
A.E. Ioannou, D. Kofinas, A. Spyropoulou and C. Laspidou

Incorporating uncertainty in the design of water distribution systems ... 1487
M. Spiliotis and G. Tsakiris

Pressure dependent analysis for managing contaminant propagation in water supply systems........... 1495
M. Zafari, M. Tabesh and S. Nazif

Evolution of water supply infrastructures of Thessaloniki city, Hellas, through centuries 1503
S. Yannopoulos, A. Kaliafa-Saropoulou, E. Gala-Georgila and E. Eleftheriadou

Water demand management in Europe: Reducing household water consumption in four cities from 1995 to 2015 .. 1511
M. Stavenhagen, C. Tortajada and J. Buurman

Impact of water pricing policy and climate change on future water demand in Volos, Greece 1519
N. Mylopoulos, C. Fafoutis, S. Sfyris and A. Alamanos

Domestic water demand forecasting for Makkah, Saudi Arabia... 1527
M.F.M. Abushammala and A.K. Bawazir

The role of rainwater harvesting on providing vegetation water requirement in arid and semi-arid regions ... 1535
M.T. Dastorani, B. Kouhzad, A. Sepehrand A. Talebi

Robustness and vulnerability assessment of water networks by use of centrality metrics 1543
A. Agathokleous, C. Christodoulou and S.E. Christodoulou

The role of domestic rainwater harvesting systems in storm water runoff mitigation..................... 1551
I. Gnecco, A. Palla and P. La Barbera

Water efficiency indicators studies and energy applied to real water distribution system of south of Minas Gerais - Brazil .. 1559
F.G.B. Silva, F.R. Soares, M.R. Andrade and D.O. Sant’Ana

Relationship between Hazen-William coefficient and Colebrook-White friction factor: Application in water network analysis... 1567
M. Niazzar, N. Talebeydokhti and S.H. Afzali

VII. Agricultural Water Management .. 1575

Accuracy of daily PM-ETo estimations with ERA-Interim reanalysis products 1577

Proving the contribution of a seasonal shallow water table to evapotranspiration 1585
G. Bourazanis, I. Argyrokastritis and P. Kerkides

Temporal variation of reference evapotranspiration and regional drought estimation using SPEI method for semi-arid Konya closed basin in Turkey .. 1593
A.S. Anli

Calculation of the irrigation water needs spatial and temporal distribution in Greece 1601
K.X. Soulis and D.E. Tsesmelis

Daily transpiration of a single sessile oak measured by the tissue heat balance method 1609
M.S. Ozcelik
Impact of climate change on water footprint of wheat, rice and potato (case study: Iran) 1615
 M. Montaseri and N.R. Majd

Water buyback in agriculture: What can we expect? ... 1623
 C.D. Perez-Blanco and C. Gutierrez-Martin

Sustainability assessment of agricultural production through causal loop diagrams 1631
 R. de Vito, I. Portoghese, A. Pagano, R. Giordano, M. Vurro and U. Fratino

Estimation of crop water requirements using remote sensing for operational water resources management ... 1637
 J. Tzabiras, M. Spiliotopoulos and A. Loukas

Economic productivity of irrigation water and the closure of a river basin in Southern Spain 1645
 A. Exposito and J. Berbel

Parameterization of "canopy resistance" and estimation of hourly latent heat flux over a crop 1653
 A. Margonis, G. Papaioannou, P. Kerkides and G. Bourazanis

A methodology to determine the productivity - reliability curve as a tool for improving water management in the agricultural sector ... 1661
 A. Chavez-Jimenez, A. Granados and L. Garrote

Water Footprint for cotton irrigation scenarios utilizing CROPWAT and AquaCrop models 1669
 M. Zoidou, I.D. Tsakmakis, G.D. Gikas and G. Sylais

Mathematical analyses of water management’s effects on rice productions: A case study of Mae Kuang Udom Thara Dam, Thailand ... 1675
 C. Likasiri and E. Duangdai

