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Abstract Self-selected interval data arise in questionnaire surveys when respondents
are free to answer with any interval without having pre-specified ranges. This type of
data is a special case of interval-censored data in which the assumption of noninfor-
mative censoring is violated, and thus the standard methods for interval-censored data
(e.g. Turnbull’s estimator) are not appropriate because they can produce biased results.
Based on a certain sampling scheme, this paper suggests a nonparametric maximum
likelihood estimator of the underlying distribution function. The consistency of the
estimator is proven under general assumptions, and an iterative procedure for finding
the estimate is proposed. The performance of themethod is investigated in a simulation
study.

Keywords Informative interval censoring · Self-selected intervals · Nonparameric
maximum likelihood estimation · Two-stage data collection · Questionnaire surveys

1 Introduction

When being asked about a quantity, people often answer with an interval if they are not
certain. For example,when asked about the distance to a given town,wewould say “it is
about 60–70km”. This is one of the reasons why in questionnaire surveys respondents
are often allowed to give an answer in the form of an interval to a quantitative question.
One commonquestion format is the so-called range card,where the respondent is asked
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to select from several pre-specified intervals (called “brackets”). Another approach
is known as unfolding brackets. In this case the respondent is asked a sequence of
yes-no questions that narrow down the range in which the respondent’s true value is.
For example, the respondent is first asked “In the past year, did your household spend
less than 500 EUR on electrical items?”. If the answer is “yes”, the next question asks
if they spent more than 400 EUR. If the response to the first question is “no”, the next
question asks if they spent less than 600 EUR and so on. Unfolding brackets can be
designed such that they elicit the same information as in a range-card question. These
formats are often used for asking sensitive questions, e.g. asking about income, because
they allow partial information to be obtained from respondents who are unwilling to
provide exact amounts.

However, there are some issues associated with these approaches. Studies have
found that the choice of bracket values in range-card questions is likely to influence
responses. This is known as the bracketing effect or range bias (see, e.g., McFadden
et al. 2005; Whynes et al. 2004). In questions about usage frequency (e.g. “Howmany
hours per day do you spend on the internet?”), respondents might assume that the
range of response alternatives represents a range of “expected” behaviors. Thus, they
seem reluctant to report behaviors that are “extreme”, i.e. the bottom and top brackets
(see Schwarz et al. 1985). The unfolding brackets format is susceptible to the so-called
anchoring effect (see, e.g., Furnham and Boo 2011; Van Exel et al. 2006), i.e. answers
are biased toward the starting value (500 EUR in the example above). Respondents
might perceive the initial value as representing a reasonable value of the quantity
in question. It serves as an “anchor” or reference point, and respondents adjust their
answer to be closer to the anchor than the estimate they had before seeing the question.

It is intuitively plausible that bracketing and anchoring effects would be avoided if
the respondent is free to state any interval without having any hints like pre-specified
values, in other words, if the question is open-ended. One such format is called
respondent-generated intervals, proposed and investigated by Press and Tanur (see,
e.g., Press and Tanur 2004a, b and the references therein). In this approach the respon-
dent is asked to provide both a point value (a best guess for the true value) and an
interval (a lower and an upper bound) to a question. They used hierarchical Bayesian
methods to obtain point estimates and credibility intervals that are based on both the
point values and the intervals.

Related to the respondent-generated intervals approach is the self-selected interval
(SSI) approach suggested by Belyaev and Kriström (2010), where the respondent is
free to provide any interval containing his/her true value. They proposed a maximum
likelihood estimator of the underlying distribution based on SSI data. However, this
estimator relies on certain restrictive assumptions on some nuisance parameters. To
avoid such assumptions, Belyaev and Kriström (2012, 2015) introduced a novel two-
stage approach. In the first stage of data collection (we will call it the pilot stage),
respondents are asked to state single self-selected intervals. In the second stage (the
main stage), each respondent from a new sample is asked two questions: (i) to provide
a SSI and then (ii) to select from several sub-intervals of the SSI the one thatmost likely
contains his/her true value. The sub-intervals in the second question of the main stage
are generated from the SSIs collected in the pilot stage. Belyaev and Kriström (2012,
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2015) developed a nonparametric maximum likelihood estimator of the underlying
distribution for two-stage SSI data.

Data consisting of self-selected intervals or respondent-generated intervals (without
the point values) are a special case of interval-censored data. Let X be a random
variable of interest. An observation on X is interval-censored if, instead of observing
X exactly, only an interval (L , R ] is observed, where L < X ≤ R. Interval censoring
also contains right censoring and left censoring as special cases, and if R = ∞, the
observation is right-censored, while if L = −∞ the observation is left-censored (see,
e.g., Zhang and Sun 2010). Interval-censored data are encountered most commonly
when the observed variable is the time to some event (known as time-to-event data,
failure time data, survival data, or lifetime data). The problem of analyzing time-
to-event data appears in many areas such as medicine, epidemiology, engineering,
economics, and demography.

With regard to statistical analysis of interval-censored data, Peto (1973) considered
nonparametric maximum likelihood estimation and employed a constrained Newton-
Raphson algorithm. Turnbull (1976) extended the work of Peto to allow for truncation
and suggested a self-consistency algorithm. Considering the case of no truncation,
Gentleman and Geyer (1994) provided conditions under which Turnbull’s estimator is
indeed a maximum likelihood estimator and is unique. All these methods rely on the
assumption of noninformative censoring, which implies that the joint distribution of
L and R contains no parameters that are involved in the distribution function of X and
therefore does not contribute to the likelihood function (see, e.g., Sun 2006). In the
sampling schemes considered by Belyaev and Kriström (2010, 2012, 2015) this is not
a reasonable assumption, thus the standard methods are not appropriate. The existing
methods for analysis of time-to-event data in the presence of informative interval
censoring require modeling the censoring process and estimating nuisance parameters
(see Finkelstein et al. 2002) or making additional assumptions about the censoring
process (see Shardell et al. 2007). These estimators are specific for time-to-event data
and are not directly applicable in the context that we are discussing.

