
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2017

Fast and Scalable Static Analysis
using Deterministic Concurrency

PATRIK ACKLAND

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION

Fast and Scalable Static Analysis using
Deterministic Concurrency

PATRIK ACKLAND

Master in Computer Science
Date: July 10, 2017
Supervisor: Philipp Haller
Examiner: Mads Dam
Swedish title: Snabb och skalbar statisk analys med hjälp av deterministisk
samtida exekvering
School of Computer Science and Communication

i

Abstract

This thesis presents an algorithm for solving a subset of static analysis data flow prob-
lems known as Interprocedural Finite Distribute Subset problems. The algorithm, called
IFDS-RA, is an implementation of the IFDS algorithm which is an algorithm for solving
such problems. IFDS-RA is implemented using Reactive Async which is a deterministic,
concurrent, programming model. The scalability of IFDS-RA is compared to the state-of-
the-art Heros implementation of the IFDS algorithm and evaluated using three different
taint analyses on one to eight processing cores. The results show that IFDS-RA performs
better than Heros when using multiple cores. Additionally, the results show that Heros
does not take advantage of multiple cores even if there are multiple cores available on
the system.

ii

Sammanfattning

Detta examensarbete presenterar en algoritm för att lösa en klass av problem i statisk
analys känd som Interprocedural Finite Distribute Subset problem. Algoritmen, IFDS-
RA, är en implementation av IFDS algoritmen som är utvecklad för att lösa denna typ av
problem. IFDS-RA använder sig av Reactive Async som är en deterministisk programme-
ringsmodell för samtida exekvering av program. Prestendan evalueras genom att mäta
exekveringstid för tre stycken taint analyser med en till åtta processorkärnor och jämförs
med state-of-the-art implementationen Heros. Resultaten visar att IFDS-RA presterar bätt-
re än Heros när de använder sig av flera processorkärnor samt att Heros inte använder
sig av flera processorkärnor även om de finns tillgängliga.

iii

Acknowledgments

I would like to thank my supervisor Philipp Haller for providing feedback and thought-
ful insights. I would also like to thank Michael Eichberg for his comments and feedback
during this process as well as for letting me run the experimental evaluation on his ma-
chine. Finally, I would like to say thank you to Erik and Olof who were part of my thesis
group at KTH for their peer reviews during the semester.

Contents

Contents iv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contribution . 2
1.4 Limitations . 2
1.5 Ethics and Sustainability . 3
1.6 Outline . 3

2 Background 4
2.1 Scala Syntax . 4
2.2 Static Analysis . 4

2.2.1 Taint Analysis . 5
2.2.2 FlowTwist . 6

2.3 Interprocedural Finite Distributive Subset . 6
2.3.1 The IFDS Algorithm . 7
2.3.2 Extensions to the IFDS Algorithm . 9
2.3.3 The Heros Implementation . 13

2.4 Reactive Async . 15
2.4.1 Cell Completer Operators . 15
2.4.2 Callbacks . 15
2.4.3 Dependencies . 16
2.4.4 Handler Pool . 16
2.4.5 Example . 16

3 Reactive Async Based IFDS 18
3.1 The Approach . 18
3.2 Implementation . 19
3.3 Comparison with Heros . 20

4 Experimental Setup 23
4.1 Metrics . 23
4.2 Test Setup . 23
4.3 Taint Analysis . 24

4.3.1 Test Setup 1 . 25
4.3.2 Test Setup 2 . 25

iv

CONTENTS v

4.3.3 Test Setup 3 . 25

5 Results 26
5.1 Test Setup 1 . 26
5.2 Test Setup 2 . 28
5.3 Test Setup 3 . 29

6 Related Work 30
6.1 Concurrent IFDS . 30
6.2 Extensions to the IFDS Algorithm . 30

6.2.1 IFDS With Correlated Method Calls . 31
6.2.2 Boomerang . 31
6.2.3 T.J. Watson Libraries for Analysis . 31

7 Discussion 32
7.1 Discussion . 32
7.2 Future Work . 34
7.3 Conclusion . 34

Bibliography 35

A Flow Functions Used For the Taint Analyses 38

Chapter 1

Introduction

1.1 Motivation

In recent years we have come to see that processor cores are no longer getting faster and
faster. To keep up with Moore’s law, computers now utilize multiple processing cores to
improve performance by executing tasks in parallel. However, writing code that takes
advantage of multiple cores is not an easy task [1]. Many programmers are not trained to
write programs for multi-core systems which leads to problems with the program code
not acting correctly because of data races and more. Writing programs for multi-core sys-
tems can also lead to programs that are implemented correctly but that do not perform
faster on multiple cores. This is due to the fact that even though the program is written
to use multiple cores, it is written in a way which does not utilize them efficiently. One
solution to this is to use a programming model which abstracts away from the details of
concurrent programming such as threads, and locks. Examples of such models are Fu-
tures [2] and Promises [3] or Reactive Async [4].

One area that benefits from faster programs is static analysis. Static analysis is an im-
portant tool for programmers to use to reason about their programs. Static analysis can
tell developers things about their program that can be difficult to see by just looking at
the code. Examples of different use cases for static analysis are within computer secu-
rity, to tell how sensitive parts of an application might be affected by certain inputs, or
variable type analysis to compute a set of possible types for each variable in a program.
The analyses can be used to improve programmer productivity by helping programmers
solve bugs in their code that might be hard to discover otherwise and also increase con-
fidence in the code being written. In order for static analysis to be useful it needs to be
fast. A tool that takes too long would not be practical since it has the opposite effect and
instead slows down the programmer.

The Interprocedural Finite Distributive Subset (IFDS) is a subset of static analysis
problems that all have certain properties. Examples of static analyses that are IFDS prob-
lems are taint analysis, type analysis, and truly-live-variable analysis. All IFDS problems
can be solved with the IFDS algorithm originally developed by Reps et al. [5]. Since the
IFDS algorithm can be used to solve a number of static analysis problems, performance
improvements for the IFDS algorithm would mean performance improvements for a
wide range of static analysis problems.

1

2 CHAPTER 1. INTRODUCTION

1.2 Problem Statement

This thesis presents an implementation of the IFDS algorithm [5] called IFDS-RA based
on Reactive Async [4] and investigates how it compares to the state of the art implemen-
tation Heros [6]. The problem statement in this thesis can be summarized with the fol-
lowing research questions:

• How does the forwards IFDS algorithm based on Reactive Async perform com-
pared to the state-of-the-art Heros implementation in terms of scalability.

• How does the bidirectional IFDS algorithm based on Reactive Async perform com-
pared to the state-of-the-art Heros implementation in terms of scalability.

This will be investigated through a taint analysis [7] formulated as an IFDS problem
which is then solved with the previously mentioned IFDS algorithms. The taint analysis
will use SOOT [8] to generate an interprocedural control flow graph of the code being
analyzed. The analyses will be run multiple times using 1,2, . . . , 8 cores to determine the
performance and scalability of the algorithms.

1.3 Contribution

The contributions of this thesis are:

• A novel, deterministic concurrent implementation of IFDS in Scala based on Reac-
tive Async;

• A novel, deterministic concurrent implementation of bidirectional IFDS in Scala
based on Reactive Async;

• New experimental results for the practical evaluation of Reactive Async;

• New experimental results for the practical evaluation of Heros.

IFDS-RA is available as an open source project on GitHub1.

1.4 Limitations

This thesis is only concerned with the scalability of the two algorithms in terms of how
they perform on 1, 2, . . . , 8 cores. Memory usage of the two algorithms is not analyzed
or discussed but could be of interest in future work. Additionally another limitation is
that the machine the evaluation is run on belongs to someone else which means there is
no control over what other tasks might be run at the same time as the evaluation. Care
was taken to make sure the machine was idle before running the algorithms.

1https://github.com/packlnd/IFDS-RA

CHAPTER 1. INTRODUCTION 3

1.5 Ethics and Sustainability

Fast and scalable algorithms that can be used for static analysis is useful in the sense that
it can help programmers ensure that their code is written correctly. It can add confidence
in programs written to make sure there are no security leaks in the program. This is im-
portant for many companies and society as a whole. Because a lot of sensitive informa-
tion is becoming digital, keeping this information secure is an important task. For a large
system it is necessary to have a fast algorithm that can analyze the large code base in a
reasonable amount of time.

Additionally, when dealing with computers and processing power, environmental
sustainability cannot be ignored. Carbon emissions from data centers are large enough
to equal carbon emissions of certain countries and is expected to increase more in the fu-
ture [9]. Basmadjian and de Meer [10] has shown that the power consumption of multi-
core systems is lower than the sum of each individual core, because some components
consume a constant amount of power regardless of the number of cores. This means
faster algorithms on multi-core systems could have environmental benefits. However the
power consumption of IFDS-RA is not analyzed in this work.

From an ethical standpoint, while no tests were performed on humans or animals,
there are a number of ethical considerations from the point of view of conducting re-
search. Efforts have been made to describe every step of the implementation presented
in this thesis and how the experimental setup was executed to make sure the results can
be reproduced. Additionally, test cases for the algorithm has been written to ensure cor-
rectness of the results. Finally, because this thesis presents an algorithm for solving static
analyses problems and particularly a taint analysis, which can be used to find to find
flaws in programs, the ethical aspects of making this work public, especially the code,
should be considered. However, because this thesis only presents an algorithm that can
run a taint analysis, and uses a publicly available taint analysis, FlowTwist, for the evalu-
ation, and compares the results to Heros, which is also publicly available, this work does
not introduce any new tools that were not already available.

