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Abstract

In modern integrated modular avionic systems, applications share hard-
ware resources on a common avionic platform. Such an architecture ne-
cessitates strict requirements on the spatial and temporal partitioning of
the system to prevent fault propagation between different aircraft func-
tions. One way to establish a temporal partitioning is through pre-runtime
scheduling of the system, which involves creating a schedule for both tasks
and a communication network.

While the avionic systems are growing more and more complex, so
is the challenge of scheduling them. Scheduling of the system has an
important role in the development of new avionic systems since function-
ality typically is added to the system over a period of several years and
a scheduling tool is used both to detect if the platform can host the new
functionality and, in case this is possible, to create a new schedule. For
this reason an exact solution strategy for avionics scheduling is preferred
over a heuristic one.

In this paper we present a mathematical model for an industrially
relevant avionic system and present a constraint generation procedure
for scheduling of such systems. We apply our optimisation approach to
instances provided by our industrial partner. These instances are of rel-
evance for the development of future avionic systems and contain up to
20 000 tasks to be scheduled. The computational results show that our
optimisation approach can be used to create schedules for such instances
within reasonable time.

1 Introduction

For an avionic system (the electronic system in an aircraft) it is not sufficient
that the logical result of a computation is correct, it is also crucial that the result
is produced at the correct time. Such systems, where the consequences are severe
if a computational result is not delivered on time, are called hard real-time sys-
tems. For an introduction to real-time systems, see Kopetz (2011). Scheduling
of real-time systems can refer both to on-line scheduling where the scheduling



decisions are made at run time and to pre-runtime scheduling where the sched-
ule is created at compile time. This paper addresses pre-runtime scheduling of
an avionic system with periodic tasks.

During the last two decades, the majority of the avionics industry has gone
from using federated systems to using an integrated architecture called Inte-
grated Modular Avionics (IMA), where applications share hardware resources.
Such architecture necessitates strict requirements on the spatial and temporal
partitioning of the system to achieve fault containment, and a common standard
for this partitioning is ARINC 653. For more information about IMA and AR-
INC 653, see Radio Technical Commission for Aeronautics (RTCA) (2005) and
Airlines electronic engineering committee (AEEC) (2006) respectively. Typ-
ically the IMA architecture give rise to multiprocessor scheduling-type prob-
lems that become computationally demanding for large-scale instances. The
introductory parts of the PhD-thesis by Al-Sheikh (2011) provide an extensive
introduction to the area of scheduling of avionic systems.

In the process of designing an avionic system, new software functionality
is developed and added to the system iteratively during a project of several
years. Whenever a change is made in a software component, the scheduling
tool has to provide a new schedule for the system or, if it fails, preferably
produce a proof of infeasibility. If no feasible schedule exist either changes of
the software or upgrades of the avionics platform are needed. Due to the rigid
certification processes in the aircraft industry it is extremely costly to upgrade
the platform, and therefore it is important to utilise the existing platform in
an efficient way and make upgrades only when necessary. The frequency of use
and the importance of the outcome of the scheduling gives the scheduling tool
a vital role in the process of designing an avionic system.

Most approaches for pre-runtime scheduling of large-scale real-time systems
are of a heuristic nature, see for example the references in Section 1.2. For many
types of real-time systems, a primal heuristic might be an efficient and sound
way to provide a schedule. This does however not hold for an avionic scheduling
problem when the scheduling also involves the challenge to determine whether
a desired software functionality can be implemented with the existing platform
or not. If a primal heuristic method is applied to such problem setting and
the heuristic fails to provide a solution, one does not know if this depends on
shortcomings of the heuristic or if it is due to the fact that no feasible solution
exists. This paper contributes in the direction of developing optimisation based
approaches for scheduling of large and complex future avionics systems, and the
research is carried out in collaboration with the Swedish defence and security
company Saab.

Our scheduling problem can be considered as a multiprocessor scheduling
problem with precedence relations and a communication network. In Section 2
this problem is presented from a mathematical modelling point of view rather
than from an avionics point of view. An overview of the technical design of
the system is summarised in the following section, but it is not discussed to the
same extent as in the real-time system research papers referred to in Section 1.2.

1.1 System characteristics

There is a diversity in what type of scheduling that is required for different IMA
systems, even if they are designed in compliance with the same ARINC standard.



This section summarises the characteristics of the system under consideration
in this paper.

The system is distributed and at each node there is a set of processors,
henceforth called modules. One of these is responsible for both the inter-node
and the intra-node communication as well as the communication with external
systems. The responsibility of the other modules is to run applications (software
processes). The system is partitioned in the sense that all tasks are beforehand
assigned to modules and no migration is allowed.

At the communication modules, tasks that have to do with the communica-
tion need to be scheduled. For the modules running applications, the software
processes that share functionality are grouped into partitions by the engineers
designing the system, and the tasks to be scheduled are these partitions. Pro-
cesses executing in the same partition are locally scheduled by rate monotonic
scheduling, see Section 28, Part IV in Leung (2004). It is within the partitions
that the real-time aspect of the process scheduling is captured, with the rate
monotonic scheduling assuring that all deadlines are respected. Since the as-
signment of processes to partitions is made independently of the pre-runtime
scheduling and the scheduling within the partitions, the scheduling is referred
to as being hierarchical.