In this paper, we extend the work of Belyaev and Kriström (2012, 2015) by consid-
ering a sampling scheme where the number of sub-intervals in the second question of
the main stage is limited to two or three, which is motivated by the fact that a question
with a large number of sub-intervals might be difficult to implement in practice (e.g.,
in a telephone interview). In Sect. 2, we describe the sampling scheme. Section 3 intro-
duces the statistical model. In Sect. 4, a nonparametric maximum likelihood estimator
of the underlying distribution is proposed, and some of its properties are established.
In Sect. 5, the results of a simulation study are presented, and Sect. 6 concludes the
paper. Proofs and auxiliary results are given in the Appendix.

2 Sampling scheme

We consider the following two-stage scheme for collecting data. In the pilot stage,
a random sample of n0 individuals is selected and each individual is asked to state
an interval containing his/her value of the quantity of interest. It is assumed that the
endpoints of the intervals are rounded, for example, to the nearest integer or to the
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nearest multiple of 10. Thus, instead of (21.3, 47.8] respondents will answer with
(21, 48] or (20, 50].

Let d0 < d1 < . . . < dk−1 < dk be the endpoints of all observed intervals. The
set {d0, . . . , dk} can be seen as a set of typical endpoints. The data, collected in the
pilot stage are used only for constructing the set {d0, . . . , dk}, which is then needed
for the the main stage. In the case that a similar survey is conducted again, a new pilot
stage is not necessary—the data from the previous survey can be used for constructing
{d0, . . . , dk}.

In the main stage, a new random sample of individuals is selected and each indi-
vidual is asked to state an interval containing his/her value of the quantity of interest.
We refer to this first question as Qu1. If the interval has endpoints that do not belong
to {d0, . . . , dk}, we exclude the respondent from the collected data. If the endpoints
of the stated interval belong to {d0, . . . , dk}, then the interval is split into two or three
sub-intervals with endpoints from {d0, . . . , dk} and the respondent is asked to select
one of these sub-intervals (the points of split are chosen in some random fashion; for
details see Sect. 3). We refer to this second question as Qu2. The respondent may
refuse to answer Qu2, and this will be allowed for.

Let us define a set of intervals V = {v1, . . . , vk}, where v j = (d j−1, d j ], j =
1, . . . , k, and let U = {u1, . . . ,um} be the set of all intervals that can be expressed as
a union of intervals from V , i.e. U = {(dl , dr ] : dl < dr , l, r = 0, . . . , k}. For exam-
ple, if V = {(0, 5], (5, 10], (10, 20]}, then U = {(0, 5], (5, 10], (10, 20], (0, 10],
(5, 20], (0, 20]}. We denote Jh to be the set of indices of intervals from V contained
in uh and H j to be the set of indices of intervals from U containing v j :

Jh = { j : v j ⊆ uh}, h = 1, . . . ,m;
H j = {h : v j ⊆ uh}, j = 1, . . . , k.

In the example with V = {(0, 5], (5, 10], (10, 20]},u5 = (5, 20] = v2 ∪ v3, hence
J5 = {2, 3}. Similarly, the interval v3 = (10, 20] is contained in u3,u5 and u6, thus
H3 = {3, 5, 6}.

We can distinguish three types of answers in the main stage:

type 1. (uh;NA), when the respondent stated interval uh at Qu1 and refused to
answer Qu2;

type 2. (uh; v j ), when the respondent stated interval uh at Qu1 and v j at Qu2, where
v j ⊆ uh ;

type 3. (uh;us), when the respondent stated interval uh at Qu1 and us at Qu2, where
us is a union of at least two intervals from V and us ⊂ uh .

In the case when uh ∈ V , Qu2 is not asked, but we input the answer from Qu1, and
we consider this as an answer of type 2 : (uh; v j = uh). The number of respondents
in the main stage is denoted by n (not counting those who were excluded).

Remark 1 This sampling schemehas two essential differences from the one introduced
by Belyaev andKriström (2012, 2015), namely (i) they include in the data for themain
stage only respondents who stated at Qu1 an interval that was observed at the pilot
stage, while we allow any interval with endpoints from {d0, . . . , dk}, and (ii) in their
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scheme the interval stated at Qu1 is split into all the sub-intervals v j that it contains,
while in our scheme it is split into two or three sub-intervals with endpoints from
{d0, . . . , dk}.
Remark 2 A question that arises naturally is: How large should the sample in the pilot
stage be so that the proportion of excluded respondents in the main stage is sufficiently
small? As noticed by Belyaev and Kriström (2015), this question is related to the
problem of estimating the number of species in a population, which dates back to a
work by Good (1953) and has been extensively treated in the literature since then.
Belyaev and Kriström (2015) suggested a rule for determining the sample size for the
pilot stage (stopping the sampling process) based on results by Good (1953). A similar
stopping rule can be utilized for our sampling scheme.

3 Statistical model

The unobserved (interval-censored) values x1, . . . , xn of the quantity of interest are
considered to be values of independent and identically distributed (i.i.d.) random
variables X1, . . . , Xn with distribution function F(x) = P (Xi ≤ x). Our goal is
to estimate F(x) by estimating the probability mass placed on each interval v j =
(d j−1, d j ], i.e. estimating the probabilities

q j = P (Xi ∈ v j ) = F(d j ) − F(d j−1), j = 1, . . . , k.

