Abstract—In this paper, we aim at the development of a decentralized abstraction framework for multi-agent systems under coupled constraints, with the possibility for a varying degree of decentralization. The methodology is based on the analysis employed in our recent work, where decentralized abstractions based exclusively on the information of each agent’s neighbors were derived. In the first part of this paper, we define the notion each agent’s m-neighbor set, which constitutes a measure for the employed degree of decentralization. Then, sufficient conditions are provided on the space and time discretization that provides the abstract system’s model, which guarantee the extraction of a meaningful transition system with quantifiable transition possibilities.

I. INTRODUCTION

The analysis and control of multi-agent systems constitutes an active area of research with numerous applications, ranging from the analysis of power networks to the automatic deployment of robotic teams. Of central interest in this field is the problem of high level task planning by exploiting tools from formal verification [8]. In order to follow this approach for dynamic systems it is required to provide a suitable discrete representation of the system which allows the automatic synthesis of discrete plans that guarantee satisfaction of the high level tasks. Then, under appropriate relations between the continuous system and its discrete analogue, these plans can be converted to low level primitives such as sequences of feedback controllers, and hence, enable the continuous system to implement the corresponding tasks.

The need for a formal approach to the aforementioned control synthesis problem has lead to a considerable research effort towards the extraction of discrete state symbolic models, also called abstractions. Results in this direction for the nonlinear single plant case have been obtained in the papers [20] and [26], which exploit approximate simulation and bisimulation relations. Symbolic models for piecewise affine systems on simplices and rectangles were introduced in [14] and have been further studied in [6]. Closer related to the control framework that we adopt for the abstraction are the papers [15], [16] which build on the notion of In-Block Controllability [7]. Other abstraction techniques for nonlinear systems include [23], where discrete time systems are studied in a behavioral framework and [1], where box abstractions are studied for polynomial and other classes of systems. It is also noted that certain of the aforementioned approaches have been extended to switched systems [11], [12]. Furthermore, abstractions for interconnected systems have been recently developed in [25], [22], [21], [24], [19], [9] and rely mainly on compositional approaches based on small gain arguments. Finally, in [18], a compositional approach with a varying selection of subsystems for the abstraction is exploited, providing a tunable tradeoff between complexity reduction and model accuracy.

In this framework, we focus on multi-agent systems and assume that the agents’ dynamics consist of feedback interconnection terms and additional bounded input terms, which we call free inputs and provide the ability for motion planning under the coupled constraints. In this paper, we generalize the corresponding results of our recent work [4], where each agent’s abstract model has been based on the knowledge of its neighbors’ discrete positions, by allowing the agent to have this information for all members of the network up to a certain distance in the communication graph. The latter provides an improved estimate of its neighbors’ potential evolution and allows for more accurate discrete agent models, due to the reduction of the part of the available control which is required for the manipulation of the coupling terms. In addition, the derived abstractions are coarser than the ones in [4] and can reduce the computational complexity of high level task verification.

The rest of the paper is organized as follows. Basic notation and preliminaries are introduced in Section II. In Section III, we define well posed abstractions for single integrator multi-agent systems and prove that the latter provide solutions consistent with the design requirement on the systems’ free inputs. Section IV is devoted to the study of the control laws that realize the transitions of the proposed discrete system’s model. In Section V we quantify space and time discretizations which guarantee well posed transitions with motion planning capabilities. The framework is illustrated through an example with simulation results in Section VI, and we conclude in Section VII. Due to space constraints, the proofs of the results are provided in [3].

II. PRELIMINARIES AND NOTATION

We use the notation $|x|$ for the Euclidean norm of a vector $x \in \mathbb{R}^n$ and $\text{int}(S)$ for the interior of a set $S \subset \mathbb{R}^n$. Given $R > 0$ and $x \in \mathbb{R}^n$, we denote $B(x; R) := \{y \in \mathbb{R}^n : |x - y| \leq R\}$ and $B(R) := B(0; R)$.