The nodes communicate over a switched Ethernet which supports multicast.
The Ethernet considered in this paper is such that messages are assigned to, and
sent in, discrete time slots and for a time slot the full bandwidth can be used for
the messages assigned to it. Hence, the way the communication capacity is made
available to different resources within the system deviates from what is studied
in previously published work. In the well established Avionics Full Duplex
Switched Ethernet (AFDX) network (see Al-Sheikh et al. (2013)) used by for
example Airbus A380 and Boeing Dreamliner B787, a dedicated virtual link with
limited bandwidth is created for each communication flow. The communication
is assured to be separated by respecting a Bandwidth Allocation Gap (BAG)
and a Maximum Frame Size (MFS); for more information see Kopetz (2011) and
Al-Sheikh et al. (2013), of which the latter suggests a strategy for optimal design
of the virtual links. For the network considered in our paper, the communication
is separated by assigning the messages to time slots in which they are allowed
to use the full bandwidth, facilitating very fast communication at that instant.
The introduction of time slots does however make the communication capacity
sharing aspect a part of the temporal partitioning of the system, and thereby
the message scheduling becomes more intricately integrated with the scheduling
of partitions. The solution approach suggested in this paper can however also
be applied to systems where an AFDX is used for the communication.

The schedule is created pre-runtime and made with knowledge of the du-
ration (worst-case execution time) and the period of all tasks to be executed
as well as the precedence relations and communication messages between them.
There are two types of scheduling decisions to be made; communication is sched-
uled by assigning messages to time slots and tasks are sequenced and assigned
a start time. The solution approach we suggest in this paper is applied to in-
stances with up to 8 application modules with 25 partitions repeated 64 times,
96 communication messages, and 7 communication modules with 19894 tasks.



1.2 Related research

There are many papers on scheduling of real-time systems that consider runtime
scheduling, which is of a different nature than pre-runtime scheduling. The
reader interested in schedulability analysis and runtime scheduling of avionic
systems is referred to for example Rufino et al. (2010), Davis and Burns (2011)
and Easwaran et al. (2009). A comparison between runtime and pre-runtime
scheduling is provided by Xu and Parnas (2000), and they suggest pre-runtime
scheduling as the preferred choice for the type of applications similar to the
one in this paper. Parts of their conclusions are that pre-runtime scheduling is
better suited for handling complex application constraints, makes it easier to
verify that all deadlines and constraints are complied with and also improves
the chances of finding a feasible schedule when the resource utilisation is high
and feasibility might be a challenge to achieve. Comparing the runtime and the
pre-runtime approach, the latter can be considered as a constructive sufficient
schedulability test, see Section 10.3 in Kopetz (2011).

Pre-runtime scheduling of IMA systems is addressed in Al-Sheikh et al.
(2012), who consider the scheduling of strictly periodic tasks on a multipro-
cessor system. Their model integrates two types of decisions, the allocation of
tasks to processors (respecting both hardware capacity constraints and condi-
tions that excludes pairs of tasks to be allocated to the same hardware) and the
assignment of start times to tasks (respecting the strict periodicity conditions),
with the objective of creating a schedule with maximum idle time between tasks
(proportional to the processing time of the task) to provide robustness. That
they assign tasks to processors adds an additional complexity compared to the
problem under consideration in our paper. However, in Al-Sheikh et al. (2012),
an AFDX network is used for communication between the partitions, and for
this reason it is sufficient to respect precedence relations between tasks in order
to assure communication. From that point of view, their setting is significantly
less complex than in this paper. For solving the problem, they suggest a heuris-
tic inspired by game theory principles and they successfully apply it to instances
that have been supplied by industrial partners and contain up to 48 processors
and 636 tasks.

For the same type of problem setting, an exact IP-method based on a bin-
formulation of the problem is presented by Eisenbrand et al. (2010). They
provide computational results for instances with up to 177 tasks and 16 machines
and show that their approach outperforms other IP-formulations. Another, later
work studying a similar setting as in Al-Sheikh et al. (2012) is by Balashov et al.
(2014), who propose a greedy heuristic for solving the problem of allocating tasks
to processors and another heuristic for the scheduling of tasks. They apply their
algorithm to a system of 3 nodes, 9 partitions with a total of 164 periodic tasks,
and 163 communication messages.

An early work suggesting a scheduling tool for an IMA system is Lee et al.
(2000), they do however address significantly less complex problems than what
is of relevance in the context of this paper. The same hold for a later paper by
Tavares et al. (2012) that presents an approach where they generate schedules
by using a time Petri net model (a graph representation of concurrent pro-
cesses) and a specially designed depth-first search over the order in which to
place the tasks. Their strategy takes into account intertask relations (prece-
dence and mutual exclusion) and overhead. They only evaluate their strategy



for uni-processor systems with the maximum number of tasks being 12 (real-
world applications and custom-built instances), which are significantly smaller
instances than what is of interest in our context.

Another related paper on pre-runtime scheduling of IMA systems is by Beji
et al. (2014). In their system, a TTEthernet (see Kopetz (2011)) is used for the
communication and the scheduling is assumed to be carried out iteratively when
new tasks are added to the system. The objective of this repeated re-scheduling
is to minimise the integration cost while developing the system. They apply a
satisfiability modulo theory (SMT) solver to create schedules and evaluate their
approach on an application with 5 nodes and 7 partitions.

Various methods for scheduling of distributed systems with time-triggered
communication can be found in the literature, applying either heuristic methods
(Theis et al., 2013; Tadmag-Selicean et al., 2012; Pop et al., 1999), a MIP-solver
(Zhang et al., 2014), or a SMT-solver (Beji et al., 2014; Craciunas and Oliver,
2014). Neither of these approaches are viable in our setting and typically the
exact approaches are applicable only to relatively small instances of scheduling
problems, as seen from the examples above.

