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Abstract: A false aneurysm is a hematoma, i.e. collection of blood outside of a blood vessel, that
forms due to a hole in the wall of an artery . This represents a serious medical condition that needs
to be monitored and, under certain conditions, treated urgently. In this work a one-dimensional
model of a false aneurysm is proposed. The new model is based on a one-dimensional model of an
artery previously presented by the authors and it takes into account the interaction between the
hematoma and the surrounding muscle material. The model equations are derived using rigorous
asymptotic analysis for the case of a simplified geometry.
Even though the model is simple it still supports a realistic behavior for the system consisting of
the vessel and the hematoma. Using numerical simulations we illustrate the behavior of the model.
We also investigate the effect of changing the size of the hematoma. The simulations show that
our model can reproduce realistic solutions. For instance we show the typical strong pulsation of
an aneurysm by blood entering the hematoma during the work phase of the cardiac cycle, and the
blood returning to the vessel during the resting phase. Also we show that the aneurysm grows if
the pulse rate is increased due to, e.g., a higher work load.

1 Introduction

In this paper we deal with modeling a false aneurysm located on the large femoral artery [24]. The
false aneurysm differs from a true aneurysm by the absence of a rigid wall surrounding the hematoma.
The false aneurysm appears as a result of blood flow through a hole in vessel’s wall. Such a hole can
appear due to, e.g., a trauma that punctures the artery, such as knife and bullet wound, or as a result
of percutaneous surgical procedures such as coronary angiography or arterial grafting [8], or due to the
use of an artery for injecting medicine. A characteristic feature of a false aneurysm is a strong pulsation
which is due to abundant blood flow into the hematoma, during the early stages of the cardiac cycle, and
its subsequent slow return to the artery due to the compressive stress of the surrounding muscle tissue
[1].

The aim of this work is the presentation of the simplest model, that still properly describes the
functioning of the vessel/hematoma system. The geometry is maximally simplified: the axis symmetry
condition is introduced, the effects of a boundary layer type near the hole are neglected, the surrounding
muscle tissue occupies the remaining part of cross-sections y = (y1, y2), the vessel wall and the bed vessel
are modelled by an elastic two-dimensional surface and the vessels is assumed to be a circular cylinder.

Simplicity of the model is predetermined by requirements of its application. Let us make some
comments concerning this issue. First of all, it is impossible to take into account all physical and
geometric forms of the objects constituting the biological system under consideration. The blood is a
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multi-component liquid with pronounced viscoelastic properties. The vessel wall is a three layer shell
strengthen by families of collagen fibers. The elastic material of the muscle is non homogeneous and
anisotropic exposing to aging (admitting stress relaxation). The hematoma contains volumes of stagnant
and partially clotted blood together with neoplasms and suppuration. Besides the characteristics of the
objects essentially depends on external factors, e.g. time of day, temperature, exercise stress, medical
drugs, etc. Thus a very detailed analysis is not required. Second, if the results are to be useful to
physicians they must be expressed in very simple terms. Also, as open ejection of blood from the femoral
artery leads to death within 20-30 minutes, there is a strict time limit involved. Thus we have to rely on
average statistical data found in medical textbooks, rather than individual data in our model. Finally, a
hematoma on the femoral artery will have an influence of the larger vascular tree. For instance, the first
action of the doctor after finding a false aneurysm is to investigate the availability of pulse around the
ankle.

The paper is organized as follows: In Section 2 we present the details of our model for the false
aneurysm. In Section 3 we give a brief description of our numerical model and also present several
experiments intended to illustrate the properties of the aneurysm model. Finally, in Section 4 we discuss
the both results and the future direction of our research.

