
Author: Andreas BEXELL

Supervisors: Patrik BANNURA,
Dr. Jesper ANDERSSON

Examiner: Dr. Johan HAGELBÄCK

Semester: VT 2017
Subject: Computer Science

Bachelor Degree Project

Comparing functional to imperative
Java
- with regards to readability, complexity
and verbosity

Abstract

Java has recently become a multi paradigm language, with the functional paradigm
now made available alongside the traditional, imperative, one. Programming in the
functional paradigm may be considered complicated or hard to read, and there may
be concerns that the code it produces may become hard to maintain because of
complexity or readability issues. On the other hand, proponents of the functional
paradigm promises smaller amounts of less complex code, as the framework takes
on a larger responsibility. This Bachelor’s thesis closely examines the differences be-
tween effectively equal code written in functional and imperative Java, respectively,
from the aspects of readability, complexity and verbosity, and shows that while code
written in the functional paradigm is smaller and less complex, it is not harder to read.

software architecture, java, functional java, complexity, readability, verbosity,
functional programming

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Maintainability, readability, complexity and metrics 1
1.1.2 Imperative programming . 2
1.1.3 Functional programming . 2
1.1.4 Multi-paradigm languages . 3
1.1.5 Jumping paradigms . 3

1.2 Related work . 4
1.3 Problem formulation . 4
1.4 Motivation . 5
1.5 Objectives . 5
1.6 Scope/Limitation . 6
1.7 Target group . 6
1.8 Outline . 7

2 Method 8
2.1 Measuring readability . 8
2.2 Measuring complexity . 9

2.2.1 Measuring Cyclomatic Complexity according to McCabe 9
2.2.2 Measuring Cyclomatic Complexity according to Van den Berg . . 10
2.2.3 Measuring NPATHS . 10
2.2.4 Measuring branches and invocations on byte code 11

2.3 Measuring verbosity . 12
2.4 Idioms . 12

2.4.1 Find an object matching a condition 12
2.4.2 Create a random String . 13
2.4.3 Register callback handler . 14
2.4.4 Create Histogram . 14
2.4.5 Sum an array of ints . 15

2.5 Reliability and Validity . 16
2.6 Ethical considerations . 16

3 Results 17
3.1 Readability . 17
3.2 Complexity . 18
3.3 Verbosity . 18

4 Analysis 20
4.1 Readability . 20
4.2 Complexity . 21
4.3 Verbosity . 22

5 Discussion 23
5.1 Readability . 23
5.2 Complexity . 23
5.3 Verbosity . 23
5.4 Maintainability . 24

6 Conclusion 25
6.1 Future work . 25

References 26

A Appendix A - Interviews A
A.1 Interview guide . A
A.2 Answers . A

A.2.1 Subject 1 . A
A.2.2 Subject 2 . B
A.2.3 Subject 3 . B
A.2.4 Subject 4 . C
A.2.5 Subject 5 . C
A.2.6 Subject 6 . D
A.2.7 Subject 7 . D
A.2.8 Subject 8 . E
A.2.9 Subject 9 . E
A.2.10 Subject 10 . F

B Appendix B - Snippets G

C Appendix C - Counting complexity I

1 Introduction

Java has recently made the transition from being an imperative language and become
a multi-paradigm language. This is a transition that has become quite common, with
JavaScript and Python as notable examples of modern multi-paradigm languages.

Adopting functional programming into the Java ecosystem consequently enables a
new style of programming applications and interact with frameworks and API:s, poten-
tially creating a development process that is easier and faster, since functional program-
ming frameworks aims to lift the programmers work to a higher level of abstraction,
making the framework and the execution environment take more responsibility, and even
potentially programs that execute faster and safer, as the style of programming becomes
simpler.

This thesis for Bachelor of Science in computer science for 15 HEC spring 2017 tries
to measure the cost of maintaining functional Java code, as compared to maintaining
imperative Java code, by trying to measure relative readability, complexity and verbosity.

1.1 Background

This chapter provides context for the thesis, including a brief introduction of the concepts
used.

1.1.1 Maintainability, readability, complexity and metrics

After initial development and delivery, code often go into a long maintenance period,
during which bugs are fixed, new features are added, and the code is adapted as a conse-
quence of changes in its environment and what other systems it interacts with. This phase
can be very long, and often a considerable part of the time and effort spent on a program is
in this phase. This is sometimes overlooked or forgotten in research and cost predictions
of software systems [1].

To be able to effectively maintain software it is important that it is well understood
by the maintainers. Effective code maintenance requires not only programming skills,
but also a thorough understanding of the code and what it does. The maintainer can
be the same as the initial programmer, but more often it is not, and even so, it can be
surprisingly hard to understand one’s own code after a few weeks or years. To create code
that it possible to maintain efficiently, it is important that the code is readable.

An important part of readability is layering abstraction. This is one of the reasons
functions (in the sense of procedures) where invented, apart from reuse. To be able to
name a number of instructions, larger programs could become more readable, as the de-
tails of the implementations where hidden behind a descriptive name. Another layer of
abstraction is Object Orientation, where functions are grouped together in units according
to a model that is supposed to be easy to understand. This way, we can focus our attention
to the parts that are immediately interesting, and leave the other parts alone.

When it comes to functions, it was quickly realized that a function that does too much
is hard to read and understand. This was formally thought of as complexity and there
where early notable work to try to formalise and measure complexity, notably McCabe
[2] and Halstead [3]. Complexity measures often counts the number of operations and
operands that are in play in the same context, or the number of possible execution paths.
Today, it is not uncommon that companies have thresholds for how much complexity,

1

according to some measure, that is allowed in a function or a class, and complexity mea-
surement is often automatic.1

Complexity affects readability as well as testability and therefore has an impact on
maintainability, but readability is not only determined by complexity. Readability is also
affected of the formatting of the code, and the way abstraction is handled - well defined,
designed and named functions tend to be easier to read. Therefore, when trying to measure
readability, the complexity measure is not enough.

1.1.2 Imperative programming

Imperative programming is a style of programming that is probably the most commonly
known. It focuses on writing statements that are executed in order by that machine, where
each statement can change the state of the program. The statements jointly makes up a
recipe for how a computation should be carried out, and fixes the problem solution to the
implementation. This gives ultimate control and responsibility of the problem solving to
the programmer.

Consider the following code:

Listing 1.1: Imperative implementation of sum array
p u b l i c i n t i (i n t [] i n t s) {

i n t s = 0 ;
f o r (i n t i : i n t s) {

s += i ;
}
re turn s ;

}

The program is meant to produce the sum of an array of integers. It describes the
algorithm to do so: take the integers, one by one, starting with the first, moving on to the
second and so on, and add them to a local variable containing to sum. When all of the
integers in the array have been visited, the sum is returned.

Traditional examples of imperative languages include C, PHP and Java.

1.1.3 Functional programming

Functional programming is meant to allow the programmer to work on a higher level of
abstraction than in imperative programming. In functional programming, functions are
thought of in the mathematical sense, rather than subroutines, and they cannot have side
effects - that is, alter the state of the program. The functional programming paradigm is
heavily influenced by lambda calculus.

Functional programming allows the programmer to a higher degree to express what
should be done, and leave how to the framework.

Consider the following code:

Listing 1.2: Functional implementation of sum array
p u b l i c i n t j (i n t [] i n t s) {

re turn A rr ay s . s t r e a m (i n t s) . sum () ;
}

1This has lead to some complexity measures, while good, have been more or less abandoned, simply
because they are hard to automate.

2

While it may seem like the function is just delegating the computation to another
function (sum), that is not all of what happens. In reality, the int array is converted to
a Stream, which is one of the new constructs in Java 1.8 that has been added to support
functional programming. A Stream is similar to an Iterator, in that it goes though the
items it contains one by one, but differs from an Iterator in that it is open-ended and may
contain an infinite number of elements. The other difference is more subtle: it supports a
number of transformation operations, like filter, that lets through only elements fulfilling
a certain criteria, and map, that transforms the elements in the stream. Each of these
operations formally return a new stream, but in reality they are lazy and stored in the
framework until a result is needed. They can then be logically reordered to create an
equal but more efficient expression, that is performed once elements from the resulting
stream are consumed. This can be done in sequence or in parallel on different cores.
All of this is handled by the framework, and hidden from the programmer - who have
described what needs to be done, rather than how.

In the, perhaps trivial, case of summation, we don’t know if the stream is processed
forwards or backwards, or in one or many cores. All of this is left to the framework to
decide.

