
http://www.diva-portal.org

This is the published version of a paper published in Diabetologia.

Citation for the original published paper (version of record):

Poveda, A., Chen, Y., Brändström, A., Engberg, E., Hallmans, G. et al. (2017)
The heritable basis of gene-environment interactions in cardiometabolic traits.
Diabetologia, 60(3): 442-452
https://doi.org/10.1007/s00125-016-4184-0

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-133524



ARTICLE

The heritable basis of gene–environment interactions
in cardiometabolic traits

Alaitz Poveda1,2 & Yan Chen1
& Anders Brändström3

& Elisabeth Engberg3 &

Göran Hallmans4 & Ingegerd Johansson4
& Frida Renström1,4

& Azra Kurbasic1 &

Paul W. Franks1,5,6

Received: 28 June 2016 /Accepted: 24 November 2016 /Published online: 21 December 2016
# The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract
Aims/hypothesis Little is known about the heritable basis of
gene–environment interactions in humans. We therefore
screened multiple cardiometabolic traits to assess the proba-
bility that they are influenced by genotype–environment
interactions.
Methods Fourteen established environmental risk exposures
and 11 cardiometabolic traits were analysed in the VIKING
study, a cohort of 16,430 Swedish adults from 1682 extended
pedigrees with available detailed genealogical, phenotypic
and demographic information, using a maximum likelihood
variance decomposition method in Sequential Oligogenic
Linkage Analysis Routines software.

Results All cardiometabolic traits had statistically significant
heritability estimates, with narrow-sense heritabilities (h2)
ranging from 24% to 47%. Genotype–environment interac-
tions were detected for age and sex (for the majority of traits),
physical activity (for triacylglycerols, 2 h glucose and diastol-
ic BP), smoking (for weight), alcohol intake (for weight, BMI
and 2 h glucose) and diet pattern (for weight, BMI, glycaemic
traits and systolic BP). Genotype–age interactions for weight
and systolic BP, genotype–sex interactions for BMI and triac-
ylglycerols and genotype–alcohol intake interactions for
weight remained significant after multiple test correction.
Conclusions/interpretation Age, sex and alcohol intake are
likely to be major modifiers of genetic effects for a range of
cardiometabolic traits. This information may prove valuable
for studies that seek to identify specific loci that modify the
effects of lifestyle in cardiometabolic disease.
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Introduction

Cardiometabolic diseases are the predominant cause of mor-
tality, morbidity and healthcare spending globally [1, 2], and
are believed to result in part from the combined additive and
synergistic effects of genetic and environmental risk factors.
Environmental exposures such as diet and physical activity
have enormous potential for prevention and treatment of these
diseases, but no single therapy works well in all individuals.
Determining whether susceptibility to adverse environmental
exposures is genetically determined (i.e. gene–environment
interactions [3]) and elucidating the specific nature of these
interactions may facilitate the stratification of patient popula-
tions into subgroups that can be treated with optimal therapies.

In contemporary population genetics research, the heritabil-
ity of a given trait is usually assessed by quantitative genetics
approaches to make inferences about the extent to which poly-
genic variation influences the trait. Assessing heritability is
usually done prior to embarking on studies that seek to discover
specific loci influencing the trait. While it is equally logical to
use quantitative genetics to determine whether traits are influ-
enced by genotype–environment interactions as a prelude to
studies focused on specific environmental exposures and ge-
netic loci, this is rarely done in practice [4–8]. The dearth of
such studies may be because large, well-characterised cohorts
including genealogies, which are necessary for genotype–envi-
ronment quantitative genetic studies, are rare.

Here we sought to screen for genotype–environment inter-
actions across a number of environmental exposures and car-
diometabolic traits using quantitative genetic analyses in ex-
tended pedigrees. Accordingly, we characterised the genea-
logical structure of a large northern Swedish population, with-
in which detailed measures of environmental exposures, car-
diometabolic traits and other personal characteristics exist [9].