1.6 Outline

The outline of the report is as follows. Chapter 2 discusses the background necessary for
understanding the thesis. This includes the theory behind IFDS problems, the IFDS al-
gorithm, extensions to the IFDS algorithm, the Heros implementation, static taint anal-
ysis, and the Reactive Async library. Chapter 3 explains the approach and implementa-
tion of the IFDS-RA algorithm. Chapter 4 discusses the experimental setup used for the
taint analysis and how it is executed. Chapter 5 shows the results of the taint analyses
for Heros and IFDS-RA Chapter 6 discusses related work that has been done on the IFDS
algorithm and finally Chapter 7 discusses the results of the taint analysis for both the
forwards algorithm and the bidirectional algorithm, mentions possible future work and
ends with conclusions.

Chapter 2

Background

2.1 Scala Syntax

This section briefly explains part of the Scala language that appear in this thesis for those
that have no background in Scala. Scala is a statically typed language which runs on top
of the Java Virtual Machine. The Scala code in this thesis is similar to Java and is used in
an object-oriented way. Table 2.1 shows the Scala keywords that are used in code exam-
ples later and what they mean. In Scala, types come after names in variable declarations
and method declarations. Finally, if the return keyword is omitted, the return value is
the last expression in the method.

2.2 Static Analysis

Program code analysis can be either static or dynamic. Static analysis analyses program
code without running it whereas dynamic analysis is reasoning about program code by
executing it. Static analysis abstracts away from the execution of a program which has
many variables such as user inputs, files, and more and reasons about conditions that
hold for every execution of the program regardless of these variables. This leads to an
analysis which holds for any execution of the program, although the results of the analy-
sis might not be as exact as for a dynamic analysis [11]. A dynamic analysis on the other
hand is performed at runtime and can give more detailed results compared to static anal-
ysis. However, because a dynamic analysis depends on its input, it is difficult to draw

Table 2.1: Table of Scala keywords

Keyword Explanation
def defines a method.
val defines a final variable.
var defines a non-final variable.
trait similar to interface in Java.
case class immutable class which exposes its constructor parameters.
Unit similar to void in Java.
Class[T] [and] is used for generics. Same as Class<T> in Java.

4

CHAPTER 2. BACKGROUND 5

conclusions that hold for the program in general as well as finding input that covers the
entire program code [11].

2.2.1 Taint Analysis

Taint analysis as described in this thesis is a static analysis which is concerned about
data flow between sources and sinks which are defined by the user and are points
of interest in the program code being analyzed [7]. The analysis taints data from sources
and propagates the tainted data through the program code. If some tainted data reaches
a sink, there is a path from a source to a sink. Taint analysis can be used for computer
security to make sure sensitive data is not leaked to users. Taint analysis can be used
both for confidentiality problems and integrity problems. For a confidentiality problem,
sources are some sensitive part of the application and sinks are parts of the program
code exposed to the user. For an integrity problem sources are public methods the user
has access to and sinks are some sensitive part of the application code.

Consider the code blow which is a small Scala program, reproduced from a Java ex-
ample in [6], which is used to represent how a taint analysis can be used to find leaks in
the program code. We define secret() to be our source and println as our sink. The
variable x is assigned some secret value which we do not want to expose to our user. In
this example, secret() is considered our source of the tainted value. After the assign-
ment to x, the analysis marks x as tainted. We provide x as an argument to the func-
tion bar which results in the parameter z in bar to be tainted. The variable z is then
returned and assigned to y which means y is now tainted. Finally y is passed as an ar-
gument to println which is our sink. We can see that a tainted value originating from
our source has reached the sink.

def foo: Unit = {
var x: Int = secret()
var y: Int = 0
y = bar(x)
println(y)

}

def bar(z: Int): Int = {
z

}

As mentioned, a taint analysis can be used for both integrity and confidentiality prob-
lems. For an integrity problem, where sources are public methods and sinks are some
sensitive part of the program code, a taint analysis as presented above would scale poorly.
This is because the number of public methods outnumber the number of sinks so the al-
gorithm would follow unnecessarily many paths, where most of them would not reach
a sink [7]. Consider, as an example the Java Class Library. Every public method would
be a source. Not all API methods use some sensitive part of the program code. Similarly
a confidentiality problem where one is interested in whether or not sensitive data can
leak from the application to a user, would face the same issue where not all access to the
sensitive data would leak it through the public API. The solution to this is to run the al-
gorithm in reverse. For an integrity problem, the algorithm would start at the sinks, of

6 CHAPTER 2. BACKGROUND

which there are fewer, and propagate tainted values until they reach a source. One type
of attack that a taint analysis can discover is a so called Confused Deputy Attack [12]. A
confused deputy attack is when some part of the program code is tricked into perform-
ing some operation which the user who invoked the operation does not have permission
to do. Because it is a combination of a confidentiality issue and an integrity issue, a taint
analysis would have to be run twice, once forwards and once backwards [7].

2.2.2 FlowTwist

FlowTwist is a state-of-the-art taint analysis developed by Lerch et al. [7] which is used
for the evaluation described in Section 4. FlowTwist handles normal execution of Java
programs such as assignments, calls, and returns. In FlowTwist, if an array index is tainted
the entire array is considered to be tainted. This reflects the limitations of a taint anal-
ysis since array indices might be user inputs which are unknown to a static analysis.
FlowTwist is able to handle often used Java objects such as StringBuilders which are
used by both developers and compilers. The flow functions used in FlowTwist is decided
by a configuration class which provides configurations for the taint analyses used in the
evaluation. Flow functions can easily be added or removed to the configuration to fit the
need of the taint analyses being executed.

The FlowTwist taint analyses are examples of real security threats for the Java lan-
guage. It consists of two different types of taint analyses. One uses calls to Class.forName
as sinks and the other uses calls to methods with annotation @CallerSensitive which
has both parameters and has a return value as sinks.

FlowTwist is implemented using SOOT which is a static analysis library developed
by Vallée-Rai et al. [8]. SOOT is used to construct a call-graph of the program code being
analyzed. The algorithm used for call-graph construction is the default in SOOT which
is an implementation of Class Hierarchy Analysis [13]. The call-graph represents the in-
terprocedural flow of a program which means calling relations between methods. SOOT
is also used to construct an interprocedural control flow graph which in addition to calls
also has the flow inside a method. SOOT provides a three-address code intermediate rep-
resentation of the program code being analyzed called Jimple which is more suitable for
flow analysis as it consists of fewer operations than Java bytecode representation and is
simpler to analyze [14]. Three-address code has the form x = y op z and is stack-less.
FlowTwist is implemented using Jimple. Additionally, SOOT provides both a forwards
call-graph and a backwards call-graph. The backwards graph is used when running the
taint analysis in reverse.

2.3 Interprocedural Finite Distributive Subset

Interprocedural Finite Distributive Subset (IFDS) problems [5] is a set of data-flow prob-
lems with the following properties:

• The set D of data-flow facts is finite.

• The domain of the flow functions is the power-set of D.

• The flow functions are distributive. This means that for a flow function f we have
∀d1, d2 ∈ 2D, f(d1 ∪ d2) = f(d1) ∪ f(d2).

CHAPTER 2. BACKGROUND 7

(a) Identity function (b) Gen/kill function

Figure 2.1: Data-flow graph

A flow function calculates the result of a statement on a set of facts. Facts are infor-
mation that holds for the given statement and varies depending on the type of problem.
Consider Figure 2.1, reproduced from [5]. The figure shows two examples of a flow func-
tion being applied to a set of facts. In Figure 2.1a the identity function f(S) = S is ap-
plied to the upper set of facts which leaves all sets unchanged. Figure 2.1b is an example
of generating facts (fact a) and killing facts (fact b) and leaving the rest of the facts un-
changed (fact c). This is represented by the following function: f(S) = (S \ b)∪a. The fact
0 represents an empty fact and it always holds. Two 0-nodes will always be connected. It
is used to generate facts unconditionally. Many different types of static analysis problems
can be formulated as an IFDS problem such as taint analysis, type analysis, and more.

An IFDS problem operates on an exploded super graph. An exploded super graph
is a graph where for each statement in a program, a node is created for each statement
paired with every data-flow fact from d ∈ D ∪ {0}. This results in |D| + 1 nodes per
statement and (|D|+1)×|Statements| in total. As an example, consider Figure 2.1a again,
it has two statements and three data-flow facts (a, b, and c) which results in a total of
(3 + 1)× 2 = 8 nodes.

2.3.1 The IFDS Algorithm

The original algorithm for solving IFDS problems was presented by Reps et al. [5]. The
algorithm takes an exploded super graph of the program being analyzed as input and
calculates for each node in the super graph what facts hold for that node. Figure 2.2
shows the exploded super graph for the code example used previously for the taint anal-
ysis. The figure shows that a data flow problem when translated to an exploded super
graph translates to a graph reachability problem where if, from a start point (s, 0), the
node (n, d1) is reachable, there is a flow from the starting point of the program to state-
ment n where d1 holds.

The exploded super graph has different types of nodes and edges. The different kinds
of nodes in the exploded super graph are:

• Call-site node: A node which represents a method call.

• Exit-site node: A node which represents the exit of a method.

• Return-site node: A node to which the data flow returns after a method call.

• Normal node: A node that is not a call-site, exit-site, or return-site node.

