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Abstract 
Virtualization is a widely used technology for running multiple operating systems on a 

single set of hardware. Virtual machines running the same operating system have been 

shown to have a large amount of identical data, in such cases deduplication have been 

shown to be very effective in eliminating duplicated data. 

This study aimed to investigate if the storage savings are as large as shown in previous 

research, as well as to investigate if there are any negative performance impacts when 

using deduplication. The selected performance variables are resource utilisation and 

disk performance. 

The selected deduplication implementations are SDFS and ZFS deduplication. Each 

file system is tested with its respective non-deduplicated file systems, ext4 and ZFS. 

The results show that the storage savings are between 72,5 % and 73,65 % while the 

resource utilisation is generally higher when using deduplication. The results also 

show that deduplication using SDFS has an overall large negative disk performance 

impact, while ZFS deduplication has a general disk performance increase. 

Abstract – Swedish 
Visualisering används i stor utsträckning för att köra flera operativsystem på en 

uppsättning hårdvara. Tidigare forskning visar på att mycket utav data som lagras av 

virtuella maskiner är identisk mellan olika virtuella maskiner. För att eliminera 

duplicerad data kan deduplicering användas. 

Målet med denna studien är att undersöka ifall lagringsbesparingarna är så stora som 

påvisats i tidigare forskning, men även att undersöka den potentiellt negativa 

prestandainverkan som kan uppstå vid användning av deduplicering. Det utvalda 

prestandavariablerna är resursanvändning och diskhastighet. 

Det utvalda dedupliceringsimplementationerna är SDFS och ZFS deduplicering. Varje 

implementation jämförs med deras respektive icke-deduplicerade filsystem, ext4 och 

ZFS. 

Resultaten visar att lagringsbesparingarna är mellan 72,5 % och 73,65 %, medans 

resursanvändningen är generellt högre vid användning av deduplicering. Resultaten 

visar också att deduplicering med SDFS resulterar i en generellt stor prestanda 

minskning, medan ZFS deduplicering resulterar i en generell prestandaökning.  
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1 Introduction 

During the past years, virtualization has become popular for everything from running legacy 

operating systems on home computers to running massive IaaS services that can provide 

thousands of virtual servers. With the increase of virtualization, there has also been an 

increase in the storage required to cope with storing the virtual machines. Deduplication has 

been a common feature in modern filesystems and is most often used to store backups, but 

more recent research has explored the possibility of applying deduplication on virtual 

machine storage. This has been proven effective because of the large similarity between 

virtual machines. 

Previous research on deduplication of virtual machines focuses largely on storage savings, 

while research on general deduplication has shown multiple negative performance impacts 

when applying deduplication to data storage. This study therefore focuses on comparing 

deduplication implementations in current file systems to determine the effect of 

deduplication on virtual machine storage. 

A literature study is performed to evaluate the status of current research within the area. 

Then an experiment is performed to test multiple deduplication implementations in modern 

file systems and measure multiple variables to evaluate the performance impact of 

deduplication. The goal is to provide an information basis that can be used to guide 

companies and individuals when implementing deduplication on virtual machine storage. 
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2 Background 

This section covers subjects and concepts which are the basis for this study. 

2.1 Virtualization 

Early computers in the 1950s only had the capability to run a single specialised program at 

one time on one machine, the programs had to be made for a special set of hardware which 

was slow and costly. But with time hardware has become faster and cheaper which started to 

allow for more functionality. In the early 1960s, M.I.T developed a time-sharing system 

which allowed for multiple users to interact with a single computer through multiple 

consoles. IBM introduced their Virtual Machine Facility/370 (VM/370) operating system in 

1972, VM/370 which allowed for multiple users to run different programs on seemingly 

separate computers (Corbató, Merwin-Daggett & Daley, 1962; Creasy, 1981). These are 

examples of early types of virtualization which have provided a basis for the current 

virtualization techniques. 

With hardware still becoming faster and cheaper the functionality of virtualization has 

become greater and more widespread. Today’s virtualization is mostly used to enable 

multiple operating systems to share a single set of hardware, this allows for a more effective 

utilisation of the current powerful hardware (Schlosser, Duelli & Goll, 2011). 

While there are many types of virtualization such as storage-, network- and application 

virtualization. This study focuses on full virtualization since according to Scarfone, Souppaya 

& Hoffman (2011) it has had an increase in popularity because of its high efficiency and 

ability to run multiple operating systems (OS) on one computer. In full virtualization, the 

main component is the virtual machine monitor (VMM), also known as a hypervisor. The 

hypervisor is responsible for controlling access to the hardware and separating the different 

running OS. Each virtualized OS is called a virtual machine. The hypervisor can operate in 

two different ways, native or host. A native-hypervisor, as used by VMware ESXi and Xen, is 

installed directly on the hardware. While a host-hypervisor, as used by VirtualBox and KVM, 

is installed on an existing OS (Schlosser et al., 2011). 

2.2 Virtual machine storage 

To store the operating system and other files, a virtual machine needs persistent storage. To 

provide storage for a virtual machine, a virtual disk is used. The virtual disk is a file created 

and managed by the hypervisor. While the virtual disk is only a file on the hypervisor, from 

the virtual machine, it is seen as a hard drive where files can be read and written like a 

physical hard drive. The virtual disk is most commonly created during the configuration of a 

new virtual machine but can also be created separately and be assigned to a virtual machine 

as an extra hard drive (Joshi, Shingade & Shirole, 2014). 

There are two general types of virtual disk files used by common hypervisors such as 

VirtualBox and VMware ESXi. Fixed-sized (VirtualBox), also known as thick (VMware) is 

when a specific size is set to the virtual disk. If for example a 10 GB virtual disk is created, 

the file will always occupy 10 GB on the hypervisor. Dynamically allocated (VirtualBox), also 

known as thin (VMware) is when the file expands as files are written. This means that the file 
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will only scale as more data is written by the virtual machine and the file will not occupy 

more space than necessary (Oracle Corporation, 2017; VMware Inc, 2017). 

2.3 Deduplication 

The basic concept of data deduplication is to eliminate duplications of data to reduce the 

storage size. To perform deduplication the data is divided into chunks. The file system can 

then determine if two or more chunks are identical. If two or more chunks are identical, only 

one copy is saved, therefore eliminating storage of duplicated data. There are two ways to 

divide the data into chunks, fixed-size chunking and variable-size chunking (Mandagere, 

Zhou, Smith & Uttamchandani, 2008; Jin & Miller, 2009). 

Fixed-sized chunking uses a pre-determined size to divide the data. For example, chunking a 

10 KB file with a chunk size of 1 KB would result in 10 chunks. Variable-size chunking uses a 

rolling hash to dynamically determine chunk size, this means that the chunks can vary in 

size. Variable-size chunking usually provides better deduplication since its more resistant to 

changes in the data, for example inserting new data in the middle of a file. It however has a 

negative effect on disk performance since the requests cannot be aligned by hard drive 

blocks. Both fixed-size and variable-size use hash functions, such as SHA1, to identify 

chunks. By calculating a hash value for each chunk, a unique value is given for that specific 

set of data. This allows for hash values to be matched with each other to find duplicates in 

data without having to match the entire chunk. The result is a faster matching of chunks, 

which provides better performance. Each hash is stored in a hash table containing the hash 

and the chunks location on the hard drive (Jin & Miller, 2009; Mandagere et al., 2008). 