Correction and sensitivity analysis of Hargreaves - Samani model in the estimation of the reference evapotranspiration (case study: Gonabab city in Iran) 1681
 A. KhasheiSiuki, F. Sarvari and M. PourrezaBilondi

Pollution control by agroforestry systems: A short review .. 1689
 G. Pavlidis and V.A. Tsihrintzis

Spatial interpolation of potential evapotranspiration for precision irrigation purposes 1695
 N. Malamos, I.L. Tsirogiannis, A. Tegos, A. Efstratiadis and D. Koutsoyiannis

The effect of Yazd wastewater on forage quantity and quality of Atriplex lentiformis 1703
 A.A. Karimian and M. Ebrahimi

Spatial and temporal assessment of potential soil erosion over Greece 1707
 A.P. Kazamias and M. Sapountzis

Water availability and requirements for precision agriculture in vulnerable agroecosystems 1715
 N.R. Dalezios, N. Dercas, N.V. Spiropoulos and E. Psomiadis

Modelling sustainable smart islands using harmony search: A water-energy nexus initiative in Greece .. 1723
 I. Kougiias, S. Szabo, A. Nikitas and N. Theodossiou

Multi-objective optimization for irrigation deficit through cascade reservoirs 1731
 M.U. Rashid, S.S. Haider, M. Latif and N.A. Raja

Irrigation with highly saline water: A new innovative water treatment system evaluated for vegetable production in greenhouse ... 1739
 A. Gertsis and K. Zoukidis

Irrigation water pricing in the countries of the OECD – Modern trends and critical review:
 The Greek case .. 1747
 I. Giannopoulou, E. Eleftheriadou and S. Yannopoulos
Irrigation of walnut trees in the vicinity of Hisareyn - Gölcük / Kocaeli, Turkey 1755
F. Dokmen, Y. Ahi and D.D. Koksal

Soil water electrical conductivity determination based on the salinity index concept 1759
G. Kargas, P. Mougou, A. Petsetidi and P. Kerkides

Assessing the vulnerability of water for agricultural use to climate change: The case of Cyprus …… 1767
D. Charchousi, M.P. Papadopoulou, K. Spanoudaki, D. Alexakis, C. Giannakopoulos and A. Karali

Utilizing earth observation systems towards the implementation of Nexus approach for achieving sustainable water management at a river basin scale ... 1773
G. Zalidis

Evaluation of the water footprint and water use efficiency in a high density olive (Olea europea L.)
grove system ... 1779
A. Gertsis, K. Zoukidis and A. Mavridis

Regulation and mitigation services of forests as the components of urban resilience 1787
B. Uygur Erdogan

Wastewater treatment and reuse for irrigation as alternative resource for water safeguarding in Sous-Massa region, Morocco .. 1795
M.Malki, L. Bouchaou, I. Mansir, H. Benlouali, A. Nghira and R. Choukr-Allah

Bioenergy water footprints, comparing first, second and third generation feedstocks for bioenergy supply in 2040 ... 1803
P.W. Gerbens-Leenes

VIII. Groundwater Hydrology and Contamination .. 1811

Space-time modelling of aquifer level using novel geostatistical tools 1813
E.A. Varouchakis, P.G. Theodoridou and G.P. Karatzas

Artificial neural networks and particle swarm optimization based model for the solution of
groundwater management problem ... 1819

Vulnerability of groundwater to pollution using three different models in Halabja Saidsadiq
basin, Iraq ... 1827
T.O. Abdullah, S.S. Ali, N.A. Al-Ansari and S. Knutsson

Artificial intelligence and regression analysis in predicting ground water levels in
public administration ... 1835
G.N. Kouziokas, A. Chatzigeorgiou and K. Perakis

Ground water risk management using dynamic bayesian networks and PROMETHEE method …… 1841
A. Roozbhani, E. Ebrahimi and M.E. Banihabib