Consider a multi-agent system with N agents. For each agent $i \in \mathcal{N} := \{1, \ldots, N\}$ we use the notation $\mathcal{N}_i \subset \mathcal{N} \setminus \{i\}$ for the set of its neighbors and N_i for its cardinality.
We also consider an ordering of the agent’s neighbors which is denoted by \(j_1, \ldots, j_N \), and define the \(N \)-tuple \(j(i) = j_1, \ldots, j_N \). For each agent \(i \) and m-cell configuration of \(i \), we consider the corresponding reference points of the cells in the decomposition of the workspace, which are typically destinations for agents to reach. Throughout the paper, we consider a fixed \(m \in \mathbb{N} \) which specifies the \(m \)-neighbor set of each agent and will refer to it as the degree of decentralization.

III. ABSTRACTIONS FOR MULTI-AGENT SYSTEMS

We consider multi-agent systems with single integrator dynamics:

\[
\dot{x}_i = f_i(x_i, u_i),
\]

that are governed by decentralized control laws consisting of two terms: a feedback term \(f_i(\cdot) \) which depends on the states of \(i \) and its neighbors, which we compactly denote by \(x_j(= x_j(\theta)) := (x_{j_1}, \ldots, x_{j_N}) \in \mathbb{R}^{N \times n} \) (see Section II for the notation \(j(\cdot) \)), and an extra input term \(u_i \), which we call free input. The dynamics (1) are encountered in a popular set of multi-agent protocols [17], including consensus, connectivity maintenance, collision avoidance and formation control. In addition they may represent internal dynamics of the system as for instance in the case of smart buildings (see e.g., [2]).

Finally, we assume that each input \(v_i, i \in \mathcal{N} \) is piecewise continuous and satisfies the bound

\[
|v_i(t)| \leq v_{\text{max}} < M, \quad \forall t \geq 0.
\]

Based on the uniform bound on the diameters of the cells in the decomposition of the workspace, we can define the diameter \(d_{\text{max}} \) of the cell decomposition as

\[
d_{\text{max}} := \inf \{ R > 0 : \forall l \in \mathcal{I}, \exists \bar{x} \in S_l \text{ with } S_l \subset B(\bar{x}; \frac{R}{2}) \}.
\]

Given a cell decomposition we fix a reference point \(x_{l,GI} \in S_l \) for each cell \(S_l, l \in \mathcal{I} \). For each agent \(i \) and m-cell configuration of \(i \), the corresponding reference points of the cells in the
configuration will provide a trajectory which is indicative of the agent’s reachability capabilities over the interval of the time discretization. Furthermore, they provide an estimate of the agent’s neighbors’ corresponding trajectories, for m-cell configurations of its neighbors that are consistent with the cell configuration of i, namely for which the “common agents” belong to the same cells. In particular, given an agent $i \in \mathcal{N}$, a neighbor $\ell \in \mathcal{N}_i$ of i and m-cell configurations $I_i = (I_{i,1}, I_{i,2}, \ldots, I_{i,m})$ and $I_{\ell} = (I_{\ell,1}, I_{\ell,2}, \ldots, I_{\ell,m})$ of i and ℓ, respectively, we say that I_i is consistent with I_{ℓ} if for all $\kappa \in \mathcal{N}^{-1} \cap \mathcal{N}_i$ it holds $l_{\kappa} = l_{\kappa}$. The following definition provides for each agent i its reference trajectory and the estimates of its neighbors’ reference trajectories, based on i’s m-cell configuration.

Definition 3.1: Given a cell decomposition $\mathcal{S} = \{S_l\}_{l \in \mathcal{I}}$ of \mathbb{R}^n, a reference point $x_{1,G} \in S_l$ for each $l \in \mathcal{I}$, a time step δt and a nonempty subset W of \mathbb{R}^n, consider an agent $i \in \mathcal{N}$, its m-cell neighbor set \mathcal{N}_i^m and an m-cell configuration $I_i = (I_{i,1}, I_{i,2}, \ldots, I_{i,m})$ of i. We define the functions $\chi_l(t), \chi_{j_l}(t) := (\chi_{j_l}(t), \ldots, \chi_{j_{m_l}}(t))$, $t \geq 0$, over the solution of the initial value problem, specified by the following Cases (i) and (ii): **Case (i).** It holds $\mathcal{N}^{-1} = \emptyset$. Then we have the initial value problem $\dot{\chi}_l(t) = f(\chi_l(t), \chi_{j_l}(t), \ldots, \chi_{j_{m_l}}(t)), t \geq 0, \ell \in \mathcal{N}_i^m, \chi_l(0) = x_{1,G}$, $\forall \ell \in \mathcal{N}_i^m$, where $j_l, j_{l_{\ell}}, \ldots, j_{l_{m_l}}$ denote the corresponding neighbors of each agent $\ell \in \mathcal{N}_i^m$. **Case (ii).** It holds $\mathcal{N}^{-1} \neq \emptyset$. Then we have the initial value problem $\dot{\chi}_l(t) = f(\chi_l(t), \chi_{j_l}(t), \ldots, \chi_{j_{m_l}}(t)), t \geq 0, \ell \in \mathcal{N}_i^m-1$, with the terms $\chi_l(t), \ell \in \mathcal{N}_i^m$ defined as $\chi_l(t) := x_{1,G}, \forall t \geq 0, \ell \in \mathcal{N}_i.$