There are two ways to perform deduplication, in-line and out-of-line. In-line performs the 

deduplication when the data is written to the disk, this means that each time data is written 

to the disk a hash is calculated and matched to the hash table to find duplicates. If no 

duplicates are found the chunk is added to the disk and the hash is saved in the hash table. 

In case a duplicate is found the data does not need to be stored as a duplicate (Mandagere et 

al., 2008). 

Out-of-band deduplication is when the deduplication process is performed on already stored 

data. Out-of-band is often performed at regular intervals to update the hash table and 

remove duplicated data. This means that it potentially does not have the performance 

impacts that can occur with in-line deduplication since it does not calculate or compare 

hashes at every write. It however does not provide the same constant storage savings as in-

band deduplication and will result in a large burst of disk operations when deduplication is 

performed (Mandagere et al., 2008). 

2.4 Deduplication of virtual machine storage 

Deduplication of virtual machine storage has been tested to some degree in previous studies, 

these studies have shown great potential in storage savings due to the high similarity 

between virtual disks in large virtualization environments (Jin & Miller, 2009; Jayaram et 

al., 2011). However, these studies have not performed a deeper analysis of the potential 

performance impacts that deduplication can have. This study therefore compares file 

systems and deduplication implementations to evaluate the effect of deduplication on virtual 

machine storage.  
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Jin & Miller (2009) present in their research that deduplication can save a large amount of 

storage space when applied to virtual machine storage, therefore storage savings need to be 

considered when evaluating deduplication. Previous research by Tan & Yan (2016) and Ng et 

al. (2011) show that the read and write performance are negatively affected when using 

deduplication, therefore during this study, the disk performance will be measured. Joshi et 

al. (2014) measure both sequential and random disk operations when measuring the 

performance of virtual machine storage. Research by Mandagere et al. (2008) indicates that 

the CPU and memory usage increase when deduplication is used, therefore these variables 

need to be included when evaluating deduplication. 
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3 Problem definition 

This section covers aspects related to the problem definition, such as why the study is 

performed and what is expected to be achieved. 

3.1 Motivation 

The current studies regarding general deduplication investigate and compares multiple 

deduplication solutions and techniques. These studies present how data deduplication can 

be implemented and some performance trade-offs that can be expected in deduplication 

environments (Mandagere et al., 2008; Tan & Yan, 2016). 

Studies have been performed, which applies deduplication on virtual machine storage. These 

studies have shown great potential in the application of deduplication on virtual machine 

storage. Previous studies have focused on theoretical implementations or practical 

implementations of a single deduplication system. Previous research does not present the 

potential performance impacts that deduplication can have, which is presented in general 

data deduplication studies (Jin & Miller, 2009; Schwarzkopf, Schmidt, Rüdiger & Freisleben, 

2012). 

Previous research has shown both great potentials in storage savings and potential negative 

performance impacts. The motivation of this study is therefore to perform an experiment 

which compares file systems and deduplication implementations with a practical 

implementation on virtual machine storage.  

3.2 Aim 

The aim of this study is to evaluate a practical implementation of deduplication using current 

file systems on virtual machine storage and compare performance between the different file 

systems and deduplication implementations. The aim is also to create an information basis 

which can be considered by for example IT-administrators to aid in decision-making 

regarding the implementation of deduplication on virtual machine storage. 

3.3 Research question 

The research questions which are used to accomplish the aim of this study are: 

RQ1.: How does deduplication in current file systems compare regarding storage 

savings when applied to virtual machine storage? 

RQ2.: How does deduplication in current file systems compare regarding resource 

utilisation when applied to virtual machine storage? 

RQ3.: How does deduplication in current file systems compare regarding disk 

performance when applied to virtual machine storage? 

The research questions are designed to cover all parts of the aim and motivation, as well as 

to compare and evaluate multiple file systems and deduplication implementations with 

regard to performance aspects based on previous studies. 
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3.4 Objectives 

These objectives are designed and selected to fulfil the aim of the study and to answer the 

research question. 

1. Evaluate previous research in deduplication of virtual machine storage. 

2. Design a study that compare file systems and deduplication implementations to 

answer the research question. 

3. Perform the experiment according to the previously created experiment design. 

4. Analyse and present the results gathered during the experiment. 

3.5 Expected results 

1. How does deduplication in current file systems compare regarding storage savings when 

applied to virtual machine storage? 

The expected results are that there is a large decrease in storage usage when applying 

deduplication on virtual machines due to their large similarity. The expected storage savings 

is between 40 % and 80 % based on previous research by Jin & Miller (2009). 

2. How does deduplication in current file systems compare regarding resource utilisation 

when applied to virtual machine storage? 

It is expected that the resource utilisation will increase when implementing deduplication, 

specifically CPU and RAM utilisation based on previous research by Mandagere et al. 

(2008). 

3. How does deduplication in current file systems compare regarding disk performance 

when applied to virtual machine storage? 

The expected results are that there is a decrease in disk performance when applying 

deduplication. Both read and write performance is expected to be affected according to 

research by Tan & Yan (2016) and Ng et al. (2011). 
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4 Method strategy 

The method strategy describes the methods that are selected to successfully perform the 

study and to achieve the set goals. 

4.1 Literature study 

To provide a basis for the study and to find research related to technologies and concepts 

used in this study a literature study is performed. By performing a thorough literature study 

the status of previous research can be established and selection of methods and experiment 

design can be made. 

The literature study will be performed according to the systematic literature review method 

presented in Wohlin et al. (2012). By using the following search strings research related to 

this study has been found: deduplication storage, deduplication virtual machine, 

deduplication file system. These search strings have been used to search in online journal 

databases. The three main databases used are ACM, IEEE and Springer. After finding a 

related study using the search strings, snowballing is performed. Snowballing allows finding 

related studies by following the citations of the selected paper or following references in the 

selected paper (Wohlin et al., 2012). 

4.2 Experiment 

The selected method for answering the research question is an experiment. The method was 

selected since an experiment according to Wohlin et al. (2012) “are launched when we want 

control over the situation and want to manipulate behaviour directly, precisely and 

systematically” (p. 16). An experiment therefore allows to have complete control over the 

selected variables and to manipulate variables to study the outcome. This will allow for the 

collection of data which can be reviewed to identify patterns. 

No alternative methods have been found that can be applied to this study. A survey is often 

conducted in retrospect and the results are descriptive and explanatory, therefore does not 

give the execution and measurement control which an experiment gives. A survey would 

therefore not be suitable for this study. A case study is based on collecting data and 

performing statistical analysis, but case studies are only an observational study, which 

means it does not have the execution control of an experiment and therefore making it 

unsuitable for this study (Wohlin et al., 2012). 

4.3 Experiment design 

This section describes the experiment design that is used when performing the experiment. 

4.3.1 Independent variables 

Independent variables are according to Wohlin et al. (2012) variables that are being modified 

and controlled during an experiment. Since the goal of the study is to compare performance 

and utilisation of different file systems and deduplication implementations, the independent 

variable for this study is the type of file system or deduplication implementation. The 

independent variable is modified during the experiment to test multiple file systems and 
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deduplication implementations. The independent variable is the only variable to be modified 

during the experiment to provide an accurate comparison. 

4.3.2 Dependent variables 

Dependent variables are according to Wohlin et al. (2012) variables that are being studied 

and measured. In this study, the dependent variables are the performance variables that are 

relevant for this study. The first performance variable is the used storage space of the virtual 

machine images. The storage size is used to calculate storage savings. The second 

performance variable is the disk speed of the virtual machines. This is measured in 

read/write speeds and latency. The last performance variable is resource utilisation on the 

storage location, the measured variables are the usage of CPU and RAM which can be 

effected by deduplication. 