2 The False Aneurysm Model

Consider a segment of the artery in the shape of a circular cylinder

Θa = {x = (y, z) ∈ R
2 × R : r = |y| < a, z = x3 ∈ (−ℓ−, ℓ+)}, (1)

where a > 0 is the radius, ℓ = ℓ+ + ℓ− is the length and ℓ± > 0. The ratio

δw = a/ℓ (2)

is considered as a small parameter. The vessel’s wall is modelled as a thin solid cylindrical shell of
layer structure; see [7, Chapter11] and [5, Chapter 8]. Due to the averaging and dimensional reduction
procedures developed in [13, 12], the vessel wall can be replaced by the elastic two-dimensional surface

Γa = {(y, z) : r = a, z ∈ (−ℓ−, ℓ+)}. (3)

A fusiform aneurysm is an axis-symmetric, oblong domain

ΞH = {(y, z) : a < r < a+H(z), z ∈ (−L−, L+)}, (4)

and its length L = L+ + L− < ℓ, L± > 0, and the profile H is a smooth function defined on the closed
interval [−L−, L+],

H(z) > 0 for z ∈ (−L−, L+), H(±L±) = 0, ∂zH(±L±) 6= 0. (5)

The dimensionless parameters

δh =
maxH(z)

minL±

and hh =
a

a+maxH(z)
(6)

are also assumed to be small. Moreover, taking into account the anatomical structure we have

L−/ℓ− << 1 and L+/ℓ+ << 1. (7)

Finally, the small hole of the diameter O(a) is located at z = 0.
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2.1 Equations of hydrodynamics and elasticity

At this stage, we ignore the hole and consider separately the blood flow in the vessel and in the hematoma.
The natural assumption about smallness of the Reynolds and Stokes numbers in the artery:

Reb =
1

ν

1

T
al and Stb =

1

νb

1

T
a2 = δwReb, (8)

allows us to discard the inertial and convective terms in the unsteady Navier-Stokes system and thus we
obtain the Stokes system

−ν∆v +∇p = 0 and −∇ · v = 0 in Θa (9)

that is intended to describe the blood flow in the artery, cf. [23] and [2, 10, 9]. Here, ∇ is gradient, ∇· is
divergence, ∆ = ∇ · ∇ is the Laplacian, ν > 0 is the coefficient of viscosity, v is the velocity vector and
p is the pressure. Moreover, T denotes the period of heartbeat, i.e. 1/T is the pulse rate.

The blood volumes inside the vessel and the hematoma, respectively, are

Vv = πℓa2 and Vh = π

∫ L+

−L
−

(H(z) + a)2dx. (10)

Since Vh must be, at most, comparable with Vv, otherwise immediate surgery is needed, and H(z)+a > a,
L < ℓ, the smallness assumption on the numbers (8) implies that the Reynolds number in the hematoma
is also small,

Reh =
1

ν

1

T
LmaxH(z) ≈ Reb. (11)

Therefore, in view of the smallness of δh from (6), the Reynolds number Reh and the Stokes number
Sth = δhReh are also small and hence the velocity vector V and the pressure P in the hematoma satisfy
the Stokes system

−ν∆V +∇P = 0 and −∇ · V = 0 in ΣH . (12)

According to results from [13, 12] the averaged equations for the composite vessel wall, which are
written on the surface (3) under the axial symmetry assumptions, have the form

Kϕϕa
−1ur +Kϕz∂zuz + haγw∂

2
t ur = γb(fr − Fr), (13)

−hKzϕ∂zur − haKzz∂
2
zuz + haγw∂

2
t uz = γb(fz − Fz) on Γa, (14)

where ur and uz are radial and transversal displacements respectively, fr, Fr and fz, Fz are similar
components of hydrodynamical forces, i.e.

fr = p+ ν∂rvr, Fr = P + ν∂rVr,

fz =
ν

2
(∂rvz + ∂zvr), Fz =

ν

2
(∂rVz + ∂zVr), (15)

where t is time, h is the relative thickness of the wall, γw and γb are the densities of the wall (effective)
and the blood, respectively, and finally

K =

(

Kϕϕ Kϕz

Kzϕ Kzz

)

(16)

is a symmetric and positive definite constant matrix representing the effective elastic moduli for the vessel
wall.