Remark 3.2: Apart from the notation $\chi_l(x)$ and $\chi_{j_l}(x)$ above, we will use the notation $\chi_{l}^{(t)}(x)$ for the trajectory of each agent $\ell \in \mathcal{N}_i^m$, as specified by the initial value problem corresponding to the m-cell configuration of i in Definition 3.1. We will refer to $\chi_l(x) = \chi_{l}^{(t)}(x)$ as the reference trajectory of agent i.

The following lemma establishes conditions on the network structure in a neighborhood of each agent i, which guarantee that i’s neighbors’ reference trajectories coincide with their estimates by i, for consistent cell configurations.

Lemma 3.3: Assume that for agent $i \in \mathcal{N}$ it holds $\mathcal{N}_i^{m+1} = \emptyset$ and let I_i be an m-cell configuration of i. Then, for each $\ell \in \mathcal{N}_i$ with $\mathcal{N}_\ell^{m+1} = \emptyset$ and m-cell configuration I_{ℓ} of ℓ consistent with I_i, it holds $\chi_l^{(t)}(x) = \chi_{j_{\ell}}^{(t)}(x)$, for all $t \geq 0$, with $\chi_l^{(t)}(x)$ and $\chi_{j_{\ell}}^{(t)}(x)$ as determined by Definition 3.1 for the m-cell configurations I_i and I_{ℓ}, respectively.

Despite the result of Lemma 3.3, in principle, the trajectory of each agent’s neighbor and its estimate, based on the solution of the initial value problem for the reference trajectory of the specific agent do not coincide. Explicit bounds for this deviation are given in Proposition 3.4 below.

Proposition 3.4: Consider the agent $i \in \mathcal{N}$ and let I_i be an m-cell configuration of i. Also, pick $\ell \in \mathcal{N}_i$ and any m-cell configuration I_{ℓ} of ℓ consistent with I_i. Finally, let $\delta t \in (0, t^*)$, with t^* being the unique positive solution of the equation $e^{L_2 t^*} - \left(L_2 + \frac{L_2^2}{4 L_2^{max}} \right) t^* - 1 = 0$, with $L_2^{max} := \max\{N_i : i \in \mathcal{N}\}$. Then, the difference $|\chi_l^{(t)}(x) - \chi_{j_{\ell}}^{(t)}(x)|$ satisfies the bound $|\chi_l^{(t)}(x) - \chi_{j_{\ell}}^{(t)}(x)| \leq H_m(t), \forall t \in [0, \delta t]$, where the functions $H_m(t), \ell \geq 1$, are defined recursively as $H_1(t) := M_1 t, t \geq 0, H_{\ell}(t) := \int_0^t e^{L_2(t-s)} L_1 \sqrt{N_\ell} H_{\ell-1}(s) ds, t \geq 0$ and $\chi_l^{(t)}(x), \chi_{j_{\ell}}^{(t)}(x)$ are determined by the initial value problem of Definition 3.1 for the m-cell configurations I_i and I_{ℓ}, respectively.

In order to provide the definition of well posed transitions for the individual agents, we will exploit for each agent $i \in \mathcal{N}$ the following system with disturbances:

$$\dot{x}_i = f_i(x_i, d_j) + v_i,$$

where $d_j, \ldots, d_{j_{N_i}} : [0, \infty) \to \mathbb{R}^n$ are continuous functions. Also, before defining the notion of a well posed space-time discretization we provide a class of hybrid feedback laws which are assigned to the free inputs v_i in order to obtain meaningful discrete transitions. These control laws are parameterized by each agent’s initial conditions and a set of auxiliary parameters from a nonempty subset W of \mathbb{R}^n, which are exploited for motion planning. In particular, the choice of each vector $w_i \in W$ is in a one-to-one correspondence with the choice of a point inside a reachable ball for i, thus, providing the agent the possibility to perform transitions to multiple cells. In addition, for each agent i, the feedback laws in the following definition depend on the selection of the cells where i and its m-neighbors belong.