Analytical solutions to groundwater flow around wells using discharge potential 1849
S. Korkmaz

Management of coastal hydrosystems through the application of free and open source
software tool FREEWAT .. 1857
M. Perdikaki, C. Pouliaris, I. Borsi, R. Rossetto and A. Kallioras

Modifying SINTACS method to assess groundwater vulnerability and pollution risk to nitrate ….. 1863
G. Busico, N. Colombani, E. Cuoco, M. Mastrocicco, M. Sirna and D. Tedesco
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of head-guided zonation method to delineate groundwater</td>
<td>1869</td>
</tr>
<tr>
<td>vulnerability zones in a data-scarce catchment</td>
<td></td>
</tr>
<tr>
<td>D.K.S.Y. Klaas, M.A. Imteaz and A. Arulrajah</td>
<td></td>
</tr>
<tr>
<td>Impact of land-use change on a multilayer aquifer in south-eastern</td>
<td>1873</td>
</tr>
<tr>
<td>coast of Caspian Sea</td>
<td></td>
</tr>
<tr>
<td>I. Karimirad, K. Ebrahimi and S. Araghinejad</td>
<td></td>
</tr>
<tr>
<td>Hydrochemical and qualitative assessment of natural water spring in</td>
<td>1881</td>
</tr>
<tr>
<td>southern Italy</td>
<td></td>
</tr>
<tr>
<td>S. Gaglioti, E. Infusino, T. Caloiero and G. Callegari</td>
<td></td>
</tr>
<tr>
<td>Mechanism of controlling seawater intrusion at coastal aquifers</td>
<td>1889</td>
</tr>
<tr>
<td>using subsurface barrier</td>
<td></td>
</tr>
<tr>
<td>R. Shafiee, S.S. Mehdizadeh and A.S. Gooya</td>
<td></td>
</tr>
<tr>
<td>Long term monitoring of aquifer salinization processes in a physical</td>
<td>1895</td>
</tr>
<tr>
<td>analog model</td>
<td></td>
</tr>
<tr>
<td>N. Colombani, B.M.S. Giambastiani and M. Mastrocicco</td>
<td></td>
</tr>
<tr>
<td>A three dimensional modeling approach to groundwater management in</td>
<td>1899</td>
</tr>
<tr>
<td>Paharpur canal command area, Dera Ismail Khan, Pakistan</td>
<td></td>
</tr>
<tr>
<td>A. Khan, A. Qadir, M. Zafarand T. Khan</td>
<td></td>
</tr>
<tr>
<td>Hydrogeological and hydrochemical regime of fissured rocks in Pelion</td>
<td>1905</td>
</tr>
<tr>
<td>massif (E. Thessaly)</td>
<td></td>
</tr>
<tr>
<td>E. Dikarou, G. Migiros, G. Stamatis, K. Serelis and A. Solomonidou</td>
<td></td>
</tr>
<tr>
<td>Updated groundwater vulnerability evaluation at a coastal aquifer</td>
<td>1913</td>
</tr>
<tr>
<td>system in NE Greece</td>
<td></td>
</tr>
<tr>
<td>G. Eminoglou, I. Gkiougkas, A. Kallioras and F.-K. Pliakas</td>
<td></td>
</tr>
<tr>
<td>Use of remote sensing and electrical resistivity tomography to</td>
<td>1919</td>
</tr>
<tr>
<td>determine Tidsi spring recharge and underground drainage</td>
<td></td>
</tr>
<tr>