Thereby, the estimated distribution function will be a step function with jumps only
at the points d1, . . . , dk . To avoid complicated notation, we assume that q j > 0 for
all j = 1, . . . , k. The case when q j = 0 for some j can be treated similarly. Actually,
if we have observed at Qu1 an interval uh containing v j , it is plausible to assume
that q j > 0. If for some j0 we have not observed any uh containing v j0 , then we can
assume that q j0 = 0 and proceed by estimating the remaining q j ’s.

Let Hi , i = 1, . . . , n, be i.i.d. random variables. If the i-th respondent has stated
interval uh at Qu1, then Hi = h. The event {Hi = h} implies {Xi ∈ uh}. Let us denote

wh| j = P (Hi = h | Xi ∈ v j ),

p j |h = P (Xi ∈ v j | Hi = h).

The probabilities q j are the main parameters of interest, while the conditional prob-
abilities wh| j are nuisance parameters. If wh| j does not depend on j , the assumption
of noninformative censoring will be satisfied. In our case, there are no grounds for
making such assumptions about wh| j , and therefore we need the data on Qu2 in order
to estimate wh| j .

We are considering a sampling scheme where, for the purpose of asking Qu2, the
interval stated at Qu1 is split into two or three sub-intervals (we refer to these as 2-split
design and 3-split design, respectively). We will now discuss how the points of split
are determined. Let J ◦

h be the set of indices of points from {d0, . . . , dk} that are in
the interior of interval uh , i.e. J ◦

h = { j : dlh < d j < drh , (dlh , drh ] = uh}, h =
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1, . . . ,m. In case of a 2-split design, the interval uh (stated at Qu1) is split into two
sub-intervals: (dlh , d j ] and (d j , drh ], and the respondent is asked to select one of these
sub-intervals. The point d j is chosen with probability δh,d j ,

∑
j∈J ◦

h
δh,d j = 1. In case

of a 3-split design, uh is split into three sub-intervals: (dlh , di ], (di , d j ], and (d j , drh ].
The points di and d j are chosen with probability δh,di ,d j ,

∑
i, j∈J ◦

h , i< j δh,di ,d j = 1.
We denote by γt the probability that a respondent gives an answer of type t , for

t = 1, 2, 3, and similarly γht denotes the probability that a respondent, who stated uh
at Qu1, gives an answer of type t for t = 1, 2, 3. Later on, we will need to assume
that γ2 > 0 and γh2 > 0. Sufficient conditions for this are given by the following
proposition.

Proposition 1 (i) If δh,d j > 0 for all j ∈ J ◦
h , and plh+1|h > 0 or prh |h > 0, then

γ2 > 0 and γh2 > 0.
(ii) If δh,di ,d j > 0 for all i, j ∈ J ◦

h , and plh+1|h > 0 or prh |h > 0, then γ2 > 0 and
γh2 > 0.

Let δh, j be the probability that uh is split so that one of the resulting sub-intervals
is v j , and let δh∗s be the probability that uh is split so that one of the resulting sub-
intervals is us . It is easy to see that the probabilities δh, j and δh∗s can be expressed in
terms of δh,d j in case of a 2-split design, and in terms of δh,di ,d j in case of a 3-split
design.

4 Estimation

In this section we discuss the estimation of the distribution function F(x). We prove
the consistency of a proposed nonparametric maximum likelihood estimator of the
probabilities q j given that the conditional probabilities wh| j are known. We then
show that if we plug in a consistent estimator of wh| j , the estimator of q j is still
consistent. Thereafter, we suggest an estimator of wh| j and show its consistency.
Iterative procedures are proposed for finding the estimates of q j and wh| j .

4.1 Estimating the probabilities q j

Henceforth we will need the following frequencies:

nh,NA = Number of respondents who stated uh at Qu1 and NA (no answer) at Qu2;
nhj =Number of respondents who stated uh at Qu1 and v j at Qu2, where v j ⊆ uh ;
nh∗s = Number of respondents who stated uh at Qu1 and us at Qu2, where us is a

union of at least two intervals from V and us ⊂ uh ;
nh• = Number of respondents who stated uh at Qu1 and any sub-interval at Qu2;
n• j = Number of respondents who stated v j at Qu2.

We denote by n′, n′′, and n′′′ the number of respondents who gave an answer of type
1, 2, and 3, respectively. The following are satisfied:

n′ =
∑

h

nh,NA, n′′ =
∑

j

n• j , n′′′ =
∑

h,s

nh∗s, n′ + n′′ + n′′′ = n.
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If respondent i has given an answer of type 1, i.e. uh at Qu1 and NA at Qu2, then
the contribution to the likelihood is P (Hi = h) = ∑

j∈Jh
wh| j q j , where the equality

follows from the law of total probability. If an answer of type 2 is observed, i.e. uh at
Qu1 and v j at Qu2, then the contribution to the likelihood is δh, j wh| j q j . And in the
case that we observe an answer of type 3, i.e. uh at Qu1 and us at Qu2, the contribution
to the likelihood is δh∗s

∑
j∈Js wh| j q j . Thus, the log-likelihood function (normed by

n) corresponding to the main-stage data is

log L(q)

n
= 1

n

∑

h

nh,NA log

( ∑

j∈Jh

wh| j q j

)

+ 1

n

∑

h, j

nh j log(δh, j wh| j q j )

+ 1

n

∑

h,s

nh∗s log
(

δh∗s
∑

j∈Js

wh| j q j

)

+ c1

= n′

n

∑

h

nh,NA

n′ log

( ∑

j∈Jh

wh| j q j

)

+ n′′

n

∑

j

n• j
n′′ log q j

+ n′′′

n

∑

h,s

nh∗s
n′′′ log

( ∑

j∈Js

wh| j q j

)

+ c2, (1)

where c1 does not depend on q = (q1, . . . , qk) and

c2 = c1 + 1

n

∑

h, j

nh j log(δh, j wh| j ) + 1

n

∑

h,s

nh∗s log δh∗s .