8 CHAPTER 2. BACKGROUND

Figure 2.2: Exploded super graph

There are also different kinds of edges that represent relations between nodes. The
different kinds of edges in the graph are:

• Call edge: An edge which connect call-site nodes to the start point of the called
procedure.

• Call-to-return edge: An edge which connects a call-site to the return-site of the call.
Call-to-return edges are used to propagate facts that are not affected by the called
procedure.

• Return edge: An edge which connects an exit-site node to the matching return-site
for the call-site which called the procedure.

• Normal edge: An edge that is not a call, call-to-return, or return edge.

In Figure 2.2 the different types of edges are labeled. The call edge from x to z prop-
agates facts from the call site to the start point of the method. The edge from y to y is
a call-to-return edge which propagates facts not affected by the call to the return site
matching the call site. The return edge z to y propagates facts to the return site of the
call.

The pseudo code for the IFDS algorithm with the extensions described in Section 2.3.2
can be seen in Algorithm 1 with the methods for processing the different kinds of nodes
explained in Algorithm 2. The algorithm works by keeping a global work list which
initially has only the starting points for the algorithm. The work list is processed un-
til it is empty and the algorithm then terminates. Every node is either handled as a call
node, an exit node, or a normal node. The edges being propagated by the algorithm are
represented as triples (d1, n, d2) where d1 is the fact which holds at the start of the cur-
rent method and (n, d2) is the exploded super graph node being propagated. The al-
gorithm can work both in a forwards direction and a backwards direction. Because of

CHAPTER 2. BACKGROUND 9

this it needs to support multiple start points and multiple return sites. This is because
when running an algorithm in reverse, call sites become return sites and exit nodes be-
come start points. While the forwards IFDS algorithm only has one starting point, it can
have multiple exit sites which translates to multiple starting points for an IFDS algorithm
run in reverse. The original IFDS algorithm did not support this but it is required for the
bidirectional IFDS algorithm presented in Section 2.3.2.

Figure 2.3 demonstrates how a taint analysis can be modeled as an IFDS problem.
Like before, secret() is considered the source and println the sink. In the exploded
super graph this is a graph reachability problem where we are wondering if data can
flow from the return value of secret() into the println statement. This flow is marked
in red in the figure. The data fact is propagated through the bar method and then re-
turned and passed into the println statement. For a taint analysis problem, facts are among
other things, what variables are tainted, while flow functions are used to propagate tainted
values through the graph. Consider the statement var x: Int = secret(). This
equals applying a flow function f({}) = {x}. Before, there were no tainted values, and
after applying the flow function, x is now tainted. In the graph this is represented by the
edge from 0 to x.

Figure 2.3: Information flow in exploded super graph

2.3.2 Extensions to the IFDS Algorithm

This section provides a number of extensions that have been made to the original IFDS
algorithm by Reps et al. [5]. First by Naeem et al. [15] who developed what is commonly
referred to as the extended IFDS algorithm and then Lerch et al. [7] who developed the
bidirectional IFDS algorithm.

10 CHAPTER 2. BACKGROUND

The Extended IFDS Algorithm

Naeem et al. [15] has further developed the original IFDS algorithm by Reps et al. [5]
with a number of extensions. One of which is to compute the nodes of the super graph
on demand. This makes the algorithm more memory efficient since there is no need to
compute parts of the graph that are not needed for the analysis. This enables the algo-
rithm to be useful for problems where the set of data-flow facts D in theory is very large
but where only a subset is used during the analysis. Remember that the exploded super
graph has approximately (|D| + 1) × |Statement| nodes. This is done by using flow func-
tions that determine what facts hold for the node that is being propagated. The extended
algorithm uses four different flow functions to compute facts. In the pseudo code in Al-
gorithm 2 those are:

• CallFlow(callSite, calledMethod). Calculate which facts hold at the start of
calledMethod for call at callSite.

• ReturnFlow(callSite, methodOfCallSite, exitSite, returnSite). Calculate which facts
hold for returnSite in methodOfCallSite for the call originating from
callSite returning from exitSite.

• CallToReturnFlow(callSite, returnSite) Calculate which facts hold for returnSite
for call at callSite.

• NormalFlow(n, successor) Calculate which facts hold for successor.

Another extension is to introduce two global data structures Incoming and
EndSummary. The latter is used to avoid having to process a method twice for the same
incoming fact. If a fact a holds at the start of a method and, after propagating that fact
through the method, b holds at the exit-site, there is no need to process the method again
for a, since it will result in fact b at the exit site. Instead, after processing the method
the first time, the exit site and facts that hold for it are stored in EndSummary for that
particular starting point and fact. Next time, instead of propagating the fact through
the method again, it can be retrieved from EndSummary. Similarly Incoming is used
for efficiently propagating return flow from methods by storing the call site node and
fact. When processing an exit node, the values in Incoming are used to get the call site
and the fact which holds for that method. If the call-site node (c, d1) has been processed
preivously and c is a call-site for the method being processed currently, (c, d1) is stored
in Incoming for the start point of the current method and the fact which holds for that
start point. This allows the algorithm to easily calculate the return flow to the return-
site of c by querying Incoming and get the return sites of c. These can be seen in the
pseudo code for the IFDS algorithm, in Algorithm 2, in lines 7–10 and 19–24 for
EndSummary and Incoming respectively.

Bidirectional IFDS Algorithm

Lerch et al. [7] has developed a bidirectional version of the IFDS algorithm which is based
on the extended IFDS algorithm by Naeem et al. [15]. It starts at the inner layer of the
application code and runs one solver in a forwards direction and one solver in a back-
wards direction. Internally it has two solvers which knows about each other. The

CHAPTER 2. BACKGROUND 11

Algorithm 1 IFDS algorithm with extensions by [15, 7]

1: PathEdge← ∅
2: WorkList← ∅
3: Incoming← EmptyMap

4: EndSummary← EmptyMap

5: function TABULATE(startingPoints)
6: for all s ∈ startingPoints do
7: PathEdge← {(0, s, 0)}
8: WorkList← {(0, s, 0)}
9: FORWARDTABULATESLRPS

10:

11: function PROPAGATE(d1, n, d2)
12: if (d1, n, d2) /∈ PathEdge then
13: WORKLIST.ADD((d1, n, d2))

14:

15: function PROPAGATEUNBALANCED(n, d2)
16: PROPAGATE(0, n, d2)
17:

18: function FORWARDTABULATESLRPS

19: while WorkList 6= ∅ do
20: (d1, n, d2)←WORKLIST.GET

21: if n ∈ CallNodes then
22: PROCESSCALL(d1, n, d2)
23: else if n ∈ ExitNodes then
24: PROCESSEXIT(d1, n, d2)
25: else
26: PROCESSNORMAL(d1, n, d2)

12 CHAPTER 2. BACKGROUND

Algorithm 2 Node-processing functions

1: function PROCESSCALL(d1, n, d2)
2: for all calledMethod ∈ CALLEESOFCALLAT(n) do
3: for all startPoint ∈ STARTPOINTSOF(calledMethod) do
4: for all d3 ∈ CALLFLOW(n, calledMethod) do
5: PROPAGATE(d3, startPoint, d3)
6: INCOMING(startPoint, d3).ADD((n, d2))
7: for all (ep, d4) ∈ ENDSUMMARY((startPoint, d3)) do
8: for all retSite ∈ RETURNSITESOFCALLAT(n) do
9: for all d5 ∈ RETURNFLOW(n, calledMethod, ep, retSite) do

10: PROPAGATE(d1, retSite, d5)
11: for all retSite ∈ RETURNSITESOFCALLAT(n) do
12: for all d3 ∈ CALLTORETURNFLOW(n, retSite) do
13: PROPAGATE(d1, retSite, d5)
14:

15: function PROCESSEXIT(d1, n, d2)
16: method←METHODOF(n)
17: for all startPoint ∈ STARTPOINTSOF(method) do
18: ENDSUMMARY(startPoint, d1).ADD((n, d2))
19: for all (c, d4) ∈ INCOMING(startPoint, d1) do
20: for all retSite ∈ RETURNSITESOFCALLAT(n) do
21: for all d5 ∈ RETURNFLOW(c,method, n, retSite) do
22: for all (d′1, n

′, d′2) ∈ PathEdge do
23: if n′ = c ∧ d′2 = d4 then
24: PROPAGATE(d′1, retSite, d5)

25: if d1 = 0 ∧ INCOMING.EMPTY then
26: for all c ∈ CALLERSOF(method) do
27: for all retSite ∈ RETURNSITESOFCALLAT(n) do
28: for all d5 ∈ RETURNFLOW(c,method, n, retSite) do
29: PROPAGATEUNBALANCED(retSite, d5)
30:

31: function PROCESSNORMAL(d1, n, d2)
32: for all m ∈ SUCCESSOROF(n) do
33: for all d3 ∈ NORMALFLOW(n,m) do
34: PROPAGATE(d1,m, d3)

CHAPTER 2. BACKGROUND 13

Tabulate method of the bidirectional IFDS algorithm can be seen in Algorithm 4. It cre-
ates one solver in each direction and provides them with references to each other. The
bidirectional solver pauses propagations for unbalanced return flows of one solver until
the other solver reaches the same node in the graph. That way, the solver is only con-
cerned with edges that go from sources to sinks which reduces the amount of edges be-
ing propagated. This requires another extension to the IFDS algorithm which makes it
possible to handle unbalanced returns. An unbalanced return occurs when processing
a return node for which there has not been an incoming call. For a traditional forwards
IFDS problem this would not occur, but because the algorithm by Lerch et al. [7] starts at
the inner layer of the program code it will eventually processes a return node for which
there was no call-site already propagated.