<td>M. Hssaisoune, S. Boutaleb, L. Bouchaou, M. Benssaou and T. Tagma</td>
<td></td>
</tr>
<tr>
<td>Environmental impacts of urbanization in hydrogeological systems</td>
<td>1925</td>
</tr>
<tr>
<td>A. Mitropapas, A. Panagopoulos, G. Karatzas and A. Kallioras</td>
<td></td>
</tr>
<tr>
<td>A two-dimensional analytical model for tide-induced groundwater</td>
<td>1933</td>
</tr>
<tr>
<td>fluctuation in leaky aquifers</td>
<td></td>
</tr>
<tr>
<td>M.-H. Chuang and H.-D. Yeh</td>
<td></td>
</tr>
<tr>
<td>Pumping optimization in coastal aquifers: Comparison of sharp</td>
<td>1941</td>
</tr>
<tr>
<td>interface and density dependent models</td>
<td></td>
</tr>
<tr>
<td>G. Kopsiafitis, V. Christelis and A. Mantoglou</td>
<td></td>
</tr>
<tr>
<td>Towards sustainable management of groundwater: A case study of semi-</td>
<td>1949</td>
</tr>
<tr>
<td>arid area, Iraqi Kurdistan region</td>
<td></td>
</tr>
<tr>
<td>M. Nanekely, M. Scholz and S. Qarani Aziz</td>
<td></td>
</tr>
<tr>
<td>Assessing groundwater use in irrigation districts with multiple</td>
<td>1957</td>
</tr>
<tr>
<td>resources (MIGRAD)</td>
<td></td>
</tr>
<tr>
<td>D. Zingaro, I. Portoghese, A. Pagano, R. Giordano and M. Vurro</td>
<td></td>
</tr>
<tr>
<td>Using groundwater flow simulation of the Chania Plain area to propose</td>
<td>1965</td>
</tr>
<tr>
<td>a proper irrigation plan</td>
<td></td>
</tr>
<tr>
<td>C. Goumas, Z. Dokou, G.G. Morianou, N.N. Kourgielas and G.P. Karatzas</td>
<td></td>
</tr>
<tr>
<td>Sustainable use of groundwater for irrigated agriculture: A case</td>
<td>1973</td>
</tr>
<tr>
<td>study of Punjab, Pakistan</td>
<td></td>
</tr>
<tr>
<td>G.Z. Hassan and F.R. Hassan</td>
<td></td>
</tr>
<tr>
<td>Physics-based and data-driven surrogate models for pumping</td>
<td>1979</td>
</tr>
<tr>
<td>optimization of coastal aquifers</td>
<td></td>
</tr>
<tr>
<td>V. Christelis and A. Mantoglou</td>
<td></td>
</tr>
<tr>
<td>Phreatic/confined flows in polygons: Dufuit-Forchheimer model versus</td>
<td>1987</td>
</tr>
<tr>
<td>potential solutions</td>
<td></td>
</tr>
<tr>
<td>A.R. Kacimov, A. Al-Maktoumi and Y.V. Obnosov</td>
<td></td>
</tr>
<tr>
<td>Comparison of SGD rate between northern-southern coastlines of the</td>
<td>1995</td>
</tr>
<tr>
<td>Persian Gulf using RS</td>
<td></td>
</tr>
<tr>
<td>M. Farzin, A. Nazari Samani, S. Feiznia, G.A. Kazemi and I. Golzar</td>
<td></td>
</tr>
<tr>
<td>Groundwater flow simulation in confined aquifer by meshless element</td>
<td>2003</td>
</tr>
<tr>
<td>free Galerkin method</td>
<td></td>
</tr>
<tr>
<td>T. Pathania and A.K. Rastogi</td>
<td></td>
</tr>
</tbody>
</table>
IX. Legislation and Policies