1.3 Contributions and outline of the paper

A system model, described from a mathematical modelling point of view, is
given in Section 2. The main computational challenge of the problem stems
from the huge number of tasks to be sequenced on the communication modules
and Section 3 introduces our approach for exploiting known characteristics of
the problem in order to design a constraint generation procedure for solving
it. Our resulting MIP-formulation is presented in Section 4 and the constraint
generation procedure along with some preprocessing components are introduced
in Section 5. Computational results to verify that our approach can be used
to solve instances of practical relevance are presented in Section 6, followed by
concluding comments in Sections 7.

2 System model

This section introduces the concepts and notations needed to create a modelling
framework for the system, which is illustrated in Figure 1. A schedule for a major
frame is the result of two types of decisions, one is assigning communication
messages to time slots and the other is assigning start times to tasks.

The system executes periodically with period P, referred to as a major frame.
The system design is such that adjacent major frames are not independent and
therefore a schedule for a major frame needs to be created such that it becomes
valid for an infinite repetition of major frames.

2.1 Periodic task system

The system consists of a set of nodes. For each node there exist a single module
called the communication module (CM) and it handles the system external,
intra-node and inter-node communication of this node. The set of all CMs in
the system is denoted by HM. The set of tasks assigned to CM h is denoted
by Zn,, h € HM, and every task on a CM has the period of a major frame.
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Figure 1: An overview of a system with n nodes. The structure of the content
is the same for all nodes and therefore only displayed for node 1 and n

On each node there exists a set of modules, called application modules (AM),
that hosts partitions. The set of all AMs in the system is denoted by HAM. The
set of tasks assigned to AM h is denoted Z;, and every such task has a period of
P/64, h € HAM. For each pair of tasks i and j there is a minimum idle time l;gﬂc
between the end of task 7 to the start of task j if task j follows task i on AM h,
where i, j € T, and h € H*M. This idle time ensures that there is enough time
to handle intra-node communication related to the two tasks.

In this system, the tasks are beforehand assigned to execute on a specific
module. Task ¢ generate an infinite succession of instances that execute once
every period p; for the duration of its execution requirement e;, ¢ € Z. Task &
must be given a non-preemptive execution interval of duration e; between its
release time ¢! and deadline t and within this interval no other task is allowed
to execute on the same module, ¢ € 7.

In order to model the problem within a single major frame, a specific instance
of task ¢ within a major frame will be called job k of task ¢. This means that
job k of task ¢ will be all instances k + gn of task 7 where n is a non-negative
integer. The set of jobs belonging to task i will be denoted J;, i € Z.

2.2 Precedence relations

There is a set of precedence relations called dependencies, this set is denoted
by D. Dependency d restricts the time from the start of job k4 of task ig to
the next occurring start of job I of task j4 to be between lg“n'dep and lfinax'dep
d € D. This means that if job kg of task iy occurs before job I; of task j; in
a major frame, the distance is measured within one major frame, and if job ky
of task i4 occurs after job [; of task j; within a major frame, the distance is
measured from one major frame into the next.

There is also a set of restrictions called chains, this set is denoted by C. A
chain ¢ specifies that a group of jobs, linked by dependencies in the set Dchain,
have to execute in a given order from the start of one of the jobs in a major
frame to the start of the same job in the following major frame, ¢ € C. Since

)



Table 1: The parameters and sets of the entities introduced in Section 2.1

Entity = Parameter Notation
System major frame P
CMs HM
AMs HAM
tasks T
dependencies
chains C
AM h tasks Tn
idle time between task ¢ and task j li?le
CM h tasks Ih
Task ¢  execution requirement e;
period pi
release time t;
deadline td
jobs T

the dependencies in D™ create a cycle, the choice of a first job in the chain
is of no significance.

2.3 Communication Network

The nodes in the system communicate through a single communication network
(CN). Each node is connected to the CN through its CM. Let M denote the set
of CN-messages that have to be transmitted through the CN. CN-message m
is transmitted from a single CM to a set of receiving CMs, requiring a capacity
e m € M. In order to transmit a CN-message it has to be assigned to a
CN-slot. Denote the set of CN-slots by A/. The total capacity requirement of
the CN-messages assigned to the same CN-slot n cannot exceed the capacity

Table 2: The parameters and sets of the entities introduced in Section 2.2

Entity Parameter Notation
Dependency d minimum length lgﬂn"de
maximum length lg‘ax_dep
from task and job 14, kq
to task and job Jdsld
Chain ¢ dependencies DChain




Table 3: The parameters and sets of the entities introduced in Section 2.3

Entity Parameter Notation
CN CN-messages M
CN-slots N
CM CN-messages that is received on CM h MY
CN-messages that is sent on CM h Mend
CN-message m  capacity [mse
tasks Inse
CN-slot n capacity [slot
Task 7 release time in CN-slot n tin
deadline in CN-slot n td
Islet 'n € N. This paper consider the case where each CM can only send one

CN-message in each CN-slot and only receive one CN-message in each CN-slot.

To transmit a CN-message on a CN, there are four types of tasks involved
and those are required to execute in a particular order. On the sending CM
there is first a task responsible for preparing the CN-message followed by a task
responsible for sending the CN-message. After the CN-message has been sent
there is, on each receiving CM, a task responsible for dequeuing the message
followed by a task reading the data. The set of tasks required to transmit and
receive CN-message m is denoted Z2%8. If CN-message m is assigned to CN-slot
n, then task i has to obey the release time #!,, and deadline t& for CN-slot n,
1eI™8 ne N, me M.