4.3.3 Experiment environment 

To perform the experiment an environment is created that has the ability to host multiple 

virtual machines and use different file systems. The selected environment represents a 

common small scale deployment of virtual machines with a separated storage server. A 

separate storage server solution is selected since it allows for easier reconfiguration of the 

virtual machine storage without affecting the hypervisor. 

To accommodate both a hypervisor and a storage server two physical computers are used, 

one configured as a hypervisor and the other configured as a storage server. The storage 

server has the following specification: Intel Xeon W3550 @ 3.07 Ghz, 48 GB RAM and two 

Western Digital 1 TB hard drives (WD10EZRZ), and the hypervisor has the following 

specifications: Intel Xeon W3550 @ 3.07 Ghz, 24 GB RAM and one Seagate 160 GB hard 

drive (ST3160318AS). The two servers are connected to the same local gigabit Ethernet 

network through a TP-Link TL-SG108 switch. The third computer is used for management 

tasks. Figure 1 shows the topology to be used in the experiment. 

Figure 1 Experiment topology 
 

The hypervisor is configured with VMware ESXi 6.5, ESXi is used since it is available 

through the University’s lab resources and it is a native hypervisor which is common in 

server implementations. The storage server is configured with Ubuntu Server 16.04.2 LTS 
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and NFS. Ubuntu is selected since it is the most popular operating system in large 

virtualization platforms such as Amazon EC2 and OpenStack (The Cloud Market, 2017 & 

OpenStack, 2016). The virtual machine storage is distributed to the hypervisor using NFSv4. 

NFSv4 is used since it provides network-based distribution of storage and is natively 

supported by ESXi (VMware, 2017). By separating the virtualization from the storage server, 

it becomes easier to change file systems and deduplication implementations without 

affecting the virtualization. All virtual machines are stored on the remote storage server 

where deduplication is implemented, therefore the stored virtual machines are deduplicated. 

A set of 10 virtual machines are used throughout the experiment, the virtual machines are 

using Ubuntu Server 16.04LTS. Ubuntu Server is also used here for the same reasons it was 

selected for the storage server. The 10 virtual machines are configured to run different types 

of services to represent a more realistic environment, Table 1 shows each virtual machine 

and their respective installed packages. Each virtual machine is given the default 

recommended resource allocations for Ubuntu Server: 1 vCPU, 1 GB RAM and 16 GB hard 

drive. The hard drive uses thin provisioning since this is the default option for virtual 

machines stored on NFS storage, and using thick provisioning on NFS storage would require 

hardware acceleration (VMware, 2017). Networking between the virtual machines are 

handled by the default ESXi virtual switch and the networking to storage server is handled 

by the physical network adapter connected to the virtual switch. Due to hardware limitations 

in the network card, MTU sizes over 1500 is not possible. 

Name Packages (excluding default utilities) 

VM-1-DNS OpenSSH, bind 

VM-2-DNS OpenSSH, bind 

VM-3-LAMP OpenSSH, Apache2, MySQL, PHP5 

VM-4-LAMP OpenSSH, Apache2, MySQL, PHP5 

VM-5-Mail OpenSSH, Postfix, Dovecot 

VM-6-Mail OpenSSH, Postfix, Dovecot 

VM-7-Storage OpenSSH, Samba, DEDISbench, IOPing 

VM-8-Storage OpenSSH, Samba, fio 

VM-9-DHCP OpenSSH, ISC DHCP 

VM-10-Database OpenSSH, PostgreSQL 

Table 1 – Virtual machine pool 

4.3.4 Variable selection 

The independent variable is the variable being modified and controlled. The variable has 

four values which are the two file systems and two deduplication implementations that are 

used. The first selected file system is Ext4. Ext4 is selected since according to Simon (2015) 

Ext4 is the updated version of Ext3 and is the recommended and default file system for new 
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installations. To provide deduplication to ext4 OpenDedup SDFS is used. SDFS is selected 

since it provides in-line deduplication and was originally created to be a deduplication 

implementation to be used for virtual machine storage. SDFS is installed on top of an 

existing file system and ext4 will be used for the base file system (OpenDedup, 2017).  

The second selected file system is Oracle ZFS, ZFS is selected since it has built in support for 

in-line deduplication. ZFS can be used with and without deduplication. 

The dependent variables are the variables that are being measured, in this experiment the 

dependent variables are storage savings, resource utilisation and disk performance. Disk 

performance is measured from the virtual machines since it is where data is being read and 

written. To benchmark the virtual machines disk performance DEDISbench and fio are used. 

DEDISbench is used for write operations since it is designed to benchmark deduplication 

and will perform write operations with a mix of non-duplicated and duplicated blocks 

according to a predefined distribution. This will give a more realistic scenario than only 

using random non-duplicated data as in other benchmark tools (Paulo, Reis, Pereira & 

Sousa, 2012). Fio is used for benchmarking read operations since DEDISbench read 

benchmarks only use files filled with zeros and this could cause read operations to only be 

read from the cache and not from the storage device. Fio uses randomised data which will 

prevent only reading data from the cache. The files used by fio are created before the 

benchmark so the files will still be deduplicated and added to the deduplication hash table. 

The variables that are measured on the storage server is storage savings and resource 

utilisation. To calculate storage savings the size of the virtual machines before deduplication 

is compared to size after deduplication. The standard Unix command du is used to gather the 

used disk space before and after deduplication. 

The second set of variables to be measured on the storage server is resource utilisation, 

specifically CPU and RAM usage. The variables are measured on the storage server since it is 

where deduplication is implemented and therefore where an increase is expected according 

to previous research by Mandagere et al. (2008). These two variables are selected since 

previous research by Mandagere et al. (2008) shows an increase in CPU and RAM 

utilisation. CPU utilisation and RAM usage are monitored using dstat. 

4.3.5 Experiment flow 

Figure 2 shows a flow chart over how the experiment is performed. The first steps are to 

configure the storage and virtualization server according to the previously described design. 

The next step is to create the pool of virtual machines that will be used during the 

experiment. After the pool is created the second hard drive on the storage server is formatted 

with one of the selected file systems and configured with deduplication of required. The pool 

of virtual machines is then transferred to the new shared storage which then can be accessed 

by the virtualization server. When the virtual machines are transferred the storage size and 

resource utilisation can be measured. The next step is the to run the disk benchmarks, after 

each test the cache on the storage server is cleared to avoid reading from the cache. When 

the benchmarks are complete the cycle will continue with another file system and/or 

deduplication implementation until all file systems and deduplication implementations have 

been tested. 
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Figure 2 Experiment flow 

4.4 Threats to validity 

Potential threats to validity have to be handled to provide an experiment that is designed and 

performed correctly. By handling the identified validity threats it can be assured that the 

measurements taken are correct and not affected by unidentified variables. This section is 

performed according to the structure and criteria presented by Wohlin et al. (2012). The list 

consists of threats that are considered to be applicable to this research. 

4.4.1 Conclusion validity 

Conclusion validity is to ensure that there is a statistical relationship between treatment and 

outcome. This means that a correct conclusion has been made about the relations between 

treatment and outcome. 

Low statistical power is handled by running experiment multiple times therefore collecting 

a larger amount of data during the experiment. This allows for easier identification of 

outliers and also allows for a more accurate representation of the data. 