Methods

Study participants

The Västerbotten Imputation Databank of Near-Complete
Genomes (VIKING) study is nested in a population-based co-
hort from the county of Västerbotten in northern Sweden. The
study capitalises on the extensively mapped genealogies in this
low admixture population, in combination with an ongoing
health survey in the population that makes available extensive
phenotypic data in the cohort [9]. The genealogical information
stems from the POPLINK database at the Demographic
Database/Centre for Demographic and Ageing Research
(CEDAR) at Umeå University, Umeå, Sweden. Data are based
on detailed Swedish population registers, covering the period
1700–1950, linked to population data from Statistics Sweden
from 1950 to the present day. Lifestyle and clinical data were

collected within the framework of the Västerbottens Health
Survey (also called the Västerbottens Intervention Project) ini-
tiated in 1985 [10]. In the Västerbottens Health Survey, resi-
dents within the county are invited to attend an extensive health
examination in the years of their 40th, 50th and 60th birthdays.
For the current analysis, health examinations were performed
between 1985 and 2013. All participants provided written in-
formed consent as part of the Västerbottens Health Survey, and
the study was approved by the regional ethics review board in
Umeå, Sweden.

The current study includes 1682 extended pedigrees com-
prising 193,060 people of whom 16,430 have detailed pheno-
type data. The most extended genealogy descends from 4255
founders and contains 160,533 people of whom 10,498 are
phenotyped. The phenotyped sample includes 8908 first-
degree relative pairs, 5794 second-degree relative pairs and
29,706 third-degree relative pairs, in addition to other more
distant relatives (electronic supplementary material [ESM]
Table 1).

Cardiometabolic traits

The assessment of clinical measures in the Västerbottens
Health Survey has been described in detail elsewhere [10,
11]. Briefly, weight (to the nearest 0.1 kg) and height (to the
nearest 1 cm) were measured with a calibrated balance-beam
scale and a wall-mounted stadiometer, respectively, and with
participants wearing indoor clothing and without shoes. BMI
was calculated as weight (kg)/height (m)2. In a subgroup,
waist circumference was measured using a non-stretchable
nylon tape at the midpoint between the 12th rib and the iliac
crest. Systolic and diastolic BPs (SBP and DBP) were mea-
sured once using a mercury sphygmomanometer following a
5 min rest. Capillary blood was drawn after an overnight fast
and again 2 h after administration of a standard 75 g oral
glucose load [12]. Before the first blood draw, 83% of partic-
ipants had fasted for a minimum of 8 h. Capillary plasma
glucose concentrations, total cholesterol and triacylglycerols
were measured with a Reflotron bench-top analyser (Roche
Diagnostics Scandinavia, Umeå, Sweden). HDL-cholesterol
(HDL-C) was measured in a subgroup of participants. LDL-
cholesterol (LDL-C) was calculated by applying the
Friedewald formula: LDL-C=total cholesterol−HDL-C−(tri-
acylglycerol/2.2) [13]. The analysis methods for total choles-
terol, triacylglycerol, SBP and DBP changed in 2009: from
Reflotron to a clinical chemical analysis at the laboratory for
total cholesterol and triacylglycerol, and from BP measure-
ments taken once in the supine position to being taken twice
in a sitting position (the average of these two values being
used in analyses). Lipid and BP values taken after 2009 were
therefore corrected to make them comparable to values taken
before 2009. Lipid and BP traits were also corrected for the
use of lipid-lowering and antihypertensive medication using
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published constants (total cholesterol +1.347 mmol/l, triacyl-
glycerol +0.208 mmol/l, HDL-C −0.060 mmol/l, LDL-C
+1.290 mmol/l, SBP +15 mmHg, DBP +10 mmHg) [14, 15].

Lifestyle assessment

Participants completed a self-administered questionnaire that
queried physical activity levels and diet and asked additional
questions about tobacco use and alcohol consumption. Diet
was assessed using a validated semi-quantitative food-fre-
quency questionnaire designed to capture habitual dietary in-
take over the last year [16, 17]. The initial food-frequency
questionnaire (used from 1985) covered 84 independent or
aggregated food items but was reduced in 1996 to 66 food
items by combining several questions related to similar foods
and deleting some. Participants with ≥10% of the food-
frequency questionnaire missing or a seemingly implausible
total energy intake (<2093 or >18,841 kJ/day; <500 or
>4500 kcal/day) were excluded from the analyses.