Remark 3 If n′′′ = 0, the log-likelihood (1) has essentially the same form as the one
in Belyaev and Kriström (2012).

We say that q̃ is an approximate maximum likelihood estimator (see, e.g., Rao 1973
p. 353) of q if

L (̃q) ≥ c sup
q∈A

L(q), 0 < c < 1, (2)

where L(q) is the likelihood function and A is an admissible set of values of q. In our
case the admissible set is A = {q : 0 < q j < 1,

∑k
j=1 q j = 1}.

Theorem 1 Let q̃ be an approximate maximum likelihood estimator of q and q0 be
the vector of true probabilities. If the conditional probabilities wh| j are known and

γ2 > 0, then q̃
a.s.−→ q0 as n −→ ∞.

In order to find the maximizer of the log-likelihood log L(q), we will consider the
Lagrange function:

L(q, λ) = log L(q)

n
+ λ(q1 + · · · + qk).
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If q = (q1, . . . , qk) is a stationary point of the log-likelihood function log L(q) in A,
then there exists λ such that (q, λ) is a solution of

∂L(q, λ)

∂q j
= 0, j = 1, . . . , k. (3)

From the concavity of the log-likelihood function (see Proposition 2 in the Appendix),
it follows that it can have no more than one stationary point. It is easy to see that
the same is true for L(q, λ). Therefore, if we find a stationary point of L(q, λ), it
corresponds to the unique stationary point of the log-likelihood, which will be the
maximum likelihood estimate.

By taking the derivative of L(q, λ) with respect to q j , we can write equations (3)
as follows:

n′

n

∑

h∈H j

nh,NA

n′
wh| j

∑
i∈Jh

wh|i qi
+ n′′

n

n• j
n′′

1

q j

+ n′′′

n

∑

h,s∈H j

nh∗s
n′′′

wh| j
∑

i∈Js wh|i qi
+ λ = 0. (4)

By multiplying (4) by q j , then taking the sum over j = 1, . . . , k and using the
identities

k∑

j=1

( ∑

h∈H j

nh,NA

n′
wh| j q j

∑
i∈Jh

wh|i qi

)

= 1,
k∑

j=1

( ∑

h,s∈H j

nh∗s
n′′′

wh| j q j
∑

i∈Js wh|i qi

)

= 1,

we get that λ = −1. Thus, equations (4) can be written as:

q j = n′′

n

n• j
n′′ + n′

n

∑

h∈H j

nh,NA

n′
wh| j q j

∑
i∈Jh

wh|i qi
+ n′′′

n

∑

h,s∈H j

nh∗s
n′′′

wh| j q j
∑

i∈Js wh|i qi
.

(5)

For finding the solution of (5), we suggest the following iterative process, which is
similar to the one proposed by Belyaev and Kriström (2012):

q(1)
j = 1/k,

q(r+1)
j = n′′

n

n• j
n′′ + n′

n

∑

h∈H j

nh,NA

n′
wh| j q(r)

j
∑

i∈Jh
wh|i q(r)

i

+ n′′′

n

∑

h,s∈H j

nh∗s
n′′′

wh| j q(r)
j

∑
i∈Js wh|i q(r)

i

, r = 1, 2, . . .
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Whenq(r+1) is close enough toq(r), the process is stopped.Our simulation experiments
showed a very fast convergence of this iterative procedure to the true solution.

Corollary 1 If we insert a strongly consistent estimator ofwh| j into the log-likelihood
(1) and γ2 > 0, then the approximate maximum likelihood estimator q̃ is strongly
consistent.

4.2 Estimating the conditional probabilities wh| j

We propose an estimator of the probabilities p j |h, j ∈ Jh . Then, an estimator ofwh| j
can be obtained using the Bayes formula:

w̃h| j = p̃ j |h ŵh
∑

s∈H j
p̃ j |s ŵs

, (6)

where p̃ j |h is an estimator of p j |h and

ŵh = nh• + nh,NA

n

is a strongly consistent estimator of wh = P (Hi = h). Note that we need to estimate
wh| j only for those h that have been observed at Qu1.

Let

n′′
h =

∑

j

nh j , n′′′
h =

∑

s

nh∗s, n′′
h + n′′′

h = nh•.

We will consider the estimation of p j |h for a given h. For simplicity, we assume that
p j |h > 0 for all j ∈ Jh ; the case when some of them are zero can be treated similarly.
Let ph be the vector of p j |h for j ∈ Jh . The log-likelihood function (normed by nh•),
based on the respondents who stated the interval uh at Qu1 and any sub-interval at
Qu2, will be:

log Lh(ph)
nh•

= 1

nh•

∑

j

nh j log(δh, j p j |h) + 1

nh•

∑

s

nh∗s log
(

δh∗s
∑

j∈Js

p j |h
)

+ c3

= n′′
h

nh•

∑

j

nh j
n′′
h
log p j |h + n′′′

h

nh•

∑

s

nh∗s
n′′′
h

log

( ∑

j∈Js

p j |h
)

+ c4, (7)

where c3 does not depend on ph and

c4 = c3 + 1

nh•

∑

j

nh j log δh, j + 1

nh•

∑

s

nh∗s log δh∗s .

The admissible set is Ah = {ph : 0 < p j |h < 1,
∑

j∈Jh
p j |h = 1}.
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Theorem 2 Let p̃ j |h be an approximate maximum likelihood estimator of p j |h and

p0j |h be the true probability, j ∈ Jh . If γh2 > 0, then p̃ j |h
a.s.−→ p0j |h as n −→ ∞.