Sustainable restoration of the Urmia lake: History, threats, opportunities and challenges 2013
M. Soudi, H. Ahmadi, M. Yasi and S.A. Hamidi

Measuring sustainable delivery of water, sanitation and hygiene services at the household level: Does the measure matter? ... 2021
R. Giné-Garriga and A. Pérez-Foguet

Water market and its effects on the sustainable management of water resources in Chile 2029
Nicole Kretschmer, Ricardo Oyarzun, Pablo Alvarez, Jose Arumi

Prototype observatory facilitating integrated coastal zone management at municipal level 2037
N. Kokkos, V. Kaplakis, V. Pissinatas and G. Sylaios

Legislative framework for drinking water (re)sources monitoring in the Adriatic region 2043
B. Karleusa and B. Matic

Ecological flows and the Water Framework Directive implementation: An effective coevolution? .. 2051
Vanessa Ramos, Nuno Formigo, Rodrigo Maia

Underground taming of floods in the Ganges basin: Technologies, institutions and policies 2061
V. Ratna Reddy, S.K. Rout and P. Pavelic

Environmental crimes in the water sector .. 2069
L. Segato, W. Mattioli, N. Capello and M. Migliorini

Grounded theory methodology and public participation in water management 2077
Z. Srdjevic, N. Funamizu, B. Srdjevic and R. Bajcetic

The Non-Conventional Water Resources (NCWR) programme in north Mediterranean 2083
M. Antonakopoulou, K. Toli, V. Constantinios, and M. Scouilos

Towards 3D modelling of public law restrictions in water bodies .. 2091
D. Kitsakis and I. Papageorgaki

A road map for resolving conflicts in dam’s administration: The case of Peiros - Parapeiros

dam in Greece .. 2099
M.V. Podimata and P.C. Yannopoulos

A perspective to wastewater legislation in European Countries and Turkey 2107
H.T. Gultas, A.H. Orta and Y. Ahi
Vulnerability of groundwater to pollution using three different models in Halabja Saidaq basin, Iraq

T.O. Abdullah¹, S.S. Ali², N.A. Al-Ansari³* and S. Knutsson³

¹ Department of Geology, University of Sulaimani, Kurdistan Region, NE Iraq and Department of Civil, Environmental and Natural Resources and Engineering, Division of Mining and Geotechnical Engineering, Lulea University of Technology, Sweden
² University of Sulaimani, Kurdistan Region, NE Iraq
³ Department of Civil, Environmental and Natural Resources and Engineering, Division of Mining and Geotechnical Engineering, Lulea University of Technology, Sweden
* e-mail: nadhir.alansari@ltu.se

Abstract: Halabja Saidaq Basin (HSB) is one of a major basin of Iraq in terms of groundwater reservoirs. Intensive agricultural practices and economic revolution are widespread and located close to groundwater wells, which pose imminent threats to these resources. Therefore, the most effective and realistic solution is to prevent the contamination of groundwater through. The present study targets the computation of the vulnerability of groundwater reservoirs of the study area. Three methods have been examined, namely DRASTIC, VLDA and COP to model a map of groundwater vulnerability for contamination. The standard DRASTIC vulnerability maps classified the basin of four vulnerability index zones: very low (34%), low (13%), moderate (48%) and high (5%). The VLDA model also classified the area into four categories as well: low (2%), moderate (44%), high (53%) and very high (1%). Four vulnerability classes were recognized based on COP model including very low, low, moderate and high vulnerability classes with coverage areas of (1%, 37%, 2% and 60%) respectively. After constructing every vulnerability map, it required to be confirmed in order to estimate the validity of the theoretical sympathetic of current hydrogeological conditions. In this study, nitrate concentration analysis was selected as a contamination indicator to validate the result. Considerable variations in nitrate concentration on dry to wet seasons had been renowned. Consequently, it points toward that groundwater in the HSB are capable to receive the contaminant due to suitability of overlies strata in terms of geological and hydrogeological conditions. Based on this confirmation, the result exemplifies that the degree and distribution of vulnerability classes acquired using VLDA model is more sensible.