In order to obtain a summary factor representing the overall
dietary pattern, a principal component analysis including all
macronutrients (i.e. carbohydrate, protein, total fat, saturated
fat, monounsaturated fatty acids [MUFA], polyunsaturated
fatty acids [PUFA], essential fatty acids [n-3 and n-6 fatty
acids], and fibre intakes expressed as per cent of total energy
intake [E%]) was conducted, as previously described [18]. A
single factor that contrasted carbohydrate and fibre intake
against fat intake and accounted for 53.8% of the variance of
all macronutrients was retained (ESM Table 2).

A validated modified version of the International Physical
Activity Questionnaire [19] was used to gather information on
leisure time physical activity for the past 3 months categorised
as: (1) never; (2) occasionally; (3) 1–2 times/week; (4) 2–3 times/
week; or (5) more than 3 times/week. For the current analyses,
categories were combined into physically inactive (never and
occasionally) and physically active (≥1–2 times/week).

Statistical analyses

All cardiometabolic traits were first adjusted for age, age2, sex
and their interactions (age–sex and age2–sex) by conducting a
multiple regression analysis using R software (version 3.1.1)
[20] and retaining the residuals. Models with glycaemic and
lipid traits as the dependent variables were additionally adjust-
ed for fasting status. Models were also adjusted for the envi-
ronmental exposure that was later tested in the genotype–en-
vironment interaction analyses; when the environmental ex-
posure was alcohol intake or a dietary variable the model was
also adjusted for the food-frequency questionnaire version.
Retained residuals were then normalised by inverse normal
transformation and used in the subsequent quantitative genetic
analyses as recommended elsewhere [21, 22].

Kinship matrix Kinship coefficients of the 16,430 partici-
pants with phenotype data were obtained based on the genea-
logical information gathered for the whole sample (193,060
individuals) using the CFC program [23], as Sequential
Oligogenic Linkage Analysis Routines (SOLAR [24]) soft-
ware is not designed to analyse such a large sample size.

Heritability estimation Quantitative genetic analyses were
conducted using the maximum likelihood-based variance
components decomposition method implemented in SOLAR.

In the standard model, the observed covariance of a com-
plex trait (Ω, cardiometabolic trait), assuming that dominance
and epistasis are negligible, is defined as:

Ω ¼ 2Φσ2
G þ Iσ2

E ð1Þ

Here, Ω is an N-by-N matrix of the observed covariance of
the cardiometabolic trait for each pair of theN individuals in the
dataset, 2Φ gives the expected coefficient of relationship (Φ,
kinship coefficient), σG

2 is the additive genetic variance (i.e.
genetic variation attributed to additive effects of the multiple
genes affecting the cardiometabolic trait), I is the identity ma-
trix of the unique unshared environmental component and σE

2 is
the environmental variance. This model is used to estimate
narrow-sense heritability (h2), i.e. the proportion of the cardio-
metabolic trait variance attributable to additive genetic effects:

h2 ¼ σ2
G

σ2
G þ σ2

E
¼ σ2

G

σ2
P

ð2Þ

where σP
2 is the total cardiometabolic trait variance.

Genotype–environment interactions Genotype–environ-
ment interactions describe a relationship between genetic var-
iation and changes in the cardiometabolic trait that is condi-
tional on an environmental exposure. The presence of geno-
type–environment interactions can be tested with an extension
of the standard model [equation (1)] [24, 25], which can be
adapted for both discrete and continuous environmental expo-
sures [5].

(a) For a discrete (dichotomous) environmental exposure:
Adaptation can be made by modelling environment-
specific additive genetic and environmental standard de-
viations and a genetic correlation across the two exposure
groups (i.e.. the proportion of variance in a trait explained
by the same genetic factors in the two different exposure
groups):

Ω ¼ 2ϕρGσG1σG2 þ IσE1σE2 ð3Þ
Additive genetic variance σG

2 in equation (1) is
decomposed as a product of additive genetic standard de-
viations for the two different environmental exposure
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groups (σG1 and σG2) and a genetic correlation across the
two groups denoted by ρG [7, 25], i.e. σ2

G ¼ ρGσG1σG2 .
In the same way, environmental variance is decomposed
into the environmental standard deviations for the two
different environmental groups (σE1 and σE2 ), i.e.
σE
2 =σE1σE2. Because the statistical genetic model as-

sumes that the genetic and environmental effect estimates
are uncorrelated, the function does not include an environ-
mental correlation term. In the presence of genotype–en-
vironment interactions, narrow-sense heritability in k-th
(k=1,2) discrete environmental exposure group can then

be estimated as: h2Ek ¼ σ2
Gk

σ2
Gkþσ2

Ek
[7].