Relation (13) means that the hydrodynamical forces acting from different sides of the wall on the
vessel wall are balanced by internal stresses together with inertial forces. We note that a one-dimensional
model contains only one coefficient

Kw = Kϕϕ (17)
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from the stiffness matrix (16). In addition to the system (13) we supply the surface Γa with the dynamic
no-slip conditions

v = ∂tu, V = ∂tu. (18)

Consider the following three Womersley numbers

Wb = (Stb)
1/2, Ww =

a

T

√

hγw
Kw

, Wm =
maxH(z)

T

√

γm
Km

. (19)

The first one is related to fluid and it is small due to our assumptions on numbers (8). Discussion on the
second number is postponed to Section 2.2. The third one, containing the density γm and the stiffness
modulus Km of the surrounding muscle material, is small due to a similar argument as the one in the
papers [9, 10].

The transversal size of the surrounding muscle material must significantly exceed the length and
diameter of the hematoma. If this is not the case then the situation is super critical and urgent surgical
intervention is required. We assume that the system Θa ∪ ΣH is located inside an infinite muscle layer
{x : y ∈ R

2, z ∈ (−L−, L+)}, which is a transversely isotropic elastic material. In other words, the
reaction of the surrounding material on the artery itself can be neglected. Damping out external influences
is the purpose of the loosened vascular layer, that is the vessel bed, see the discussion in [9, 10]. However
as follows from the definition of the false aneurysm hematoma equilibrium is supported exclusively by
muscle resistance.

The external boundary of the hematoma

ΥH = {(y, z) : r = a+H(z), z ∈ (−L−, L+)} (20)

in the false aneurysm is separated from the surrounding muscle material by a very thin film. The reaction
on the muscle material from the hydrodynamical force

F = γbPN + γbνE ·N on ΥH (21)

represents the traction T = Σ · N , compare with (15), where E = (Ejk) is the tensor of deformation
velocities,

Ejk =
1

2

(∂Vj

∂xk
+

∂Vk

∂xj

)

, j, k = 1, 2, 3, (22)

Σ = (Σjk) is the tensor of stresses in the muscle material and N is the unit vector of outward normal to
the surface (20),

N = (1 + |∂zH(z)|2)−1/2
(

(a+H(z))−1y1, (a+H(z))−1y2,−∂zH(z)
)

. (23)

We ignore other effects that impact the boundary of the hematoma and thus we arrive at the following
boundary condition

Σ ·N + γbPN + γbνE ·N = 0. (24)

2.2 Dimension reduction procedure

We start with the one-dimensional Reynolds equation for blood flow in a thin vessel; see details in [9, 10].
We consider separately the two parts of the vessel: Θ±

a = {(y, z) : ±z ∈ (0, ℓ±)}; that is before and after
the hole. A rigorous asymptotic analysis, see [10, 23, 20], shows that the leading term of the pressure
p(y, z) does not depend on the transversal variables y = (y1, y2) and the longitudinal component of
the velocity vector prevails over the transversal components v′ = (v1, v2). Concerning the displacement
components of the wall of the artery, the radial component ur dominates over the longitudinal one, uz.
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Taking into account the above observations and slow variability of fields in the direction z, we arrive
at the following problem on the cross-section Ba = {y ∈ R

2 : r < a} of the vessel:

ν∆yvz(y, z, t) = ∂zp(z, t), y ∈ Ba, vz(y, z, t) = 0, y ∈ ∂Ba. (25)

Its solution is given by

vz(y, z, t) =
1

4ν
(r2 − a2)∂zp(z, t). (26)

Also, we calculate the flux through the cross section:

ϕ(z, t) =

∫

Ba

v3(y, z, t)dy = −
πa4

8ν
∂zp(z, t). (27)

The over lined quantities corresponds to the leading terms of corresponding quantities.
Among remaining relations in (9) and (18) we need the following consequences of the continuity

equation and the dynamic no-slip condition

−∇y · v
′(y, z, t) = ∂zv3(y, z, t), y ∈ Ba, (28)

and
v′r(y, z, t) = ∂tur(z, t), y ∈ ∂Ba. (29)

Applying integration by parts to
∫

Ba

∇y · v
′dy, we obtain

2a∂tur(z, t)−
a4

8ν
∂2
zp(z, t) = 0, z ∈ (−ℓ−, 0) ∪ (0, ℓ+). (30)