Traditional examples of functional languages are Haskell, Erlang and Lisp.

1.1.4 Multi-paradigm languages

Traditionally, the functional paradigm and the imperative and object oriented paradigms
have operated in different languages. Recently it has become common for tradition-
ally imperative languages to incorporate elements of functional programming, becoming
multi-paradigm programming languages, either through new frameworks, or through fea-
tures being added to the languages themselves. This, ideally, creates programs that are
simpler, yet more efficient, while letting the programmer choose abstraction level fitting
a certain task dynamically.

Recent examples of multi-paradigm languages include Python, Ruby and Java.

1.1.5 Jumping paradigms

To a programmer trained in the imperative paradigm, though, the functional paradigm
may present a steep learning curve. Learning functional programming is not about learn-
ing a new framework or API, but rather about leaning a new way to think about problems
and solutions. To the imperative programmer, learning functional programming may ini-
tially be confusing and its evangelists may seem zealous.

To overcome this initial hurdle, education, training and exercise is needed. This is ex-
pected, but how can this be managed on a large scale? For an organisation to be efficient,
a broad common understanding among its agents is imperative. Is this, from an organi-
sation’s point of view, effective? To answer that question, an analysis of the benefits of
switching paradigm is needed.

A large part of the cost of software development is in its maintenance. If the main-
tenance can be made more efficient by using functional methods, the effort might be
worthwhile. The effort of maintaining software depends on how much there is, how com-
plicated it is and how readable it is.

3

1.2 Related work

There are many studies of complexity of software, how to measure it and what implica-
tions it has. Most famous, perhaps, is the Cyclomatic Complexity measure, as proposed
by McCabe [2], who counted the number of different paths though a part of code, in an
effort to measure how many test cases was needed to cover the code, but there where other
early work, such as Halstead [3], who proposed a measure of different aspects of the code
and combined them into measures related to complexity, readability, effort and buggy-
ness. Nejmeh [4] proposed a broader complexity measure called NPATHS, counting not
only branches, but also invocations, statements and expressions towards complexity. This
relates to the Volume of the Halstead measure.

Van den Berg [5] did work on readability and complexity of functional programs.
He proposes a method of measuring cyclomatic complexity based on a count of reused
pattern identifiers and non-identifiers, added to the count of guards, operators, filters and
the complexity of list comprehensions. The measure is designed to be comparable to
the McCabe cyclomatic complexity metric for imperative languages, but does not make
reliable cross-comparisons reliable.

Coplien [6] wrote about multi-paradigm design, and found that being able to use more
than one paradigm allows for a better fit between program and domain, as well as a better
fit between program and human psyche.

Ryder [7] explores the usability of software metrics in functional code. He points out
that there is a wide body of research and tools available on metrics on imperative and
object oriented development, but that development in functional languages currently lack
a widely adopted software engineering process, and that there has been little research on
the topic [7, p 254].

Buse and Weimer [8] built a model for machine learning to measure software readabil-
ity, but fail to test their model subjects - meaning that the model accounts only perceived
readability, but not to what extent the subjects actually understand what they have read.

Håkansson and Badran [9] validate the Van den Berg-method, originally developed
for Miranda, but adapted to Haskell by Ryder [7], on functional JavaScript. This makes
the measure easily adaptable to Java. They also point out that a study of the relative
complexity of imperative versus functional code using the Van den Berg method would
be useful.

Glass [1] lists fundamental facts from vast experience and research about software
development, where the most relevant ones for this paper are "Maintenance typically con-
sumes about 40 to 80 percent (60 percent average) of software costs. Therefore, it is
probably the most important life cycle phase." and " Learning a new tool or technique
actually lowers programmer productivity and product quality initially. You achieve the
eventual benefit only after overcoming this learning curve."

Regarding verbosity, Lee [10] has made a tool to measure the size of source code.

1.3 Problem formulation

The introduction of functional programming into Java potentially creates a multi paradigm
environment for programs. This potentially creates a greater and more flexible toolbox to
Java programmers. These new tools are powerful, but may seem awkward and unfamil-
iar, and there are doubts about what cost they will introduce in the maintanence phase.
Given the choice between functional programming style and imperative, which should
one prefer? It is the role of software architects to guide developers in this decision, but to
properly do so, knowledge is needed. Is one style better from a given point of view than

4

another? Can we expect increasing, or decreasing, cost of a software system, counted
over the course of its lifetime?

1.4 Motivation

Functional programming is still largely unknown amongst Java programmers, used to the
strictly imperative object oriented environment that was the norm of Java until version
1.8. Is it worthwhile for a programmer to learn a new paradigm? [1, T2]

It is the role of a software architect to issue and enforce processes and guidelines in
a software development organisation. The software architect deals in what is often called
non-functional requirements. These are sometimes reffered to as "-ilities", due to the
nature of how to mention them: "reusability", "testability", "maintainability", "debugabil-
ity", "stability" etc.

The introduction of a new paradigm into a given language requires reaction from the
software architects in charge of systems being developed and maintained in that language.

Is it beneficial for an employer to educate programmers in the new paradigm? Should
software architects issue guidelines about whether to prefer or avoid functional program-
ming in Java? To be able to answer this kind of questions, it is important to evaluate the
value of Java written in the functional paradigm.

1.5 Objectives

Q Is functional Java better?

To be able to answer this, there is a need to understand and try to foresee the cost of
production and the future maintenance cost of a program or system, and how this is af-
fected by the paradigm used. Maintenance typically accounts for 40-80%, averaging 60%,
of software development cost [1]. Focusing on maintenance allows us another question:

Q Is functional Java more maintainable?

Measuring absolute maintainability of a program is the holy graal of software archi-
tecture. Maintainability is the common goal of many of the other "-ilities" that the soft-
ware architect works with. This bachelor’s thesis will not try to conjure up an absolute
measure of software system maintainability, but rather try to measure relatively between
small snippets of imperative and functional Java from different aspects that has a profound
impact on maintainability.

To enumerate and be able to examine these aspects, the following questions demand
answers:

RQ1 Is functional Java easier to understand than imperative Java?

RQ2 Is functional Java less complex than imperative Java?

RQ3 Is functional Java less verbose than imperative Java?

It is expected that the study will show that functional Java is relatively easier to under-
stand to people familiar with functional programming, and that programmers who are not
familiar with functional programming will struggle to understand the functional Java, but
not significantly so. The functional programming style generate shorter idioms, allow-
ing for faster recognition by subjects trained in these idioms. Therefore, functional Java

5

should be faster to read, compared to imperative Java, to programmers experienced in the
functional paradigm.

Functional Java is expected to be less or comparably complex compared to impera-
tive Java. The functional programming tools are designed to allow the programmer to
operate on a higher abstraction level, thus encompassing more of the complexity involved
in common tasks to a greater degree than imperative APIs can do. If this is success-
ful, complexity should move out of the program implementations and into the functional
framework, and a consequence would be that the implementation of functional programs
contain less complexity than the equivalent imperative implmentation.

Functional Java should be less verbose, than imperative Java. As complexity and
implementation details move out of the program, and the program itself becomes more
abstract and less complex, the amount of code to complete a task should also become
lower. This will allow for creating of code that is easier to maintain, simply because there
is less of it.

1.6 Scope/Limitation

Measuring relative complexity between different paradigms is hard, and there is currently
no widely accepted metric to do so. This paper will display the results from different
metrics, but developing a metric by which programs of different paradigms can be safely
compared to each other is beyond the scope of this paper.

Development of programs accounts for approximately 40% of the cost of software de-
velopment (the 60% typically spent in maintenance) [1, M2]. Measuring the comparative
speed of development is not within the scope of this paper. The speed of development
is affected by a vortex of parameters, including the quality of the requirements, the pro-
cesses being used, the tools, the expected quality of the resulting code, to mention a few.
To isolate paradigm as a factor is impossible.

An important aspect of maintainability, beside complexity and readability, is debuga-
bility, but that aspect is left out of this study. Debugability is dependent on tools and thus
might change rapidly with the introduction of a new tool chain. It is also unfair to measure
relative debugability without also measuring relative buggyness - if one paradigm is less
prone to error, then the debugability might be less important. All of this is left outside the
scope of this study.

1.7 Target group

In order to properly guide and lead a development organisation and to make the right deci-
sions, software architects and software managers need information and knowledge about
the options and their consequences. This information and knowledge gives confidence in
decision making and serves as a tool for gentle persuasion if needed.