Definition 3.5: Given a cell decomposition $\{S_l\}_{l \in \mathcal{I}}$ of \mathbb{R}^n and a nonempty subset W of \mathbb{R}^n, consider an agent $i \in \mathcal{N}$ and an initial cell configuration I_i of i. For each $x_0 \in S_{I_i}$ and $w_i \in W$, consider the mapping $k_{i,1}(\cdot, \cdot, \cdot, x_0, w_i) : [0, \infty) \times \mathbb{R}^{(N_i+1)n} \to \mathbb{R}^n$, parameterized by $x_0 \in S_{I_i}$ and $w_i \in W$. We say that $k_{i,1}(\cdot)$ satisfies Property (P), if the following conditions are satisfied. (P1) The mapping $k_{i,1}(t, x_i, x_j, x_{i,0}, w_i)$ is continuous on $[0, \infty) \times \mathbb{R}^{(N_i+1)n} \times S_{I_i} \times W$. (P2) The mapping $k_{i,1}(t, \cdot, \cdot, x_{i,0}, w_i)$ is globally Lipschitz on (x_i, x_j) for all $x_{0} \in S_{I_i}$ and $w_i \in W$. <

The next definition characterizes the bounds on the deviation between the reference trajectory of each agent’s neighbor and its estimate obtained from the solution of the initial value problem for the specific agent.

Definition 3.6: Consider an agent $i \in \mathcal{N}$. We say that a continuous function $\alpha_i : [0, \delta t] \to \mathbb{R}_{\geq 0}$ satisfies the neighborhood reference trajectory deviation bound, if for each cell configuration I_i of i, neighbor $j_{\kappa}, \kappa = 1, \ldots, N_i$ of i and cell configuration of each j_{κ} consistent with I_i, it holds:

$$|\chi_{j_{\kappa}}^{(t)}(x) - \chi_{j_{\ell}}^{(t)}(x)| \leq \alpha_i(t), \forall t \in [0, \delta t].<$$

We can now formalize our requirement on acceptable discrete transitions, based on the knowledge of each agent’s m-cell configuration. The corresponding definition below includes certain bounds on the evolution of each agent, which we sharpen, by requiring the reference points of the decomposition to satisfy

$$|x_{1,G} - x| \leq \frac{d_{max}}{2}, \forall x \in S_t, l \in \mathcal{I}.$$
The definition exploits the auxiliary system with disturbances (6) and is inspired by the approach adopted in [10].

Definition 3.7: Consider a cell decomposition $S = \{S_l\}_{l \in I}$ of \mathbb{R}^n, a time step δt, a nonempty subset W of \mathbb{R}^n, and a continuous function $\beta : [0, \delta t] \rightarrow \mathbb{R}_{\geq 0}$ satisfying

$$\frac{d_{\max}}{2} \leq \beta(0); \beta(\delta t) \leq v_{\text{max}}\delta t.$$

(9)

Also, consider an agent $i \in \mathcal{N}$, a continuous function $\alpha_i : [0, \delta t] \rightarrow \mathbb{R}_{\geq 0}$ satisfying the neighbor reference trajectory deviation bound (7), an m-cell configuration I_i of i and the solution of the initial value problem of Definition 3.1. Then, given a control law

$$v_i = k_{i,1}(t, x_i, x_j; x_{i0}, w_i)$$

(10)

as in Definition 3.5, that satisfies Property (P), a vector $w_i \in W$, and a cell index $l' \in I$, we say that the **Consistency Condition** is satisfied if the following hold. The set $\text{int}(B(x_i(\delta t); \beta(\delta t))) \cap S_{l'_i}$ is nonempty, and there exists a point $x'_i \in \text{int}(B(x_i(\delta t); \beta(\delta t))) \cap S_{l'_i}$, such that for each initial condition $x_{i0} \in \text{int}(S_{l_i})$ and selection of continuous functions $d_{j_1}, \ldots, d_{j_k} : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^n$, the solution $x_i(\cdot)$ of the system with disturbances (6) with $v_i = k_{i,1}(t, x_i, d_j; x_{i0}, w_i)$, satisfies the following implication for each $l \in [0, \delta t]$