3 Sequencing approach

The computational challenge of the problem instances of practical interest stems
primarily from the large number of tasks to be sequenced on the CMs. This
section presents our strategy for sequencing of CM-tasks along with the notation
needed for the mathematical model.

3.1 Strategy

An important characteristic of our problem is that the CMs have a huge number
of tasks and that a considerable amount of these are fixed. It is also known
that most of the technical restrictions, like release times and deadlines of tasks,
precedence relations and CN-scheduling, are not particularly tight. With this
knowledge in mind our approach to sequencing on the CMs is based on the
following proposition.

Proposition 1 (Sequencing strategy) To require that the tasks belonging to
the union of a set of non-fized tasks and a set of fived tasks are sequenced is
equivalent to require the following.



Table 4: The parameters and sets of the entities introduced in Section 3.2

Entity Parameter Notation
CM h sections on CM h Rn
subsets on CM h Sy,
Section r  duration [see
tasks Isee
Subset s tasks Tsub
Task ¢ release time in section r t;,
deadline in section r ts
sections Riask

e Create a section for each part of a major frame that is not occupied by a
fixed task and require that each non-fixed task is assigned to a section.

e Create a subset for each set of non-fized tasks that can be assigned to the
same section and require that there is no overlap between tasks in this
subset.

This modelling approach includes extremely many constraints, but since they
are of interest only for a subset of tasks assigned to the same section, this
approach lends itself to constraint generation. This strategy for sequencing will
be used in the model presented in Section 4 and exploited in the constraint
generation procedure in Section 5.

3.2 Notation

For CM h, let Zf* denote the set of tasks that are fixed, h € H°M. Divide the
major frame of CM h into a set of sections Rj where only non-fixed tasks are
allowed to execute, h € H. Let [J°° denote the duration of section r and let Z3°°
denote the set of tasks that can be assigned to section 7, r € Ry, h € HM.
Also, let Rff”k be the set of sections where task i can execute, i € 7 \IE",
h € HM. For section r let #%, be the release time and t{ be the deadline of
task 4, 1 € 1)°°, r € R.

Introduce the set Sy, such that each set Z5', s € Sy, h € HM | includes
non-fixed tasks that can, for at least one section, be assigned together in the
same section.

4 Mixed-Integer Programming (MIP) formula-
tion
In this section we present a MIP-model for the scheduling of one major frame.

The technical restrictions that can span more than one major frame will be
formulated in order to propagate to the decisions made within one major frame.



4.1 Tasks and sequencing

For task i, i € Z, introduce a variable
x; = start time of task i offset its period start.

The start time of a specific job k of task ¢ becomes x; + kp;, where 0 < x; +kp; <
P hold, k € J;, i € Z. In order to simplify notation we introduce two tasks p
and ¢ with execution requirement 0. These will be the first and the last task,
respectively, of all sequences.

4.1.1 AM

For each AM, a single sequence of all its tasks is created. Let the set Zi"’ denote
all tasks that can be the immediate successor of task ¢ and the set Z;” denote
all tasks that can be the immediate predecessor of task i, i € I;?M, h € HAM,
Introduce, for h € HAM i € TMM | j € Z7| a binary variable

~J 1 if task i is the immediate predecessor of task j,
Yii = 0 otherwise.

In order to create a sequence of the tasks on the AMs we will apply a Manne
formulation for the setup times, see Manne (1960),

S =1, i€ Ty \ {G), h e HAM, (4.1.1)
jez}r
> yi=1, i€ T\ {p}, he HAM, (4.1.2)
jeI;

i e + 15 <y (8 — 15+ 105°) (1 - yiy)
jeTr, i€y, heHMM, (4.1.3)

th <m <t — e i €I, h e HAM, (4.1.4)
yij € {0,1}, jETL, i €Ty, h e HAM. (4.1.5)
412 CM

Each task on a CM shall be assigned to one section. Introduce, for h € HM,
i € I, \ I, r € Rtk a binary variable

1 if task ¢ assigned to section r,
Qi = .
0 otherwise.

The following constraint ensure that each non-fixed task is assigned to one
section, that the capacity of each section is respected, that each non-fixed task
obeys its release time and deadline within its section, and that fixed tasks comply
with their release time.

10



> =1, i€ T\ T, he HOM, (4.1.6)

> it I 7€ Ry, heH™M, (4.1.7)
i€Isee

Z t;.()zir <z; < Z t?rair — €4, i1 €1y \Z}f}x, h e HCM, (418)
TGREaSk reRgask
x; =17, i e I8 h e HOM, (4.1.9)
air € {0,1}, re Rk e T \ I8 he HM (4.1.10)

Further, a sequence for each subset of tasks that can be assigned to the same
section is created. Let the set I:; denote all tasks that can be the immediate
successor of task 4 in subset s and the set 7, denote all tasks that can be
the immediate predecessor of task i in subset s, i € 5" s € S, h € HM.
Introduce, for h € HM, s € Sy, i € T\ {G}, j € Z;, a binary variable

{1 if task ¢ is the immediate predecessor of task j in subset s,
Yijs =

0 otherwise.

For each subset of tasks we apply a Miller-Tucker-Zemlin formulation, see Miller
et al. (1960), for sequencing the tasks.