Remark 4 From the strong law of large numbers, it follows that ŵh is a strongly
consistent estimator of wh . This, together with Theorem 2, implies that the estimator
w̃h| j is strongly consistent.

The maximizer of the log-likelihood function log Lh(ph) can be found by employ-
ing the same method we used for log L(q). The concavity of log Lh(ph) is shown in
Proposition 3 (see the Appendix). The unique stationary point is the solution of:

p j |h = n′′
h

nh•
nhj
n′′
h

+ n′′′
h

nh•

∑

s∈H j

nh∗s
n′′′
h

p j |h
∑

i∈Js pi |h
, j ∈ Jh .

Again, we suggest an iterative process for finding the solution:

p(1)
j |h = 1

|Jh | ,

p(r+1)
j |h = n′′

h

nh•
nhj
n′′
h

+ n′′′
h

nh•

∑

s∈H j

nh∗s
n′′′
h

p(r)
j |h

∑
i∈Js p(r)

i |h
, r = 1, 2, . . .

Remark 5 If nh• = 0, i.e. if the interval uh has not been observed in type 2 or in
type 3 answers, we do not have any observations in order to estimate the probabilities
p j |h, j ∈ Jh . In that presumably rare case, we need to make assumptions about those
probabilities. In our simulation experiments, we have assumed that all sub-intervals
v j , j ∈ Jh , are equally likely, i.e. p j |h = 1/|Jh |

5 Simulation study

We have conducted a simulation study in order to investigate the behavior of the
proposed estimator. The data for the pilot stage and for Qu1 at the main stage are
generated in the same way. Here we describe it for Qu1 in order to avoid unnecessary
notations. In all simulations, the random variables X1, . . . , Xn are independent and
have a Weibull distribution:

F(x) = P (Xi ≤ x) = 1 − exp(−(x/σ)a), for x > 0,

where a = 1.5 and σ = 80. Let UL
1 , . . . ,UL

n and UR
1 , . . . ,UR

n be sequences of i.i.d.
random variables defined below:

UL
i = Mi U

(1)
i + (1 − Mi )U

(2)
i ,

UR
i = Mi U

(2)
i + (1 − Mi )U

(1)
i ,

(8)
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Table 1 Summary statistics
about the length of the interval at
Qu1 (sample size is 2000)

Min. 1st quart. Median Mean 3rd quart. Max.

10.0 40.0 50.0 51.9 60.0 80.0
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x

F
(x

)

Fig. 1 True c.d.f. (the smooth curve), estimated c.d.f. F̃(x) using the 2-split design (the stepwise curve
with jumps at 10, 20, 30, . . .), and empirical c.d.f. F̂n(x) of the uncensored observations for sample size
n = 400

where Mi ∼ Bernoulli(1/2), U (1)
i ∼ Uniform(0, 20), and U (2)

i ∼ Uniform(20, 50).
Let (L1i , R1i ] be the interval stated by the i-th respondent at Qu1. The left endpoints
are generated as L1i = (Xi −UL

i )1{Xi −UL
i > 0} rounded downwards to the nearest

multiple of 10. The right endpoints are generated as R1i = Xi +UR
i rounded upwards

to the nearest multiple of 10. For the second question (Qu2) we have considered three
different designs: splitting the interval stated at Qu1 into two sub-intervals, into three
sub-intervals, and into all sub-intervals v j that it contains. The latter corresponds to
the sampling scheme explored by Belyaev and Kriström (2012). In case of a 2-split
design, the point of split is chosen equally likely from all the possible points d j that
are within the interval. Similarly, in case of a 3-split design, both points of split are
chosen equally likely. The probability that a respondent gives no answer to Qu2 is
1/6, and the sample size for the pilot stage is equal to 200 unless stated otherwise. The
computations were performed in R (R Core Team 2015).

Some descriptive statistics about the length of the interval at Qu1 for a simulated
sample of size 2000 are shown in Table 1.

Figures 1 and 2 illustrate the results of simulationswith the 2-split design for sample
sizes n = 400 and n = 2000. The estimated distribution function F̃(x) = ∑

j : d j≤x q̃ j

is plotted togetherwith the true distribution function F(x) and the empirical cumulative
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0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
(x

)

Fig. 2 True c.d.f. (the smooth curve), estimated c.d.f. F̃(x) using the 2-split design (the stepwise curve
with jumps at 10, 20, 30, . . .), and empirical c.d.f. F̂n(x) of the uncensored observations for sample size
n = 2000

distribution function (e.c.d.f.) of the uncensored observations x1, . . . , xn , i.e. F̂n(x) =
(1/n)

∑n
i=1 1{xi ≤ x}. We can see that the estimate F̃(d j ) is very close to true

probability F(d j ) for most j , and when F̃(d j ) deviates from F(d j ) a similar deviation
is observed for F̂n(d j ).

It is of interest to compare the mean square error of different estimators of the
probabilities q j , j = 1, . . . , k, based on different sampling schemes. We have gen-
erated 5000 samples (only the main stage is repeated 5000 times) according to the
three designs described above and calculated the root mean square error (RootMSE)
and the root relative mean square error (RootRelMSE). These are compared with the
corresponding error when q j is estimated from the empirical c.d.f. F̂n(x) of the uncen-
sored observations. Figure 3 shows the results for sample size n = 400 and Fig. 4
shows the results for n = 2000. The design, corresponding to the sampling scheme
in Belyaev and Kriström (2012), is denoted as “all-split”. The error when using the
all-split design is fairly close to the error when q j is estimated using the uncensored
observations x1, . . . , xn . As we can expect, when using the 2-split or 3-split designs,
the errors are a bit larger. We observe similar patterns for n = 400 and n = 2000, the
main difference is that the error decreases with increasing sample size.