According to the dimensional reduction procedure for a thin slightly curved three-dimensional channel
with variable cross-section, similar properties have the solution {V, P} of the Stokes system (12) for the
hematoma. At the same time, smallness of hh, see (6), with respect to the diameter of the vessel in the
hematoma, allows us to replace the ring Ba+H(z)\Ba by the punctured circle BH(z) and the corresponding
solution to the Dirichlet problem, see (25), in this ring by solution of the problem in the circle similar to
(26):

V z(y, z, t) =
1

4ν
(r2 −H(z)2)∂zP (z, t). (31)

It should be emphasized that the asymptotic analysis performed in [14, Ch. 12-13] shows that the
accuracy due to replacement of the ring by a circle is of order O(| log hh|

−1) and it increases when
z → ±L±. However, in order to simplify the final model, having in mind many disregarded factors,
we neglect also these details. As a result, the flux through the cross-section of the hematoma can be
evaluated according to

Φ(z, t) =

∫

BH(z)

V z(y, z, t)dy = −
πH(z)4

8ν
∂zP (z, t). (32)

Using the same scheme as in [10, 23, 20], we continue the procedure of dimensional reduction. The
continuity equation in the Stokes system (12) gives the relation

−∇y · V
′
(y, z, t) = ∂zV z(y, z, t), y ∈ BH(z). (33)

It remains to determine a boundary condition on ∂BH(z).
The assumption on the Womersley numbers in (19), smooth variability of the hematoma in the z

direction and its small relative thickness allow us to reduce the analysis to solving a two-dimensional
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elasticity problem on the plane with a circular hole for determination of the muscle reaction on imple-
mentation and increase of the hematoma. Such axis-symmetric solution is known, see [22, vol. 2, sec.
11.2]:

wr(r, ϕ) = cr−1, wϕ(r, ϕ) = 0, (34)

σrr(r, ϕ) = −2µcr−2, σϕϕ(r, ϕ) = 2µcr−2, σrϕ(r, ϕ) = σϕr(r, ϕ) = 0.

The polar coordinates r, ϕ are used here together with the components of two-dimensional displacement
vector w and corresponding stress tensor. Here µ is the shear modulus for transverse isotropic muscle
material.

Since the surrounded muscles adapt to the inclusions after certain time, i.e. relaxation of stresses
occurs and it is caused by dislocation, it is reasonable to take the middle position of the exterior boundary
of the hematoma as the reference surface. The traction applied from the muscle material, we represent
as the sum TH +TP , where TH is the traction due to the radial dislocation H(z) and TP is the traction
doe to the increase U r(z, t) of the radius of hematoma because of the internal blood pressure. Applying
formulae (34) with cH = H(z)(a+H(z)) and cP = U r(z, t)(a+H(z)) respectively we obtain that

TH
r (z, t) = −2µ

H(z)

a+H(z)
≈ −2µ, (35)

TP
r (z, t) = −2µ

Ur(z, t)

a+H(z)
≈ −2µH(z)−1U r(z, t) (36)

and the components TH
ϕ , TH

z and TP
ϕ , TP

z are neglectable. In (35), the smallness of the second parameter
in (6) is used.

The above-listed properties of the blood flow {V, P} show the the hydro-dynamic forces on the surface
ΥH are subject to the relations

Fr ≈ P , Fϕ ≈ 0, and Fz ≈ 0. (37)

Moreover, the normal vector (23) on ΥH is approximately equal to (y1/r, y2/r, 0). As a result, the
boundary condition (24) transforms into

γbP (z, t) = 2µ+ 2µH(z)−1U r(z, t) (38)

and the dynamic no-slip condition on ΥH becomes

V
′
(z, t) = ∂tU r(z, t) =

γb
2µ

H(z)∂tP (z, t).