> vijs =1, i€ T\ {G}, s €8y, heHM, (4.1.11)
JETH
> yiis =1, i e TP\ {pY, s € Sp, he HM, (4.1.12)
JET;,
wi+ e < aj+ () = 15) (1= yijs),
JETL, i €T, s €Sy, he HM, (4.1.13)

yijs €{0,1}, jeTt, i e T se 8y, he H™ (4.1.14)

18

4.2 Precedence relations

For dependency d, introduce a variable
ug = time between job kg4 of task iy and the next occurrence of job Iy of task jg,

which will be referred to as the length of the dependency, d € D. Also, for
d € D, introduce a binary variable

{1 if job kg4 of task i4 precede job I of task jg within a major frame,
Vd =

0 otherwise,

11



referred to as the dependency indicator variable. The following constraints
defines the length of the dependency and restricts it to be within its minimum
and maximum length.

ua = (Tig + kapiy) + Pva — (2, + lapjs), deD, (42.1)
l(rinin—dep S Uy S lzlnax-dep7 d e D7 (422)
vq € {0,1}, deD (4.2.3)

The dependencies in a chain ensure that each pair of jobs linked by a depen-
dency has a particular order in a major frame. The following constraint ensure
that the cycle of these dependencies finishes within the duration of a major
frame.

> wa=1, ceC (4.24)

deDehain

4.3 CN-scheduling

For each pair of CN-message m and CN-slot n, m € M, n € N, introduce a
binary variable

{1 if CN-message m is assigned to CN-slot n,
Znm =

0 otherwise.

The constraints ensure that each CN-message is assigned to a slot, make sure
that the capacity of a slot is respected, that at most one message can be send
or received in a slot for each CM, and that tasks involved in transmitting a CN-
message respect their release times and deadlines induced by assigning their
message to a slot.

D zam =1, me M, (4.3.1)
neN
D Iz, <1 neN, (43.2)
meM

> zm <L neN, he HM, (4.3.3)
meM;ee

> zm <1 neN, he HM, (4.3.4)
meMsend
Z tr Znm < 1 < Z t?nznm — e, 1€ me M, (4.3.5)
neN neN
Znm € {0,1}, neN, meM (4.3.6)

5 Solution approach

This section presents our constraint generation procedure, the preprocessing
components used, and a summerative description of the scheduling tool.

12



5.1 Constraint generation procedure

Since the number of subsets of CM-tasks to be sequenced is typically huge and
not all of them are likely to be needed for solving the problem, the problem
is initially solved without them and the ones needed are added iteratively in a
constraint generation procedure.

This section introduces the two models that are used in the constraint gen-
eration procedure. The first model is a relaxation of the full model obtained by
removing the constraints used for sequencing of subsets of CM-tasks. This model
is referred to as the a-model and its purpose is to assign non-fixed CM-tasks
to sections. The second model is referred to as the S-model and it attempts
to sequence non-fixed CM-tasks given an a-model solution. The solution to
the B-model is either a valid schedule or it provides information about which
constraints to generate and add to both models. Such generated constraint are
referred to as generated sequences.

5.1.1 «o-model

The aim of the a-model is to assign CM-tasks to a section while respecting all
other constraints. The objective functions used are described in Section 5.1.3.

min/max Objective function
s.t. Objective constraints
AM-scheduling (Constraint 4.1.1 — 4.1.5)
Generated sequences (Constraint 4.1.12 — 4.1.14)
CM-assignment  (Constraint 4.1.8 — 4.1.10)
Precedence relations (Constraint 4.2.2 — 4.2.4)
CN-scheduling (Constraint 4.3.1 — 4.3.6)

In the first iteration there are no generated sequences but in later iterations the
ones that are identified by the S-model are included in the model.

5.1.2 (-model

The S-model is obtained from a solution to the a-model as follows. For section
r, let the subset of tasks that was assigned to this section be denoted by s,
r € Rp, h € HOM. Restrict the release time and the deadline of task i to be
t;, and t?,., respectively, i € Ig}}b, r € Ri, h € HM. Introduce, for h € HM,

re€Rp, 1€ Igfb, a binary variable

3 {1 if task 7 is successfully sequenced in subset s,.,
i5,. =

0 otherwise.
The following formulation is referred to as S-sequences where a value of §;5, =0

indicate that task ¢ could not be ensured not to overlap another task in section
r, i €I, r € Ry, h € HOM.

13



Z Yijs, = Bis,

i € T2\ {G}, 7 € Ry, he HM, (5.1.1)

JETH
> i, = Bis, i € TP\ {p}, r € Ry, he HM, (5.1.2)
jGIi}T
zi+ei <xp+ () = 15) (1 = s, ),
JETL i€ reRy, he H™, (5.1.3)
th <@ <ty — e i€ T, re Ry, he HM, (5.1.4)
z; =1 i€ I he HOM, (5.1.5)
Bis, €{0,1} i € I, r € Ry, he HOM, (5.1.6)
Yijs, € {0,1} JETL i€ reRy, he H™ (5.1.7)

The objective of the S-model, formulated as follows, is to maximize the
number of tasks that are successfully sequenced.

> D> Y B
heHCM reRp ieZvP

AM-scheduling

max

s.t. (Constraint 4.1.1 — 4.1.5

Generated sequences
[B-sequences
Precedence relations
CN-scheduling

)
(Constraint 4.1.12 — 4.1.14)
(Constraint 5.1.1 — 5.1.7)
(Constraint 4.2.2 — 4.2.4)
(Constraint 4.3.1 — 4.3.6)

The objective value corresponds to the number of tasks that have been success-
fully sequenced. If the objective value is the same as the number of S-variables,
a valid schedule has been found. If the objective value is lower than that, there is
at least one section where at least one task has not been successfully sequenced.