In relation to Remark 2, we have performed simulations in order to see what pro-
portion of respondents will be accepted at the main stage when the data are generated
according to the model described above. The results are given in Table 2, where n0 is
the number of respondents at the pilot stage and n+nrej is the number of respondents at
the main stage (accepted and rejected). In the third column are the proportions when
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Fig. 3 Root mean square error (top) and root relative mean square error (bottom) for different estimators
of q j = F(d j ) − F(d j−1), j = 1, . . . , k, for n = 400. The vertical dashed lines correspond to the points
d0, . . . , dk . The respective error for each estimator of q j is plotted against x-coordinate d j

using the sampling scheme of Belyaev and Kriström (2012), and in the fourth col-
umn are the proportions when using the sampling scheme suggested in this paper (the
average proportion over 3000 replications is reported). As expected, the proportion of
accepted is larger for our scheme. For both schemes, the proportion gets close to one
with increasing values of n0.

We have carried out simulations to examine potential bias due to wrongly assuming
thatwh| j does not depend on j . This assumption implies noninformative censoring and
in this case our method is essentially equivalent to the estimator proposed by Turnbull
(1976).We compare the estimator suggested in this paper (i.e. estimating bothwh| j and
q j from the data) with Turnbull’s estimator (i.e. assuming that wh| j does not depend
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Fig. 4 Root mean square error (top) and root relative mean square error (bottom) for different estimators
of q j = F(d j )− F(d j−1), j = 1, . . . , k, for n = 2000. The vertical dashed lines correspond to the points
d0, . . . , dk . The respective error for each estimator of q j is plotted against x-coordinate d j

Table 2 Average proportion of
accepted respondents in the
main stage (based on 3000
replications)

n0 n + nrej BK2012 scheme Modified scheme

200 400 0.8715 0.9852

200 1000 0.8721 0.9850

200 2000 0.8714 0.9855

500 1000 0.9486 0.9944

500 2500 0.9485 0.9945

500 5000 0.9485 0.9944
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Fig. 5 Bias and root mean square error for our estimator (solid curve) and Turnbull’s estimator (dashed
curve), for n = 2000. The vertical dashed lines correspond to the points d0, . . . , dk . The respective bias
and error for each estimator of q j are plotted against x-coordinate d j

on j). For generating data, we use the model stated above with Mi ∼ Bernoulli(0.02)
in (8). This model corresponds to a specific behavior of the respondents, that is, at Qu1
they tend to choose an interval in which the true value is located in the right half of the
interval. Figure 5 presents the bias and the root mean square error of the two estimators
based on 5000 simulated samples (only the main stage is repeated) of size n = 2000
for both the 2-split and 3-split designs. The bias of our estimator is negligible, while
the bias of Turnbull’s estimator is substantially larger. The RootMSE of Turnbull’s
estimator is larger, as well. We see that Turnbull’s method on average overestimates
the mass in the left tail because it puts mass uniformly over the observed interval when
in fact it should put more mass to the right. It is also of interest to compare Turnbull’s
estimator applied to Qu1 data with Turnbull’s estimator applied to 2-split data. The
results, based on 5000 simulated samples of size n = 2000, are shown in Fig. 6. As
we might expect, the bias is much larger if only the data from Qu1 are used.
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Fig. 6 Bias of Turnbull’s estimator applied to Qu1 data (short-dashed curve) and applied to 2-split data
(long-dashed curve), n = 2000

6 Concluding comments

In this paper, we considered a two-stage scheme for collecting self-selected interval
data in which the number of sub-intervals in the second question of the main stage is
limited to two or three. We suggested a nonparametric maximum likelihood estimator
of the underlying distribution function and showed its strong consistency under easily
verifiable conditions. Our simulations indicated a good performance of the proposed
estimator—its error is comparable with the error of the empirical c.d.f. of the uncen-
sored observations. It is important to note that the censoring in this context is imposed
by the design of the question. A design allowing uncensored values might introduce
bias in the estimation if respondents are forced to give an exact value of a quantity that
is hard to evaluate exactly (e.g., number of hours spent on the internet), and conse-
quently they give a rough “best guess”. We also showed via simulations that ignoring
the informative censoring and thus applying a standard method (Turnbull’s estimator)
can lead to serious bias.

It would be of interest to investigate the accuracy of the estimator theoretically, but
we leave that as a future work.
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Appendix

Proof of Proposition 1 Using the definitions of γ2 and γh2, we have that γ2 =∑
h γh2 wh . Note that γh2 is defined for h such that wh > 0. Let us consider a

2-split design. Then γh2 = δh,dlh+1 plh+1|h + δh,drh−1 prh |h, and (i) is trivial. Now,
let us consider a 3-split design. Then

γh2 = δh,dlh+1,• plh+1|h + δh,•,drh−1 prh |h +
∑

j∈J ◦
h \{rh−1}

δh,d j ,d j+1 p j+1|h,

where δh,dlh+1,• is the probability to choose dlh+1 and any other point from J ◦
h , and

δh,•,drh−1 defined similarly. From here (ii) follows trivially. ��

Proposition 2 For each j ∈ {1, . . . , k}, let at least one of the following be satisfied:

(a1) there exists h, such that j ∈ Jh, nh,NA > 0 and wh| j > 0;
(a2) n• j > 0;
(a3) there exist h, s, such that j ∈ Js, nh∗s > 0 and wh| j > 0.

Then the log-likelihood function log L(q) is strictly concave on A.