This investigation aims to provide a basis for decisions about whether to adopt or
reject the functional paradigm in Java, and determine if an education effort is sustainable.
It creates and catalogues new knowledge about the nature of functional Java and how it
compares to traditional imperative Java.

As such it is of interest to individuals and organisations working with Java develop-
ment and maintenance.

6

1.8 Outline

The Method chapter contains detailed information about how this study is desinged and
carried out. The study is broken down into three sub parts, covering readability, com-
plexity and verbosity. The chapter will elaborate on how to properly evaluate readability,
discuss different methods of complexity analysis and how to apply them, and cover how
to measure verbosity properly in a multi paradigm environment. It will also account for
the examples of idioms used throughout the paper, that come in a imperative and a func-
tional version. It also contains discussions about the reliability and validity of the study
and about ethical considerations that have been taken into account when conducting the
interviews for the readability survey.

The Results chapter enumerate the results from the different measurements carried out
according to the methods chosen and covered in the methods chapter. It is a rather brief
chapter, presenting the the results while not going in to analysis, which is the topic of the
next chapter.

The Analysis chapter contains analysis of the results for the different aspects measured
in the study. It thorougly covers the results, interprets them, and elaborates on different
ways to evaluate them. It also contains an analysis of the validity of the results and their
significance.

The Discussion chapter revisits the three aspects and provide the answers to the re-
search questions "Is functional Java easier to understand than imperative Java?", "Is func-
tional Java less complex than imperative Java?" and "Is functional Java less verbose than
imperative Java?". It also combines the results and analysis of the aspects of readability,
complexity and verbosity into a compound analysis and a provides a discussion about the
results and how to interpret the value of the different aspects combined.

The Conclusion chapter summarizes the conclusions that should be drawn from this
study, and gives the target group, software architects and managers, the basis to make
informed decisions about how to relate to the introduction of the functional programming
paradigm into Java. It also comments on possible future work in the field.

Following the main body of the text is a list of References and a few appendices:
Appendix A is the interview guide for the readability study; Appendix B is a complete
listing of the idiomatic snippets used; and Appendix C is the implementation of the script
making a branch-and-invocation count on disassembled Java byte code.

7

2 Method

To be able to do a controlled comparative study of different paradigms, a number of
snippets where chosen and/or produced. These snippets represent idiomatic solutions
to identical programs in the two different paradigms, and are compared with regards to
readability, complexity and verbosity.

An experiment regarding readability is performed, where subjects are presented snip-
pets of code in a random order. Each snippet presents an idiomatic solution to a problem
either in imperative or functional style. The time until the subject can explain the be-
haviour of the code is measured. This way, actual readability, as opposed to perceived
readability, can be measured. Thus, any readability differences between functional and
imperative Java can be found. This measurement is used to answer the question "Is func-
tional Java more readable than imperative Java?"

For complexity, three different common complexity measures are applied: McCabe’s
cyclomatic complexity, Van den Berg’s cyclomatic complexity and NPATHS. A complex-
ity measurement tool based on byte code analysis is created and applied as well. This way,
any systematic differences in complexity between functional and imperative Java can be
found. These measurements can then be used to answer the question "Is functional Java
less complex than imperative Java?"

Regarding verbosity, programmatic lines, characters and text lines are counted. Since
functional programming typically use very few programmatic lines, it is not an adequate
measure. By adding the measurements of characters and text lines, a more complete
picture is drawn. These measurements are used to answer the question "Is functional Java
less verbose than imperative Java?"

2.1 Measuring readability

Readability is a measure of how fast and well a programmer can understand a piece of
source code. As such, a good readability study must measure the time it takes for a
programmer to understand a specific piece of code.

The measuring is carried out with guided interviews. After an initial survey of the
subjects’ experiences, the subjects are presented with the snippets in random order. Time
is measured until the subject can correctly explain the functionality of each snippet. The
interview guide is available as Appendix A.

The randomization of the order is important to try to counter a "learning effect" where
the subject recognize a problem from an earlier example [7, 2.4.2, p. 38].

The time measurements will be correlated against the subjects’ experience of pro-
gramming, and the self-assessment of the programmer’s skill in a certain paradigm. This
way, the importance of experience in a paradigm can be extrapolated by correlating the
timing results against experience of programming and self assessment of proficiency in
different paradigms.

Care is taken to select subjects with different experience and skills, from students
without professional experience to highly experienced professionals in a large company.

From the interviews, it will be possible to extract information about the relative read-
ability of the different paradigms, as well as to what extent training in each paradigm
effects the readability of code in a paradigm. Specifically, how often is a functional
paradigm understood faster than its imperative equivalent? This can be counted on the
total, but might not be applicable to individuals, where the data might be affected by the
learning effect.

8

By counting the number of times a functional idiom has been understood faster than
its imperative equivalent, a measure of the relative readability is created.

2.2 Measuring complexity

The complexity is measured using different metrics, in an effort to counteract any prob-
lems a certain measure might have in a certain paradigm.

McCabe’s [2] cyclomatic complexity metric is the most widely known and used, and
is used in this study. McCabe’s metric has been under critique for being too adapted to the
imperative style of programming, while giving low scores to code written in the functional
paradigm. It is designed to measure the number of paths through a certain piece of code,
and thus counts the number of conditional executions.

Functional code is typically much less dependant on branching and explicitly condi-
tional execution. Van den Berg [5] made an effort to use the findings of Halstead [3] to
create a cyclomatic complexity metric that would be equally applicable to functional and
imperative code. The Van den Berg metric is used in parallel to the McCabe metric of
cyclomatic complexity.

NPATHS was designed based on the cyclomatic complexity measure but count more
elements towards complexity and is intended to be more exact than McCabe’s cyclomatic
complexity measure. Since NPATHS count not only branches of the code, but also count
for example logical expressions and invocations of functions towards complexity, it is
expected to be more applicable to functional code. NPATHS is related to the Halstead
Volume, which is why the Halstead Volume is not measured.

There are a plethora of tools claiming and aspiring to measure McCabes Cyclomatic
Complexity and/or NPATHS. One of the more popular and widely used in the industry
is checkstyle [11], which allows measuring of both cyclomatic complexity according to
McCabe and NPATHS, but testing of the NPATHS metric running checkstyle reveals that
checkstyle measures the same values for McCabes Cyclomatic Complexity and NPATHS
for all of the defined snippets. This is not right, and NPATHS should measure higher in all
cases, since more elements are counted towards the complexity. Manual count confirms
that checkstyle measures McCabes Cyclomatic Complexity correctly.

The complexity study will use checkstyle to measure McCabe’s cyclomatic complex-
ity, but the other measures will be done by manual count.

Below is a more detailed explanation of each of the metrics and how to count them.

2.2.1 Measuring Cyclomatic Complexity according to McCabe

While McCabes Cyclomatic Complexity measure is based in informatics, measuring the
ratio of nodes and edges in a graph representing the program, McCabe also showed that
the cyclomatic complexity for a program with only one entry point is equal to the number
of decision points, and tools typically count the number of keywords representing a fork
in the program flow (in the case of source code analysis) or byte codes representing forks
(in the case of byte code analysis).

For an open graph program, the McCabe cyclomatic complexity for a function is the
number of decisions points (that is, branches) and operators, plus one.

By convension a number of 1-4 is considered easy to test, 5-7 is OK, 8-10 is consid-
ered complex, and over 10 is bad.

Consider the following snippet:

9

Listing 2.1: Imperative implementation of find an object matching a condition
p u b l i c S t r i n g a (C o l l e c t i o n < S t r i n g > c , S t r i n g s) {

f o r (S t r i n g b : c) {
i f (b . s t a r t s W i t h (s))

re turn b ;
}
re turn s ;

}

There are two "decision points", namely for and if, and one is added for the function
itself, counting up to a complexity of 3.

2.2.2 Measuring Cyclomatic Complexity according to Van den Berg

Van den Berg [5] created a method of measuring cyclomatic complexity based on a count
of reused pattern identifiers and non-identifiers, added to the count of guards, operators,
filters and the complexity of list comprehensions. The measure is designed to be an
alternative to the McCabe Cyclomatic Complexity metric better adapted to functional
languages. Håkansson and Badran adapted this measure from Haskell to JavaScript, in a
way that makes it equally applicable to Java [9, Chapter 4.4, p. 30].

Van den Berg makes a distinction between the left hand side, LHS, and the right hand
side, RHS of the expression, where the LHS is the number of pattern identifiers minus the
unique pattern identifiers, plus the non identifiers, and the RHS is the guards, the logical
oerators, the number of transformations and filters and the pattern complexity of the list
comprehensions. The pattern complexity is counted like the LHS. The total complexity is
M = LHS +RHS + 1.