$$|d_{j}(l) - \chi_{j}^{[i]}(l)| \leq \alpha_i(t) + \beta(t), \forall t \in [0, \delta t], \forall \kappa \in \{1, \ldots, N\}$$

$$\Rightarrow |x_i(t) - \chi_{j}^{[i]}(l)| < \beta(t),$$

(11)

where $\chi_{j}^{[i]}(\cdot)\kappa = 1, \ldots, N_i$ correspond to the trajectories of i's neighbors in the solution of its reference trajectory. Furthermore, if the left hand side of the implication in (11) holds with $l = \delta t$, then it follows that $x_i(l) = x'_i \in S_{l'_i}$ and $|k_{i,1}(l, x_i(t), d_j(t); x_{i0}, w_i)| \leq v_{\text{max}}, \forall t \in [0, \delta t]$.}

Notice, when the Consistency Condition is satisfied, agent i can be driven to cell $S_{l'_i}$ precisely in time δt for all disturbances which satisfy the left hand side of the implication in (11). The latter capture the possibilities for the evolution of i's neighbors over the time interval $[0, \delta t]$, given the knowledge of i's m-cell configuration. Based on the Consistency Condition we next provide the definition of a well posed space-time discretization.

Definition 3.8: Consider a cell decomposition $S = \{S_l\}_{l \in I}$ of \mathbb{R}^n, a time step δt and a nonempty subset W of \mathbb{R}^n. (i) Given a continuous function $\beta : [0, \delta t] \rightarrow \mathbb{R}_{\geq 0}$ that satisfies (9), an agent $i \in \mathcal{N}$, a continuous function $\alpha_i : [0, \delta t] \rightarrow \mathbb{R}_{\geq 0}$ satisfying (7) an initial m-cell configuration I_i of i and a cell index $l' \in I$ we say that the transition $l_i \xrightarrow{\delta t} l_i'$ is well posed with respect to the space-time discretization $S - \delta t$ if there exist a feedback law $u_i = k_{i,1}(\cdot; \cdot; x_{i0}, w_i)$ as in Definition 3.5 that satisfies Property (P), and a vector $w_i \in W$, such that the Consistency Condition of Definition 3.7 is fulfilled. (ii) We say that the space-time discretization $S - \delta t$ is well posed, if there exists a continuous function $\beta : [0, \delta t] \rightarrow \mathbb{R}_{\geq 0}$ that satisfies (9), such that for each agent $i \in \mathcal{N}$ there exists a continuous function $\alpha_i : [0, \delta t] \rightarrow \mathbb{R}_{\geq 0}$ satisfying (7), in a way that for each cell configuration I_i of i, there exists a cell index $l_i' \in I$ such that the transition $l_i \xrightarrow{\delta t} l_i'$ is well posed with respect to $S - \delta t$.

Given a space-time discretization $S - \delta t$ and based on Definition 3.8(ii), it is now possible to provide an exact definition of the discrete transition system which serves as an abstract model for the behaviour of each agent.

Definition 3.9: For each agent i, its individual transition system $TS_i := (Q_i, \text{Act}_i, \rightarrow_i)$ is defined as follows: $Q_i := I$ (the indices of the cell decomposition); $\text{Act}_i := \mathcal{N}^m$ (all m-cell configurations of i); $l_i \xrightarrow{\delta t} l_i'$ iff $l_i \xrightarrow{\delta t} l_i'$ is well posed, for each $l_i, l_i' \in Q_i$ and $I_i = (l_i, \ldots, l_{i_{\text{max}}}^n) \in \mathcal{N}^m$. \quad \text{\textbullet}