In the pseudo code in Algorithm 3 this addition to the IFDS algorithm can be seen.
An unbalanced return would only occur when 0 is the fact that holds for the method and
incoming is empty for the start points of that method. An unbalanced return is propa-
gated by setting the empty fact as the method fact. This extension is added at the end of
the processExit method.

Algorithm 5 shows the extension to the IFDS algorithm for the bidirectional IFDS al-
gorithm. The facts are augmented with a source object which is represented by the tuple
(source, d2) which was previously just d2. When the algorithm does an unbalanced re-
turn, it checks if the other solver (forwards for the backwards analysis or backwards for
the forwards analysis) has leaked the source for that path edge, and if it has it unpauses
it for the other solver and propagates it, otherwise it adds it to the paused edges.

Algorithm 3 Extension for unbalanced returns

25: if d1 = 0 ∧ INCOMING.EMPTY then
26: for all c ∈ CALLERSOF(method) do
27: for all retSite ∈ RETURNSITESOFCALLAT(n) do
28: for all d5 ∈ RETURNFLOW(c,method, n, retSite) do
29: PROPAGATEUNBALANCED(retSite, d5)

Algorithm 4 Bidirectional IFDS

1: function TABULATE(startingPoints)
2: fwSolver← IFDSSOLVER(startingPoints)
3: bwSolver← IFDSSOLVER(startingPoints)
4: FWSOLVER.SETOTHERSOLVER(bwSolver)
5: BWSOLVER.SETOTHERSOLVER(fwSolver)
6: while fwSolver.workList 6= ∅ ∧ bwSolver.workList 6= ∅ do
7: FWSOLVER.FORWARDTABULATESLRPS

8: BWSOLVER.FORWARDTABULATESLRPS

2.3.3 The Heros Implementation

The Heros implementation of the IFDS algorithm1 is a Java implementation by Bodden
[6] of the IDE algorithm by Sagiv et al. [16] for solving Interprocedural Distributive En-

1https://github.com/Sable/heros

14 CHAPTER 2. BACKGROUND

Algorithm 5 Extensions to IFDS algorithm for bidirectional IFDS

1: function SETOTHERSOLVER(otherSolver)
2: this.otherSolver← otherSolver
3:

10: function PROPAGATEUNBALANCED(n, (source, d2))
11: LEAKEDSOURCES.ADD(source)
12: if n ∈ otherSolver.leakedSources then
13: OTHERSOLVER.UNPAUSE(source)
14: PROPAGATE(0, n, (source, d2))
15: else
16: PAUSED.ADD(n, (source, d2))

17:

18: function UNPAUSE(source)
19: for all n, (source, d2) ∈ paused do
20: PROPAGATEUNBALANCED(n, (source, d2))
21: PAUSED.REMOVE(n, (source, d2))

vironment problems. The IDE algorithm is an extension of the IFDS algorithm and in
addition to reachability also computes additional values along the edges of the exploded
super graph. This results in a number of differences between how Heros is implemented
and the implementation shown in Algorithm 1 and Algorithm 2. Heros does not have a
path edge data storage in which it stores its edges but instead uses the edge functions
that are part of IDE to decide if an edge should be propagated or not. Additionally, in-
stead of iterating over path edge when processing an exit node, it uses the IDE edge
functions to get the fact which holds for the caller method. The IFDS algorithm in Heros
simply extends the IDE algorithm since both can be solved with the IDE algorithm.

Additionally, Heros provides a cache for its flow functions, which improves mem-
ory efficiency as results can be reused. Because this thesis does not concern itself with
memory efficiency but instead scalability in terms of processing cores, the cache is Heros
is not used for the evaluation. This is because a long running taint analysis is preferred
over a memory efficient one.

Heros propagates each edge in a new thread which it submits as a task to a
ThreadPoolExecutor. The ThreadPoolExecutor is initialized with a corePoolSize
of one and a maximumPoolSize set by the user. Additionally it is provided with a
LinkedBlockingQueue without an initial capacity. A ThreadPoolExecutor initialized
with a LinkedBlockingQueue without an initial capacity will not create more than
corePoolSize threads which means maximumPoolSize which is meant to set the
number of threads used will not have an effect [17]. This means that Heros always uses
at most one thread while the other tasks gets queued waiting for it to finish.

The forwards IFDS algorithm in Heros is implemented with non concurrent data
structures from the Java standard libraries such as HashMaps and HashSets. This re-
quires them to be locked to ensure thread-safety when using multiple threads for oper-
ations such as iterating over the collection or adding an element.

Heros implementation of the bidirectional IFDS algorithm does use a concurrent data
structure instead of using a non concurrent data structure with locks. It uses a map from

CHAPTER 2. BACKGROUND 15

Googles Guava library [18] which behaves similarly to Java’s ConcurrentHashMap [19]
and has similar performance characteristics. However, the bidirectional implementa-
tion inherits many methods from the forwards algorithm which means it also uses the
non concurrent data structures with locks. The bidirectional solver creates a thread pool
which is shared between the forwards and backwards algorithm that are both running.
This way the algorithm can stop execution when the thread pool has executed all its
tasks. The thread pool in the bidirectional IFDS implementation is also initialized to use
only one core.

2.4 Reactive Async

Reactive Async is a programming model for deterministic concurrency developed by Haller
et al. [4]. The model uses the concept of a Cell, which holds a value, and a
CellCompleter which performs updates on the cell. The cell can only be assigned
values from a lattice defined by the user. The lattice has to implement a trait Lattice
which provides two methods, empty and join. Empty defines the smallest value of the
lattice and join returns the least upper bound of the current value and the value being
added to the cell. When creating a cell completer, a user-defined key object is required.
The key object needs to define two functions: resolve and fallback. Resolve and fall-
back are described in Section 2.4.4

The sections below describe how the different components work together. Section 2.4.5
is an example of how all of the different components work in practice.

2.4.1 Cell Completer Operators

Cells support two type of updates: putNext and putFinal. The latter completes a cell
which means it can no longer be updated and trying to update a complete cell results in
an exception. The value in the cell after the put operation is decided by the join function
mentioned earlier.

2.4.2 Callbacks

Cells also support callback functions for both putNext and putFinal called onNext
and onComplete respectively. When a cell receives a value through a put operation,
any callback that has been registered is called with that value if the value of the cell has
been changed. These two functions allow the user to register a callback function which
receives either a success value or a failure value. The following code demonstrates an
onNext callback.

16 CHAPTER 2. BACKGROUND

cellCompleter.cell.onNext {
case Success(v) => // Do something with value v.
case Failure(e) =>

// putNext did not succeed.
// e is the error that occurred.

}

The behavior of onComplete is the same as for onNext. The value v is the value pro-
vided to putNext or putComplete.

2.4.3 Dependencies

Reactive Async also supports dependencies between cells which are of interest for the
resolve method mentioned in Section 2.4.4 and is mentioned to give a complete pic-
ture of Reactive Async but dependencies are not used in this thesis except mentioned as
future work.

2.4.4 Handler Pool

A third component of Reactive Async is a handler pool which handles the execution of
tasks. In addition to handling the execution of tasks, the handler pool supports the no-
tion of quiescence. Quiescence means no tasks are waiting to be executed in the thread
pool. This means one can safely assume that cells will not be updated anymore. The user
can register functions that are executed on quiescence and can also block until quies-
cence. In addition, the user can define two functions: resolve and fallback. When
the handler pool reaches quiescence, resolve is called with a sequence of cells which have
cyclic dependencies. The return value of resolve is a list of cell-value pairs where the
value will be used to complete the cell. Fallback works similarly to resolve but instead
of cells with cyclic dependencies it receives a sequence of cells that have not been com-
pleted but do not have any dependencies. The return value is the same as for resolve.

The handler pool in Reactive Async is implemented using a ForkJoinPool [20].
ForkJoinPool implements a technique known as work-stealing. The idea is that each
worker thread maintains its own scheduling queue and subtasks generated by a task
executed by a specific worker thread are pushed onto that worker threads queue and
queues are processed in a last-in first-out order. When a worker thread has no tasks in its
queue it attempts to steal tasks from a randomly chosen worker thread in a first-in first-
out order. If a worker has no tasks and fails to steal work from another worker, it tries
again later, unless all worker threads are idle in which case they all block until a task is
submitted to the pool.

2.4.5 Example

The different components of Reactive Async and how they can be used together might
best be illustrated with an example. Below is an example (inspired by an example from [21])
of how a cell is created and its different use cases. This cell gets its values from a natural
numbers lattice. On quiescence the fallback method completes the cell with its current
value. The join and empty method are the max of the value and the current value and 0
respectively.

CHAPTER 2. BACKGROUND 17

The result of running the code below is that it prints 5, 10 and 10 on three separate
lines. 2 is never printed because the value of the cell does not change as the upper bound
of 5 and 2 is 5 and onNext is only called when the value of the cell has changed. The fi-
nal 10 is printed after the fallback method completes the cell with 10 which also triggers
the onNext callback.

object NaturalNumbersKey extends Key[Int] {
def resolve[K <: Key[Int]](

cells: Seq[Cell[K, Int]]
): Seq[(Cell[K, Int], Int)] = {

cells.map(cell => (cell, cell.getResult()))
}

def fallback[K <: Key[Int]](
cells: Seq[Cell[K, Int]]

): Seq[(Cell[K, Int], Int)] = {
cells.map(cell => (cell, cell.getResult()))

}
}

implicit object NaturalNumbersLattice extends Lattice[Int] {
override def join(current: Int, next: Int): Int = {

if (current > next) current
else next

}

override val empty: Int = {
0

}
}
val numThreads = 4
val pool = new HandlerPool(numThreads)
val cc = CellCompleter[NaturalNumbersKey.type, Int](pool,

NaturalNumbersKey)

cc.cell.onNext {
case Success(i) => println(i)
case Failure(e) => // Handle failure..