(b) For a continuous environmental exposure:Both additive
genetic variance σG

2 and genetic correlation ρG can be
modelled as exponential functions of the levels of the
continuous environmental exposure [5, 26]. Genetic var-
iance is modelled as:

σ2
G ¼ exp αG þ γG ei−e

� �� �
ð4Þ

whereαG and γG are parameters to be estimated, and ei is
the value of the environmental exposure e of the i-th
individual standardised against the sample mean (ē).
Genetic correlation is modelled as an exponential decay
function of the absolute difference of the pair-wise envi-
ronmental exposure differences for the i-th and j-th indi-
viduals as:

ρG ¼ exp −λ ei−e j
�� ��� � ð5Þ

where λ is the parameter to be estimated.

The null hypothesis of genotype–environment interac-
tion is that the expression of the genotype is independent
of the environment. It can be shown that in the absence
of a genotype–environment interaction (null hypothesis):
(1) the genetic variance (σG

2 ) will be homogenous across
the levels of environmental exposure; and (2) the same
quantitative trait measured in participants living in
different levels of environmental exposure (e.g. active
vs inactive or different ages) will have a genetic correla-
tion (ρG) of 1.0 [5, 25, 27]. Hence, the presence of
genotype–environment interactions is determined by test-
ing two null hypotheses, which for the sake of simplicity
will be referred to as class 1 and class 2 interactions
from here on.

(a) Class 1 interaction: The extended model is restricted by
assuming homogenous genetic variance (σG

2 ) across the
levels of the environmental exposure. For a discrete en-
vironmental exposure [equation (3)], this means that the
genetic standard deviations in the two exposure groups

are equal, i.e. σG1 ¼ σG2 . For a continuous environmen-
tal exposure [equation (4)], genetic variance (σG

2 ) is ho-
mogenous across the different environmental levels
when it is independent of the level of the environmental
exposure, i.e. γG=0.

Rejection of the model constraining the genetic vari-
ance of the groups to be equal (i.e. presence of a signif-
icant class 1 interaction) would imply that the magnitude
of the genetic effect on the cardiometabolic trait is sig-
nificantly different depending on the level of the environ-
mental exposure.

(b) Class 2 interaction: The extended model is restricted by
constraining the genetic correlation to 1. For a discrete
environmental exposure [equation (3)], this means that
the same cardiometabolic trait measured in individuals
living in the different levels of the environmental expo-
sure will have a genetic correlation of 1.0, i.e. ρG=1. For
a continuous environmental exposure [equation (5)], ge-
netic correlation (ρG) is equal to 1.0 if: (1) individuals i
and j have the same level of the environmental exposure;
or (2) λ=0. Thus, the null hypothesis of a class 2 inter-
action (i.e. genetic correlation is equal to 1) is equivalent
to λ=0.

Rejection of the model constraining the genetic
correlation between the environmental exposure
groups to equal 1 (i.e. presence of a significant class
2 interaction) implies that a different gene or different
set of genes are contributing to the variance of the
cardiometabolic trait depending on the level of the
environmental exposure.

To test the null hypothesis, each restricted model is compared
with the extended model using the likelihood ratio test (LRT).
The LRT statistic to test the null hypothesis of variance homo-
geneity (σG1 ¼ σG2 or γG=0) is distributed as a χ2 random
variable with one degree of freedom (χ1

2); the LRT to test the
null hypothesis of genetic correlation equal to 1 (ρG=1 or
λ=0) is distributed as a 50:50 mixture of a χ2 random variable
with a point mass at zero and one degree of freedom
(0.5χ0

2+0.5χ1
2) [5].

In the figures representing class 1 and class 2 inter-
actions for continuous environmental exposures, additive
genetic variances and genetic correlations were calculat-
ed based on equations (4) and (5) and the estimates
obtained for αG, γG and λ parameters.