Consider the following example:

Listing 2.2: Functional implementation of find an object matching a condition
p u b l i c S t r i n g b (C o l l e c t i o n < S t r i n g > c , S t r i n g s) {

re turn c . s t r e a m ()
. f i l t e r (b −> b . s t a r t s W i t h (s))
. f i n d F i r s t ()
. o r E l s e (s) ;

}

LHS = 3− 3 + 0 = 0 (1)

RHS = 1 + 1 = 2 (2)

M = LHS +RHS + 1 = 3 (3)

The cyclomatic complexity according to Van den Berg is 3.

2.2.3 Measuring NPATHS

NPATHS [4] counts decision points, gotos, breaks, continue, statements, returns, function
calls, statements and operators in expressions. This can lead to a high count, as compared
to McCabe’s cyclomatic complexity, and a common threshold for a function is 200.

Consider the following example:

10

Listing 2.3: Functional implementation of Create Histogram
p u b l i c Map< S t r i n g , Long> h (L i s t < S t r i n g > c) {

re turn c . s t r e a m ()
. c o l l e c t (C o l l e c t o r s . groupingBy (e −> e ,

C o l l e c t o r s . c o u n t i n g ())) ;
}

The NPATHS becomes 1 for return and one for each function call (4). Total NPATHS
become 5.

2.2.4 Measuring branches and invocations on byte code

A conceivable metric concerning complexity, based on byte code analysis would be to
count the number of branches, conditionals, and invocations made by a method. This
offers an estimate of the complexity of the method as generated by the compiler, and
works equally well regardless of paradigm as a consequence of the straight-forward in-
struction set of the Java byte code, with separate, unambiguous operations for branching
and invocations.

A program for such analysis is available in Appendix C. The .class file is decom-
piled using javap -c, and the resulting instructions are counted for each function. This
makes it trivial to count the number of invocations, the number of conditional jumps (be-
ginning with if), and the return-statements.

The following Java source code

Listing 2.4: Functional implementation of find an object matching a condition
p u b l i c S t r i n g b (C o l l e c t i o n < S t r i n g > c , S t r i n g s) {

re turn c . s t r e a m ()
. f i l t e r (b −> b . s t a r t s W i t h (s))
. f i n d F i r s t ()
. o r E l s e (s) ;

}

produces the following disassembled byte code:

Listing 2.5: generated byte code
p u b l i c j a v a . l a n g . S t r i n g b (j a v a . u t i l . C o l l e c t i o n < j a v a . l a n g .

S t r i n g > , j a v a . l a n g . S t r i n g) ;
Code :

0 : a l o a d _ 1
1 : i n v o k e i n t e r f a c e #48 , 1 / / I n t e r f a c e M e t h o d j a v a / u t i l /

C o l l e c t i o n . s t r e a m : () L java / u t i l / s t r e a m / St ream ;
6 : a l o a d _ 2
7 : invokedynamic #55 , 0 / / InvokeDynamic # 0 : t e s t : (

L java / l a n g / S t r i n g ;) L java / u t i l / f u n c t i o n / P r e d i c a t e ;
1 2 : i n v o k e i n t e r f a c e #56 , 2 / / I n t e r f a c e M e t h o d j a v a / u t i l /

s t r e a m / St ream . f i l t e r : (L java / u t i l / f u n c t i o n / P r e d i c a t e ;)
L java / u t i l / s t r e a m / St ream ;

1 7 : i n v o k e i n t e r f a c e #62 , 1 / / I n t e r f a c e M e t h o d j a v a / u t i l /
s t r e a m / St ream . f i n d F i r s t : () L java / u t i l / O p t i o n a l ;

2 2 : a l o a d _ 2
2 3 : i n v o k e v i r t u a l #66 / / Method j a v a / u t i l / O p t i o n a l .

o r E l s e : (L java / l a n g / O b j e c t ;) L java / l a n g / O b j e c t ;

11

2 6 : c h e c k c a s t #30 / / c l a s s j a v a / l a n g / S t r i n g
2 9 : a r e t u r n

From this listing, it is trivial to count invocations (5) and returns (1), giving a metric
number of 6.

2.3 Measuring verbosity

The most established method of measuring size of source code is lines of code (often
measured in the thousands and abbreviated KLOC). Lee [10] has created a tool to measure
this on Java, with a metric called NCSS.

The problem with only measuring lines of programmatic code is that it is heavily
skewed towards functional programming, where functions can be chained to create pow-
erful expressions in a single programmatic line. Such lines can become very long and
make a program unreadable if the long programmatic lines is not broken up to several text
lines in the source code.

For comparison, the verbosity study also counts the number of characters needed to
create the code, as well the number of text lines the idiom will occupy in well formatted
source code. What "well formatted code" is, is a matter of opinion and some debate, and
will here reflect the author’s experience from working with code formatted according to
Oracle and Google standards, while not necessarily conforming to either one.

In well formatted code, long lines are broken so that there is one function invocation
on each line, and long parameter lists are broken to several lines to increase readability.
Broken brackets are treated like in the Oracle standard, with openings on the same line as
the declaration and closing on their own line.

2.4 Idioms

To make a comparative study between imperative and functional programming styles, the
snippets presented below where created. The snippets come in pairs that are designed to
work equivalently and represent examples of solutions of common classes of problems,
in a way that feels idiomatically familiar to programmers used to imperative Java and
functional programming respectively.

Most examples are taken from refactorisation efforts in a big commercial system, but
some are constructed to illustrate certain points. They are all minimized and anonymised.

2.4.1 Find an object matching a condition

This snippet searches through a collection for an entry fulfilling a condition that is a
property of the object, rather than identity, and returns that object if found. If not, it
returns a default object.

Listing 2.6: Imperative implementation of find an object matching a condition
p u b l i c S t r i n g a (C o l l e c t i o n < S t r i n g > c , S t r i n g s) {

f o r (S t r i n g b : c) {
i f (b . s t a r t s W i t h (s))

re turn b ;
}
re turn s ;

}

12

Listing 2.7: Functional implementation of find an object matching a condition
p u b l i c S t r i n g b (C o l l e c t i o n < S t r i n g > c , S t r i n g s) {

re turn c . s t r e a m ()
. f i l t e r (b −> b . s t a r t s W i t h (s))
. f i n d F i r s t ()
. o r E l s e (s) ;

}

This kind of code is common for selecting the most relevant result from a collection
of possible ones, for example finding the path or a language pack of setting package for a
specific hardware.

The imperative version, listing 2.6, uses a for loop to search through the collection
and an if-conditional to execute the condition. If a matching object is found, the program
makes an early return.

The functional version, listing 2.7, creates a Stream of the elements in the collec-
tion, and filters that stream to let through only the elements that matches the condition.
From this filtered stream, it selects the first element. The findFirst method returns an
Optional, meaning that it returns the value if there is one, or it executes its orElse-
method, returning the default value.

2.4.2 Create a random String

This snippet creates a String with a given length and random content.

Listing 2.8: Imperative implementation of Create random String
p u b l i c S t r i n g d (i n t n) {

S t r i n g S = " a b c d e f g h i j k l m n o p q r s t u v x y z " ;
Random r = new Random () ;
S t r i n g s = " " ;
f o r (i n t i =0 ; i <n ; i ++) {

s += (char) S . c ha rA t (r . n e x t I n t (S . l e n g t h ())) ;
}
re turn s ;

}

Listing 2.9: Functional implementation of Create random String
p u b l i c S t r i n g c (i n t n) {

S t r i n g S = " a b c d e f g h i j k l m n o p q r s t u v x y z " ;
re turn new Random ()

. i n t s (n , 0 , S . l e n g t h ())

. mapToObj (i −> " " +(char) S . c ha rA t (i))

. r e d u c e (" " , (a , b) −> a+b) ;
}

This code is usable to create example strings for testing of sorting algorithms, but also
for other types of testing where a large number of strings may be needed.

Both versions rely on a String that holds the letters of the alphabet. Letters are
randomly selected from the alphabet string.

The imperative version, listing 2.8, creates an object of the class Random, and an
empty String, that is to become the return value. It uses a for loop to execute an
instruction the given number of times. Inside the loop, it uses the Random-object to

13

obtain a new random integer and select the letter with the corresponding position from
the String containing the letters of the alphabet, and concatenates that letter at the end
of the String that is to be returned. When the for-loop exits, the right number of
letters have been selected and concatenated and the String is returned.