}

cc.putNext(5)
cc.putNext(2)
cc.putNext(10)

Chapter 3

Reactive Async Based IFDS

This chapter presents an implementation of the IFDS algorithm in Scala which uses Reac-
tive Async to make the IFDS algorithm run concurrently and take advantage of multiple
processing cores. The implementation is based on the IFDS algorithm presented in Sec-
tion 2.3.1 with the extensions mentioned in Section 2.3.2.

Section 3.1 below explains the approach of the Reactive Async based IFDS algorithm
(IFDS-RA) and Section 3.2 describes the implementation details. Finally, Section 3.3 com-
pares the implementation details with Heros.

3.1 The Approach

Reactive Async based IFDS or IFDS-RA uses Reactive Async to propagate path edges in
the graph instead of a global PathEdge variable as in Algorithm 1 from Section 2.3.1. It
does this by having a global CellCompleter with a corresponding Cell. When the
cell completer is created, an onNext callback is added which handles propagating each
path edge. The code in the onNext callback is similar to the ForwardTabulateSLRPs
function in the original IFDS algorithm. Path edges are propagated through the cell us-
ing the CellCompleter.putNext command which results in the handler pool in Re-
active Async to schedule the task to be executed later. This removes the need for both
a global work list as well as the path edge storage. The algorithm starts by submitting
a task to the handler pool to propagate the starting points given to the algorithm and
then waits for quiescence before it shuts down. Once the algorithm reaches quiescence,
we know that all the reachable nodes in the graph have been processed. When the algo-
rithm is finished, the cell contains triples (d1, n, d2) which means that from some starting
point given to the algorithm, there is a path to a statement n where the fact d2 holds in
a method where d1 holds for the starting point of that method. The pseudo code for the
explained approach is given in Algorithm 6.

18

CHAPTER 3. REACTIVE ASYNC BASED IFDS 19

3.2 Implementation

This section describes how the approach mentioned in the section above is implemented.
The implementation uses Scala 2.11.8 and is available as an open source project1. The
global Reactive Async cell through which all path edges are propagated gets its values
from a lattice of path edges.

The join and empty functions in the set lattice are union and the empty set respec-
tively.

implicit object PathEdgeLattice extends
Lattice[Set[PathEdgeContainer[N,D]]] {
override def join(

current: Set[PathEdgeContainer[N,D]],
next: Set[PathEdgeContainer[N,D]]

): Set[PathEdgeContainer[N,D]] = {
current ++ next

}
override val empty: Set[PathEdgeContainer[N,D]] = Set()

}

This reflects the fact that before any path edges are added to the cell, it should con-
tain the empty set, and when a path edge is added, the result of the cell should be the
union of the current result with the new path edge. The key used by the cell is defined
as follows:

object PathEdgeKey extends Key[Set[PathEdgeContainer[N,D]]] {
def resolve[K <: Key[Set[PathEdgeContainer[N,D]]]](

cells: Seq[Cell[K, Set[PathEdgeContainer[N,D]]]]
): Seq[(Cell[K, Set[PathEdgeContainer[N,D]]],
Set[PathEdgeContainer[N,D]])] = {
cells.map(cell => (cell, Set[PathEdgeContainer[N,D]]()))

}
def fallback[K <: Key[Set[PathEdgeContainer[N,D]]]](
cells: Seq[Cell[K, Set[PathEdgeContainer[N,D]]]]

): Seq[(Cell[K, Set[PathEdgeContainer[N,D]]],
Set[PathEdgeContainer[N,D]])] = {

cells.map(cell => (cell, Set[PathEdgeContainer[N,D]]()))
}

Here, PathEdgeContainer is a case class used to represent the path edges in the
IFDS algorithm and has the following definition.

case class PathEdgeContainer[N, D](sourceFact: D, targetNode: N,
targetFact: D)

Both resolve and fallback return the empty set for each cell because on quies-
cence we know that no more propagations will be made and the cell can be completed.

1https://github.com/packlnd/IFDS-RA

20 CHAPTER 3. REACTIVE ASYNC BASED IFDS

It is completed with the empty set because it already contains all the path edges that will
be propagated by the algorithm.

Algorithm 6 shows the modifications made to the IFDS algorithm presented in the
Background chapter. Tabulate now propagates each starting point with empty facts and
then waits for quiescence. The propagated edges will be propagated through the onNext
callback. In the onNext callback, the edge which was propagated is handled in a new
task submitted to the Reactive Async handler pool.

Another implementation detail is that both Incoming and EndSummary are imple-
mented using TrieMap from the concurrent collections package of Scala’s standard li-
brary [22]. TrieMap is a concurrent thread-safe lock-free implementation of a hash ar-
ray mapped trie [23]. This enables it to be used by multiple threads without needing to
be locked. Additionally the TrieMap provides an O(1) snapshot of itself, which means
it can be iterated over without having to worry about concurrent modifications. This is
used in both processCall and processExit when iterating over EndSummary and
Incoming respectively.

The bidirectional implementation of IFDS-RA extends the forwards implementation
and has all the implementation details mentioned above. Additionally it implements
the leakedSources and paused data structures from the bidirectional extension using
TrieMaps. The two solvers that run in the bidirectional algorithm (one forwards and one
backwards) share the same Reactive Async handler pool, so when quiescence is reached
both solvers have finished their tasks.

Both Reactive Async and TrieMap uses compare-and-swap operations [21, 23] which
compile to a single machine operation supported by the processor hardware which is
what enables both to be lock-free. This makes the entire IFDS-RA algorithm lock-free.

3.3 Comparison with Heros

This section discusses how the implementation of IFDS-RA differs from the Heros imple-
mentation.

IFDS-RA is developed in Scala while Heros is developed in Java, both of which are
run on the Java Virtual Machine. Both propagate path edges by submitting it as a task
to its thread pool. IFDS-RA is based on the programming model Reactive Async, which
it uses to make the IFDS algorithm concurrent in addition to also using TrieMaps which
were developed to be used concurrently. Heros on the other hand relies on using locks
on shared, regular data structures. This requires Heros to lock Incoming and EndSummary
and make a local copy when iterating over them. IFDS-RA instead uses the snapshot fea-
ture of Scalas TrieMap to get a copy of the data structure in constant time. Additionally,
Heros uses a ThreadPoolExecutor which it initializes to use maximum one thread,
and queue other incoming tasks. IFDS-RA uses the handler pool in Reactive Async which
is based on ForkJoinPool.

Another difference is that Heros uses the IDE algorithm, which can solve a bigger
class of data flow problems, IDE problems, which also includes IFDS problems, to solve
IFDS problems which IFDS-RA does not support. This results in some differences in how
nodes are propagated and how return flow is propagated for exit nodes. Heros uses part
of the IDE algorithm to more efficiently compute return flows whereas IFDS-RA iterates
over all previously seen edges. Both Heros and IFDS-RA use a thread pool for executing
tasks and to know when all tasks have been completed. The IFDS-RA algorithm uses

CHAPTER 3. REACTIVE ASYNC BASED IFDS 21

Algorithm 6 Extensions to IFDS to utilize Reactive Async

1: pool← HANDLERPOOL(numThreads)
2: cellCompleter← new CELLCOMPLETER(pool, PathEdgeKey)
3: ...

4: CELLCOMPLETER.CELL.ONNEXT(s) {
5: if Success(s) then
6: (d1, n, d2)← s.head
7: if n ∈ CallNodes then
8: PROCESSCALL(d1, n, d2)
9: else if n ∈ ExitNodes then

10: PROCESSEXIT(d1, n, d2)
11: else
12: PROCESSNORMAL(d1, n, d2)
13: }
14: ...

15: function TABULATE(startingPoints)
16: for all s ∈ startingPoints do
17: PROPAGATE((0, s, 0))

18: POOL.ONQUIESCENTRESOLVECELL

19: ...

20: function PROPAGATE(d1, n, d2)
21: CELLCOMPLETER.CELL.PUTNEXT(Set((d1, n, d2)))

22 CHAPTER 3. REACTIVE ASYNC BASED IFDS

Reactive Async and its notion of quiescence to know when all tasks have been com-
pleted while Heros interacts with its thread pool directly to know when all tasks are
completed.

Chapter 4

Experimental Setup

The case study used to evaluate the performance of IFDS-RA and Heros is a taint anal-
ysis [7] using both the forward implementation and the bidirectional implementation of
Heros and IFDS-RA.

4.1 Metrics

Measuring execution time for programs on the JVM is a difficult task because of multiple
factors such as the application itself, the input, the JVM, the heap size, garbage collec-
tion, and more [24]. Because of this, for each algorithm being tested the following setup
is used:

• The algorithm is run 10 times for each core.

• Each run is on a new JVM.

• The first iteration for every core is discarded.

• The graphs presented in the results section is the mean running time of the other 9
iterations with a 95% confidence interval as a shaded area around the mean.