Convergence of the method is ensured by adding at least one generated se-
quence in each iteration as long as a valid schedule is not found. If a task has
not been successfully sequenced within its subset, this implies that the sequenc-
ing constraints of this subset was not previously generated and progress, with
respect to convergence, can be obtained by adding at least one such generated
sequence.

5.1.3 Objective functions of the a-model

The practical behaviour of the above described constraint generation procedure
relies heavily on the tasks being assigned to appropriate sections in the a-model.
Early empirical results suggested it to be wise to use one objective in the first
iteration and another in the following iterations.

In the first iteration, the section-slack-objective,

max

Q< — Z eiir, 1T E€RL heHM

i€Tgee

s.t. (5.1.8)
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Figure 2: An illustration of the penalty function used in the center-task-
objective

that maximises the smallest slack in Constraint (5.1.8), is one of the objectives
used. Another one is the center-task-objective,

min Z Yi

€LY
2Ma (1—-A T — 1} .
.t. ;> — L , 1€,
° %—1—A< 2 tg—ei—tg> '
QMA JL‘Z‘—iLlT 1+A .
i 2 : - ) 6177
fY_].—A(tzdezt; 2 ’
72207 iEI’Y7

where the set Z7 contain the non-fixed CM-tasks that have ¢! < t{. This
objective directs tasks to be placed near the middle of their task interval by
minimising the value of a penalty function illustrated in Figure 2. The parameter
A gives the part of the task interval where there is no penalty for placing the
task. The variable v; € [0,1], i« € Z7, is the linearly increasing penalty for
placing a task outside this interval, and Ma is the maximum penalty.

From the second iteration onwards, the stabilise-objective,

max Z Z Z Qi (5.1.9)

heHOM rE€Rp jeTsP
is used to maximise the number of non-fixed CM-tasks that stay in their previ-
ously assigned section.
5.2 Pre-processing components

This section sketches the pre-processing principles that have been used to avoid
creating variables and constraints that are redundant with respect to the data
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of a particular instance.

5.2.1 Tightening of release times and deadlines of tasks

Originally, a task is allowed to start between its release time and deadline, but
dependencies to other tasks can imply that this interval is smaller. Algorithm 1
describes how the release times and deadlines of tasks are iteratively tightened,
without omitting feasible solutions.

The following notation is used in the algorithm. Let L; be the interval or
union of intervals in which task ¢ € 7 can start. For task ¢4 and task j; connected
by the dependency d, d € D, let the function L;,(d, L;,) return the interval or
union of intervals in which task i4 can be placed with respect to dependency d
and the interval or union of intervals L;,.

Data: Tasks and dependencies
Result: Release times and deadlines of tasks
Let k=0;
For i € T: Let LY = L;;
while The interval where a task can start can be tightened do
for Dependency d, d € D do
Let it = L;,(d, Lk )N Lk ;
Let L5+ = Ly, (d, LF ) N L ;
Let k =k +1;
end
end
For h € HAM, i € ) Let L; = L¥ and update ! and t¢ to define the
smallest interval where task ¢ can start with respect to L;;
For h € HM, r € Ry, i € T3*°: Let L; = L¥ and update ¢, and t$. to
define the smallest interval where task ¢ can start in section r with
respect to Lj;
Algorithm 1: Preprocessing to update the release times and deadlines of
tasks with respect to their dependencies

5.2.2 Sequencing variables

Since the number of y-variables for each module in the worst case can grow
quadratically with the number of tasks to be sequenced, it is important to not
include an excessive number of variables that anyway cannot take the value one
in a model. This translates to reducing the sets Z;” and Z; for tasks on the
AMs and the sets Z;% and Z;, for all subsets of tasks on the CMs. How this is
done is presented in Algorithm 2, where the tasks are assumed to be ordered
with respect to ascending release time.

5.2.3 Dependency indicator variables

The variable vy, d € D, that indicates if job k4 of task iy precede job l; of task
jq in a major frame can, depending on where the involved tasks can be placed,
sometimes be beforehand fixed. The computations required to determine the
possible values of these variables are given in Algorithm 3.
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Data: Tasks and their intervals
Result: Which tasks that can follow each of the tasks in the set Z
/* Handle tasks that can cross a major frame */
for Task i with t¢ <t!, i€ Z do
In Z, replace task i with
task 21 : £ =0, t?,z = td and
task ip @ t5 =g, t‘ii2 = P;
end
/* Include tasks in the sets of followers */
for Task i, i € 7 do
Let i’ be such that t§, = min;» ¢3,,
where i € Z such that t£, > t;
for Task j such that t7 <t7+e; < tz?‘i —ey,j€Z ™ do
if t] +¢; < t;l —e;j then
‘ Include task j in the set f:r
end
if t7 +e; <t —e; then
‘ Include task ¢ in the set 17
end
end
end
/* Restore tasks that can cross a major frame */

for Each task i that were split into i, and iy, i € Z do
Where applicable, replace i1 and is by i;
Let 7+ — 7+ UT?
delete 7:71' and ij; ;
end
Algorithm 2: Preprocessing to determine which tasks of a set Z that can be
the immediate successors Z;" and the immediate predecessors Z; of task i,
ieZ. ) A pair of tasks i, j such that t; = t3, is only considered at its first
occurrence.
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Data: Tasks and dependencies
Result: Possible values of dependency indicator variables or a proof of
infeasibility
for Dependency d, d € D do
Let:
E = 1F 4 kap;
% =t 4 kapi — e,
e =t + lapy,
s~ lap, — e
if pmaz _ ymin > l;m‘n—dep and
j i =
grin — gmaer < AP P then
HES
Let vq € {0,1};
else if ¢7maz — ¢min > [7IP _ P gnd
grmin _ gmaz < AP pghen
i<
T Let vg = 1;
else if 797 — ¢7in > 7740 qpd

g — mar < TROEIEP then

Let vg = 0;

else
Conclude that the problem is infeasible;
Break;

end

end
Algorithm 3: Preprocessing to determine possible values of dependency in-
dicator variables.
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5.3 Overview of scheduling tool

Algorithm 4 provides an overview of the implemented scheduling tool with ref-
erences to descriptions of the algorithm components and the models that have
been introduced. The implementation of the scheduling tool is made in Python
Version 3.6.0 and the models have been solved by Gurobi Optimizer Version
7.0.2. The choice of objective function and parameter settings are further dis-
cussed in Section 6.