Multiple testing correction The Bonferroni method as-
sumes that the individual tests are independent of each
other. However, the tests conducted in this study were
not independent, so we estimated the total number of ef-
fective cardiometabolic traits and environmental exposures
by accounting for the collective correlation of each set of
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clinical and environmental variables [28, 29]. The method
utilises the estimates of variance of the eigenvalues (λs)
derived from the correlation matrix of the set of variables
and uses the following formula:

Meff ¼ 1þ M−1ð Þ 1−
Var λobsð Þ

M

� �
ð6Þ

where Meff is the number of effective factors and M is the
total number of variables (either clinical or environmental)
included in the correlation matrix.

For the 14 environmental exposures and 11 cardiometabol-
ic traits, 12.407 and 10.507 effective factors were obtained,
respectively. Considering that we tested for both class 1 and
class 2 interactions, the total number of effective tests are
260.721 (12.407×10.507×2). The Bonferroni corrected level
of statistical significance for a threshold of 0.05 is thus
0.00019 (0.05/260.721).

Results

The characteristics of the 16,430 study participants are pre-
sented in Table 1.

Heritability estimates

All 11 cardiometabolic traits showed statistically significant
narrow-sense heritability estimates (h2 range 0.24–0.47;
p < 0.001) (Table 2). Waist circumference conveyed the
highest heritability estimate, followed by the remaining an-
thropometric, lipid and BP traits. Glycaemic traits conveyed
the lowest heritability estimates.

Genotype–environment interactions

To test whether cardiometabolic traits are modulated by
genotype–environment interactions the full model was
compared with its constrained alternatives (i.e. genetic var-
iance homogeneity and genetic correlation equal to 1).
Statistically significant class 1 and class 2 interactions are
summarised in Fig. 1.

Genotype–age interactions All the cardiometabolic traits
except waist circumference, HDL-C and triacylglycerol
showed significant genotype–age interactions. For
fasting glucose, 2 h glucose, SBP and DBP significant
class 1 interactions were observed (Fig. 2a). Class 2
interactions were observed for weight, BMI, total cho-
lesterol, LDL-C, 2 h glucose, SBP and DBP (Fig. 2b),
suggesting that different sets of genes influence the
index traits in older compared with younger participants
(ESM Table 3).

Genotype–sex interactions Genotype–sex interactions were
observed for eight of the 11 cardiometabolic traits. For BMI,
LDL-C, triacylglycerol, SBP and DBP class 1 interactions were
observed (Fig. 3). The additive genetic effects for BMI, DBP,
LDL-C and SBPwere greater in women than inmen, suggesting
that the expression of these cardiometabolic traits is under greater
genetic influence in women than in men (h2=0.44, 0.38, 0.68
and 0.43 in women vs 0.35, 0.26, 0.23 and 0.29 in men for BMI,
DBP, LDL-C and SBP, respectively). The additive genetic ef-
fects for triacylglycerol were greater in men than in women
(h2=0.49 in men vs 0.44 in women). Class 2 interactions were
observed for bodyweight (ρG=0.86±0.08; p=0.049), total cho-
lesterol (ρG=0.79±0.08; p=0.008), triacylglycerol (ρG=0.55
±0.07; p=2×10−10), fasting glucose (ρG=0.73±0.13; p=0.03)
and SBP (ρG=0.84±0.08; p=0.03) (ESM Table 4).

Genotype–physical activity interactions Class 1 interactions
were observed for DBP and 2 h glucose, with the estimated
heritabilities being higher in physically inactive (h2=0.36 and
0.28, respectively) than in active individuals (h2=0.20 and 0.16,
respectively) (ESM Fig. 1). A class 2 interaction was observed
for triacylglycerol (ρG=0.77±0.11; p=0.03) (ESM Table 5).

Genotype–smoking interactions A class 2 genotype–
smoking interaction was observed for body weight
(ρG=0.79±0.11; p=0.04) (ESM Table 6).

Genotype–alcohol intake interactions Body weight, BMI
and 2 h glucose concentrations were influenced by genotype–
alcohol intake interactions. For 2 h glucose, the interaction was
a class 1 interaction (Fig. 4). Both class 1 and class 2 interactions
were observed for body weight and BMI, suggesting that the
interaction is a joint function of genetic effects that differ in mag-
nitude and of different sets of genes influencing the body com-
position traits at different levels of alcohol intake (ESM Table 7).