The goal of running the algorithm multiple times is to eliminate thread scheduling,
garbage collection, and other factors to impact the resulting running time. Discarding the
first value is a practice used by other researchers [24].

The mean running time together with a confidence interval is calculated using the
following formula in R:

t.test(core[,i],var.equal=FALSE,paired=FALSE, conf.level = 0.95)

where core[,i] is the 9 running times using i number of cores.

4.2 Test Setup

The taint analyses are performed on rt.jar which contains all the compiled class files
for the Java Runtime Environment which results in 18,085 reachable classes in Java 8 Up-
date 92. The machine used for the taint analysis is an 8-core Intel Xeon E5 3 GHz with 32

23

24 CHAPTER 4. EXPERIMENTAL SETUP

Table 4.1: Table of SOOT command-line arguments

Command-line argument Explanation
-w Perform whole-program analysis.
-f none No output file from SOOT.
-p cg all-reachable:true Phase and phase options. cg is for gener-

ating call graph and include all classes not
only those reachable.

-allow-phantom-refs Allow unresolved classes.
-keep-line-number Keep line number tables.
-include-all No excluded packages.
-soot-class-path
path/to/jre/jsse.jar:
path/to/jre/jce.jar SOOTs class path used to resolve class

references.
-process-dir path/to/jre/rt.jar Path to the file/class/directory being

analyzed.

GB of RAM with operating system Mac OS X version 10.12.4. The analysis is packed as a
jar file which is run with Java version 8 Update 92 (build 1.8.0_92-b14).

The versions of Heros and FlowTwist used for the analyses are from their GitHub
repositories with the following SHA as the last commit.

• Heros: cc78fad3acfbfc059aa105c24390b33bf5549fb0

• FlowTwist: 766acf5a173681f111c66ebdc8d8cb409fa36c96

4.3 Taint Analysis

The taint analysis used for the experimental results is FlowTwist1 developed by Lerch
et al. [7] which is considered a state-of-the-art, complex taint analysis. FlowTwist pro-
vides two different kinds of taint analyses configurations. One considers calls to
Class.forName as sinks and the other one calls to method annotated with
@CallerSensitive. Only the first one is small enough to be able to complete in a rea-
sonable time for the forwards IFDS algorithm. Both of these can be used with the bidi-
rectional taint analysis. This results in three different taint analyses of increasing size/-
complexity from FlowTwist that were run for the experimental evaluation for both Heros
and IFDS-RA. All were run on the same machine and on the Java Runtime Environment
and all three analyses uses their sinks as starting points. The sources and sinks of each
analysis is described below. The flow functions used for each taint analysis is listed in
Appendix A. SOOT is used to construct the call graph used in the analysis. The argu-
ments passed to SOOT can be see in Table 4.1.

1https://github.com/johanneslerch/FlowTwist

CHAPTER 4. EXPERIMENTAL SETUP 25

4.3.1 Test Setup 1

The first taint analysis is the smallest and uses the forwards IFDS algorithm. It uses call
sites to Class.forName where the argument to Class.forName is not a constant as
sinks. This results in 108 sinks. Sources are parameters to any methods that can be called
by untrusted code with the restriction that a source is only included if the parameter
type is String for methods that transitively calls a sink. Without this restriction the ex-
ecution would take too long. Untrusted code is any public or protected method declared
in a non-final public class not in a restricted package.

4.3.2 Test Setup 2

The second taint analysis uses the bidirectional IFDS algorithm and the same sources and
sinks as the first taint analysis without the restriction on the sources. This results in a
larger taint analysis than the first one.

4.3.3 Test Setup 3

The third analysis is considerably larger than the other two and uses the bidirectional
IFDS algorithm. It uses call sites to a subset of methods with the annotation
@CallerSensitive as sinks. These are methods that perform permission checks on
their caller. The subset of interest are those that may be subject to both an integrity and
a confidentiality attack meaning they take parameter(s) and have a return value. This
results in 4,081 sinks. Sources are defined the same as described in the test setup two.

Chapter 5

Results

This chapter presents the results of the experimental evaluation of IFDS-RA and Heros
for the test setups mentioned in Chapter 4.

5.1 Test Setup 1

Figure 5.1: Results of test setup 1. The plotted line is the mean of nine execution times and
the shaded area around the line is a 95% confidence interval.

26

CHAPTER 5. RESULTS 27

Table 5.1: Table of mean running time in seconds of test setup 1 and speed-up of IFDS-RA
compared to Heros for one to eight cores.

Algorithm 1 2 3 4 5 6 7 8
IFDS-RA 128.90 77.43 59.16 48.28 41.86 37.58 34.41 31.84
Heros 71.32 72.68 70.58 70.91 70.44 71.75 70.40 69.73
Speed-up 0.55x 0.94x 1.19x 1.47x 1.68x 1.91x 2.05x 2.19x

Figure 5.1 shows the experimental results of running the forwards IFDS algorithm on
the Java Runtime Environment for both IFDS-RA and Heros for one to eight cores. The
analyses ended up reaching 25 sources. The plotted line in the figure is the mean run-
ning time of 9 runs and the shaded area is the 95% confidence interval for the running
time. The running time is stable for both algorithms and as shown in the graph, IFDS-
RA shows performance improvements when using multiple cores even if the perfor-
mance improvements slows down when using many cores, going from 37 seconds to 32
seconds for six to eight cores compared to 129 seconds to 59 seconds when going from
one to three cores. Heros on the other hand performs the same even when using multi-
ple cores, showing no improvement.

The exact times can be seen in Table 5.1. The speed-up when using the IFDS-RA al-
gorithm compared to the Heros implementation is between 0.94x and 2.19x when using
multiple cores.

28 CHAPTER 5. RESULTS

5.2 Test Setup 2

Figure 5.2: Results of test setup 2. The plotted line is the mean of nine execution times and
the shaded area around the line is a 95% confidence interval.

Table 5.2: Table of mean running time in seconds of test setup 2 and speed-up of IFDS-RA
compared to Heros for one to eight cores.

Algorithm 1 2 3 4 5 6 7 8
IFDS-RA 9.04 5.37 6.09 5.41 5.14 5.10 5.06 5.73
Heros 7.65 5.99 10.18 9.10 6.44 8.10 8.11 8.06
Speed-up 0.85x 1.12x 1.67x 1.68x 1.25x 1.59x 1.60x 1.41x

The results for the second test setup, which used the bidirectional IFDS algorithm, the
results can be seen in Figure 5.2. The exact running times and the speed up of IFDS-RA
compared to Heros can be found in Table 5.2. The analyses reached 32 sources.

For this test setup, the smaller of the two analyses for the bidirectional algorithm, the
results are not clear and the confidence intervals overlap. IFDS-RA seems to show per-
formance improvements as the number of cores increase whereas Heros, with exception
of cores two and five seems to perform the same even if multiple cores are used. The
speed-up of using IFDS-RA compared to Heros on multiple cores is between 1.12x and
1.68x.

CHAPTER 5. RESULTS 29

5.3 Test Setup 3

Figure 5.3: Results of test setup 3. The plotted line is the mean of nine execution times and
the shaded area around the line is a 95% confidence interval.

Table 5.3: Table of mean running time in seconds of test setup 3 and speed-up of IFDS-RA
compared to Heros for one to eight cores.

Algorithm 1 2 3 4 5 6 7 8
IFDS-RA 37.03 27.56 23.76 21.59 20.38 18.62 19.26 17.94
Heros 28.90 22.39 21.33 22.44 25.26 21.67 26.16 23.19
Speed-up 0.78x 0.81x 0.90x 1.04x 1.24x 1.16x 1.36x 1.29x

For the larger test setup using the bidirectional IFDS algorithm, the results can be seen in
Figure 5.3. The taint analyses discovered 201 reachable sources. The exact running time
and the performance improvements of IFDS-RA compared to Heros can be seen in Ta-
ble 5.3. The graphs show the mean running time as a plotted line and a 95% confidence
interval as a shaded area around the line.

For this larger, taint analysis, the results are clearer and similar to the first taint anal-
ysis. Reactive Async shows a clear trend of performance improvements when using mul-
tiple cores. Once again the performance increases slows down when using many cores
with a difference of only four seconds between core four and eight. For Heros there is
still a lot of variance in the test results but there is no sign that Heros performs better
when using multiple cores. In general the speed-up when using IFDS-RA instead of Heros
for the third test setup is between 0.81x and 1.36x when using multiple cores.

Chapter 6

Related Work

This chapter presents related work on the IFDS algorithm and how they are similar or
different to what has been presented in this paper.

6.1 Concurrent IFDS

This section describes related work on concurrent implementations of IFDS. To our knowl-
edge the only other concurrent IFDS solver out there is IFDS-A by Rodriguez and Lhoták
[25] mentioned below.

Rodriguez and Lhoták [25] use the actor model [26] to implement a version of the
IFDS-algorithm called IFDS-A which can be run in parallel. Similarly to the IFDS-RA al-
gorithm presented here, IFDS-A is an extension of the work by Naeem et al. [15]. The
implementation of IFDS-A is similar to that of the extended algorithm but utilizes actors
to use multiple cores. Each node in the control flow graph is mapped to an actor which
internally buffers messages. Messages between actors represent data-flow dependencies.
In addition, a tracker keeps track of unprocessed actor messages. When the tracker is
zero, the work has been completed and the algorithm can terminate.