Violated assumptions of statistical tests are handled by using statistical methods and 

diagrams to present the data in an accurate and representative way. The statistical method 

used in this experiment is average over multiple tests and standard deviation to represent 

the spread in the data. This data is presented in bar graphs. Data which is gathered over 

longer periods of time, such as CPU utilisation, will be presented in both bar graph and time 

plot format. 

Fishing and the error rate is handled by discarding previously gathered data if a change in 

the method occurs, this prevents the results from being misrepresentative. Also by 

presenting the data gathering process in a transparent manner, as well as presenting all 

gathered results, the validity threat is further handled. 

Reliability of measures is handled by using the same tools and parameters when measuring 

the dependent variables, this allows to the highest possible reliability of the measurements. 

Random irrelevancies in experimental setting are handled by not providing internet access 

to the experiment computers, this eliminates possible irrelevancies from outside sources. By 

using seeds in disk benchmark tools where possible allows for more replicable results. Also 

by performing each test multiple times allows for an accurate average representation, 

especially for random read/write operations. However, for example power outages cannot be 
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prevented with the available resources. If a power outage occurs during the experiment the 

gathered at the time of outage will be discarded.  

4.4.2 Internal validity 

Internal validity is to ensure that when a relationship is found between treatment and 

outcome that it’s a causal relationship. This means that the relationship is not a result of a 

factor which is not controlled or measured. 

History is handled by disabling internet access to every experiment computer, therefore 

eliminating possible updates that could potentially affect the experiment outcome. 

Instrumentation is handled by using well-known benchmark tools that have been used in 

previous research. Also by reading each tools documentation, correct usage and parameters 

can be established. 

Ambiguity about direction of casual influence is handled by using a common non-

deduplication file systems as a control to which deduplication file systems can be compared 

to. By performing disk performance tests both through the virtual machines and locally on 

the storage server, potential impacts of the network and virtualization can be identified. 

4.4.3 Construct validity 

Construct validity is to ensure that the relationship between theory and observation reflect 

the construct of the cause and that the outcome will reflect the construct of the effect. 

Inadequate preoperational explication of constructs is handled by performing a thorough 

literature study, which provides a scientific basis for the experiment. 

Restricted generalizability across constructs is handled to a certain degree by observing the 

most related variables, but it is possible that there may be certain other variables that may be 

affected in a larger scale experiment. This is however not possible to test due to time and 

resource restrictions. 

4.4.4 External validity 

External validity is to ensure that eventual casual relationships can be generalised outside 

the scope of the study. 

Interaction of setting and treatment is handled to a certain degree by using common file 

systems, deduplication implementations and virtualization techniques likely to be used in a 

real-life scenario. But due to time and resource limitations, it is not possible to perform the 

experiment in a large-scale production environment.  

4.5 Ethics 

The selected methods are an experiment and a literature study, therefore many ethical 

problems that are applicable to surveys and case studies do not apply. The ethics for this 

study is that no experiment results have been modified and that no fishing for tests results 

has occurred, and that the results have been presented in a clear and transparent manner. 

The experiment process as a whole is presented in a transparent manner to guarantee that 

this has been followed. 
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5 Experiment Implementation 

This section describes the implementation of the experiment design. 

5.1 Environment setup 

This section describes the setup of the experiment environment which is used when 

performing benchmark tests. 

5.1.1 Network 

During the initial setup, each computer is connected to the university’s lab network to 

provide access to the local netboot environment from which the operating systems are 

installed from. Internet access is also available from the university’s network which allows 

for installation of the required packets before migrating to the experiment network. The 

experiment network consists of one network switch connected to each experiment computer, 

this allows for minimal potential bottlenecks in network traffic and eliminates possible 

effects from outside hosts. 

5.1.2 Storage server 

Ubuntu 16.04.2 LTS is deployed to the storage server via the local netboot. The operating 

system is installed through the GUI install wizard. During the installation, the operating 

system is installed on one of the local hard drives, automatic updates are disabled and both 

OpenSSH and standard system utilities are selected for automated installation. After the 

operating system is installed, the benchmark utilities and file systems are installed using the 

aptitude packet manager. The following packets are installed: dstat, zfs, sdfs-latest, nfs-

kernel-server. 

5.1.3 Hypervisor and virtual machines 

VMware ESXi 6.5 is also installed through the local netboot. The hypervisor is installed 

through the install wizard using default options and the installation location is the 

computers local hard drive. After ESXi is installed the virtual machines are created. First, a 

virtual machine template is created. The virtual machine template is created using the 

standard settings for an Ubuntu machine, 1 vCPU, 1 GB RAM and 16 GB thin storage. 

Netboot is used to deploy the operating system (Ubuntu Server 16.04.2 LTS) to the virtual 

machine template. Ubuntu is installed using the default options during the installation with 

automatic updates disabled and standard system utilities. The virtual machine template is 

then exported as an OVF and vmdk file. These files are then used to deploy each of the 

virtual machines according to Table 1. Each machine is deployed from the template and the 

desired packets are installed on each machine according to Table 1. When all virtual 

machines have been deployed and configured, each machine is exported to OVF and vmdk 

files. These files are then deployed on the networked storage for each tested file system and 

deduplication implementation. 
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5.2 Experiment execution 

This secti0n describes configuration of each file system and deduplication implementation, 

as well as the configuration parameters of each benchmark tool.  

5.2.1 Storage and resource utilisation 

Storage measurement is taken after all virtual machines have been deployed to the shared 

file systems, and when deduplication implementations are used, after deduplication has been 

performed. The following command is used when measuring storage utilisation: 

du -hs 

The variable “h” is used to present storage usage in human readable format (gigabyte) and 

the “s” variable is used to only present the total used storage size. 

When measuring resource utilisation, the program dstat is used by using the following 

command: 

dstat –cdnm –output file-name.csv 

The variables “cdnm” is used to measure CPU utilisation, disk usage, network utilisation and 

memory usage. “Output” is used to print the results to a csv file. Dstat writes all 

measurements to the selected file at one-second intervals. The resource utilisation is 

measured for 10 minutes during random read, random write and idle usage, random 

read/write operations are used to prevent data from only being read/written from caches. 

5.2.2 I/O Benchmarks 

This section describes how each of the I/O performance benchmark is performed. Each 

benchmark is performed three times which is used to provide an average over multiple runs, 

this to provide a representative value for each benchmark. 

For the read benchmarks, the program fio is used. The following fio job file is used to specify 

the parameters to be used during read benchmarks: 

; -- Start job file –- 

[readtest] 

ioengine=libaio 

iodepth=4 

rw=read/randread (sequential or random read operations) 

bs=1k 

direct=0 

size=2048m 

numjobs=1 

; -- end job file –- 

The job file is based on the parameters used by Joshi et al. (2014). The parameter rw is 

changed to read or randread depending on which type of I/O operation is being tested. And 

the block size parameter is changed to 1k to minimise network fragmentation since the 

largest available MTU is 1,5k due to hardware limitations. The file size is enlarged to 

2048MB (double the virtual machines RAM) to prevent the file from being cached by the 

virtual machine. 
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For write benchmarks, DEDISbench is used. The following DEDISbench command is used 

when benchmarking: 

./DEDISbench –p –w –t1 –b1024 –c1 –vabc123 –a0/a1 

The “p” parameter enables peak mode meaning that the program will use the full I/O 

bandwidth. To set the benchmark to write operations the “w” parameter is used. The block 

size is, as in the read benchmark, set to 1k with the “b” parameter due to the smaller MTU 

size used. By setting the “c” parameter to 1, only one file is being written. The “v” parameter 

specifies a seed to be used by the benchmark program, this is set to abc123 and allows for the 

write operations to be identical over multiple runs, providing more consistent and replicable 

results. The “a” parameter specifies which type of I/O access is being used, “a0” is used when 

sequential write operations are being tested and “a1” is used when random write operations 

are tested. 