Key words: Vulnerability, DRASTIC, VLDA, COP, Nitrate concentration, Halabja Saidaq Basin (HSB)

1. INTRODUCTION

The Halabja and Saidaq Basin (HSB) is one of the most important basins in terms of water groundwater aquifers. The concentration of economic, agricultural and social activities within the basin makes it of great importance to the region. The improvement in the economy, its development and comprehensive agricultural activities are extensive and are located near groundwater wells, posing imminent threats to these resources. From the perspective of these developments, there is an expansion of human quantities that make a line to live in this basin and the surrounding areas. This is forcing increasing attention to water, which has placed significant weight on water resources. Therefore, groundwater pollution is of particular concern as groundwater resources are the main source of water for drinking, agriculture, irrigation and industrial activities.

Groundwater vulnerability is a measure of how easy or how hard it is for pollution at the land surface to reach a productive aquifer. The vulnerability studies can provide valuable information about stakeholder working on preventing further deterioration of the environment (Mendoza & Barmen, 2006). To simplify the identification of the groundwater state and to resist the pollutants in the reservoirs, several methods were recommended such as DRASTIC, VLDA, COP, GOD, SINTACS, etc. These different methods are offered under the form of numerical excerpt systems based on the negotiation of the different factors affecting the hydrogeological system (Attoui and Bousnoubra 2012).
In HSB, different vulnerability models have been applied previously; while it is very important to confirm the calculated vulnerability model reflecting the real vulnerability system in the region. Therefore, the primary objective of the present study is to compare the vulnerability map of three different models, DRASTIC, VLDA and COP, to choose a more reasonable model to be applied in the area to protect groundwater from pollution.

2. STUDY AREA

The study basin is located in the northeastern part of Iraq (Figure 1), geographically it is located between the latitude 35° 00' 00" and 35° 36' 00" N and the longitude 45° 36' 00" and 46° 12' 00" E. The entire study area is about 1278 square kilometers and its population of about 190,727 in early 2015. Ali (2007) divided this basin of two sub-basins including Halabja- Khurmal and Said Sadiq sub-basins. Nearly 57% of the studied area is an arable area due to its suitability for agriculture (Statistical Detectorate, 2014).

2.1 Geology and hydrogeological setting

Geologically, the studied area is located within Western Zagros Fold-Thrust Belt. Structurally, it is located within the High Folded zone, imbricated, and thrusted zone. Different geological formations were exposed to the basin, these formation consists of limestone, dolomitic limestone and conglomerate which have an effective role in the vulnerability system in the basin. Alluvial (Quaternary) deposits are the most important unit in the area in terms of hydrogeological characteristics and water supply. The thickness of these deposits as observed by (Abdullah et al, 2015 a) of about nearly 300 m.

Hydrogeologically, different groundwater aquifers exist in the area based on its geological origin, Table 1. The mountain series, which surround the basin of the northeast and southeast, are characterized by high depth of groundwater, while toward the center and the southeastern part, the groundwater level has a relatively lower depth. A groundwater movement is usually from high elevated areas at the north and northeast and south and southeast towards southwest or generally toward the reservoir of Derbandikhan Dam.
Table 1. Type of aquifers in the study basin.

<table>
<thead>
<tr>
<th>Aquifer type</th>
<th>Geological formation</th>
<th>Thickness (m)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intergranular</td>
<td>Quaternary deposits</td>
<td>more than 300</td>
<td>Abdullah 2015 a</td>
</tr>
<tr>
<td>Fissured</td>
<td>Balambo,Kometan</td>
<td>250</td>
<td>Ali,2007</td>
</tr>
<tr>
<td>Fissured-Karstic</td>
<td>Jurassic formation</td>
<td>From 80 to 200</td>
<td>Jassim and Goff,2006</td>
</tr>
<tr>
<td>Non-Aquifer (Aquitard)</td>
<td>Qulqula</td>
<td>more than 500</td>
<td>Jassim and Goff,2006</td>
</tr>
<tr>
<td></td>
<td>Shiranish</td>
<td>225</td>
<td>Jassim and Goff,2006</td>
</tr>
<tr>
<td></td>
<td>Tanjero</td>
<td>2000</td>
<td>Jassim and Goff,2006</td>
</tr>
</tbody>
</table>