Data: A scheduling instance

Result: A valid schedule or a proof of infeasibility

Perform pre-processing according to Algorithm 1;

do

Perform pre-processing according to Algorithm 3 and 2;
Solve the a-model;

if a-model infeasible then

Conclude that the problem is infeasible;

Break;

end

Restrict all non-fixed CM-tasks to their assigned section;
Perform pre-processing according to Algorithm 1, 3 and 2;
Solve the S-model;

if There are tasks that are not included in the B-sequences then
Add at least one new sequence formulation to the a-model and

the S-model;
end

while At least one sequence formulation is new;
Algorithm 4: Overview of the scheduling tool

5.4 Benchmark formulation

In an early stage of the project we created a benchmark formulation where, in-
stead of our constraint generation procedure, all CM-tasks were to be sequenced
by a Miller-Tucker-Zemlin-formulation. The purpose of this formulation was to
make comparisons for small instances and evaluate our pre-processing compo-
nents.

6 Test results

The purpose of this section is to present our results that verify that the solution
strategy presented in this paper can be used to schedule avionic systems of in-
dustrial relevance. For this purpose Saab has provided three instances, named
I, II, and III. Instance I corresponds to a minimum viable example of an avionic
system with two nodes and a total of about 6500 tasks. Instance II has 5 nodes
and a total of about 14 000 tasks and Instance III is the largest with 7 nodes
and a total of about 20 000 tasks; see Tables 5, 6, and 7 for detailed informa-
tion about each of the instances, respectively. In these tables, the number of
dependencies, chains and CN-messages are given for the complete system while
the number of tasks are given for each module.
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Table 5: Characteristics of Instance I

Entities Number of
CMs 2
CM-tasks [3701, 2835]
Fixed tasks [2816, 1404]
AMs 2
AM-tasks [1,1]
Dependencies 1457
CN-messages 64
Chains 998

Table 6: Characteristics of Instance 1I
Entities Number of
CMs 5
CM-tasks

Fixed tasks
AMs
AM-tasks
Dependencies
CN-messages
Chains

[5871, 2388, 2260, 1860, 1788
(2832, 1408, 1408, 1408, 584]
6

7.3,3,2,(3,1)]

11779

96

1458

An important characteristic of all the instances under consideration is that
a large portion of the tasks at the CMs have a fixed start time. For Instance I,
II, and III, this portion is 65%, 54%, and 53%, respectively.

All test are carried out on a computer with two Intel Xeon E5-2640-v3
Processors (8 cores, 2.6 GHz) and 64 GB RAM.

Early in the project we tried to solve Instance I with our benchmark formula-
tion by using Gurobi after applying all our pre-processing components. Within
a time limit of one week, no feasible solution was found.

6.1 Pre-processing effect

The purpose of our pre-processing components is to avoid creating variables that
are redundant for a particular instance, and the effect of the pre-processing is
summarised in Table 8.

The first step is to use Algorithm 1 to reduce the interval in which the tasks
can be placed with respect to dependencies to other tasks. For Instance I the
effect is that about 5% of the total amount of interval is removed. This result
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Table 7: Characteristics of Instance III

Entities Number of

CMs 7

CM-tasks [6871,3867,2388, 2260, 1860, 1860, 1788]
Fixed tasks [2832, 1452, 1408, 1408, 1408, 1408, 584]
AMs 8

AM-tasks [7,4,3,3,2,2,(3,1)]

Dependencies 15155
CN-messages 96
Chains 2002

Table 8: Effect of pre-processing components. The number of y-variables are
counted for the benchmark model, see Section 5.4, with an earlier version of
the scheduling tool and the other results are from scheduling tool running the
constraint generation procedure.

Instances
Measurements 1 11 111
Complete number of y-variables 2210 52-10% 70-106
Reduction of task intervals by Alg. 1 5% 18% 17%
Time for Alg. 1 27s 103s 123s
Number of y-variables after Alg. 1and 2 0.2-10 0.9-10% 1.2-10°
Reduction of v-variables by Alg. 3 47% 90% 92%

indicate the tasks are not particularly restricted by their release times, deadlines
and dependencies to other tasks for this instance. For Instances IT and III about
18% of the total amount of interval is removed and the pre-processing has an
effect of practical relevance. For all instances, Algorithm 1 requires at most a
few minutes of computational time.

The last row of Table 8 shows for how many of the v-variables that Algo-
rithm 3 detects that the value is fixed. In Instance I 47% of the v-variables are
fixed and in Instance IT and III about 90% of the v-variables are fixed.

6.2 Solution approach evaluation

An important contribution of this paper, and the key that enable us to sched-
ule the instances under consideration, is the reformulation of sequencing and
the constraint generation procedure using the o- and the S-model. Table 9 il-
lustrates the impact of this decomposition in terms of the number of variables
in the respective models. The first row gives the number of a-variables. An
a-variable is created for a task-section-pair only if a task can execute in that

21



Table 9: Characterisation of S-model.