The difference between IFDS-A and IFDS-RA is that while both are concurrent ver-
sions of the IFDS algorithm, IFDS-RA is based on Reactive Async and IFDS-A is based
on the actor model. In addition, instead of having a tracker, as IFDS-A has, for keeping
track of when the algorithm is finished, Reactive Asyncs handler pool supports the no-
tion of quiescence which means no more work has to be done. This means there is no
need to explicitly keep track of this in the algorithm which simplifies the implementa-
tion. Also, IFDS-A does not support a bidirectional IFDS algorithm which IFDS-RA does.

IFDS-A is 6.12 times faster using eight cores compared to one core and when using
eight cores is 3.35 times faster than a baseline sequential implementation [25].

6.2 Extensions to the IFDS Algorithm

This section describes related work on the IFDS algorithm that is not concurrent. This is
presented to give a more detailed view of use cases for the IFDS algorithm and how it
can be extended.

30

CHAPTER 6. RELATED WORK 31

6.2.1 IFDS With Correlated Method Calls

Rapoport et al. [27] transforms an IFDS problem into an interprocedural distribute en-
vironment (IDE) problem that precisely accounts for all of the infeasible paths that arise
due to correlated method calls. The results of the IDE problem are then mapped back to
the original domain of the IFDS problem. This leads to results that are more precise than
applying the IFDS algorithm to the original problem. Unlike IFDS-RA, this algorithm is
not built for concurrency. Correlated method calls may arise in polymorphism when sev-
eral methods are called on the same object whose type is determined at run-time. If a
variable can be of type A or type B, any method called on the object will be called on the
same object. Therefore, paths that consider the type of the object to be different between
two method calls are infeasible.

For a taint analysis this results in a more accurate analysis. Consider an example
where A.foo exposes secret information and B.foo, where B inherits from A, does not and
B.bar prints the value of foo while A.bar does nothing. There is no way for the secret
value in A.foo to be printed by B.bar, they are called on the same object which is of type
A or type B. When using the IFDS algorithm directly, a taint analysis would consider this
a possibility whereas the work presented in [27] does not.

IFDS-RA could use this technique for a more accurate taint analysis if it adds support
for IDE problems which it currently does not have.

6.2.2 Boomerang

Boomerang [28] is a demand-driven pointer analysis based on the IFDS algorithm.
Boomerang does two passes of the IFDS algorithm from a given statement, one forward
pass and one backward pass. Similarly to IFDS-RA, Boomerang is based on the IFDS im-
plementation in Heros presented in [6] with a few extensions. Boomerang is currently
single-threaded but a multi-threaded algorithm is currently being developed [28].

The IFDS algorithm is extended by allowing path edges to start from allocation sites
and call sites, in addition to a methods entry point like in the IFDS algorithm. This en-
ables Boomerang to encode points-to information in the path edges. Boomerang also de-
fines three different types of path edges: direct, which represents an allocation site, tran-
sitive, which represents a call site, and parameter, which corresponds to the path edge in
IFDS used to generate intra-procedural summaries.

The extensions presented in Boomerang could be added to IFDS-RA which is multi-
threaded which would result in a multi-threaded version of Boomerang.

6.2.3 T.J. Watson Libraries for Analysis

T.J. Watson Libraries for Analysis (WALA) is a another framework which features an im-
plementation of the IFDS algorithm although it is not concurrent. A comparison between
the IFDS algorithm in Heros, and WALA, can be found in [6].

The WALA implementation could be used to further strengthen the evaluation of
IFDS-RA by comparing it to another IFDS algorithm than Heros.

Chapter 7

Discussion

7.1 Discussion

There are clear performance improvements for IFDS-RA when using multiple cores for
the forwards algorithm and for the bidirectional algorithm. The second test setup which
showed a lot of variance in the execution times for each core could be because it is a
smaller test case and therefore does not run long enough which could explain the varied
running time as seen in the confidence interval.

Heros does not improve with multiple cores. This is because of the way its
ThreadPoolExecutor is set up. It is initialized to always use just one thread and queue
incoming tasks. This results in a thread pool which does not utilize more than one core.
This explains the flat performance of Heros for increasing number of processing cores, it
is essentially running the same algorithm for all 8 cores, with no change. However, this
diminishes the results of IFDS-RA. It has been shown to scale and perform better than
an algorithm which does not scale, which makes the results for IFDS-RA inconclusive
and more evaluation is needed to see how it compares to other concurrent IFDS algo-
rithms. On the other hand this shows a clear benefit of using Reactive Async, which pro-
vides its own pool based on the more modern ForkJoinPool and also demonstrates
why an abstraction model such as Reactive Async is useful when dealing with concur-
rency. Because Heros outperforms IFDS-RA when using one core, an implementation of
Heros which takes advantage of multiple cores could potentially outperform IFDS-RA.
However, since Heros uses synchronized block for regular data structures, it might not
be the case that it does scale well. The reason Heros outperforms IFDS-RA when using
one core could be because it computes the return flow more efficiently by using the edge
flow functions which is used to solve IDE problems.

IFDS-RA uses Reactive Async and TrieMaps both of which are lock-free which is a
clear improvement over Heros not only in performance but also from a programming
perspective. Reactive Async provides an abstraction from threads, locks, and the concur-
rency of an application. However, some details still had to be handled outside of Reac-
tive Async, for example using TrieMaps for global data structures, this is something that
could be improved and replaced with Reactive Async in a future implementation. Even
though it would be of interest to replace TrieMaps with Reactive Async, the TrieMaps
provide a clear advantage over using regular data structures with locks like Heros does.
When iterating over Incoming and EndSummary, as both IFDS-RA and Heros does, Heros
locks the data structure and iterates over it to create a local copy which it then iterates

32

CHAPTER 7. DISCUSSION 33

over. In IFDS-RA however, TrieMaps provide a constant-time snapshot feature which
returns a copy of the TrieMap. This is clearly better than iterating over the data struc-
ture and copying it which is an O(n) operation where n is the number of elements being
copied. While IFDS-RA does use Reactive Async, as it is currently implemented it is a
very simple implementation which seems to be good enough to outperform Heros. The
extent to which Reactive Async is used can be increased. Currently only one cell is used
and all edges are propagated through it. This leaves many features of Reactive Async
untouched. For example, cells can have dependencies on each other. Implementing this
and making it work would simplify the code as well as remove dependencies on global
data structures. Additionally, resolve and fallback could be more complex if more cells
are present to actually solve dependencies. Finally the notion of a cell being complete is
not used. The only cell used is completed the first time quiescence is reached which ter-
minates the application. If, for example, one cell was used for each method, a cell could
be completed on quiescence once all the data flows has been propagated through it, that
way, cells could set up dependencies on this cell for when it is complete, and use its val-
ues to compute return flows. This is currently implemented using the EndSummary data
structure. However, removing it and relying on Reactive Async would decrease complex-
ity and probably improve scalability more. This implementation strategy was tried but
failed for some recursive cases where it was difficult to know if more edges would be
propagated for a particular cell.

Accessing global data structures might be unavoidable, but accesses could be de-
creased by processing flow independently from other threads while still making sure that
no duplicate work is being done across threads.

For all three analyses the performance of IFDS-RA shows improvements when us-
ing multiple cores but the performance increases slows down as the number of cores
increase. The improvements between using seven and eight cores is very small. This is
most likely due to using global data structures. Using shared data structures between
threads limits the improvements one can get when using multiple cores. This is some-
thing that would be interesting to address in a future implementation.

When using one core, IFDS-RA performs badly, especially for the forwards algorithm.
One theory as to why this might be is because a lot of path edges are being propagated
through one cell. While both the second and third taint analyses are bigger, the bidirec-
tional IFDS analysis does not propagate as many edges as the forwards algorithm does.
This could lead to too many edges for just one cell, which delays processing. Addition-
ally, the handler pool in Reactive Async is based on a ForkJoinPool which uses work-
stealing, which is not used when only using one core.

The biggest improvement for IFDS-RA over Heros is for the forwards algorithm. The
bidirectional algorithm, while showing some improvement when comparing the mean
running time is smaller in comparison. This is most likely due to the fact that the bidi-
rectional algorithm does not propagate as many edges. This means there is less room for
improvements because the algorithm is already more efficient.

All three taint analyses analyzed the same code, the Java Runtime Environment. As
mentioned in the experimental setup, this is a fairly large code example with 18,000+
classes. This results in a long running taint analysis where the benefits of using a con-
current algorithm is more evident than for a smaller example. However, it is also true
that the need of concurrency is higher for larger code bases. A small code base might not
benefit as much from executing tasks in parallel, but the analysis does not take as long

34 CHAPTER 7. DISCUSSION

for a smaller code base. In this sense, it is a good code base to use for the experimental
setup, but it could also be interesting to demonstrate the use of IFDS-RA on smaller or
even larger code bases in future work.

Finally, while IFDS-RA is shown to scale well with multiple cores compared to Heros,
it would be interesting to compare it to a solver which uses a more modern model of
concurrency. In particular the IFDS-A algorithm which at this time is the only other known
concurrent solver out there. IFDS-A is based on the actor model and is mentioned in
more detail in Section 6.

7.2 Future Work

There is a lot of potential for further improvements of the IFDS-RA algorithm by inte-
grating Reactive Async even more. As mentioned in the discussion, if one wants better
performance when using multiple cores, it would be a good idea to remove the global
data structures Incoming and EndSummary as shared data structures limits performance
increases. One idea is to replace the current return flow logic with Reactive Async de-
pendencies. This would not only have performance improvements but would also free
the programmer from having to think about concurrent data structures.