3. METHODOLOGY

To study groundwater vulnerability in this basin, three different models were applied with the aid of GIS technique. The first applied model is DRASTIC, which is consist of seven physical parameters. The most important parameters that control groundwater contamination comprise to be the depth to water (D), Net recharge (R), Aquifer media (A), Soil media (S), Topography (T), Impact of vadose zone media (I), and Hydraulic conductivity (C). These parameters are weighted from one to five based on their relative significance of contributing to the contamination potential. Each parameter characterized by different rating and weighting to value. The achieving index is a qualified measure of vulnerability to contamination; areas with a higher index value are more vulnerable than those with a lower index. The standard DRASTIC index (DI(w-r)) calculated is based on the following equation, (Aller et al,1987):

\[
DI = DwDr + RwRr + AwAr + SwSr + TwTr + IwIr + CwCr
\]

where:
DI is the DRASTIC Index, (D, R, A, S, T, I and C) are the seven parameters
w is the weight parameter and r is the rate of the parameter as recommended by (Aller et al, 1987).

The second applied model is VLDA, principally it reflect lithology of vadose zone (V), pattern of land use (L), groundwater depth (D), and aquifer characteristics (A), (Zhou et al, 2012). In addition, consistent weight can be assigned to each of the four indexes depending on its impact on groundwater vulnerability.

The vulnerability comprehensive assessment index (DI) is the sum of the above-mentioned weighted four indexes, as computed conferring to the following formula, (Zhou et al, 2012):

\[
DI = \sum_{j=1}^{4} (WijRij)
\]

where DI is the comprehensive assessment index, Wij is the weight of the jth comprehensive assessment index of the ith sub-system, Rij is the value of the jth assessment index of the ith subsystem; 4 is the quantity of indexes.

The slighter the DI signifier to the lower vulnerability of the groundwater system and the better the stability will be. For evaluating the groundwater vulnerability, the new corresponding weights in HSB were proposed using sensitivity analysis method (Abdullah 2015 b). According to the result of sensitivity analysis, the proposed weights used for VLDA model measured as 8.2, 4.8, 5.2 and 4.8, and after normalization, the weight is 0.357, 0.209, 0.226 and 0.209, respectively, (Abdullah 2016a).

The third applied model is COP; its abbreviation comes from the three initials of factors namely flow Concentration (C), Overlying layers (O) and Precipitation (P) (Vias et al., 2006). The hypothetical basis of this strategy, as indicated by the European Approach (Daly et al., 2002) and (Goldscheider and Popescu, 2004), it is to evaluate the ordinary protection for groundwater (O variable) controled by the properties of overlying soils and the unsaturated zone, and also to measure how this assurance can be adjusted by diffuse, infiltration (C factor) and the climatic conditions (P Factor – precipitation). The COP-Index map was computed from equation 3
(Abdullah et al., 2016b; Vias et al., 2006):

\[
\text{COP Index Map} = C*O*P
\] \hspace{1cm} (3)

4. RESULT AND CONCLUSIONS

After the weighted scores were attained for all parameters in each model, the GIS technique was used to combine all layers. The Standard DRASTIC models to reveal four zones of vulnerability index to comprise very low, low, moderate and high vulnerability index, Figure 2. The moderate and very low vulnerability zones which covering an area of 48% and 34% of the whole studied area respectively. The moderate vulnerability zone occupies two different areas; the first zone is the area of mountains surrounding the studied basin comprises the fissure and karstic aquifer. While the second area comprise the Quaternary deposits surrounding the area of Derbandikhan Lake in the southwest of the basin. Furthermore, the zone with low vulnerability comes in the third sequence and occupies 13% of the overall surface of the basin. The zone with high vulnerability indexes cover only 5% of the total area and located in the centre of the basin, this area is characterized by the area of high water table level and of fractured limestone type of an aquifer.