The functional version, listing 2.9, creates a stream of n random integers between 0
and S.lenght(), to then map them to a stream of Strings, each string one letter long
with the content of the letter corresponding to the integer. This String-stream is then
reduced with concatenation into a String with n letters, and returned.

2.4.3 Register callback handler

This snippet registers a callback handler with a conditional execution.

Listing 2.10: Imperative implementation of Register Callback handler
p u b l i c vo id e (C a l l b a c k E v e n t e x p e c t e d) {

r e g i s t e r C a l l b a c k (new C a l l b a c k I n t e r f a c e () {
@Override
p u b l i c vo id c a l l b a c k M e t h o d (C a l l b a c k E v e n t e v e n t) {

i f (e x p e c t e d . e q u a l s (e v e n t)) {
d o i t () ;

}
}

}) ;
}

Listing 2.11: Functional implementation of Register Callback handler
p u b l i c vo id f (C a l l b a c k E v e n t e x p e c t e d) {

r e g i s t e r C a l l b a c k (e v e n t −> {
i f (e x p e c t e d . e q u a l s (e v e n t)) d o i t () ;

}) ;
}

This is very common for event listeners like hardware availability callbacks of user
interaction callbacks, among many other similar cases.

The imperative version, listing 2.10, creates an anonymous inner class implementing
CallbackInterface, and explicitly overloads the callbackMethod. It uses an
if-clause to determine if the occurred event matches the expected one, and in such case
calls doit(). In accordance with traditional Java style guidelines, the if-clause has
broken brackets ({}), despite being only one line long.

The functional version, listing 2.11, takes advantage of the fact that CallbackInterface
can be used as a functional interface due to the fast that it has only one abstract method
defined. This makes it compatible with Java’s lambda expressions, declared with ->. This
takes a lot of the boiler plate code of defining an anonymous inner class. Additionally,
functional languages are by convention a bit laxer on the requirements of broken brackets
and line breaks, allowing us to express the if-clause and following doit()-call on one
line.

2.4.4 Create Histogram

This snippet creates a histogram out of the contents of a List.

14

Listing 2.12: Imperative implementation of Create Histogram
p u b l i c Map< S t r i n g , Long> g (L i s t < S t r i n g > c) {

Set < S t r i n g > s = new HashSet < >(c) ;
Map< S t r i n g , Long> m = new HashMap < > () ;
f o r (S t r i n g e : s) {

m. p u t (e , (long) C o l l e c t i o n s . f r e q u e n c y (c , e)) ;
}
re turn m;

}

Listing 2.13: Functional implementation of Create Histogram
p u b l i c Map< S t r i n g , Long> h (L i s t < S t r i n g > c) {

re turn c . s t r e a m ()
. c o l l e c t (C o l l e c t o r s . groupingBy (e −> e ,

C o l l e c t o r s . c o u n t i n g ())) ;
}

The code converts a list containing reoccurring elements into a map where the ele-
ments are keys and the values represent the number of occurrences of each element. This
is useful when analysing sets of sample data, and is for example an important step when
making a block diagram.

The imperative version, listing 2.12, starts with creating a Set containing the unique
elements of the provided List. This Set will be equal to the resulting maps key set.
This step is strictly not necessary: it is fully possible to iterate over the provided List,
but the Set potentially saves a great deal of runtime. It iterates over each of the elements
of the set with a for-loop, and saves each element and its frequency in a Map that is
returned once the loop terminates.

The functional version, listing 2.13, creates a Stream of the elements of the List,
and collects them, grouping by the identity of each of the elements, and uses the counting
collector of the Collectors class to count the frequency of each item.

2.4.5 Sum an array of ints

This snippet sums all integers in an array.

Listing 2.14: Imperative implementation of sum array
p u b l i c i n t i (i n t [] i n t s) {

i n t s = 0 ;
f o r (i n t i : i n t s) {

s += i ;
}
re turn s ;

}

Listing 2.15: Functional implementation of sum array
p u b l i c i n t j (i n t [] i n t s) {

re turn A rr ay s . s t r e a m (i n t s) . sum () ;
}

This simple code returns the sum of the integers in an array. It is for example useful
when implementing a command line calculator based on Polish notation.

15

The imperative version, listing 2.14 creates an integer with the value of 0, iterates
through the entries of the array in a for-loop, adding each of the numbers to the local
integer. Then the array is exhausted, the value of the local integer is returned.

The functional version, listing 2.15, creates a stream of the array, and calls the special-
case reduction method sum, which is an additive reduction, and returns the result.

2.5 Reliability and Validity

There are many methods for measuring complexity of programs, counting different factors
towards complexity. To get a reliable comparison of the complexity difference over the
paradigm boundary, this paper employs four different methods, namely McCabe’s and
Van den Berg’s cyclomatic complexity measures, NPATHS and byte code branch-and-
invocation count.

The most common method of measuring size of source code is by programmatic lines
of code. As this is of dubious applicability to functional code, and two additional mea-
sures are employed to complete the picture. One measure is counting text lines of "well
formatted code", but opinions on what is good formatting, as well as style guides, may
vary. Different opinions, or application of other style guides, may affect the result. A
count of the number of characters needed are also measured, to get a reading unaffected
by taste and style.

The readability results depend heavily on the performance of the subjects being in-
terviewed. Care is taken to find subjects with different skill and experiences, but other
studies might come to different conclusions. The number of snippets and the number of
subjects are very limited, and a larger study might yield more reliable results.

2.6 Ethical considerations

An interview situation is delicate and the subjects may feel they are under scrutiny rather
than the code. It is important to explain that this is not the case. The names of the subjects
are not recorded, and thus, all subjects are guaranteed anonymity to the extent that a
certain set of answers cannot be traced back to them. The names of the subjects are also
not shared.

16

3 Results

This chapter presents the results of the studies of the readability, complexity and verbosity
of the snippets chosen for the study.

The first part covers the readability study, presenting the experience, self assessments
and the results of the timed readability assessment of each of the snippets.

The second part presents the results of the complexity studies, with the complexity
metric numbers for each of the chosen complexity measuring methods.

The third part presents the results of the verbosity measurements, with programmatic
lines, number of characters and number of text lines in source code.

3.1 Readability

The readability study yielded the results presented in table 3.1.

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S10
Programming experience 33 22 22 26 30 20 5 8 14 22
Professional experience 27 17 17 20 15 13 0 0 5 12
Self assessment
Imperative programming 5 5 5 4 3 5 2 3 5 4
OO programming 5 5 5 4 3 3 3 4 5 4
Functional programming 2 2 3 2 3 2 1 3 3 2
Java 4 4 5 4 3 3 3 4 5 3
Reading times
a: Object, imperative 60 55 33 22 15 41 41 25 24 28
b: Object, functional 64 75 23 32 45 19 35 30 16 47
d: Random, imperative 94 97 50 42 34 22 41 17 13 49
c: Random, functional 80 147 151 33 23 11 60 303 85 61
e: Callback, imperative 88 114 20 48 3 12 56 47 41 53
f: Callback, functional 75 35 42 14 26 11 22 12 10 15
g: Histogram, imperative 185 172 65 68 23 8 60 55 33 97
h: Histogram, functional 52 240 62 94 8 59 44 40 24 40
i: Sum, imperative 18 26 6 12 4 18 23 13 13 14
j: Sum, functional 14 33 6 24 8 7 9 5 9 17
P (t(f) ≤ (t(i)) 0.8 0.2 0.4 0.4 0.4 0.8 0.8 0.6 0.8 0.4

Table 3.1: Readability study results. Programming experience is the number of years
since the subject first learned to program. Professional experience is the number of years
the subject has been programming professionally. Self-assessments are on a scale of 1-5,
inclusive. Reading times are measured in seconds. Added in the bottom is the probability
that the subject has read a functional idiom faster or in equal time to an imperative idiom.
The full individual results, with the presentation order of each idiom, are recorded in
Appendix A.

Each of the subjects where asked a number of initial questions about their previous
experience of programming and their own assessment of their skills in different areas. The
full interview guide is available in Appendix A. The subjects were then presented with
the snippets, one at a time, in random order, and asked to explain the functionality of each
snippet. Time was measured until the subject could satisfactorily explain the code in each

17

snippet to the interviewer, one at a time. The same interviewer was used for all interviews,
in order to secure that the level of the "satisfactory explanation" was consistent.