Let us sum up intermediate results. As in the case of (28)–(30), calculation of the flux in the cross-
section BH(z) according to (33) and (38) leads to one-dimensional equation for the blood flow in the
hematoma:

γb
µ
H(z)2∂tP (z, t))−

1

8ν
∂z(H(z)4∂zP (z, t)) = 0, z ∈ (−L−, 0) ∪ (0, L+). (39)

Similar to [10], it remains to note that fr ≈ γbp and derive from the first line in (13) one-dimensional
equation for oscillations of the wall of artery:

Kwa
−1ur(z, t) + haγw∂

2
t ur(z, t) = γb(p(z, t)− P (z, t)), z ∈ (−L−, 0) ∪ (0, L+). (40)

The second line in (13) contains terms that are small with respect to (40) and therefore we do not take
them into account in our one-dimensional model.
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2.3 Statement of boundary and other conditions

The hole in the wall of artery equalizes pressure in the vessel and hematoma at the location z = 0, i.e.
the one-dimensional equation must be supplied with the transmission Kirchhoff conditions

p(+0, t) = p(−0, t) = P (+0, t) = P (−0, t). (41)

In other words, the functions p and P are continuous and take the same value at z = 0. The other
Kirchhoff condition means that the sum of fluxes at z = 0 vanishes, i.e. according to (27) and (32), we
have

a4

8ν
[∂zp](t) +

H(0)4

8ν
[∂zP ](t) = 0, (42)

where [q](t) = q(+0, t)− q(−0, t) is the jump of the function q at the point z = 0.
Now let us turn to the formulation of boundary conditions. Due to the geometrical assumptions (5)

coefficients of the differential equation (39) degenerate at the points z = ±L± and therefore this equation
does not need boundary condition. It is sufficient to require continuity of P on the interval [−L−, L+];
see [15, sec. 30] and [19] concerning asymptotical analysis of thin domains with sharp edges.

As usual in modeling of blood flow in vessel one ought to prescribe the flux at the input x = −ℓ−, i.e.
according to formula (27) we obtain the Neumann condition

−
a4

8ν
∂zp(−ℓ−, t) =

1

π
ϕ0(t), (43)

where ϕ0(t) is the real blood flux sent by the heart at the time moment t.
At the remote output x = ℓ+, located at the ankle level, it is reasonable to prescribe peripheral

pressure p∞, which can be considered to be constant. Nevertheless, pay attention to two facts. First, the
constant pressure

P0 = 2µ/γb, (44)

caused by the static reaction of the muscle on filling in of the hematoma, does not occur in equations (30),
(39), (40) and conditions (41)-(43). Second, the pressure (44) is small with respect to the second term
2µγ−1

b H(0)−1Ur(z, t) in (38) in the active phase of blood flow sent by the heart through the level z = 0,
but it acts during sufficiently long period of the passive phase. One of simple methods of accounting such
constant pressure is to change variables

P (z, t) 7→ P (z, t)− P0 and p(z, t) 7→ p(z, t)− P0, (45)

which do not influence the above equations and other conditions. Thus preserving the same notation for
the just introduced differences (45), we put the following Dirichlet condition

p(ℓ+, t) = p∞ − P0. (46)

The hyperbolic equation (40) requires two periodicity conditions

ur(z, 0) = ur(z, TN), ∂tur(z, 0) = ∂tur(z, TN). (47)

Here, 1/T is the pulse rate and N is a natural number. The need to monitor several periods (N) is due
to the fact that elastic oscillations of vessel wall are not connected with the rhythm of the heartbeat
and, moreover, is regulated by external factors. However, for a young and healthy artery the Womersley
number Ww defined in (19) is small, i.e. inertial term can be withdrawn from equation (40) and the
periodicity condition (47) becomes unnecessary.

Equation (40) without inertial term gives the relation

ur(z, t) =
γb
Kw

a(p(z, t)− P (z, t)), (48)

7|page



A One-Dimensional Model of a False Aneurysm

which converts equation (30) into

2γb
Kw

a2(∂tp(z, t)− ∂tP (z, t))−
a4

8ν
∂2
zp(z, t) = 0, z ∈ (−ℓ−, 0) ∪ (0, ℓ+). (49)

Clearly, the equation (49) does not require any periodicity condition of the type (47).