Remark 3.10: Given a well posed space-time discretization $S - \delta t$ and an initial cell configuration $I = (l_1, \ldots, l_n) \in \mathcal{T}^N$, it follows from Definitions 3.8 and 3.9 that for each agent $i \in \mathcal{N}$ it holds $\text{Post}_i(l_i; \text{pr}_i(I)) \neq 0$ ($\text{Post}_i(\cdot)$ refers to the transition system TS_i of each agent-see also Section II). According to Definition 3.8, a well posed space-time discretization requires the existence of a well posed transition for each agent i and m-cell configuration of i, and the latter reduces to the selection of an appropriate feedback controller for i, which also satisfies Property (P) and guarantees that the auxiliary system with disturbances (6) satisfies the Consistency Condition. We next show, that given an initial cell configuration and a well posed transition for each agent, it is possible to choose a feedback law for each agent, so that the resulting closed-loop system will guarantee all these well posed transitions. At the same time, the magnitude of the hybrid feedback laws does not exceed the allowed magnitude v_{max} of the free inputs on $[0, \delta t]$, and hence, establishes consistency with the initial design requirement (5).

Proposition 3.11: Consider system (1), let $I = (l_1, \ldots, l_N) \in \mathcal{T}^N$ be an initial cell configuration and assume that the space-time discretization $S - \delta t$ is well posed, which according to Remark 3.10 implies that for all $i \in \mathcal{N}$ it holds that $\text{Post}_i(l_i; \text{pr}_i(I)) \neq 0$. Then, for every final cell configuration $I' = (l_1', \ldots, l_N') \in \text{Post}_1(l_1; \text{pr}_1(I)) \times \cdots \times \text{Post}_N(l_N; \text{pr}_N(I))$, there exist feedback laws $v_i = k_{i,pr_i}(t, x_i, x_j; x_{i0}, w_i), i \in \mathcal{N}$, satisfying Property (P), $w_1, \ldots, w_N \in W$ and a vector $x' = (x'_1, \ldots, x'_N) \in S_{l_1} \times \cdots \times S_{l_N}$, such that for each $i \in \mathcal{N}$, the solution of the closed-loop system (1) with $v_i = k_{i,pr_i}(t, x_i(t), x_j(t); x_{i0}, w_i)$, and its i-th component satisfies $x_i(t, x(0)) = x'_i \in S_{l_i'}, \forall x(0) \in \mathcal{N}^n : x_i(0) = x_{i0} \in S_{l_i}, \forall \kappa \in \mathcal{N}$. Furthermore, it follows that each control law $k_{i,1}$ evaluated along the corresponding solution of the system satisfies $|k_{i,pr_i}(t, x_i(t), x_j(t); x_{i0}, w_i)| \leq v_{\text{max}}, \forall t \in [0, \delta t], i \in \mathcal{N}$.

IV. **DESIGN OF THE HYBRID CONTROL LAWS**

According to Definition 3.8, the establishment of well posed space-time discretizations $S - \delta t$ for system (1) relies on the design of appropriate feedback laws which guarantee well posed transitions for all agents and their possible cell configurations. We thus proceed by defining the control laws that are exploited in order to derive well posed discretizations. Consider a cell decomposition $S = \{S_l\}_{l \in I}$ of \mathbb{R}^n, a
time step δt and a reference point $x_{i,G}$ for each cell as in (8). For each agent i and m-cell configuration l_i of i, we define the feedback laws $k_{i_1} : [0, \infty) \times \mathbb{R}^{(N_i+1)n} \to \mathbb{R}^n$, parameterized by $x_{i_0} \in S_{l_i}$ and $w_i \in W$ as $k_{i_1}(t, x_i, x_j; x_{i_0}, w_i) := k_{i_1,1}(t, x_i, x_j) + k_{i_1,2}(x_{i_0}) + k_{i_1,3}(t; w_i)$, where
\begin{align}
W := B(v_{\text{max}}) \subset \mathbb{R}^n, \\
k_{i_1,1}(x_i, x_j) := f_i(\chi_i(t), \chi_j(t)) - f_i(x_i, x_j), \\
k_{i_1,2}(x_{i_0}) := \frac{1}{\delta t}(x_{i_0} - x_{i,G}), \\
k_{i_1,3}(t; w_i) := \zeta(t)w_i, \\
t \in [0, \infty), (x_i, x_j) \in \mathbb{R}^{(N_i+1)n}, x_{i_0} \in S_{l_i}, w_i \in W, \\
\zeta : \mathbb{R}_{\geq 0} \to [\lambda, \bar{\lambda}], 0 \leq \lambda \leq \bar{\lambda} < 1.
\end{align}