Genotype–diet interactions In order to quantify genotype–
diet interactions, we constructed a score representing the glob-
al dietary intake (i.e. diet pattern), as described in the Methods
section. In a second step, we analysed the interactions with
each macronutrient intake variable separately.

Genotype–diet pattern interactions Body weight, BMI,
glycaemic traits and SBP were influenced by genotype–diet pat-
tern interactions. For SBP, the additive genetic variance de-
creased as the dietary fat/carbohydrate–fibre ratio increased (class
1 interaction) (ESM Fig. 2a). Class 2 genotype–diet pattern
interactions were observed for body weight, BMI, and fasting
and 2 h glucose concentrations (ESM Fig. 2b; ESM Table 8).

Genotype–carbohydrate intake interactions LDL-C and SBP
showed class 1 genotype–carbohydrate intake interactions
(ESM Fig. 2c), whereas class 2 genotype–carbohydrate intake
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interactions were observed for BMI, waist circumference and
fasting glucose (ESM Fig. 2d; ESM Table 9).

Genotype–protein intake interactions For triacylglycerol and
2 h glucose, class 1 genotype–protein intake interactions were
inferred (ESM Fig. 2e). For body weight and BMI, class 2
genotype–protein intake interactions were observed (ESM
Fig. 2f; ESM Table 10).

Genotype–fibre intake interactions SBP was the only cardio-
metabolic trait where a genotype–fibre intake interaction
(class 1) was evident (ESM Fig. 2g; ESM Table 11).

Genotype–fat intake interactions Body weight, BMI, fasting
glucose and 2 h glucose showed significant genotype–total fat
intake interactions (class 2) (ESM Fig. 3a; ESM Table 12).

Apart from total fat intake, four additional fat intake vari-
ables were analysed (saturated fat, essential fatty acids, PUFA

and MUFA). Fasting glucose showed a class 1 genotype–
saturated fat interaction (ESM Fig. 3b; ESM Table 13).
Body weight, BMI and fasting glucose showed a signifi-
cant class 2 genotype–saturated fat intake interaction
(ESM Fig. 3c). Triacylglycerol, fasting glucose and DBP
showed significant genotype–essential fatty acids and
genotype–PUFA interactions. For triacylglycerol and
DBP, the interactions were class 1 interactions, whereas
for fasting glucose these interactions were class 2 (ESM
Fig. 3d–g; ESM Tables 14 and 15). All anthropometric
and glycaemic traits showed significant genotype–MUFA
interactions, all of which were class 2 interactions (ESM
Fig. 3h; ESM Table 16).

Multiple testing correction

Seven analyses withstood multiple testing correction: geno-
type–age interactions for body weight (class 2) and SBP (class

Table 1 Phenotypic and lifestyle characteristics of VIKING study participants (N= 16,430)

Trait Men Women All

N Mean± SD or % N Mean ±SD or % N Mean± SD or %

Age, years 7983 52.5 ± 7.8 8447 52.7 ± 7.5 16,430 52.6 ± 7.7

Cigarette smoking, % (current/non-smokers) 4814 35.9/64.1 5944 33.5/66.5 10,758 34.6/65.4

Physical activity, % (inactive/active) 6967 71.1/28.9 7485 71.3/28.7 14,452 71.2/28.8