2.4 Growth of the hematoma

An increment of the hematoma volume △V(t) at the moment t is calculated according to the formula

π

∫ L+

−L
−

(

(a+H(z) + U r(z, t))
2 − (a+H(z)2

)

dz ≈ 2π

∫ L+

−L
−

H(z)Ur(z, t)dz.

With that according to relation (38), we have

△V(t) = π
γb
µ

∫ L+

−L
−

H(z)2P (z, t)dz. (50)

Equation (39) together with the Kirchhoff conditions (41), (42) shows that

△V(t)−△V(0) = π
γb
µ

∫ t

0

∫ L+

−L
−

H(z)2∂tP (z, t)dzdt

=
π

8ν

∫ t

0

∫ L+

−L
−

∂z(H(z)4∂zP (z, t))dzdt= −
π

8ν
H(0)4

∫ t

0

[∂zP (z, t)]dt. (51)

The total blood flow into the hematoma for the time interval (0, t) appeared in the right hand side of
(51). Thus we can monitor the growth of the hematoma during a given time period.

Note though that as our model is linear any growth of the hematoma can be reversed. Also for any
periodic solution the net growth over the whole period is always zero. Thus our model does not contain
any internal mechanism for permanently increasing the size of the Hematoma, i.e. changing the profile
H(z).

3 Numerical implementation and simulations

In this section we discuss our numerical implementation for solving the equations of our model. Numerical
simulations of blood flow in veins or arteries have been carried out by several authors, see e.g. [18, 16,
3, 4, 17]. In our previous work [2] we showed that our model for blood flow in arteries could be solved
with a simple and very efficient numerical method. In the case of an artery with a hematoma attached
the situation is similar.

For our numerical tests we discretize the equations (30), (39), and (40), using the finite difference
method. Introduce an equidistant grid {zi}

N
i=1 on the interval −ℓ− ≤ z ≤ ℓ+, and a grid {tj}

M
j=0 on the

interval 0 ≤ t ≤ T . The unknowns are the pressure p(zi, tj) in the vessel, the pressure P (zi, tj) in the
hematoma, and the displacement ur(zi, tj) of the vessel’s wall. We also introduce v(zi, tj) = ∂tur(zi, tj)
as additional unknowns.

Introduce three indicies as follows: zi1 = −L−, zi2 = 0 and zi3 = L+. The hole is located at the
grid point zi1 where ur and v are undefined. Further, the pressure P (zi, t) is only defined for indicies
i1 ≤ i ≤ i3. Thus the total number of unknowns at each time step is 3N + i3 − i1 − 2.

In order to satisfy both the partial differential equations, and the extra conditions (41) and (42) at
the hole, we formulate an implicit time stepping method. For instance from (40) we obtain,

Kwa
−1ur(zi, tj+1) +

haγw
∆t

(v(zi, tj+1)− v(zi, tj)) = γb(p(zi, tj+1)− P (zi, tj+1)), (52)
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Physical Quantity Symbol Unit Value

Density of walls γw kg/m3 1050
Viscosity of blood ν kg/ms 5.1 · 10−3

Shear modulus for muscle tissue µ Pa 2.94 · 104

Radius of vessel a m 4.1 · 10−3

Relative thickness of wall h 0.16
Modulus of Elasticity of walls Kϕϕ Pa 4.15 · 105

Table 1: The physical parameters that were used for our tests. The values roughly correspond to the
femoral artery of a healthy individual.

Aneurysm H1(z) H2(z) H3(z)

L± [cm] 2.0 2.5 3.0
maxH(z) [mm] 3.7 4.0 4.2

Table 2: The physical dimensions of the three aneurysm profiles used for our tests.

for i1 ≤ i ≤ i3, i 6= i2, where the implicit Euler method was used to discretize the time derivative. Similarly
the Kirchhoff condition (42) is discretized using a second order accurate difference approximation at time
t = tj+1. The equation (31) is discretized using a second order accurate discretization in space and the
implicit Euler method, i.e. we get

2a (ur(zi, tj+1)− ur(zi, tj)) =
a4

8ν
(p(zi−1, tj+1)− 2p(zi, tj+1) + p(zi+1, tj+1)) , (53)

for 1 < i < N, i 6= i2. The other equations and boundary conditions are treated similarly and we obtain
a large sparse linear system to solve for the unknowns at time t = tj+1. The finite difference scheme is
second order accurate in space and first order accurate in time. Since the model is one-dimensional the
number of unknowns are relatively small and solving the equations by direct methods is feasible.