Apart from the answers to the questions about experience and self assessment, and the
number of seconds each subject took to give an explanation of each snippet, the number
of times a subject read a functional idiom in equal or lower time than the same subject
read the equivalent imperative idiom is recorded, and presented divided by 5 to give a
probability. While this number might not be a great indicative neither of the readability of
the idioms, nor of the performance if the individual, due to the learning effect discussed
in the Methods chapter, it clearly shows that there is a wide spread between the subjects.
This is further discussed in the Analysis chapter.

3.2 Complexity

The results of the complexity measurements are presented in table 3.2. The McCabe Cy-
clomatic Complexity is measured by checkstyle [11], while the Van den Berg is manually
counted using the method described by Håkansson & Badran [9, 4.4, p. 39]. NPATHS is
also counted manually, and the branch-and-invocation count is generated with the script
given in Appendix C.

McCabe CC VdB CC NPATHS BnI
Idiom Imp. Func. Imp. Func. Imp. Func. Imp. Func.
Object 3 1 5 3 5 5 9 6
Random 2 1 6 4 12 9 11 8
Callback 2 2 3 3 5 4 3 3
Histogram 2 1 3 2 5 5 11 6
Sum 2 1 2 1 4 3 3 3

Table 3.2: Complexity according to McCabe, Van den Berg (VdB), NPATHS and branch-
and-invocation (BnI) count, for imperative (Imp) and functional (Func) idioms respec-
tively.

The result clearly shows that the functional idioms give lower complexity counts re-
gardless of the metric being deployed. An interesting side note is that while the scale of
the metrics differ, the relative difference between the imperative and the functional code
is very similar. This suggests that they in fact measure similar things and that they might
provide equally good measures of complexity. 2

3.3 Verbosity

The results of the verbosity study is presented in table 3.3. NCSS[10] is counted using
checkstyle [11], while characters and text lines are counted with the UNIX command line
tool wc for each of the snippets.

It is readily apparent that all of the snippets produce fewer lines, both programmatic
lines and well formatted lines in the source code, in the functional version. Nearly all of
the functional versions also need fewer characters - the exception being the idiom to select

2This, in turn, suggests that further validation of complexity metrics might be needed, but this is beyond
the scope of this bachelor’s thesis.

18

NCSS Characters Text lines
Idiom Imperative Functional Imperative Functional Imperative Functional
Object 5 2 131 139 7 6
Random 7 3 206 195 9 7
Callback 8 4 219 119 10 5
Histogram 6 2 214 145 8 5
Sum 5 2 92 67 7 3

Table 3.3: Verbosity measured by programmatic lines (NCSS), Characters and Text lines
in source code for imperative and functional idioms, respectively.

an object with a certain property from a list, in which case the functional version need
slightly more characters, mainly because of the names of the methods being employed.

The statistical significance of the difference of the measures will be discussed in the
Analysis chapter.

19

4 Analysis

In this chapter, the results of the studies regarding readability, complexity and verbosity
are analysed and their significance is established.

4.1 Readability

The subjects are generally quite confident in their abilities, with median self assessment
in imperative programming, object oriented programming and Java at 4.5, 4 and 4, on a
scale of 1-5, respectively. They are, according to the self assessment, not very familiar
with functional programming, landing on a median of 2, with no one assessing themselves
over 3.

This is not reflective of their results, however. The general probability that a functional
idiom is recognised and understood in equal or faster time for all of the samples and
subjects is

P (t(f) ≤ t(i)) =
28

50
= 0.56 (4)

suggesting that there is a small probability of faster reading of the functional idioms, gen-
erally. The probability is so close to 0.5, though, that it cannot be considered conclusive.

The notion of inconclusiveness is reinforced by performing an unequal variances two-
tailed t-test on the data. For the idioms for finding an object (listings 2.6 and 2.7) the t-test
gives a p ≈ 0.59. For the creation of a random string (listings 2.9 and 2.8), p ≈ 0.12, the
callback handler idioms (listings 2.10 and 2.11) has a difference significant at p ≈ 0.10,
the histogram (listings 2.12 and 2.13) at p ≈ 0.72 and the summation of an array (listings
2.14 and 2.15) at p ≈ 0.68. This means that none of the differences are statistically
significant at the p ≤ 0.05 level.

Interestingly, self assessment in functional programming, professional experience or
total programming experience over the median all seem to lower the probability of de-
coding functional idioms faster.

A lower than median self assessment of proficiency in functional programming gives
a relatively high probability that the functional idioms will be read faster:

P (t(f) ≤ t(i))sa(f)≤ ˜sa(f) = 0.8 (5)

The subjects with lower than median professional experience also read functional id-
ioms faster:

P (t(f) ≤ t(i))pex≤ ˜pex = 0.68 (6)

Even when splitting the subjects on total programming experience, the subjects with
lower than median experience seem to be slightly faster in reading functional idioms:

P (t(f) ≤ t(i))tex≤ ˜tex = 0.57 (7)

Two students in the study, with small experience and modest self assessment in func-
tional programming, where to a higher degree relatively faster at reading functional code,
as compared to imperative code, than the average in the full sample population. Even
disregarding these samples, though, the effect still seem to be that less professional expe-
rience correlates to a higher probability of understanding functional code faster.

This might be the result of functional code being more intuitive to programmers with
less experience, or might be an effect of curriculum changes to include more functional

20

programming in educations. It may even be a chimera caused by the limited sample set.
Looking at the scatter plot (figure 4.1), this seems more likely. Seldom has a scatter plot
been more scattered. There is, however, no data in this study to indicate age or time span
in education of the subjects, and more studies are needed to investigate this.

1 2 3 4 5

0

10

20

30

Figure 4.1: Scatter of professional experience (x) and total experience (o) against number
of functional idioms read faster

Regarding the learning effect, there is some evidence in the results that it has occurred,
but also that the randomization of the order in which the idioms have been read affects
the paradigms equally, and thus has negligible effect on the total outcome of the study. It
does have an effect on individual surveys, and that is one of the reasons it is hard to break
down the results into smaller groups.

Generally, there is a small indication that functional code might be easier to read,
but the difference is so small that it might be within the margin of error. There is, how-
ever, nothing to suggest that reading functional Java is significantly slower than reading
imperative Java.

4.2 Complexity

Regardless of the metric chosen - McCabe’s cyclomatic complexity, Van den Berg’s
complexity, NPATHS or branch-and-invocation count - the functional implementation is
equally or less complex than the imperative one. The difference is not great in each of the
examples, but consider an example program with all of the example methods: the total
McCabe cyclomatic complexity metric drops 45%, the Van den Berg metric with 30%,
total NPATHS 16% and branch-and-invocation almost 30%.

The change is statistically significant, according to Student’s t-test, for the McCabe
metric, at p ≈ 0.03, the Van den Berg metric, at p ≈ 0.02 and branch-and-invocation
count, at p ≈ 0.04, but not for the NPATHS metrix, at p ≈ 0.07.

Functional programming aims to take more complexity out of the hands of the pro-
grammer and into the framework, and therefore this outcome is expected. It is also note-
worthy that the Van den Berg metric, as well as the branch-and-invocation count, both
designed with functional programming clearly in mind, drops considerably when imple-
menting the functionality in a functional way.

21

4.3 Verbosity

In all cases, save one, is the functional implementation less verbose, than the imperative
implementation. Counted by programmatic lines the functional implementation is denser
in all cases. Totally, the programmatic lines drop with 59%, the number of characters
drop with 23% and the number of lines in the source code drop 36%.

The change is statistically significant, according to Student’s t-test, for the count of
programmatic lines, at p ≈ 1, 2 ∗ 10−4 and well formatted lines, at p ≈ 0.01, while the
count of characters is not, at a p ≈ 0.26.

That the programmatic lines drop significantly is expected, as functional statements
are often "chained" and multiple invocations can be done in a single line, but the num-
ber of characters as well as the number of text lines in the code, that are not so heavily
rigged against imperative programming, both drop radically as well, clearly showing that
functional code is significantly less verbose than the imperative equivalent.

22

5 Discussion

In this chapter, the results and the analysis of the results are summarized and discussed.
First, the three aspects of this study are discussed separately, with answers provided to
each of the research questions. After that, there is a discussion about what impact the
results, taken together, might have on general maintainability of source code in an envi-
ronment supporting both the imperative and the functional paradigm.

5.1 Readability

The readability study suggests that functional code may be easier to read, but the differ-
ence is so small that it is not possible to make such an assertion. The sample set is small
enough that when breaking it down in groups, the skills of the individual subjects have
too large impact on the results.