IOPing is used to measure I/O latency. The following command is used: 

ioping /tmp –s 1k –W –c 10 

The “/tmp” variable specifies that the program uses the temporary directory to perform the 

test. Variable “s” is set to “1k” to match the used MTU size. The variable “W” is used to 

enable usage of write operations instead of read operations, this it used to elude the read 

cache that is used when performing a read operation test. Variable “c” is set to 10 to perform 

10 latency tests and produce an average latency number. 

5.2.3 Ext4 

The first file system being tested is ext4. The file system is created and shared using to 

following commands: 

mkfs.ext4 /dev/sdb 

mkdir /nfs 

mount /dev/sdb /nfs 

echo “/nfs 192.168.1.10(rw,sync,no_subtree_check)” >> /etc/exports 

First, ext4 is created on the secondary hard drive. A new directory is then created and the 

newly created file system is mounted to the new directory. The file system is then shared 

over NFS by adding the mount location to the NFS exports file. 

5.2.4 SDFS 

SDFS is the first deduplication implementation to be tested, SDFS is configured on top of a 

new ext4 filesystem. The following commands are used to configure SDFS: 

echo "* hard nofile 65535" >> /etc/security/limits.conf 

echo "* soft nofile 65535" >> /etc/security/limits.conf 

mkfs.ext4 /dev/sdb 

mkdir /nfs 

mkfs.sdfs --volume-name=dedup --volume-capacity=900GB –-base-path=/nfs –

io-safe-close=false 

mkdir /nfs-sdfs 
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mount –t dedup /nfs-sdfs 

echo “/nfs-sdfs 192.168.1.10(rw,sync,no_subtree_check)” >> /etc/exports 

The file size limits are changed according to the Administration Guide (OpenDedup, 2017), 

then a new ext4 file system is created on the secondary hard drive according to the steps 

presented in the section 5.2.3. A new SDFS volume is then created with the name “dedup”, a 

capacity of 900 GB and with the base path set to “/nfs”. By setting the base path to “/nfs” all 

data is stored on the secondary hard drive. The variable “io-safe-close” is set to false 

according to the Administration Guide (OpenDedup, 2017) since the volume is shared using 

NFS. A new directory is created and the SDFS volume is mounted to the new directory. The 

SDFS volume is shared using NFS with the same parameters used with ext4. 

5.2.5 ZFS 

The file system ZFS is the first tested file system which has integrated deduplication support. 

The following commands are used when configuring ZFS: 

zpool create nfs /dev/sdb 

zfs set sharenfs=on nfs 

zfs  set dedup=on nfs 

The zpool command is used to create a new ZFS pool named “nfs” on the secondary hard 

drive. An NFS share is created using the command “zfs set” to enable NFS sharing on the 

previously created ZFS pool. The same command is used to enable deduplication on the ZFS 

pool.  
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6 Results 

In this section, the results gathered from the experiment are presented. 

6.1 Storage 

Figure 3 shows the used disk space for each file system and deduplication implementation. 

The disk space is presented in gigabytes. 

Figure 3 Storage usage 

As shown in Figure 3, both non-deduplication tests show identical used disk space of 20,7 

GB. When deduplication is applied a significant decrease in used storage is shown. The 

results show that SDFS uses 5,5 GB, a decrease of 72,5 %. And ZFS with deduplication shows 

a disk usage of 5,27 GB, a decrease of 73,65 %. 

6.2 Resource utilisation 

Figure 4 shows the RAM usage when the system is in an idle state without cached data. RAM 

usage is presented in megabytes. 
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Figure 4 RAM Usage 

The figure shows that when deduplication is not present, ext4 and ZFS uses 395,90 MB and 

535,72 MB respectively. The ext4 based deduplication implementation SDFS uses 2104,06 

MB, which is an increase of 431,46 % over ext4. ZFS deduplication uses 601,59 MB of RAM, 

which is an increase of 12,30 % over ZFS without deduplication. The standard deviation 

shows a very small spread in test results, indicating that the RAM usage is highly consistent. 

Figure 5 shows a time plot of CPU usage during constant read operations over 10 minutes. 

Figure 5 CPU Usage Read Time plot 
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Figure 5 shows that ext4 has a consistent CPU usage over 10 minutes, while ZFS initially has 

a similar CPU usage as ext4, but after about 256 seconds drop to a lower CPU usage. SDFS 

initially has a significantly higher CPU usage compared to the other file systems and 

deduplication implementations, SDFS has a steady decline CPU usage rate which levels off at 

about 300 seconds. ZFS deduplication has an overall higher CPU utilisation than both ZFS 

without deduplication and ext4. 

Figure 6 shows the same data as Figure 5 but in bar graph format. 

 

Figure 6 CPU Usage Read Bar graph 

Figure 6 shows that ext4 has an average CPU utilisation of 12,48 % and that the CPU usage is 

very consistent with a standard deviation of 1,82. SDFS shows a much higher CPU utilisation 

of 33,54 % on average, SDFS therefore has an increase of 168.75 % compared to ext4. SDFS 

also has a much larger variance in the test results due to its initially high CPU usage with a 

standard deviation of 15,12. 

ZFS has an average CPU utilisation 7,54 % and a large variation with a standard deviation of 

4,92. As shown in Figure 5, the reason for the large variation is the decrease CPU usage after 

about 256 seconds. ZFS deduplication show an average CPU utilisation of 15,3 % which is an 

increase of 102,92 % over ZFS without deduplication. ZFS deduplication has a lower 

variation with a standard deviation of 2,95. 
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Figure 7 shows CPU usage after 300 seconds during read operations. 

Figure 7 CPU Usage Read (After 300s) 

When comparing test results of CPU usage during read operations (Figure 5) to CPU usage 
during read operations after 300 seconds (Figure 7) it is clear that the results are more 
consistent. The results show that the variation is low on all file systems and deduplication 
implementations, with SDFS and ZFS having the largest difference compared to test results 
from Figure 5. 
 
Figure 8 shows the same data as Figure 7 but in bar graph format. 
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Figure 8 shows an overall smaller variation in test results compared to the results presented 

in Figure 6. This indicates that the CPU usage after 300 seconds is more consistent in some 

cases compared to CPU usage from the full test duration. Ext4 and ZFS deduplication shows 

no statistical difference between the full duration compared to after 300 seconds. ZFS shows 

a decrease in CPU usage of 50,26 %. The standard deviation for ZFS is also lower with a 

value of 1,04 compared to 4,55.  SDFS also shows a large decrease in CPU usage when 

comparing test results from the full duration to results after 300 seconds, the decrease is 

34,29 %. The standard deviation for SDFS is also significantly lower with a value of 4,92 

compared to 15,12. 

Figure 9 shows CPU usage during constant write operations over a time period of 10 

minutes. 

Figure 9 CPU Usage Write Time plot 

Figure 9 shows a more concentrated CPU utilisation for all file systems and deduplication 

implementations.  Ext4 has a larger variation compared to both ZFS implementation during 

write operations. SDFS has a smaller CPU utilisation but with high peaks of utilisation at 

different intervals. ZFS has a similar CPU utilisation compared to ext4 but with smaller 

peaks. ZFS deduplication has a similar CPU utilisation to ZFS. 
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Figure 10 shows CPU usage during write operations but in a bar graph format with standard 

deviation. 