Fasting status, % (<8 h/≥8 h) 7275 18.1/81.9 7433 16.7/83.3 14,708 17.4/82.6

Height, cm 7927 177.8 ± 6.5 8369 164.3 ± 5.8 16,296 170.8 ± 9.1

Weight, kg 7929 82.4 ± 11.9 8367 69.2 ± 12.3 16,296 75.6 ± 13.8

BMI, kg/m2 7923 26.1 ± 3.4 8358 25.7 ± 4.4 16,281 25.8 ± 4.0

Waist circumference, cm 1066 97.6 ± 10.2 839 88.2 ± 12.5 1905 93.5 ± 12.2

TC, mmol/l 7810 5.9 ± 1.2 8251 5.9 ± 1.2 16,061 5.9 ± 1.2

HDL-C, mmol/l 1901 1.3 ± 0.6 1833 1.5 ± 0.6 3734 1.4 ± 0.6

LDL-C, mmol/l 1773 4.3 ± 1.2 1721 4.3 ± 1.2 3494 4.3 ± 1.2

TG, mmol/l 6006 1.6 ± 1.0 6968 1.4 ± 0.8 12,974 1.5 ± 0.9

Fasting glucose, mmol/l 7867 5.6 ± 1.2 8335 5.4 ± 1.0 16,202 5.5 ± 1.1

2 h glucose, mmol/l 7243 6.5 ± 1.9 7778 7.0 ± 1.7 15,021 6.8 ± 1.8

SBP, mmHg 7836 133.9 ± 19.7 8261 132.1 ± 21.1 16,097 133.0 ± 20.4

DBP, mmHg 7833 83.8 ± 12.0 8259 81.0 ± 11.8 16,092 82.4 ± 12.0

Carbohydrate intake, %E 6110 48.5 ± 6.3 6596 51.4 ± 6.0 12,706 50.0 ± 6.3

Protein intake, %E 6110 14.1 ± 2.1 6596 14.9 ± 2.1 12,706 14.5 ± 2.2

Fibre intake, %E 6110 2.1 ± 0.6 6596 2.5 ± 0.6 12,706 2.3 ± 0.6

Total fat intake, %E 6110 35.0 ± 6.2 6596 31.5 ± 5.7 12,706 33.2 ± 6.2

Saturated fat intake, %E 6110 14.7 ± 3.4 6596 13.3 ± 3.1 12,706 14.0 ± 3.3

Essential fatty acid intake, %Ea 6110 4.7 ± 1.7 6596 4.3 ± 1.4 12,706 4.5 ± 1.6

MUFA intake, %E 6110 11.8 ± 2.4 6596 10.8 ± 2.0 12,706 11.3 ± 2.3

PUFA intake, %E 6110 5.2 ± 1.8 6596 4.8 ± 1.4 12,706 5.0 ± 1.6

Alcohol intake, %E 6110 2.2 ± 2.2 6596 1.3 ± 1.6 12,706 1.7 ± 2.0

Data are expressed as mean ± SD for quantitative variables and as per cent for qualitative variables
a Intake of n-3 and n-6 fatty acids

TC, total cholesterol; TG, triacylglycerol
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1); genotype–sex interactions for BMI (class 1) and triacyl-
glycerol (class 1 and class 2) and genotype–alcohol intake
interactions for body weight (class 1 and class 2).

There was no material change to the interpretation of these
results when participants who were not fully fasted were ex-
cluded from the interaction analyses for lipid and glycaemic
traits (ESM Table 17).

Discussion

To our knowledge, this is the first compendium of genotype–
environment interactions for cardiometabolic traits to be re-
ported. The purpose of doing so is to provide a foundation for

subsequent locus-specific analyses of interaction effects and
to aid the interpretation of published locus-specific interaction
studies. After accounting for multiple testing, we observed
robust evidence of genotype–age interactions for body weight
and SBP, genotype–sex interactions for BMI and triacylglyc-
erol, and genotype–alcohol intake interaction for body weight.

There are many published reports concerning interactions
of environmental exposures with genetic factors in cardiomet-
abolic traits (reviewed in [30–33]). Approaches include quan-
titative genetics studies, usually undertaken in twin or family-
based cohorts [4, 6, 7, 34–38] and candidate gene studies,
focused on individual genetic variants, haplotypes, or genetic
risk scores constructed from variants with high biological
priors for interactions or those conveying genome-wide
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Fig. 1 Heat plot showing p values for (a) class 1 and (b) class 2 interac-
tions. Experiment-wise significance threshold is p ≤ 1 × 10−4 (darkest
blue in the heat plot). All environmental exposures are continuous

variables except for sex, physical activity and smoking, which are dichot-
omous variables. TC, total cholesterol; TG, triacylglycerol

Table 2 Heritability estimates
(h2) of cardiometabolic traits and
per cent of cardiometabolic trait
variance attributed to covariate
effects (R2)

Cardiometabolic trait N h2 SE p value Per cent of cardiometabolic
trait variance attributed to
covariate effects (R2)