There are artefacts in the readability study, and some of the results seem dubious. It
seems that reading functional programming is generally faster, but to what extent is not
extractable from the data. The expected effect, that programmers with experience only
from imperative programming would struggle with the functional idioms, while program-
mers versed in functional programming would excel is not detectable in the data.

From the data it is not possible to give a certain answer to RQ1 "Is functional Java
easier to understand than imperative Java?", but there is also nothing to suggest that the
functional style of programming is harder or slower to read than the imperative style.

5.2 Complexity

There are many more or less established ways to measure complexity, and this paper
employs a few different ones. Some, like the McCabe cyclomatic complexity metric, has
been criticised for not being readily applicable to functional code, while others, like the
Van den Berg cyclomatic complexity metric, has been designed with functional code in
mind. The result of the study is clear: functional code is equally or less complex than
imperative code when implementing the same functionality, regardless of what metric is
used to measure complexity.

This is to be expected: the goal of the functional paradigm is to raise the level of
abstraction, giving the programmers more advanced building blocks and more flexible
ways of using them. This leads to more complexity being implemented in the framework,
with less complexity left to implement in the program.

RQ2 can thus be answered: Yes. Functional Java is less complex than imperative Java.

5.3 Verbosity

The result of the verbosity study is clear as well: with the functional paradigm providing
more flexible and advanced tools, and the programmer working on a more abstract level,
less code needs to be written to implement a certain functionality.

Measured in programmatic lines, the difference is titanic: the functional code has less
than half the lines of the equivalent imperative code; but programmatic lines is not a good
measure, since functional code naturally chains statements on the same programmatic
line, and thus creates code that is wide rather than long.

Measured in bytes, the difference is smaller, and in one case the functional code is
actually slightly larger than the imperative code. The general difference is about 23%, but
the measure fail Student’s t-test and does not have statistical significance.

23

The measure that makes most intuitive sense, although it is dependent on subjective
opinion, is how many text lines well formatted code occupies. This is a good measure
on "how much there is to read". In this way of measuring, the functional code occupies
about two thirds of the lines of the imperative equivalent.

RQ3 can thus be answered: Yes. Functional Java is generally less verbose than imper-
ative Java.

5.4 Maintainability

Combining the results of the different aspects of this study; readability, complexity and
verbosity; clearly shows that when comparing functional to imperative Java, the func-
tional Java can produce smaller amounts of less complex code while implementing func-
tionality equal to the imperative code. This is promising, but to any seasoned software
architect it should invoke memories of early encounters with Pearl [12], IOCCC [13] or
even BF [14], all examples of dense code that sacrifices readability. Promises of less
verbose more powerful code make a developer or an architect suspicious.

For exactly that reason, it is important to measure the readability. This study shows
that while the functional paradigm in Java do deliver on promises of higher abstraction,
less complexity and less verbosity, it also does not become harder to read to an extent that
can be measured.

This means that functional style Java can be used to make programs that are likely to
be more efficient to maintain.

24

6 Conclusion

The readability study shows no significant difference in the readability of functional and
imperative Java. Interestingly, this is regardless of the self assessment of former experi-
ence of functional programming. This suggests that functional-style Java code is about
equally readable as compared to imperative Java, to beginners and experienced developers
alike.

The complexity analysis shows that regardless of the metrics being applied, functional
Java produces less complex code than the equivalent imperative code. This is expected,
as one of the goals of functional programming is to increase abstractions and reduce
complexity.

The analysis of verbosity shows that functional code is generally less verbose than the
imperative equivalent, especially with regards to programmatic lines, but also in terms
of text lines in well formatted code. The number of characters needed to express the
functionality in the functional paradigm also seem to drop generally, but the difference
cannot be statistically established.

Taken together, this shows that functional Java requires smaller amounts of less com-
plex code to implement common functionalities, as compared to imperative Java. This is
in line with the goals of functional programming and was expected. Small amounts of
simple code is likely to be easier to maintain than large amounts of complex code, pro-
vided the developers responsible for the maintenance can properly read and understand
it.

This suggests that recommending and training developers to use functional program-
ming can lead to a programming style that produces smaller amounts of less complex
code at no penalty to readability. This is likely to mean that maintenance is made easier.

6.1 Future work

Further readability studies are needed to validate the findings and find new data to cor-
relate the readability to. The idiom base and the population should both be larger. The
interviews could to some extent be automated and thus be performed on a greater scale.
A web based survey that measure the time for reading idioms with the answers being
multiple choice could be automated and performed on a scale several orders of magni-
tude larger than the study presented here, and would be helpful to gauge the readability
of different styles of code.

The different metrics to indicate complexity employed in this study showed remark-
ably similar relative results. Generally, further work on good complexity measures, how
to automate their measurements, and how they relate to readability and maintainability
may still be needed, even after 50 years.

A larger study of the relative verbosity of the paradigms might also be useful. This
study finds significant differences with regards to lines of code, but not in the regard of
characters needed to write the code. Further verbosity studies might be able to establish
such differences.

25

References

[1] R. L. Glass, “Frequently forgotten facts about software engineering,” IEEE Soft-
ware, vol. 18, pp. 110–112, 2001.

[2] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineer-
ing, vol. SE-2, pp. 308–320, December 1976.

[3] M. H. Halstead, Elements of Software Science. Elsevier North-Holland, Amster-
dam, 1977.

[4] B. A. Nejmeh, “NPATH: a measure of execution path complexity and its applica-
tions,” Communcations of the ACM, vol. 31, pp. 188–200, February 1988.

[5] K. Van den Berg, “Software measurement and functional programming,” Ph.D. dis-
sertation, University of Twente, 1995.

[6] J. O. Coplien, “Multi-paradigm design,” Ph.D. dissertation, Vrije Universiteit Brus-
sel, 2000.

[7] C. Ryder, “Software measurement for functional programming,” Ph.D. dissertation,
University of Kent, 2004.

[8] W. R. Weimer and R. P. Buse, “Learning a metric for code readability,” IEEE Trans-
actions on Software Engineering, vol. 36, 2010.

[9] J. Håkansson and S. Badran, “Evaluating cyclomatic complexity on functional
javascript,” Bachelor Thesis, Linnaeus University, 2016.

[10] C. C. Lee. (2015) Java NCSS. [Online]. Available: http://www.kclee.de/clemens/
java/javancss/

[11] O. Burn. (2017) checkstyle. [Online]. Available: http://checkstyle.sourceforge.net

[12] L. Wall. (1987) Pearl. [Online]. Available: https://www.pearl.org

[13] International Obfuscated C Code Contest. [Online]. Available: http://ioccc.org

[14] U. Müller. (1993) Brainfuck. [Online]. Available: http://www.muppetlabs.com/
~breadbox/bf/

26

http://www.kclee.de/clemens/java/javancss/
http://www.kclee.de/clemens/java/javancss/
http://checkstyle.sourceforge.net
https://www.pearl.org
http://ioccc.org
http://www.muppetlabs.com/~breadbox/bf/
http://www.muppetlabs.com/~breadbox/bf/

A Appendix A - Interviews

A.1 Interview guide

• How long since you first learned to program?

• How long have you been programming professionally?

• What is your "main" programming language?