Figure 10 CPU Usage Write Bar graph 

Figure 10 shows that ext4 has an average CPU utilisation of 20,28 % and a large variation 

with a standard deviation of 8,11. SDFS has an average CPU utilisation of 12,25 % which is a 
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6.3 Disk performance 

The disk performance results show the used bandwidth for each file system and 

deduplication implementation during each performance test. 

Figure 11 shows disk performance during sequential read operations. 

Figure 11 Sequential Read 

Figure 11 shows that ext4 has a higher average sequential read bandwidth than SDFS with a 

small standard deviation of 173,47. SDFS has a much lower bandwidth with a decrease of 

65,61 % compared to ext4. SDFS also has a larger variation in the test compared to ext4 with 

a standard deviation of 282,57. ZFS deduplication has a lower bandwidth compared to ZFS, 

the decrease in bandwidth is 4,74 %. The standard deviation for ZFS deduplication is 2157,62 

which is lower compared to ZFS, which has a standard deviation of 2270,16. Comparing the 

two deduplication implementations show that SDFS has a 57,40 % decrease in bandwidth 

compared to ZFS deduplication.  
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Figure 12 shows bandwidth usage during random read operations.  

Figure 12 Random Read 

Figure 12 shows that SDFS has a large decrease in performance compared to ext4. The 

decrease between ext4 and SDFS is 84,64 %. Ext4 has a lower standard deviation of 0,24, 

compared to the standard deviation of SDFS which is 0,82. Unlike ext4 and SDFS, ZFS 

shows an increase in performance when using deduplication. ZFS deduplication shows a 

23,62 % increase in bandwidth compared to ZFS. ZFS deduplication also has a lower 

standard deviation compared to ZFS. ZFS deduplication has a standard deviation of 1,38, 

while ZFS has a standard deviation of 2,30. SDFS has a decrease of 84,82 & compared to ZFS 

deduplication. 

Figure 13 shows the bandwidth of each tested file system and deduplication implementation 

when testing sequential write operations. 

Figure 13 Sequential Write 
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Figure 13 shows that ext4 has a higher bandwidth compared to SDFS. The decrease in 

bandwidth from ext4 to SDFS is 44,22 %. The variation in results is higher for ext4 with a 

standard deviation of 236,68 compared to SDFS standard deviation of 51,93. ZFS 

deduplication shows an increase in bandwidth of 1,79 % compared to ZFS. The standard 

deviation for ZFS deduplication is higher compared to ZFS. ZFS deduplication has a 

standard deviation of 560,87, compared to ZFS standard deviation of 492,82. Due to the 

high standard deviation and similarity of bandwidth for both ZFS implementations, no 

statistical difference can be proven. Comparing the two deduplication implementations 

shows that SDFS has a 68,75 % decrease in bandwidth compared to ZFS deduplication. 

Figure 14 shows bandwidth usage during random write operations.  

Figure 14 Random Write 

Figure 14 shows that SDFS has a lower bandwidth compared to ext4. The decrease in 

bandwidth between ext4 and SDFS is 13,16 %. Both ext4 and SDFS have similar standard 

deviations, ext4 has a standard deviation 8,67 while SDFS has a slightly larger standard 

deviation of 9,25. ZFS deduplication has an increase in bandwidth of 3,30 % compared to 

ZFS. ZFS deduplication also has a lower variation of test results with a standard deviation of 

4,41, compared to ZFS standard deviation of 8,59. Comparing SDFS to ZFS deduplication 

show that SDFS has a decrease of 24,50 % over ZFS deduplication.  

740.4540587

642.9764267

824.4015787
851.5874133

0

100

200

300

400

500

600

700

800

900

ext4 SDFS ZFS ZFS Dedup

B
an

d
w

id
th

 (
K

B
/s

)

Random Write



 26 

Figure 15 shows the measured disk latency of each file systems and deduplication 

implementation. 

Figure 15 Latency 
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6.4 Disk performance validation 

The disk performance validation results compare test results performed directly on the 

storage server to the tests performed from the virtual machines. The full test results are 

included in Appendix A. 

When comparing test results from sequential read operations, ext4 and SDFS show a similar 

decrease in performance when comparing tests from the storage server to tests from the 

virtual machines. The decrease is 30,41 % for ext4 and 38,66 % for SDFS. ZFS shows a much 

larger decrease in performance, both with and without deduplication. ZFS shows a decrease 

of 47,01 % while ZFS deduplication shows a decrease of 50,69 %. The variance in test results 

is small for all file systems and deduplication implementations, which show that the 

difference between the tests is statistically significant. 

Results from random read operations show that the decrease in performance is generally 

lower between the storage server and the virtual machines. Ext4 shows an 11,50 % decrease 

in bandwidth which is lower than results from sequential read operations. SDFS has a larger 

decrease in bandwidth with a difference of 58,79 %. Both ZFS implementations show a 

smaller variance with a decrease of 34,64 % and 22,19 %, for ZFS and ZFS deduplication 

respectively. The variance in test results is small in all tests, therefore showing that the 

difference between the tests is statistically significant. 

Comparing results from sequential write operations show that the decrease in bandwidth for 

ext4 is 64,61 %. The decrease for ext4 is therefore larger than the decrease in bandwidth for 

SDFS, which is 49,71 %. The two ZFS implementations show a smaller decrease in 

bandwidth than ext4 and SDFS. ZFS has a decrease in bandwidth of 30,42 % while ZFS 

deduplication has a decrease of 25,36 %. The standard variance for all tests are relativity low, 

therefore showing a statistical difference between all tests. 

Results gathered during random write operations show that ext4 has a decrease in 

bandwidth of 26,76 %, SDFS has a lower decrease of 16,89 %. Both ZFS implementations 

show a similar decrease in bandwidth to ext4 and SDFS. ZFS has a decrease in bandwidth of 

26,97 % while ZFS deduplication shows a decrease of 18,95 %. The standard deviation for all 

tests show that the variance is small and that statistical difference between the tests can be 

shown. 

Latency tests show a large different between the different file systems and deduplication 

implementations. The increase in latency when comparing ext4 tests is 56,44 % while SDFS 

shows an increase of 2,05 %. The two ZFS implementations show a similar latency increase 

pattern with the non-deduplicated ZFS having an increase of 48,99 %. While ZFS 

deduplication has a smaller increase in bandwidth of 23,94 %. The variance for the latency 

tests is overall low, meaning that statistical difference between all tests can be shown.  
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7 Conclusions 

This section contains the conclusions that can be drawn from the data gathered during the 

experiment. 

7.1 Storage utilisation 

From the gathered data, it is clear that deduplication using both SDFS and ZFS 

deduplication can decrease the used storage space significantly. When using SDFS the 

decrease in storage utilisation is 72,5 % and ZFS deduplication has a decrease of 73,65 %. 

The results show that ZFS deduplication is slightly more effective in minimising the storage 

space needed to store the pool of virtual machines. The conclusion is that both deduplication 

implementation provides a large decrease in used storage space with ZFS deduplication 

being slightly more effective. The results answer RQ1 and match the expected results for 

storage savings. 

7.2 Resource utilisation 

The data shows that SDFS has a much larger increase in RAM utilisation compared to both 

ZFS implementations and ext4. SDFS has a 431,46 % increase over its base file system ext4.  

ZFS deduplication in this experiment is much more effective in RAM utilisation with an 

increase of only 12,13 % over its base file systems ZFS. The result is that ZFS deduplication 

uses 71,41 % less RAM than SDFS and that deduplication on both tested implementations 

have an impact on RAM utilisation. 