Weight, kg 16,296 0.35 0.01 9 × 10−118 23.27

BMI, kg/m2 16,281 0.38 0.02 2 × 10−104 2.90

Waist circumference, cm 1905 0.47 0.13 3 × 10−4 15.30

TC, mmol/l 14,366 0.36 0.02 8 × 10−96 7.42

HDL-C, mmol/l 3266 0.37 0.07 8 × 10−9 3.24

LDL-C, mmol/l 3169 0.39 0.07 1 × 10−9 5.78

TG, mmol/l 11,681 0.35 0.03 4 × 10−52 3.00

Fasting glucose, mmol/l 14,507 0.24 0.02 8 × 10−45 4.32

2 h glucose, mmol/l 13,603 0.25 0.02 2 × 10−39 6.41

SBP, mmHg 16,097 0.33 0.02 1 × 10−62 14.69

DBP, mmHg 16,092 0.30 0.02 2 × 10−53 8.58

TC, total cholesterol; TG, triacylglycerol
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significant marginal effects [39–47]. Several quantitative ge-
netic studies have shown that physical activity attenuates the
influence of genetic effects on cardiometabolic traits [4, 6, 34,
35, 37, 38]. However, only FTO–physical activity interactions
in obesity [39–42] have been adequately replicated in candi-
date gene studies. In the present study, we observed evidence
of genotype–physical activity interactions for DBP, 2 h glu-
cose (class 1) and triacylglycerol (class 2), but not for obesity-
related traits. This may be because analyses of the kind

reported here account for the overall modifying effect of ge-
netic variation (polygenic interactions), whereas gene–physi-
cal activity interactions in obesity may be oligogenic in nature.

According to our analyses, variation in the intake of mac-
ronutrients (whether modelled together or separately) may in-
teract with genetic variation to affect body composition and
glycaemic control. Although several candidate gene studies
have focused on gene–diet interactions (e.g. [43–47]), there
are few quantitative genetics studies on this topic, and these
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were restricted in scope and conducted in relatively small
cohorts [35]. On the other hand, family-based studies have
reported class 2 genotype–smoking interactions with serum
leptin levels (an important endophenotype of adiposity) [7,
36], and those findings are consistent with the current analyses
for body weight.

Although this is a hypothesis-generating study, and as such
one might argue against multiple test adjustments owing to the
risk of a type II error [48], we adopted a conservative approach
to minimise the number of false-positives reported. Neverthe-
less, as described in the Results section, many of the statistical
models yielded nominal evidence of interactions for the envi-
ronmental exposures and cardiometabolic traits assessed. We
present those findings, as the approach used here is orthogonal
to standard approaches used to model genotype–environment
interactions; thus, the combination of these approaches may
help verify the presence or absence of interaction effects.
Despite the relatively large sample size used here, it is of
course likely that some of the hypothesis tests were underpow-
ered. Statistical power may be diminished by the imprecise
nature of the self-reported methods used to assess many of the
environmental exposures and the need to dichotomise some of
these variables for analysis. Survival bias is a further possible
limitation, as people with the most deleterious genetic and/or
environmental risk characteristics might have been excluded
from the cohort because of early mortality. Systematic error
(bias), on the other hand, may lead to false-positive or false-
negative conclusions: for example, if an environmental expo-
sure is over-reported at high or low levels of the cardiometa-
bolic trait, or a strong correlate [49], an observed genotype–
environment interaction may be false-positive. However, this
limitation clearly does not impact our strongest findings (for
age and sex), as these were objectively assessed. Additionally,
as in other studies including genealogical information from
registries (without genetic validation), the pedigrees are un-
likely to be completely accurate due, for example, to false
paternity. A further consideration is that some environmental
exposures assessed here are to a limited extent influenced by
genetic background [50, 51]; hence, it is possible that what

might on the surface appear to be a genotype–environment
interaction reflects, at least in part, epistasis.

In conclusion, our results suggest that cardiometabolic
traits are heavily influenced by the interactions between the
genotype and environmental exposures. Our data indicate that
future studies focused on identifying specific genetic variants
underlying genotype–environment interactions should focus
on the exposures of age, sex and alcohol intake on body com-
position. Numerous other exposures and outcomes defined
here are also plausible candidates for genotype–environment
interaction.
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