3.1 Numerical simulations

In order to demonstrate that our model works well in practice, and can produce realistic solutions, we
give the results from several numerical simulations. As a basis for our calculations we use typical physical
parameters that roughly correspond to the femoral artery for a healthy individual; see [21].

In our model we need to specify the shape of the aneurysm. We use three different shapes H1(z),
H2(z) and H3(z). The shapes are seen in Figure 1; see also Table 2 for the exact dimensions of the shape
functions. The flow velocity profiles used for the boundary condition (43) were taken to be realistic. In
the case of a normally working heart an experimental velocity profile Φ1(t) was found in [6]. In addition
we created an artificial flow profile Φ2(t) intended to correspond to a slightly elevated pulse rate. Both
flow profiles can be seen in Figure 1. In order to avoid the influence from transient effects and reach
a periodic state we set the boundary flow Φ(t) by first taking 10 copies of Φ1(t), followed by 10 copies
of Φ2(t) and finally another 10 copies of Φ1(t). At the boundary z = L+ we used a constant pressure
p = p∞, where p∞ = 80mmHg, or 10.7 kPa. For the space discretization we used N = 500 grid points
and for the time discretization consisting of M = 14820 grid points was used. The time grid covers all 30
heart beats which is a total duration of 26.54 s. Due to the fine discretization the equations are solved
very accurately.

The goal for our numerical simulations is to study how the hematoma influences the blood flow in
the system. In particular we investigate the effect of different aneurysm shapes. The numerical scheme
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Figure 1: We present the three Aneurysm profiles H1(z), H2(z) and H3(z) (left graph). The function
H1(z) represents the smallest aneurysm and H3(z) is the largest. Note the different scales on the vertical
and horizontal axes in the graph. We also display the flow velocity profiles at the inlet z = −L− (right
graph). The function Φ1 (blue curve) corresponds to a normal case with a pulse rate of T1 = 0.917 s.
The profile Φ2 (black curve) correspond to an elevated work load and T2 = 0.820 s.
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Figure 2: The net influx of blood into the hematoma during the simulations for the cases when the
aneurysm profile is given by H1(z) (left) and H3(z) (right). For the larger hematoma it takes longer for
the calculations to reach steady state. In both cases 10 heart beats is enough for the system to reach a
periodic solution.

requires us to specify initial conditions. In our experiments we use a zero solution as the initial state of
the system which means no blood flow. During the first few heart beats the hematoma is filled with blood.
This is seen in Figure 2 where the net-influx into the hematoma is illustrated. The larger hematoma
profile H3(z) requires about six heart beats for the blood flow to reach a periodic state. Note that after
10 heart beats the influx condition changes to the elevated work load. This means the hematoma grows;
which is seen as a positive net influx of blood. After 20 heart beats the work load returns to normal and
the hematoma shrinks back to its original size. In Figure 3 we see the net influx during one of the normal
heart beats and during one of the elevated work load heart beats.