Data gathered on CPU utilisation shows that in the case of read operations, that SDFS uses 

significantly more CPU than both ZFS implementations and ext4.  SDFS shows an increase 

of 168.75 % compared to ext4, while ZFS deduplication shows an increase of 102,92 % over 

its base file system ZFS. The result is that ZFS is more effective in CPU utilisation during 

read operations than SDFS, but that both deduplication implementations have shown an 

increase in CPU utilisation during read operations compared to their respective non-

deduplication implementation. 

Comparing CPU utilisation during read operations for the full duration to the same results 

after 300 seconds shows that there is no statistical difference between ext4 and ZFS 

deduplication. Both ZFS and SDFS show significantly lower average CPU utilisation, as well 

as lower standard deviations. 

CPU utilisation during write operations show different utilisation patterns compared to read 

operations. SDFS has a decrease in CPU utilisation of 39,60 %, which indicated that SDFS is 

more effective in terms of CPU utilisation than the non-deduplicated file system ext4. ZFS 

deduplication shows an increase of 8.05 % over ZFS, which is a much smaller increase than 

during read operations. Due to the large standard deviation of the test results for both ZFS 

and ZFS deduplication, no statistical difference can be shown. 

The conclusion, which answers RQ2, is that both deduplication implementations resulted in 

higher RAM usage. SDFS has a significantly higher increase in RAM usage than ZFS 

deduplication. The results also show that deduplication resulted in higher CPU utilisation 

during read operations, with SDFS having a higher CPU utilisation impact than ZFS 

deduplication. Results from write operations show that SDFS has a lower CPU usage 
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compared to non-deduplicated ext4, while ZFS deduplication show no statistical difference 

in CPU usage. The expected results of higher the resource utilisation when using 

deduplication are matched by results from ZFS deduplication. But only partially matched by 

results for SDFS, since write operations use less CPU. 

7.3 Disk performance 

The data on disk performance shows that in all tested cases that SDFS has a significant 

performance deficit compared to its non-deduplicated file system ext4. SDFS has during 

read operations a performance decrease of 65,61 % and 84,64 %, for sequential and random 

operations respectively. The performance deficit is smaller but still significant for sequential 

write operations where the decrease of SDFS is 44,22 % compared to ext4. The smallest 

performance impact for SDFS is on random write operations where the decrease is 13,16 %. 

SDFS also has a large increase in latency compared to ext4, with an increase of 252,10 %. 

The results are that applying deduplication with SDFS on ext4 results in large performance 

impacts, especially during read and sequential write operations, but also in latency. 

ZFS deduplication unlike SDFS shows few negative performance impacts and is generally 

faster than ZFS. During sequential read operations the performance decrease is only 4,74 % 

compared to ZFS and for random read operations, ZFS deduplication has an increase in 

performance of 23.62 %. For write operations, ZFS deduplication is faster in both sequential 

and random operations, with sequential operations having an increase of 1,79 % and random 

operations having an increase of 3,30 %. ZFS deduplication also shows a decrease in latency 

of 40,11 % compared to ZFS. 

The disk performance results show that using deduplication with SDFS result in a decrease 

of performance in all tested cases with the largest performance impacts being in read 

operations. While ZFS deduplication shows a small increase in performance in all cases 

except for sequential read operations. These results answer RQ3 and partially match the 

expected results. SDFS matches the expected results since the performance is slower when 

using deduplication, but ZFS deduplication generally performs better which was not 

expected.  

7.4 Disk performance validation 

Comparing disk performance between tests run on the storage server and on the virtual 

machines show a decrease in performance on all tests. During both sequential and random 

read operations the performance decrease is larger on SDFS than on ext4. The decrease in 

sequential read operations is 30,41 % on ext4 and 38,66 % on SDFS, while on random read 

operations the decrease is 11,50 % on ext4 and 58,79 % on SDFS. Showing that the difference 

is much larger on random read operations than on sequential read operations. For 

sequential write operations, the decrease in performance is larger on ext4 than on SDFS. The 

decrease in performance on sequential write operations is on ext4 64,61 % and SDFS has a 

decrease of 49,61 %. For random write operations, the decrease on ext4 is 26,76 % while 

SDFS has a decrease of 16,89 %. The data from the latency test shows that ext4 has a larger 

decrease in performance compared to SDFS. Ext4 has an increase of 56,44 % in latency 

compared to SDFS increase of 2,05 %. 

In both read tests, ZFS and ZFS deduplication show a larger decrease in performance 

compared to ext4 and SDFS. In the sequential read tests, ZFS has a decrease in performance 
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of 47,01 % and ZFS deduplication has a decrease of 50,69 %. Both ZFS and ZFS 

deduplication therefore have a larger performance decrease in sequential read tests 

compared to ext4 and SDFS. When comparing random read tests ZFS has a performance 

decrease of 34,64 % and ZFS deduplication a decrease of 22,19 %. Both ZFS implementations 

therefore have a larger decrease than ext4 but not as large as SDFS. When comparing 

sequential write operations, ZFS has a decrease of 30,42 % and ZFS deduplication a decrease 

of 25,36 %. Both of which are smaller than ext4 and SDFS, showing that ZFS and ZFS 

deduplication have a smaller performance impact than ext4 and SDFS. In random write 

operations, ZFS has a performance decrease of 26,97 %, which is larger than ZFS 

deduplication, that has a decrease of 18,95 %. The result is that both ZFS implementations 

have a larger performance decrease on random write operations compared to both ext4 and 

SDFS. The latency tests show that ZFS has a performance decrease of 48,99 % and ZFS 

deduplication a decrease of 23,94 %. This shows that ext4 has larger a decrease than ZFS, 

but that SDFS has a smaller decrease than ZFS deduplication. 

The conclusion is that the performance for all tests on all file systems and deduplication 

implementations have decreased when comparing local tests performed on the storage 

server to tests on remote storage trough the virtual machines. On sequential read and 

random write operations, ext4 and SDFS performed better than ZFS and ZFS deduplication. 

But for sequential write operations, both ext4 and SDFS have a higher decrease in 

performances compared to the two ZFS implementations. For random read operations, ext4 

performed better than the two ZFS implementations, but SDFS has the largest performance 

decrease then all the other three implementations. 
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8 Discussion 

This section focuses on discussing and reflecting on the results, the performed experiment 

and comparing the gathered results with related work. 

8.1 Results discussion 

The test results from the storage savings test show that ZFS deduplication is marginally more 

effective than SDFS, one possible reason could be that the block size used by ZFS 

deduplication is smaller than the block size used by SDFS. A smaller block size could result 

in a more effective deduplication, therefore the storage savings could be larger (Jin & Miller, 

2009). 

RAM usage for SDFS is significantly larger than the RAM usage of ZFS deduplication. The 

reason is unknown but it is possible that this is due to how SDFS is implemented. SDFS is 

implemented on top of an existing file system, which may result in that more data about each 

chunk and chunk storage location needs to be stored compared to ZFS deduplication. ZFS 

deduplication is implemented in an existing file system and may therefore have a more 

effective data storage. 

The CPU usage during read operations shows that there is a difference in CPU usage for the 

first 300 seconds and the last 300 seconds of the tests. SDFS shows an initial high CPU 

usage which has a decline to about 300 seconds where it levels out, while ZFS has a sudden 

decrease after about 256 seconds. A possible cause of these differences is that the file used 

for read operations is being cached. The lower CPU usage would therefore be the result of the 

lower amount of disk operations being used to read the test file. Ext4 and ZFS deduplication 

show a lower variance through the full test, which might be an indication that no caching is 

performed by these implementations. Future work is needed to further explore the 

differences in caching in order to draw certain conclusions. 