• On a scale from 1 to 5, inclusive, how familiar are you with

– imperative programming

– object oriented programming

– functional programming

– Java

A.2 Answers

A.2.1 Subject 1

Programming experience 22 years
Professional experience 17 years

Main language C++
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
I Sum (imperative) 18 sec

F Callback (functional) 75 sec
G Histogram (imperative) 185 sec

A Object (imperative) 60 sec
D Random (imperative) 94 sec
B Object (functional) 64 sec

C Random (functional) 80 sec
H Histogram (functional) 52 sec

J Sum (functional) 14 sec
E Callback (imperative) 88 sec

A

A.2.2 Subject 2

Programming experience 22 years
Professional experience 17 years

Main language C++
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
E Callback (imperative) 114 sec
F Callback (functional) 35 sec

J Sum (functional) 33 sec
I Sum (imperative) 26 sec

A Object (imperative) 55 sec
B Object (functional) 75 sec

G Histogram (imperative) 172 sec
D Random (imperative) 97 sec

H Histogram (functional) 240 sec
C Random (functional) 147 sec

A.2.3 Subject 3

Programming experience 30 years
Professional experience 17 years

Main language Java, C
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
F Callback (functional) 42 sec

H Histogram (functional) 62 sec
C Random (functional) 151 sec
E Callback (imperative) 20 sec
D Random (imperative) 50 sec
A Object (imperative) 33 sec

G Histogram (imperative) 65 sec
I Sum (imperative) 6 sec

B Object (functional) 23 sec
J Sum (functional) 6 sec

B

A.2.4 Subject 4

Programming experience 26 years
Professional experience 20 years

Main language python
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
C Random (functional) 33 sec

J Sum (functional) 24 sec
E Callback (imperative) 48 sec
A Object (imperative) 22 sec

I Sum (imperative) 12 sec
H Histogram (functional) 94 sec
D Random (imperative) 42 sec
B Object (functional) 32 sec

G Histogram (imperative) 68 sec
F Callback (functional) 14 sec

A.2.5 Subject 5

Programming experience 30 years
Professional experience 15 years

Main language Java, go, python
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
F Callback (functional) 26 sec
D Random (imperative) 34 sec
C Random (functional) 23 sec

G Histogram (imperative) 35 sec
B Object (functional) 45 sec
A Object (imperative) 15 sec

H Histogram (functional) 8 sec
J Sum (functional) 8 sec
I Sum (imperative) 4 sec

E Callback (imperative) 3 sec

C

A.2.6 Subject 6

Programming experience 20 years
Professional experience 13 years

Main language python, C
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
E Callback (imperative) 12 sec

J Sum (functional) 7 sec
D Random (imperative) 22 sec

H Histogram (functional) 59 sec
A Object (imperative) 41 sec

I Sum (imperative) 18 sec
B Object (functional) 19 sec

G Histogram (imperative) 8 sec
F Callback (functional) 11 sec
C Random (functional) 11 sec

A.2.7 Subject 7

Programming experience 5 years
Professional experience - years

Main language Java
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
I Sum (imperative) 23 sec

E Callback (imperative) 56 sec
H Histogram (functional) 44 sec

A Object (imperative) 41 sec
G Histogram (imperative) 60 sec

B Object (functional) 35 sec
F Callback (functional) 22 sec

J Sum (functional) 9 sec
D Random (imperative) 41 sec
C Random (functional) 60 sec

D

A.2.8 Subject 8

Programming experience 8 years
Professional experience - years

Main language Java
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
A Object (imperative) 25 sec
C Random (functional) 303 sec
E Callback (imperative) 47 sec

I Sum (imperative) 13 sec
D Random (imperative) 17 sec
B Object (functional) 30 sec

H Histogram (functional) 40 sec
F Callback (functional) 12 sec

G Histogram (imperative) 55 sec
J Sum (functional) 5 sec

A.2.9 Subject 9

Programming experience 14 years
Professional experience 5 years

Main language Java, python, C
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
A Object (imperative) 24 sec

E Callback (imperative) 41 sec
J Sum (functional) 9 sec

H Histogram (functional) 24 sec
B Object (functional) 16 sec

C Random (functional) 85 sec
G Histogram (imperative) 33 sec
D Random (imperative) 13 sec

I Sum (imperative) 13 sec
F Callback (functional) 10 sec

E

A.2.10 Subject 10

Programming experience 22 years
Professional experience 12 years

Main language C
Imperative programming 1 2 3 4 5

Object Oriented programming 1 2 3 4 5
Functional programming 1 2 3 4 5

Java 1 2 3 4 5
D Random (imperative) 49 sec
A Object (imperative) 28 sec

G Histogram (imperative) 97 sec
I Sum (imperative) 14 sec

E Callback (imperative) 53 sec
J Sum (functional) 17 sec

B Object (functional) 47 sec
F Callback (functional) 15 sec
C Random (functional) 61 sec

H Histogram (functional) 40 sec

F

B Appendix B - Snippets

p u b l i c S t r i n g a (C o l l e c t i o n < S t r i n g > c , S t r i n g s) {
f o r (S t r i n g b : c) {

i f (b . s t a r t s W i t h (s))
re turn b ;

}
re turn s ;

}

p u b l i c S t r i n g b (C o l l e c t i o n < S t r i n g > c , S t r i n g s) {
re turn c . s t r e a m ()

. f i l t e r (b −> b . s t a r t s W i t h (s))

. f i n d F i r s t ()

. o r E l s e (s) ;
}

p u b l i c S t r i n g c (i n t n) {
S t r i n g S = " a b c d e f g h i j k l m n o p q r s t u v x y z " ;
re turn new Random ()

. i n t s (n , 0 , S . l e n g t h ())

. mapToObj (i −> " " +(char) S . c ha rA t (i))

. r e d u c e (" " , (a , b) −> a+b) ;
}

p u b l i c S t r i n g d (i n t n) {
S t r i n g S = " a b c d e f g h i j k l m n o p q r s t u v x y z " ;
Random r = new Random () ;
S t r i n g s = " " ;
f o r (i n t i =0 ; i <n ; i ++) {

s += (char) S . c ha rA t (r . n e x t I n t (S . l e n g t h ())) ;
}
re turn s ;

}

p u b l i c vo id e (C a l l b a c k E v e n t e x p e c t e d) {
r e g i s t e r C a l l b a c k (new C a l l b a c k I n t e r f a c e () {

@Override
p u b l i c vo id c a l l b a c k M e t h o d (C a l l b a c k E v e n t e v e n t) {

i f (e x p e c t e d . e q u a l s (e v e n t)) {
d o i t () ;

}
}

}) ;
}

G

p u b l i c vo id f (C a l l b a c k E v e n t e x p e c t e d) {
r e g i s t e r C a l l b a c k (e v e n t −> {

i f (e x p e c t e d . e q u a l s (e v e n t)) d o i t () ;
}) ;

}

p u b l i c Map< S t r i n g , Long> g (L i s t < S t r i n g > c) {
Set < S t r i n g > s = new HashSet < >(c) ;
Map< S t r i n g , Long> m = new HashMap < > () ;
f o r (S t r i n g e : s) {

m. p u t (e , (long) C o l l e c t i o n s . f r e q u e n c y (c , e)) ;
}
re turn m;

}

p u b l i c Map< S t r i n g , Long> h (L i s t < S t r i n g > c) {
re turn c . s t r e a m ()

. c o l l e c t (C o l l e c t o r s . groupingBy (e −> e ,
C o l l e c t o r s . c o u n t i n g ())) ;

}

p u b l i c i n t i (i n t [] i n t s) {
i n t s = 0 ;
f o r (i n t i : i n t s) {

s += i ;
}
re turn s ;

}

p u b l i c i n t j (i n t [] i n t s) {
re turn A rr ay s . s t r e a m (i n t s) . sum () ;

}

H

C Appendix C - Counting complexity

To count branches and invocations on a byte code level, the javap tool is used to dis-
assemble the .class file. The output is then piped through the comp.awk script, that
outputs the summarized branch and invocation counts per method.

Listing C.1: comp.awk
! / u s r / b i n / awk − f

/ Code : / { p r i n t p}
{p=$0 }
/ ^ +[0 −9]+: i nv ok e / { c ++}
/ ^ +[0 −9]+: go to / { c ++}
/ ^ +[0 −9]+: i f / { c ++}
/ ^ +[0 −9]+: . ? re turn / { c ++}
/ ^ $ / { p r i n t c ; c =0}
END { p r i n t c ; c =0}

I

	Introduction
	Background
	Maintainability, readability, complexity and metrics
	Imperative programming
	Functional programming
	Multi-paradigm languages
	Jumping paradigms

	Related work
	Problem formulation
	Motivation
	Objectives
	Scope/Limitation
	Target group
	Outline

	Method
	Measuring readability
	Measuring complexity
	Measuring Cyclomatic Complexity according to McCabe
	Measuring Cyclomatic Complexity according to Van den Berg
	Measuring NPATHS
	Measuring branches and invocations on byte code

	Measuring verbosity
	Idioms
	Find an object matching a condition
	Create a random String
	Register callback handler
	Create Histogram
	Sum an array of ints

	Reliability and Validity
	Ethical considerations

	Results
	Readability
	Complexity
	Verbosity

	Analysis
	Readability
	Complexity
	Verbosity

	Discussion
	Readability
	Complexity
	Verbosity
	Maintainability

	Conclusion
	Future work

	References
	Appendix A - Interviews
	Interview guide
	Answers
	Subject 1
	Subject 2
	Subject 3
	Subject 4
	Subject 5
	Subject 6
	Subject 7
	Subject 8
	Subject 9
	Subject 10

	Appendix B - Snippets
	Appendix C - Counting complexity