Instances

Measurements I 11 11T

-10% 4-10°  6-103
-10*  11-10* 15-10%
-10>  6-10°  8-10°
-10*  5-10*  7-10%

Number of sections
Number of a-variables
Average number of g-variables in S-model

Average number of y-variables in f-model

section with respect to its release time and deadline.

In the S-model, the S-variables are created only for tasks that are placed in
a section with at least two tasks beside p and §. For this reason, the number
of B-variables can differ somewhat between iterations for the same instance. In
Table 9, the average number of S-variables over all iterations are presented.

The outcome of the scheduling of Instance I, II, and III is summarised in
Table 10, 11, and 12, respectively. For each instance, the results for four choices
of objective functions in the first a-model step are presented. The solution times
are given in seconds. The total time refers to the complete execution time for
our scheduling tool, while times for the a- and the S-model refer to time spent
by Gurobi only. The most important parameter settings used are:

e The time limit in the a-model is 8 h.
e The relative MIP-gap in the a-model is 0.10 for all runs.

e The time limit in the S-model is initially 2 hours and whenever an im-
proved integer solution is found, it is reset to 4 hours.

e The relative MIP-gap in the S-model is 0. This strict gap is required to
facilitate all tasks to be successfully sequenced.

e The value of Ma is 1000.

e In one iteration, at most 5 new generated sequences are added to the a-
and the S-model, even if more than that is detected.

The choices that have to be made with most care are the objective function
in the a-model, the MIP-gap in the a-model, and the time limit in the S-model.
The objective function and the MIP-gap in the a-model are important because
these choices have an impact on in which sections the tasks are initially placed.
The time limit in the S-model is important because it has a large impact on
the total running time and the quality of the feedback information in terms of
subsets. If this time limit is set too high, a lot of time will be spent in the
B-model trying to include tasks into the S-sequences even if this is not possible,
and if this time limit is set too low there is a risk that a solution with all tasks
included in a S-sequence might not be found even if it exists.

For Instance I, a schedule is obtained within 10 minutes no matter which
objective is used, and in all cases the section assignment made in the first a-
model step makes it possible to include all tasks in an 8-sequence in the S-model
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Table 10: Results for Instance I
Measurements Section- Center-task

slack A=010 A=050 A=075

Total time (s) 164 243 467 182
Iterations 1 1 1 1
Generated sequences - - - -
Time (s) a-model 6 31 23 23
Time (s) S-model 1 53 283 2

Table 11: Results for Instance 11
Measurements Section- Center-task

slack A=010 A=050 A=075

Total time (s) 1025 29676 2484 1623
Iterations 1 1 1 1
Generated sequences - - - -
Time (s) a-model 111 28800 946 483
Time (s) S-model 449 416 1081 680

step. This exceptionally good outcome is likely to depend on that a lot of feasible
solutions exists for this instance and that the task intervals and the bounds on
the dependency lengths are not very tight. This result can be compared to the
benchmark formulation which we ran one week without obtaining a solution.

For Instance II the solution times ranges between 17 minutes and 41 minutes,
except when for the center-task-objective with A = 0.10 was used. In that case
the running time was 495 minutes. The reason for this long running time comes
from the a-model where no solution with the required MIP-gap is obtained
within the maximum running time.

Instance III requires more than one iteration for all choices of objective
function except for the center-task objective with A = 0.75. Also, as for Instance
II, the center-task objective for A = 0.1 does find a solution that meets the
required MIP-gap of the a-model in the first iteration which gives a significantly
longer running time, 871 minutes, also for this instance. The total running time
for the other objectives ranges in between 37 and 131 minutes.

A conclusion that can be drawn about the choice of objective function in the
first a-model step is that the section-slack objective and the center-task objective
with A = 0.75 have provided the best results for the instances presented and that
the performance of the solution strategy is sensitive to the choice of objective.
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Table 12: Results for Instance IIT

Measurements Section- Center-task

slack A =0.10 A=050 A=0.75
Total time 2438 52269 7882 2210
Iterations 4 3 2 1
Generated sequences [14, 9, 4] 1, 1] 1 -
Time (s) a-model [178, 33, 36, 82]  [28800, 41, 195] [503, 34] 569
Time (s) B-model 30, 38, 33, 356]  [49, 15609, 6204] [42, 6369] 1079

7 Concluding remarks

This paper describes an avionics scheduling problem of industrial relevance and
suggests a mathematical model for this problem. The non-heuristic solution
strategy that we present is based on constraint generation and exploits known
characteristics of our problem. Our computational results verify that we can
solve industrially relevant instances, significantly larger than what is described
in the literature, within reasonable time and our conclusion is that our approach
is viable for this type of problem. Our continued research aims at improving
the components used in this strategy to further enhance the computational
performance in order to solve even larger instances.

In the current model we have introduced a restriction that, for each CM, at
most one message can be sent or received in a slot. In practice there is no such
restriction and co-allocation of messages is possible. However, if co-allocation is
allowed, this effects the tasks used for transmitting and receiving the messages
and therefore we have left for future research to include the possibility of co-
allocation.

The work of this paper is part of a long term project of developing exact
solution methods for avionics scheduling problems since they are expected to be
important for future avionic development projects. In this paper we consider
the case of scheduling a systems where all requirements are given, but it is also
of interest to develop decisions support tools for the dimensioning of avionic
systems and tools that can suggest which changes to make if no feasible solution
is found by the scheduler.
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