![Figure 2. DRASTIC Vulnerability Index Map of HSB](image)

The vulnerability outcome based on VLDA model, reveals that a total of four ranges of vulnerability indexes had been distinguished ranging from low to very high, with vulnerability indexes \(2.133-4, >4-6, >6-8\) and \(> 8\), Figure 3. The area of low and very high vulnerability zone of 2% and 1% of whole study area respectively. The High vulnerability classes occupied most of the mountains area that surrounding the basin and the central part of HSB. This vulnerability zone covered an area of 53% of whole area. Finally, medium vulnerability zones to cover an area of 44% of all studied area and positioned southeast and northwest. Both high and moderate vulnerability class that occupied most of the studied basins refer to the exhaustive human activities, good water yield property and lithological composition of an aquifers.
Four classes of vulnerability ranging from very low to high are branded depending on the COP model, Figure 4. High vulnerability zones which cover an area of 60% of the whole HSB, geologically includes the area of a fissure and slight karstic carbonate rocks. While, low vulnerability class comes in the second order and occupy 37% of the whole area, this area mostly characterized by alluvial deposits. The zone with moderate and very low vulnerability classes cover only 2% and 1% of the total area respectively.

Figure 3. VLDA Vulnerability Index Map of HSB

Figure 4. COP Vulnerability Index Map of HSB
4.1 Validation of the result

The significant dissimilarity has been illustrious from all applied models. So validation of vulnerability maps for these three models became obligatory, therefore nitrate concentration analysis has been selected. Nitrate as a pollution indicator can be supportive to distinguish the evolution and changes of groundwater quality. In the particular study case, the nitrate differences between two following seasons (dry and wet) were analyzed from (30) watering wells. The result illustrates considerable variations in nitrate concentration on dry to wet seasons, Figure 5. Based on this validation, it can be confirmed that HSB is capable of receipt the contaminant due to suitability in geological and hydrogeological conditions. Based on this verification, the degree and distribution of level of vulnerability acquired using VLDA model are more sensible than that attained from the standard DRASTIC and COP models. With increasing nitrate concentration the vulnerability rates increased too, because land to use patterns is considered being one of the most effective factors of VLDA model and this parameter dose not included in DRASTIC and COP models.

![Figure 5. Comparison of all applied models with nitrate concentration.](image)

5. CONCLUSION

Three different methods particularly standard DRASTIC, VLDA and COP have been applied to assess the potential vulnerability of HSB to groundwater contamination. The values of the standard DRASTIC vulnerability indexes ranged between (63 and 191), the VLDA indexes with values ranging from (2-9), the values of the COP indexes ranged between (1-6). The higher index value for both DRASTIC and VLDA models means higher vulnerability category, while the lower index value of COP model means higher vulnerability class.

The vulnerability classes are elucidated in Table 2, all models to clarify four vulnerability classes. DRASTIC and COP models comprises (very low to high), while VLDA model embraces (low to very high). The significant dissimilarity has been illustrious from all applied models. Therefore, validation of achieved vulnerability maps becomes compulsory. Nitrate as a pollution indicator from agricultural processes can be supportive to distinguish the evolution and changes of groundwater quality. The result illustrates considerable variations in nitrate concentration on dry to wet seasons. So it can be concluded that groundwater in HSB is capable of receiving the contaminant. Based on this verification, Figure 5 demonstrates that the degree and distribution of level of vulnerability acquired using the VLDA method is more sensible than that attained from
both standard DRASTIC and COP methods.

Table 2. Result of index ratio for all applied models.

<table>
<thead>
<tr>
<th>Vulnerability class</th>
<th>DRASTIC rate %</th>
<th>VLDA rate %</th>
<th>COP rate %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>34</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Low</td>
<td>13</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>Medium</td>
<td>48</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>High</td>
<td>5</td>
<td>53</td>
<td>60</td>
</tr>
</tbody>
</table>

REFERENCES