Additionally, for more experimental results for Reactive Async and IFDS-RA, compar-
ing IFDS-RA to the actor-based IFDS-A algorithm would be interesting, as both IFDS-A
and IFDS-RA were developed with concurrency in mind and use two different program-
ming models, Actors and Reactive Async respectively.

IFDS-RA could easily be extended similarly to Heros to support a bigger class of
problems known as IDE problems which would also benefit from the scalability of IFDS-
RA. It could also, like Heros, implement a cache for its flow functions, which would im-
prove its practical use.

Finally, it would be of interest to compare the results of running IFDS-RA on top of a
different static analysis library, such as OPAL [29] to generate more experimental data.

7.3 Conclusion

In conclusion, IFDS-RA shows that it is beneficial to use Reactive Async to make the
IFDS algorithm concurrent. We have shown that the forwards IFDS algorithm based on
Reactive Async performs faster than Heros on multiple cores Additionally, there is also
an improvement for the bidirectional IFDS algorithm but not as big. This answers both
research questions that were asked in the beginning of the thesis. As an additional ben-
efit Reactive Async provides an abstraction between the concurrency aspects of an algo-
rithm and the programmer. Finally, IFDS-RA has provided more experimental results for
the evaluation of Reactive Async as a deterministic concurrent programming model. The
thesis also provides experimental results for the scalability of Heros and shows that it
does not scale when using multiple cores.

Bibliography

[1] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[2] Robert H Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems (TOPLAS), 7(4):501–538, 1985.

[3] Barbara Liskov and Liuba Shrira. Promises: linguistic support for efficient asynchronous
procedure calls in distributed systems, volume 23. ACM, 1988.

[4] Philipp Haller, Simon Geries, Michael Eichberg, and Guido Salvaneschi. Reactive
Async: expressive deterministic concurrency. In Proceedings of the 2016 7th ACM SIG-
PLAN Symposium on Scala, pages 11–20. ACM, 2016.

[5] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 49–61. ACM, 1995.

[6] Eric Bodden. Inter-procedural data-flow analysis with IFDS/IDE and SOOT. In Pro-
ceedings of the ACM SIGPLAN International Workshop on State of the Art in Java Program
analysis, pages 3–8. ACM, 2012.

[7] Johannes Lerch, Ben Hermann, Eric Bodden, and Mira Mezini. FlowTwist: efficient
context-sensitive inside-out taint analysis for large codebases. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 98–108. ACM, 2014.

[8] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. SOOT - a Java bytecode optimization framework. In Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative research, page 13. IBM
Press, 1999.

[9] Peter Xiang Gao, Andrew R Curtis, Bernard Wong, and Srinivasan Keshav. It’s not
easy being green. ACM SIGCOMM Computer Communication Review, 42(4):211–222,
2012.

[10] Robert Basmadjian and Hermann de Meer. Evaluating and modeling power con-
sumption of multi-core processors. In Proceedings of the 3rd International Conference
on Future Energy Systems: Where Energy, Computing and Communication Meet, page 12,
2012.

[11] Michael D Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003:
ICSE Workshop on Dynamic Analysis, pages 24–27, 2003.

35

36 BIBLIOGRAPHY

[12] Norm Hardy. The confused deputy:(or why capabilities might have been invented).
ACM SIGOPS Operating Systems Review, 22(4):36–38, 1988.

[13] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In European Conference on Object-
Oriented Programming, pages 77–101. Springer, 1995.

[14] Raja Vallee-Rai and Laurie J Hendren. Jimple: Simplifying Java bytecode for analy-
ses and transformations. 1998.

[15] Nomair A Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical extensions to
the IFDS algorithm. In International Conference on Compiler Construction, pages 124–
144. Springer, 2010.

[16] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Theoretical Computer Science, 167
(1):131–170, 1996.

[17] ThreadPoolExecutor (Java Platform SE 8). http://docs.oracle.com/javase/8/docs/
api/java/util/concurrent/ThreadPoolExecutor.html. Accessed: 2017-06-01.

[18] MapMaker (Guava: Google core libraries for Java). https://google.github.io/guava/
releases/19.0/api/docs/com/google/common/collect/MapMaker.html#makeMap().
Accessed: 2017-06-02.

[19] ConcurrentHashMap (Java Platform SE 8). https://docs.oracle.com/javase/8/docs/
api/java/util/concurrent/ConcurrentHashMap.html. Accessed: 2017-06-02.

[20] Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 conference on
Java Grande, pages 36–43. ACM, 2000.

[21] Simon Geries. Reactive Async: Safety and efficiency of new abstractions for reactive,
asynchronous programming, 2016.

[22] Scala standard library TrieMap. https://www.scala-lang.org/api/current/scala/
collection/concurrent/TrieMap.html. Accessed: 2017-06-01.

[23] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky.
Concurrent tries with efficient non-blocking snapshots. In Acm Sigplan Notices, vol-
ume 47, pages 151–160. ACM, 2012.

[24] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous Java per-
formance evaluation. ACM SIGPLAN Notices, 42(10):57–76, 2007.

[25] Jonathan Rodriguez and Ondřej Lhoták. Actor-based parallel dataflow analysis. In
International Conference on Compiler Construction, pages 179–197. Springer, 2011.

[26] Gul A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. Se-
ries in Artificial Intelligence. The MIT Press, Cambridge, Massachusetts, 1986.

[27] Marianna Rapoport, Ondřej Lhoták, and Frank Tip. Precise data flow analysis in the
presence of correlated method calls. In International On Static Analysis, pages 54–71.
Springer, 2015.

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://google.github.io/guava/releases/19.0/api/docs/com/google/common/collect/MapMaker.html#makeMap()
https://google.github.io/guava/releases/19.0/api/docs/com/google/common/collect/MapMaker.html#makeMap()
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://www.scala-lang.org/api/current/scala/collection/concurrent/TrieMap.html
https://www.scala-lang.org/api/current/scala/collection/concurrent/TrieMap.html

BIBLIOGRAPHY 37

[28] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for Java. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 56. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[29] Michael Eichberg and Ben Hermann. A software product line for static analyses: the
OPAL framework. In SOAP@PLDI, pages 2:1–2:6. ACM, 2014.

Appendix A

Flow Functions Used For the Taint Anal-
yses

This is a list of flow functions used by the taint analyses for the experimental evalua-
tion of the algorithms. The flow functions used were left unchanged from the FlowTwist
setup but is mentioned here in case they changed for the purpose of being reproducable.

Test Setup 1

The flow functions used for the first taint analysis:

• PrimitiveTaintKiller

• JavaUtilKiller

• forwards.StringBuilderPropagator

• forwards.ShortcutPropagator

• forwards.PermissionCheckPropagator

• forwards.PropagateOverTarget

• ZeroAtParameterHandler

• forwards.DefaultTaintPropagator

• PayloadSourceRecognizer

Test Setup 2

The flow functions used for the second taint analysis:

• Forwards

– PrimitiveTaintKiller
– JavaUtilKiller
– SpecificMethodKiller
– I2OZeroHandler

– forwards.DefaultTaintPropagator

– I2OSourceRecognizer

– ClassInstantiationPropagator

• Backwards

– PrimitiveTaintKiller

– JavaUtilKiller

– SpecificMethodKiller

– backwards.StringBuilderPropagator

38

APPENDIX A. FLOW FUNCTIONS USED FOR THE TAINT ANALYSES 39

– backwards.ShortcutPropagator

– backwards.PermissionCheckPropagator

– SinkHandler

– ReturnValuePropagator

– backwards.DefaultTaintPropagator

– ArgumentSourceHandler

Test Setup 3

The flow functions used for the third taint analysis:

• Forwards

– PrimitiveTaintKiller

– JavaUtilKiller

– SpecificMethodKiller

– forwards.PropagateOverTarget

– I2OZeroHandler

– forwards.DefaultTaintPropagator

– I2OSourceRecognizer

• Backwards

– PrimitiveTaintKiller

– JavaUtilKiller

– SpecificMethodKiller

– backwards.StringBuilderPropagator

– backwards.ShortcutPropagator

– backwards.PermissionCheckPropagator

– backwards.PropagateOverTarget

– SinkHandler

– ReturnValuePropagator

– backwards.DefaultTaintPropagator

– ArgumentSourceHandler

www.kth.se

	Contents
	Introduction
	Motivation
	Problem Statement
	Contribution
	Limitations
	Ethics and Sustainability
	Outline

	Background
	Scala Syntax
	Static Analysis
	Taint Analysis
	FlowTwist

	Interprocedural Finite Distributive Subset
	The IFDS Algorithm
	Extensions to the IFDS Algorithm
	The Heros Implementation

	Reactive Async
	Cell Completer Operators
	Callbacks
	Dependencies
	Handler Pool
	Example

	Reactive Async Based IFDS
	The Approach
	Implementation
	Comparison with Heros

	Experimental Setup
	Metrics
	Test Setup
	Taint Analysis
	Test Setup 1
	Test Setup 2
	Test Setup 3

	Results
	Test Setup 1
	Test Setup 2
	Test Setup 3

	Related Work
	Concurrent IFDS
	Extensions to the IFDS Algorithm
	IFDS With Correlated Method Calls
	Boomerang
	T.J. Watson Libraries for Analysis

	Discussion
	Discussion
	Future Work
	Conclusion

	Bibliography
	Flow Functions Used For the Taint Analyses