SDFS shows a decrease in CPU usage compared to ext4 during write operations, a possible 

cause is that the random write bandwidth is very low for SDFS and therefore requiring a 

lower amount of disk operations. The result of fewer disk operations is a possible cause for 

the low CPU utilisation. The two ZFS implementations have similar CPU usage and also 

similar random write bandwidth. 

The test results from disk performance tests show that SDFS has an overall lower bandwidth 

in all tested cases and a higher latency compared to ext4. One possible cause of the results 

could be because of how SDFS is implemented. SDFS is implemented on top of an existing 

file system, therefore separating deduplication from the storage of data. It is possible that 

this type of implementation causes a larger overhead since the data first needs to be 

processed and deduplicated by SDFS, to then be stored separately by another file system. 

The additional overhead is likely to cause slower performance and higher latency. ZFS 

deduplication is implemented in the existing file system ZFS and is therefore less likely to 

have the same overhead as SDFS. Unlike SDFS, ZFS deduplication shows generally higher 

performance compared to its non-deduplicated file system. One possible cause is that using 

ZFS deduplication result in fewer disk seek operations since the location of disk chunks can 

be read from the deduplication hash table, since the deduplication hash table resides in RAM 
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the operation should be faster than a disk operation. The less time used to locate chunks 

could result in higher performance and lower latency. 

Results from the disk performance validation test show an overall decrease in performance 

when comparing tests from the local storage server to tests from the virtual machines. Some 

performance decrease is expected due to the network overhead. Another possible cause to 

the larger performance decrease could be the low MTU size forced by hardware limitations. 

The low MTU size limits the amount of data that can be sent per network packet, resulting in 

lower network throughput and thereby lower bandwidth. 

8.2 Experiment discussion 

The goal of this study is to evaluate the potential performance impacts that can be caused by 

implementing deduplication on virtual machine storage. When designing the experiment 

that is used to perform the study, previous research is studied to identify performance 

variables that can be affected by deduplication. While these performance variables are tested 

in this study, more could be affected than measured. An example is other types of disk 

operations that could be affected by deduplication, such as re-write and re-read. There are 

also other resource utilisation variables that could potentially be affected, such as higher 

RAM usage during disk operations. 

The handling of the validity threat of low statistical power could be handled further by 

increasing the number of runs per disk test and using longer time periods for utilisation 

tests. By using extended tests, the results would have higher statistical power. 

The test results show low performance values during disk performance tests. The tests also 

show uncommon performance patterns, for example, random read test being slower than 

random write. If the experiment is to be performed again and if more time is available, the 

performance test could be extended by possibly testing other benchmark tools and testing 

different parameters for each tool. Further performance optimisations of the file systems and 

deduplication implementations could potentially also be possible. 

Comparing test performed locally on the storage server and from the virtual machines, the 

performance in many cases decreases significantly. The results therefore indicate that the 

used default settings might not be optimal to achieve the highest possible performance, 

therefore if more time would have been available different variables could be modified to 

achieve higher performance of shared storage. Furthermore, by using different hardware 

with larger MTU size support the performance could possibly be explored further. 

External validity is handled to a certain degree by using common file systems and 

virtualization techniques. But to provide a higher degree of external validity the experiment 

could be performed with more than two deduplication implementations, the virtual machine 

pool could also be larger and contain a realistic amount of user data as well as a larger 

variation in installed packets. It would also be interesting to test deduplication effectivity 

using virtual machines with different operating systems and operating system versions. 

8.3 Related work 

According to research by Jin & Miller (2009) the storage savings when using virtual 

machines with the same operating system can be as high as 80 %. The results of this study 
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show storage savings of 72,5 % and 73,65 %, indicating that the storage savings shown in this 

study are comparable to previous research. 

Mandagere et al. (2008) shows that the CPU utilisation when performing deduplication can 

be as high as 75 % depending on the block size used. The smallest block size tested was 16k 

and showed a CPU utilisation of about 30 %. The CPU utilisation measured during 

deduplication (write operations) in this study show CPU utilisations of between 12,25 % and 

22,52 %. This indicates that deduplication implementations used in this study are more 

effective regarding CPU utilisation. 

Previous research by Ng et al. (2011) shows that their presented deduplication 

implementation LiveDFS has a sequential read bandwidth of about 130 MB/s, which can be 

compared to the results of this study that show sequential read bandwidth of 30,86 MB/s for 

SDFS and 72,43 MB/s for ZFS deduplication. Ng et al. (2011) also present sequential write 

bandwidth of between 60 MB/s and 90 MB/s, depending on enabled features in their file 

system. The results of this study show that SDFS has a sequential write bandwidth of 6,13 

MB/s and ZFS deduplication 19,61 MB/s. Comparing the results of this study to related 

works show that the deduplication implementations used in this study are not as effective 

regarding disk performance. 
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9 Future work 

Future work to perform regarding usage of deduplication of virtual machine storage could 

include performing tests on more file systems and deduplication implementations. This 

would provide a more accurate picture of the impacts of deduplication and would provide 

more useful data which could help systems administrators further in decision-making 

processes. 

Future work could also include performing the tests made in this study in a production 

virtualization environment that contains a large amount of dynamic user data. This would 

provide disk operations from multiple clients at one time, which could affect the results 

compared to this study. The external validity would increase in the case of this work. 

During this study, observations were made that indicates that optimal performance of the 

deduplication implementations was not achieved. Future work could be to try and achieve 

higher performance by identifying and optimising different configurations parameters that 

affect performance. 
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Schwarzkopf, R., Schmidt, M., Rüdiger, M. & Freisleben, B. (2012). Efficient storage of 

virtual machine images. In Proceedings of the 3rd workshop on Scientific Cloud Computing 

Date (pp. 51-60). ACM. DOI: 10.1145/2287036.2287046 



 36 

Tan, Y. & Yan, Z. (2016). Multi-objective Based Performance Evaluation of Deduplication 

Approaches. 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE. DOI: 

10.1109/TrustCom.2016.0186 

The Cloud Market. (2017). EC2 Statistics. Retrieved 27 Mars 2017, from 

http://thecloudmarket.com/stats#/by_platform_definition 

Simon, A, (2015). LinuxFilesystemsExplained. Retrieved 14 Mars 2017, from 

https://help.ubuntu.com/community/LinuxFilesystemsExplained 

OpenDedup. (2017). Administration Guide. Retrieved 14 Mars 2017, from 

http://opendedup.org/odd/administration-guide 

OpenStack. (2016) OpenStack User Survey: A snapshot of OpenStack users’ attitudes and 

deployments. Retrieved 27 Mars 2017, from 

https://www.openstack.org/assets/survey/April-2016-User-Survey-Report.pdf 

Oracle Corporation. (2017). Oracle VM VirtualBox: User Manual. Retrieved 15 February 

2017, from https://www.virtualbox.org/manual/ 

VMware Inc. (2017). vSphere Storage. Retrieved 15 February, 2017, from 

https://pubs.vmware.com/vsphere-65/topic/com.vmware.ICbase/PDF/vsphere-esxi-

vcenter-server-65-storage-guide.pdf 

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. & Wesslén, A. (2012). 

Experimentation in software engineering. Berlin: Springer Science & Business Media.



 I 

Appendix A -  Disk performance validation 
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