Proof of Proposition 2 Let q1 and q2 be any two points in A such that q1 �= q2. The
points q(t) = (1 − t)q1 + tq2, t ∈ [0, 1], constitute the segment that connects q1
and q2. Because A is a convex set, q(t) ∈ A.

We will show that the function ϕ(t) = log L(q(t)), t ∈ [0, 1], is strictly concave.
We have

d2

dt2
log

( ∑

j∈Jh

wh| j q j (t)

)

= −
(∑

j∈Jh
wh| j (q j2 − q j1)

)2

(∑
j∈Jh

wh| j q j (t)
)2 ,

d2

dt2
log q j (t) = − (q j2 − q j1)

2

(q j (t))2
,

d2

dt2
log

( ∑

j∈Js

wh| j q j (t)

)

= −
(∑

j∈Js wh| j (q j2 − q j1)
)2

(∑
j∈Js wh| j q j (t)

)2 .
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From the above it follows that

d2

dt2

(∑

j

nh,NA log

( ∑

j∈Jh

wh| j q j (t)

))

≤ 0, (9)

d2

dt2

(∑

j

n• j log q j (t)

)

≤ 0, (10)

d2

dt2

(∑

h,s

nh∗s log
( ∑

j∈Js

wh| j q j (t)

))

≤ 0. (11)

If at least one of the conditions (a1)–(a3) is fulfilled, then at least one of the inequalities
(9)–(11) will be strict. Therefore the second derivative of ϕ(t) is negative, and the log-
likelihood function log L(q) is strictly concave. ��
Lemma 1 (Information inequalities) Let

∑
i ai and

∑
i bi be convergent series of

positive numbers such that
∑

i ai ≥ ∑
i bi . Then

∑

i

ai log
bi
ai

≤ 0. (12)

Further, if ai ≤ 1, bi ≤ 1, ∀i , then

−
∑

i

ai log
bi
ai

≥ 1

2

∑

i

ai (bi − ai )
2. (13)

A proof can be found in Rao (1973, p. 58).

Proof of Theorem 1 Using the notations γ̂1 = n′/n, γ̂2 = n′′/n, γ̂3 = n′′′/n and

ŵh,NA = nh,NA

n′ , wh =
∑

j∈Jh

wh| j q j , q̂ j = n• j
n′′ ,

ŵh∗s = nh∗s
n′′′ , wh∗s =

∑

j∈Js

wh| j q j ,

we can write the log-likelihood (1) in a more compact way:

log L(q)

n
= γ̂1

∑

h

ŵh,NA logwh + γ̂2
∑

j

q̂ j log q j + γ̂3
∑

h,s

ŵh∗s logwh∗s + c2.

(14)

By convention, we define 0 log 0 = 0 and 0 log a
0 = 0 on the basis that

limx↓0 x log x = 0 and limx↓0 x log a
x = 0 for a > 0. Taking logarithm of (2)
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and dividing by n, we get

1

n
log L (̃q) ≥ log c

n
+ 1

n
sup log L(q) ≥ log c

n
+ 1

n
log L(q0).

After substituting log L(·) from (14), the above inequality becomes

γ̂1
∑

h

ŵh,NA log w̃h + γ̂2
∑

j

q̂ j log q̃ j + γ̂3
∑

h,s

ŵh∗s log w̃h∗s

≥ log c

n
+ γ̂1

∑

h

ŵh,NA logw0
h + γ̂2

∑

j

q̂ j log q
0
j + γ̂3

∑

h,s

ŵh∗s logw0
h∗s, (15)

where w̃h = ∑
j∈Jh

wh| j q̃ j , w0
h = ∑

j∈Jh
wh| j q0j , and w̃h∗s, w0

h∗s are defined
similarly. From inequality (12) the following are true:

∑

h

ŵh,NA log ŵh,NA ≥
∑

h

ŵh,NA log w̃h,

∑

j

q̂ j log q̂ j ≥
∑

j

q̂ j log q̃ j ,

∑

h,s

ŵh∗s log ŵh∗s ≥
∑

h,s

ŵh∗s log w̃h∗s .

From the above and (15) it follows that

γ̂1
∑

h

ŵh,NA log ŵh,NA + γ̂2
∑

j

q̂ j log q̂ j + γ̂3
∑

h,s

ŵh∗s log ŵh∗s

≥ γ̂1
∑

h

ŵh,NA log w̃h + γ̂2
∑

j

q̂ j log q̃ j + γ̂3
∑

h,s

ŵh∗s log w̃h∗s

≥ log c

n
+ γ̂1

∑

h

ŵh,NA logw0
h + γ̂2

∑

j

q̂ j log q
0
j + γ̂3

∑

h,s

ŵh∗s logw0
h∗s,

which is equivalent to

0 ≥ γ̂1
∑

h

ŵh,NA log
w̃h

ŵh,NA
+ γ̂2

∑

j

q̂ j log
q̃ j

q̂ j
+ γ̂3

∑

h,s

ŵh∗s log
w̃h∗s
ŵh∗s

≥ log c

n
+ γ̂1

∑

h

ŵh,NA log
w0
h

ŵh,NA
+ γ̂2

∑

j

q̂ j log
q0j
q̂ j

+ γ̂3
∑

h,s

ŵh∗s log
w0
h∗s

ŵh∗s
.