The functions $\chi_i(\cdot)$ and in $\chi_j(\cdot)$ in (13) are given through the solution of the initial value problem of Definition 3.1. In particular, $\chi_i(\cdot)$ constitutes a reference trajectory, whose endpoint agent i should reach at time δt, when the agent’s initial condition lies in S_{l_i} and the feedback $k_{i_1}(\cdot)$ is applied when $w_i = 0$ in (15). We also note that the feedback laws $k_{i_1}(\cdot)$ depend on the cell of agent i and the feedback point on its m-cell configuration l_i, through the reference point $x_{i,G}$ in (14) and the trajectories $\chi_i(\cdot)$ and $\chi_j(\cdot)$ in (13). The parameters λ and $\bar{\lambda}$ in (16) stand for the minimum and maximum portion of the free input, respectively, that can be exploited for motion planning. In particular, for each $w_i \in W$ in (12), the vector $\zeta(t)w_i$ provides the “velocity” of a motion that we superpose to the reference trajectory $\chi_i(\cdot)$ of agent i at time $t \in [0, \delta t]$. The latter allows the agent to reach all points inside a ball with center the position of the reference trajectory at time δt by following the curve $\bar{x}_i(t) := x_i(t) + \int_0^t \zeta_i(s)ds$, as depicted in Fig. 1. Specifically, the feedback term $k_{i_1,1}(\cdot)$ enforces the agent to move in parallel to its reference trajectory and the additional terms $k_{i_1,2}(\cdot)$ and $k_{i_1,3}(\cdot)$ navigate the agent to the point x inside the ball $B(\chi_i(\delta t); r_i)$ at time δt from any initial state $x_{i_0} \in S_{l_i}$. In a similar way, it is possible to reach any point inside this ball by a different selection of w_i. This ball has radius $r_i := \int_0^{\delta t} \zeta_i(s)ds \leq \lambda \delta t v_{\text{max}}$, namely, the distance that the agent can cross in time δt by exploiting $k_{i_1,3}(\cdot)$, which corresponds to the part of the free input that is available for planning. Hence, it is possible to perform a well posed transition to any cell which intersects $B(\chi_i(\delta t); r_i) \neq \emptyset$, where $\chi_i(\cdot)$ is the reference trajectory corresponding to l_i and r_i is defined in the previous section with $\zeta_i(t) := \lambda$.

In order to verify the Consistency Condition for the derivation of well posed discretizations, we will select the function $\beta(\cdot)$ in Definition 3.7 as $\beta(t) := \frac{d_{\text{max}}(\delta t - t)}{\delta t} + \lambda v_{\text{max}}t, t \in [0, \delta t]$. Furthermore, we select a constant $\tilde{c} \in (0, 1)$, which for each agent, is a measure of the deviation between the reference trajectory of its neighbors and their estimates through the initial value problem for the specification of the reference trajectory of the agent (for corresponding consistent cell configurations). By defining $\bar{t} := \sup \left\{ t > 0 : e^{L_2t} = (\mathcal{L}_1 + \frac{\tilde{c}}{L_1}v_{\text{max}})(t - 1 < 0) \right\}$, it follows that $0 < \bar{t} < t^*$ (see Proposition 3.4 for the definition of t^* and N_{max}), and that the function $H_m(\cdot)$ as given in Proposition 3.4 satisfies $H_m(t) \leq c_{\text{max}}^{-1}M, \forall t \in [0, \bar{t}]$. Hence, it follows from Proposition 3.4 that if we select the functions $\alpha_i(\cdot) \equiv \alpha(\cdot), \forall i \in \mathcal{N}, \alpha(\cdot) := cM, \forall t \in [0, \delta t]: c := c_{\text{max}}^{-1}$, then the neighbor reference trajectory deviation bound (7) is satisfied for all $0 < \delta t \leq \bar{t}$.

V. WELLPOSED SPACE-TIME DISCRETIZATIONS WITH MOTION PLANNING CAPABILITIES

In this section, we exploit the feedback laws $(13), (14), (15)$ introduced in Section IV in order to provide well posed space-time discretizations and their reachability properties for system (1). The desired sufficient conditions for well posed discretizations are given in the following theorem and rely on the selection of the functions $\alpha_i(\cdot)$ and $\beta(\cdot)$ in the previous section.