In order to illustrate the effect of the hematoma we show flow velocity profiles taken at z = ±11mm,
i.e. before and after the hematoma. The results are displayed in Figure 4. We see that the hematoma
has a very small influence on the flow velocity at z = −11mm. The velocity profiles are very close to the
prescribed boundary data. After the hematoma, i.e. at z = 11mm there is a clear difference. During the
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Figure 3: The net influx of blood into the hematoma during one of the normal heart beats (left graph)
and during one of the work heart beats (right graph). In both cases we display the cases when the
hematoma is given by H1(z) (blue curve), H2(z) (black curve), and H3(z) (red curve). During the work
phase more blood enters and leaves the Hematoma during the heart beat. Also the size of the hematoma
has a slightly bigger effect.
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Figure 4: Flow velocity profiles v(z, t) at z = −11mm (left graphs) and at z = 11mm (right graphs) in
the case of the normal heart beat (top graphs) and the case of an elevated work load (bottom graphs). In
both cases we display the cases when the hematoma is given by H1(z) (blue curve), H2(z) (black curve),
and H3(z) (red curve). We note that the hematoma has very little effect on the flow before z = 0. After
the hematoma, i.e. for z > 0, the flow velocity is evened out. This is due to the hematoma acting as a
reservoir. The effect is strongest for the larger hematoma.
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Figure 5: The pressure profiles p(z, t) and P (z, t) at time t = 11.1 s (left graph). This is during a elevated
work heart beat when the influx velocity profile Φ2(t) reaches its maximum. Also the corresponding wall
positions a + u(z, t) near the hematoma (right graphs). In all cases the hematoma is given by H1(z)
(blue curve), H2(z) (black curve), and H3(z) (red curve). Note that the pressure inside the blood vessel,
i.e. p(z, t), changes faster than the pressure P (z, t) inside the hematoma. This means that for z > 0 the
pressure inside the Hematoma is larger than the pressure in the vessel. Hence u(z, t) < 0 and the vessel
is reduced in radius.

work phase the hematoma is filled with blood; and that blood is returned to the vessel during the resting
phase. This means that the hematoma acts as a reservoir that evens out the flow of blood during the
heart cycle. This is consistent with the observation that, in practice, it is difficult to feel a clear pulse
after a hematoma on patients. This effect is strongest for the larger hematoma.

Finally, we illustrate the pressure profiles p and P at time t = 11.1 s. The time instance t = 11.1 s
corresponds to when the flow profile Φ2(t) reaches its peak. We see that the pressure changes more
slowly inside the hematoma than in the vessel. As a consequence the wall displacement ur is positive
for z < 0 and negative for z > 0. This means that after the hole P > p and the vessels effective radius
a + ur < a. Thus the hematoma effectively hinders the blood flow. This effect is also stronger for the
larger hematoma size.

4 Concluding Remarks

In this paper we have presented a one dimensional model of a false aneurysm. The model is derived
from the original three dimensional flow equations by dimension reduction and asymptotical analysis, cf.
[10, 11], and the geometry has been simplified as much as possible. In order to illustrate the behavior of
the model we also present numerical simulations using a simple finite difference code for solving the partial
differential equations. The code is implicit as this makes it easier to enforce Kirchhoff type transmission
conditions at the hole that connects the vessel and the aneurysm. Though, if a periodic solution is sought,
a direct solver based on solving the equations in the frequency domain also works, see our previous paper
[2].

From the numerical simulations we make several observations about our model. First the heart beat
cycle is divided into a work phase, where the heart keeps up pressure, and a resting phase. During the
work phase the aneurysm increases in size as a fraction of the blood flow in the vessel is diverted through
the hole. During the resting phase the blood is returned into the vessel. Thus the aneurysm acts as a
reservoir that evens out the blood flow during the whole cardiac cycle. This behavior is consistent with
the observation that it is difficult to feel a clear pulse in patients suffering from having a false aneurysm
on an artery.
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Pressure profiles from the vessel and the aneurysm indicates that the pressure gradient is smaller
inside the aneurysm. This means a mostly stagnant flow except for a region near the hole. Also the
vessel clearance shrinks after the hole due to the pressure in the aneurysm being higher than the pressure
inside the artery. This might hinder the blood flow.

The geometry of the model is the simplest possible with a straight vessel having a circular cross section.
The radius a represents a typical radius at a normal working pressure, and the model is linearized around
this typical situation. In practice the typical radius of the artery would be change due to the influence of
the hematoma and a constant value a for the entire length of the vessel is not realistic. This is an aspect
of the model we intend to improve in the near future.

Furthermore, as the model is linear, the aneurysm always remains stable in the model. The size of
the aneurysm can increase by altering the heart beat, but if the heart beat returns to normal so does the
size of the aneurysm. Including a mechanism that permanently changes the shape of the aneurysm, i.e.
the function H(z), during the simulations, is also a topic we intend to explore in the future.
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