(16)
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From the strong law of large numbers (SLLN) it follows that

γ̂t
a.s.−→ γt

ŵh,NA
a.s.−→ w0

h

q̂ j
a.s.−→ q0j

ŵh∗s
a.s.−→ w0

h∗s

(17)

as n −→ ∞, and therefore

γ̂1
∑

h

ŵh,NA log
w̃h

ŵh,NA
+ γ̂2

∑

j

q̂ j log
q̃ j

q̂ j
+ γ̂3

∑

h,s

ŵh∗s log
w̃h∗s
ŵh∗s

a.s.−→ 0 (18)

as n −→ ∞.
By applying inequality (13), we have

−
(

γ̂1
∑

h

ŵh,NA log
w̃h

ŵh,NA
+ γ̂2

∑

j

q̂ j log
q̃ j

q̂ j
+ γ̂3

∑

h,s

ŵh∗s log
w̃h∗s
ŵh∗s

)

≥ 1

2

(

γ̂1
∑

h

ŵh,NA(w̃h − ŵh,NA)2 + γ̂2
∑

j

q̂ j (q̃ j − q̂ j )
2

+ γ̂3
∑

h,s

ŵh∗s(w̃h∗s − ŵh∗s)2
)

≥ 0,

which implies that

γ̂1
∑

h

ŵh,NA(w̃h − ŵh,NA)2 + γ̂2
∑

j

q̂ j (q̃ j − q̂ j )
2

+ γ̂3
∑

h,s

ŵh∗s(w̃h∗s − ŵh∗s)2
a.s.−→ 0.

Therefore

γ̂2
∑

j

q̂ j (q̃ j − q̂ j )
2 a.s.−→ 0 as n −→ ∞.

Because γ2 > 0 from the above and (17) it follows that

q̃ j
a.s.−→ q0j as n −→ ∞.

��
Proof of Corollary 1 The proof follows the same lines as that of Theorem 1. Let
wh| j be a strongly consistent estimator of wh| j , i.e. wh| j

a.s.−→ wh| j as n −→ ∞.
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In (15) and (16), instead of w0
h and w0

h∗s , we will have w0
h = ∑

j∈Jh
wh| j q0j and

w0
h∗s = ∑

j∈Js wh| j q0j , respectively. The strong consistency of wh| j implies that

w0
h

a.s.−→ w0
h and w0

h∗s
a.s.−→ w0

h∗s as n −→ ∞.

This, together with (17), implies (18), and the rest of the proof is identical. ��

Proposition 3 For each j ∈ Jh, let at least one of the following be satisfied:

(b1) nhj > 0;
(b2) nh∗s > 0 for some s, such that j ∈ Js .

Then the log-likelihood function log Lh(ph) is strictly concave on Ah.

Proof of Proposition 3 Because we consider log Lh(ph) for a fixed h, we will write
p j instead of p j |h , and p instead of ph . Let p1 and p2 be any two points in Ah such
that p1 �= p2. The points p(t) = (1 − t)p1 + tp2, t ∈ [0, 1], constitute the segment
that connects p1 and p2. Because Ah is a convex set, p(t) ∈ Ah .

Wewill show that the functionψ(t) = log Lh(p(t)), t ∈ [0, 1], is strictly concave,

ψ(t) =
∑

j

nh j log p j (t) +
∑

s

nh∗s log
( ∑

j∈Js

p j (t)

)

+ nc4.

We have

d2

dt2
log p j (t) = − (p j2 − p j1)

2

(p j (t))2
,

d2

dt2
log

( ∑

j∈Js

p j (t)

)

= −
(∑

j∈Js (p j2 − p j1)
)2

(∑
j∈Js p j (t)

)2 .

From the above it follows that

d2

dt2

(∑

j

nh j log p j (t)

)

≤ 0 and
d2

dt2

(∑

s

nh∗s log
( ∑

j∈Js

p j (t)

))

≤ 0.

(19)

If at least one of the conditions (b1) and (b2) is fulfilled, then at least one of the
inequalities in (19) will be strict. Therefore the second derivative of ψ(t) is negative,
and the the log-likelihood function log Lh(p) is strictly concave. ��
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Proof of Theorem 2 The proof follows the same arguments as that of Theorem 1.
Using the notations

γ̂h2 = n′′
h

nh•
, γ̂h3 = n′′′

h

nh•
, p̂ j |h = nhj

n′′
h

,

p̂∗s|h = nh∗s
n′′′
h

, p∗s|h =
∑

j∈Js

p j |h,

we can write the log-likelihood (7) in a more compact way:

log Lh(ph)
nh•

= γ̂h2
∑

j

p̂ j |h log p j |h + γ̂h3
∑

s

p̂∗s|h log p∗s|h + c4. (20)

Using (2) and (12) we get

0 ≥ γ̂h2
∑

j

p̂ j |h log
p̃ j |h
p̂ j |h

+ γ̂h3
∑

s

p̂∗s|h log
p̃∗s|h
p̂∗s|h

≥ log c

nh•
+ γ̂h2

∑

j

p̂ j |h log
p0j |h
p̂ j |h

+ γ̂h3
∑

s

p̂∗s|h log
p0∗s|h
p̂∗s|h

.

From the SLLN it follows that

γ̂ht
a.s.−→ γht

p̂ j |h
a.s.−→ p0j |h

p̂∗s|h
a.s.−→ p0∗s|h

(21)

as n −→ ∞, and therefore

γ̂h2
∑

j

p̂ j |h log
p̃ j |h
p̂ j |h

+ γ̂h3
∑

s

p̂∗s|h log
p̃∗s|h
p̂∗s|h

a.s.−→ 0 as n −→ ∞.

Applying inequality (13), we get

γ̂h2
∑

j

p̂ j |h( p̃ j |h − p̂ j |h)2 + γ̂h3
∑

s

p̂∗s|h( p̃∗s|h − p̂∗s|h)2
a.s.−→ 0.

Because γh2 > 0 from the above and (21) it follows that

p̃ j |h
a.s.−→ p0j |h as n −→ ∞.

��
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