Theorem 5.1: Consider a cell decomposition S of \mathbb{R}^n with diameter d_{max}, a time step δt, and the parameters $\lambda, \bar{\lambda}$ in (16). We assume that $\delta t \in (0, \min \{ \bar{t}, \frac{L_1}{2(1 - \lambda)v_{\text{max}}}, \frac{L_2}{L_1}\sqrt{N_{\text{max}}(cM + \lambda v_{\text{max}})} + \lambda L_2 v_{\text{max}} \})$ and $d_{\text{max}} \in (0, \min \{ \frac{1}{1 + (L_1\sqrt{N_{\text{max}}} + L_2)\delta t}, \frac{2(1 - \lambda)v_{\text{max}}\delta t - 2(L_1\sqrt{N_{\text{max}}}(cM + \lambda v_{\text{max}}) + L_2 v_{\text{max}}\delta t^2)}{1 + (L_1\sqrt{N_{\text{max}}} + L_2)\delta t} \})$, with $L_1, L_2, M, v_{\text{max}}$ as given in $(3), (4), (2)$, and (5), respectively, and c, \bar{t} as defined in the previous section. Then, the space-time discretization is well posed for the multi-agent system (1). In particular, for each agent $i \in \mathcal{N}$ and cell configuration l_i of i it holds $\text{Post}_i(l_i; l_i) \supset \{ l \in \mathcal{I} : S_l \cap B(\chi_i(\delta t); r_i) \neq \emptyset \}$, where $\chi_i(\cdot)$ is the reference trajectory corresponding to l_i and r_i is defined in the previous section with $\zeta_i(t) := \lambda$.

We finally provide an improved version of Theorem 5.1, for the case where the conditions of Lemma 3.3 are satisfied for all agents.

Theorem 5.2: Assume that $N_{\text{max}}^{m+1} + 1 = \emptyset$ for all $i \in \mathcal{N}$. Then, the result of Theorem 5.1 remains valid for any $\delta t \in (0, \min \{ \frac{1}{1 + (L_1\sqrt{N_{\text{max}}} + L_2)\delta t}, \frac{2(1 - \lambda)v_{\text{max}}\delta t - 2(L_1\sqrt{N_{\text{max}}}(cM + \lambda v_{\text{max}}) + L_2 v_{\text{max}}\delta t^2)}{1 + (L_1\sqrt{N_{\text{max}}} + L_2)\delta t} \})$.

VI. EXAMPLE AND SIMULATION RESULTS

As an illustrative example we consider a system of four agents in \mathbb{R}^2. Their dynamics are given as $\dot{x}_1 = \text{sat}_p(\dot{x}_1 - x_1) + v_1, \dot{x}_2 = v_2, \dot{x}_3 = \text{sat}_p(\dot{x}_2 - x_3) + v_3, \dot{x}_4 = \text{sat}_p(\dot{x}_3 - x_4) + v_4$, where $\text{sat}_p(x) := \begin{cases} x, & \text{if } |x| < \rho \\ \rho, & \text{if } |x| \geq \rho \end{cases}$.

![Fig. 1](image-url)
if $|x| \geq \rho$. The agents’ neighbors’ sets in this example are $N_1 = \{2\}$, $N_2 = \emptyset$, $N_3 = \{2\}$, $N_4 = \{3\}$ and specify the corresponding network topology. By selecting the degree of decentralization $m = 2$, it follows that the conditions of Theorem 5.2 are satisfied. For the simulation results we select $v_{\text{max}} := \frac{\rho}{2}$, $\lambda = 0.4$, $\bar{r} = 10$ and pick the values of δt and v_{max} in accordance to Theorem 5.2. We assume that agent 2, which is unaffected by the coupled constraints has constant velocity $v_2 = (-1, -4)$ and study reachability properties of the system over the time interval $[0, 2]$. The sampled trajectory of agent 2 is visualized with the circles in the figure below, and the blue/magenta cells indicate the union of agents 3/1 reachable cells over the time interval (given the trajectory of 2). Finally, given the trajectory of 2 and selecting the discrete trajectory of 3 which is depicted by the red cells in the figure, we obtain with yellow the corresponding reachable cells of agent 4. The simulation results have been implemented in MATLAB with a running time of the order of a few seconds, on a PC with an Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz processor.

REFERENCES

